VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMInternal.h@ 15404

Last change on this file since 15404 was 15404, checked in by vboxsync, 16 years ago

#3202: 64-bit guest support on the mac.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 189.5 KB
Line 
1/* $Id: PGMInternal.h 15404 2008-12-12 22:43:42Z vboxsync $ */
2/** @file
3 * PGM - Internal header file.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22#ifndef ___PGMInternal_h
23#define ___PGMInternal_h
24
25#include <VBox/cdefs.h>
26#include <VBox/types.h>
27#include <VBox/err.h>
28#include <VBox/stam.h>
29#include <VBox/param.h>
30#include <VBox/vmm.h>
31#include <VBox/mm.h>
32#include <VBox/pdmcritsect.h>
33#include <VBox/pdmapi.h>
34#include <VBox/dis.h>
35#include <VBox/dbgf.h>
36#include <VBox/log.h>
37#include <VBox/gmm.h>
38#include <VBox/hwaccm.h>
39#include <iprt/avl.h>
40#include <iprt/assert.h>
41#include <iprt/critsect.h>
42
43
44
45/** @defgroup grp_pgm_int Internals
46 * @ingroup grp_pgm
47 * @internal
48 * @{
49 */
50
51
52/** @name PGM Compile Time Config
53 * @{
54 */
55
56/**
57 * Solve page is out of sync issues inside Guest Context (in PGMGC.cpp).
58 * Comment it if it will break something.
59 */
60#define PGM_OUT_OF_SYNC_IN_GC
61
62/**
63 * Check and skip global PDEs for non-global flushes
64 */
65#define PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
66
67/**
68 * Sync N pages instead of a whole page table
69 */
70#define PGM_SYNC_N_PAGES
71
72/**
73 * Number of pages to sync during a page fault
74 *
75 * When PGMPOOL_WITH_GCPHYS_TRACKING is enabled using high values here
76 * causes a lot of unnecessary extents and also is slower than taking more \#PFs.
77 */
78#define PGM_SYNC_NR_PAGES 8
79
80/**
81 * Number of PGMPhysRead/Write cache entries (must be <= sizeof(uint64_t))
82 */
83#define PGM_MAX_PHYSCACHE_ENTRIES 64
84#define PGM_MAX_PHYSCACHE_ENTRIES_MASK (PGM_MAX_PHYSCACHE_ENTRIES-1)
85
86/**
87 * Enable caching of PGMR3PhysRead/WriteByte/Word/Dword
88 */
89#define PGM_PHYSMEMACCESS_CACHING
90
91/** @def PGMPOOL_WITH_CACHE
92 * Enable agressive caching using the page pool.
93 *
94 * This requires PGMPOOL_WITH_USER_TRACKING and PGMPOOL_WITH_MONITORING.
95 */
96#define PGMPOOL_WITH_CACHE
97
98/** @def PGMPOOL_WITH_MIXED_PT_CR3
99 * When defined, we'll deal with 'uncachable' pages.
100 */
101#ifdef PGMPOOL_WITH_CACHE
102# define PGMPOOL_WITH_MIXED_PT_CR3
103#endif
104
105/** @def PGMPOOL_WITH_MONITORING
106 * Monitor the guest pages which are shadowed.
107 * When this is enabled, PGMPOOL_WITH_CACHE or PGMPOOL_WITH_GCPHYS_TRACKING must
108 * be enabled as well.
109 * @remark doesn't really work without caching now. (Mixed PT/CR3 change.)
110 */
111#ifdef PGMPOOL_WITH_CACHE
112# define PGMPOOL_WITH_MONITORING
113#endif
114
115/** @def PGMPOOL_WITH_GCPHYS_TRACKING
116 * Tracking the of shadow pages mapping guest physical pages.
117 *
118 * This is very expensive, the current cache prototype is trying to figure out
119 * whether it will be acceptable with an agressive caching policy.
120 */
121#if defined(PGMPOOL_WITH_CACHE) || defined(PGMPOOL_WITH_MONITORING)
122# define PGMPOOL_WITH_GCPHYS_TRACKING
123#endif
124
125/** @def PGMPOOL_WITH_USER_TRACKING
126 * Tracking users of shadow pages. This is required for the linking of shadow page
127 * tables and physical guest addresses.
128 */
129#if defined(PGMPOOL_WITH_GCPHYS_TRACKING) || defined(PGMPOOL_WITH_CACHE) || defined(PGMPOOL_WITH_MONITORING)
130# define PGMPOOL_WITH_USER_TRACKING
131#endif
132
133/** @def PGMPOOL_CFG_MAX_GROW
134 * The maximum number of pages to add to the pool in one go.
135 */
136#define PGMPOOL_CFG_MAX_GROW (_256K >> PAGE_SHIFT)
137
138/** @def VBOX_STRICT_PGM_HANDLER_VIRTUAL
139 * Enables some extra assertions for virtual handlers (mainly phys2virt related).
140 */
141#ifdef VBOX_STRICT
142# define VBOX_STRICT_PGM_HANDLER_VIRTUAL
143#endif
144/** @} */
145
146
147/** @name PDPT and PML4 flags.
148 * These are placed in the three bits available for system programs in
149 * the PDPT and PML4 entries.
150 * @{ */
151/** The entry is a permanent one and it's must always be present.
152 * Never free such an entry. */
153#define PGM_PLXFLAGS_PERMANENT RT_BIT_64(10)
154/** Mapping (hypervisor allocated pagetable). */
155#define PGM_PLXFLAGS_MAPPING RT_BIT_64(11)
156/** @} */
157
158/** @name Page directory flags.
159 * These are placed in the three bits available for system programs in
160 * the page directory entries.
161 * @{ */
162/** Mapping (hypervisor allocated pagetable). */
163#define PGM_PDFLAGS_MAPPING RT_BIT_64(10)
164/** Made read-only to facilitate dirty bit tracking. */
165#define PGM_PDFLAGS_TRACK_DIRTY RT_BIT_64(11)
166/** @} */
167
168/** @name Page flags.
169 * These are placed in the three bits available for system programs in
170 * the page entries.
171 * @{ */
172/** Made read-only to facilitate dirty bit tracking. */
173#define PGM_PTFLAGS_TRACK_DIRTY RT_BIT_64(9)
174
175#ifndef PGM_PTFLAGS_CSAM_VALIDATED
176/** Scanned and approved by CSAM (tm).
177 * NOTE: Must be identical to the one defined in CSAMInternal.h!!
178 * @todo Move PGM_PTFLAGS_* and PGM_PDFLAGS_* to VBox/pgm.h. */
179#define PGM_PTFLAGS_CSAM_VALIDATED RT_BIT_64(11)
180#endif
181/** @} */
182
183/** @name Defines used to indicate the shadow and guest paging in the templates.
184 * @{ */
185#define PGM_TYPE_REAL 1
186#define PGM_TYPE_PROT 2
187#define PGM_TYPE_32BIT 3
188#define PGM_TYPE_PAE 4
189#define PGM_TYPE_AMD64 5
190#define PGM_TYPE_NESTED 6
191#define PGM_TYPE_EPT 7
192#define PGM_TYPE_MAX PGM_TYPE_EPT
193/** @} */
194
195/** Macro for checking if the guest is using paging.
196 * @param uGstType PGM_TYPE_*
197 * @param uShwType PGM_TYPE_*
198 * @remark ASSUMES certain order of the PGM_TYPE_* values.
199 */
200#define PGM_WITH_PAGING(uGstType, uShwType) \
201 ( (uGstType) >= PGM_TYPE_32BIT \
202 && (uShwType) != PGM_TYPE_NESTED \
203 && (uShwType) != PGM_TYPE_EPT)
204
205/** Macro for checking if the guest supports the NX bit.
206 * @param uGstType PGM_TYPE_*
207 * @param uShwType PGM_TYPE_*
208 * @remark ASSUMES certain order of the PGM_TYPE_* values.
209 */
210#define PGM_WITH_NX(uGstType, uShwType) \
211 ( (uGstType) >= PGM_TYPE_PAE \
212 && (uShwType) != PGM_TYPE_NESTED \
213 && (uShwType) != PGM_TYPE_EPT)
214
215
216/** @def PGM_HCPHYS_2_PTR
217 * Maps a HC physical page pool address to a virtual address.
218 *
219 * @returns VBox status code.
220 * @param pVM The VM handle.
221 * @param HCPhys The HC physical address to map to a virtual one.
222 * @param ppv Where to store the virtual address. No need to cast this.
223 *
224 * @remark In GC this uses PGMGCDynMapHCPage(), so it will consume of the
225 * small page window employeed by that function. Be careful.
226 * @remark There is no need to assert on the result.
227 */
228#ifdef IN_RC
229# define PGM_HCPHYS_2_PTR(pVM, HCPhys, ppv) \
230 PGMDynMapHCPage(pVM, HCPhys, (void **)(ppv))
231#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
232# define PGM_HCPHYS_2_PTR(pVM, HCPhys, ppv) \
233 pgmR0DynMapHCPageInlined(&(pVM)->pgm.s, HCPhys, (void **)(ppv))
234#else
235# define PGM_HCPHYS_2_PTR(pVM, HCPhys, ppv) \
236 MMPagePhys2PageEx(pVM, HCPhys, (void **)(ppv))
237#endif
238
239/** @def PGM_HCPHYS_2_PTR_BY_PGM
240 * Maps a HC physical page pool address to a virtual address.
241 *
242 * @returns VBox status code.
243 * @param pPGM The PGM instance data.
244 * @param HCPhys The HC physical address to map to a virtual one.
245 * @param ppv Where to store the virtual address. No need to cast this.
246 *
247 * @remark In GC this uses PGMGCDynMapHCPage(), so it will consume of the
248 * small page window employeed by that function. Be careful.
249 * @remark There is no need to assert on the result.
250 */
251#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
252# define PGM_HCPHYS_2_PTR_BY_PGM(pPGM, HCPhys, ppv) \
253 pgmR0DynMapHCPageInlined(pPGM, HCPhys, (void **)(ppv))
254#else
255# define PGM_HCPHYS_2_PTR_BY_PGM(pPGM, HCPhys, ppv) \
256 PGM_HCPHYS_2_PTR(PGM2VM(pPGM), HCPhys, (void **)(ppv))
257#endif
258
259/** @def PGM_GCPHYS_2_PTR
260 * Maps a GC physical page address to a virtual address.
261 *
262 * @returns VBox status code.
263 * @param pVM The VM handle.
264 * @param GCPhys The GC physical address to map to a virtual one.
265 * @param ppv Where to store the virtual address. No need to cast this.
266 *
267 * @remark In GC this uses PGMGCDynMapGCPage(), so it will consume of the
268 * small page window employeed by that function. Be careful.
269 * @remark There is no need to assert on the result.
270 */
271#ifdef IN_RC
272# define PGM_GCPHYS_2_PTR(pVM, GCPhys, ppv) \
273 PGMDynMapGCPage(pVM, GCPhys, (void **)(ppv))
274#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
275# define PGM_GCPHYS_2_PTR(pVM, GCPhys, ppv) \
276 pgmR0DynMapGCPageInlined(&(pVM)->pgm.s, GCPhys, (void **)(ppv))
277#else
278# define PGM_GCPHYS_2_PTR(pVM, GCPhys, ppv) \
279 PGMPhysGCPhys2R3Ptr(pVM, GCPhys, 1 /* one page only */, (PRTR3PTR)(ppv)) /** @todo this isn't asserting, use PGMRamGCPhys2HCPtr! */
280#endif
281
282/** @def PGM_GCPHYS_2_PTR_BY_PGM
283 * Maps a GC physical page address to a virtual address.
284 *
285 * @returns VBox status code.
286 * @param pPGM Pointer to the PGM instance data.
287 * @param GCPhys The GC physical address to map to a virtual one.
288 * @param ppv Where to store the virtual address. No need to cast this.
289 *
290 * @remark In GC this uses PGMGCDynMapGCPage(), so it will consume of the
291 * small page window employeed by that function. Be careful.
292 * @remark There is no need to assert on the result.
293 */
294#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
295# define PGM_GCPHYS_2_PTR_BY_PGM(pPGM, GCPhys, ppv) \
296 pgmR0DynMapGCPageInlined(pPGM, GCPhys, (void **)(ppv))
297#else
298# define PGM_GCPHYS_2_PTR_BY_PGM(pPGM, GCPhys, ppv) \
299 PGM_GCPHYS_2_PTR(PGM2VM(pPGM), GCPhys, ppv)
300#endif
301
302/** @def PGM_GCPHYS_2_PTR_EX
303 * Maps a unaligned GC physical page address to a virtual address.
304 *
305 * @returns VBox status code.
306 * @param pVM The VM handle.
307 * @param GCPhys The GC physical address to map to a virtual one.
308 * @param ppv Where to store the virtual address. No need to cast this.
309 *
310 * @remark In GC this uses PGMGCDynMapGCPage(), so it will consume of the
311 * small page window employeed by that function. Be careful.
312 * @remark There is no need to assert on the result.
313 */
314#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
315# define PGM_GCPHYS_2_PTR_EX(pVM, GCPhys, ppv) \
316 PGMDynMapGCPageOff(pVM, GCPhys, (void **)(ppv))
317#else
318# define PGM_GCPHYS_2_PTR_EX(pVM, GCPhys, ppv) \
319 PGMPhysGCPhys2R3Ptr(pVM, GCPhys, 1 /* one page only */, (PRTR3PTR)(ppv)) /** @todo this isn't asserting, use PGMRamGCPhys2HCPtr! */
320#endif
321
322/** @def PGM_INVL_PG
323 * Invalidates a page when in GC does nothing in HC.
324 *
325 * @param GCVirt The virtual address of the page to invalidate.
326 */
327#ifdef IN_RC
328# define PGM_INVL_PG(GCVirt) ASMInvalidatePage((void *)(GCVirt))
329#elif defined(IN_RING0)
330# define PGM_INVL_PG(GCVirt) HWACCMInvalidatePage(pVM, (RTGCPTR)(GCVirt))
331#else
332# define PGM_INVL_PG(GCVirt) HWACCMInvalidatePage(pVM, (RTGCPTR)(GCVirt))
333#endif
334
335/** @def PGM_INVL_BIG_PG
336 * Invalidates a 4MB page directory entry when in GC does nothing in HC.
337 *
338 * @param GCVirt The virtual address within the page directory to invalidate.
339 */
340#ifdef IN_RC
341# define PGM_INVL_BIG_PG(GCVirt) ASMReloadCR3()
342#elif defined(IN_RING0)
343# define PGM_INVL_BIG_PG(GCVirt) HWACCMFlushTLB(pVM)
344#else
345# define PGM_INVL_BIG_PG(GCVirt) HWACCMFlushTLB(pVM)
346#endif
347
348/** @def PGM_INVL_GUEST_TLBS()
349 * Invalidates all guest TLBs.
350 */
351#ifdef IN_RC
352# define PGM_INVL_GUEST_TLBS() ASMReloadCR3()
353#elif defined(IN_RING0)
354# define PGM_INVL_GUEST_TLBS() HWACCMFlushTLB(pVM)
355#else
356# define PGM_INVL_GUEST_TLBS() HWACCMFlushTLB(pVM)
357#endif
358
359
360/**
361 * Structure for tracking GC Mappings.
362 *
363 * This structure is used by linked list in both GC and HC.
364 */
365typedef struct PGMMAPPING
366{
367 /** Pointer to next entry. */
368 R3PTRTYPE(struct PGMMAPPING *) pNextR3;
369 /** Pointer to next entry. */
370 R0PTRTYPE(struct PGMMAPPING *) pNextR0;
371 /** Pointer to next entry. */
372 RCPTRTYPE(struct PGMMAPPING *) pNextRC;
373#if GC_ARCH_BITS == 64
374 RTRCPTR padding0;
375#endif
376 /** Start Virtual address. */
377 RTGCPTR GCPtr;
378 /** Last Virtual address (inclusive). */
379 RTGCPTR GCPtrLast;
380 /** Range size (bytes). */
381 RTGCPTR cb;
382 /** Pointer to relocation callback function. */
383 R3PTRTYPE(PFNPGMRELOCATE) pfnRelocate;
384 /** User argument to the callback. */
385 R3PTRTYPE(void *) pvUser;
386 /** Mapping description / name. For easing debugging. */
387 R3PTRTYPE(const char *) pszDesc;
388 /** Number of page tables. */
389 RTUINT cPTs;
390#if HC_ARCH_BITS != GC_ARCH_BITS || GC_ARCH_BITS == 64
391 RTUINT uPadding1; /**< Alignment padding. */
392#endif
393 /** Array of page table mapping data. Each entry
394 * describes one page table. The array can be longer
395 * than the declared length.
396 */
397 struct
398 {
399 /** The HC physical address of the page table. */
400 RTHCPHYS HCPhysPT;
401 /** The HC physical address of the first PAE page table. */
402 RTHCPHYS HCPhysPaePT0;
403 /** The HC physical address of the second PAE page table. */
404 RTHCPHYS HCPhysPaePT1;
405 /** The HC virtual address of the 32-bit page table. */
406 R3PTRTYPE(PX86PT) pPTR3;
407 /** The HC virtual address of the two PAE page table. (i.e 1024 entries instead of 512) */
408 R3PTRTYPE(PX86PTPAE) paPaePTsR3;
409 /** The GC virtual address of the 32-bit page table. */
410 RCPTRTYPE(PX86PT) pPTRC;
411 /** The GC virtual address of the two PAE page table. */
412 RCPTRTYPE(PX86PTPAE) paPaePTsRC;
413 /** The GC virtual address of the 32-bit page table. */
414 R0PTRTYPE(PX86PT) pPTR0;
415 /** The GC virtual address of the two PAE page table. */
416 R0PTRTYPE(PX86PTPAE) paPaePTsR0;
417 } aPTs[1];
418} PGMMAPPING;
419/** Pointer to structure for tracking GC Mappings. */
420typedef struct PGMMAPPING *PPGMMAPPING;
421
422
423/**
424 * Physical page access handler structure.
425 *
426 * This is used to keep track of physical address ranges
427 * which are being monitored in some kind of way.
428 */
429typedef struct PGMPHYSHANDLER
430{
431 AVLROGCPHYSNODECORE Core;
432 /** Access type. */
433 PGMPHYSHANDLERTYPE enmType;
434 /** Number of pages to update. */
435 uint32_t cPages;
436 /** Pointer to R3 callback function. */
437 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3;
438 /** User argument for R3 handlers. */
439 R3PTRTYPE(void *) pvUserR3;
440 /** Pointer to R0 callback function. */
441 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0;
442 /** User argument for R0 handlers. */
443 R0PTRTYPE(void *) pvUserR0;
444 /** Pointer to GC callback function. */
445 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnHandlerRC;
446 /** User argument for RC handlers. */
447 RCPTRTYPE(void *) pvUserRC;
448 /** Description / Name. For easing debugging. */
449 R3PTRTYPE(const char *) pszDesc;
450#ifdef VBOX_WITH_STATISTICS
451 /** Profiling of this handler. */
452 STAMPROFILE Stat;
453#endif
454} PGMPHYSHANDLER;
455/** Pointer to a physical page access handler structure. */
456typedef PGMPHYSHANDLER *PPGMPHYSHANDLER;
457
458
459/**
460 * Cache node for the physical addresses covered by a virtual handler.
461 */
462typedef struct PGMPHYS2VIRTHANDLER
463{
464 /** Core node for the tree based on physical ranges. */
465 AVLROGCPHYSNODECORE Core;
466 /** Offset from this struct to the PGMVIRTHANDLER structure. */
467 int32_t offVirtHandler;
468 /** Offset of the next alias relative to this one.
469 * Bit 0 is used for indicating whether we're in the tree.
470 * Bit 1 is used for indicating that we're the head node.
471 */
472 int32_t offNextAlias;
473} PGMPHYS2VIRTHANDLER;
474/** Pointer to a phys to virtual handler structure. */
475typedef PGMPHYS2VIRTHANDLER *PPGMPHYS2VIRTHANDLER;
476
477/** The bit in PGMPHYS2VIRTHANDLER::offNextAlias used to indicate that the
478 * node is in the tree. */
479#define PGMPHYS2VIRTHANDLER_IN_TREE RT_BIT(0)
480/** The bit in PGMPHYS2VIRTHANDLER::offNextAlias used to indicate that the
481 * node is in the head of an alias chain.
482 * The PGMPHYS2VIRTHANDLER_IN_TREE is always set if this bit is set. */
483#define PGMPHYS2VIRTHANDLER_IS_HEAD RT_BIT(1)
484/** The mask to apply to PGMPHYS2VIRTHANDLER::offNextAlias to get the offset. */
485#define PGMPHYS2VIRTHANDLER_OFF_MASK (~(int32_t)3)
486
487
488/**
489 * Virtual page access handler structure.
490 *
491 * This is used to keep track of virtual address ranges
492 * which are being monitored in some kind of way.
493 */
494typedef struct PGMVIRTHANDLER
495{
496 /** Core node for the tree based on virtual ranges. */
497 AVLROGCPTRNODECORE Core;
498 /** Size of the range (in bytes). */
499 RTGCPTR cb;
500 /** Number of cache pages. */
501 uint32_t cPages;
502 /** Access type. */
503 PGMVIRTHANDLERTYPE enmType;
504 /** Pointer to the RC callback function. */
505 RCPTRTYPE(PFNPGMRCVIRTHANDLER) pfnHandlerRC;
506#if HC_ARCH_BITS == 64
507 RTRCPTR padding;
508#endif
509 /** Pointer to the R3 callback function for invalidation. */
510 R3PTRTYPE(PFNPGMR3VIRTINVALIDATE) pfnInvalidateR3;
511 /** Pointer to the R3 callback function. */
512 R3PTRTYPE(PFNPGMR3VIRTHANDLER) pfnHandlerR3;
513 /** Description / Name. For easing debugging. */
514 R3PTRTYPE(const char *) pszDesc;
515#ifdef VBOX_WITH_STATISTICS
516 /** Profiling of this handler. */
517 STAMPROFILE Stat;
518#endif
519 /** Array of cached physical addresses for the monitored ranged. */
520 PGMPHYS2VIRTHANDLER aPhysToVirt[HC_ARCH_BITS == 32 ? 1 : 2];
521} PGMVIRTHANDLER;
522/** Pointer to a virtual page access handler structure. */
523typedef PGMVIRTHANDLER *PPGMVIRTHANDLER;
524
525
526/**
527 * Page type.
528 * @remarks This enum has to fit in a 3-bit field (see PGMPAGE::u3Type).
529 * @todo convert to \#defines.
530 */
531typedef enum PGMPAGETYPE
532{
533 /** The usual invalid zero entry. */
534 PGMPAGETYPE_INVALID = 0,
535 /** RAM page. (RWX) */
536 PGMPAGETYPE_RAM,
537 /** MMIO2 page. (RWX) */
538 PGMPAGETYPE_MMIO2,
539 /** Shadowed ROM. (RWX) */
540 PGMPAGETYPE_ROM_SHADOW,
541 /** ROM page. (R-X) */
542 PGMPAGETYPE_ROM,
543 /** MMIO page. (---) */
544 PGMPAGETYPE_MMIO,
545 /** End of valid entries. */
546 PGMPAGETYPE_END
547} PGMPAGETYPE;
548AssertCompile(PGMPAGETYPE_END < 7);
549
550/** @name Page type predicates.
551 * @{ */
552#define PGMPAGETYPE_IS_READABLE(type) ( (type) <= PGMPAGETYPE_ROM )
553#define PGMPAGETYPE_IS_WRITEABLE(type) ( (type) <= PGMPAGETYPE_ROM_SHADOW )
554#define PGMPAGETYPE_IS_RWX(type) ( (type) <= PGMPAGETYPE_ROM_SHADOW )
555#define PGMPAGETYPE_IS_ROX(type) ( (type) == PGMPAGETYPE_ROM )
556#define PGMPAGETYPE_IS_NP(type) ( (type) == PGMPAGETYPE_MMIO )
557/** @} */
558
559
560/**
561 * A Physical Guest Page tracking structure.
562 *
563 * The format of this structure is complicated because we have to fit a lot
564 * of information into as few bits as possible. The format is also subject
565 * to change (there is one comming up soon). Which means that for we'll be
566 * using PGM_PAGE_GET_*, PGM_PAGE_IS_ and PGM_PAGE_SET_* macros for *all*
567 * accessess to the structure.
568 */
569typedef struct PGMPAGE
570{
571 /** The physical address and a whole lot of other stuff. All bits are used! */
572 RTHCPHYS HCPhys;
573 /** The page state. */
574 uint32_t u2StateX : 2;
575 /** Flag indicating that a write monitored page was written to when set. */
576 uint32_t fWrittenToX : 1;
577 /** For later. */
578 uint32_t fSomethingElse : 1;
579 /** The Page ID.
580 * @todo Merge with HCPhys once we've liberated HCPhys of its stuff.
581 * The HCPhys will be 100% static. */
582 uint32_t idPageX : 28;
583 /** The page type (PGMPAGETYPE). */
584 uint32_t u3Type : 3;
585 /** The physical handler state (PGM_PAGE_HNDL_PHYS_STATE*) */
586 uint32_t u2HandlerPhysStateX : 2;
587 /** The virtual handler state (PGM_PAGE_HNDL_VIRT_STATE*) */
588 uint32_t u2HandlerVirtStateX : 2;
589 uint32_t u29B : 25;
590} PGMPAGE;
591AssertCompileSize(PGMPAGE, 16);
592/** Pointer to a physical guest page. */
593typedef PGMPAGE *PPGMPAGE;
594/** Pointer to a const physical guest page. */
595typedef const PGMPAGE *PCPGMPAGE;
596/** Pointer to a physical guest page pointer. */
597typedef PPGMPAGE *PPPGMPAGE;
598
599
600/**
601 * Clears the page structure.
602 * @param pPage Pointer to the physical guest page tracking structure.
603 */
604#define PGM_PAGE_CLEAR(pPage) \
605 do { \
606 (pPage)->HCPhys = 0; \
607 (pPage)->u2StateX = 0; \
608 (pPage)->fWrittenToX = 0; \
609 (pPage)->fSomethingElse = 0; \
610 (pPage)->idPageX = 0; \
611 (pPage)->u3Type = 0; \
612 (pPage)->u29B = 0; \
613 } while (0)
614
615/**
616 * Initializes the page structure.
617 * @param pPage Pointer to the physical guest page tracking structure.
618 */
619#define PGM_PAGE_INIT(pPage, _HCPhys, _idPage, _uType, _uState) \
620 do { \
621 (pPage)->HCPhys = (_HCPhys); \
622 (pPage)->u2StateX = (_uState); \
623 (pPage)->fWrittenToX = 0; \
624 (pPage)->fSomethingElse = 0; \
625 (pPage)->idPageX = (_idPage); \
626 /*(pPage)->u3Type = (_uType); - later */ \
627 PGM_PAGE_SET_TYPE(pPage, _uType); \
628 (pPage)->u29B = 0; \
629 } while (0)
630
631/**
632 * Initializes the page structure of a ZERO page.
633 * @param pPage Pointer to the physical guest page tracking structure.
634 */
635#ifdef VBOX_WITH_NEW_PHYS_CODE
636# define PGM_PAGE_INIT_ZERO(pPage, pVM, _uType) \
637 PGM_PAGE_INIT(pPage, (pVM)->pgm.s.HCPhysZeroPg, NIL_GMM_PAGEID, (_uType), PGM_PAGE_STATE_ZERO)
638#else
639# define PGM_PAGE_INIT_ZERO(pPage, pVM, _uType) \
640 PGM_PAGE_INIT(pPage, 0, NIL_GMM_PAGEID, (_uType), PGM_PAGE_STATE_ZERO)
641#endif
642/** Temporary hack. Replaced by PGM_PAGE_INIT_ZERO once the old code is kicked out. */
643# define PGM_PAGE_INIT_ZERO_REAL(pPage, pVM, _uType) \
644 PGM_PAGE_INIT(pPage, (pVM)->pgm.s.HCPhysZeroPg, NIL_GMM_PAGEID, (_uType), PGM_PAGE_STATE_ZERO)
645
646
647/** @name The Page state, PGMPAGE::u2StateX.
648 * @{ */
649/** The zero page.
650 * This is a per-VM page that's never ever mapped writable. */
651#define PGM_PAGE_STATE_ZERO 0
652/** A allocated page.
653 * This is a per-VM page allocated from the page pool (or wherever
654 * we get MMIO2 pages from if the type is MMIO2).
655 */
656#define PGM_PAGE_STATE_ALLOCATED 1
657/** A allocated page that's being monitored for writes.
658 * The shadow page table mappings are read-only. When a write occurs, the
659 * fWrittenTo member is set, the page remapped as read-write and the state
660 * moved back to allocated. */
661#define PGM_PAGE_STATE_WRITE_MONITORED 2
662/** The page is shared, aka. copy-on-write.
663 * This is a page that's shared with other VMs. */
664#define PGM_PAGE_STATE_SHARED 3
665/** @} */
666
667
668/**
669 * Gets the page state.
670 * @returns page state (PGM_PAGE_STATE_*).
671 * @param pPage Pointer to the physical guest page tracking structure.
672 */
673#define PGM_PAGE_GET_STATE(pPage) ( (pPage)->u2StateX )
674
675/**
676 * Sets the page state.
677 * @param pPage Pointer to the physical guest page tracking structure.
678 * @param _uState The new page state.
679 */
680#define PGM_PAGE_SET_STATE(pPage, _uState) \
681 do { (pPage)->u2StateX = (_uState); } while (0)
682
683
684/**
685 * Gets the host physical address of the guest page.
686 * @returns host physical address (RTHCPHYS).
687 * @param pPage Pointer to the physical guest page tracking structure.
688 */
689#define PGM_PAGE_GET_HCPHYS(pPage) ( (pPage)->HCPhys & UINT64_C(0x0000fffffffff000) )
690
691/**
692 * Sets the host physical address of the guest page.
693 * @param pPage Pointer to the physical guest page tracking structure.
694 * @param _HCPhys The new host physical address.
695 */
696#define PGM_PAGE_SET_HCPHYS(pPage, _HCPhys) \
697 do { (pPage)->HCPhys = (((pPage)->HCPhys) & UINT64_C(0xffff000000000fff)) \
698 | ((_HCPhys) & UINT64_C(0x0000fffffffff000)); } while (0)
699
700/**
701 * Get the Page ID.
702 * @returns The Page ID; NIL_GMM_PAGEID if it's a ZERO page.
703 * @param pPage Pointer to the physical guest page tracking structure.
704 */
705#define PGM_PAGE_GET_PAGEID(pPage) ( (pPage)->idPageX )
706/* later:
707#define PGM_PAGE_GET_PAGEID(pPage) ( ((uint32_t)(pPage)->HCPhys >> (48 - 12))
708 | ((uint32_t)(pPage)->HCPhys & 0xfff) )
709*/
710/**
711 * Sets the Page ID.
712 * @param pPage Pointer to the physical guest page tracking structure.
713 */
714#define PGM_PAGE_SET_PAGEID(pPage, _idPage) do { (pPage)->idPageX = (_idPage); } while (0)
715/* later:
716#define PGM_PAGE_SET_PAGEID(pPage, _idPage) do { (pPage)->HCPhys = (((pPage)->HCPhys) & UINT64_C(0x0000fffffffff000)) \
717 | ((_idPage) & 0xfff) \
718 | (((_idPage) & 0x0ffff000) << (48-12)); } while (0)
719*/
720
721/**
722 * Get the Chunk ID.
723 * @returns The Chunk ID; NIL_GMM_CHUNKID if it's a ZERO page.
724 * @param pPage Pointer to the physical guest page tracking structure.
725 */
726#define PGM_PAGE_GET_CHUNKID(pPage) ( (pPage)->idPageX >> GMM_CHUNKID_SHIFT )
727/* later:
728#if GMM_CHUNKID_SHIFT == 12
729# define PGM_PAGE_GET_CHUNKID(pPage) ( (uint32_t)((pPage)->HCPhys >> 48) )
730#elif GMM_CHUNKID_SHIFT > 12
731# define PGM_PAGE_GET_CHUNKID(pPage) ( (uint32_t)((pPage)->HCPhys >> (48 + (GMM_CHUNKID_SHIFT - 12)) )
732#elif GMM_CHUNKID_SHIFT < 12
733# define PGM_PAGE_GET_CHUNKID(pPage) ( ( (uint32_t)((pPage)->HCPhys >> 48) << (12 - GMM_CHUNKID_SHIFT) ) \
734 | ( (uint32_t)((pPage)->HCPhys & 0xfff) >> GMM_CHUNKID_SHIFT ) )
735#else
736# error "GMM_CHUNKID_SHIFT isn't defined or something."
737#endif
738*/
739
740/**
741 * Get the index of the page within the allocaiton chunk.
742 * @returns The page index.
743 * @param pPage Pointer to the physical guest page tracking structure.
744 */
745#define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (pPage)->idPageX & GMM_PAGEID_IDX_MASK )
746/* later:
747#if GMM_CHUNKID_SHIFT <= 12
748# define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (uint32_t)((pPage)->HCPhys & GMM_PAGEID_IDX_MASK) )
749#else
750# define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (uint32_t)((pPage)->HCPhys & 0xfff) \
751 | ( (uint32_t)((pPage)->HCPhys >> 48) & (RT_BIT_32(GMM_CHUNKID_SHIFT - 12) - 1) ) )
752#endif
753*/
754
755
756/**
757 * Gets the page type.
758 * @returns The page type.
759 * @param pPage Pointer to the physical guest page tracking structure.
760 */
761#define PGM_PAGE_GET_TYPE(pPage) (pPage)->u3Type
762
763/**
764 * Sets the page type.
765 * @param pPage Pointer to the physical guest page tracking structure.
766 * @param _enmType The new page type (PGMPAGETYPE).
767 */
768#ifdef VBOX_WITH_NEW_PHYS_CODE
769#define PGM_PAGE_SET_TYPE(pPage, _enmType) \
770 do { (pPage)->u3Type = (_enmType); } while (0)
771#else
772#define PGM_PAGE_SET_TYPE(pPage, _enmType) \
773 do { \
774 (pPage)->u3Type = (_enmType); \
775 if ((_enmType) == PGMPAGETYPE_ROM) \
776 (pPage)->HCPhys |= MM_RAM_FLAGS_ROM; \
777 else if ((_enmType) == PGMPAGETYPE_ROM_SHADOW) \
778 (pPage)->HCPhys |= MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO2; \
779 else if ((_enmType) == PGMPAGETYPE_MMIO2) \
780 (pPage)->HCPhys |= MM_RAM_FLAGS_MMIO2; \
781 } while (0)
782#endif
783
784
785/**
786 * Checks if the page is 'reserved'.
787 * @returns true/false.
788 * @param pPage Pointer to the physical guest page tracking structure.
789 */
790#define PGM_PAGE_IS_RESERVED(pPage) ( !!((pPage)->HCPhys & MM_RAM_FLAGS_RESERVED) )
791
792/**
793 * Checks if the page is marked for MMIO.
794 * @returns true/false.
795 * @param pPage Pointer to the physical guest page tracking structure.
796 */
797#define PGM_PAGE_IS_MMIO(pPage) ( !!((pPage)->HCPhys & MM_RAM_FLAGS_MMIO) )
798
799/**
800 * Checks if the page is backed by the ZERO page.
801 * @returns true/false.
802 * @param pPage Pointer to the physical guest page tracking structure.
803 */
804#define PGM_PAGE_IS_ZERO(pPage) ( (pPage)->u2StateX == PGM_PAGE_STATE_ZERO )
805
806/**
807 * Checks if the page is backed by a SHARED page.
808 * @returns true/false.
809 * @param pPage Pointer to the physical guest page tracking structure.
810 */
811#define PGM_PAGE_IS_SHARED(pPage) ( (pPage)->u2StateX == PGM_PAGE_STATE_SHARED )
812
813
814/**
815 * Marks the paget as written to (for GMM change monitoring).
816 * @param pPage Pointer to the physical guest page tracking structure.
817 */
818#define PGM_PAGE_SET_WRITTEN_TO(pPage) do { (pPage)->fWrittenToX = 1; } while (0)
819
820/**
821 * Clears the written-to indicator.
822 * @param pPage Pointer to the physical guest page tracking structure.
823 */
824#define PGM_PAGE_CLEAR_WRITTEN_TO(pPage) do { (pPage)->fWrittenToX = 0; } while (0)
825
826/**
827 * Checks if the page was marked as written-to.
828 * @returns true/false.
829 * @param pPage Pointer to the physical guest page tracking structure.
830 */
831#define PGM_PAGE_IS_WRITTEN_TO(pPage) ( (pPage)->fWrittenToX )
832
833
834/** @name Physical Access Handler State values (PGMPAGE::u2HandlerPhysStateX).
835 *
836 * @remarks The values are assigned in order of priority, so we can calculate
837 * the correct state for a page with different handlers installed.
838 * @{ */
839/** No handler installed. */
840#define PGM_PAGE_HNDL_PHYS_STATE_NONE 0
841/** Monitoring is temporarily disabled. */
842#define PGM_PAGE_HNDL_PHYS_STATE_DISABLED 1
843/** Write access is monitored. */
844#define PGM_PAGE_HNDL_PHYS_STATE_WRITE 2
845/** All access is monitored. */
846#define PGM_PAGE_HNDL_PHYS_STATE_ALL 3
847/** @} */
848
849/**
850 * Gets the physical access handler state of a page.
851 * @returns PGM_PAGE_HNDL_PHYS_STATE_* value.
852 * @param pPage Pointer to the physical guest page tracking structure.
853 */
854#define PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) ( (pPage)->u2HandlerPhysStateX )
855
856/**
857 * Sets the physical access handler state of a page.
858 * @param pPage Pointer to the physical guest page tracking structure.
859 * @param _uState The new state value.
860 */
861#define PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, _uState) \
862 do { (pPage)->u2HandlerPhysStateX = (_uState); } while (0)
863
864/**
865 * Checks if the page has any physical access handlers, including temporariliy disabled ones.
866 * @returns true/false
867 * @param pPage Pointer to the physical guest page tracking structure.
868 */
869#define PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage) ( (pPage)->u2HandlerPhysStateX != PGM_PAGE_HNDL_PHYS_STATE_NONE )
870
871/**
872 * Checks if the page has any active physical access handlers.
873 * @returns true/false
874 * @param pPage Pointer to the physical guest page tracking structure.
875 */
876#define PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage) ( (pPage)->u2HandlerPhysStateX >= PGM_PAGE_HNDL_PHYS_STATE_WRITE )
877
878
879/** @name Virtual Access Handler State values (PGMPAGE::u2HandlerVirtStateX).
880 *
881 * @remarks The values are assigned in order of priority, so we can calculate
882 * the correct state for a page with different handlers installed.
883 * @{ */
884/** No handler installed. */
885#define PGM_PAGE_HNDL_VIRT_STATE_NONE 0
886/* 1 is reserved so the lineup is identical with the physical ones. */
887/** Write access is monitored. */
888#define PGM_PAGE_HNDL_VIRT_STATE_WRITE 2
889/** All access is monitored. */
890#define PGM_PAGE_HNDL_VIRT_STATE_ALL 3
891/** @} */
892
893/**
894 * Gets the virtual access handler state of a page.
895 * @returns PGM_PAGE_HNDL_VIRT_STATE_* value.
896 * @param pPage Pointer to the physical guest page tracking structure.
897 */
898#define PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) ( (pPage)->u2HandlerVirtStateX )
899
900/**
901 * Sets the virtual access handler state of a page.
902 * @param pPage Pointer to the physical guest page tracking structure.
903 * @param _uState The new state value.
904 */
905#define PGM_PAGE_SET_HNDL_VIRT_STATE(pPage, _uState) \
906 do { (pPage)->u2HandlerVirtStateX = (_uState); } while (0)
907
908/**
909 * Checks if the page has any virtual access handlers.
910 * @returns true/false
911 * @param pPage Pointer to the physical guest page tracking structure.
912 */
913#define PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(pPage) ( (pPage)->u2HandlerVirtStateX != PGM_PAGE_HNDL_VIRT_STATE_NONE )
914
915/**
916 * Same as PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS - can't disable pages in
917 * virtual handlers.
918 * @returns true/false
919 * @param pPage Pointer to the physical guest page tracking structure.
920 */
921#define PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage) PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(pPage)
922
923
924
925/**
926 * Checks if the page has any access handlers, including temporarily disabled ones.
927 * @returns true/false
928 * @param pPage Pointer to the physical guest page tracking structure.
929 */
930#define PGM_PAGE_HAS_ANY_HANDLERS(pPage) \
931 ( (pPage)->u2HandlerPhysStateX != PGM_PAGE_HNDL_PHYS_STATE_NONE \
932 || (pPage)->u2HandlerVirtStateX != PGM_PAGE_HNDL_VIRT_STATE_NONE )
933
934/**
935 * Checks if the page has any active access handlers.
936 * @returns true/false
937 * @param pPage Pointer to the physical guest page tracking structure.
938 */
939#define PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) \
940 ( (pPage)->u2HandlerPhysStateX >= PGM_PAGE_HNDL_PHYS_STATE_WRITE \
941 || (pPage)->u2HandlerVirtStateX >= PGM_PAGE_HNDL_VIRT_STATE_WRITE )
942
943/**
944 * Checks if the page has any active access handlers catching all accesses.
945 * @returns true/false
946 * @param pPage Pointer to the physical guest page tracking structure.
947 */
948#define PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage) \
949 ( (pPage)->u2HandlerPhysStateX == PGM_PAGE_HNDL_PHYS_STATE_ALL \
950 || (pPage)->u2HandlerVirtStateX == PGM_PAGE_HNDL_VIRT_STATE_ALL )
951
952
953/**
954 * Ram range for GC Phys to HC Phys conversion.
955 *
956 * Can be used for HC Virt to GC Phys and HC Virt to HC Phys
957 * conversions too, but we'll let MM handle that for now.
958 *
959 * This structure is used by linked lists in both GC and HC.
960 */
961typedef struct PGMRAMRANGE
962{
963 /** Pointer to the next RAM range - for R3. */
964 R3PTRTYPE(struct PGMRAMRANGE *) pNextR3;
965 /** Pointer to the next RAM range - for R0. */
966 R0PTRTYPE(struct PGMRAMRANGE *) pNextR0;
967 /** Pointer to the next RAM range - for RC. */
968 RCPTRTYPE(struct PGMRAMRANGE *) pNextRC;
969 /** Pointer alignment. */
970 RTRCPTR RCPtrAlignment;
971 /** Start of the range. Page aligned. */
972 RTGCPHYS GCPhys;
973 /** Last address in the range (inclusive). Page aligned (-1). */
974 RTGCPHYS GCPhysLast;
975 /** Size of the range. (Page aligned of course). */
976 RTGCPHYS cb;
977 /** MM_RAM_* flags */
978 uint32_t fFlags;
979 uint32_t u32Alignment; /**< alignment. */
980#ifndef VBOX_WITH_NEW_PHYS_CODE
981 /** R3 virtual lookup ranges for chunks.
982 * Currently only used with MM_RAM_FLAGS_DYNAMIC_ALLOC ranges.
983 * @remarks This is occationally accessed from ring-0!! (not darwin) */
984# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
985 R3PTRTYPE(PRTR3UINTPTR) paChunkR3Ptrs;
986# else
987 R3R0PTRTYPE(PRTR3UINTPTR) paChunkR3Ptrs;
988# endif
989#endif
990 /** Start of the HC mapping of the range. This is only used for MMIO2. */
991 R3PTRTYPE(void *) pvR3;
992 /** The range description. */
993 R3PTRTYPE(const char *) pszDesc;
994
995 /** Padding to make aPage aligned on sizeof(PGMPAGE). */
996#ifdef VBOX_WITH_NEW_PHYS_CODE
997 uint32_t au32Reserved[2];
998#elif HC_ARCH_BITS == 32
999 uint32_t au32Reserved[1];
1000#endif
1001
1002 /** Array of physical guest page tracking structures. */
1003 PGMPAGE aPages[1];
1004} PGMRAMRANGE;
1005/** Pointer to Ram range for GC Phys to HC Phys conversion. */
1006typedef PGMRAMRANGE *PPGMRAMRANGE;
1007
1008/** Return hc ptr corresponding to the ram range and physical offset */
1009#define PGMRAMRANGE_GETHCPTR(pRam, off) \
1010 (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) ? (RTHCPTR)((pRam)->paChunkR3Ptrs[(off) >> PGM_DYNAMIC_CHUNK_SHIFT] + ((off) & PGM_DYNAMIC_CHUNK_OFFSET_MASK)) \
1011 : (RTHCPTR)((RTR3UINTPTR)(pRam)->pvR3 + (off));
1012
1013/**
1014 * Per page tracking structure for ROM image.
1015 *
1016 * A ROM image may have a shadow page, in which case we may have
1017 * two pages backing it. This structure contains the PGMPAGE for
1018 * both while PGMRAMRANGE have a copy of the active one. It is
1019 * important that these aren't out of sync in any regard other
1020 * than page pool tracking data.
1021 */
1022typedef struct PGMROMPAGE
1023{
1024 /** The page structure for the virgin ROM page. */
1025 PGMPAGE Virgin;
1026 /** The page structure for the shadow RAM page. */
1027 PGMPAGE Shadow;
1028 /** The current protection setting. */
1029 PGMROMPROT enmProt;
1030 /** Pad the structure size to a multiple of 8. */
1031 uint32_t u32Padding;
1032} PGMROMPAGE;
1033/** Pointer to a ROM page tracking structure. */
1034typedef PGMROMPAGE *PPGMROMPAGE;
1035
1036
1037/**
1038 * A registered ROM image.
1039 *
1040 * This is needed to keep track of ROM image since they generally
1041 * intrude into a PGMRAMRANGE. It also keeps track of additional
1042 * info like the two page sets (read-only virgin and read-write shadow),
1043 * the current state of each page.
1044 *
1045 * Because access handlers cannot easily be executed in a different
1046 * context, the ROM ranges needs to be accessible and in all contexts.
1047 */
1048typedef struct PGMROMRANGE
1049{
1050 /** Pointer to the next range - R3. */
1051 R3PTRTYPE(struct PGMROMRANGE *) pNextR3;
1052 /** Pointer to the next range - R0. */
1053 R0PTRTYPE(struct PGMROMRANGE *) pNextR0;
1054 /** Pointer to the next range - RC. */
1055 RCPTRTYPE(struct PGMROMRANGE *) pNextRC;
1056 /** Pointer alignment */
1057 RTRCPTR GCPtrAlignment;
1058 /** Address of the range. */
1059 RTGCPHYS GCPhys;
1060 /** Address of the last byte in the range. */
1061 RTGCPHYS GCPhysLast;
1062 /** Size of the range. */
1063 RTGCPHYS cb;
1064 /** The flags (PGMPHYS_ROM_FLAG_*). */
1065 uint32_t fFlags;
1066 /** Alignment padding ensuring that aPages is sizeof(PGMROMPAGE) aligned. */
1067 uint32_t au32Alignemnt[HC_ARCH_BITS == 32 ? 7 : 3];
1068 /** Pointer to the original bits when PGMPHYS_ROM_FLAG_PERMANENT_BINARY was specified.
1069 * This is used for strictness checks. */
1070 R3PTRTYPE(const void *) pvOriginal;
1071 /** The ROM description. */
1072 R3PTRTYPE(const char *) pszDesc;
1073 /** The per page tracking structures. */
1074 PGMROMPAGE aPages[1];
1075} PGMROMRANGE;
1076/** Pointer to a ROM range. */
1077typedef PGMROMRANGE *PPGMROMRANGE;
1078
1079
1080/**
1081 * A registered MMIO2 (= Device RAM) range.
1082 *
1083 * There are a few reason why we need to keep track of these
1084 * registrations. One of them is the deregistration & cleanup
1085 * stuff, while another is that the PGMRAMRANGE associated with
1086 * such a region may have to be removed from the ram range list.
1087 *
1088 * Overlapping with a RAM range has to be 100% or none at all. The
1089 * pages in the existing RAM range must not be ROM nor MMIO. A guru
1090 * meditation will be raised if a partial overlap or an overlap of
1091 * ROM pages is encountered. On an overlap we will free all the
1092 * existing RAM pages and put in the ram range pages instead.
1093 */
1094typedef struct PGMMMIO2RANGE
1095{
1096 /** The owner of the range. (a device) */
1097 PPDMDEVINSR3 pDevInsR3;
1098 /** Pointer to the ring-3 mapping of the allocation. */
1099 RTR3PTR pvR3;
1100 /** Pointer to the next range - R3. */
1101 R3PTRTYPE(struct PGMMMIO2RANGE *) pNextR3;
1102 /** Whether it's mapped or not. */
1103 bool fMapped;
1104 /** Whether it's overlapping or not. */
1105 bool fOverlapping;
1106 /** The PCI region number.
1107 * @remarks This ASSUMES that nobody will ever really need to have multiple
1108 * PCI devices with matching MMIO region numbers on a single device. */
1109 uint8_t iRegion;
1110 /** Alignment padding for putting the ram range on a PGMPAGE alignment boundrary. */
1111 uint8_t abAlignemnt[HC_ARCH_BITS == 32 ? 1 : 5];
1112 /** The associated RAM range. */
1113 PGMRAMRANGE RamRange;
1114} PGMMMIO2RANGE;
1115/** Pointer to a MMIO2 range. */
1116typedef PGMMMIO2RANGE *PPGMMMIO2RANGE;
1117
1118
1119
1120
1121/**
1122 * PGMPhysRead/Write cache entry
1123 */
1124typedef struct PGMPHYSCACHEENTRY
1125{
1126 /** R3 pointer to physical page. */
1127 R3PTRTYPE(uint8_t *) pbR3;
1128 /** GC Physical address for cache entry */
1129 RTGCPHYS GCPhys;
1130#if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
1131 RTGCPHYS u32Padding0; /**< alignment padding. */
1132#endif
1133} PGMPHYSCACHEENTRY;
1134
1135/**
1136 * PGMPhysRead/Write cache to reduce REM memory access overhead
1137 */
1138typedef struct PGMPHYSCACHE
1139{
1140 /** Bitmap of valid cache entries */
1141 uint64_t aEntries;
1142 /** Cache entries */
1143 PGMPHYSCACHEENTRY Entry[PGM_MAX_PHYSCACHE_ENTRIES];
1144} PGMPHYSCACHE;
1145
1146
1147/** Pointer to an allocation chunk ring-3 mapping. */
1148typedef struct PGMCHUNKR3MAP *PPGMCHUNKR3MAP;
1149/** Pointer to an allocation chunk ring-3 mapping pointer. */
1150typedef PPGMCHUNKR3MAP *PPPGMCHUNKR3MAP;
1151
1152/**
1153 * Ring-3 tracking structore for an allocation chunk ring-3 mapping.
1154 *
1155 * The primary tree (Core) uses the chunk id as key.
1156 * The secondary tree (AgeCore) is used for ageing and uses ageing sequence number as key.
1157 */
1158typedef struct PGMCHUNKR3MAP
1159{
1160 /** The key is the chunk id. */
1161 AVLU32NODECORE Core;
1162 /** The key is the ageing sequence number. */
1163 AVLLU32NODECORE AgeCore;
1164 /** The current age thingy. */
1165 uint32_t iAge;
1166 /** The current reference count. */
1167 uint32_t volatile cRefs;
1168 /** The current permanent reference count. */
1169 uint32_t volatile cPermRefs;
1170 /** The mapping address. */
1171 void *pv;
1172} PGMCHUNKR3MAP;
1173
1174/**
1175 * Allocation chunk ring-3 mapping TLB entry.
1176 */
1177typedef struct PGMCHUNKR3MAPTLBE
1178{
1179 /** The chunk id. */
1180 uint32_t volatile idChunk;
1181#if HC_ARCH_BITS == 64
1182 uint32_t u32Padding; /**< alignment padding. */
1183#endif
1184 /** The chunk map. */
1185#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1186 R3PTRTYPE(PPGMCHUNKR3MAP) volatile pChunk;
1187#else
1188 R3R0PTRTYPE(PPGMCHUNKR3MAP) volatile pChunk;
1189#endif
1190} PGMCHUNKR3MAPTLBE;
1191/** Pointer to the an allocation chunk ring-3 mapping TLB entry. */
1192typedef PGMCHUNKR3MAPTLBE *PPGMCHUNKR3MAPTLBE;
1193
1194/** The number of TLB entries in PGMCHUNKR3MAPTLB.
1195 * @remark Must be a power of two value. */
1196#define PGM_CHUNKR3MAPTLB_ENTRIES 32
1197
1198/**
1199 * Allocation chunk ring-3 mapping TLB.
1200 *
1201 * @remarks We use a TLB to speed up lookups by avoiding walking the AVL.
1202 * At first glance this might look kinda odd since AVL trees are
1203 * supposed to give the most optimial lookup times of all trees
1204 * due to their balancing. However, take a tree with 1023 nodes
1205 * in it, that's 10 levels, meaning that most searches has to go
1206 * down 9 levels before they find what they want. This isn't fast
1207 * compared to a TLB hit. There is the factor of cache misses,
1208 * and of course the problem with trees and branch prediction.
1209 * This is why we use TLBs in front of most of the trees.
1210 *
1211 * @todo Generalize this TLB + AVL stuff, shouldn't be all that
1212 * difficult when we switch to the new inlined AVL trees (from kStuff).
1213 */
1214typedef struct PGMCHUNKR3MAPTLB
1215{
1216 /** The TLB entries. */
1217 PGMCHUNKR3MAPTLBE aEntries[PGM_CHUNKR3MAPTLB_ENTRIES];
1218} PGMCHUNKR3MAPTLB;
1219
1220/**
1221 * Calculates the index of a guest page in the Ring-3 Chunk TLB.
1222 * @returns Chunk TLB index.
1223 * @param idChunk The Chunk ID.
1224 */
1225#define PGM_CHUNKR3MAPTLB_IDX(idChunk) ( (idChunk) & (PGM_CHUNKR3MAPTLB_ENTRIES - 1) )
1226
1227
1228/**
1229 * Ring-3 guest page mapping TLB entry.
1230 * @remarks used in ring-0 as well at the moment.
1231 */
1232typedef struct PGMPAGER3MAPTLBE
1233{
1234 /** Address of the page. */
1235 RTGCPHYS volatile GCPhys;
1236 /** The guest page. */
1237#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1238 R3PTRTYPE(PPGMPAGE) volatile pPage;
1239#else
1240 R3R0PTRTYPE(PPGMPAGE) volatile pPage;
1241#endif
1242 /** Pointer to the page mapping tracking structure, PGMCHUNKR3MAP. */
1243#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1244 R3PTRTYPE(PPGMCHUNKR3MAP) volatile pMap;
1245#else
1246 R3R0PTRTYPE(PPGMCHUNKR3MAP) volatile pMap;
1247#endif
1248 /** The address */
1249#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1250 R3PTRTYPE(void *) volatile pv;
1251#else
1252 R3R0PTRTYPE(void *) volatile pv;
1253#endif
1254#if HC_ARCH_BITS == 32
1255 uint32_t u32Padding; /**< alignment padding. */
1256#endif
1257} PGMPAGER3MAPTLBE;
1258/** Pointer to an entry in the HC physical TLB. */
1259typedef PGMPAGER3MAPTLBE *PPGMPAGER3MAPTLBE;
1260
1261
1262/** The number of entries in the ring-3 guest page mapping TLB.
1263 * @remarks The value must be a power of two. */
1264#define PGM_PAGER3MAPTLB_ENTRIES 64
1265
1266/**
1267 * Ring-3 guest page mapping TLB.
1268 * @remarks used in ring-0 as well at the moment.
1269 */
1270typedef struct PGMPAGER3MAPTLB
1271{
1272 /** The TLB entries. */
1273 PGMPAGER3MAPTLBE aEntries[PGM_PAGER3MAPTLB_ENTRIES];
1274} PGMPAGER3MAPTLB;
1275/** Pointer to the ring-3 guest page mapping TLB. */
1276typedef PGMPAGER3MAPTLB *PPGMPAGER3MAPTLB;
1277
1278/**
1279 * Calculates the index of the TLB entry for the specified guest page.
1280 * @returns Physical TLB index.
1281 * @param GCPhys The guest physical address.
1282 */
1283#define PGM_PAGER3MAPTLB_IDX(GCPhys) ( ((GCPhys) >> PAGE_SHIFT) & (PGM_PAGER3MAPTLB_ENTRIES - 1) )
1284
1285
1286/**
1287 * Mapping cache usage set entry.
1288 *
1289 * @remarks 16-bit ints was choosen as the set is not expected to be used beyond
1290 * the dynamic ring-0 and (to some extent) raw-mode context mapping
1291 * cache. If it's extended to include ring-3, well, then something will
1292 * have be changed here...
1293 */
1294typedef struct PGMMAPSETENTRY
1295{
1296 /** The mapping cache index. */
1297 uint16_t iPage;
1298 /** The number of references.
1299 * The max is UINT16_MAX - 1. */
1300 uint16_t cRefs;
1301 /** Pointer to the page. */
1302 RTR0PTR pvPage;
1303 /** The physical address for this entry. */
1304 RTHCPHYS HCPhys;
1305} PGMMAPSETENTRY;
1306/** Pointer to a mapping cache usage set entry. */
1307typedef PGMMAPSETENTRY *PPGMMAPSETENTRY;
1308
1309/**
1310 * Mapping cache usage set.
1311 *
1312 * This is used in ring-0 and the raw-mode context to track dynamic mappings
1313 * done during exits / traps. The set is
1314 */
1315typedef struct PGMMAPSET
1316{
1317 /** The index of the current CPU, only valid if the set is open. */
1318 int32_t iCpu;
1319 /** The number of occupied.
1320 * This is PGMMAPSET_CLOSED if the set is closed and we're not supposed to do
1321 * dynamic mappings. */
1322 uint32_t cEntries;
1323 /** The entries. */
1324 PGMMAPSETENTRY aEntries[32];
1325 /** HCPhys -> iEntry fast lookup table.
1326 * Use PGMMAPSET_HASH for hashing.
1327 * The entries may or may not be valid, check against cEntries. */
1328 uint8_t aiHashTable[64];
1329} PGMMAPSET;
1330/** Pointer to the mapping cache set. */
1331typedef PGMMAPSET *PPGMMAPSET;
1332
1333/** PGMMAPSET::cEntries value for a closed set. */
1334#define PGMMAPSET_CLOSED UINT32_C(0xdeadc0fe)
1335
1336/** Hash function for aiHashTable. */
1337#define PGMMAPSET_HASH(HCPhys) (((HCPhys) >> PAGE_SHIFT) & 63)
1338
1339
1340/** @name Context neutrual page mapper TLB.
1341 *
1342 * Hoping to avoid some code and bug duplication parts of the GCxxx->CCPtr
1343 * code is writting in a kind of context neutrual way. Time will show whether
1344 * this actually makes sense or not...
1345 *
1346 * @todo this needs to be reconsidered and dropped/redone since the ring-0
1347 * context ends up using a global mapping cache on some platforms
1348 * (darwin).
1349 *
1350 * @{ */
1351/** @typedef PPGMPAGEMAPTLB
1352 * The page mapper TLB pointer type for the current context. */
1353/** @typedef PPGMPAGEMAPTLB
1354 * The page mapper TLB entry pointer type for the current context. */
1355/** @typedef PPGMPAGEMAPTLB
1356 * The page mapper TLB entry pointer pointer type for the current context. */
1357/** @def PGM_PAGEMAPTLB_ENTRIES
1358 * The number of TLB entries in the page mapper TLB for the current context. */
1359/** @def PGM_PAGEMAPTLB_IDX
1360 * Calculate the TLB index for a guest physical address.
1361 * @returns The TLB index.
1362 * @param GCPhys The guest physical address. */
1363/** @typedef PPGMPAGEMAP
1364 * Pointer to a page mapper unit for current context. */
1365/** @typedef PPPGMPAGEMAP
1366 * Pointer to a page mapper unit pointer for current context. */
1367#ifdef IN_RC
1368// typedef PPGMPAGEGCMAPTLB PPGMPAGEMAPTLB;
1369// typedef PPGMPAGEGCMAPTLBE PPGMPAGEMAPTLBE;
1370// typedef PPGMPAGEGCMAPTLBE *PPPGMPAGEMAPTLBE;
1371# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGEGCMAPTLB_ENTRIES
1372# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGEGCMAPTLB_IDX(GCPhys)
1373 typedef void * PPGMPAGEMAP;
1374 typedef void ** PPPGMPAGEMAP;
1375//#elif IN_RING0
1376// typedef PPGMPAGER0MAPTLB PPGMPAGEMAPTLB;
1377// typedef PPGMPAGER0MAPTLBE PPGMPAGEMAPTLBE;
1378// typedef PPGMPAGER0MAPTLBE *PPPGMPAGEMAPTLBE;
1379//# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGER0MAPTLB_ENTRIES
1380//# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGER0MAPTLB_IDX(GCPhys)
1381// typedef PPGMCHUNKR0MAP PPGMPAGEMAP;
1382// typedef PPPGMCHUNKR0MAP PPPGMPAGEMAP;
1383#else
1384 typedef PPGMPAGER3MAPTLB PPGMPAGEMAPTLB;
1385 typedef PPGMPAGER3MAPTLBE PPGMPAGEMAPTLBE;
1386 typedef PPGMPAGER3MAPTLBE *PPPGMPAGEMAPTLBE;
1387# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGER3MAPTLB_ENTRIES
1388# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGER3MAPTLB_IDX(GCPhys)
1389 typedef PPGMCHUNKR3MAP PPGMPAGEMAP;
1390 typedef PPPGMCHUNKR3MAP PPPGMPAGEMAP;
1391#endif
1392/** @} */
1393
1394
1395/** @name PGM Pool Indexes.
1396 * Aka. the unique shadow page identifier.
1397 * @{ */
1398/** NIL page pool IDX. */
1399#define NIL_PGMPOOL_IDX 0
1400/** The first normal index. */
1401#define PGMPOOL_IDX_FIRST_SPECIAL 1
1402/** Page directory (32-bit root). */
1403#define PGMPOOL_IDX_PD 1
1404#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
1405/** Page directory (32-bit root). */
1406#define PGMPOOL_IDX_PD 1
1407/** Page Directory Pointer Table (PAE root). */
1408#define PGMPOOL_IDX_PDPT 2
1409/** AMD64 CR3 level index.*/
1410#define PGMPOOL_IDX_AMD64_CR3 3
1411/** Nested paging root.*/
1412#define PGMPOOL_IDX_NESTED_ROOT 4
1413/** The first normal index. */
1414#define PGMPOOL_IDX_FIRST 5
1415#else
1416/** The extended PAE page directory (2048 entries, works as root currently). */
1417#define PGMPOOL_IDX_PAE_PD 2
1418/** PAE Page Directory Table 0. */
1419#define PGMPOOL_IDX_PAE_PD_0 3
1420/** PAE Page Directory Table 1. */
1421#define PGMPOOL_IDX_PAE_PD_1 4
1422/** PAE Page Directory Table 2. */
1423#define PGMPOOL_IDX_PAE_PD_2 5
1424/** PAE Page Directory Table 3. */
1425#define PGMPOOL_IDX_PAE_PD_3 6
1426/** Page Directory Pointer Table (PAE root, not currently used). */
1427#define PGMPOOL_IDX_PDPT 7
1428/** AMD64 CR3 level index.*/
1429#define PGMPOOL_IDX_AMD64_CR3 8
1430/** Nested paging root.*/
1431#define PGMPOOL_IDX_NESTED_ROOT 9
1432/** The first normal index. */
1433#define PGMPOOL_IDX_FIRST 10
1434#endif
1435/** The last valid index. (inclusive, 14 bits) */
1436#define PGMPOOL_IDX_LAST 0x3fff
1437/** @} */
1438
1439/** The NIL index for the parent chain. */
1440#define NIL_PGMPOOL_USER_INDEX ((uint16_t)0xffff)
1441
1442/**
1443 * Node in the chain linking a shadowed page to it's parent (user).
1444 */
1445#pragma pack(1)
1446typedef struct PGMPOOLUSER
1447{
1448 /** The index to the next item in the chain. NIL_PGMPOOL_USER_INDEX is no next. */
1449 uint16_t iNext;
1450 /** The user page index. */
1451 uint16_t iUser;
1452 /** Index into the user table. */
1453 uint32_t iUserTable;
1454} PGMPOOLUSER, *PPGMPOOLUSER;
1455typedef const PGMPOOLUSER *PCPGMPOOLUSER;
1456#pragma pack()
1457
1458
1459/** The NIL index for the phys ext chain. */
1460#define NIL_PGMPOOL_PHYSEXT_INDEX ((uint16_t)0xffff)
1461
1462/**
1463 * Node in the chain of physical cross reference extents.
1464 */
1465#pragma pack(1)
1466typedef struct PGMPOOLPHYSEXT
1467{
1468 /** The index to the next item in the chain. NIL_PGMPOOL_PHYSEXT_INDEX is no next. */
1469 uint16_t iNext;
1470 /** The user page index. */
1471 uint16_t aidx[3];
1472} PGMPOOLPHYSEXT, *PPGMPOOLPHYSEXT;
1473typedef const PGMPOOLPHYSEXT *PCPGMPOOLPHYSEXT;
1474#pragma pack()
1475
1476
1477/**
1478 * The kind of page that's being shadowed.
1479 */
1480typedef enum PGMPOOLKIND
1481{
1482 /** The virtual invalid 0 entry. */
1483 PGMPOOLKIND_INVALID = 0,
1484 /** The entry is free (=unused). */
1485 PGMPOOLKIND_FREE,
1486
1487 /** Shw: 32-bit page table; Gst: no paging */
1488 PGMPOOLKIND_32BIT_PT_FOR_PHYS,
1489 /** Shw: 32-bit page table; Gst: 32-bit page table. */
1490 PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT,
1491 /** Shw: 32-bit page table; Gst: 4MB page. */
1492 PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB,
1493 /** Shw: PAE page table; Gst: no paging */
1494 PGMPOOLKIND_PAE_PT_FOR_PHYS,
1495 /** Shw: PAE page table; Gst: 32-bit page table. */
1496 PGMPOOLKIND_PAE_PT_FOR_32BIT_PT,
1497 /** Shw: PAE page table; Gst: Half of a 4MB page. */
1498 PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB,
1499 /** Shw: PAE page table; Gst: PAE page table. */
1500 PGMPOOLKIND_PAE_PT_FOR_PAE_PT,
1501 /** Shw: PAE page table; Gst: 2MB page. */
1502 PGMPOOLKIND_PAE_PT_FOR_PAE_2MB,
1503
1504 /** Shw: 32-bit page directory. Gst: 32-bit page directory. */
1505 PGMPOOLKIND_32BIT_PD,
1506 /** Shw: 32-bit page directory. Gst: real mode. */
1507 PGMPOOLKIND_32BIT_PD_PHYS_REAL,
1508 /** Shw: 32-bit page directory. Gst: protected mode without paging. */
1509 PGMPOOLKIND_32BIT_PD_PHYS_PROT,
1510 /** Shw: PAE page directory; Gst: 32-bit page directory. */
1511 PGMPOOLKIND_PAE_PD_FOR_32BIT_PD,
1512 /** Shw: PAE page directory; Gst: PAE page directory. */
1513 PGMPOOLKIND_PAE_PD_FOR_PAE_PD,
1514 /** Shw: PAE page directory; Gst: real mode. */
1515 PGMPOOLKIND_PAE_PD_PHYS_REAL,
1516 /** Shw: PAE page directory; Gst: protected mode without paging. */
1517 PGMPOOLKIND_PAE_PD_PHYS_PROT,
1518
1519 /** Shw: PAE page directory pointer table (legacy, 4 entries); Gst 32 bits paging. */
1520 PGMPOOLKIND_PAE_PDPT_FOR_32BIT,
1521 /** Shw: PAE page directory pointer table (legacy, 4 entries); Gst PAE PDPT. */
1522 PGMPOOLKIND_PAE_PDPT,
1523
1524 /** Shw: 64-bit page directory pointer table; Gst: 64-bit page directory pointer table. */
1525 PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT,
1526 /** Shw: 64-bit page directory pointer table; Gst: no paging */
1527 PGMPOOLKIND_64BIT_PDPT_FOR_PHYS,
1528 /** Shw: 64-bit page directory table; Gst: 64-bit page directory table. */
1529 PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD,
1530 /** Shw: 64-bit page directory table; Gst: no paging */
1531 PGMPOOLKIND_64BIT_PD_FOR_PHYS,
1532
1533 /** Shw: 64-bit PML4; Gst: 64-bit PML4. */
1534 PGMPOOLKIND_64BIT_PML4_FOR_64BIT_PML4,
1535
1536 /** Shw: EPT page directory pointer table; Gst: no paging */
1537 PGMPOOLKIND_EPT_PDPT_FOR_PHYS,
1538 /** Shw: EPT page directory table; Gst: no paging */
1539 PGMPOOLKIND_EPT_PD_FOR_PHYS,
1540 /** Shw: EPT page table; Gst: no paging */
1541 PGMPOOLKIND_EPT_PT_FOR_PHYS,
1542
1543#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1544 /** Shw: Root 32-bit page directory. */
1545 PGMPOOLKIND_ROOT_32BIT_PD,
1546 /** Shw: Root PAE page directory */
1547 PGMPOOLKIND_ROOT_PAE_PD,
1548 /** Shw: Root PAE page directory pointer table (legacy, 4 entries). */
1549 PGMPOOLKIND_ROOT_PDPT,
1550#endif
1551 /** Shw: Root Nested paging table. */
1552 PGMPOOLKIND_ROOT_NESTED,
1553
1554 /** The last valid entry. */
1555 PGMPOOLKIND_LAST = PGMPOOLKIND_ROOT_NESTED
1556} PGMPOOLKIND;
1557
1558
1559/**
1560 * The tracking data for a page in the pool.
1561 */
1562typedef struct PGMPOOLPAGE
1563{
1564 /** AVL node code with the (R3) physical address of this page. */
1565 AVLOHCPHYSNODECORE Core;
1566 /** Pointer to the R3 mapping of the page. */
1567#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1568 R3PTRTYPE(void *) pvPageR3;
1569#else
1570 R3R0PTRTYPE(void *) pvPageR3;
1571#endif
1572 /** The guest physical address. */
1573#if HC_ARCH_BITS == 32 && GC_ARCH_BITS == 64
1574 uint32_t Alignment0;
1575#endif
1576 RTGCPHYS GCPhys;
1577 /** The kind of page we're shadowing. (This is really a PGMPOOLKIND enum.) */
1578 uint8_t enmKind;
1579 uint8_t bPadding;
1580 /** The index of this page. */
1581 uint16_t idx;
1582 /** The next entry in the list this page currently resides in.
1583 * It's either in the free list or in the GCPhys hash. */
1584 uint16_t iNext;
1585#ifdef PGMPOOL_WITH_USER_TRACKING
1586 /** Head of the user chain. NIL_PGMPOOL_USER_INDEX if not currently in use. */
1587 uint16_t iUserHead;
1588 /** The number of present entries. */
1589 uint16_t cPresent;
1590 /** The first entry in the table which is present. */
1591 uint16_t iFirstPresent;
1592#endif
1593#ifdef PGMPOOL_WITH_MONITORING
1594 /** The number of modifications to the monitored page. */
1595 uint16_t cModifications;
1596 /** The next modified page. NIL_PGMPOOL_IDX if tail. */
1597 uint16_t iModifiedNext;
1598 /** The previous modified page. NIL_PGMPOOL_IDX if head. */
1599 uint16_t iModifiedPrev;
1600 /** The next page sharing access handler. NIL_PGMPOOL_IDX if tail. */
1601 uint16_t iMonitoredNext;
1602 /** The previous page sharing access handler. NIL_PGMPOOL_IDX if head. */
1603 uint16_t iMonitoredPrev;
1604#endif
1605#ifdef PGMPOOL_WITH_CACHE
1606 /** The next page in the age list. */
1607 uint16_t iAgeNext;
1608 /** The previous page in the age list. */
1609 uint16_t iAgePrev;
1610#endif /* PGMPOOL_WITH_CACHE */
1611 /** Used to indicate that the page is zeroed. */
1612 bool fZeroed;
1613 /** Used to indicate that a PT has non-global entries. */
1614 bool fSeenNonGlobal;
1615 /** Used to indicate that we're monitoring writes to the guest page. */
1616 bool fMonitored;
1617 /** Used to indicate that the page is in the cache (e.g. in the GCPhys hash).
1618 * (All pages are in the age list.) */
1619 bool fCached;
1620 /** This is used by the R3 access handlers when invoked by an async thread.
1621 * It's a hack required because of REMR3NotifyHandlerPhysicalDeregister. */
1622 bool volatile fReusedFlushPending;
1623 /** Used to indicate that the guest is mapping the page is also used as a CR3.
1624 * In these cases the access handler acts differently and will check
1625 * for mapping conflicts like the normal CR3 handler.
1626 * @todo When we change the CR3 shadowing to use pool pages, this flag can be
1627 * replaced by a list of pages which share access handler.
1628 */
1629 bool fCR3Mix;
1630} PGMPOOLPAGE, *PPGMPOOLPAGE, **PPPGMPOOLPAGE;
1631
1632
1633#ifdef PGMPOOL_WITH_CACHE
1634/** The hash table size. */
1635# define PGMPOOL_HASH_SIZE 0x40
1636/** The hash function. */
1637# define PGMPOOL_HASH(GCPhys) ( ((GCPhys) >> PAGE_SHIFT) & (PGMPOOL_HASH_SIZE - 1) )
1638#endif
1639
1640
1641/**
1642 * The shadow page pool instance data.
1643 *
1644 * It's all one big allocation made at init time, except for the
1645 * pages that is. The user nodes follows immediatly after the
1646 * page structures.
1647 */
1648typedef struct PGMPOOL
1649{
1650 /** The VM handle - R3 Ptr. */
1651 PVMR3 pVMR3;
1652 /** The VM handle - R0 Ptr. */
1653 PVMR0 pVMR0;
1654 /** The VM handle - RC Ptr. */
1655 PVMRC pVMRC;
1656 /** The max pool size. This includes the special IDs. */
1657 uint16_t cMaxPages;
1658 /** The current pool size. */
1659 uint16_t cCurPages;
1660 /** The head of the free page list. */
1661 uint16_t iFreeHead;
1662 /* Padding. */
1663 uint16_t u16Padding;
1664#ifdef PGMPOOL_WITH_USER_TRACKING
1665 /** Head of the chain of free user nodes. */
1666 uint16_t iUserFreeHead;
1667 /** The number of user nodes we've allocated. */
1668 uint16_t cMaxUsers;
1669 /** The number of present page table entries in the entire pool. */
1670 uint32_t cPresent;
1671 /** Pointer to the array of user nodes - RC pointer. */
1672 RCPTRTYPE(PPGMPOOLUSER) paUsersRC;
1673 /** Pointer to the array of user nodes - R3 pointer. */
1674 R3PTRTYPE(PPGMPOOLUSER) paUsersR3;
1675 /** Pointer to the array of user nodes - R0 pointer. */
1676 R0PTRTYPE(PPGMPOOLUSER) paUsersR0;
1677#endif /* PGMPOOL_WITH_USER_TRACKING */
1678#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1679 /** Head of the chain of free phys ext nodes. */
1680 uint16_t iPhysExtFreeHead;
1681 /** The number of user nodes we've allocated. */
1682 uint16_t cMaxPhysExts;
1683 /** Pointer to the array of physical xref extent - RC pointer. */
1684 RCPTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsRC;
1685 /** Pointer to the array of physical xref extent nodes - R3 pointer. */
1686 R3PTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsR3;
1687 /** Pointer to the array of physical xref extent nodes - R0 pointer. */
1688 R0PTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsR0;
1689#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
1690#ifdef PGMPOOL_WITH_CACHE
1691 /** Hash table for GCPhys addresses. */
1692 uint16_t aiHash[PGMPOOL_HASH_SIZE];
1693 /** The head of the age list. */
1694 uint16_t iAgeHead;
1695 /** The tail of the age list. */
1696 uint16_t iAgeTail;
1697 /** Set if the cache is enabled. */
1698 bool fCacheEnabled;
1699#endif /* PGMPOOL_WITH_CACHE */
1700#ifdef PGMPOOL_WITH_MONITORING
1701 /** Head of the list of modified pages. */
1702 uint16_t iModifiedHead;
1703 /** The current number of modified pages. */
1704 uint16_t cModifiedPages;
1705 /** Access handler, RC. */
1706 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnAccessHandlerRC;
1707 /** Access handler, R0. */
1708 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnAccessHandlerR0;
1709 /** Access handler, R3. */
1710 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnAccessHandlerR3;
1711 /** The access handler description (HC ptr). */
1712 R3PTRTYPE(const char *) pszAccessHandler;
1713#endif /* PGMPOOL_WITH_MONITORING */
1714 /** The number of pages currently in use. */
1715 uint16_t cUsedPages;
1716#ifdef VBOX_WITH_STATISTICS
1717 /** The high wather mark for cUsedPages. */
1718 uint16_t cUsedPagesHigh;
1719 uint32_t Alignment1; /**< Align the next member on a 64-bit boundrary. */
1720 /** Profiling pgmPoolAlloc(). */
1721 STAMPROFILEADV StatAlloc;
1722 /** Profiling pgmPoolClearAll(). */
1723 STAMPROFILE StatClearAll;
1724 /** Profiling pgmPoolFlushAllInt(). */
1725 STAMPROFILE StatFlushAllInt;
1726 /** Profiling pgmPoolFlushPage(). */
1727 STAMPROFILE StatFlushPage;
1728 /** Profiling pgmPoolFree(). */
1729 STAMPROFILE StatFree;
1730 /** Profiling time spent zeroing pages. */
1731 STAMPROFILE StatZeroPage;
1732# ifdef PGMPOOL_WITH_USER_TRACKING
1733 /** Profiling of pgmPoolTrackDeref. */
1734 STAMPROFILE StatTrackDeref;
1735 /** Profiling pgmTrackFlushGCPhysPT. */
1736 STAMPROFILE StatTrackFlushGCPhysPT;
1737 /** Profiling pgmTrackFlushGCPhysPTs. */
1738 STAMPROFILE StatTrackFlushGCPhysPTs;
1739 /** Profiling pgmTrackFlushGCPhysPTsSlow. */
1740 STAMPROFILE StatTrackFlushGCPhysPTsSlow;
1741 /** Number of times we've been out of user records. */
1742 STAMCOUNTER StatTrackFreeUpOneUser;
1743# endif
1744# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1745 /** Profiling deref activity related tracking GC physical pages. */
1746 STAMPROFILE StatTrackDerefGCPhys;
1747 /** Number of linear searches for a HCPhys in the ram ranges. */
1748 STAMCOUNTER StatTrackLinearRamSearches;
1749 /** The number of failing pgmPoolTrackPhysExtAlloc calls. */
1750 STAMCOUNTER StamTrackPhysExtAllocFailures;
1751# endif
1752# ifdef PGMPOOL_WITH_MONITORING
1753 /** Profiling the RC/R0 access handler. */
1754 STAMPROFILE StatMonitorRZ;
1755 /** Times we've failed interpreting the instruction. */
1756 STAMCOUNTER StatMonitorRZEmulateInstr;
1757 /** Profiling the pgmPoolFlushPage calls made from the RC/R0 access handler. */
1758 STAMPROFILE StatMonitorRZFlushPage;
1759 /** Times we've detected fork(). */
1760 STAMCOUNTER StatMonitorRZFork;
1761 /** Profiling the RC/R0 access we've handled (except REP STOSD). */
1762 STAMPROFILE StatMonitorRZHandled;
1763 /** Times we've failed interpreting a patch code instruction. */
1764 STAMCOUNTER StatMonitorRZIntrFailPatch1;
1765 /** Times we've failed interpreting a patch code instruction during flushing. */
1766 STAMCOUNTER StatMonitorRZIntrFailPatch2;
1767 /** The number of times we've seen rep prefixes we can't handle. */
1768 STAMCOUNTER StatMonitorRZRepPrefix;
1769 /** Profiling the REP STOSD cases we've handled. */
1770 STAMPROFILE StatMonitorRZRepStosd;
1771
1772 /** Profiling the R3 access handler. */
1773 STAMPROFILE StatMonitorR3;
1774 /** Times we've failed interpreting the instruction. */
1775 STAMCOUNTER StatMonitorR3EmulateInstr;
1776 /** Profiling the pgmPoolFlushPage calls made from the R3 access handler. */
1777 STAMPROFILE StatMonitorR3FlushPage;
1778 /** Times we've detected fork(). */
1779 STAMCOUNTER StatMonitorR3Fork;
1780 /** Profiling the R3 access we've handled (except REP STOSD). */
1781 STAMPROFILE StatMonitorR3Handled;
1782 /** The number of times we've seen rep prefixes we can't handle. */
1783 STAMCOUNTER StatMonitorR3RepPrefix;
1784 /** Profiling the REP STOSD cases we've handled. */
1785 STAMPROFILE StatMonitorR3RepStosd;
1786 /** The number of times we're called in an async thread an need to flush. */
1787 STAMCOUNTER StatMonitorR3Async;
1788 /** The high wather mark for cModifiedPages. */
1789 uint16_t cModifiedPagesHigh;
1790 uint16_t Alignment2[3]; /**< Align the next member on a 64-bit boundrary. */
1791# endif
1792# ifdef PGMPOOL_WITH_CACHE
1793 /** The number of cache hits. */
1794 STAMCOUNTER StatCacheHits;
1795 /** The number of cache misses. */
1796 STAMCOUNTER StatCacheMisses;
1797 /** The number of times we've got a conflict of 'kind' in the cache. */
1798 STAMCOUNTER StatCacheKindMismatches;
1799 /** Number of times we've been out of pages. */
1800 STAMCOUNTER StatCacheFreeUpOne;
1801 /** The number of cacheable allocations. */
1802 STAMCOUNTER StatCacheCacheable;
1803 /** The number of uncacheable allocations. */
1804 STAMCOUNTER StatCacheUncacheable;
1805# endif
1806#elif HC_ARCH_BITS == 64
1807 uint32_t Alignment3; /**< Align the next member on a 64-bit boundrary. */
1808#endif
1809 /** The AVL tree for looking up a page by its HC physical address. */
1810 AVLOHCPHYSTREE HCPhysTree;
1811 uint32_t Alignment4; /**< Align the next member on a 64-bit boundrary. */
1812 /** Array of pages. (cMaxPages in length)
1813 * The Id is the index into thist array.
1814 */
1815 PGMPOOLPAGE aPages[PGMPOOL_IDX_FIRST];
1816} PGMPOOL, *PPGMPOOL, **PPPGMPOOL;
1817
1818
1819#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1820DECLINLINE(void *) pgmPoolMapPageInlined(PVM pVM, PPGMPOOLPAGE pPage);
1821#endif
1822
1823/** @def PGMPOOL_PAGE_2_PTR
1824 * Maps a pool page pool into the current context.
1825 *
1826 * @returns VBox status code.
1827 * @param pVM The VM handle.
1828 * @param pPage The pool page.
1829 *
1830 * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the
1831 * small page window employeed by that function. Be careful.
1832 * @remark There is no need to assert on the result.
1833 */
1834#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1835# define PGMPOOL_PAGE_2_PTR(pVM, pPage) pgmPoolMapPageInlined(&(pVM)->pgm.s, (pPage))
1836#elif defined(VBOX_STRICT)
1837# define PGMPOOL_PAGE_2_PTR(pVM, pPage) pgmPoolMapPageStrict(pPage)
1838DECLINLINE(void *) pgmPoolMapPageStrict(PPGMPOOLPAGE pPage)
1839{
1840 Assert(pPage->pvPageR3);
1841 return pPage->pvPageR3;
1842}
1843#else
1844# define PGMPOOL_PAGE_2_PTR(pVM, pPage) ((pPage)->pvPageR3)
1845#endif
1846
1847/** @def PGMPOOL_PAGE_2_PTR_BY_PGM
1848 * Maps a pool page pool into the current context.
1849 *
1850 * @returns VBox status code.
1851 * @param pPGM Pointer to the PGM instance data.
1852 * @param pPage The pool page.
1853 *
1854 * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the
1855 * small page window employeed by that function. Be careful.
1856 * @remark There is no need to assert on the result.
1857 */
1858#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1859# define PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pPage) pgmPoolMapPageInlined((pPGM), (pPage))
1860#else
1861# define PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pPage) PGMPOOL_PAGE_2_PTR(PGM2VM(pPGM), pPage)
1862#endif
1863
1864
1865
1866/**
1867 * Trees are using self relative offsets as pointers.
1868 * So, all its data, including the root pointer, must be in the heap for HC and GC
1869 * to have the same layout.
1870 */
1871typedef struct PGMTREES
1872{
1873 /** Physical access handlers (AVL range+offsetptr tree). */
1874 AVLROGCPHYSTREE PhysHandlers;
1875 /** Virtual access handlers (AVL range + GC ptr tree). */
1876 AVLROGCPTRTREE VirtHandlers;
1877 /** Virtual access handlers (Phys range AVL range + offsetptr tree). */
1878 AVLROGCPHYSTREE PhysToVirtHandlers;
1879 /** Virtual access handlers for the hypervisor (AVL range + GC ptr tree). */
1880 AVLROGCPTRTREE HyperVirtHandlers;
1881} PGMTREES;
1882/** Pointer to PGM trees. */
1883typedef PGMTREES *PPGMTREES;
1884
1885
1886/** @name Paging mode macros
1887 * @{ */
1888#ifdef IN_RC
1889# define PGM_CTX(a,b) a##RC##b
1890# define PGM_CTX_STR(a,b) a "GC" b
1891# define PGM_CTX_DECL(type) VMMRCDECL(type)
1892#else
1893# ifdef IN_RING3
1894# define PGM_CTX(a,b) a##R3##b
1895# define PGM_CTX_STR(a,b) a "R3" b
1896# define PGM_CTX_DECL(type) DECLCALLBACK(type)
1897# else
1898# define PGM_CTX(a,b) a##R0##b
1899# define PGM_CTX_STR(a,b) a "R0" b
1900# define PGM_CTX_DECL(type) VMMDECL(type)
1901# endif
1902#endif
1903
1904#define PGM_GST_NAME_REAL(name) PGM_CTX(pgm,GstReal##name)
1905#define PGM_GST_NAME_RC_REAL_STR(name) "pgmRCGstReal" #name
1906#define PGM_GST_NAME_R0_REAL_STR(name) "pgmR0GstReal" #name
1907#define PGM_GST_NAME_PROT(name) PGM_CTX(pgm,GstProt##name)
1908#define PGM_GST_NAME_RC_PROT_STR(name) "pgmRCGstProt" #name
1909#define PGM_GST_NAME_R0_PROT_STR(name) "pgmR0GstProt" #name
1910#define PGM_GST_NAME_32BIT(name) PGM_CTX(pgm,Gst32Bit##name)
1911#define PGM_GST_NAME_RC_32BIT_STR(name) "pgmRCGst32Bit" #name
1912#define PGM_GST_NAME_R0_32BIT_STR(name) "pgmR0Gst32Bit" #name
1913#define PGM_GST_NAME_PAE(name) PGM_CTX(pgm,GstPAE##name)
1914#define PGM_GST_NAME_RC_PAE_STR(name) "pgmRCGstPAE" #name
1915#define PGM_GST_NAME_R0_PAE_STR(name) "pgmR0GstPAE" #name
1916#define PGM_GST_NAME_AMD64(name) PGM_CTX(pgm,GstAMD64##name)
1917#define PGM_GST_NAME_RC_AMD64_STR(name) "pgmRCGstAMD64" #name
1918#define PGM_GST_NAME_R0_AMD64_STR(name) "pgmR0GstAMD64" #name
1919#define PGM_GST_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Gst##name))
1920#define PGM_GST_DECL(type, name) PGM_CTX_DECL(type) PGM_GST_NAME(name)
1921
1922#define PGM_SHW_NAME_32BIT(name) PGM_CTX(pgm,Shw32Bit##name)
1923#define PGM_SHW_NAME_RC_32BIT_STR(name) "pgmRCShw32Bit" #name
1924#define PGM_SHW_NAME_R0_32BIT_STR(name) "pgmR0Shw32Bit" #name
1925#define PGM_SHW_NAME_PAE(name) PGM_CTX(pgm,ShwPAE##name)
1926#define PGM_SHW_NAME_RC_PAE_STR(name) "pgmRCShwPAE" #name
1927#define PGM_SHW_NAME_R0_PAE_STR(name) "pgmR0ShwPAE" #name
1928#define PGM_SHW_NAME_AMD64(name) PGM_CTX(pgm,ShwAMD64##name)
1929#define PGM_SHW_NAME_RC_AMD64_STR(name) "pgmRCShwAMD64" #name
1930#define PGM_SHW_NAME_R0_AMD64_STR(name) "pgmR0ShwAMD64" #name
1931#define PGM_SHW_NAME_NESTED(name) PGM_CTX(pgm,ShwNested##name)
1932#define PGM_SHW_NAME_RC_NESTED_STR(name) "pgmRCShwNested" #name
1933#define PGM_SHW_NAME_R0_NESTED_STR(name) "pgmR0ShwNested" #name
1934#define PGM_SHW_NAME_EPT(name) PGM_CTX(pgm,ShwEPT##name)
1935#define PGM_SHW_NAME_RC_EPT_STR(name) "pgmRCShwEPT" #name
1936#define PGM_SHW_NAME_R0_EPT_STR(name) "pgmR0ShwEPT" #name
1937#define PGM_SHW_DECL(type, name) PGM_CTX_DECL(type) PGM_SHW_NAME(name)
1938#define PGM_SHW_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Shw##name))
1939
1940/* Shw_Gst */
1941#define PGM_BTH_NAME_32BIT_REAL(name) PGM_CTX(pgm,Bth32BitReal##name)
1942#define PGM_BTH_NAME_32BIT_PROT(name) PGM_CTX(pgm,Bth32BitProt##name)
1943#define PGM_BTH_NAME_32BIT_32BIT(name) PGM_CTX(pgm,Bth32Bit32Bit##name)
1944#define PGM_BTH_NAME_PAE_REAL(name) PGM_CTX(pgm,BthPAEReal##name)
1945#define PGM_BTH_NAME_PAE_PROT(name) PGM_CTX(pgm,BthPAEProt##name)
1946#define PGM_BTH_NAME_PAE_32BIT(name) PGM_CTX(pgm,BthPAE32Bit##name)
1947#define PGM_BTH_NAME_PAE_PAE(name) PGM_CTX(pgm,BthPAEPAE##name)
1948#define PGM_BTH_NAME_AMD64_PROT(name) PGM_CTX(pgm,BthAMD64Prot##name)
1949#define PGM_BTH_NAME_AMD64_AMD64(name) PGM_CTX(pgm,BthAMD64AMD64##name)
1950#define PGM_BTH_NAME_NESTED_REAL(name) PGM_CTX(pgm,BthNestedReal##name)
1951#define PGM_BTH_NAME_NESTED_PROT(name) PGM_CTX(pgm,BthNestedProt##name)
1952#define PGM_BTH_NAME_NESTED_32BIT(name) PGM_CTX(pgm,BthNested32Bit##name)
1953#define PGM_BTH_NAME_NESTED_PAE(name) PGM_CTX(pgm,BthNestedPAE##name)
1954#define PGM_BTH_NAME_NESTED_AMD64(name) PGM_CTX(pgm,BthNestedAMD64##name)
1955#define PGM_BTH_NAME_EPT_REAL(name) PGM_CTX(pgm,BthEPTReal##name)
1956#define PGM_BTH_NAME_EPT_PROT(name) PGM_CTX(pgm,BthEPTProt##name)
1957#define PGM_BTH_NAME_EPT_32BIT(name) PGM_CTX(pgm,BthEPT32Bit##name)
1958#define PGM_BTH_NAME_EPT_PAE(name) PGM_CTX(pgm,BthEPTPAE##name)
1959#define PGM_BTH_NAME_EPT_AMD64(name) PGM_CTX(pgm,BthEPTAMD64##name)
1960
1961#define PGM_BTH_NAME_RC_32BIT_REAL_STR(name) "pgmRCBth32BitReal" #name
1962#define PGM_BTH_NAME_RC_32BIT_PROT_STR(name) "pgmRCBth32BitProt" #name
1963#define PGM_BTH_NAME_RC_32BIT_32BIT_STR(name) "pgmRCBth32Bit32Bit" #name
1964#define PGM_BTH_NAME_RC_PAE_REAL_STR(name) "pgmRCBthPAEReal" #name
1965#define PGM_BTH_NAME_RC_PAE_PROT_STR(name) "pgmRCBthPAEProt" #name
1966#define PGM_BTH_NAME_RC_PAE_32BIT_STR(name) "pgmRCBthPAE32Bit" #name
1967#define PGM_BTH_NAME_RC_PAE_PAE_STR(name) "pgmRCBthPAEPAE" #name
1968#define PGM_BTH_NAME_RC_AMD64_AMD64_STR(name) "pgmRCBthAMD64AMD64" #name
1969#define PGM_BTH_NAME_RC_NESTED_REAL_STR(name) "pgmRCBthNestedReal" #name
1970#define PGM_BTH_NAME_RC_NESTED_PROT_STR(name) "pgmRCBthNestedProt" #name
1971#define PGM_BTH_NAME_RC_NESTED_32BIT_STR(name) "pgmRCBthNested32Bit" #name
1972#define PGM_BTH_NAME_RC_NESTED_PAE_STR(name) "pgmRCBthNestedPAE" #name
1973#define PGM_BTH_NAME_RC_NESTED_AMD64_STR(name) "pgmRCBthNestedAMD64" #name
1974#define PGM_BTH_NAME_RC_EPT_REAL_STR(name) "pgmRCBthEPTReal" #name
1975#define PGM_BTH_NAME_RC_EPT_PROT_STR(name) "pgmRCBthEPTProt" #name
1976#define PGM_BTH_NAME_RC_EPT_32BIT_STR(name) "pgmRCBthEPT32Bit" #name
1977#define PGM_BTH_NAME_RC_EPT_PAE_STR(name) "pgmRCBthEPTPAE" #name
1978#define PGM_BTH_NAME_RC_EPT_AMD64_STR(name) "pgmRCBthEPTAMD64" #name
1979#define PGM_BTH_NAME_R0_32BIT_REAL_STR(name) "pgmR0Bth32BitReal" #name
1980#define PGM_BTH_NAME_R0_32BIT_PROT_STR(name) "pgmR0Bth32BitProt" #name
1981#define PGM_BTH_NAME_R0_32BIT_32BIT_STR(name) "pgmR0Bth32Bit32Bit" #name
1982#define PGM_BTH_NAME_R0_PAE_REAL_STR(name) "pgmR0BthPAEReal" #name
1983#define PGM_BTH_NAME_R0_PAE_PROT_STR(name) "pgmR0BthPAEProt" #name
1984#define PGM_BTH_NAME_R0_PAE_32BIT_STR(name) "pgmR0BthPAE32Bit" #name
1985#define PGM_BTH_NAME_R0_PAE_PAE_STR(name) "pgmR0BthPAEPAE" #name
1986#define PGM_BTH_NAME_R0_AMD64_PROT_STR(name) "pgmR0BthAMD64Prot" #name
1987#define PGM_BTH_NAME_R0_AMD64_AMD64_STR(name) "pgmR0BthAMD64AMD64" #name
1988#define PGM_BTH_NAME_R0_NESTED_REAL_STR(name) "pgmR0BthNestedReal" #name
1989#define PGM_BTH_NAME_R0_NESTED_PROT_STR(name) "pgmR0BthNestedProt" #name
1990#define PGM_BTH_NAME_R0_NESTED_32BIT_STR(name) "pgmR0BthNested32Bit" #name
1991#define PGM_BTH_NAME_R0_NESTED_PAE_STR(name) "pgmR0BthNestedPAE" #name
1992#define PGM_BTH_NAME_R0_NESTED_AMD64_STR(name) "pgmR0BthNestedAMD64" #name
1993#define PGM_BTH_NAME_R0_EPT_REAL_STR(name) "pgmR0BthEPTReal" #name
1994#define PGM_BTH_NAME_R0_EPT_PROT_STR(name) "pgmR0BthEPTProt" #name
1995#define PGM_BTH_NAME_R0_EPT_32BIT_STR(name) "pgmR0BthEPT32Bit" #name
1996#define PGM_BTH_NAME_R0_EPT_PAE_STR(name) "pgmR0BthEPTPAE" #name
1997#define PGM_BTH_NAME_R0_EPT_AMD64_STR(name) "pgmR0BthEPTAMD64" #name
1998
1999#define PGM_BTH_DECL(type, name) PGM_CTX_DECL(type) PGM_BTH_NAME(name)
2000#define PGM_BTH_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Bth##name))
2001/** @} */
2002
2003/**
2004 * Data for each paging mode.
2005 */
2006typedef struct PGMMODEDATA
2007{
2008 /** The guest mode type. */
2009 uint32_t uGstType;
2010 /** The shadow mode type. */
2011 uint32_t uShwType;
2012
2013 /** @name Function pointers for Shadow paging.
2014 * @{
2015 */
2016 DECLR3CALLBACKMEMBER(int, pfnR3ShwRelocate,(PVM pVM, RTGCPTR offDelta));
2017 DECLR3CALLBACKMEMBER(int, pfnR3ShwExit,(PVM pVM));
2018 DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2019 DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2020
2021 DECLRCCALLBACKMEMBER(int, pfnRCShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2022 DECLRCCALLBACKMEMBER(int, pfnRCShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2023
2024 DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2025 DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2026 /** @} */
2027
2028 /** @name Function pointers for Guest paging.
2029 * @{
2030 */
2031 DECLR3CALLBACKMEMBER(int, pfnR3GstRelocate,(PVM pVM, RTGCPTR offDelta));
2032 DECLR3CALLBACKMEMBER(int, pfnR3GstExit,(PVM pVM));
2033 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2034 DECLR3CALLBACKMEMBER(int, pfnR3GstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2035 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
2036#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2037 DECLR3CALLBACKMEMBER(int, pfnR3GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2038 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmonitorCR3,(PVM pVM));
2039#endif
2040 DECLR3CALLBACKMEMBER(int, pfnR3GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2041 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmapCR3,(PVM pVM));
2042#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2043 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstWriteHandlerCR3;
2044 R3PTRTYPE(const char *) pszR3GstWriteHandlerCR3;
2045 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstPAEWriteHandlerCR3;
2046 R3PTRTYPE(const char *) pszR3GstPAEWriteHandlerCR3;
2047#endif
2048 DECLRCCALLBACKMEMBER(int, pfnRCGstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2049 DECLRCCALLBACKMEMBER(int, pfnRCGstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2050 DECLRCCALLBACKMEMBER(int, pfnRCGstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
2051#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2052 DECLRCCALLBACKMEMBER(int, pfnRCGstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2053 DECLRCCALLBACKMEMBER(int, pfnRCGstUnmonitorCR3,(PVM pVM));
2054#endif
2055 DECLRCCALLBACKMEMBER(int, pfnRCGstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2056 DECLRCCALLBACKMEMBER(int, pfnRCGstUnmapCR3,(PVM pVM));
2057#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2058 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnRCGstWriteHandlerCR3;
2059 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnRCGstPAEWriteHandlerCR3;
2060#endif
2061 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2062 DECLR0CALLBACKMEMBER(int, pfnR0GstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2063 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
2064#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2065 DECLR0CALLBACKMEMBER(int, pfnR0GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2066 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmonitorCR3,(PVM pVM));
2067#endif
2068 DECLR0CALLBACKMEMBER(int, pfnR0GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2069 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmapCR3,(PVM pVM));
2070#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2071 R0PTRTYPE(PFNPGMRCPHYSHANDLER) pfnR0GstWriteHandlerCR3;
2072 R0PTRTYPE(PFNPGMRCPHYSHANDLER) pfnR0GstPAEWriteHandlerCR3;
2073#endif
2074 /** @} */
2075
2076 /** @name Function pointers for Both Shadow and Guest paging.
2077 * @{
2078 */
2079 DECLR3CALLBACKMEMBER(int, pfnR3BthRelocate,(PVM pVM, RTGCPTR offDelta));
2080 /* no pfnR3BthTrap0eHandler */
2081 DECLR3CALLBACKMEMBER(int, pfnR3BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2082 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2083 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2084 DECLR3CALLBACKMEMBER(int, pfnR3BthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2085 DECLR3CALLBACKMEMBER(int, pfnR3BthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2086#ifdef VBOX_STRICT
2087 DECLR3CALLBACKMEMBER(unsigned, pfnR3BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2088#endif
2089
2090 DECLRCCALLBACKMEMBER(int, pfnRCBthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2091 DECLRCCALLBACKMEMBER(int, pfnRCBthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2092 DECLRCCALLBACKMEMBER(int, pfnRCBthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2093 DECLRCCALLBACKMEMBER(int, pfnRCBthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2094 DECLRCCALLBACKMEMBER(int, pfnRCBthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2095 DECLRCCALLBACKMEMBER(int, pfnRCBthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2096#ifdef VBOX_STRICT
2097 DECLRCCALLBACKMEMBER(unsigned, pfnRCBthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2098#endif
2099
2100 DECLR0CALLBACKMEMBER(int, pfnR0BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2101 DECLR0CALLBACKMEMBER(int, pfnR0BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2102 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2103 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2104 DECLR0CALLBACKMEMBER(int, pfnR0BthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2105 DECLR0CALLBACKMEMBER(int, pfnR0BthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2106#ifdef VBOX_STRICT
2107 DECLR0CALLBACKMEMBER(unsigned, pfnR0BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2108#endif
2109 /** @} */
2110} PGMMODEDATA, *PPGMMODEDATA;
2111
2112
2113
2114/**
2115 * Converts a PGM pointer into a VM pointer.
2116 * @returns Pointer to the VM structure the PGM is part of.
2117 * @param pPGM Pointer to PGM instance data.
2118 */
2119#define PGM2VM(pPGM) ( (PVM)((char*)pPGM - pPGM->offVM) )
2120
2121/**
2122 * PGM Data (part of VM)
2123 */
2124typedef struct PGM
2125{
2126 /** Offset to the VM structure. */
2127 RTINT offVM;
2128 /** Offset of the PGMCPU structure relative to VMCPU. */
2129 int32_t offVCpu;
2130 /** Alignment padding. */
2131 int32_t i32Alignment;
2132
2133 /*
2134 * This will be redefined at least two more times before we're done, I'm sure.
2135 * The current code is only to get on with the coding.
2136 * - 2004-06-10: initial version, bird.
2137 * - 2004-07-02: 1st time, bird.
2138 * - 2004-10-18: 2nd time, bird.
2139 * - 2005-07-xx: 3rd time, bird.
2140 */
2141
2142 /** Pointer to the page table entries for the dynamic page mapping area - GCPtr. */
2143 RCPTRTYPE(PX86PTE) paDynPageMap32BitPTEsGC;
2144 /** Pointer to the page table entries for the dynamic page mapping area - GCPtr. */
2145 RCPTRTYPE(PX86PTEPAE) paDynPageMapPaePTEsGC;
2146
2147 /** The host paging mode. (This is what SUPLib reports.) */
2148 SUPPAGINGMODE enmHostMode;
2149 /** The shadow paging mode. */
2150 PGMMODE enmShadowMode;
2151 /** The guest paging mode. */
2152 PGMMODE enmGuestMode;
2153
2154 /** The current physical address representing in the guest CR3 register. */
2155 RTGCPHYS GCPhysCR3;
2156 /** Pointer to the 5 page CR3 content mapping.
2157 * The first page is always the CR3 (in some form) while the 4 other pages
2158 * are used of the PDs in PAE mode. */
2159 RTGCPTR GCPtrCR3Mapping;
2160#if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
2161 uint32_t u32Alignment;
2162#endif
2163 /** The physical address of the currently monitored guest CR3 page.
2164 * When this value is NIL_RTGCPHYS no page is being monitored. */
2165 RTGCPHYS GCPhysGstCR3Monitored;
2166
2167 /** @name 32-bit Guest Paging.
2168 * @{ */
2169 /** The guest's page directory, R3 pointer. */
2170 R3PTRTYPE(PX86PD) pGst32BitPdR3;
2171#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2172 /** The guest's page directory, R0 pointer. */
2173 R0PTRTYPE(PX86PD) pGst32BitPdR0;
2174#endif
2175 /** The guest's page directory, static RC mapping. */
2176 RCPTRTYPE(PX86PD) pGst32BitPdRC;
2177 /** @} */
2178
2179 /** @name PAE Guest Paging.
2180 * @{ */
2181 /** The guest's page directory pointer table, static RC mapping. */
2182 RCPTRTYPE(PX86PDPT) pGstPaePdptRC;
2183 /** The guest's page directory pointer table, R3 pointer. */
2184 R3PTRTYPE(PX86PDPT) pGstPaePdptR3;
2185#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2186 /** The guest's page directory pointer table, R0 pointer. */
2187 R0PTRTYPE(PX86PDPT) pGstPaePdptR0;
2188#endif
2189
2190 /** The guest's page directories, R3 pointers.
2191 * These are individual pointers and don't have to be adjecent.
2192 * These don't have to be up-to-date - use pgmGstGetPaePD() to access them. */
2193 R3PTRTYPE(PX86PDPAE) apGstPaePDsR3[4];
2194 /** The guest's page directories, R0 pointers.
2195 * Same restrictions as apGstPaePDsR3. */
2196#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2197 R0PTRTYPE(PX86PDPAE) apGstPaePDsR0[4];
2198#endif
2199 /** The guest's page directories, static GC mapping.
2200 * Unlike the R3/R0 array the first entry can be accessed as a 2048 entry PD.
2201 * These don't have to be up-to-date - use pgmGstGetPaePD() to access them. */
2202 RCPTRTYPE(PX86PDPAE) apGstPaePDsRC[4];
2203 /** The physical addresses of the guest page directories (PAE) pointed to by apGstPagePDsHC/GC. */
2204 RTGCPHYS aGCPhysGstPaePDs[4];
2205 /** The physical addresses of the monitored guest page directories (PAE). */
2206 RTGCPHYS aGCPhysGstPaePDsMonitored[4];
2207 /** @} */
2208
2209 /** @name AMD64 Guest Paging.
2210 * @{ */
2211 /** The guest's page directory pointer table, R3 pointer. */
2212 R3PTRTYPE(PX86PML4) pGstAmd64Pml4R3;
2213#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2214 /** The guest's page directory pointer table, R0 pointer. */
2215 R0PTRTYPE(PX86PML4) pGstAmd64Pml4R0;
2216#endif
2217 /** @} */
2218
2219 /** @name 32-bit Shadow Paging
2220 * @{ */
2221#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
2222 /** The Physical Address (HC) of the current active shadow CR3. */
2223 RTHCPHYS HCPhysShwCR3;
2224 /** Pointer to the page of the current active CR3 - R3 Ptr. */
2225 R3PTRTYPE(PPGMPOOLPAGE) pShwPageCR3R3;
2226 /** Pointer to the page of the current active CR3 - R0 Ptr. */
2227 R0PTRTYPE(PPGMPOOLPAGE) pShwPageCR3R0;
2228 /** Pointer to the page of the current active CR3 - RC Ptr. */
2229 RCPTRTYPE(PPGMPOOLPAGE) pShwPageCR3RC;
2230# if HC_ARCH_BITS == 64
2231 RTRCPTR alignment6; /**< structure size alignment. */
2232# endif
2233#else
2234 /** The 32-Bit PD - R3 Ptr. */
2235 R3PTRTYPE(PX86PD) pShw32BitPdR3;
2236 /** The 32-Bit PD - R0 Ptr. */
2237 R0PTRTYPE(PX86PD) pShw32BitPdR0;
2238 /** The 32-Bit PD - RC Ptr. */
2239 RCPTRTYPE(PX86PD) pShw32BitPdRC;
2240# if HC_ARCH_BITS == 64
2241 uint32_t u32Padding1; /**< alignment padding. */
2242# endif
2243 /** The Physical Address (HC) of the 32-Bit PD. */
2244 RTHCPHYS HCPhysShw32BitPD;
2245 /** @} */
2246
2247 /** @name PAE Shadow Paging
2248 * @{ */
2249 /** The four PDs for the low 4GB - R3 Ptr.
2250 * Even though these are 4 pointers, what they point at is a single table.
2251 * Thus, it's possible to walk the 2048 entries starting where apHCPaePDs[0] points. */
2252 R3PTRTYPE(PX86PDPAE) apShwPaePDsR3[4];
2253# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2254 /** The four PDs for the low 4GB - R0 Ptr.
2255 * Same kind of mapping as apHCPaePDs. */
2256 R0PTRTYPE(PX86PDPAE) apShwPaePDsR0[4];
2257# endif
2258 /** The four PDs for the low 4GB - RC Ptr.
2259 * Same kind of mapping as apHCPaePDs. */
2260 RCPTRTYPE(PX86PDPAE) apShwPaePDsRC[4];
2261 /** The Physical Address (HC) of the four PDs for the low 4GB.
2262 * These are *NOT* 4 contiguous pages. */
2263 RTHCPHYS aHCPhysPaePDs[4];
2264 /** The Physical Address (HC) of the PAE PDPT. */
2265 RTHCPHYS HCPhysShwPaePdpt;
2266 /** The PAE PDPT - R3 Ptr. */
2267 R3PTRTYPE(PX86PDPT) pShwPaePdptR3;
2268 /** The PAE PDPT - R0 Ptr. */
2269 R0PTRTYPE(PX86PDPT) pShwPaePdptR0;
2270 /** The PAE PDPT - RC Ptr. */
2271 RCPTRTYPE(PX86PDPT) pShwPaePdptRC;
2272 /** @} */
2273# if HC_ARCH_BITS == 64
2274 RTRCPTR alignment5; /**< structure size alignment. */
2275# endif
2276
2277 /** @name AMD64 Shadow Paging
2278 * Extends PAE Paging.
2279 * @{ */
2280 /** The Page Map Level 4 table - R3 Ptr. */
2281 R3PTRTYPE(PX86PML4) pShwPaePml4R3;
2282# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2283 /** The Page Map Level 4 table - R0 Ptr. */
2284 R0PTRTYPE(PX86PML4) pShwPaePml4R0;
2285# endif
2286 /** The Physical Address (HC) of the Page Map Level 4 table. */
2287 RTHCPHYS HCPhysShwPaePml4;
2288 /** The pgm pool page descriptor for the current active CR3 - R3 Ptr. */
2289 R3PTRTYPE(PPGMPOOLPAGE) pShwAmd64CR3R3;
2290 /** The pgm pool page descriptor for the current active CR3 - R0 Ptr. */
2291 R0PTRTYPE(PPGMPOOLPAGE) pShwAmd64CR3R0;
2292 /** @}*/
2293
2294 /** @name Nested Shadow Paging
2295 * @{ */
2296 /** Root table; format depends on the host paging mode (AMD-V) or EPT - R3 pointer. */
2297 RTR3PTR pShwNestedRootR3;
2298# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2299 /** Root table; format depends on the host paging mode (AMD-V) or EPT - R0 pointer. */
2300 RTR0PTR pShwNestedRootR0;
2301# endif
2302 /** The Physical Address (HC) of the nested paging root. */
2303 RTHCPHYS HCPhysShwNestedRoot;
2304#endif
2305 /** @} */
2306
2307 /** @name Function pointers for Shadow paging.
2308 * @{
2309 */
2310 DECLR3CALLBACKMEMBER(int, pfnR3ShwRelocate,(PVM pVM, RTGCPTR offDelta));
2311 DECLR3CALLBACKMEMBER(int, pfnR3ShwExit,(PVM pVM));
2312 DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2313 DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2314
2315 DECLRCCALLBACKMEMBER(int, pfnRCShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2316 DECLRCCALLBACKMEMBER(int, pfnRCShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2317
2318 DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2319 DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2320
2321 /** @} */
2322
2323 /** @name Function pointers for Guest paging.
2324 * @{
2325 */
2326 DECLR3CALLBACKMEMBER(int, pfnR3GstRelocate,(PVM pVM, RTGCPTR offDelta));
2327 DECLR3CALLBACKMEMBER(int, pfnR3GstExit,(PVM pVM));
2328 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2329 DECLR3CALLBACKMEMBER(int, pfnR3GstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2330 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
2331#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2332 DECLR3CALLBACKMEMBER(int, pfnR3GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2333 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmonitorCR3,(PVM pVM));
2334#endif
2335 DECLR3CALLBACKMEMBER(int, pfnR3GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2336 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmapCR3,(PVM pVM));
2337#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2338 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstWriteHandlerCR3;
2339 R3PTRTYPE(const char *) pszR3GstWriteHandlerCR3;
2340 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstPAEWriteHandlerCR3;
2341 R3PTRTYPE(const char *) pszR3GstPAEWriteHandlerCR3;
2342#endif
2343 DECLRCCALLBACKMEMBER(int, pfnRCGstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2344 DECLRCCALLBACKMEMBER(int, pfnRCGstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2345 DECLRCCALLBACKMEMBER(int, pfnRCGstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
2346#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2347 DECLRCCALLBACKMEMBER(int, pfnRCGstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2348 DECLRCCALLBACKMEMBER(int, pfnRCGstUnmonitorCR3,(PVM pVM));
2349#endif
2350 DECLRCCALLBACKMEMBER(int, pfnRCGstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2351 DECLRCCALLBACKMEMBER(int, pfnRCGstUnmapCR3,(PVM pVM));
2352#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2353 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnRCGstWriteHandlerCR3;
2354 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnRCGstPAEWriteHandlerCR3;
2355#endif
2356#if HC_ARCH_BITS == 64
2357 RTRCPTR alignment3; /**< structure size alignment. */
2358#endif
2359
2360 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2361 DECLR0CALLBACKMEMBER(int, pfnR0GstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2362 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
2363#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2364 DECLR0CALLBACKMEMBER(int, pfnR0GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2365 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmonitorCR3,(PVM pVM));
2366#endif
2367 DECLR0CALLBACKMEMBER(int, pfnR0GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2368 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmapCR3,(PVM pVM));
2369#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2370 R0PTRTYPE(PFNPGMRCPHYSHANDLER) pfnR0GstWriteHandlerCR3;
2371 R0PTRTYPE(PFNPGMRCPHYSHANDLER) pfnR0GstPAEWriteHandlerCR3;
2372#endif
2373 /** @} */
2374
2375 /** @name Function pointers for Both Shadow and Guest paging.
2376 * @{
2377 */
2378 DECLR3CALLBACKMEMBER(int, pfnR3BthRelocate,(PVM pVM, RTGCPTR offDelta));
2379 /* no pfnR3BthTrap0eHandler */
2380 DECLR3CALLBACKMEMBER(int, pfnR3BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2381 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2382 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2383 DECLR3CALLBACKMEMBER(int, pfnR3BthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2384 DECLR3CALLBACKMEMBER(int, pfnR3BthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2385 DECLR3CALLBACKMEMBER(unsigned, pfnR3BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2386
2387 DECLR0CALLBACKMEMBER(int, pfnR0BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2388 DECLR0CALLBACKMEMBER(int, pfnR0BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2389 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2390 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2391 DECLR0CALLBACKMEMBER(int, pfnR0BthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2392 DECLR0CALLBACKMEMBER(int, pfnR0BthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2393 DECLR0CALLBACKMEMBER(unsigned, pfnR0BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2394
2395 DECLRCCALLBACKMEMBER(int, pfnRCBthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2396 DECLRCCALLBACKMEMBER(int, pfnRCBthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2397 DECLRCCALLBACKMEMBER(int, pfnRCBthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2398 DECLRCCALLBACKMEMBER(int, pfnRCBthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2399 DECLRCCALLBACKMEMBER(int, pfnRCBthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2400 DECLRCCALLBACKMEMBER(int, pfnRCBthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2401 DECLRCCALLBACKMEMBER(unsigned, pfnRCBthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2402#if HC_ARCH_BITS == 64
2403 RTRCPTR alignment2; /**< structure size alignment. */
2404#endif
2405 /** @} */
2406
2407 /** Pointer to SHW+GST mode data (function pointers).
2408 * The index into this table is made up from */
2409 R3PTRTYPE(PPGMMODEDATA) paModeData;
2410
2411 /** Pointer to the list of RAM ranges (Phys GC -> Phys HC conversion) - for R3.
2412 * This is sorted by physical address and contains no overlapping ranges. */
2413 R3PTRTYPE(PPGMRAMRANGE) pRamRangesR3;
2414 /** R0 pointer corresponding to PGM::pRamRangesR3. */
2415 R0PTRTYPE(PPGMRAMRANGE) pRamRangesR0;
2416 /** RC pointer corresponding to PGM::pRamRangesR3. */
2417 RCPTRTYPE(PPGMRAMRANGE) pRamRangesRC;
2418 /** The configured RAM size. */
2419 RTUINT cbRamSize;
2420
2421 /** Pointer to the list of ROM ranges - for R3.
2422 * This is sorted by physical address and contains no overlapping ranges. */
2423 R3PTRTYPE(PPGMROMRANGE) pRomRangesR3;
2424 /** R0 pointer corresponding to PGM::pRomRangesR3. */
2425 R0PTRTYPE(PPGMROMRANGE) pRomRangesR0;
2426 /** RC pointer corresponding to PGM::pRomRangesR3. */
2427 RCPTRTYPE(PPGMROMRANGE) pRomRangesRC;
2428 /** Alignment padding. */
2429 RTRCPTR GCPtrPadding2;
2430
2431 /** Pointer to the list of MMIO2 ranges - for R3.
2432 * Registration order. */
2433 R3PTRTYPE(PPGMMMIO2RANGE) pMmio2RangesR3;
2434
2435 /** PGM offset based trees - R3 Ptr. */
2436 R3PTRTYPE(PPGMTREES) pTreesR3;
2437 /** PGM offset based trees - R0 Ptr. */
2438 R0PTRTYPE(PPGMTREES) pTreesR0;
2439 /** PGM offset based trees - RC Ptr. */
2440 RCPTRTYPE(PPGMTREES) pTreesRC;
2441
2442 /** Linked list of GC mappings - for RC.
2443 * The list is sorted ascending on address.
2444 */
2445 RCPTRTYPE(PPGMMAPPING) pMappingsRC;
2446 /** Linked list of GC mappings - for HC.
2447 * The list is sorted ascending on address.
2448 */
2449 R3PTRTYPE(PPGMMAPPING) pMappingsR3;
2450 /** Linked list of GC mappings - for R0.
2451 * The list is sorted ascending on address.
2452 */
2453 R0PTRTYPE(PPGMMAPPING) pMappingsR0;
2454
2455 /** If set no conflict checks are required. (boolean) */
2456 bool fMappingsFixed;
2457 /** If set, then no mappings are put into the shadow page table. (boolean) */
2458 bool fDisableMappings;
2459 /** Size of fixed mapping */
2460 uint32_t cbMappingFixed;
2461 /** Base address (GC) of fixed mapping */
2462 RTGCPTR GCPtrMappingFixed;
2463#if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
2464 uint32_t u32Padding0; /**< alignment padding. */
2465#endif
2466
2467
2468 /** @name Intermediate Context
2469 * @{ */
2470 /** Pointer to the intermediate page directory - Normal. */
2471 R3PTRTYPE(PX86PD) pInterPD;
2472 /** Pointer to the intermedate page tables - Normal.
2473 * There are two page tables, one for the identity mapping and one for
2474 * the host context mapping (of the core code). */
2475 R3PTRTYPE(PX86PT) apInterPTs[2];
2476 /** Pointer to the intermedate page tables - PAE. */
2477 R3PTRTYPE(PX86PTPAE) apInterPaePTs[2];
2478 /** Pointer to the intermedate page directory - PAE. */
2479 R3PTRTYPE(PX86PDPAE) apInterPaePDs[4];
2480 /** Pointer to the intermedate page directory - PAE. */
2481 R3PTRTYPE(PX86PDPT) pInterPaePDPT;
2482 /** Pointer to the intermedate page-map level 4 - AMD64. */
2483 R3PTRTYPE(PX86PML4) pInterPaePML4;
2484 /** Pointer to the intermedate page directory - AMD64. */
2485 R3PTRTYPE(PX86PDPT) pInterPaePDPT64;
2486 /** The Physical Address (HC) of the intermediate Page Directory - Normal. */
2487 RTHCPHYS HCPhysInterPD;
2488 /** The Physical Address (HC) of the intermediate Page Directory Pointer Table - PAE. */
2489 RTHCPHYS HCPhysInterPaePDPT;
2490 /** The Physical Address (HC) of the intermediate Page Map Level 4 table - AMD64. */
2491 RTHCPHYS HCPhysInterPaePML4;
2492 /** @} */
2493
2494 /** Base address of the dynamic page mapping area.
2495 * The array is MM_HYPER_DYNAMIC_SIZE bytes big.
2496 */
2497 RCPTRTYPE(uint8_t *) pbDynPageMapBaseGC;
2498 /** The index of the last entry used in the dynamic page mapping area. */
2499 RTUINT iDynPageMapLast;
2500 /** Cache containing the last entries in the dynamic page mapping area.
2501 * The cache size is covering half of the mapping area. */
2502 RTHCPHYS aHCPhysDynPageMapCache[MM_HYPER_DYNAMIC_SIZE >> (PAGE_SHIFT + 1)];
2503
2504 /** The address of the ring-0 mapping cache if we're making use of it. */
2505 RTR0PTR pvR0DynMapUsed;
2506#if HC_ARCH_BITS == 32
2507 RTR0PTR R0PtrPadding0; /**< Alignment. */
2508#endif
2509
2510
2511 /** 4 MB page mask; 32 or 36 bits depending on PSE-36 */
2512 RTGCPHYS GCPhys4MBPSEMask;
2513
2514 /** A20 gate mask.
2515 * Our current approach to A20 emulation is to let REM do it and don't bother
2516 * anywhere else. The interesting Guests will be operating with it enabled anyway.
2517 * But whould need arrise, we'll subject physical addresses to this mask. */
2518 RTGCPHYS GCPhysA20Mask;
2519 /** A20 gate state - boolean! */
2520 RTUINT fA20Enabled;
2521
2522 /** What needs syncing (PGM_SYNC_*).
2523 * This is used to queue operations for PGMSyncCR3, PGMInvalidatePage,
2524 * PGMFlushTLB, and PGMR3Load. */
2525 RTUINT fSyncFlags;
2526
2527 /** PGM critical section.
2528 * This protects the physical & virtual access handlers, ram ranges,
2529 * and the page flag updating (some of it anyway).
2530 */
2531 PDMCRITSECT CritSect;
2532
2533 /** Shadow Page Pool - R3 Ptr. */
2534 R3PTRTYPE(PPGMPOOL) pPoolR3;
2535 /** Shadow Page Pool - R0 Ptr. */
2536 R0PTRTYPE(PPGMPOOL) pPoolR0;
2537 /** Shadow Page Pool - RC Ptr. */
2538 RCPTRTYPE(PPGMPOOL) pPoolRC;
2539
2540 /** We're not in a state which permits writes to guest memory.
2541 * (Only used in strict builds.) */
2542 bool fNoMorePhysWrites;
2543
2544 /** Flush the cache on the next access. */
2545 bool fPhysCacheFlushPending;
2546/** @todo r=bird: Fix member names!*/
2547 /** PGMPhysRead cache */
2548 PGMPHYSCACHE pgmphysreadcache;
2549 /** PGMPhysWrite cache */
2550 PGMPHYSCACHE pgmphyswritecache;
2551
2552 /**
2553 * Data associated with managing the ring-3 mappings of the allocation chunks.
2554 */
2555 struct
2556 {
2557 /** The chunk tree, ordered by chunk id. */
2558#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2559 R3PTRTYPE(PAVLU32NODECORE) pTree;
2560#else
2561 R3R0PTRTYPE(PAVLU32NODECORE) pTree;
2562#endif
2563 /** The chunk mapping TLB. */
2564 PGMCHUNKR3MAPTLB Tlb;
2565 /** The number of mapped chunks. */
2566 uint32_t c;
2567 /** The maximum number of mapped chunks.
2568 * @cfgm PGM/MaxRing3Chunks */
2569 uint32_t cMax;
2570 /** The chunk age tree, ordered by ageing sequence number. */
2571 R3PTRTYPE(PAVLLU32NODECORE) pAgeTree;
2572 /** The current time. */
2573 uint32_t iNow;
2574 /** Number of pgmR3PhysChunkFindUnmapCandidate calls left to the next ageing. */
2575 uint32_t AgeingCountdown;
2576 } ChunkR3Map;
2577
2578 /**
2579 * The page mapping TLB for ring-3 and (for the time being) ring-0.
2580 */
2581 PGMPAGER3MAPTLB PhysTlbHC;
2582
2583 /** @name The zero page.
2584 * @{ */
2585 /** The host physical address of the zero page. */
2586 RTHCPHYS HCPhysZeroPg;
2587 /** The ring-3 mapping of the zero page. */
2588 RTR3PTR pvZeroPgR3;
2589 /** The ring-0 mapping of the zero page. */
2590 RTR0PTR pvZeroPgR0;
2591 /** The GC mapping of the zero page. */
2592 RTGCPTR pvZeroPgGC;
2593#if GC_ARCH_BITS != 32
2594 uint32_t u32ZeroAlignment; /**< Alignment padding. */
2595#endif
2596 /** @}*/
2597
2598 /** The number of handy pages. */
2599 uint32_t cHandyPages;
2600 /**
2601 * Array of handy pages.
2602 *
2603 * This array is used in a two way communication between pgmPhysAllocPage
2604 * and GMMR0AllocateHandyPages, with PGMR3PhysAllocateHandyPages serving as
2605 * an intermediary.
2606 *
2607 * The size of this array is important, see pgmPhysEnsureHandyPage for details.
2608 * (The current size of 32 pages, means 128 KB of handy memory.)
2609 */
2610 GMMPAGEDESC aHandyPages[32];
2611
2612 /** @name Release Statistics
2613 * @{ */
2614 uint32_t cAllPages; /**< The total number of pages. (Should be Private + Shared + Zero.) */
2615 uint32_t cPrivatePages; /**< The number of private pages. */
2616 uint32_t cSharedPages; /**< The number of shared pages. */
2617 uint32_t cZeroPages; /**< The number of zero backed pages. */
2618 /** The number of times the guest has switched mode since last reset or statistics reset. */
2619 STAMCOUNTER cGuestModeChanges;
2620 /** @} */
2621
2622#ifdef VBOX_WITH_STATISTICS /** @todo move this chunk to the heap. */
2623 /** RC: Which statistic this \#PF should be attributed to. */
2624 RCPTRTYPE(PSTAMPROFILE) pStatTrap0eAttributionRC;
2625 RTRCPTR padding0;
2626 /** R0: Which statistic this \#PF should be attributed to. */
2627 R0PTRTYPE(PSTAMPROFILE) pStatTrap0eAttributionR0;
2628 RTR0PTR padding1;
2629
2630 /* Common */
2631# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2632 STAMCOUNTER StatTrackVirgin; /**< The number of first time shadowings. */
2633 STAMCOUNTER StatTrackAliased; /**< The number of times switching to cRef2, i.e. the page is being shadowed by two PTs. */
2634 STAMCOUNTER StatTrackAliasedMany; /**< The number of times we're tracking using cRef2. */
2635 STAMCOUNTER StatTrackAliasedLots; /**< The number of times we're hitting pages which has overflowed cRef2. */
2636 STAMCOUNTER StatTrackOverflows; /**< The number of times the extent list grows to long. */
2637 STAMPROFILE StatTrackDeref; /**< Profiling of SyncPageWorkerTrackDeref (expensive). */
2638# endif
2639 STAMCOUNTER StatSyncPtPD[X86_PG_ENTRIES]; /**< SyncPT - PD distribution. */
2640 STAMCOUNTER StatSyncPagePD[X86_PG_ENTRIES]; /**< SyncPage - PD distribution. */
2641
2642 /* R3 only: */
2643 STAMCOUNTER StatR3DetectedConflicts; /**< R3: Number of times PGMR3MapHasConflicts() detected a conflict. */
2644 STAMPROFILE StatR3ResolveConflict; /**< R3: pgmR3SyncPTResolveConflict() profiling (includes the entire relocation). */
2645 STAMCOUNTER StatR3GuestPDWrite; /**< R3: The total number of times pgmHCGuestPDWriteHandler() was called. */
2646 STAMCOUNTER StatR3GuestPDWriteConflict; /**< R3: The number of times GuestPDWriteContlict() detected a conflict. */
2647 STAMCOUNTER StatR3DynRamTotal; /**< R3: Allocated MBs of guest ram */
2648 STAMCOUNTER StatR3DynRamGrow; /**< R3: Nr of pgmr3PhysGrowRange calls. */
2649
2650 /* R0 only: */
2651 STAMCOUNTER StatR0DynMapMigrateInvlPg; /**< R0: invlpg in PGMDynMapMigrateAutoSet. */
2652 STAMPROFILE StatR0DynMapGCPageInl; /**< R0: Calls to pgmR0DynMapGCPageInlined. */
2653 STAMCOUNTER StatR0DynMapGCPageInlHits; /**< R0: Hash table lookup hits. */
2654 STAMCOUNTER StatR0DynMapGCPageInlMisses; /**< R0: Misses that falls back to code common with PGMDynMapHCPage. */
2655 STAMCOUNTER StatR0DynMapGCPageInlRamHits; /**< R0: 1st ram range hits. */
2656 STAMCOUNTER StatR0DynMapGCPageInlRamMisses; /**< R0: 1st ram range misses, takes slow path. */
2657 STAMPROFILE StatR0DynMapHCPageInl; /**< R0: Calls to pgmR0DynMapHCPageInlined. */
2658 STAMCOUNTER StatR0DynMapHCPageInlHits; /**< R0: Hash table lookup hits. */
2659 STAMCOUNTER StatR0DynMapHCPageInlMisses; /**< R0: Misses that falls back to code common with PGMDynMapHCPage. */
2660 STAMPROFILE StatR0DynMapHCPage; /**< R0: Calls to PGMDynMapHCPage. */
2661 STAMCOUNTER StatR0DynMapSetOptimize; /**< R0: Calls to pgmDynMapOptimizeAutoSet. */
2662 STAMCOUNTER StatR0DynMapSetSearchHits; /**< R0: Set search hits. */
2663 STAMCOUNTER StatR0DynMapSetSearchMisses; /**< R0: Set search misses. */
2664 STAMCOUNTER StatR0DynMapPage; /**< R0: Calls to pgmR0DynMapPage. */
2665 STAMCOUNTER StatR0DynMapPageHits0; /**< R0: Hits at iPage+0. */
2666 STAMCOUNTER StatR0DynMapPageHits1; /**< R0: Hits at iPage+1. */
2667 STAMCOUNTER StatR0DynMapPageHits2; /**< R0: Hits at iPage+2. */
2668 STAMCOUNTER StatR0DynMapPageInvlPg; /**< R0: invlpg. */
2669 STAMCOUNTER StatR0DynMapPageSlow; /**< R0: Calls to pgmR0DynMapPageSlow. */
2670 STAMCOUNTER StatR0DynMapPageSlowLoopHits; /**< R0: Hits in the pgmR0DynMapPageSlow search loop. */
2671 STAMCOUNTER StatR0DynMapPageSlowLoopMisses; /**< R0: Misses in the pgmR0DynMapPageSlow search loop. */
2672 //STAMCOUNTER StatR0DynMapPageSlowLostHits; /**< R0: Lost hits. */
2673
2674 /* RC only: */
2675 STAMCOUNTER StatRCDynMapCacheMisses; /**< RC: The number of dynamic page mapping cache hits */
2676 STAMCOUNTER StatRCDynMapCacheHits; /**< RC: The number of dynamic page mapping cache misses */
2677 STAMCOUNTER StatRCInvlPgConflict; /**< RC: Number of times PGMInvalidatePage() detected a mapping conflict. */
2678 STAMCOUNTER StatRCInvlPgSyncMonCR3; /**< RC: Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3. */
2679
2680 /* RZ only: */
2681 STAMPROFILE StatRZTrap0e; /**< RC/R0: PGMTrap0eHandler() profiling. */
2682 STAMPROFILE StatRZTrap0eTimeCheckPageFault;
2683 STAMPROFILE StatRZTrap0eTimeSyncPT;
2684 STAMPROFILE StatRZTrap0eTimeMapping;
2685 STAMPROFILE StatRZTrap0eTimeOutOfSync;
2686 STAMPROFILE StatRZTrap0eTimeHandlers;
2687 STAMPROFILE StatRZTrap0eTime2CSAM; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is CSAM. */
2688 STAMPROFILE StatRZTrap0eTime2DirtyAndAccessed; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation. */
2689 STAMPROFILE StatRZTrap0eTime2GuestTrap; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is a guest trap. */
2690 STAMPROFILE StatRZTrap0eTime2HndPhys; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is a physical handler. */
2691 STAMPROFILE StatRZTrap0eTime2HndVirt; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is a virtual handler. */
2692 STAMPROFILE StatRZTrap0eTime2HndUnhandled; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page. */
2693 STAMPROFILE StatRZTrap0eTime2Misc; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is not known. */
2694 STAMPROFILE StatRZTrap0eTime2OutOfSync; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an out-of-sync page. */
2695 STAMPROFILE StatRZTrap0eTime2OutOfSyncHndPhys; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page. */
2696 STAMPROFILE StatRZTrap0eTime2OutOfSyncHndVirt; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page. */
2697 STAMPROFILE StatRZTrap0eTime2OutOfSyncHndObs; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an obsolete handler page. */
2698 STAMPROFILE StatRZTrap0eTime2SyncPT; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT. */
2699 STAMCOUNTER StatRZTrap0eConflicts; /**< RC/R0: The number of times \#PF was caused by an undetected conflict. */
2700 STAMCOUNTER StatRZTrap0eHandlersMapping; /**< RC/R0: Number of traps due to access handlers in mappings. */
2701 STAMCOUNTER StatRZTrap0eHandlersOutOfSync; /**< RC/R0: Number of out-of-sync handled pages. */
2702 STAMCOUNTER StatRZTrap0eHandlersPhysical; /**< RC/R0: Number of traps due to physical access handlers. */
2703 STAMCOUNTER StatRZTrap0eHandlersVirtual; /**< RC/R0: Number of traps due to virtual access handlers. */
2704 STAMCOUNTER StatRZTrap0eHandlersVirtualByPhys; /**< RC/R0: Number of traps due to virtual access handlers found by physical address. */
2705 STAMCOUNTER StatRZTrap0eHandlersVirtualUnmarked;/**< RC/R0: Number of traps due to virtual access handlers found by virtual address (without proper physical flags). */
2706 STAMCOUNTER StatRZTrap0eHandlersUnhandled; /**< RC/R0: Number of traps due to access outside range of monitored page(s). */
2707 STAMCOUNTER StatRZTrap0eHandlersInvalid; /**< RC/R0: Number of traps due to access to invalid physical memory. */
2708 STAMCOUNTER StatRZTrap0eUSNotPresentRead; /**< RC/R0: #PF err kind */
2709 STAMCOUNTER StatRZTrap0eUSNotPresentWrite; /**< RC/R0: #PF err kind */
2710 STAMCOUNTER StatRZTrap0eUSWrite; /**< RC/R0: #PF err kind */
2711 STAMCOUNTER StatRZTrap0eUSReserved; /**< RC/R0: #PF err kind */
2712 STAMCOUNTER StatRZTrap0eUSNXE; /**< RC/R0: #PF err kind */
2713 STAMCOUNTER StatRZTrap0eUSRead; /**< RC/R0: #PF err kind */
2714 STAMCOUNTER StatRZTrap0eSVNotPresentRead; /**< RC/R0: #PF err kind */
2715 STAMCOUNTER StatRZTrap0eSVNotPresentWrite; /**< RC/R0: #PF err kind */
2716 STAMCOUNTER StatRZTrap0eSVWrite; /**< RC/R0: #PF err kind */
2717 STAMCOUNTER StatRZTrap0eSVReserved; /**< RC/R0: #PF err kind */
2718 STAMCOUNTER StatRZTrap0eSNXE; /**< RC/R0: #PF err kind */
2719 STAMCOUNTER StatRZTrap0eGuestPF; /**< RC/R0: Real guest #PFs. */
2720 STAMCOUNTER StatRZTrap0eGuestPFUnh; /**< RC/R0: Real guest #PF ending up at the end of the #PF code. */
2721 STAMCOUNTER StatRZTrap0eGuestPFMapping; /**< RC/R0: Real guest #PF to HMA or other mapping. */
2722 STAMCOUNTER StatRZTrap0eWPEmulInRZ; /**< RC/R0: WP=0 virtualization trap, handled. */
2723 STAMCOUNTER StatRZTrap0eWPEmulToR3; /**< RC/R0: WP=0 virtualization trap, chickened out. */
2724 STAMCOUNTER StatRZTrap0ePD[X86_PG_ENTRIES]; /**< RC/R0: PD distribution of the #PFs. */
2725 STAMCOUNTER StatRZGuestCR3WriteHandled; /**< RC/R0: The number of times WriteHandlerCR3() was successfully called. */
2726 STAMCOUNTER StatRZGuestCR3WriteUnhandled; /**< RC/R0: The number of times WriteHandlerCR3() was called and we had to fall back to the recompiler. */
2727 STAMCOUNTER StatRZGuestCR3WriteConflict; /**< RC/R0: The number of times WriteHandlerCR3() was called and a conflict was detected. */
2728 STAMCOUNTER StatRZGuestROMWriteHandled; /**< RC/R0: The number of times pgmPhysRomWriteHandler() was successfully called. */
2729 STAMCOUNTER StatRZGuestROMWriteUnhandled; /**< RC/R0: The number of times pgmPhysRomWriteHandler() was called and we had to fall back to the recompiler */
2730
2731 /* HC - R3 and (maybe) R0: */
2732
2733 /* RZ & R3: */
2734 STAMPROFILE StatRZSyncCR3; /**< RC/R0: PGMSyncCR3() profiling. */
2735 STAMPROFILE StatRZSyncCR3Handlers; /**< RC/R0: Profiling of the PGMSyncCR3() update handler section. */
2736 STAMPROFILE StatRZSyncCR3HandlerVirtualReset; /**< RC/R0: Profiling of the virtual handler resets. */
2737 STAMPROFILE StatRZSyncCR3HandlerVirtualUpdate; /**< RC/R0: Profiling of the virtual handler updates. */
2738 STAMCOUNTER StatRZSyncCR3Global; /**< RC/R0: The number of global CR3 syncs. */
2739 STAMCOUNTER StatRZSyncCR3NotGlobal; /**< RC/R0: The number of non-global CR3 syncs. */
2740 STAMCOUNTER StatRZSyncCR3DstCacheHit; /**< RC/R0: The number of times we got some kind of cache hit on a page table. */
2741 STAMCOUNTER StatRZSyncCR3DstFreed; /**< RC/R0: The number of times we've had to free a shadow entry. */
2742 STAMCOUNTER StatRZSyncCR3DstFreedSrcNP; /**< RC/R0: The number of times we've had to free a shadow entry for which the source entry was not present. */
2743 STAMCOUNTER StatRZSyncCR3DstNotPresent; /**< RC/R0: The number of times we've encountered a not present shadow entry for a present guest entry. */
2744 STAMCOUNTER StatRZSyncCR3DstSkippedGlobalPD; /**< RC/R0: The number of times a global page directory wasn't flushed. */
2745 STAMCOUNTER StatRZSyncCR3DstSkippedGlobalPT; /**< RC/R0: The number of times a page table with only global entries wasn't flushed. */
2746 STAMPROFILE StatRZSyncPT; /**< RC/R0: PGMSyncPT() profiling. */
2747 STAMCOUNTER StatRZSyncPTFailed; /**< RC/R0: The number of times PGMSyncPT() failed. */
2748 STAMCOUNTER StatRZSyncPT4K; /**< RC/R0: Number of 4KB syncs. */
2749 STAMCOUNTER StatRZSyncPT4M; /**< RC/R0: Number of 4MB syncs. */
2750 STAMCOUNTER StatRZSyncPagePDNAs; /**< RC/R0: The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit. */
2751 STAMCOUNTER StatRZSyncPagePDOutOfSync; /**< RC/R0: The number of time we've encountered an out-of-sync PD in SyncPage. */
2752 STAMCOUNTER StatRZAccessedPage; /**< RC/R0: The number of pages marked not present for accessed bit emulation. */
2753 STAMPROFILE StatRZDirtyBitTracking; /**< RC/R0: Profiling the dirty bit tracking in CheckPageFault().. */
2754 STAMCOUNTER StatRZDirtyPage; /**< RC/R0: The number of pages marked read-only for dirty bit tracking. */
2755 STAMCOUNTER StatRZDirtyPageBig; /**< RC/R0: The number of pages marked read-only for dirty bit tracking. */
2756 STAMCOUNTER StatRZDirtyPageSkipped; /**< RC/R0: The number of pages already dirty or readonly. */
2757 STAMCOUNTER StatRZDirtyPageTrap; /**< RC/R0: The number of traps generated for dirty bit tracking. */
2758 STAMCOUNTER StatRZDirtyTrackRealPF; /**< RC/R0: The number of real pages faults during dirty bit tracking. */
2759 STAMCOUNTER StatRZDirtiedPage; /**< RC/R0: The number of pages marked dirty because of write accesses. */
2760 STAMCOUNTER StatRZPageAlreadyDirty; /**< RC/R0: The number of pages already marked dirty because of write accesses. */
2761 STAMPROFILE StatRZInvalidatePage; /**< RC/R0: PGMInvalidatePage() profiling. */
2762 STAMCOUNTER StatRZInvalidatePage4KBPages; /**< RC/R0: The number of times PGMInvalidatePage() was called for a 4KB page. */
2763 STAMCOUNTER StatRZInvalidatePage4MBPages; /**< RC/R0: The number of times PGMInvalidatePage() was called for a 4MB page. */
2764 STAMCOUNTER StatRZInvalidatePage4MBPagesSkip; /**< RC/R0: The number of times PGMInvalidatePage() skipped a 4MB page. */
2765 STAMCOUNTER StatRZInvalidatePagePDMappings; /**< RC/R0: The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict). */
2766 STAMCOUNTER StatRZInvalidatePagePDNAs; /**< RC/R0: The number of times PGMInvalidatePage() was called for a not accessed page directory. */
2767 STAMCOUNTER StatRZInvalidatePagePDNPs; /**< RC/R0: The number of times PGMInvalidatePage() was called for a not present page directory. */
2768 STAMCOUNTER StatRZInvalidatePagePDOutOfSync; /**< RC/R0: The number of times PGMInvalidatePage() was called for an out of sync page directory. */
2769 STAMCOUNTER StatRZInvalidatePageSkipped; /**< RC/R0: The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3. */
2770 STAMPROFILE StatRZVirtHandlerSearchByPhys; /**< RC/R0: Profiling of pgmHandlerVirtualFindByPhysAddr. */
2771 STAMCOUNTER StatRZPhysHandlerReset; /**< RC/R0: The number of times PGMHandlerPhysicalReset is called. */
2772 STAMCOUNTER StatRZPageOutOfSyncUser; /**< RC/R0: The number of times user page is out of sync was detected in #PF or VerifyAccessSyncPage. */
2773 STAMCOUNTER StatRZPageOutOfSyncSupervisor; /**< RC/R0: The number of times supervisor page is out of sync was detected in in #PF or VerifyAccessSyncPage. */
2774 STAMPROFILE StatRZPrefetch; /**< RC/R0: PGMPrefetchPage. */
2775 STAMCOUNTER StatRZChunkR3MapTlbHits; /**< RC/R0: Ring-3/0 chunk mapper TLB hits. */
2776 STAMCOUNTER StatRZChunkR3MapTlbMisses; /**< RC/R0: Ring-3/0 chunk mapper TLB misses. */
2777 STAMCOUNTER StatRZPageMapTlbHits; /**< RC/R0: Ring-3/0 page mapper TLB hits. */
2778 STAMCOUNTER StatRZPageMapTlbMisses; /**< RC/R0: Ring-3/0 page mapper TLB misses. */
2779 STAMCOUNTER StatRZPageReplaceShared; /**< RC/R0: Times a shared page has been replaced by a private one. */
2780 STAMCOUNTER StatRZPageReplaceZero; /**< RC/R0: Times the zero page has been replaced by a private one. */
2781/// @todo STAMCOUNTER StatRZPageHandyAllocs; /**< RC/R0: The number of times we've executed GMMR3AllocateHandyPages. */
2782 STAMPROFILE StatRZFlushTLB; /**< RC/R0: Profiling of the PGMFlushTLB() body. */
2783 STAMCOUNTER StatRZFlushTLBNewCR3; /**< RC/R0: The number of times PGMFlushTLB was called with a new CR3, non-global. (switch) */
2784 STAMCOUNTER StatRZFlushTLBNewCR3Global; /**< RC/R0: The number of times PGMFlushTLB was called with a new CR3, global. (switch) */
2785 STAMCOUNTER StatRZFlushTLBSameCR3; /**< RC/R0: The number of times PGMFlushTLB was called with the same CR3, non-global. (flush) */
2786 STAMCOUNTER StatRZFlushTLBSameCR3Global; /**< RC/R0: The number of times PGMFlushTLB was called with the same CR3, global. (flush) */
2787 STAMPROFILE StatRZGstModifyPage; /**< RC/R0: Profiling of the PGMGstModifyPage() body */
2788
2789 STAMPROFILE StatR3SyncCR3; /**< R3: PGMSyncCR3() profiling. */
2790 STAMPROFILE StatR3SyncCR3Handlers; /**< R3: Profiling of the PGMSyncCR3() update handler section. */
2791 STAMPROFILE StatR3SyncCR3HandlerVirtualReset; /**< R3: Profiling of the virtual handler resets. */
2792 STAMPROFILE StatR3SyncCR3HandlerVirtualUpdate; /**< R3: Profiling of the virtual handler updates. */
2793 STAMCOUNTER StatR3SyncCR3Global; /**< R3: The number of global CR3 syncs. */
2794 STAMCOUNTER StatR3SyncCR3NotGlobal; /**< R3: The number of non-global CR3 syncs. */
2795 STAMCOUNTER StatR3SyncCR3DstFreed; /**< R3: The number of times we've had to free a shadow entry. */
2796 STAMCOUNTER StatR3SyncCR3DstFreedSrcNP; /**< R3: The number of times we've had to free a shadow entry for which the source entry was not present. */
2797 STAMCOUNTER StatR3SyncCR3DstNotPresent; /**< R3: The number of times we've encountered a not present shadow entry for a present guest entry. */
2798 STAMCOUNTER StatR3SyncCR3DstSkippedGlobalPD; /**< R3: The number of times a global page directory wasn't flushed. */
2799 STAMCOUNTER StatR3SyncCR3DstSkippedGlobalPT; /**< R3: The number of times a page table with only global entries wasn't flushed. */
2800 STAMCOUNTER StatR3SyncCR3DstCacheHit; /**< R3: The number of times we got some kind of cache hit on a page table. */
2801 STAMPROFILE StatR3SyncPT; /**< R3: PGMSyncPT() profiling. */
2802 STAMCOUNTER StatR3SyncPTFailed; /**< R3: The number of times PGMSyncPT() failed. */
2803 STAMCOUNTER StatR3SyncPT4K; /**< R3: Number of 4KB syncs. */
2804 STAMCOUNTER StatR3SyncPT4M; /**< R3: Number of 4MB syncs. */
2805 STAMCOUNTER StatR3SyncPagePDNAs; /**< R3: The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit. */
2806 STAMCOUNTER StatR3SyncPagePDOutOfSync; /**< R3: The number of time we've encountered an out-of-sync PD in SyncPage. */
2807 STAMCOUNTER StatR3AccessedPage; /**< R3: The number of pages marked not present for accessed bit emulation. */
2808 STAMPROFILE StatR3DirtyBitTracking; /**< R3: Profiling the dirty bit tracking in CheckPageFault(). */
2809 STAMCOUNTER StatR3DirtyPage; /**< R3: The number of pages marked read-only for dirty bit tracking. */
2810 STAMCOUNTER StatR3DirtyPageBig; /**< R3: The number of pages marked read-only for dirty bit tracking. */
2811 STAMCOUNTER StatR3DirtyPageSkipped; /**< R3: The number of pages already dirty or readonly. */
2812 STAMCOUNTER StatR3DirtyPageTrap; /**< R3: The number of traps generated for dirty bit tracking. */
2813 STAMCOUNTER StatR3DirtyTrackRealPF; /**< R3: The number of real pages faults during dirty bit tracking. */
2814 STAMCOUNTER StatR3DirtiedPage; /**< R3: The number of pages marked dirty because of write accesses. */
2815 STAMCOUNTER StatR3PageAlreadyDirty; /**< R3: The number of pages already marked dirty because of write accesses. */
2816 STAMPROFILE StatR3InvalidatePage; /**< R3: PGMInvalidatePage() profiling. */
2817 STAMCOUNTER StatR3InvalidatePage4KBPages; /**< R3: The number of times PGMInvalidatePage() was called for a 4KB page. */
2818 STAMCOUNTER StatR3InvalidatePage4MBPages; /**< R3: The number of times PGMInvalidatePage() was called for a 4MB page. */
2819 STAMCOUNTER StatR3InvalidatePage4MBPagesSkip; /**< R3: The number of times PGMInvalidatePage() skipped a 4MB page. */
2820 STAMCOUNTER StatR3InvalidatePagePDNAs; /**< R3: The number of times PGMInvalidatePage() was called for a not accessed page directory. */
2821 STAMCOUNTER StatR3InvalidatePagePDNPs; /**< R3: The number of times PGMInvalidatePage() was called for a not present page directory. */
2822 STAMCOUNTER StatR3InvalidatePagePDMappings; /**< R3: The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict). */
2823 STAMCOUNTER StatR3InvalidatePagePDOutOfSync; /**< R3: The number of times PGMInvalidatePage() was called for an out of sync page directory. */
2824 STAMCOUNTER StatR3InvalidatePageSkipped; /**< R3: The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3. */
2825 STAMPROFILE StatR3VirtHandlerSearchByPhys; /**< R3: Profiling of pgmHandlerVirtualFindByPhysAddr. */
2826 STAMCOUNTER StatR3PhysHandlerReset; /**< R3: The number of times PGMHandlerPhysicalReset is called. */
2827 STAMCOUNTER StatR3PageOutOfSyncUser; /**< R3: The number of times user page is out of sync was detected in #PF or VerifyAccessSyncPage. */
2828 STAMCOUNTER StatR3PageOutOfSyncSupervisor; /**< R3: The number of times supervisor page is out of sync was detected in in #PF or VerifyAccessSyncPage. */
2829 STAMPROFILE StatR3Prefetch; /**< R3: PGMPrefetchPage. */
2830 STAMCOUNTER StatR3ChunkR3MapTlbHits; /**< R3: Ring-3/0 chunk mapper TLB hits. */
2831 STAMCOUNTER StatR3ChunkR3MapTlbMisses; /**< R3: Ring-3/0 chunk mapper TLB misses. */
2832 STAMCOUNTER StatR3PageMapTlbHits; /**< R3: Ring-3/0 page mapper TLB hits. */
2833 STAMCOUNTER StatR3PageMapTlbMisses; /**< R3: Ring-3/0 page mapper TLB misses. */
2834 STAMCOUNTER StatR3PageReplaceShared; /**< R3: Times a shared page has been replaced by a private one. */
2835 STAMCOUNTER StatR3PageReplaceZero; /**< R3: Times the zero page has been replaced by a private one. */
2836/// @todo STAMCOUNTER StatR3PageHandyAllocs; /**< R3: The number of times we've executed GMMR3AllocateHandyPages. */
2837 STAMPROFILE StatR3FlushTLB; /**< R3: Profiling of the PGMFlushTLB() body. */
2838 STAMCOUNTER StatR3FlushTLBNewCR3; /**< R3: The number of times PGMFlushTLB was called with a new CR3, non-global. (switch) */
2839 STAMCOUNTER StatR3FlushTLBNewCR3Global; /**< R3: The number of times PGMFlushTLB was called with a new CR3, global. (switch) */
2840 STAMCOUNTER StatR3FlushTLBSameCR3; /**< R3: The number of times PGMFlushTLB was called with the same CR3, non-global. (flush) */
2841 STAMCOUNTER StatR3FlushTLBSameCR3Global; /**< R3: The number of times PGMFlushTLB was called with the same CR3, global. (flush) */
2842 STAMPROFILE StatR3GstModifyPage; /**< R3: Profiling of the PGMGstModifyPage() body */
2843#endif /* VBOX_WITH_STATISTICS */
2844} PGM;
2845/** Pointer to the PGM instance data. */
2846typedef PGM *PPGM;
2847
2848
2849/**
2850 * PGMCPU Data (part of VMCPU).
2851 */
2852typedef struct PGMCPU
2853{
2854 /** Offset to the VMCPU structure. */
2855 RTINT offVMCPU;
2856 /** Automatically tracked physical memory mapping set.
2857 * Ring-0 and strict raw-mode builds. */
2858 PGMMAPSET AutoSet;
2859} PGMCPU;
2860/** Pointer to the per-cpu PGM data. */
2861typedef PGMCPU *PPGMCPU;
2862
2863
2864/** @name PGM::fSyncFlags Flags
2865 * @{
2866 */
2867/** Updates the virtual access handler state bit in PGMPAGE. */
2868#define PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL RT_BIT(0)
2869/** Always sync CR3. */
2870#define PGM_SYNC_ALWAYS RT_BIT(1)
2871/** Check monitoring on next CR3 (re)load and invalidate page. */
2872#define PGM_SYNC_MONITOR_CR3 RT_BIT(2)
2873/** Clear the page pool (a light weight flush). */
2874#define PGM_SYNC_CLEAR_PGM_POOL RT_BIT(8)
2875/** @} */
2876
2877
2878__BEGIN_DECLS
2879
2880int pgmLock(PVM pVM);
2881void pgmUnlock(PVM pVM);
2882
2883VMMRCDECL(int) pgmGCGuestPDWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, void *pvFault, RTGCPHYS GCPhysFault, void *pvUser);
2884VMMDECL(int) pgmPhysRomWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, void *pvFault, RTGCPHYS GCPhysFault, void *pvUser);
2885
2886int pgmR3SyncPTResolveConflict(PVM pVM, PPGMMAPPING pMapping, PX86PD pPDSrc, RTGCPTR GCPtrOldMapping);
2887int pgmR3SyncPTResolveConflictPAE(PVM pVM, PPGMMAPPING pMapping, RTGCPTR GCPtrOldMapping);
2888PPGMMAPPING pgmGetMapping(PVM pVM, RTGCPTR GCPtr);
2889void pgmR3MapRelocate(PVM pVM, PPGMMAPPING pMapping, RTGCPTR GCPtrOldMapping, RTGCPTR GCPtrNewMapping);
2890DECLCALLBACK(void) pgmR3MapInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
2891
2892void pgmR3HandlerPhysicalUpdateAll(PVM pVM);
2893int pgmHandlerVirtualFindByPhysAddr(PVM pVM, RTGCPHYS GCPhys, PPGMVIRTHANDLER *ppVirt, unsigned *piPage);
2894DECLCALLBACK(int) pgmHandlerVirtualResetOne(PAVLROGCPTRNODECORE pNode, void *pvUser);
2895#if defined(VBOX_STRICT) || defined(LOG_ENABLED)
2896void pgmHandlerVirtualDumpPhysPages(PVM pVM);
2897#else
2898# define pgmHandlerVirtualDumpPhysPages(a) do { } while (0)
2899#endif
2900DECLCALLBACK(void) pgmR3InfoHandlers(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
2901
2902
2903void pgmPhysFreePage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys);
2904int pgmPhysPageLoadIntoTlb(PPGM pPGM, RTGCPHYS GCPhys);
2905int pgmPhysPageMakeWritable(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys);
2906int pgmPhysPageMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPPGMPAGEMAP ppMap, void **ppv);
2907#ifdef IN_RING3
2908int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk);
2909int pgmR3PhysRamReset(PVM pVM);
2910int pgmR3PhysRomReset(PVM pVM);
2911# ifndef VBOX_WITH_NEW_PHYS_CODE
2912int pgmr3PhysGrowRange(PVM pVM, RTGCPHYS GCPhys);
2913# endif
2914
2915int pgmR3PoolInit(PVM pVM);
2916void pgmR3PoolRelocate(PVM pVM);
2917void pgmR3PoolReset(PVM pVM);
2918
2919#endif /* IN_RING3 */
2920#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2921int pgmR0DynMapHCPageCommon(PVM pVM, PPGMMAPSET pSet, RTHCPHYS HCPhys, void **ppv);
2922#endif
2923#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
2924void *pgmPoolMapPageFallback(PPGM pPGM, PPGMPOOLPAGE pPage);
2925#endif
2926int pgmPoolAlloc(PVM pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage);
2927PPGMPOOLPAGE pgmPoolGetPageByHCPhys(PVM pVM, RTHCPHYS HCPhys);
2928void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint32_t iUserTable);
2929void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable);
2930int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
2931void pgmPoolFlushAll(PVM pVM);
2932void pgmPoolClearAll(PVM pVM);
2933int pgmPoolSyncCR3(PVM pVM);
2934void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs);
2935void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, uint16_t iPhysExt);
2936int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage);
2937PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt);
2938void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt);
2939void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt);
2940uint16_t pgmPoolTrackPhysExtAddref(PVM pVM, uint16_t u16, uint16_t iShwPT);
2941void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPoolPage, PPGMPAGE pPhysPage);
2942#ifdef PGMPOOL_WITH_MONITORING
2943# ifdef IN_RING3
2944void pgmPoolMonitorChainChanging(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, RTHCPTR pvAddress, PDISCPUSTATE pCpu);
2945# else
2946void pgmPoolMonitorChainChanging(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, RTGCPTR pvAddress, PDISCPUSTATE pCpu);
2947# endif
2948int pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
2949void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
2950void pgmPoolMonitorModifiedClearAll(PVM pVM);
2951int pgmPoolMonitorMonitorCR3(PPGMPOOL pPool, uint16_t idxRoot, RTGCPHYS GCPhysCR3);
2952int pgmPoolMonitorUnmonitorCR3(PPGMPOOL pPool, uint16_t idxRoot);
2953#endif
2954
2955__END_DECLS
2956
2957
2958/**
2959 * Gets the PGMRAMRANGE structure for a guest page.
2960 *
2961 * @returns Pointer to the RAM range on success.
2962 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
2963 *
2964 * @param pPGM PGM handle.
2965 * @param GCPhys The GC physical address.
2966 */
2967DECLINLINE(PPGMRAMRANGE) pgmPhysGetRange(PPGM pPGM, RTGCPHYS GCPhys)
2968{
2969 /*
2970 * Optimize for the first range.
2971 */
2972 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
2973 RTGCPHYS off = GCPhys - pRam->GCPhys;
2974 if (RT_UNLIKELY(off >= pRam->cb))
2975 {
2976 do
2977 {
2978 pRam = pRam->CTX_SUFF(pNext);
2979 if (RT_UNLIKELY(!pRam))
2980 break;
2981 off = GCPhys - pRam->GCPhys;
2982 } while (off >= pRam->cb);
2983 }
2984 return pRam;
2985}
2986
2987
2988/**
2989 * Gets the PGMPAGE structure for a guest page.
2990 *
2991 * @returns Pointer to the page on success.
2992 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
2993 *
2994 * @param pPGM PGM handle.
2995 * @param GCPhys The GC physical address.
2996 */
2997DECLINLINE(PPGMPAGE) pgmPhysGetPage(PPGM pPGM, RTGCPHYS GCPhys)
2998{
2999 /*
3000 * Optimize for the first range.
3001 */
3002 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
3003 RTGCPHYS off = GCPhys - pRam->GCPhys;
3004 if (RT_UNLIKELY(off >= pRam->cb))
3005 {
3006 do
3007 {
3008 pRam = pRam->CTX_SUFF(pNext);
3009 if (RT_UNLIKELY(!pRam))
3010 return NULL;
3011 off = GCPhys - pRam->GCPhys;
3012 } while (off >= pRam->cb);
3013 }
3014 return &pRam->aPages[off >> PAGE_SHIFT];
3015}
3016
3017
3018/**
3019 * Gets the PGMPAGE structure for a guest page.
3020 *
3021 * Old Phys code: Will make sure the page is present.
3022 *
3023 * @returns VBox status code.
3024 * @retval VINF_SUCCESS and a valid *ppPage on success.
3025 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if the address isn't valid.
3026 *
3027 * @param pPGM PGM handle.
3028 * @param GCPhys The GC physical address.
3029 * @param ppPage Where to store the page poitner on success.
3030 */
3031DECLINLINE(int) pgmPhysGetPageEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage)
3032{
3033 /*
3034 * Optimize for the first range.
3035 */
3036 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
3037 RTGCPHYS off = GCPhys - pRam->GCPhys;
3038 if (RT_UNLIKELY(off >= pRam->cb))
3039 {
3040 do
3041 {
3042 pRam = pRam->CTX_SUFF(pNext);
3043 if (RT_UNLIKELY(!pRam))
3044 {
3045 *ppPage = NULL; /* avoid incorrect and very annoying GCC warnings */
3046 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3047 }
3048 off = GCPhys - pRam->GCPhys;
3049 } while (off >= pRam->cb);
3050 }
3051 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
3052#ifndef VBOX_WITH_NEW_PHYS_CODE
3053
3054 /*
3055 * Make sure it's present.
3056 */
3057 if (RT_UNLIKELY( !PGM_PAGE_GET_HCPHYS(*ppPage)
3058 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)))
3059 {
3060#ifdef IN_RING3
3061 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys);
3062#else
3063 int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
3064#endif
3065 if (RT_FAILURE(rc))
3066 {
3067 *ppPage = NULL; /* avoid incorrect and very annoying GCC warnings */
3068 return rc;
3069 }
3070 Assert(rc == VINF_SUCCESS);
3071 }
3072#endif
3073 return VINF_SUCCESS;
3074}
3075
3076
3077
3078
3079/**
3080 * Gets the PGMPAGE structure for a guest page.
3081 *
3082 * Old Phys code: Will make sure the page is present.
3083 *
3084 * @returns VBox status code.
3085 * @retval VINF_SUCCESS and a valid *ppPage on success.
3086 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if the address isn't valid.
3087 *
3088 * @param pPGM PGM handle.
3089 * @param GCPhys The GC physical address.
3090 * @param ppPage Where to store the page poitner on success.
3091 * @param ppRamHint Where to read and store the ram list hint.
3092 * The caller initializes this to NULL before the call.
3093 */
3094DECLINLINE(int) pgmPhysGetPageWithHintEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage, PPGMRAMRANGE *ppRamHint)
3095{
3096 RTGCPHYS off;
3097 PPGMRAMRANGE pRam = *ppRamHint;
3098 if ( !pRam
3099 || RT_UNLIKELY((off = GCPhys - pRam->GCPhys) >= pRam->cb))
3100 {
3101 pRam = pPGM->CTX_SUFF(pRamRanges);
3102 off = GCPhys - pRam->GCPhys;
3103 if (RT_UNLIKELY(off >= pRam->cb))
3104 {
3105 do
3106 {
3107 pRam = pRam->CTX_SUFF(pNext);
3108 if (RT_UNLIKELY(!pRam))
3109 {
3110 *ppPage = NULL; /* Kill the incorrect and extremely annoying GCC warnings. */
3111 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3112 }
3113 off = GCPhys - pRam->GCPhys;
3114 } while (off >= pRam->cb);
3115 }
3116 *ppRamHint = pRam;
3117 }
3118 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
3119#ifndef VBOX_WITH_NEW_PHYS_CODE
3120
3121 /*
3122 * Make sure it's present.
3123 */
3124 if (RT_UNLIKELY( !PGM_PAGE_GET_HCPHYS(*ppPage)
3125 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)))
3126 {
3127#ifdef IN_RING3
3128 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys);
3129#else
3130 int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
3131#endif
3132 if (RT_FAILURE(rc))
3133 {
3134 *ppPage = NULL; /* Shut up annoying smart ass. */
3135 return rc;
3136 }
3137 Assert(rc == VINF_SUCCESS);
3138 }
3139#endif
3140 return VINF_SUCCESS;
3141}
3142
3143
3144/**
3145 * Gets the PGMPAGE structure for a guest page together with the PGMRAMRANGE.
3146 *
3147 * @returns Pointer to the page on success.
3148 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
3149 *
3150 * @param pPGM PGM handle.
3151 * @param GCPhys The GC physical address.
3152 * @param ppRam Where to store the pointer to the PGMRAMRANGE.
3153 */
3154DECLINLINE(PPGMPAGE) pgmPhysGetPageAndRange(PPGM pPGM, RTGCPHYS GCPhys, PPGMRAMRANGE *ppRam)
3155{
3156 /*
3157 * Optimize for the first range.
3158 */
3159 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
3160 RTGCPHYS off = GCPhys - pRam->GCPhys;
3161 if (RT_UNLIKELY(off >= pRam->cb))
3162 {
3163 do
3164 {
3165 pRam = pRam->CTX_SUFF(pNext);
3166 if (RT_UNLIKELY(!pRam))
3167 return NULL;
3168 off = GCPhys - pRam->GCPhys;
3169 } while (off >= pRam->cb);
3170 }
3171 *ppRam = pRam;
3172 return &pRam->aPages[off >> PAGE_SHIFT];
3173}
3174
3175
3176/**
3177 * Gets the PGMPAGE structure for a guest page together with the PGMRAMRANGE.
3178 *
3179 * @returns Pointer to the page on success.
3180 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
3181 *
3182 * @param pPGM PGM handle.
3183 * @param GCPhys The GC physical address.
3184 * @param ppPage Where to store the pointer to the PGMPAGE structure.
3185 * @param ppRam Where to store the pointer to the PGMRAMRANGE structure.
3186 */
3187DECLINLINE(int) pgmPhysGetPageAndRangeEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage, PPGMRAMRANGE *ppRam)
3188{
3189 /*
3190 * Optimize for the first range.
3191 */
3192 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
3193 RTGCPHYS off = GCPhys - pRam->GCPhys;
3194 if (RT_UNLIKELY(off >= pRam->cb))
3195 {
3196 do
3197 {
3198 pRam = pRam->CTX_SUFF(pNext);
3199 if (RT_UNLIKELY(!pRam))
3200 {
3201 *ppRam = NULL; /* Shut up silly GCC warnings. */
3202 *ppPage = NULL; /* ditto */
3203 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3204 }
3205 off = GCPhys - pRam->GCPhys;
3206 } while (off >= pRam->cb);
3207 }
3208 *ppRam = pRam;
3209 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
3210#ifndef VBOX_WITH_NEW_PHYS_CODE
3211
3212 /*
3213 * Make sure it's present.
3214 */
3215 if (RT_UNLIKELY( !PGM_PAGE_GET_HCPHYS(*ppPage)
3216 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)))
3217 {
3218#ifdef IN_RING3
3219 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys);
3220#else
3221 int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
3222#endif
3223 if (RT_FAILURE(rc))
3224 {
3225 *ppPage = NULL; /* Shut up silly GCC warnings. */
3226 *ppPage = NULL; /* ditto */
3227 return rc;
3228 }
3229 Assert(rc == VINF_SUCCESS);
3230
3231 }
3232#endif
3233 return VINF_SUCCESS;
3234}
3235
3236
3237/**
3238 * Convert GC Phys to HC Phys.
3239 *
3240 * @returns VBox status.
3241 * @param pPGM PGM handle.
3242 * @param GCPhys The GC physical address.
3243 * @param pHCPhys Where to store the corresponding HC physical address.
3244 *
3245 * @deprecated Doesn't deal with zero, shared or write monitored pages.
3246 * Avoid when writing new code!
3247 */
3248DECLINLINE(int) pgmRamGCPhys2HCPhys(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPHYS pHCPhys)
3249{
3250 PPGMPAGE pPage;
3251 int rc = pgmPhysGetPageEx(pPGM, GCPhys, &pPage);
3252 if (RT_FAILURE(rc))
3253 return rc;
3254 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK);
3255 return VINF_SUCCESS;
3256}
3257
3258#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3259
3260/**
3261 * Inlined version of the ring-0 version of PGMDynMapHCPage that
3262 * optimizes access to pages already in the set.
3263 *
3264 * @returns See pgmR0DynMapHCPageCommon.
3265 * @param pPGM Pointer to the PVM instance data.
3266 * @param HCPhys The physical address of the page.
3267 * @param ppv Where to store the mapping address.
3268 */
3269DECLINLINE(int) pgmR0DynMapHCPageInlined(PPGM pPGM, RTHCPHYS HCPhys, void **ppv)
3270{
3271 STAM_PROFILE_START(&pPGM->StatR0DynMapHCPageInl, a);
3272 PPGMMAPSET pSet = &((PPGMCPU)((uint8_t *)VMMGetCpu(PGM2VM(pPGM)) + pPGM->offVCpu))->AutoSet; /* very pretty ;-) */
3273 Assert(!(HCPhys & PAGE_OFFSET_MASK));
3274 Assert(pSet->cEntries <= RT_ELEMENTS(pSet->aEntries));
3275 int rc;
3276
3277 unsigned iHash = PGMMAPSET_HASH(HCPhys);
3278 unsigned iEntry = pSet->aiHashTable[iHash];
3279 if ( iEntry < pSet->cEntries
3280 && pSet->aEntries[iEntry].HCPhys == HCPhys)
3281 {
3282 *ppv = pSet->aEntries[iEntry].pvPage;
3283 STAM_COUNTER_INC(&pPGM->StatR0DynMapHCPageInlHits);
3284 rc = VINF_SUCCESS;
3285 }
3286 else
3287 {
3288 STAM_COUNTER_INC(&pPGM->StatR0DynMapHCPageInlMisses);
3289 rc = pgmR0DynMapHCPageCommon(PGM2VM(pPGM), pSet, HCPhys, ppv);
3290 }
3291
3292 STAM_PROFILE_STOP(&pPGM->StatR0DynMapHCPageInl, a);
3293 return rc;
3294}
3295
3296
3297/**
3298 * Inlined version of the ring-0 version of PGMDynMapGCPage that optimizes
3299 * access to pages already in the set.
3300 *
3301 * @returns See pgmR0DynMapHCPageCommon.
3302 * @param pPGM Pointer to the PVM instance data.
3303 * @param HCPhys The physical address of the page.
3304 * @param ppv Where to store the mapping address.
3305 */
3306DECLINLINE(int) pgmR0DynMapGCPageInlined(PPGM pPGM, RTGCPHYS GCPhys, void **ppv)
3307{
3308 STAM_PROFILE_START(&pPGM->StatR0DynMapGCPageInl, a);
3309 Assert(!(GCPhys & PAGE_OFFSET_MASK));
3310
3311 /*
3312 * Get the ram range.
3313 */
3314 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
3315 RTGCPHYS off = GCPhys - pRam->GCPhys;
3316 if (RT_UNLIKELY(off >= pRam->cb
3317 /** @todo || page state stuff */))
3318 {
3319 /* This case is not counted into StatR0DynMapGCPageInl. */
3320 STAM_COUNTER_INC(&pPGM->StatR0DynMapGCPageInlRamMisses);
3321 return PGMDynMapGCPage(PGM2VM(pPGM), GCPhys, ppv);
3322 }
3323
3324 RTHCPHYS HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[off >> PAGE_SHIFT]);
3325 STAM_COUNTER_INC(&pPGM->StatR0DynMapGCPageInlRamHits);
3326
3327 /*
3328 * pgmR0DynMapHCPageInlined with out stats.
3329 */
3330 PPGMMAPSET pSet = &((PPGMCPU)((uint8_t *)VMMGetCpu(PGM2VM(pPGM)) + pPGM->offVCpu))->AutoSet; /* very pretty ;-) */
3331 Assert(!(HCPhys & PAGE_OFFSET_MASK));
3332 Assert(pSet->cEntries <= RT_ELEMENTS(pSet->aEntries));
3333 int rc;
3334
3335 unsigned iHash = PGMMAPSET_HASH(HCPhys);
3336 unsigned iEntry = pSet->aiHashTable[iHash];
3337 if ( iEntry < pSet->cEntries
3338 && pSet->aEntries[iEntry].HCPhys == HCPhys)
3339 {
3340 *ppv = pSet->aEntries[iEntry].pvPage;
3341 STAM_COUNTER_INC(&pPGM->StatR0DynMapGCPageInlHits);
3342 rc = VINF_SUCCESS;
3343 }
3344 else
3345 {
3346 STAM_COUNTER_INC(&pPGM->StatR0DynMapGCPageInlMisses);
3347 rc = pgmR0DynMapHCPageCommon(PGM2VM(pPGM), pSet, HCPhys, ppv);
3348 }
3349
3350 STAM_PROFILE_STOP(&pPGM->StatR0DynMapGCPageInl, a);
3351 return rc;
3352}
3353
3354#endif /* VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */
3355
3356#ifndef IN_RC
3357/**
3358 * Queries the Physical TLB entry for a physical guest page,
3359 * attemting to load the TLB entry if necessary.
3360 *
3361 * @returns VBox status code.
3362 * @retval VINF_SUCCESS on success
3363 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
3364 * @param pPGM The PGM instance handle.
3365 * @param GCPhys The address of the guest page.
3366 * @param ppTlbe Where to store the pointer to the TLB entry.
3367 */
3368
3369DECLINLINE(int) pgmPhysPageQueryTlbe(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGEMAPTLBE ppTlbe)
3370{
3371 int rc;
3372 PPGMPAGEMAPTLBE pTlbe = &pPGM->CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)];
3373 if (pTlbe->GCPhys == (GCPhys & X86_PTE_PAE_PG_MASK))
3374 {
3375 STAM_COUNTER_INC(&pPGM->CTX_MID_Z(Stat,PageMapTlbHits));
3376 rc = VINF_SUCCESS;
3377 }
3378 else
3379 rc = pgmPhysPageLoadIntoTlb(pPGM, GCPhys);
3380 *ppTlbe = pTlbe;
3381 return rc;
3382}
3383#endif /* !IN_RC */
3384
3385#if !defined(IN_RC) && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
3386
3387# ifndef VBOX_WITH_NEW_PHYS_CODE
3388/**
3389 * Convert GC Phys to HC Virt.
3390 *
3391 * @returns VBox status.
3392 * @param pPGM PGM handle.
3393 * @param GCPhys The GC physical address.
3394 * @param pHCPtr Where to store the corresponding HC virtual address.
3395 *
3396 * @deprecated This will be eliminated by PGMPhysGCPhys2CCPtr. Only user is
3397 * pgmPoolMonitorGCPtr2CCPtr.
3398 */
3399DECLINLINE(int) pgmRamGCPhys2HCPtr(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPTR pHCPtr)
3400{
3401 PPGMRAMRANGE pRam;
3402 PPGMPAGE pPage;
3403 int rc = pgmPhysGetPageAndRangeEx(pPGM, GCPhys, &pPage, &pRam);
3404 if (RT_FAILURE(rc))
3405 {
3406 *pHCPtr = 0; /* Shut up silly GCC warnings. */
3407 return rc;
3408 }
3409 RTGCPHYS off = GCPhys - pRam->GCPhys;
3410
3411 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
3412 {
3413 unsigned iChunk = off >> PGM_DYNAMIC_CHUNK_SHIFT;
3414 *pHCPtr = (RTHCPTR)(pRam->paChunkR3Ptrs[iChunk] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
3415 return VINF_SUCCESS;
3416 }
3417 if (pRam->pvR3)
3418 {
3419 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)pRam->pvR3 + off);
3420 return VINF_SUCCESS;
3421 }
3422 *pHCPtr = 0; /* Shut up silly GCC warnings. */
3423 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3424}
3425# endif /* !VBOX_WITH_NEW_PHYS_CODE */
3426#endif /* !IN_RC && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) */
3427
3428/**
3429 * Convert GC Phys to HC Virt and HC Phys.
3430 *
3431 * @returns VBox status.
3432 * @param pPGM PGM handle.
3433 * @param GCPhys The GC physical address.
3434 * @param pHCPtr Where to store the corresponding HC virtual address.
3435 * @param pHCPhys Where to store the HC Physical address and its flags.
3436 *
3437 * @deprecated Will go away or be changed. Only user is MapCR3. MapCR3 will have to do ring-3
3438 * and ring-0 locking of the CR3 in a lazy fashion I'm fear... or perhaps not. we'll see.
3439 */
3440DECLINLINE(int) pgmRamGCPhys2HCPtrAndHCPhysWithFlags(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPTR pHCPtr, PRTHCPHYS pHCPhys)
3441{
3442 PPGMRAMRANGE pRam;
3443 PPGMPAGE pPage;
3444 int rc = pgmPhysGetPageAndRangeEx(pPGM, GCPhys, &pPage, &pRam);
3445 if (RT_FAILURE(rc))
3446 {
3447 *pHCPtr = 0; /* Shut up crappy GCC warnings */
3448 *pHCPhys = 0; /* ditto */
3449 return rc;
3450 }
3451 RTGCPHYS off = GCPhys - pRam->GCPhys;
3452
3453 *pHCPhys = pPage->HCPhys; /** @todo PAGE FLAGS */
3454 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
3455 {
3456 unsigned idx = (off >> PGM_DYNAMIC_CHUNK_SHIFT);
3457#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) /* ASSUMES only MapCR3 usage. */
3458 PRTR3UINTPTR paChunkR3Ptrs = (PRTR3UINTPTR)MMHyperR3ToCC(PGM2VM(pPGM), pRam->paChunkR3Ptrs);
3459 *pHCPtr = (RTHCPTR)(paChunkR3Ptrs[idx] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
3460#else
3461 *pHCPtr = (RTHCPTR)(pRam->paChunkR3Ptrs[idx] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
3462#endif
3463 return VINF_SUCCESS;
3464 }
3465 if (pRam->pvR3)
3466 {
3467 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)pRam->pvR3 + off);
3468 return VINF_SUCCESS;
3469 }
3470 *pHCPtr = 0;
3471 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3472}
3473
3474
3475/**
3476 * Clears flags associated with a RAM address.
3477 *
3478 * @returns VBox status code.
3479 * @param pPGM PGM handle.
3480 * @param GCPhys Guest context physical address.
3481 * @param fFlags fFlags to clear. (Bits 0-11.)
3482 */
3483DECLINLINE(int) pgmRamFlagsClearByGCPhys(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags)
3484{
3485 PPGMPAGE pPage;
3486 int rc = pgmPhysGetPageEx(pPGM, GCPhys, &pPage);
3487 if (RT_FAILURE(rc))
3488 return rc;
3489
3490 fFlags &= ~X86_PTE_PAE_PG_MASK;
3491 pPage->HCPhys &= ~(RTHCPHYS)fFlags; /** @todo PAGE FLAGS */
3492 return VINF_SUCCESS;
3493}
3494
3495
3496/**
3497 * Clears flags associated with a RAM address.
3498 *
3499 * @returns VBox status code.
3500 * @param pPGM PGM handle.
3501 * @param GCPhys Guest context physical address.
3502 * @param fFlags fFlags to clear. (Bits 0-11.)
3503 * @param ppRamHint Where to read and store the ram list hint.
3504 * The caller initializes this to NULL before the call.
3505 */
3506DECLINLINE(int) pgmRamFlagsClearByGCPhysWithHint(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags, PPGMRAMRANGE *ppRamHint)
3507{
3508 PPGMPAGE pPage;
3509 int rc = pgmPhysGetPageWithHintEx(pPGM, GCPhys, &pPage, ppRamHint);
3510 if (RT_FAILURE(rc))
3511 return rc;
3512
3513 fFlags &= ~X86_PTE_PAE_PG_MASK;
3514 pPage->HCPhys &= ~(RTHCPHYS)fFlags; /** @todo PAGE FLAGS */
3515 return VINF_SUCCESS;
3516}
3517
3518
3519/**
3520 * Sets (bitwise OR) flags associated with a RAM address.
3521 *
3522 * @returns VBox status code.
3523 * @param pPGM PGM handle.
3524 * @param GCPhys Guest context physical address.
3525 * @param fFlags fFlags to set clear. (Bits 0-11.)
3526 */
3527DECLINLINE(int) pgmRamFlagsSetByGCPhys(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags)
3528{
3529 PPGMPAGE pPage;
3530 int rc = pgmPhysGetPageEx(pPGM, GCPhys, &pPage);
3531 if (RT_FAILURE(rc))
3532 return rc;
3533
3534 fFlags &= ~X86_PTE_PAE_PG_MASK;
3535 pPage->HCPhys |= fFlags; /** @todo PAGE FLAGS */
3536 return VINF_SUCCESS;
3537}
3538
3539
3540/**
3541 * Sets (bitwise OR) flags associated with a RAM address.
3542 *
3543 * @returns VBox status code.
3544 * @param pPGM PGM handle.
3545 * @param GCPhys Guest context physical address.
3546 * @param fFlags fFlags to set clear. (Bits 0-11.)
3547 * @param ppRamHint Where to read and store the ram list hint.
3548 * The caller initializes this to NULL before the call.
3549 */
3550DECLINLINE(int) pgmRamFlagsSetByGCPhysWithHint(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags, PPGMRAMRANGE *ppRamHint)
3551{
3552 PPGMPAGE pPage;
3553 int rc = pgmPhysGetPageWithHintEx(pPGM, GCPhys, &pPage, ppRamHint);
3554 if (RT_FAILURE(rc))
3555 return rc;
3556
3557 fFlags &= ~X86_PTE_PAE_PG_MASK;
3558 pPage->HCPhys |= fFlags; /** @todo PAGE FLAGS */
3559 return VINF_SUCCESS;
3560}
3561
3562
3563/**
3564 * Calculated the guest physical address of the large (4 MB) page in 32 bits paging mode.
3565 * Takes PSE-36 into account.
3566 *
3567 * @returns guest physical address
3568 * @param pPGM Pointer to the PGM instance data.
3569 * @param Pde Guest Pde
3570 */
3571DECLINLINE(RTGCPHYS) pgmGstGet4MBPhysPage(PPGM pPGM, X86PDE Pde)
3572{
3573 RTGCPHYS GCPhys = Pde.u & X86_PDE4M_PG_MASK;
3574 GCPhys |= (RTGCPHYS)Pde.b.u8PageNoHigh << 32;
3575
3576 return GCPhys & pPGM->GCPhys4MBPSEMask;
3577}
3578
3579
3580/**
3581 * Gets the page directory entry for the specified address (32-bit paging).
3582 *
3583 * @returns The page directory entry in question.
3584 * @param pPGM Pointer to the PGM instance data.
3585 * @param GCPtr The address.
3586 */
3587DECLINLINE(X86PDE) pgmGstGet32bitPDE(PPGM pPGM, RTGCPTR GCPtr)
3588{
3589#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3590 PCX86PD pGuestPD = 0;
3591 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPD);
3592 if (RT_FAILURE(rc))
3593 {
3594 X86PDE ZeroPde = {0};
3595 AssertMsgFailedReturn(("%Rrc\n", rc), ZeroPde);
3596 }
3597 return pGuestPD->a[GCPtr >> X86_PD_SHIFT];
3598#else
3599 return pPGM->CTX_SUFF(pGst32BitPd)->a[GCPtr >> X86_PD_SHIFT];
3600#endif
3601}
3602
3603
3604/**
3605 * Gets the address of a specific page directory entry (32-bit paging).
3606 *
3607 * @returns Pointer the page directory entry in question.
3608 * @param pPGM Pointer to the PGM instance data.
3609 * @param GCPtr The address.
3610 */
3611DECLINLINE(PX86PDE) pgmGstGet32bitPDEPtr(PPGM pPGM, RTGCPTR GCPtr)
3612{
3613#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3614 PX86PD pGuestPD = 0;
3615 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPD);
3616 AssertRCReturn(rc, 0);
3617 return &pGuestPD->a[GCPtr >> X86_PD_SHIFT];
3618#else
3619 return &pPGM->CTX_SUFF(pGst32BitPd)->a[GCPtr >> X86_PD_SHIFT];
3620#endif
3621}
3622
3623
3624/**
3625 * Gets the address the guest page directory (32-bit paging).
3626 *
3627 * @returns Pointer the page directory entry in question.
3628 * @param pPGM Pointer to the PGM instance data.
3629 */
3630DECLINLINE(PX86PD) pgmGstGet32bitPDPtr(PPGM pPGM)
3631{
3632#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3633 PX86PD pGuestPD = 0;
3634 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPD);
3635 AssertRCReturn(rc, 0);
3636 return pGuestPD;
3637#else
3638 return pPGM->CTX_SUFF(pGst32BitPd);
3639#endif
3640}
3641
3642
3643/**
3644 * Gets the guest page directory pointer table.
3645 *
3646 * @returns Pointer to the page directory in question.
3647 * @returns NULL if the page directory is not present or on an invalid page.
3648 * @param pPGM Pointer to the PGM instance data.
3649 */
3650DECLINLINE(PX86PDPT) pgmGstGetPaePDPTPtr(PPGM pPGM)
3651{
3652#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3653 PX86PDPT pGuestPDPT = 0;
3654 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPDPT);
3655 AssertRCReturn(rc, 0);
3656 return pGuestPDPT;
3657#else
3658 return pPGM->CTX_SUFF(pGstPaePdpt);
3659#endif
3660}
3661
3662
3663/**
3664 * Gets the guest page directory pointer table entry for the specified address.
3665 *
3666 * @returns Pointer to the page directory in question.
3667 * @returns NULL if the page directory is not present or on an invalid page.
3668 * @param pPGM Pointer to the PGM instance data.
3669 * @param GCPtr The address.
3670 */
3671DECLINLINE(PX86PDPE) pgmGstGetPaePDPEPtr(PPGM pPGM, RTGCPTR GCPtr)
3672{
3673 AssertGCPtr32(GCPtr);
3674
3675#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3676 PX86PDPT pGuestPDPT = 0;
3677 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPDPT);
3678 AssertRCReturn(rc, 0);
3679 return &pGuestPDPT->a[(GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE];
3680#else
3681 return &pPGM->CTX_SUFF(pGstPaePdpt)->a[(GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE];
3682#endif
3683}
3684
3685
3686/**
3687 * Gets the page directory for the specified address.
3688 *
3689 * @returns Pointer to the page directory in question.
3690 * @returns NULL if the page directory is not present or on an invalid page.
3691 * @param pPGM Pointer to the PGM instance data.
3692 * @param GCPtr The address.
3693 */
3694DECLINLINE(PX86PDPAE) pgmGstGetPaePD(PPGM pPGM, RTGCPTR GCPtr)
3695{
3696 AssertGCPtr32(GCPtr);
3697
3698#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3699 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pPGM);
3700 AssertReturn(pGuestPDPT, 0);
3701#else
3702 PX86PDPT pGuestPDPT = pPGM->CTX_SUFF(pGstPaePdpt);
3703#endif
3704 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
3705 if (pGuestPDPT->a[iPdPt].n.u1Present)
3706 {
3707#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3708 if ((pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
3709 return pPGM->CTX_SUFF(apGstPaePDs)[iPdPt];
3710#endif
3711
3712 /* cache is out-of-sync. */
3713 PX86PDPAE pPD;
3714 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3715 if (RT_SUCCESS(rc))
3716 return pPD;
3717 AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, pGuestPDPT->a[iPdPt].u));
3718 /* returning NULL is ok if we assume it's just an invalid page of some kind emulated as all 0s. (not quite true) */
3719 }
3720 return NULL;
3721}
3722
3723
3724/**
3725 * Gets the page directory entry for the specified address.
3726 *
3727 * @returns Pointer to the page directory entry in question.
3728 * @returns NULL if the page directory is not present or on an invalid page.
3729 * @param pPGM Pointer to the PGM instance data.
3730 * @param GCPtr The address.
3731 */
3732DECLINLINE(PX86PDEPAE) pgmGstGetPaePDEPtr(PPGM pPGM, RTGCPTR GCPtr)
3733{
3734 AssertGCPtr32(GCPtr);
3735
3736#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3737 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pPGM);
3738 AssertReturn(pGuestPDPT, 0);
3739#else
3740 PX86PDPT pGuestPDPT = pPGM->CTX_SUFF(pGstPaePdpt);
3741#endif
3742 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
3743 if (pGuestPDPT->a[iPdPt].n.u1Present)
3744 {
3745 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3746#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3747 if ((pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
3748 return &pPGM->CTX_SUFF(apGstPaePDs)[iPdPt]->a[iPD];
3749#endif
3750
3751 /* The cache is out-of-sync. */
3752 PX86PDPAE pPD;
3753 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3754 if (RT_SUCCESS(rc))
3755 return &pPD->a[iPD];
3756 AssertMsgFailed(("Impossible! rc=%Rrc PDPE=%RX64\n", rc, pGuestPDPT->a[iPdPt].u));
3757 /* returning NIL_RTGCPHYS is ok if we assume it's just an invalid page or something which we'll emulate as all 0s. (not quite true) */
3758 }
3759 return NULL;
3760}
3761
3762
3763/**
3764 * Gets the page directory entry for the specified address.
3765 *
3766 * @returns The page directory entry in question.
3767 * @returns A non-present entry if the page directory is not present or on an invalid page.
3768 * @param pPGM Pointer to the PGM instance data.
3769 * @param GCPtr The address.
3770 */
3771DECLINLINE(X86PDEPAE) pgmGstGetPaePDE(PPGM pPGM, RTGCPTR GCPtr)
3772{
3773 AssertGCPtr32(GCPtr);
3774
3775#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3776 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pPGM);
3777 if (RT_LIKELY(pGuestPDPT))
3778#else
3779 PX86PDPT pGuestPDPT = pPGM->CTX_SUFF(pGstPaePdpt);
3780#endif
3781 {
3782 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
3783 if (pGuestPDPT->a[iPdPt].n.u1Present)
3784 {
3785 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3786#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3787 if ((pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
3788 return pPGM->CTX_SUFF(apGstPaePDs)[iPdPt]->a[iPD];
3789#endif
3790
3791 /* cache is out-of-sync. */
3792 PX86PDPAE pPD;
3793 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3794 if (RT_SUCCESS(rc))
3795 return pPD->a[iPD];
3796 AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, pGuestPDPT->a[iPdPt]));
3797 }
3798 }
3799 X86PDEPAE ZeroPde = {0};
3800 return ZeroPde;
3801}
3802
3803
3804/**
3805 * Gets the page directory pointer table entry for the specified address
3806 * and returns the index into the page directory
3807 *
3808 * @returns Pointer to the page directory in question.
3809 * @returns NULL if the page directory is not present or on an invalid page.
3810 * @param pPGM Pointer to the PGM instance data.
3811 * @param GCPtr The address.
3812 * @param piPD Receives the index into the returned page directory
3813 * @param pPdpe Receives the page directory pointer entry. Optional.
3814 */
3815DECLINLINE(PX86PDPAE) pgmGstGetPaePDPtr(PPGM pPGM, RTGCPTR GCPtr, unsigned *piPD, PX86PDPE pPdpe)
3816{
3817 AssertGCPtr32(GCPtr);
3818
3819#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3820 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pPGM);
3821 AssertReturn(pGuestPDPT, 0);
3822#else
3823 PX86PDPT pGuestPDPT = pPGM->CTX_SUFF(pGstPaePdpt);
3824#endif
3825 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
3826 if (pPdpe)
3827 *pPdpe = pGuestPDPT->a[iPdPt];
3828 if (pGuestPDPT->a[iPdPt].n.u1Present)
3829 {
3830 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3831#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3832 if ((pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
3833 {
3834 *piPD = iPD;
3835 return pPGM->CTX_SUFF(apGstPaePDs)[iPdPt];
3836 }
3837#endif
3838
3839 /* cache is out-of-sync. */
3840 PX86PDPAE pPD;
3841 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3842 if (RT_SUCCESS(rc))
3843 {
3844 *piPD = iPD;
3845 return pPD;
3846 }
3847 AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, pGuestPDPT->a[iPdPt].u));
3848 /* returning NIL_RTGCPHYS is ok if we assume it's just an invalid page of some kind emulated as all 0s. */
3849 }
3850 return NULL;
3851}
3852
3853#ifndef IN_RC
3854
3855/**
3856 * Gets the page map level-4 pointer for the guest.
3857 *
3858 * @returns Pointer to the PML4 page.
3859 * @param pPGM Pointer to the PGM instance data.
3860 */
3861DECLINLINE(PX86PML4) pgmGstGetLongModePML4Ptr(PPGM pPGM)
3862{
3863#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3864 PX86PML4 pGuestPml4;
3865 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPml4);
3866 AssertRCReturn(rc, NULL);
3867 return pGuestPml4;
3868#else
3869 Assert(pPGM->CTX_SUFF(pGstAmd64Pml4));
3870 return pPGM->CTX_SUFF(pGstAmd64Pml4);
3871#endif
3872}
3873
3874
3875/**
3876 * Gets the pointer to a page map level-4 entry.
3877 *
3878 * @returns Pointer to the PML4 entry.
3879 * @param pPGM Pointer to the PGM instance data.
3880 * @param iPml4 The index.
3881 */
3882DECLINLINE(PX86PML4E) pgmGstGetLongModePML4EPtr(PPGM pPGM, unsigned int iPml4)
3883{
3884#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3885 PX86PML4 pGuestPml4;
3886 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPml4);
3887 AssertRCReturn(rc, NULL);
3888 return &pGuestPml4->a[iPml4];
3889#else
3890 Assert(pPGM->CTX_SUFF(pGstAmd64Pml4));
3891 return &pPGM->CTX_SUFF(pGstAmd64Pml4)->a[iPml4];
3892#endif
3893}
3894
3895
3896/**
3897 * Gets a page map level-4 entry.
3898 *
3899 * @returns The PML4 entry.
3900 * @param pPGM Pointer to the PGM instance data.
3901 * @param iPml4 The index.
3902 */
3903DECLINLINE(X86PML4E) pgmGstGetLongModePML4E(PPGM pPGM, unsigned int iPml4)
3904{
3905#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3906 PX86PML4 pGuestPml4;
3907 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPml4);
3908 if (RT_FAILURE(rc))
3909 {
3910 X86PML4E ZeroPml4e = {0};
3911 AssertMsgFailedReturn(("%Rrc\n", rc), ZeroPml4e);
3912 }
3913 return pGuestPml4->a[iPml4];
3914#else
3915 Assert(pPGM->CTX_SUFF(pGstAmd64Pml4));
3916 return pPGM->CTX_SUFF(pGstAmd64Pml4)->a[iPml4];
3917#endif
3918}
3919
3920
3921/**
3922 * Gets the page directory pointer entry for the specified address.
3923 *
3924 * @returns Pointer to the page directory pointer entry in question.
3925 * @returns NULL if the page directory is not present or on an invalid page.
3926 * @param pPGM Pointer to the PGM instance data.
3927 * @param GCPtr The address.
3928 * @param ppPml4e Page Map Level-4 Entry (out)
3929 */
3930DECLINLINE(PX86PDPE) pgmGstGetLongModePDPTPtr(PPGM pPGM, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e)
3931{
3932 PX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
3933 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3934 PCX86PML4E pPml4e = *ppPml4e = &pGuestPml4->a[iPml4];
3935 if (pPml4e->n.u1Present)
3936 {
3937 PX86PDPT pPdpt;
3938 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPml4e->u & X86_PML4E_PG_MASK, &pPdpt);
3939 AssertRCReturn(rc, NULL);
3940
3941 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3942 return &pPdpt->a[iPdPt];
3943 }
3944 return NULL;
3945}
3946
3947
3948/**
3949 * Gets the page directory entry for the specified address.
3950 *
3951 * @returns The page directory entry in question.
3952 * @returns A non-present entry if the page directory is not present or on an invalid page.
3953 * @param pPGM Pointer to the PGM instance data.
3954 * @param GCPtr The address.
3955 * @param ppPml4e Page Map Level-4 Entry (out)
3956 * @param pPdpe Page directory pointer table entry (out)
3957 */
3958DECLINLINE(X86PDEPAE) pgmGstGetLongModePDEEx(PPGM pPGM, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPE pPdpe)
3959{
3960 X86PDEPAE ZeroPde = {0};
3961 PX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
3962 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3963 PCX86PML4E pPml4e = *ppPml4e = &pGuestPml4->a[iPml4];
3964 if (pPml4e->n.u1Present)
3965 {
3966 PCX86PDPT pPdptTemp;
3967 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPml4e->u & X86_PML4E_PG_MASK, &pPdptTemp);
3968 AssertRCReturn(rc, ZeroPde);
3969
3970 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3971 *pPdpe = pPdptTemp->a[iPdPt];
3972 if (pPdptTemp->a[iPdPt].n.u1Present)
3973 {
3974 PCX86PDPAE pPD;
3975 rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3976 AssertRCReturn(rc, ZeroPde);
3977
3978 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3979 return pPD->a[iPD];
3980 }
3981 }
3982
3983 return ZeroPde;
3984}
3985
3986
3987/**
3988 * Gets the page directory entry for the specified address.
3989 *
3990 * @returns The page directory entry in question.
3991 * @returns A non-present entry if the page directory is not present or on an invalid page.
3992 * @param pPGM Pointer to the PGM instance data.
3993 * @param GCPtr The address.
3994 */
3995DECLINLINE(X86PDEPAE) pgmGstGetLongModePDE(PPGM pPGM, RTGCPTR64 GCPtr)
3996{
3997 X86PDEPAE ZeroPde = {0};
3998 PCX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
3999 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
4000 if (pGuestPml4->a[iPml4].n.u1Present)
4001 {
4002 PCX86PDPT pPdptTemp;
4003 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pGuestPml4->a[iPml4].u & X86_PML4E_PG_MASK, &pPdptTemp);
4004 AssertRCReturn(rc, ZeroPde);
4005
4006 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
4007 if (pPdptTemp->a[iPdPt].n.u1Present)
4008 {
4009 PCX86PDPAE pPD;
4010 rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
4011 AssertRCReturn(rc, ZeroPde);
4012
4013 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4014 return pPD->a[iPD];
4015 }
4016 }
4017 return ZeroPde;
4018}
4019
4020
4021/**
4022 * Gets the page directory entry for the specified address.
4023 *
4024 * @returns Pointer to the page directory entry in question.
4025 * @returns NULL if the page directory is not present or on an invalid page.
4026 * @param pPGM Pointer to the PGM instance data.
4027 * @param GCPtr The address.
4028 */
4029DECLINLINE(PX86PDEPAE) pgmGstGetLongModePDEPtr(PPGM pPGM, RTGCPTR64 GCPtr)
4030{
4031 PCX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
4032 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
4033 if (pGuestPml4->a[iPml4].n.u1Present)
4034 {
4035 PCX86PDPT pPdptTemp;
4036 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pGuestPml4->a[iPml4].u & X86_PML4E_PG_MASK, &pPdptTemp);
4037 AssertRCReturn(rc, NULL);
4038
4039 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
4040 if (pPdptTemp->a[iPdPt].n.u1Present)
4041 {
4042 PX86PDPAE pPD;
4043 rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
4044 AssertRCReturn(rc, NULL);
4045
4046 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4047 return &pPD->a[iPD];
4048 }
4049 }
4050 return NULL;
4051}
4052
4053
4054/**
4055 * Gets the GUEST page directory pointer for the specified address.
4056 *
4057 * @returns The page directory in question.
4058 * @returns NULL if the page directory is not present or on an invalid page.
4059 * @param pPGM Pointer to the PGM instance data.
4060 * @param GCPtr The address.
4061 * @param ppPml4e Page Map Level-4 Entry (out)
4062 * @param pPdpe Page directory pointer table entry (out)
4063 * @param piPD Receives the index into the returned page directory
4064 */
4065DECLINLINE(PX86PDPAE) pgmGstGetLongModePDPtr(PPGM pPGM, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPE pPdpe, unsigned *piPD)
4066{
4067 PX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
4068 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
4069 PCX86PML4E pPml4e = *ppPml4e = &pGuestPml4->a[iPml4];
4070 if (pPml4e->n.u1Present)
4071 {
4072 PCX86PDPT pPdptTemp;
4073 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPml4e->u & X86_PML4E_PG_MASK, &pPdptTemp);
4074 AssertRCReturn(rc, NULL);
4075
4076 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
4077 *pPdpe = pPdptTemp->a[iPdPt];
4078 if (pPdptTemp->a[iPdPt].n.u1Present)
4079 {
4080 PX86PDPAE pPD;
4081 rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
4082 AssertRCReturn(rc, NULL);
4083
4084 *piPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4085 return pPD;
4086 }
4087 }
4088 return 0;
4089}
4090
4091#endif /* !IN_RC */
4092
4093
4094/**
4095 * Gets the shadow page directory, 32-bit.
4096 *
4097 * @returns Pointer to the shadow 32-bit PD.
4098 * @param pPGM Pointer to the PGM instance data.
4099 */
4100DECLINLINE(PX86PD) pgmShwGet32BitPDPtr(PPGM pPGM)
4101{
4102#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
4103 return (PX86PD)PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pPGM->CTX_SUFF(pShwPageCR3));
4104#else
4105# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4106 PX86PD pShwPd;
4107 Assert(pPGM->HCPhysShw32BitPD != 0 && pPGM->HCPhysShw32BitPD != NIL_RTHCPHYS);
4108 int rc = PGM_HCPHYS_2_PTR_BY_PGM(pPGM, pPGM->HCPhysShw32BitPD, &pShwPd);
4109 AssertRCReturn(rc, NULL);
4110 return pShwPd;
4111# else
4112 return pPGM->CTX_SUFF(pShw32BitPd);
4113# endif
4114#endif
4115}
4116
4117
4118/**
4119 * Gets the shadow page directory entry for the specified address, 32-bit.
4120 *
4121 * @returns Shadow 32-bit PDE.
4122 * @param pPGM Pointer to the PGM instance data.
4123 * @param GCPtr The address.
4124 */
4125DECLINLINE(X86PDE) pgmShwGet32BitPDE(PPGM pPGM, RTGCPTR GCPtr)
4126{
4127 const unsigned iPd = (GCPtr >> X86_PD_SHIFT) & X86_PD_MASK;
4128
4129 PX86PD pShwPde = pgmShwGet32BitPDPtr(pPGM);
4130 if (!pShwPde)
4131 {
4132 X86PDE ZeroPde = {0};
4133 return ZeroPde;
4134 }
4135 return pShwPde->a[iPd];
4136}
4137
4138
4139/**
4140 * Gets the pointer to the shadow page directory entry for the specified
4141 * address, 32-bit.
4142 *
4143 * @returns Pointer to the shadow 32-bit PDE.
4144 * @param pPGM Pointer to the PGM instance data.
4145 * @param GCPtr The address.
4146 */
4147DECLINLINE(PX86PDE) pgmShwGet32BitPDEPtr(PPGM pPGM, RTGCPTR GCPtr)
4148{
4149 const unsigned iPd = (GCPtr >> X86_PD_SHIFT) & X86_PD_MASK;
4150
4151 PX86PD pPde = pgmShwGet32BitPDPtr(pPGM);
4152 AssertReturn(pPde, NULL);
4153 return &pPde->a[iPd];
4154}
4155
4156
4157/**
4158 * Gets the shadow page pointer table, PAE.
4159 *
4160 * @returns Pointer to the shadow PAE PDPT.
4161 * @param pPGM Pointer to the PGM instance data.
4162 */
4163DECLINLINE(PX86PDPT) pgmShwGetPaePDPTPtr(PPGM pPGM)
4164{
4165#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
4166 return (PX86PDPT)PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pPGM->CTX_SUFF(pShwPageCR3));
4167#else
4168# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4169 PX86PDPT pShwPdpt;
4170 Assert(pPGM->HCPhysShwPaePdpt != 0 && pPGM->HCPhysShwPaePdpt != NIL_RTHCPHYS);
4171 int rc = PGM_HCPHYS_2_PTR_BY_PGM(pPGM, pPGM->HCPhysShwPaePdpt, &pShwPdpt);
4172 AssertRCReturn(rc, 0);
4173 return pShwPdpt;
4174# else
4175 return pPGM->CTX_SUFF(pShwPaePdpt);
4176# endif
4177#endif
4178}
4179
4180
4181/**
4182 * Gets the shadow page directory for the specified address, PAE.
4183 *
4184 * @returns Pointer to the shadow PD.
4185 * @param pPGM Pointer to the PGM instance data.
4186 * @param GCPtr The address.
4187 */
4188DECLINLINE(PX86PDPAE) pgmShwGetPaePDPtr(PPGM pPGM, RTGCPTR GCPtr)
4189{
4190#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
4191 const unsigned iPdpt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
4192 PX86PDPT pPdpt = pgmShwGetPaePDPTPtr(pPGM);
4193
4194 /* Fetch the pgm pool shadow descriptor. */
4195 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(PGM2VM(pPGM), pPdpt->a[iPdpt].u & X86_PDPE_PG_MASK);
4196 AssertReturn(pShwPde, NULL);
4197
4198 return (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pShwPde);
4199#else
4200 const unsigned iPdpt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
4201# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4202 PX86PDPAE pPD;
4203 int rc = PGM_HCPHYS_2_PTR_BY_PGM(pPGM, pPGM->aHCPhysPaePDs[iPdpt], &pPD);
4204 AssertRCReturn(rc, 0);
4205 return pPD;
4206# else
4207 PX86PDPAE pPD = pPGM->CTX_SUFF(apShwPaePDs)[iPdpt];
4208 Assert(pPD);
4209 return pPD;
4210# endif
4211#endif
4212}
4213
4214
4215/**
4216 * Gets the shadow page directory entry, PAE.
4217 *
4218 * @returns PDE.
4219 * @param pPGM Pointer to the PGM instance data.
4220 * @param GCPtr The address.
4221 */
4222DECLINLINE(X86PDEPAE) pgmShwGetPaePDE(PPGM pPGM, RTGCPTR GCPtr)
4223{
4224 const unsigned iPd = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4225
4226 PX86PDPAE pShwPde = pgmShwGetPaePDPtr(pPGM, GCPtr);
4227 if (!pShwPde)
4228 {
4229 X86PDEPAE ZeroPde = {0};
4230 return ZeroPde;
4231 }
4232 return pShwPde->a[iPd];
4233}
4234
4235
4236/**
4237 * Gets the pointer to the shadow page directory entry for an address, PAE.
4238 *
4239 * @returns Pointer to the PDE.
4240 * @param pPGM Pointer to the PGM instance data.
4241 * @param GCPtr The address.
4242 */
4243DECLINLINE(PX86PDEPAE) pgmShwGetPaePDEPtr(PPGM pPGM, RTGCPTR GCPtr)
4244{
4245 const unsigned iPd = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4246
4247 PX86PDPAE pPde = pgmShwGetPaePDPtr(pPGM, GCPtr);
4248 AssertReturn(pPde, NULL);
4249 return &pPde->a[iPd];
4250}
4251
4252#ifndef IN_RC
4253
4254/**
4255 * Gets the shadow page map level-4 pointer.
4256 *
4257 * @returns Pointer to the shadow PML4.
4258 * @param pPGM Pointer to the PGM instance data.
4259 */
4260DECLINLINE(PX86PML4) pgmShwGetLongModePML4Ptr(PPGM pPGM)
4261{
4262#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
4263 return (PX86PML4)PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pPGM->CTX_SUFF(pShwPageCR3));
4264#else
4265# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4266 PX86PML4 pShwPml4;
4267 Assert(pPGM->HCPhysShwPaePml4 != 0 && pPGM->HCPhysShwPaePml4 != NIL_RTHCPHYS);
4268 int rc = PGM_HCPHYS_2_PTR_BY_PGM(pPGM, pPGM->HCPhysShwPaePml4, &pShwPml4);
4269 AssertRCReturn(rc, 0);
4270 return pShwPml4;
4271# else
4272 Assert(pPGM->CTX_SUFF(pShwPaePml4));
4273 return pPGM->CTX_SUFF(pShwPaePml4);
4274# endif
4275#endif
4276}
4277
4278
4279/**
4280 * Gets the shadow page map level-4 entry for the specified address.
4281 *
4282 * @returns The entry.
4283 * @param pPGM Pointer to the PGM instance data.
4284 * @param GCPtr The address.
4285 */
4286DECLINLINE(X86PML4E) pgmShwGetLongModePML4E(PPGM pPGM, RTGCPTR GCPtr)
4287{
4288 const unsigned iPml4 = ((RTGCUINTPTR64)GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
4289 PX86PML4 pShwPml4 = pgmShwGetLongModePML4Ptr(pPGM);
4290
4291 if (!pShwPml4)
4292 {
4293 X86PML4E ZeroPml4e = {0};
4294 return ZeroPml4e;
4295 }
4296 return pShwPml4->a[iPml4];
4297}
4298
4299
4300/**
4301 * Gets the pointer to the specified shadow page map level-4 entry.
4302 *
4303 * @returns The entry.
4304 * @param pPGM Pointer to the PGM instance data.
4305 * @param iPml4 The PML4 index.
4306 */
4307DECLINLINE(PX86PML4E) pgmShwGetLongModePML4EPtr(PPGM pPGM, unsigned int iPml4)
4308{
4309 PX86PML4 pShwPml4 = pgmShwGetLongModePML4Ptr(pPGM);
4310 if (!pShwPml4)
4311 return NULL;
4312 return &pShwPml4->a[iPml4];
4313}
4314
4315
4316/**
4317 * Gets the GUEST page directory pointer for the specified address.
4318 *
4319 * @returns The page directory in question.
4320 * @returns NULL if the page directory is not present or on an invalid page.
4321 * @param pPGM Pointer to the PGM instance data.
4322 * @param GCPtr The address.
4323 * @param piPD Receives the index into the returned page directory
4324 */
4325DECLINLINE(PX86PDPAE) pgmGstGetLongModePDPtr(PPGM pPGM, RTGCPTR64 GCPtr, unsigned *piPD)
4326{
4327 PCX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
4328 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
4329 if (pGuestPml4->a[iPml4].n.u1Present)
4330 {
4331 PCX86PDPT pPdptTemp;
4332 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pGuestPml4->a[iPml4].u & X86_PML4E_PG_MASK, &pPdptTemp);
4333 AssertRCReturn(rc, NULL);
4334
4335 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
4336 if (pPdptTemp->a[iPdPt].n.u1Present)
4337 {
4338 PX86PDPAE pPD;
4339 rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
4340 AssertRCReturn(rc, NULL);
4341
4342 *piPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4343 return pPD;
4344 }
4345 }
4346 return NULL;
4347}
4348
4349#endif /* !IN_RC */
4350
4351/**
4352 * Checks if any of the specified page flags are set for the given page.
4353 *
4354 * @returns true if any of the flags are set.
4355 * @returns false if all the flags are clear.
4356 * @param pPGM PGM handle.
4357 * @param GCPhys The GC physical address.
4358 * @param fFlags The flags to check for.
4359 */
4360DECLINLINE(bool) pgmRamTestFlags(PPGM pPGM, RTGCPHYS GCPhys, uint64_t fFlags)
4361{
4362 PPGMPAGE pPage = pgmPhysGetPage(pPGM, GCPhys);
4363 return pPage
4364 && (pPage->HCPhys & fFlags) != 0; /** @todo PAGE FLAGS */
4365}
4366
4367
4368/**
4369 * Gets the page state for a physical handler.
4370 *
4371 * @returns The physical handler page state.
4372 * @param pCur The physical handler in question.
4373 */
4374DECLINLINE(unsigned) pgmHandlerPhysicalCalcState(PPGMPHYSHANDLER pCur)
4375{
4376 switch (pCur->enmType)
4377 {
4378 case PGMPHYSHANDLERTYPE_PHYSICAL_WRITE:
4379 return PGM_PAGE_HNDL_PHYS_STATE_WRITE;
4380
4381 case PGMPHYSHANDLERTYPE_MMIO:
4382 case PGMPHYSHANDLERTYPE_PHYSICAL_ALL:
4383 return PGM_PAGE_HNDL_PHYS_STATE_ALL;
4384
4385 default:
4386 AssertFatalMsgFailed(("Invalid type %d\n", pCur->enmType));
4387 }
4388}
4389
4390
4391/**
4392 * Gets the page state for a virtual handler.
4393 *
4394 * @returns The virtual handler page state.
4395 * @param pCur The virtual handler in question.
4396 * @remarks This should never be used on a hypervisor access handler.
4397 */
4398DECLINLINE(unsigned) pgmHandlerVirtualCalcState(PPGMVIRTHANDLER pCur)
4399{
4400 switch (pCur->enmType)
4401 {
4402 case PGMVIRTHANDLERTYPE_WRITE:
4403 return PGM_PAGE_HNDL_VIRT_STATE_WRITE;
4404 case PGMVIRTHANDLERTYPE_ALL:
4405 return PGM_PAGE_HNDL_VIRT_STATE_ALL;
4406 default:
4407 AssertFatalMsgFailed(("Invalid type %d\n", pCur->enmType));
4408 }
4409}
4410
4411
4412/**
4413 * Clears one physical page of a virtual handler
4414 *
4415 * @param pPGM Pointer to the PGM instance.
4416 * @param pCur Virtual handler structure
4417 * @param iPage Physical page index
4418 *
4419 * @remark Only used when PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL is being set, so no
4420 * need to care about other handlers in the same page.
4421 */
4422DECLINLINE(void) pgmHandlerVirtualClearPage(PPGM pPGM, PPGMVIRTHANDLER pCur, unsigned iPage)
4423{
4424 const PPGMPHYS2VIRTHANDLER pPhys2Virt = &pCur->aPhysToVirt[iPage];
4425
4426 /*
4427 * Remove the node from the tree (it's supposed to be in the tree if we get here!).
4428 */
4429#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
4430 AssertReleaseMsg(pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_IN_TREE,
4431 ("pPhys2Virt=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4432 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias));
4433#endif
4434 if (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_IS_HEAD)
4435 {
4436 /* We're the head of the alias chain. */
4437 PPGMPHYS2VIRTHANDLER pRemove = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysRemove(&pPGM->CTX_SUFF(pTrees)->PhysToVirtHandlers, pPhys2Virt->Core.Key); NOREF(pRemove);
4438#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
4439 AssertReleaseMsg(pRemove != NULL,
4440 ("pPhys2Virt=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4441 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias));
4442 AssertReleaseMsg(pRemove == pPhys2Virt,
4443 ("wanted: pPhys2Virt=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4444 " got: pRemove=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4445 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias,
4446 pRemove, pRemove->Core.Key, pRemove->Core.KeyLast, pRemove->offVirtHandler, pRemove->offNextAlias));
4447#endif
4448 if (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4449 {
4450 /* Insert the next list in the alias chain into the tree. */
4451 PPGMPHYS2VIRTHANDLER pNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPhys2Virt + (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4452#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
4453 AssertReleaseMsg(pNext->offNextAlias & PGMPHYS2VIRTHANDLER_IN_TREE,
4454 ("pNext=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4455 pNext, pNext->Core.Key, pNext->Core.KeyLast, pNext->offVirtHandler, pNext->offNextAlias));
4456#endif
4457 pNext->offNextAlias |= PGMPHYS2VIRTHANDLER_IS_HEAD;
4458 bool fRc = RTAvlroGCPhysInsert(&pPGM->CTX_SUFF(pTrees)->PhysToVirtHandlers, &pNext->Core);
4459 AssertRelease(fRc);
4460 }
4461 }
4462 else
4463 {
4464 /* Locate the previous node in the alias chain. */
4465 PPGMPHYS2VIRTHANDLER pPrev = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysGet(&pPGM->CTX_SUFF(pTrees)->PhysToVirtHandlers, pPhys2Virt->Core.Key);
4466#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
4467 AssertReleaseMsg(pPrev != pPhys2Virt,
4468 ("pPhys2Virt=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32} pPrev=%p\n",
4469 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias, pPrev));
4470#endif
4471 for (;;)
4472 {
4473 PPGMPHYS2VIRTHANDLER pNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPrev + (pPrev->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4474 if (pNext == pPhys2Virt)
4475 {
4476 /* unlink. */
4477 LogFlow(("pgmHandlerVirtualClearPage: removed %p:{.offNextAlias=%#RX32} from alias chain. prev %p:{.offNextAlias=%#RX32} [%RGp-%RGp]\n",
4478 pPhys2Virt, pPhys2Virt->offNextAlias, pPrev, pPrev->offNextAlias, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast));
4479 if (!(pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4480 pPrev->offNextAlias &= ~PGMPHYS2VIRTHANDLER_OFF_MASK;
4481 else
4482 {
4483 PPGMPHYS2VIRTHANDLER pNewNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPhys2Virt + (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4484 pPrev->offNextAlias = ((intptr_t)pNewNext - (intptr_t)pPrev)
4485 | (pPrev->offNextAlias & ~PGMPHYS2VIRTHANDLER_OFF_MASK);
4486 }
4487 break;
4488 }
4489
4490 /* next */
4491 if (pNext == pPrev)
4492 {
4493#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
4494 AssertReleaseMsg(pNext != pPrev,
4495 ("pPhys2Virt=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32} pPrev=%p\n",
4496 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias, pPrev));
4497#endif
4498 break;
4499 }
4500 pPrev = pNext;
4501 }
4502 }
4503 Log2(("PHYS2VIRT: Removing %RGp-%RGp %#RX32 %s\n",
4504 pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offNextAlias, R3STRING(pCur->pszDesc)));
4505 pPhys2Virt->offNextAlias = 0;
4506 pPhys2Virt->Core.KeyLast = NIL_RTGCPHYS; /* require reinsert */
4507
4508 /*
4509 * Clear the ram flags for this page.
4510 */
4511 PPGMPAGE pPage = pgmPhysGetPage(pPGM, pPhys2Virt->Core.Key);
4512 AssertReturnVoid(pPage);
4513 PGM_PAGE_SET_HNDL_VIRT_STATE(pPage, PGM_PAGE_HNDL_VIRT_STATE_NONE);
4514}
4515
4516
4517/**
4518 * Internal worker for finding a 'in-use' shadow page give by it's physical address.
4519 *
4520 * @returns Pointer to the shadow page structure.
4521 * @param pPool The pool.
4522 * @param HCPhys The HC physical address of the shadow page.
4523 */
4524DECLINLINE(PPGMPOOLPAGE) pgmPoolGetPage(PPGMPOOL pPool, RTHCPHYS HCPhys)
4525{
4526 /*
4527 * Look up the page.
4528 */
4529 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK);
4530 AssertFatalMsg(pPage && pPage->enmKind != PGMPOOLKIND_FREE, ("HCPhys=%RHp pPage=%p idx=%d\n", HCPhys, pPage, (pPage) ? pPage->idx : 0));
4531 return pPage;
4532}
4533
4534
4535/**
4536 * Internal worker for finding a 'in-use' shadow page give by it's physical address.
4537 *
4538 * @returns Pointer to the shadow page structure.
4539 * @param pPool The pool.
4540 * @param idx The pool page index.
4541 */
4542DECLINLINE(PPGMPOOLPAGE) pgmPoolGetPageByIdx(PPGMPOOL pPool, unsigned idx)
4543{
4544 AssertFatalMsg(idx >= PGMPOOL_IDX_FIRST && idx < pPool->cCurPages, ("idx=%d\n", idx));
4545 return &pPool->aPages[idx];
4546}
4547
4548
4549#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
4550/**
4551 * Clear references to guest physical memory.
4552 *
4553 * @param pPool The pool.
4554 * @param pPoolPage The pool page.
4555 * @param pPhysPage The physical guest page tracking structure.
4556 */
4557DECLINLINE(void) pgmTrackDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPoolPage, PPGMPAGE pPhysPage)
4558{
4559 /*
4560 * Just deal with the simple case here.
4561 */
4562# ifdef LOG_ENABLED
4563 const RTHCPHYS HCPhysOrg = pPhysPage->HCPhys; /** @todo PAGE FLAGS */
4564# endif
4565 const unsigned cRefs = pPhysPage->HCPhys >> MM_RAM_FLAGS_CREFS_SHIFT; /** @todo PAGE FLAGS */
4566 if (cRefs == 1)
4567 {
4568 Assert(pPoolPage->idx == ((pPhysPage->HCPhys >> MM_RAM_FLAGS_IDX_SHIFT) & MM_RAM_FLAGS_IDX_MASK));
4569 pPhysPage->HCPhys = pPhysPage->HCPhys & MM_RAM_FLAGS_NO_REFS_MASK;
4570 }
4571 else
4572 pgmPoolTrackPhysExtDerefGCPhys(pPool, pPoolPage, pPhysPage);
4573 LogFlow(("pgmTrackDerefGCPhys: HCPhys=%RHp -> %RHp\n", HCPhysOrg, pPhysPage->HCPhys));
4574}
4575#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
4576
4577
4578#ifdef PGMPOOL_WITH_CACHE
4579/**
4580 * Moves the page to the head of the age list.
4581 *
4582 * This is done when the cached page is used in one way or another.
4583 *
4584 * @param pPool The pool.
4585 * @param pPage The cached page.
4586 * @todo inline in PGMInternal.h!
4587 */
4588DECLINLINE(void) pgmPoolCacheUsed(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
4589{
4590 /*
4591 * Move to the head of the age list.
4592 */
4593 if (pPage->iAgePrev != NIL_PGMPOOL_IDX)
4594 {
4595 /* unlink */
4596 pPool->aPages[pPage->iAgePrev].iAgeNext = pPage->iAgeNext;
4597 if (pPage->iAgeNext != NIL_PGMPOOL_IDX)
4598 pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->iAgePrev;
4599 else
4600 pPool->iAgeTail = pPage->iAgePrev;
4601
4602 /* insert at head */
4603 pPage->iAgePrev = NIL_PGMPOOL_IDX;
4604 pPage->iAgeNext = pPool->iAgeHead;
4605 Assert(pPage->iAgeNext != NIL_PGMPOOL_IDX); /* we would've already been head then */
4606 pPool->iAgeHead = pPage->idx;
4607 pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->idx;
4608 }
4609}
4610#endif /* PGMPOOL_WITH_CACHE */
4611
4612
4613#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4614/**
4615 * Maps the page into current context (RC and maybe R0).
4616 *
4617 * @returns pointer to the mapping.
4618 * @param pVM Pointer to the PGM instance data.
4619 * @param pPage The page.
4620 */
4621DECLINLINE(void *) pgmPoolMapPageInlined(PPGM pPGM, PPGMPOOLPAGE pPage)
4622{
4623 if (pPage->idx >= PGMPOOL_IDX_FIRST)
4624 {
4625 Assert(pPage->idx < pPGM->CTX_SUFF(pPool)->cCurPages);
4626 void *pv;
4627# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4628 int rc = pgmR0DynMapHCPageInlined(pPGM, pPage->Core.Key, &pv);
4629# else
4630 int rc = PGMDynMapHCPage(PGM2VM(pPGM), pPage->Core.Key, &pv);
4631# endif
4632 if (RT_SUCCESS(rc))
4633 return pv;
4634 }
4635 return pgmPoolMapPageFallback(pPGM, pPage);
4636}
4637#endif
4638
4639
4640/**
4641 * Tells if mappings are to be put into the shadow page table or not
4642 *
4643 * @returns boolean result
4644 * @param pVM VM handle.
4645 */
4646
4647DECLINLINE(bool) pgmMapAreMappingsEnabled(PPGM pPGM)
4648{
4649#ifdef IN_RING0
4650 /* There are no mappings in VT-x and AMD-V mode. */
4651 Assert(pPGM->fDisableMappings);
4652 return false;
4653#else
4654 return !pPGM->fDisableMappings;
4655#endif
4656}
4657
4658/** @} */
4659
4660#endif
4661
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette