VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMInternal.h@ 15653

Last change on this file since 15653 was 15436, checked in by vboxsync, 16 years ago

PGMR0DynMap: Corrected PGMR0DYNMAP_PAGES_PER_CPU_MIN (>= max set size). Added set size stats.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 191.2 KB
Line 
1/* $Id: PGMInternal.h 15436 2008-12-13 11:59:30Z vboxsync $ */
2/** @file
3 * PGM - Internal header file.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22#ifndef ___PGMInternal_h
23#define ___PGMInternal_h
24
25#include <VBox/cdefs.h>
26#include <VBox/types.h>
27#include <VBox/err.h>
28#include <VBox/stam.h>
29#include <VBox/param.h>
30#include <VBox/vmm.h>
31#include <VBox/mm.h>
32#include <VBox/pdmcritsect.h>
33#include <VBox/pdmapi.h>
34#include <VBox/dis.h>
35#include <VBox/dbgf.h>
36#include <VBox/log.h>
37#include <VBox/gmm.h>
38#include <VBox/hwaccm.h>
39#include <iprt/avl.h>
40#include <iprt/assert.h>
41#include <iprt/critsect.h>
42
43
44
45/** @defgroup grp_pgm_int Internals
46 * @ingroup grp_pgm
47 * @internal
48 * @{
49 */
50
51
52/** @name PGM Compile Time Config
53 * @{
54 */
55
56/**
57 * Solve page is out of sync issues inside Guest Context (in PGMGC.cpp).
58 * Comment it if it will break something.
59 */
60#define PGM_OUT_OF_SYNC_IN_GC
61
62/**
63 * Check and skip global PDEs for non-global flushes
64 */
65#define PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
66
67/**
68 * Sync N pages instead of a whole page table
69 */
70#define PGM_SYNC_N_PAGES
71
72/**
73 * Number of pages to sync during a page fault
74 *
75 * When PGMPOOL_WITH_GCPHYS_TRACKING is enabled using high values here
76 * causes a lot of unnecessary extents and also is slower than taking more \#PFs.
77 */
78#define PGM_SYNC_NR_PAGES 8
79
80/**
81 * Number of PGMPhysRead/Write cache entries (must be <= sizeof(uint64_t))
82 */
83#define PGM_MAX_PHYSCACHE_ENTRIES 64
84#define PGM_MAX_PHYSCACHE_ENTRIES_MASK (PGM_MAX_PHYSCACHE_ENTRIES-1)
85
86/**
87 * Enable caching of PGMR3PhysRead/WriteByte/Word/Dword
88 */
89#define PGM_PHYSMEMACCESS_CACHING
90
91/** @def PGMPOOL_WITH_CACHE
92 * Enable agressive caching using the page pool.
93 *
94 * This requires PGMPOOL_WITH_USER_TRACKING and PGMPOOL_WITH_MONITORING.
95 */
96#define PGMPOOL_WITH_CACHE
97
98/** @def PGMPOOL_WITH_MIXED_PT_CR3
99 * When defined, we'll deal with 'uncachable' pages.
100 */
101#ifdef PGMPOOL_WITH_CACHE
102# define PGMPOOL_WITH_MIXED_PT_CR3
103#endif
104
105/** @def PGMPOOL_WITH_MONITORING
106 * Monitor the guest pages which are shadowed.
107 * When this is enabled, PGMPOOL_WITH_CACHE or PGMPOOL_WITH_GCPHYS_TRACKING must
108 * be enabled as well.
109 * @remark doesn't really work without caching now. (Mixed PT/CR3 change.)
110 */
111#ifdef PGMPOOL_WITH_CACHE
112# define PGMPOOL_WITH_MONITORING
113#endif
114
115/** @def PGMPOOL_WITH_GCPHYS_TRACKING
116 * Tracking the of shadow pages mapping guest physical pages.
117 *
118 * This is very expensive, the current cache prototype is trying to figure out
119 * whether it will be acceptable with an agressive caching policy.
120 */
121#if defined(PGMPOOL_WITH_CACHE) || defined(PGMPOOL_WITH_MONITORING)
122# define PGMPOOL_WITH_GCPHYS_TRACKING
123#endif
124
125/** @def PGMPOOL_WITH_USER_TRACKING
126 * Tracking users of shadow pages. This is required for the linking of shadow page
127 * tables and physical guest addresses.
128 */
129#if defined(PGMPOOL_WITH_GCPHYS_TRACKING) || defined(PGMPOOL_WITH_CACHE) || defined(PGMPOOL_WITH_MONITORING)
130# define PGMPOOL_WITH_USER_TRACKING
131#endif
132
133/** @def PGMPOOL_CFG_MAX_GROW
134 * The maximum number of pages to add to the pool in one go.
135 */
136#define PGMPOOL_CFG_MAX_GROW (_256K >> PAGE_SHIFT)
137
138/** @def VBOX_STRICT_PGM_HANDLER_VIRTUAL
139 * Enables some extra assertions for virtual handlers (mainly phys2virt related).
140 */
141#ifdef VBOX_STRICT
142# define VBOX_STRICT_PGM_HANDLER_VIRTUAL
143#endif
144/** @} */
145
146
147/** @name PDPT and PML4 flags.
148 * These are placed in the three bits available for system programs in
149 * the PDPT and PML4 entries.
150 * @{ */
151/** The entry is a permanent one and it's must always be present.
152 * Never free such an entry. */
153#define PGM_PLXFLAGS_PERMANENT RT_BIT_64(10)
154/** Mapping (hypervisor allocated pagetable). */
155#define PGM_PLXFLAGS_MAPPING RT_BIT_64(11)
156/** @} */
157
158/** @name Page directory flags.
159 * These are placed in the three bits available for system programs in
160 * the page directory entries.
161 * @{ */
162/** Mapping (hypervisor allocated pagetable). */
163#define PGM_PDFLAGS_MAPPING RT_BIT_64(10)
164/** Made read-only to facilitate dirty bit tracking. */
165#define PGM_PDFLAGS_TRACK_DIRTY RT_BIT_64(11)
166/** @} */
167
168/** @name Page flags.
169 * These are placed in the three bits available for system programs in
170 * the page entries.
171 * @{ */
172/** Made read-only to facilitate dirty bit tracking. */
173#define PGM_PTFLAGS_TRACK_DIRTY RT_BIT_64(9)
174
175#ifndef PGM_PTFLAGS_CSAM_VALIDATED
176/** Scanned and approved by CSAM (tm).
177 * NOTE: Must be identical to the one defined in CSAMInternal.h!!
178 * @todo Move PGM_PTFLAGS_* and PGM_PDFLAGS_* to VBox/pgm.h. */
179#define PGM_PTFLAGS_CSAM_VALIDATED RT_BIT_64(11)
180#endif
181/** @} */
182
183/** @name Defines used to indicate the shadow and guest paging in the templates.
184 * @{ */
185#define PGM_TYPE_REAL 1
186#define PGM_TYPE_PROT 2
187#define PGM_TYPE_32BIT 3
188#define PGM_TYPE_PAE 4
189#define PGM_TYPE_AMD64 5
190#define PGM_TYPE_NESTED 6
191#define PGM_TYPE_EPT 7
192#define PGM_TYPE_MAX PGM_TYPE_EPT
193/** @} */
194
195/** Macro for checking if the guest is using paging.
196 * @param uGstType PGM_TYPE_*
197 * @param uShwType PGM_TYPE_*
198 * @remark ASSUMES certain order of the PGM_TYPE_* values.
199 */
200#define PGM_WITH_PAGING(uGstType, uShwType) \
201 ( (uGstType) >= PGM_TYPE_32BIT \
202 && (uShwType) != PGM_TYPE_NESTED \
203 && (uShwType) != PGM_TYPE_EPT)
204
205/** Macro for checking if the guest supports the NX bit.
206 * @param uGstType PGM_TYPE_*
207 * @param uShwType PGM_TYPE_*
208 * @remark ASSUMES certain order of the PGM_TYPE_* values.
209 */
210#define PGM_WITH_NX(uGstType, uShwType) \
211 ( (uGstType) >= PGM_TYPE_PAE \
212 && (uShwType) != PGM_TYPE_NESTED \
213 && (uShwType) != PGM_TYPE_EPT)
214
215
216/** @def PGM_HCPHYS_2_PTR
217 * Maps a HC physical page pool address to a virtual address.
218 *
219 * @returns VBox status code.
220 * @param pVM The VM handle.
221 * @param HCPhys The HC physical address to map to a virtual one.
222 * @param ppv Where to store the virtual address. No need to cast this.
223 *
224 * @remark In GC this uses PGMGCDynMapHCPage(), so it will consume of the
225 * small page window employeed by that function. Be careful.
226 * @remark There is no need to assert on the result.
227 */
228#ifdef IN_RC
229# define PGM_HCPHYS_2_PTR(pVM, HCPhys, ppv) \
230 PGMDynMapHCPage(pVM, HCPhys, (void **)(ppv))
231#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
232# define PGM_HCPHYS_2_PTR(pVM, HCPhys, ppv) \
233 pgmR0DynMapHCPageInlined(&(pVM)->pgm.s, HCPhys, (void **)(ppv))
234#else
235# define PGM_HCPHYS_2_PTR(pVM, HCPhys, ppv) \
236 MMPagePhys2PageEx(pVM, HCPhys, (void **)(ppv))
237#endif
238
239/** @def PGM_HCPHYS_2_PTR_BY_PGM
240 * Maps a HC physical page pool address to a virtual address.
241 *
242 * @returns VBox status code.
243 * @param pPGM The PGM instance data.
244 * @param HCPhys The HC physical address to map to a virtual one.
245 * @param ppv Where to store the virtual address. No need to cast this.
246 *
247 * @remark In GC this uses PGMGCDynMapHCPage(), so it will consume of the
248 * small page window employeed by that function. Be careful.
249 * @remark There is no need to assert on the result.
250 */
251#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
252# define PGM_HCPHYS_2_PTR_BY_PGM(pPGM, HCPhys, ppv) \
253 pgmR0DynMapHCPageInlined(pPGM, HCPhys, (void **)(ppv))
254#else
255# define PGM_HCPHYS_2_PTR_BY_PGM(pPGM, HCPhys, ppv) \
256 PGM_HCPHYS_2_PTR(PGM2VM(pPGM), HCPhys, (void **)(ppv))
257#endif
258
259/** @def PGM_GCPHYS_2_PTR
260 * Maps a GC physical page address to a virtual address.
261 *
262 * @returns VBox status code.
263 * @param pVM The VM handle.
264 * @param GCPhys The GC physical address to map to a virtual one.
265 * @param ppv Where to store the virtual address. No need to cast this.
266 *
267 * @remark In GC this uses PGMGCDynMapGCPage(), so it will consume of the
268 * small page window employeed by that function. Be careful.
269 * @remark There is no need to assert on the result.
270 */
271#ifdef IN_RC
272# define PGM_GCPHYS_2_PTR(pVM, GCPhys, ppv) \
273 PGMDynMapGCPage(pVM, GCPhys, (void **)(ppv))
274#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
275# define PGM_GCPHYS_2_PTR(pVM, GCPhys, ppv) \
276 pgmR0DynMapGCPageInlined(&(pVM)->pgm.s, GCPhys, (void **)(ppv))
277#else
278# define PGM_GCPHYS_2_PTR(pVM, GCPhys, ppv) \
279 PGMPhysGCPhys2R3Ptr(pVM, GCPhys, 1 /* one page only */, (PRTR3PTR)(ppv)) /** @todo this isn't asserting, use PGMRamGCPhys2HCPtr! */
280#endif
281
282/** @def PGM_GCPHYS_2_PTR_BY_PGM
283 * Maps a GC physical page address to a virtual address.
284 *
285 * @returns VBox status code.
286 * @param pPGM Pointer to the PGM instance data.
287 * @param GCPhys The GC physical address to map to a virtual one.
288 * @param ppv Where to store the virtual address. No need to cast this.
289 *
290 * @remark In GC this uses PGMGCDynMapGCPage(), so it will consume of the
291 * small page window employeed by that function. Be careful.
292 * @remark There is no need to assert on the result.
293 */
294#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
295# define PGM_GCPHYS_2_PTR_BY_PGM(pPGM, GCPhys, ppv) \
296 pgmR0DynMapGCPageInlined(pPGM, GCPhys, (void **)(ppv))
297#else
298# define PGM_GCPHYS_2_PTR_BY_PGM(pPGM, GCPhys, ppv) \
299 PGM_GCPHYS_2_PTR(PGM2VM(pPGM), GCPhys, ppv)
300#endif
301
302/** @def PGM_GCPHYS_2_PTR_EX
303 * Maps a unaligned GC physical page address to a virtual address.
304 *
305 * @returns VBox status code.
306 * @param pVM The VM handle.
307 * @param GCPhys The GC physical address to map to a virtual one.
308 * @param ppv Where to store the virtual address. No need to cast this.
309 *
310 * @remark In GC this uses PGMGCDynMapGCPage(), so it will consume of the
311 * small page window employeed by that function. Be careful.
312 * @remark There is no need to assert on the result.
313 */
314#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
315# define PGM_GCPHYS_2_PTR_EX(pVM, GCPhys, ppv) \
316 PGMDynMapGCPageOff(pVM, GCPhys, (void **)(ppv))
317#else
318# define PGM_GCPHYS_2_PTR_EX(pVM, GCPhys, ppv) \
319 PGMPhysGCPhys2R3Ptr(pVM, GCPhys, 1 /* one page only */, (PRTR3PTR)(ppv)) /** @todo this isn't asserting, use PGMRamGCPhys2HCPtr! */
320#endif
321
322/** @def PGM_INVL_PG
323 * Invalidates a page when in GC does nothing in HC.
324 *
325 * @param GCVirt The virtual address of the page to invalidate.
326 */
327#ifdef IN_RC
328# define PGM_INVL_PG(GCVirt) ASMInvalidatePage((void *)(GCVirt))
329#elif defined(IN_RING0)
330# define PGM_INVL_PG(GCVirt) HWACCMInvalidatePage(pVM, (RTGCPTR)(GCVirt))
331#else
332# define PGM_INVL_PG(GCVirt) HWACCMInvalidatePage(pVM, (RTGCPTR)(GCVirt))
333#endif
334
335/** @def PGM_INVL_BIG_PG
336 * Invalidates a 4MB page directory entry when in GC does nothing in HC.
337 *
338 * @param GCVirt The virtual address within the page directory to invalidate.
339 */
340#ifdef IN_RC
341# define PGM_INVL_BIG_PG(GCVirt) ASMReloadCR3()
342#elif defined(IN_RING0)
343# define PGM_INVL_BIG_PG(GCVirt) HWACCMFlushTLB(pVM)
344#else
345# define PGM_INVL_BIG_PG(GCVirt) HWACCMFlushTLB(pVM)
346#endif
347
348/** @def PGM_INVL_GUEST_TLBS()
349 * Invalidates all guest TLBs.
350 */
351#ifdef IN_RC
352# define PGM_INVL_GUEST_TLBS() ASMReloadCR3()
353#elif defined(IN_RING0)
354# define PGM_INVL_GUEST_TLBS() HWACCMFlushTLB(pVM)
355#else
356# define PGM_INVL_GUEST_TLBS() HWACCMFlushTLB(pVM)
357#endif
358
359
360/**
361 * Structure for tracking GC Mappings.
362 *
363 * This structure is used by linked list in both GC and HC.
364 */
365typedef struct PGMMAPPING
366{
367 /** Pointer to next entry. */
368 R3PTRTYPE(struct PGMMAPPING *) pNextR3;
369 /** Pointer to next entry. */
370 R0PTRTYPE(struct PGMMAPPING *) pNextR0;
371 /** Pointer to next entry. */
372 RCPTRTYPE(struct PGMMAPPING *) pNextRC;
373#if GC_ARCH_BITS == 64
374 RTRCPTR padding0;
375#endif
376 /** Start Virtual address. */
377 RTGCPTR GCPtr;
378 /** Last Virtual address (inclusive). */
379 RTGCPTR GCPtrLast;
380 /** Range size (bytes). */
381 RTGCPTR cb;
382 /** Pointer to relocation callback function. */
383 R3PTRTYPE(PFNPGMRELOCATE) pfnRelocate;
384 /** User argument to the callback. */
385 R3PTRTYPE(void *) pvUser;
386 /** Mapping description / name. For easing debugging. */
387 R3PTRTYPE(const char *) pszDesc;
388 /** Number of page tables. */
389 RTUINT cPTs;
390#if HC_ARCH_BITS != GC_ARCH_BITS || GC_ARCH_BITS == 64
391 RTUINT uPadding1; /**< Alignment padding. */
392#endif
393 /** Array of page table mapping data. Each entry
394 * describes one page table. The array can be longer
395 * than the declared length.
396 */
397 struct
398 {
399 /** The HC physical address of the page table. */
400 RTHCPHYS HCPhysPT;
401 /** The HC physical address of the first PAE page table. */
402 RTHCPHYS HCPhysPaePT0;
403 /** The HC physical address of the second PAE page table. */
404 RTHCPHYS HCPhysPaePT1;
405 /** The HC virtual address of the 32-bit page table. */
406 R3PTRTYPE(PX86PT) pPTR3;
407 /** The HC virtual address of the two PAE page table. (i.e 1024 entries instead of 512) */
408 R3PTRTYPE(PX86PTPAE) paPaePTsR3;
409 /** The GC virtual address of the 32-bit page table. */
410 RCPTRTYPE(PX86PT) pPTRC;
411 /** The GC virtual address of the two PAE page table. */
412 RCPTRTYPE(PX86PTPAE) paPaePTsRC;
413 /** The GC virtual address of the 32-bit page table. */
414 R0PTRTYPE(PX86PT) pPTR0;
415 /** The GC virtual address of the two PAE page table. */
416 R0PTRTYPE(PX86PTPAE) paPaePTsR0;
417 } aPTs[1];
418} PGMMAPPING;
419/** Pointer to structure for tracking GC Mappings. */
420typedef struct PGMMAPPING *PPGMMAPPING;
421
422
423/**
424 * Physical page access handler structure.
425 *
426 * This is used to keep track of physical address ranges
427 * which are being monitored in some kind of way.
428 */
429typedef struct PGMPHYSHANDLER
430{
431 AVLROGCPHYSNODECORE Core;
432 /** Access type. */
433 PGMPHYSHANDLERTYPE enmType;
434 /** Number of pages to update. */
435 uint32_t cPages;
436 /** Pointer to R3 callback function. */
437 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3;
438 /** User argument for R3 handlers. */
439 R3PTRTYPE(void *) pvUserR3;
440 /** Pointer to R0 callback function. */
441 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0;
442 /** User argument for R0 handlers. */
443 R0PTRTYPE(void *) pvUserR0;
444 /** Pointer to GC callback function. */
445 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnHandlerRC;
446 /** User argument for RC handlers. */
447 RCPTRTYPE(void *) pvUserRC;
448 /** Description / Name. For easing debugging. */
449 R3PTRTYPE(const char *) pszDesc;
450#ifdef VBOX_WITH_STATISTICS
451 /** Profiling of this handler. */
452 STAMPROFILE Stat;
453#endif
454} PGMPHYSHANDLER;
455/** Pointer to a physical page access handler structure. */
456typedef PGMPHYSHANDLER *PPGMPHYSHANDLER;
457
458
459/**
460 * Cache node for the physical addresses covered by a virtual handler.
461 */
462typedef struct PGMPHYS2VIRTHANDLER
463{
464 /** Core node for the tree based on physical ranges. */
465 AVLROGCPHYSNODECORE Core;
466 /** Offset from this struct to the PGMVIRTHANDLER structure. */
467 int32_t offVirtHandler;
468 /** Offset of the next alias relative to this one.
469 * Bit 0 is used for indicating whether we're in the tree.
470 * Bit 1 is used for indicating that we're the head node.
471 */
472 int32_t offNextAlias;
473} PGMPHYS2VIRTHANDLER;
474/** Pointer to a phys to virtual handler structure. */
475typedef PGMPHYS2VIRTHANDLER *PPGMPHYS2VIRTHANDLER;
476
477/** The bit in PGMPHYS2VIRTHANDLER::offNextAlias used to indicate that the
478 * node is in the tree. */
479#define PGMPHYS2VIRTHANDLER_IN_TREE RT_BIT(0)
480/** The bit in PGMPHYS2VIRTHANDLER::offNextAlias used to indicate that the
481 * node is in the head of an alias chain.
482 * The PGMPHYS2VIRTHANDLER_IN_TREE is always set if this bit is set. */
483#define PGMPHYS2VIRTHANDLER_IS_HEAD RT_BIT(1)
484/** The mask to apply to PGMPHYS2VIRTHANDLER::offNextAlias to get the offset. */
485#define PGMPHYS2VIRTHANDLER_OFF_MASK (~(int32_t)3)
486
487
488/**
489 * Virtual page access handler structure.
490 *
491 * This is used to keep track of virtual address ranges
492 * which are being monitored in some kind of way.
493 */
494typedef struct PGMVIRTHANDLER
495{
496 /** Core node for the tree based on virtual ranges. */
497 AVLROGCPTRNODECORE Core;
498 /** Size of the range (in bytes). */
499 RTGCPTR cb;
500 /** Number of cache pages. */
501 uint32_t cPages;
502 /** Access type. */
503 PGMVIRTHANDLERTYPE enmType;
504 /** Pointer to the RC callback function. */
505 RCPTRTYPE(PFNPGMRCVIRTHANDLER) pfnHandlerRC;
506#if HC_ARCH_BITS == 64
507 RTRCPTR padding;
508#endif
509 /** Pointer to the R3 callback function for invalidation. */
510 R3PTRTYPE(PFNPGMR3VIRTINVALIDATE) pfnInvalidateR3;
511 /** Pointer to the R3 callback function. */
512 R3PTRTYPE(PFNPGMR3VIRTHANDLER) pfnHandlerR3;
513 /** Description / Name. For easing debugging. */
514 R3PTRTYPE(const char *) pszDesc;
515#ifdef VBOX_WITH_STATISTICS
516 /** Profiling of this handler. */
517 STAMPROFILE Stat;
518#endif
519 /** Array of cached physical addresses for the monitored ranged. */
520 PGMPHYS2VIRTHANDLER aPhysToVirt[HC_ARCH_BITS == 32 ? 1 : 2];
521} PGMVIRTHANDLER;
522/** Pointer to a virtual page access handler structure. */
523typedef PGMVIRTHANDLER *PPGMVIRTHANDLER;
524
525
526/**
527 * Page type.
528 * @remarks This enum has to fit in a 3-bit field (see PGMPAGE::u3Type).
529 * @todo convert to \#defines.
530 */
531typedef enum PGMPAGETYPE
532{
533 /** The usual invalid zero entry. */
534 PGMPAGETYPE_INVALID = 0,
535 /** RAM page. (RWX) */
536 PGMPAGETYPE_RAM,
537 /** MMIO2 page. (RWX) */
538 PGMPAGETYPE_MMIO2,
539 /** Shadowed ROM. (RWX) */
540 PGMPAGETYPE_ROM_SHADOW,
541 /** ROM page. (R-X) */
542 PGMPAGETYPE_ROM,
543 /** MMIO page. (---) */
544 PGMPAGETYPE_MMIO,
545 /** End of valid entries. */
546 PGMPAGETYPE_END
547} PGMPAGETYPE;
548AssertCompile(PGMPAGETYPE_END < 7);
549
550/** @name Page type predicates.
551 * @{ */
552#define PGMPAGETYPE_IS_READABLE(type) ( (type) <= PGMPAGETYPE_ROM )
553#define PGMPAGETYPE_IS_WRITEABLE(type) ( (type) <= PGMPAGETYPE_ROM_SHADOW )
554#define PGMPAGETYPE_IS_RWX(type) ( (type) <= PGMPAGETYPE_ROM_SHADOW )
555#define PGMPAGETYPE_IS_ROX(type) ( (type) == PGMPAGETYPE_ROM )
556#define PGMPAGETYPE_IS_NP(type) ( (type) == PGMPAGETYPE_MMIO )
557/** @} */
558
559
560/**
561 * A Physical Guest Page tracking structure.
562 *
563 * The format of this structure is complicated because we have to fit a lot
564 * of information into as few bits as possible. The format is also subject
565 * to change (there is one comming up soon). Which means that for we'll be
566 * using PGM_PAGE_GET_*, PGM_PAGE_IS_ and PGM_PAGE_SET_* macros for *all*
567 * accessess to the structure.
568 */
569typedef struct PGMPAGE
570{
571 /** The physical address and a whole lot of other stuff. All bits are used! */
572 RTHCPHYS HCPhys;
573 /** The page state. */
574 uint32_t u2StateX : 2;
575 /** Flag indicating that a write monitored page was written to when set. */
576 uint32_t fWrittenToX : 1;
577 /** For later. */
578 uint32_t fSomethingElse : 1;
579 /** The Page ID.
580 * @todo Merge with HCPhys once we've liberated HCPhys of its stuff.
581 * The HCPhys will be 100% static. */
582 uint32_t idPageX : 28;
583 /** The page type (PGMPAGETYPE). */
584 uint32_t u3Type : 3;
585 /** The physical handler state (PGM_PAGE_HNDL_PHYS_STATE*) */
586 uint32_t u2HandlerPhysStateX : 2;
587 /** The virtual handler state (PGM_PAGE_HNDL_VIRT_STATE*) */
588 uint32_t u2HandlerVirtStateX : 2;
589 uint32_t u29B : 25;
590} PGMPAGE;
591AssertCompileSize(PGMPAGE, 16);
592/** Pointer to a physical guest page. */
593typedef PGMPAGE *PPGMPAGE;
594/** Pointer to a const physical guest page. */
595typedef const PGMPAGE *PCPGMPAGE;
596/** Pointer to a physical guest page pointer. */
597typedef PPGMPAGE *PPPGMPAGE;
598
599
600/**
601 * Clears the page structure.
602 * @param pPage Pointer to the physical guest page tracking structure.
603 */
604#define PGM_PAGE_CLEAR(pPage) \
605 do { \
606 (pPage)->HCPhys = 0; \
607 (pPage)->u2StateX = 0; \
608 (pPage)->fWrittenToX = 0; \
609 (pPage)->fSomethingElse = 0; \
610 (pPage)->idPageX = 0; \
611 (pPage)->u3Type = 0; \
612 (pPage)->u29B = 0; \
613 } while (0)
614
615/**
616 * Initializes the page structure.
617 * @param pPage Pointer to the physical guest page tracking structure.
618 */
619#define PGM_PAGE_INIT(pPage, _HCPhys, _idPage, _uType, _uState) \
620 do { \
621 (pPage)->HCPhys = (_HCPhys); \
622 (pPage)->u2StateX = (_uState); \
623 (pPage)->fWrittenToX = 0; \
624 (pPage)->fSomethingElse = 0; \
625 (pPage)->idPageX = (_idPage); \
626 /*(pPage)->u3Type = (_uType); - later */ \
627 PGM_PAGE_SET_TYPE(pPage, _uType); \
628 (pPage)->u29B = 0; \
629 } while (0)
630
631/**
632 * Initializes the page structure of a ZERO page.
633 * @param pPage Pointer to the physical guest page tracking structure.
634 */
635#ifdef VBOX_WITH_NEW_PHYS_CODE
636# define PGM_PAGE_INIT_ZERO(pPage, pVM, _uType) \
637 PGM_PAGE_INIT(pPage, (pVM)->pgm.s.HCPhysZeroPg, NIL_GMM_PAGEID, (_uType), PGM_PAGE_STATE_ZERO)
638#else
639# define PGM_PAGE_INIT_ZERO(pPage, pVM, _uType) \
640 PGM_PAGE_INIT(pPage, 0, NIL_GMM_PAGEID, (_uType), PGM_PAGE_STATE_ZERO)
641#endif
642/** Temporary hack. Replaced by PGM_PAGE_INIT_ZERO once the old code is kicked out. */
643# define PGM_PAGE_INIT_ZERO_REAL(pPage, pVM, _uType) \
644 PGM_PAGE_INIT(pPage, (pVM)->pgm.s.HCPhysZeroPg, NIL_GMM_PAGEID, (_uType), PGM_PAGE_STATE_ZERO)
645
646
647/** @name The Page state, PGMPAGE::u2StateX.
648 * @{ */
649/** The zero page.
650 * This is a per-VM page that's never ever mapped writable. */
651#define PGM_PAGE_STATE_ZERO 0
652/** A allocated page.
653 * This is a per-VM page allocated from the page pool (or wherever
654 * we get MMIO2 pages from if the type is MMIO2).
655 */
656#define PGM_PAGE_STATE_ALLOCATED 1
657/** A allocated page that's being monitored for writes.
658 * The shadow page table mappings are read-only. When a write occurs, the
659 * fWrittenTo member is set, the page remapped as read-write and the state
660 * moved back to allocated. */
661#define PGM_PAGE_STATE_WRITE_MONITORED 2
662/** The page is shared, aka. copy-on-write.
663 * This is a page that's shared with other VMs. */
664#define PGM_PAGE_STATE_SHARED 3
665/** @} */
666
667
668/**
669 * Gets the page state.
670 * @returns page state (PGM_PAGE_STATE_*).
671 * @param pPage Pointer to the physical guest page tracking structure.
672 */
673#define PGM_PAGE_GET_STATE(pPage) ( (pPage)->u2StateX )
674
675/**
676 * Sets the page state.
677 * @param pPage Pointer to the physical guest page tracking structure.
678 * @param _uState The new page state.
679 */
680#define PGM_PAGE_SET_STATE(pPage, _uState) \
681 do { (pPage)->u2StateX = (_uState); } while (0)
682
683
684/**
685 * Gets the host physical address of the guest page.
686 * @returns host physical address (RTHCPHYS).
687 * @param pPage Pointer to the physical guest page tracking structure.
688 */
689#define PGM_PAGE_GET_HCPHYS(pPage) ( (pPage)->HCPhys & UINT64_C(0x0000fffffffff000) )
690
691/**
692 * Sets the host physical address of the guest page.
693 * @param pPage Pointer to the physical guest page tracking structure.
694 * @param _HCPhys The new host physical address.
695 */
696#define PGM_PAGE_SET_HCPHYS(pPage, _HCPhys) \
697 do { (pPage)->HCPhys = (((pPage)->HCPhys) & UINT64_C(0xffff000000000fff)) \
698 | ((_HCPhys) & UINT64_C(0x0000fffffffff000)); } while (0)
699
700/**
701 * Get the Page ID.
702 * @returns The Page ID; NIL_GMM_PAGEID if it's a ZERO page.
703 * @param pPage Pointer to the physical guest page tracking structure.
704 */
705#define PGM_PAGE_GET_PAGEID(pPage) ( (pPage)->idPageX )
706/* later:
707#define PGM_PAGE_GET_PAGEID(pPage) ( ((uint32_t)(pPage)->HCPhys >> (48 - 12))
708 | ((uint32_t)(pPage)->HCPhys & 0xfff) )
709*/
710/**
711 * Sets the Page ID.
712 * @param pPage Pointer to the physical guest page tracking structure.
713 */
714#define PGM_PAGE_SET_PAGEID(pPage, _idPage) do { (pPage)->idPageX = (_idPage); } while (0)
715/* later:
716#define PGM_PAGE_SET_PAGEID(pPage, _idPage) do { (pPage)->HCPhys = (((pPage)->HCPhys) & UINT64_C(0x0000fffffffff000)) \
717 | ((_idPage) & 0xfff) \
718 | (((_idPage) & 0x0ffff000) << (48-12)); } while (0)
719*/
720
721/**
722 * Get the Chunk ID.
723 * @returns The Chunk ID; NIL_GMM_CHUNKID if it's a ZERO page.
724 * @param pPage Pointer to the physical guest page tracking structure.
725 */
726#define PGM_PAGE_GET_CHUNKID(pPage) ( (pPage)->idPageX >> GMM_CHUNKID_SHIFT )
727/* later:
728#if GMM_CHUNKID_SHIFT == 12
729# define PGM_PAGE_GET_CHUNKID(pPage) ( (uint32_t)((pPage)->HCPhys >> 48) )
730#elif GMM_CHUNKID_SHIFT > 12
731# define PGM_PAGE_GET_CHUNKID(pPage) ( (uint32_t)((pPage)->HCPhys >> (48 + (GMM_CHUNKID_SHIFT - 12)) )
732#elif GMM_CHUNKID_SHIFT < 12
733# define PGM_PAGE_GET_CHUNKID(pPage) ( ( (uint32_t)((pPage)->HCPhys >> 48) << (12 - GMM_CHUNKID_SHIFT) ) \
734 | ( (uint32_t)((pPage)->HCPhys & 0xfff) >> GMM_CHUNKID_SHIFT ) )
735#else
736# error "GMM_CHUNKID_SHIFT isn't defined or something."
737#endif
738*/
739
740/**
741 * Get the index of the page within the allocaiton chunk.
742 * @returns The page index.
743 * @param pPage Pointer to the physical guest page tracking structure.
744 */
745#define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (pPage)->idPageX & GMM_PAGEID_IDX_MASK )
746/* later:
747#if GMM_CHUNKID_SHIFT <= 12
748# define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (uint32_t)((pPage)->HCPhys & GMM_PAGEID_IDX_MASK) )
749#else
750# define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (uint32_t)((pPage)->HCPhys & 0xfff) \
751 | ( (uint32_t)((pPage)->HCPhys >> 48) & (RT_BIT_32(GMM_CHUNKID_SHIFT - 12) - 1) ) )
752#endif
753*/
754
755
756/**
757 * Gets the page type.
758 * @returns The page type.
759 * @param pPage Pointer to the physical guest page tracking structure.
760 */
761#define PGM_PAGE_GET_TYPE(pPage) (pPage)->u3Type
762
763/**
764 * Sets the page type.
765 * @param pPage Pointer to the physical guest page tracking structure.
766 * @param _enmType The new page type (PGMPAGETYPE).
767 */
768#ifdef VBOX_WITH_NEW_PHYS_CODE
769#define PGM_PAGE_SET_TYPE(pPage, _enmType) \
770 do { (pPage)->u3Type = (_enmType); } while (0)
771#else
772#define PGM_PAGE_SET_TYPE(pPage, _enmType) \
773 do { \
774 (pPage)->u3Type = (_enmType); \
775 if ((_enmType) == PGMPAGETYPE_ROM) \
776 (pPage)->HCPhys |= MM_RAM_FLAGS_ROM; \
777 else if ((_enmType) == PGMPAGETYPE_ROM_SHADOW) \
778 (pPage)->HCPhys |= MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO2; \
779 else if ((_enmType) == PGMPAGETYPE_MMIO2) \
780 (pPage)->HCPhys |= MM_RAM_FLAGS_MMIO2; \
781 } while (0)
782#endif
783
784
785/**
786 * Checks if the page is 'reserved'.
787 * @returns true/false.
788 * @param pPage Pointer to the physical guest page tracking structure.
789 */
790#define PGM_PAGE_IS_RESERVED(pPage) ( !!((pPage)->HCPhys & MM_RAM_FLAGS_RESERVED) )
791
792/**
793 * Checks if the page is marked for MMIO.
794 * @returns true/false.
795 * @param pPage Pointer to the physical guest page tracking structure.
796 */
797#define PGM_PAGE_IS_MMIO(pPage) ( !!((pPage)->HCPhys & MM_RAM_FLAGS_MMIO) )
798
799/**
800 * Checks if the page is backed by the ZERO page.
801 * @returns true/false.
802 * @param pPage Pointer to the physical guest page tracking structure.
803 */
804#define PGM_PAGE_IS_ZERO(pPage) ( (pPage)->u2StateX == PGM_PAGE_STATE_ZERO )
805
806/**
807 * Checks if the page is backed by a SHARED page.
808 * @returns true/false.
809 * @param pPage Pointer to the physical guest page tracking structure.
810 */
811#define PGM_PAGE_IS_SHARED(pPage) ( (pPage)->u2StateX == PGM_PAGE_STATE_SHARED )
812
813
814/**
815 * Marks the paget as written to (for GMM change monitoring).
816 * @param pPage Pointer to the physical guest page tracking structure.
817 */
818#define PGM_PAGE_SET_WRITTEN_TO(pPage) do { (pPage)->fWrittenToX = 1; } while (0)
819
820/**
821 * Clears the written-to indicator.
822 * @param pPage Pointer to the physical guest page tracking structure.
823 */
824#define PGM_PAGE_CLEAR_WRITTEN_TO(pPage) do { (pPage)->fWrittenToX = 0; } while (0)
825
826/**
827 * Checks if the page was marked as written-to.
828 * @returns true/false.
829 * @param pPage Pointer to the physical guest page tracking structure.
830 */
831#define PGM_PAGE_IS_WRITTEN_TO(pPage) ( (pPage)->fWrittenToX )
832
833
834/** @name Physical Access Handler State values (PGMPAGE::u2HandlerPhysStateX).
835 *
836 * @remarks The values are assigned in order of priority, so we can calculate
837 * the correct state for a page with different handlers installed.
838 * @{ */
839/** No handler installed. */
840#define PGM_PAGE_HNDL_PHYS_STATE_NONE 0
841/** Monitoring is temporarily disabled. */
842#define PGM_PAGE_HNDL_PHYS_STATE_DISABLED 1
843/** Write access is monitored. */
844#define PGM_PAGE_HNDL_PHYS_STATE_WRITE 2
845/** All access is monitored. */
846#define PGM_PAGE_HNDL_PHYS_STATE_ALL 3
847/** @} */
848
849/**
850 * Gets the physical access handler state of a page.
851 * @returns PGM_PAGE_HNDL_PHYS_STATE_* value.
852 * @param pPage Pointer to the physical guest page tracking structure.
853 */
854#define PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) ( (pPage)->u2HandlerPhysStateX )
855
856/**
857 * Sets the physical access handler state of a page.
858 * @param pPage Pointer to the physical guest page tracking structure.
859 * @param _uState The new state value.
860 */
861#define PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, _uState) \
862 do { (pPage)->u2HandlerPhysStateX = (_uState); } while (0)
863
864/**
865 * Checks if the page has any physical access handlers, including temporariliy disabled ones.
866 * @returns true/false
867 * @param pPage Pointer to the physical guest page tracking structure.
868 */
869#define PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage) ( (pPage)->u2HandlerPhysStateX != PGM_PAGE_HNDL_PHYS_STATE_NONE )
870
871/**
872 * Checks if the page has any active physical access handlers.
873 * @returns true/false
874 * @param pPage Pointer to the physical guest page tracking structure.
875 */
876#define PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage) ( (pPage)->u2HandlerPhysStateX >= PGM_PAGE_HNDL_PHYS_STATE_WRITE )
877
878
879/** @name Virtual Access Handler State values (PGMPAGE::u2HandlerVirtStateX).
880 *
881 * @remarks The values are assigned in order of priority, so we can calculate
882 * the correct state for a page with different handlers installed.
883 * @{ */
884/** No handler installed. */
885#define PGM_PAGE_HNDL_VIRT_STATE_NONE 0
886/* 1 is reserved so the lineup is identical with the physical ones. */
887/** Write access is monitored. */
888#define PGM_PAGE_HNDL_VIRT_STATE_WRITE 2
889/** All access is monitored. */
890#define PGM_PAGE_HNDL_VIRT_STATE_ALL 3
891/** @} */
892
893/**
894 * Gets the virtual access handler state of a page.
895 * @returns PGM_PAGE_HNDL_VIRT_STATE_* value.
896 * @param pPage Pointer to the physical guest page tracking structure.
897 */
898#define PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) ( (pPage)->u2HandlerVirtStateX )
899
900/**
901 * Sets the virtual access handler state of a page.
902 * @param pPage Pointer to the physical guest page tracking structure.
903 * @param _uState The new state value.
904 */
905#define PGM_PAGE_SET_HNDL_VIRT_STATE(pPage, _uState) \
906 do { (pPage)->u2HandlerVirtStateX = (_uState); } while (0)
907
908/**
909 * Checks if the page has any virtual access handlers.
910 * @returns true/false
911 * @param pPage Pointer to the physical guest page tracking structure.
912 */
913#define PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(pPage) ( (pPage)->u2HandlerVirtStateX != PGM_PAGE_HNDL_VIRT_STATE_NONE )
914
915/**
916 * Same as PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS - can't disable pages in
917 * virtual handlers.
918 * @returns true/false
919 * @param pPage Pointer to the physical guest page tracking structure.
920 */
921#define PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage) PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(pPage)
922
923
924
925/**
926 * Checks if the page has any access handlers, including temporarily disabled ones.
927 * @returns true/false
928 * @param pPage Pointer to the physical guest page tracking structure.
929 */
930#define PGM_PAGE_HAS_ANY_HANDLERS(pPage) \
931 ( (pPage)->u2HandlerPhysStateX != PGM_PAGE_HNDL_PHYS_STATE_NONE \
932 || (pPage)->u2HandlerVirtStateX != PGM_PAGE_HNDL_VIRT_STATE_NONE )
933
934/**
935 * Checks if the page has any active access handlers.
936 * @returns true/false
937 * @param pPage Pointer to the physical guest page tracking structure.
938 */
939#define PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) \
940 ( (pPage)->u2HandlerPhysStateX >= PGM_PAGE_HNDL_PHYS_STATE_WRITE \
941 || (pPage)->u2HandlerVirtStateX >= PGM_PAGE_HNDL_VIRT_STATE_WRITE )
942
943/**
944 * Checks if the page has any active access handlers catching all accesses.
945 * @returns true/false
946 * @param pPage Pointer to the physical guest page tracking structure.
947 */
948#define PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage) \
949 ( (pPage)->u2HandlerPhysStateX == PGM_PAGE_HNDL_PHYS_STATE_ALL \
950 || (pPage)->u2HandlerVirtStateX == PGM_PAGE_HNDL_VIRT_STATE_ALL )
951
952
953/**
954 * Ram range for GC Phys to HC Phys conversion.
955 *
956 * Can be used for HC Virt to GC Phys and HC Virt to HC Phys
957 * conversions too, but we'll let MM handle that for now.
958 *
959 * This structure is used by linked lists in both GC and HC.
960 */
961typedef struct PGMRAMRANGE
962{
963 /** Pointer to the next RAM range - for R3. */
964 R3PTRTYPE(struct PGMRAMRANGE *) pNextR3;
965 /** Pointer to the next RAM range - for R0. */
966 R0PTRTYPE(struct PGMRAMRANGE *) pNextR0;
967 /** Pointer to the next RAM range - for RC. */
968 RCPTRTYPE(struct PGMRAMRANGE *) pNextRC;
969 /** Pointer alignment. */
970 RTRCPTR RCPtrAlignment;
971 /** Start of the range. Page aligned. */
972 RTGCPHYS GCPhys;
973 /** Last address in the range (inclusive). Page aligned (-1). */
974 RTGCPHYS GCPhysLast;
975 /** Size of the range. (Page aligned of course). */
976 RTGCPHYS cb;
977 /** MM_RAM_* flags */
978 uint32_t fFlags;
979 uint32_t u32Alignment; /**< alignment. */
980#ifndef VBOX_WITH_NEW_PHYS_CODE
981 /** R3 virtual lookup ranges for chunks.
982 * Currently only used with MM_RAM_FLAGS_DYNAMIC_ALLOC ranges.
983 * @remarks This is occationally accessed from ring-0!! (not darwin) */
984# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
985 R3PTRTYPE(PRTR3UINTPTR) paChunkR3Ptrs;
986# else
987 R3R0PTRTYPE(PRTR3UINTPTR) paChunkR3Ptrs;
988# endif
989#endif
990 /** Start of the HC mapping of the range. This is only used for MMIO2. */
991 R3PTRTYPE(void *) pvR3;
992 /** The range description. */
993 R3PTRTYPE(const char *) pszDesc;
994
995 /** Padding to make aPage aligned on sizeof(PGMPAGE). */
996#ifdef VBOX_WITH_NEW_PHYS_CODE
997 uint32_t au32Reserved[2];
998#elif HC_ARCH_BITS == 32
999 uint32_t au32Reserved[1];
1000#endif
1001
1002 /** Array of physical guest page tracking structures. */
1003 PGMPAGE aPages[1];
1004} PGMRAMRANGE;
1005/** Pointer to Ram range for GC Phys to HC Phys conversion. */
1006typedef PGMRAMRANGE *PPGMRAMRANGE;
1007
1008/** Return hc ptr corresponding to the ram range and physical offset */
1009#define PGMRAMRANGE_GETHCPTR(pRam, off) \
1010 (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) ? (RTHCPTR)((pRam)->paChunkR3Ptrs[(off) >> PGM_DYNAMIC_CHUNK_SHIFT] + ((off) & PGM_DYNAMIC_CHUNK_OFFSET_MASK)) \
1011 : (RTHCPTR)((RTR3UINTPTR)(pRam)->pvR3 + (off));
1012
1013/**
1014 * Per page tracking structure for ROM image.
1015 *
1016 * A ROM image may have a shadow page, in which case we may have
1017 * two pages backing it. This structure contains the PGMPAGE for
1018 * both while PGMRAMRANGE have a copy of the active one. It is
1019 * important that these aren't out of sync in any regard other
1020 * than page pool tracking data.
1021 */
1022typedef struct PGMROMPAGE
1023{
1024 /** The page structure for the virgin ROM page. */
1025 PGMPAGE Virgin;
1026 /** The page structure for the shadow RAM page. */
1027 PGMPAGE Shadow;
1028 /** The current protection setting. */
1029 PGMROMPROT enmProt;
1030 /** Pad the structure size to a multiple of 8. */
1031 uint32_t u32Padding;
1032} PGMROMPAGE;
1033/** Pointer to a ROM page tracking structure. */
1034typedef PGMROMPAGE *PPGMROMPAGE;
1035
1036
1037/**
1038 * A registered ROM image.
1039 *
1040 * This is needed to keep track of ROM image since they generally
1041 * intrude into a PGMRAMRANGE. It also keeps track of additional
1042 * info like the two page sets (read-only virgin and read-write shadow),
1043 * the current state of each page.
1044 *
1045 * Because access handlers cannot easily be executed in a different
1046 * context, the ROM ranges needs to be accessible and in all contexts.
1047 */
1048typedef struct PGMROMRANGE
1049{
1050 /** Pointer to the next range - R3. */
1051 R3PTRTYPE(struct PGMROMRANGE *) pNextR3;
1052 /** Pointer to the next range - R0. */
1053 R0PTRTYPE(struct PGMROMRANGE *) pNextR0;
1054 /** Pointer to the next range - RC. */
1055 RCPTRTYPE(struct PGMROMRANGE *) pNextRC;
1056 /** Pointer alignment */
1057 RTRCPTR GCPtrAlignment;
1058 /** Address of the range. */
1059 RTGCPHYS GCPhys;
1060 /** Address of the last byte in the range. */
1061 RTGCPHYS GCPhysLast;
1062 /** Size of the range. */
1063 RTGCPHYS cb;
1064 /** The flags (PGMPHYS_ROM_FLAG_*). */
1065 uint32_t fFlags;
1066 /** Alignment padding ensuring that aPages is sizeof(PGMROMPAGE) aligned. */
1067 uint32_t au32Alignemnt[HC_ARCH_BITS == 32 ? 7 : 3];
1068 /** Pointer to the original bits when PGMPHYS_ROM_FLAG_PERMANENT_BINARY was specified.
1069 * This is used for strictness checks. */
1070 R3PTRTYPE(const void *) pvOriginal;
1071 /** The ROM description. */
1072 R3PTRTYPE(const char *) pszDesc;
1073 /** The per page tracking structures. */
1074 PGMROMPAGE aPages[1];
1075} PGMROMRANGE;
1076/** Pointer to a ROM range. */
1077typedef PGMROMRANGE *PPGMROMRANGE;
1078
1079
1080/**
1081 * A registered MMIO2 (= Device RAM) range.
1082 *
1083 * There are a few reason why we need to keep track of these
1084 * registrations. One of them is the deregistration & cleanup
1085 * stuff, while another is that the PGMRAMRANGE associated with
1086 * such a region may have to be removed from the ram range list.
1087 *
1088 * Overlapping with a RAM range has to be 100% or none at all. The
1089 * pages in the existing RAM range must not be ROM nor MMIO. A guru
1090 * meditation will be raised if a partial overlap or an overlap of
1091 * ROM pages is encountered. On an overlap we will free all the
1092 * existing RAM pages and put in the ram range pages instead.
1093 */
1094typedef struct PGMMMIO2RANGE
1095{
1096 /** The owner of the range. (a device) */
1097 PPDMDEVINSR3 pDevInsR3;
1098 /** Pointer to the ring-3 mapping of the allocation. */
1099 RTR3PTR pvR3;
1100 /** Pointer to the next range - R3. */
1101 R3PTRTYPE(struct PGMMMIO2RANGE *) pNextR3;
1102 /** Whether it's mapped or not. */
1103 bool fMapped;
1104 /** Whether it's overlapping or not. */
1105 bool fOverlapping;
1106 /** The PCI region number.
1107 * @remarks This ASSUMES that nobody will ever really need to have multiple
1108 * PCI devices with matching MMIO region numbers on a single device. */
1109 uint8_t iRegion;
1110 /** Alignment padding for putting the ram range on a PGMPAGE alignment boundrary. */
1111 uint8_t abAlignemnt[HC_ARCH_BITS == 32 ? 1 : 5];
1112 /** The associated RAM range. */
1113 PGMRAMRANGE RamRange;
1114} PGMMMIO2RANGE;
1115/** Pointer to a MMIO2 range. */
1116typedef PGMMMIO2RANGE *PPGMMMIO2RANGE;
1117
1118
1119
1120
1121/**
1122 * PGMPhysRead/Write cache entry
1123 */
1124typedef struct PGMPHYSCACHEENTRY
1125{
1126 /** R3 pointer to physical page. */
1127 R3PTRTYPE(uint8_t *) pbR3;
1128 /** GC Physical address for cache entry */
1129 RTGCPHYS GCPhys;
1130#if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
1131 RTGCPHYS u32Padding0; /**< alignment padding. */
1132#endif
1133} PGMPHYSCACHEENTRY;
1134
1135/**
1136 * PGMPhysRead/Write cache to reduce REM memory access overhead
1137 */
1138typedef struct PGMPHYSCACHE
1139{
1140 /** Bitmap of valid cache entries */
1141 uint64_t aEntries;
1142 /** Cache entries */
1143 PGMPHYSCACHEENTRY Entry[PGM_MAX_PHYSCACHE_ENTRIES];
1144} PGMPHYSCACHE;
1145
1146
1147/** Pointer to an allocation chunk ring-3 mapping. */
1148typedef struct PGMCHUNKR3MAP *PPGMCHUNKR3MAP;
1149/** Pointer to an allocation chunk ring-3 mapping pointer. */
1150typedef PPGMCHUNKR3MAP *PPPGMCHUNKR3MAP;
1151
1152/**
1153 * Ring-3 tracking structore for an allocation chunk ring-3 mapping.
1154 *
1155 * The primary tree (Core) uses the chunk id as key.
1156 * The secondary tree (AgeCore) is used for ageing and uses ageing sequence number as key.
1157 */
1158typedef struct PGMCHUNKR3MAP
1159{
1160 /** The key is the chunk id. */
1161 AVLU32NODECORE Core;
1162 /** The key is the ageing sequence number. */
1163 AVLLU32NODECORE AgeCore;
1164 /** The current age thingy. */
1165 uint32_t iAge;
1166 /** The current reference count. */
1167 uint32_t volatile cRefs;
1168 /** The current permanent reference count. */
1169 uint32_t volatile cPermRefs;
1170 /** The mapping address. */
1171 void *pv;
1172} PGMCHUNKR3MAP;
1173
1174/**
1175 * Allocation chunk ring-3 mapping TLB entry.
1176 */
1177typedef struct PGMCHUNKR3MAPTLBE
1178{
1179 /** The chunk id. */
1180 uint32_t volatile idChunk;
1181#if HC_ARCH_BITS == 64
1182 uint32_t u32Padding; /**< alignment padding. */
1183#endif
1184 /** The chunk map. */
1185#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1186 R3PTRTYPE(PPGMCHUNKR3MAP) volatile pChunk;
1187#else
1188 R3R0PTRTYPE(PPGMCHUNKR3MAP) volatile pChunk;
1189#endif
1190} PGMCHUNKR3MAPTLBE;
1191/** Pointer to the an allocation chunk ring-3 mapping TLB entry. */
1192typedef PGMCHUNKR3MAPTLBE *PPGMCHUNKR3MAPTLBE;
1193
1194/** The number of TLB entries in PGMCHUNKR3MAPTLB.
1195 * @remark Must be a power of two value. */
1196#define PGM_CHUNKR3MAPTLB_ENTRIES 32
1197
1198/**
1199 * Allocation chunk ring-3 mapping TLB.
1200 *
1201 * @remarks We use a TLB to speed up lookups by avoiding walking the AVL.
1202 * At first glance this might look kinda odd since AVL trees are
1203 * supposed to give the most optimial lookup times of all trees
1204 * due to their balancing. However, take a tree with 1023 nodes
1205 * in it, that's 10 levels, meaning that most searches has to go
1206 * down 9 levels before they find what they want. This isn't fast
1207 * compared to a TLB hit. There is the factor of cache misses,
1208 * and of course the problem with trees and branch prediction.
1209 * This is why we use TLBs in front of most of the trees.
1210 *
1211 * @todo Generalize this TLB + AVL stuff, shouldn't be all that
1212 * difficult when we switch to the new inlined AVL trees (from kStuff).
1213 */
1214typedef struct PGMCHUNKR3MAPTLB
1215{
1216 /** The TLB entries. */
1217 PGMCHUNKR3MAPTLBE aEntries[PGM_CHUNKR3MAPTLB_ENTRIES];
1218} PGMCHUNKR3MAPTLB;
1219
1220/**
1221 * Calculates the index of a guest page in the Ring-3 Chunk TLB.
1222 * @returns Chunk TLB index.
1223 * @param idChunk The Chunk ID.
1224 */
1225#define PGM_CHUNKR3MAPTLB_IDX(idChunk) ( (idChunk) & (PGM_CHUNKR3MAPTLB_ENTRIES - 1) )
1226
1227
1228/**
1229 * Ring-3 guest page mapping TLB entry.
1230 * @remarks used in ring-0 as well at the moment.
1231 */
1232typedef struct PGMPAGER3MAPTLBE
1233{
1234 /** Address of the page. */
1235 RTGCPHYS volatile GCPhys;
1236 /** The guest page. */
1237#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1238 R3PTRTYPE(PPGMPAGE) volatile pPage;
1239#else
1240 R3R0PTRTYPE(PPGMPAGE) volatile pPage;
1241#endif
1242 /** Pointer to the page mapping tracking structure, PGMCHUNKR3MAP. */
1243#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1244 R3PTRTYPE(PPGMCHUNKR3MAP) volatile pMap;
1245#else
1246 R3R0PTRTYPE(PPGMCHUNKR3MAP) volatile pMap;
1247#endif
1248 /** The address */
1249#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1250 R3PTRTYPE(void *) volatile pv;
1251#else
1252 R3R0PTRTYPE(void *) volatile pv;
1253#endif
1254#if HC_ARCH_BITS == 32
1255 uint32_t u32Padding; /**< alignment padding. */
1256#endif
1257} PGMPAGER3MAPTLBE;
1258/** Pointer to an entry in the HC physical TLB. */
1259typedef PGMPAGER3MAPTLBE *PPGMPAGER3MAPTLBE;
1260
1261
1262/** The number of entries in the ring-3 guest page mapping TLB.
1263 * @remarks The value must be a power of two. */
1264#define PGM_PAGER3MAPTLB_ENTRIES 64
1265
1266/**
1267 * Ring-3 guest page mapping TLB.
1268 * @remarks used in ring-0 as well at the moment.
1269 */
1270typedef struct PGMPAGER3MAPTLB
1271{
1272 /** The TLB entries. */
1273 PGMPAGER3MAPTLBE aEntries[PGM_PAGER3MAPTLB_ENTRIES];
1274} PGMPAGER3MAPTLB;
1275/** Pointer to the ring-3 guest page mapping TLB. */
1276typedef PGMPAGER3MAPTLB *PPGMPAGER3MAPTLB;
1277
1278/**
1279 * Calculates the index of the TLB entry for the specified guest page.
1280 * @returns Physical TLB index.
1281 * @param GCPhys The guest physical address.
1282 */
1283#define PGM_PAGER3MAPTLB_IDX(GCPhys) ( ((GCPhys) >> PAGE_SHIFT) & (PGM_PAGER3MAPTLB_ENTRIES - 1) )
1284
1285
1286/**
1287 * Mapping cache usage set entry.
1288 *
1289 * @remarks 16-bit ints was choosen as the set is not expected to be used beyond
1290 * the dynamic ring-0 and (to some extent) raw-mode context mapping
1291 * cache. If it's extended to include ring-3, well, then something will
1292 * have be changed here...
1293 */
1294typedef struct PGMMAPSETENTRY
1295{
1296 /** The mapping cache index. */
1297 uint16_t iPage;
1298 /** The number of references.
1299 * The max is UINT16_MAX - 1. */
1300 uint16_t cRefs;
1301 /** Pointer to the page. */
1302 RTR0PTR pvPage;
1303 /** The physical address for this entry. */
1304 RTHCPHYS HCPhys;
1305} PGMMAPSETENTRY;
1306/** Pointer to a mapping cache usage set entry. */
1307typedef PGMMAPSETENTRY *PPGMMAPSETENTRY;
1308
1309/**
1310 * Mapping cache usage set.
1311 *
1312 * This is used in ring-0 and the raw-mode context to track dynamic mappings
1313 * done during exits / traps. The set is
1314 */
1315typedef struct PGMMAPSET
1316{
1317 /** The number of occupied entries.
1318 * This is PGMMAPSET_CLOSED if the set is closed and we're not supposed to do
1319 * dynamic mappings. */
1320 uint32_t cEntries;
1321 /** The start of the current subset.
1322 * This is UINT32_MAX if no subset is currently open. */
1323 uint32_t iSubset;
1324 /** The index of the current CPU, only valid if the set is open. */
1325 int32_t iCpu;
1326 /** The entries. */
1327 PGMMAPSETENTRY aEntries[64];
1328 /** HCPhys -> iEntry fast lookup table.
1329 * Use PGMMAPSET_HASH for hashing.
1330 * The entries may or may not be valid, check against cEntries. */
1331 uint8_t aiHashTable[128];
1332} PGMMAPSET;
1333/** Pointer to the mapping cache set. */
1334typedef PGMMAPSET *PPGMMAPSET;
1335
1336/** PGMMAPSET::cEntries value for a closed set. */
1337#define PGMMAPSET_CLOSED UINT32_C(0xdeadc0fe)
1338
1339/** Hash function for aiHashTable. */
1340#define PGMMAPSET_HASH(HCPhys) (((HCPhys) >> PAGE_SHIFT) & 127)
1341
1342/** The max fill size (strict builds). */
1343#define PGMMAPSET_MAX_FILL (64U * 80U / 100U)
1344
1345
1346/** @name Context neutrual page mapper TLB.
1347 *
1348 * Hoping to avoid some code and bug duplication parts of the GCxxx->CCPtr
1349 * code is writting in a kind of context neutrual way. Time will show whether
1350 * this actually makes sense or not...
1351 *
1352 * @todo this needs to be reconsidered and dropped/redone since the ring-0
1353 * context ends up using a global mapping cache on some platforms
1354 * (darwin).
1355 *
1356 * @{ */
1357/** @typedef PPGMPAGEMAPTLB
1358 * The page mapper TLB pointer type for the current context. */
1359/** @typedef PPGMPAGEMAPTLB
1360 * The page mapper TLB entry pointer type for the current context. */
1361/** @typedef PPGMPAGEMAPTLB
1362 * The page mapper TLB entry pointer pointer type for the current context. */
1363/** @def PGM_PAGEMAPTLB_ENTRIES
1364 * The number of TLB entries in the page mapper TLB for the current context. */
1365/** @def PGM_PAGEMAPTLB_IDX
1366 * Calculate the TLB index for a guest physical address.
1367 * @returns The TLB index.
1368 * @param GCPhys The guest physical address. */
1369/** @typedef PPGMPAGEMAP
1370 * Pointer to a page mapper unit for current context. */
1371/** @typedef PPPGMPAGEMAP
1372 * Pointer to a page mapper unit pointer for current context. */
1373#ifdef IN_RC
1374// typedef PPGMPAGEGCMAPTLB PPGMPAGEMAPTLB;
1375// typedef PPGMPAGEGCMAPTLBE PPGMPAGEMAPTLBE;
1376// typedef PPGMPAGEGCMAPTLBE *PPPGMPAGEMAPTLBE;
1377# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGEGCMAPTLB_ENTRIES
1378# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGEGCMAPTLB_IDX(GCPhys)
1379 typedef void * PPGMPAGEMAP;
1380 typedef void ** PPPGMPAGEMAP;
1381//#elif IN_RING0
1382// typedef PPGMPAGER0MAPTLB PPGMPAGEMAPTLB;
1383// typedef PPGMPAGER0MAPTLBE PPGMPAGEMAPTLBE;
1384// typedef PPGMPAGER0MAPTLBE *PPPGMPAGEMAPTLBE;
1385//# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGER0MAPTLB_ENTRIES
1386//# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGER0MAPTLB_IDX(GCPhys)
1387// typedef PPGMCHUNKR0MAP PPGMPAGEMAP;
1388// typedef PPPGMCHUNKR0MAP PPPGMPAGEMAP;
1389#else
1390 typedef PPGMPAGER3MAPTLB PPGMPAGEMAPTLB;
1391 typedef PPGMPAGER3MAPTLBE PPGMPAGEMAPTLBE;
1392 typedef PPGMPAGER3MAPTLBE *PPPGMPAGEMAPTLBE;
1393# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGER3MAPTLB_ENTRIES
1394# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGER3MAPTLB_IDX(GCPhys)
1395 typedef PPGMCHUNKR3MAP PPGMPAGEMAP;
1396 typedef PPPGMCHUNKR3MAP PPPGMPAGEMAP;
1397#endif
1398/** @} */
1399
1400
1401/** @name PGM Pool Indexes.
1402 * Aka. the unique shadow page identifier.
1403 * @{ */
1404/** NIL page pool IDX. */
1405#define NIL_PGMPOOL_IDX 0
1406/** The first normal index. */
1407#define PGMPOOL_IDX_FIRST_SPECIAL 1
1408/** Page directory (32-bit root). */
1409#define PGMPOOL_IDX_PD 1
1410#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
1411/** Page directory (32-bit root). */
1412#define PGMPOOL_IDX_PD 1
1413/** Page Directory Pointer Table (PAE root). */
1414#define PGMPOOL_IDX_PDPT 2
1415/** AMD64 CR3 level index.*/
1416#define PGMPOOL_IDX_AMD64_CR3 3
1417/** Nested paging root.*/
1418#define PGMPOOL_IDX_NESTED_ROOT 4
1419/** The first normal index. */
1420#define PGMPOOL_IDX_FIRST 5
1421#else
1422/** The extended PAE page directory (2048 entries, works as root currently). */
1423#define PGMPOOL_IDX_PAE_PD 2
1424/** PAE Page Directory Table 0. */
1425#define PGMPOOL_IDX_PAE_PD_0 3
1426/** PAE Page Directory Table 1. */
1427#define PGMPOOL_IDX_PAE_PD_1 4
1428/** PAE Page Directory Table 2. */
1429#define PGMPOOL_IDX_PAE_PD_2 5
1430/** PAE Page Directory Table 3. */
1431#define PGMPOOL_IDX_PAE_PD_3 6
1432/** Page Directory Pointer Table (PAE root, not currently used). */
1433#define PGMPOOL_IDX_PDPT 7
1434/** AMD64 CR3 level index.*/
1435#define PGMPOOL_IDX_AMD64_CR3 8
1436/** Nested paging root.*/
1437#define PGMPOOL_IDX_NESTED_ROOT 9
1438/** The first normal index. */
1439#define PGMPOOL_IDX_FIRST 10
1440#endif
1441/** The last valid index. (inclusive, 14 bits) */
1442#define PGMPOOL_IDX_LAST 0x3fff
1443/** @} */
1444
1445/** The NIL index for the parent chain. */
1446#define NIL_PGMPOOL_USER_INDEX ((uint16_t)0xffff)
1447
1448/**
1449 * Node in the chain linking a shadowed page to it's parent (user).
1450 */
1451#pragma pack(1)
1452typedef struct PGMPOOLUSER
1453{
1454 /** The index to the next item in the chain. NIL_PGMPOOL_USER_INDEX is no next. */
1455 uint16_t iNext;
1456 /** The user page index. */
1457 uint16_t iUser;
1458 /** Index into the user table. */
1459 uint32_t iUserTable;
1460} PGMPOOLUSER, *PPGMPOOLUSER;
1461typedef const PGMPOOLUSER *PCPGMPOOLUSER;
1462#pragma pack()
1463
1464
1465/** The NIL index for the phys ext chain. */
1466#define NIL_PGMPOOL_PHYSEXT_INDEX ((uint16_t)0xffff)
1467
1468/**
1469 * Node in the chain of physical cross reference extents.
1470 */
1471#pragma pack(1)
1472typedef struct PGMPOOLPHYSEXT
1473{
1474 /** The index to the next item in the chain. NIL_PGMPOOL_PHYSEXT_INDEX is no next. */
1475 uint16_t iNext;
1476 /** The user page index. */
1477 uint16_t aidx[3];
1478} PGMPOOLPHYSEXT, *PPGMPOOLPHYSEXT;
1479typedef const PGMPOOLPHYSEXT *PCPGMPOOLPHYSEXT;
1480#pragma pack()
1481
1482
1483/**
1484 * The kind of page that's being shadowed.
1485 */
1486typedef enum PGMPOOLKIND
1487{
1488 /** The virtual invalid 0 entry. */
1489 PGMPOOLKIND_INVALID = 0,
1490 /** The entry is free (=unused). */
1491 PGMPOOLKIND_FREE,
1492
1493 /** Shw: 32-bit page table; Gst: no paging */
1494 PGMPOOLKIND_32BIT_PT_FOR_PHYS,
1495 /** Shw: 32-bit page table; Gst: 32-bit page table. */
1496 PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT,
1497 /** Shw: 32-bit page table; Gst: 4MB page. */
1498 PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB,
1499 /** Shw: PAE page table; Gst: no paging */
1500 PGMPOOLKIND_PAE_PT_FOR_PHYS,
1501 /** Shw: PAE page table; Gst: 32-bit page table. */
1502 PGMPOOLKIND_PAE_PT_FOR_32BIT_PT,
1503 /** Shw: PAE page table; Gst: Half of a 4MB page. */
1504 PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB,
1505 /** Shw: PAE page table; Gst: PAE page table. */
1506 PGMPOOLKIND_PAE_PT_FOR_PAE_PT,
1507 /** Shw: PAE page table; Gst: 2MB page. */
1508 PGMPOOLKIND_PAE_PT_FOR_PAE_2MB,
1509
1510 /** Shw: 32-bit page directory. Gst: 32-bit page directory. */
1511 PGMPOOLKIND_32BIT_PD,
1512 /** Shw: 32-bit page directory. Gst: real mode. */
1513 PGMPOOLKIND_32BIT_PD_PHYS_REAL,
1514 /** Shw: 32-bit page directory. Gst: protected mode without paging. */
1515 PGMPOOLKIND_32BIT_PD_PHYS_PROT,
1516 /** Shw: PAE page directory; Gst: 32-bit page directory. */
1517 PGMPOOLKIND_PAE_PD_FOR_32BIT_PD,
1518 /** Shw: PAE page directory; Gst: PAE page directory. */
1519 PGMPOOLKIND_PAE_PD_FOR_PAE_PD,
1520 /** Shw: PAE page directory; Gst: real mode. */
1521 PGMPOOLKIND_PAE_PD_PHYS_REAL,
1522 /** Shw: PAE page directory; Gst: protected mode without paging. */
1523 PGMPOOLKIND_PAE_PD_PHYS_PROT,
1524
1525 /** Shw: PAE page directory pointer table (legacy, 4 entries); Gst 32 bits paging. */
1526 PGMPOOLKIND_PAE_PDPT_FOR_32BIT,
1527 /** Shw: PAE page directory pointer table (legacy, 4 entries); Gst PAE PDPT. */
1528 PGMPOOLKIND_PAE_PDPT,
1529
1530 /** Shw: 64-bit page directory pointer table; Gst: 64-bit page directory pointer table. */
1531 PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT,
1532 /** Shw: 64-bit page directory pointer table; Gst: no paging */
1533 PGMPOOLKIND_64BIT_PDPT_FOR_PHYS,
1534 /** Shw: 64-bit page directory table; Gst: 64-bit page directory table. */
1535 PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD,
1536 /** Shw: 64-bit page directory table; Gst: no paging */
1537 PGMPOOLKIND_64BIT_PD_FOR_PHYS,
1538
1539 /** Shw: 64-bit PML4; Gst: 64-bit PML4. */
1540 PGMPOOLKIND_64BIT_PML4_FOR_64BIT_PML4,
1541
1542 /** Shw: EPT page directory pointer table; Gst: no paging */
1543 PGMPOOLKIND_EPT_PDPT_FOR_PHYS,
1544 /** Shw: EPT page directory table; Gst: no paging */
1545 PGMPOOLKIND_EPT_PD_FOR_PHYS,
1546 /** Shw: EPT page table; Gst: no paging */
1547 PGMPOOLKIND_EPT_PT_FOR_PHYS,
1548
1549#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1550 /** Shw: Root 32-bit page directory. */
1551 PGMPOOLKIND_ROOT_32BIT_PD,
1552 /** Shw: Root PAE page directory */
1553 PGMPOOLKIND_ROOT_PAE_PD,
1554 /** Shw: Root PAE page directory pointer table (legacy, 4 entries). */
1555 PGMPOOLKIND_ROOT_PDPT,
1556#endif
1557 /** Shw: Root Nested paging table. */
1558 PGMPOOLKIND_ROOT_NESTED,
1559
1560 /** The last valid entry. */
1561 PGMPOOLKIND_LAST = PGMPOOLKIND_ROOT_NESTED
1562} PGMPOOLKIND;
1563
1564
1565/**
1566 * The tracking data for a page in the pool.
1567 */
1568typedef struct PGMPOOLPAGE
1569{
1570 /** AVL node code with the (R3) physical address of this page. */
1571 AVLOHCPHYSNODECORE Core;
1572 /** Pointer to the R3 mapping of the page. */
1573#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1574 R3PTRTYPE(void *) pvPageR3;
1575#else
1576 R3R0PTRTYPE(void *) pvPageR3;
1577#endif
1578 /** The guest physical address. */
1579#if HC_ARCH_BITS == 32 && GC_ARCH_BITS == 64
1580 uint32_t Alignment0;
1581#endif
1582 RTGCPHYS GCPhys;
1583 /** The kind of page we're shadowing. (This is really a PGMPOOLKIND enum.) */
1584 uint8_t enmKind;
1585 uint8_t bPadding;
1586 /** The index of this page. */
1587 uint16_t idx;
1588 /** The next entry in the list this page currently resides in.
1589 * It's either in the free list or in the GCPhys hash. */
1590 uint16_t iNext;
1591#ifdef PGMPOOL_WITH_USER_TRACKING
1592 /** Head of the user chain. NIL_PGMPOOL_USER_INDEX if not currently in use. */
1593 uint16_t iUserHead;
1594 /** The number of present entries. */
1595 uint16_t cPresent;
1596 /** The first entry in the table which is present. */
1597 uint16_t iFirstPresent;
1598#endif
1599#ifdef PGMPOOL_WITH_MONITORING
1600 /** The number of modifications to the monitored page. */
1601 uint16_t cModifications;
1602 /** The next modified page. NIL_PGMPOOL_IDX if tail. */
1603 uint16_t iModifiedNext;
1604 /** The previous modified page. NIL_PGMPOOL_IDX if head. */
1605 uint16_t iModifiedPrev;
1606 /** The next page sharing access handler. NIL_PGMPOOL_IDX if tail. */
1607 uint16_t iMonitoredNext;
1608 /** The previous page sharing access handler. NIL_PGMPOOL_IDX if head. */
1609 uint16_t iMonitoredPrev;
1610#endif
1611#ifdef PGMPOOL_WITH_CACHE
1612 /** The next page in the age list. */
1613 uint16_t iAgeNext;
1614 /** The previous page in the age list. */
1615 uint16_t iAgePrev;
1616#endif /* PGMPOOL_WITH_CACHE */
1617 /** Used to indicate that the page is zeroed. */
1618 bool fZeroed;
1619 /** Used to indicate that a PT has non-global entries. */
1620 bool fSeenNonGlobal;
1621 /** Used to indicate that we're monitoring writes to the guest page. */
1622 bool fMonitored;
1623 /** Used to indicate that the page is in the cache (e.g. in the GCPhys hash).
1624 * (All pages are in the age list.) */
1625 bool fCached;
1626 /** This is used by the R3 access handlers when invoked by an async thread.
1627 * It's a hack required because of REMR3NotifyHandlerPhysicalDeregister. */
1628 bool volatile fReusedFlushPending;
1629 /** Used to indicate that the guest is mapping the page is also used as a CR3.
1630 * In these cases the access handler acts differently and will check
1631 * for mapping conflicts like the normal CR3 handler.
1632 * @todo When we change the CR3 shadowing to use pool pages, this flag can be
1633 * replaced by a list of pages which share access handler.
1634 */
1635 bool fCR3Mix;
1636} PGMPOOLPAGE, *PPGMPOOLPAGE, **PPPGMPOOLPAGE;
1637
1638
1639#ifdef PGMPOOL_WITH_CACHE
1640/** The hash table size. */
1641# define PGMPOOL_HASH_SIZE 0x40
1642/** The hash function. */
1643# define PGMPOOL_HASH(GCPhys) ( ((GCPhys) >> PAGE_SHIFT) & (PGMPOOL_HASH_SIZE - 1) )
1644#endif
1645
1646
1647/**
1648 * The shadow page pool instance data.
1649 *
1650 * It's all one big allocation made at init time, except for the
1651 * pages that is. The user nodes follows immediatly after the
1652 * page structures.
1653 */
1654typedef struct PGMPOOL
1655{
1656 /** The VM handle - R3 Ptr. */
1657 PVMR3 pVMR3;
1658 /** The VM handle - R0 Ptr. */
1659 PVMR0 pVMR0;
1660 /** The VM handle - RC Ptr. */
1661 PVMRC pVMRC;
1662 /** The max pool size. This includes the special IDs. */
1663 uint16_t cMaxPages;
1664 /** The current pool size. */
1665 uint16_t cCurPages;
1666 /** The head of the free page list. */
1667 uint16_t iFreeHead;
1668 /* Padding. */
1669 uint16_t u16Padding;
1670#ifdef PGMPOOL_WITH_USER_TRACKING
1671 /** Head of the chain of free user nodes. */
1672 uint16_t iUserFreeHead;
1673 /** The number of user nodes we've allocated. */
1674 uint16_t cMaxUsers;
1675 /** The number of present page table entries in the entire pool. */
1676 uint32_t cPresent;
1677 /** Pointer to the array of user nodes - RC pointer. */
1678 RCPTRTYPE(PPGMPOOLUSER) paUsersRC;
1679 /** Pointer to the array of user nodes - R3 pointer. */
1680 R3PTRTYPE(PPGMPOOLUSER) paUsersR3;
1681 /** Pointer to the array of user nodes - R0 pointer. */
1682 R0PTRTYPE(PPGMPOOLUSER) paUsersR0;
1683#endif /* PGMPOOL_WITH_USER_TRACKING */
1684#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1685 /** Head of the chain of free phys ext nodes. */
1686 uint16_t iPhysExtFreeHead;
1687 /** The number of user nodes we've allocated. */
1688 uint16_t cMaxPhysExts;
1689 /** Pointer to the array of physical xref extent - RC pointer. */
1690 RCPTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsRC;
1691 /** Pointer to the array of physical xref extent nodes - R3 pointer. */
1692 R3PTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsR3;
1693 /** Pointer to the array of physical xref extent nodes - R0 pointer. */
1694 R0PTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsR0;
1695#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
1696#ifdef PGMPOOL_WITH_CACHE
1697 /** Hash table for GCPhys addresses. */
1698 uint16_t aiHash[PGMPOOL_HASH_SIZE];
1699 /** The head of the age list. */
1700 uint16_t iAgeHead;
1701 /** The tail of the age list. */
1702 uint16_t iAgeTail;
1703 /** Set if the cache is enabled. */
1704 bool fCacheEnabled;
1705#endif /* PGMPOOL_WITH_CACHE */
1706#ifdef PGMPOOL_WITH_MONITORING
1707 /** Head of the list of modified pages. */
1708 uint16_t iModifiedHead;
1709 /** The current number of modified pages. */
1710 uint16_t cModifiedPages;
1711 /** Access handler, RC. */
1712 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnAccessHandlerRC;
1713 /** Access handler, R0. */
1714 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnAccessHandlerR0;
1715 /** Access handler, R3. */
1716 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnAccessHandlerR3;
1717 /** The access handler description (HC ptr). */
1718 R3PTRTYPE(const char *) pszAccessHandler;
1719#endif /* PGMPOOL_WITH_MONITORING */
1720 /** The number of pages currently in use. */
1721 uint16_t cUsedPages;
1722#ifdef VBOX_WITH_STATISTICS
1723 /** The high wather mark for cUsedPages. */
1724 uint16_t cUsedPagesHigh;
1725 uint32_t Alignment1; /**< Align the next member on a 64-bit boundrary. */
1726 /** Profiling pgmPoolAlloc(). */
1727 STAMPROFILEADV StatAlloc;
1728 /** Profiling pgmPoolClearAll(). */
1729 STAMPROFILE StatClearAll;
1730 /** Profiling pgmPoolFlushAllInt(). */
1731 STAMPROFILE StatFlushAllInt;
1732 /** Profiling pgmPoolFlushPage(). */
1733 STAMPROFILE StatFlushPage;
1734 /** Profiling pgmPoolFree(). */
1735 STAMPROFILE StatFree;
1736 /** Profiling time spent zeroing pages. */
1737 STAMPROFILE StatZeroPage;
1738# ifdef PGMPOOL_WITH_USER_TRACKING
1739 /** Profiling of pgmPoolTrackDeref. */
1740 STAMPROFILE StatTrackDeref;
1741 /** Profiling pgmTrackFlushGCPhysPT. */
1742 STAMPROFILE StatTrackFlushGCPhysPT;
1743 /** Profiling pgmTrackFlushGCPhysPTs. */
1744 STAMPROFILE StatTrackFlushGCPhysPTs;
1745 /** Profiling pgmTrackFlushGCPhysPTsSlow. */
1746 STAMPROFILE StatTrackFlushGCPhysPTsSlow;
1747 /** Number of times we've been out of user records. */
1748 STAMCOUNTER StatTrackFreeUpOneUser;
1749# endif
1750# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1751 /** Profiling deref activity related tracking GC physical pages. */
1752 STAMPROFILE StatTrackDerefGCPhys;
1753 /** Number of linear searches for a HCPhys in the ram ranges. */
1754 STAMCOUNTER StatTrackLinearRamSearches;
1755 /** The number of failing pgmPoolTrackPhysExtAlloc calls. */
1756 STAMCOUNTER StamTrackPhysExtAllocFailures;
1757# endif
1758# ifdef PGMPOOL_WITH_MONITORING
1759 /** Profiling the RC/R0 access handler. */
1760 STAMPROFILE StatMonitorRZ;
1761 /** Times we've failed interpreting the instruction. */
1762 STAMCOUNTER StatMonitorRZEmulateInstr;
1763 /** Profiling the pgmPoolFlushPage calls made from the RC/R0 access handler. */
1764 STAMPROFILE StatMonitorRZFlushPage;
1765 /** Times we've detected fork(). */
1766 STAMCOUNTER StatMonitorRZFork;
1767 /** Profiling the RC/R0 access we've handled (except REP STOSD). */
1768 STAMPROFILE StatMonitorRZHandled;
1769 /** Times we've failed interpreting a patch code instruction. */
1770 STAMCOUNTER StatMonitorRZIntrFailPatch1;
1771 /** Times we've failed interpreting a patch code instruction during flushing. */
1772 STAMCOUNTER StatMonitorRZIntrFailPatch2;
1773 /** The number of times we've seen rep prefixes we can't handle. */
1774 STAMCOUNTER StatMonitorRZRepPrefix;
1775 /** Profiling the REP STOSD cases we've handled. */
1776 STAMPROFILE StatMonitorRZRepStosd;
1777
1778 /** Profiling the R3 access handler. */
1779 STAMPROFILE StatMonitorR3;
1780 /** Times we've failed interpreting the instruction. */
1781 STAMCOUNTER StatMonitorR3EmulateInstr;
1782 /** Profiling the pgmPoolFlushPage calls made from the R3 access handler. */
1783 STAMPROFILE StatMonitorR3FlushPage;
1784 /** Times we've detected fork(). */
1785 STAMCOUNTER StatMonitorR3Fork;
1786 /** Profiling the R3 access we've handled (except REP STOSD). */
1787 STAMPROFILE StatMonitorR3Handled;
1788 /** The number of times we've seen rep prefixes we can't handle. */
1789 STAMCOUNTER StatMonitorR3RepPrefix;
1790 /** Profiling the REP STOSD cases we've handled. */
1791 STAMPROFILE StatMonitorR3RepStosd;
1792 /** The number of times we're called in an async thread an need to flush. */
1793 STAMCOUNTER StatMonitorR3Async;
1794 /** The high wather mark for cModifiedPages. */
1795 uint16_t cModifiedPagesHigh;
1796 uint16_t Alignment2[3]; /**< Align the next member on a 64-bit boundrary. */
1797# endif
1798# ifdef PGMPOOL_WITH_CACHE
1799 /** The number of cache hits. */
1800 STAMCOUNTER StatCacheHits;
1801 /** The number of cache misses. */
1802 STAMCOUNTER StatCacheMisses;
1803 /** The number of times we've got a conflict of 'kind' in the cache. */
1804 STAMCOUNTER StatCacheKindMismatches;
1805 /** Number of times we've been out of pages. */
1806 STAMCOUNTER StatCacheFreeUpOne;
1807 /** The number of cacheable allocations. */
1808 STAMCOUNTER StatCacheCacheable;
1809 /** The number of uncacheable allocations. */
1810 STAMCOUNTER StatCacheUncacheable;
1811# endif
1812#elif HC_ARCH_BITS == 64
1813 uint32_t Alignment3; /**< Align the next member on a 64-bit boundrary. */
1814#endif
1815 /** The AVL tree for looking up a page by its HC physical address. */
1816 AVLOHCPHYSTREE HCPhysTree;
1817 uint32_t Alignment4; /**< Align the next member on a 64-bit boundrary. */
1818 /** Array of pages. (cMaxPages in length)
1819 * The Id is the index into thist array.
1820 */
1821 PGMPOOLPAGE aPages[PGMPOOL_IDX_FIRST];
1822} PGMPOOL, *PPGMPOOL, **PPPGMPOOL;
1823
1824
1825#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1826DECLINLINE(void *) pgmPoolMapPageInlined(PVM pVM, PPGMPOOLPAGE pPage);
1827#endif
1828
1829/** @def PGMPOOL_PAGE_2_PTR
1830 * Maps a pool page pool into the current context.
1831 *
1832 * @returns VBox status code.
1833 * @param pVM The VM handle.
1834 * @param pPage The pool page.
1835 *
1836 * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the
1837 * small page window employeed by that function. Be careful.
1838 * @remark There is no need to assert on the result.
1839 */
1840#if defined(IN_RC)
1841# define PGMPOOL_PAGE_2_PTR(pVM, pPage) pgmPoolMapPageInlined(&(pVM)->pgm.s, (pPage))
1842#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1843# define PGMPOOL_PAGE_2_PTR(pVM, pPage) pgmPoolMapPageInlined(&(pVM)->pgm.s, (pPage))
1844#elif defined(VBOX_STRICT)
1845# define PGMPOOL_PAGE_2_PTR(pVM, pPage) pgmPoolMapPageStrict(pPage)
1846DECLINLINE(void *) pgmPoolMapPageStrict(PPGMPOOLPAGE pPage)
1847{
1848 Assert(pPage->pvPageR3);
1849 return pPage->pvPageR3;
1850}
1851#else
1852# define PGMPOOL_PAGE_2_PTR(pVM, pPage) ((pPage)->pvPageR3)
1853#endif
1854
1855/** @def PGMPOOL_PAGE_2_PTR_BY_PGM
1856 * Maps a pool page pool into the current context.
1857 *
1858 * @returns VBox status code.
1859 * @param pPGM Pointer to the PGM instance data.
1860 * @param pPage The pool page.
1861 *
1862 * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the
1863 * small page window employeed by that function. Be careful.
1864 * @remark There is no need to assert on the result.
1865 */
1866#if defined(IN_RC)
1867# define PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pPage) pgmPoolMapPageInlined((pPGM), (pPage))
1868#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1869# define PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pPage) pgmPoolMapPageInlined((pPGM), (pPage))
1870#else
1871# define PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pPage) PGMPOOL_PAGE_2_PTR(PGM2VM(pPGM), pPage)
1872#endif
1873
1874
1875
1876/**
1877 * Trees are using self relative offsets as pointers.
1878 * So, all its data, including the root pointer, must be in the heap for HC and GC
1879 * to have the same layout.
1880 */
1881typedef struct PGMTREES
1882{
1883 /** Physical access handlers (AVL range+offsetptr tree). */
1884 AVLROGCPHYSTREE PhysHandlers;
1885 /** Virtual access handlers (AVL range + GC ptr tree). */
1886 AVLROGCPTRTREE VirtHandlers;
1887 /** Virtual access handlers (Phys range AVL range + offsetptr tree). */
1888 AVLROGCPHYSTREE PhysToVirtHandlers;
1889 /** Virtual access handlers for the hypervisor (AVL range + GC ptr tree). */
1890 AVLROGCPTRTREE HyperVirtHandlers;
1891} PGMTREES;
1892/** Pointer to PGM trees. */
1893typedef PGMTREES *PPGMTREES;
1894
1895
1896/** @name Paging mode macros
1897 * @{ */
1898#ifdef IN_RC
1899# define PGM_CTX(a,b) a##RC##b
1900# define PGM_CTX_STR(a,b) a "GC" b
1901# define PGM_CTX_DECL(type) VMMRCDECL(type)
1902#else
1903# ifdef IN_RING3
1904# define PGM_CTX(a,b) a##R3##b
1905# define PGM_CTX_STR(a,b) a "R3" b
1906# define PGM_CTX_DECL(type) DECLCALLBACK(type)
1907# else
1908# define PGM_CTX(a,b) a##R0##b
1909# define PGM_CTX_STR(a,b) a "R0" b
1910# define PGM_CTX_DECL(type) VMMDECL(type)
1911# endif
1912#endif
1913
1914#define PGM_GST_NAME_REAL(name) PGM_CTX(pgm,GstReal##name)
1915#define PGM_GST_NAME_RC_REAL_STR(name) "pgmRCGstReal" #name
1916#define PGM_GST_NAME_R0_REAL_STR(name) "pgmR0GstReal" #name
1917#define PGM_GST_NAME_PROT(name) PGM_CTX(pgm,GstProt##name)
1918#define PGM_GST_NAME_RC_PROT_STR(name) "pgmRCGstProt" #name
1919#define PGM_GST_NAME_R0_PROT_STR(name) "pgmR0GstProt" #name
1920#define PGM_GST_NAME_32BIT(name) PGM_CTX(pgm,Gst32Bit##name)
1921#define PGM_GST_NAME_RC_32BIT_STR(name) "pgmRCGst32Bit" #name
1922#define PGM_GST_NAME_R0_32BIT_STR(name) "pgmR0Gst32Bit" #name
1923#define PGM_GST_NAME_PAE(name) PGM_CTX(pgm,GstPAE##name)
1924#define PGM_GST_NAME_RC_PAE_STR(name) "pgmRCGstPAE" #name
1925#define PGM_GST_NAME_R0_PAE_STR(name) "pgmR0GstPAE" #name
1926#define PGM_GST_NAME_AMD64(name) PGM_CTX(pgm,GstAMD64##name)
1927#define PGM_GST_NAME_RC_AMD64_STR(name) "pgmRCGstAMD64" #name
1928#define PGM_GST_NAME_R0_AMD64_STR(name) "pgmR0GstAMD64" #name
1929#define PGM_GST_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Gst##name))
1930#define PGM_GST_DECL(type, name) PGM_CTX_DECL(type) PGM_GST_NAME(name)
1931
1932#define PGM_SHW_NAME_32BIT(name) PGM_CTX(pgm,Shw32Bit##name)
1933#define PGM_SHW_NAME_RC_32BIT_STR(name) "pgmRCShw32Bit" #name
1934#define PGM_SHW_NAME_R0_32BIT_STR(name) "pgmR0Shw32Bit" #name
1935#define PGM_SHW_NAME_PAE(name) PGM_CTX(pgm,ShwPAE##name)
1936#define PGM_SHW_NAME_RC_PAE_STR(name) "pgmRCShwPAE" #name
1937#define PGM_SHW_NAME_R0_PAE_STR(name) "pgmR0ShwPAE" #name
1938#define PGM_SHW_NAME_AMD64(name) PGM_CTX(pgm,ShwAMD64##name)
1939#define PGM_SHW_NAME_RC_AMD64_STR(name) "pgmRCShwAMD64" #name
1940#define PGM_SHW_NAME_R0_AMD64_STR(name) "pgmR0ShwAMD64" #name
1941#define PGM_SHW_NAME_NESTED(name) PGM_CTX(pgm,ShwNested##name)
1942#define PGM_SHW_NAME_RC_NESTED_STR(name) "pgmRCShwNested" #name
1943#define PGM_SHW_NAME_R0_NESTED_STR(name) "pgmR0ShwNested" #name
1944#define PGM_SHW_NAME_EPT(name) PGM_CTX(pgm,ShwEPT##name)
1945#define PGM_SHW_NAME_RC_EPT_STR(name) "pgmRCShwEPT" #name
1946#define PGM_SHW_NAME_R0_EPT_STR(name) "pgmR0ShwEPT" #name
1947#define PGM_SHW_DECL(type, name) PGM_CTX_DECL(type) PGM_SHW_NAME(name)
1948#define PGM_SHW_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Shw##name))
1949
1950/* Shw_Gst */
1951#define PGM_BTH_NAME_32BIT_REAL(name) PGM_CTX(pgm,Bth32BitReal##name)
1952#define PGM_BTH_NAME_32BIT_PROT(name) PGM_CTX(pgm,Bth32BitProt##name)
1953#define PGM_BTH_NAME_32BIT_32BIT(name) PGM_CTX(pgm,Bth32Bit32Bit##name)
1954#define PGM_BTH_NAME_PAE_REAL(name) PGM_CTX(pgm,BthPAEReal##name)
1955#define PGM_BTH_NAME_PAE_PROT(name) PGM_CTX(pgm,BthPAEProt##name)
1956#define PGM_BTH_NAME_PAE_32BIT(name) PGM_CTX(pgm,BthPAE32Bit##name)
1957#define PGM_BTH_NAME_PAE_PAE(name) PGM_CTX(pgm,BthPAEPAE##name)
1958#define PGM_BTH_NAME_AMD64_PROT(name) PGM_CTX(pgm,BthAMD64Prot##name)
1959#define PGM_BTH_NAME_AMD64_AMD64(name) PGM_CTX(pgm,BthAMD64AMD64##name)
1960#define PGM_BTH_NAME_NESTED_REAL(name) PGM_CTX(pgm,BthNestedReal##name)
1961#define PGM_BTH_NAME_NESTED_PROT(name) PGM_CTX(pgm,BthNestedProt##name)
1962#define PGM_BTH_NAME_NESTED_32BIT(name) PGM_CTX(pgm,BthNested32Bit##name)
1963#define PGM_BTH_NAME_NESTED_PAE(name) PGM_CTX(pgm,BthNestedPAE##name)
1964#define PGM_BTH_NAME_NESTED_AMD64(name) PGM_CTX(pgm,BthNestedAMD64##name)
1965#define PGM_BTH_NAME_EPT_REAL(name) PGM_CTX(pgm,BthEPTReal##name)
1966#define PGM_BTH_NAME_EPT_PROT(name) PGM_CTX(pgm,BthEPTProt##name)
1967#define PGM_BTH_NAME_EPT_32BIT(name) PGM_CTX(pgm,BthEPT32Bit##name)
1968#define PGM_BTH_NAME_EPT_PAE(name) PGM_CTX(pgm,BthEPTPAE##name)
1969#define PGM_BTH_NAME_EPT_AMD64(name) PGM_CTX(pgm,BthEPTAMD64##name)
1970
1971#define PGM_BTH_NAME_RC_32BIT_REAL_STR(name) "pgmRCBth32BitReal" #name
1972#define PGM_BTH_NAME_RC_32BIT_PROT_STR(name) "pgmRCBth32BitProt" #name
1973#define PGM_BTH_NAME_RC_32BIT_32BIT_STR(name) "pgmRCBth32Bit32Bit" #name
1974#define PGM_BTH_NAME_RC_PAE_REAL_STR(name) "pgmRCBthPAEReal" #name
1975#define PGM_BTH_NAME_RC_PAE_PROT_STR(name) "pgmRCBthPAEProt" #name
1976#define PGM_BTH_NAME_RC_PAE_32BIT_STR(name) "pgmRCBthPAE32Bit" #name
1977#define PGM_BTH_NAME_RC_PAE_PAE_STR(name) "pgmRCBthPAEPAE" #name
1978#define PGM_BTH_NAME_RC_AMD64_AMD64_STR(name) "pgmRCBthAMD64AMD64" #name
1979#define PGM_BTH_NAME_RC_NESTED_REAL_STR(name) "pgmRCBthNestedReal" #name
1980#define PGM_BTH_NAME_RC_NESTED_PROT_STR(name) "pgmRCBthNestedProt" #name
1981#define PGM_BTH_NAME_RC_NESTED_32BIT_STR(name) "pgmRCBthNested32Bit" #name
1982#define PGM_BTH_NAME_RC_NESTED_PAE_STR(name) "pgmRCBthNestedPAE" #name
1983#define PGM_BTH_NAME_RC_NESTED_AMD64_STR(name) "pgmRCBthNestedAMD64" #name
1984#define PGM_BTH_NAME_RC_EPT_REAL_STR(name) "pgmRCBthEPTReal" #name
1985#define PGM_BTH_NAME_RC_EPT_PROT_STR(name) "pgmRCBthEPTProt" #name
1986#define PGM_BTH_NAME_RC_EPT_32BIT_STR(name) "pgmRCBthEPT32Bit" #name
1987#define PGM_BTH_NAME_RC_EPT_PAE_STR(name) "pgmRCBthEPTPAE" #name
1988#define PGM_BTH_NAME_RC_EPT_AMD64_STR(name) "pgmRCBthEPTAMD64" #name
1989#define PGM_BTH_NAME_R0_32BIT_REAL_STR(name) "pgmR0Bth32BitReal" #name
1990#define PGM_BTH_NAME_R0_32BIT_PROT_STR(name) "pgmR0Bth32BitProt" #name
1991#define PGM_BTH_NAME_R0_32BIT_32BIT_STR(name) "pgmR0Bth32Bit32Bit" #name
1992#define PGM_BTH_NAME_R0_PAE_REAL_STR(name) "pgmR0BthPAEReal" #name
1993#define PGM_BTH_NAME_R0_PAE_PROT_STR(name) "pgmR0BthPAEProt" #name
1994#define PGM_BTH_NAME_R0_PAE_32BIT_STR(name) "pgmR0BthPAE32Bit" #name
1995#define PGM_BTH_NAME_R0_PAE_PAE_STR(name) "pgmR0BthPAEPAE" #name
1996#define PGM_BTH_NAME_R0_AMD64_PROT_STR(name) "pgmR0BthAMD64Prot" #name
1997#define PGM_BTH_NAME_R0_AMD64_AMD64_STR(name) "pgmR0BthAMD64AMD64" #name
1998#define PGM_BTH_NAME_R0_NESTED_REAL_STR(name) "pgmR0BthNestedReal" #name
1999#define PGM_BTH_NAME_R0_NESTED_PROT_STR(name) "pgmR0BthNestedProt" #name
2000#define PGM_BTH_NAME_R0_NESTED_32BIT_STR(name) "pgmR0BthNested32Bit" #name
2001#define PGM_BTH_NAME_R0_NESTED_PAE_STR(name) "pgmR0BthNestedPAE" #name
2002#define PGM_BTH_NAME_R0_NESTED_AMD64_STR(name) "pgmR0BthNestedAMD64" #name
2003#define PGM_BTH_NAME_R0_EPT_REAL_STR(name) "pgmR0BthEPTReal" #name
2004#define PGM_BTH_NAME_R0_EPT_PROT_STR(name) "pgmR0BthEPTProt" #name
2005#define PGM_BTH_NAME_R0_EPT_32BIT_STR(name) "pgmR0BthEPT32Bit" #name
2006#define PGM_BTH_NAME_R0_EPT_PAE_STR(name) "pgmR0BthEPTPAE" #name
2007#define PGM_BTH_NAME_R0_EPT_AMD64_STR(name) "pgmR0BthEPTAMD64" #name
2008
2009#define PGM_BTH_DECL(type, name) PGM_CTX_DECL(type) PGM_BTH_NAME(name)
2010#define PGM_BTH_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Bth##name))
2011/** @} */
2012
2013/**
2014 * Data for each paging mode.
2015 */
2016typedef struct PGMMODEDATA
2017{
2018 /** The guest mode type. */
2019 uint32_t uGstType;
2020 /** The shadow mode type. */
2021 uint32_t uShwType;
2022
2023 /** @name Function pointers for Shadow paging.
2024 * @{
2025 */
2026 DECLR3CALLBACKMEMBER(int, pfnR3ShwRelocate,(PVM pVM, RTGCPTR offDelta));
2027 DECLR3CALLBACKMEMBER(int, pfnR3ShwExit,(PVM pVM));
2028 DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2029 DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2030
2031 DECLRCCALLBACKMEMBER(int, pfnRCShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2032 DECLRCCALLBACKMEMBER(int, pfnRCShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2033
2034 DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2035 DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2036 /** @} */
2037
2038 /** @name Function pointers for Guest paging.
2039 * @{
2040 */
2041 DECLR3CALLBACKMEMBER(int, pfnR3GstRelocate,(PVM pVM, RTGCPTR offDelta));
2042 DECLR3CALLBACKMEMBER(int, pfnR3GstExit,(PVM pVM));
2043 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2044 DECLR3CALLBACKMEMBER(int, pfnR3GstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2045 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
2046#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2047 DECLR3CALLBACKMEMBER(int, pfnR3GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2048 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmonitorCR3,(PVM pVM));
2049#endif
2050 DECLR3CALLBACKMEMBER(int, pfnR3GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2051 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmapCR3,(PVM pVM));
2052#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2053 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstWriteHandlerCR3;
2054 R3PTRTYPE(const char *) pszR3GstWriteHandlerCR3;
2055 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstPAEWriteHandlerCR3;
2056 R3PTRTYPE(const char *) pszR3GstPAEWriteHandlerCR3;
2057#endif
2058 DECLRCCALLBACKMEMBER(int, pfnRCGstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2059 DECLRCCALLBACKMEMBER(int, pfnRCGstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2060 DECLRCCALLBACKMEMBER(int, pfnRCGstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
2061#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2062 DECLRCCALLBACKMEMBER(int, pfnRCGstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2063 DECLRCCALLBACKMEMBER(int, pfnRCGstUnmonitorCR3,(PVM pVM));
2064#endif
2065 DECLRCCALLBACKMEMBER(int, pfnRCGstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2066 DECLRCCALLBACKMEMBER(int, pfnRCGstUnmapCR3,(PVM pVM));
2067#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2068 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnRCGstWriteHandlerCR3;
2069 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnRCGstPAEWriteHandlerCR3;
2070#endif
2071 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2072 DECLR0CALLBACKMEMBER(int, pfnR0GstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2073 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
2074#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2075 DECLR0CALLBACKMEMBER(int, pfnR0GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2076 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmonitorCR3,(PVM pVM));
2077#endif
2078 DECLR0CALLBACKMEMBER(int, pfnR0GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2079 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmapCR3,(PVM pVM));
2080#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2081 R0PTRTYPE(PFNPGMRCPHYSHANDLER) pfnR0GstWriteHandlerCR3;
2082 R0PTRTYPE(PFNPGMRCPHYSHANDLER) pfnR0GstPAEWriteHandlerCR3;
2083#endif
2084 /** @} */
2085
2086 /** @name Function pointers for Both Shadow and Guest paging.
2087 * @{
2088 */
2089 DECLR3CALLBACKMEMBER(int, pfnR3BthRelocate,(PVM pVM, RTGCPTR offDelta));
2090 /* no pfnR3BthTrap0eHandler */
2091 DECLR3CALLBACKMEMBER(int, pfnR3BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2092 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2093 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2094 DECLR3CALLBACKMEMBER(int, pfnR3BthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2095 DECLR3CALLBACKMEMBER(int, pfnR3BthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2096#ifdef VBOX_STRICT
2097 DECLR3CALLBACKMEMBER(unsigned, pfnR3BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2098#endif
2099
2100 DECLRCCALLBACKMEMBER(int, pfnRCBthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2101 DECLRCCALLBACKMEMBER(int, pfnRCBthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2102 DECLRCCALLBACKMEMBER(int, pfnRCBthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2103 DECLRCCALLBACKMEMBER(int, pfnRCBthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2104 DECLRCCALLBACKMEMBER(int, pfnRCBthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2105 DECLRCCALLBACKMEMBER(int, pfnRCBthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2106#ifdef VBOX_STRICT
2107 DECLRCCALLBACKMEMBER(unsigned, pfnRCBthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2108#endif
2109
2110 DECLR0CALLBACKMEMBER(int, pfnR0BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2111 DECLR0CALLBACKMEMBER(int, pfnR0BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2112 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2113 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2114 DECLR0CALLBACKMEMBER(int, pfnR0BthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2115 DECLR0CALLBACKMEMBER(int, pfnR0BthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2116#ifdef VBOX_STRICT
2117 DECLR0CALLBACKMEMBER(unsigned, pfnR0BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2118#endif
2119 /** @} */
2120} PGMMODEDATA, *PPGMMODEDATA;
2121
2122
2123
2124/**
2125 * Converts a PGM pointer into a VM pointer.
2126 * @returns Pointer to the VM structure the PGM is part of.
2127 * @param pPGM Pointer to PGM instance data.
2128 */
2129#define PGM2VM(pPGM) ( (PVM)((char*)pPGM - pPGM->offVM) )
2130
2131/**
2132 * PGM Data (part of VM)
2133 */
2134typedef struct PGM
2135{
2136 /** Offset to the VM structure. */
2137 RTINT offVM;
2138 /** Offset of the PGMCPU structure relative to VMCPU. */
2139 int32_t offVCpu;
2140 /** Alignment padding. */
2141 int32_t i32Alignment;
2142
2143 /*
2144 * This will be redefined at least two more times before we're done, I'm sure.
2145 * The current code is only to get on with the coding.
2146 * - 2004-06-10: initial version, bird.
2147 * - 2004-07-02: 1st time, bird.
2148 * - 2004-10-18: 2nd time, bird.
2149 * - 2005-07-xx: 3rd time, bird.
2150 */
2151
2152 /** Pointer to the page table entries for the dynamic page mapping area - GCPtr. */
2153 RCPTRTYPE(PX86PTE) paDynPageMap32BitPTEsGC;
2154 /** Pointer to the page table entries for the dynamic page mapping area - GCPtr. */
2155 RCPTRTYPE(PX86PTEPAE) paDynPageMapPaePTEsGC;
2156
2157 /** The host paging mode. (This is what SUPLib reports.) */
2158 SUPPAGINGMODE enmHostMode;
2159 /** The shadow paging mode. */
2160 PGMMODE enmShadowMode;
2161 /** The guest paging mode. */
2162 PGMMODE enmGuestMode;
2163
2164 /** The current physical address representing in the guest CR3 register. */
2165 RTGCPHYS GCPhysCR3;
2166 /** Pointer to the 5 page CR3 content mapping.
2167 * The first page is always the CR3 (in some form) while the 4 other pages
2168 * are used of the PDs in PAE mode. */
2169 RTGCPTR GCPtrCR3Mapping;
2170#if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
2171 uint32_t u32Alignment;
2172#endif
2173 /** The physical address of the currently monitored guest CR3 page.
2174 * When this value is NIL_RTGCPHYS no page is being monitored. */
2175 RTGCPHYS GCPhysGstCR3Monitored;
2176
2177 /** @name 32-bit Guest Paging.
2178 * @{ */
2179 /** The guest's page directory, R3 pointer. */
2180 R3PTRTYPE(PX86PD) pGst32BitPdR3;
2181#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2182 /** The guest's page directory, R0 pointer. */
2183 R0PTRTYPE(PX86PD) pGst32BitPdR0;
2184#endif
2185 /** The guest's page directory, static RC mapping. */
2186 RCPTRTYPE(PX86PD) pGst32BitPdRC;
2187 /** @} */
2188
2189 /** @name PAE Guest Paging.
2190 * @{ */
2191 /** The guest's page directory pointer table, static RC mapping. */
2192 RCPTRTYPE(PX86PDPT) pGstPaePdptRC;
2193 /** The guest's page directory pointer table, R3 pointer. */
2194 R3PTRTYPE(PX86PDPT) pGstPaePdptR3;
2195#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2196 /** The guest's page directory pointer table, R0 pointer. */
2197 R0PTRTYPE(PX86PDPT) pGstPaePdptR0;
2198#endif
2199
2200 /** The guest's page directories, R3 pointers.
2201 * These are individual pointers and don't have to be adjecent.
2202 * These don't have to be up-to-date - use pgmGstGetPaePD() to access them. */
2203 R3PTRTYPE(PX86PDPAE) apGstPaePDsR3[4];
2204 /** The guest's page directories, R0 pointers.
2205 * Same restrictions as apGstPaePDsR3. */
2206#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2207 R0PTRTYPE(PX86PDPAE) apGstPaePDsR0[4];
2208#endif
2209 /** The guest's page directories, static GC mapping.
2210 * Unlike the R3/R0 array the first entry can be accessed as a 2048 entry PD.
2211 * These don't have to be up-to-date - use pgmGstGetPaePD() to access them. */
2212 RCPTRTYPE(PX86PDPAE) apGstPaePDsRC[4];
2213 /** The physical addresses of the guest page directories (PAE) pointed to by apGstPagePDsHC/GC. */
2214 RTGCPHYS aGCPhysGstPaePDs[4];
2215 /** The physical addresses of the monitored guest page directories (PAE). */
2216 RTGCPHYS aGCPhysGstPaePDsMonitored[4];
2217 /** @} */
2218
2219 /** @name AMD64 Guest Paging.
2220 * @{ */
2221 /** The guest's page directory pointer table, R3 pointer. */
2222 R3PTRTYPE(PX86PML4) pGstAmd64Pml4R3;
2223#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2224 /** The guest's page directory pointer table, R0 pointer. */
2225 R0PTRTYPE(PX86PML4) pGstAmd64Pml4R0;
2226#endif
2227 /** @} */
2228
2229 /** @name 32-bit Shadow Paging
2230 * @{ */
2231#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
2232 /** The Physical Address (HC) of the current active shadow CR3. */
2233 RTHCPHYS HCPhysShwCR3;
2234 /** Pointer to the page of the current active CR3 - R3 Ptr. */
2235 R3PTRTYPE(PPGMPOOLPAGE) pShwPageCR3R3;
2236 /** Pointer to the page of the current active CR3 - R0 Ptr. */
2237 R0PTRTYPE(PPGMPOOLPAGE) pShwPageCR3R0;
2238 /** Pointer to the page of the current active CR3 - RC Ptr. */
2239 RCPTRTYPE(PPGMPOOLPAGE) pShwPageCR3RC;
2240# if HC_ARCH_BITS == 64
2241 RTRCPTR alignment6; /**< structure size alignment. */
2242# endif
2243#else
2244 /** The 32-Bit PD - R3 Ptr. */
2245 R3PTRTYPE(PX86PD) pShw32BitPdR3;
2246 /** The 32-Bit PD - R0 Ptr. */
2247 R0PTRTYPE(PX86PD) pShw32BitPdR0;
2248 /** The 32-Bit PD - RC Ptr. */
2249 RCPTRTYPE(PX86PD) pShw32BitPdRC;
2250# if HC_ARCH_BITS == 64
2251 uint32_t u32Padding1; /**< alignment padding. */
2252# endif
2253 /** The Physical Address (HC) of the 32-Bit PD. */
2254 RTHCPHYS HCPhysShw32BitPD;
2255 /** @} */
2256
2257 /** @name PAE Shadow Paging
2258 * @{ */
2259 /** The four PDs for the low 4GB - R3 Ptr.
2260 * Even though these are 4 pointers, what they point at is a single table.
2261 * Thus, it's possible to walk the 2048 entries starting where apHCPaePDs[0] points. */
2262 R3PTRTYPE(PX86PDPAE) apShwPaePDsR3[4];
2263# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2264 /** The four PDs for the low 4GB - R0 Ptr.
2265 * Same kind of mapping as apHCPaePDs. */
2266 R0PTRTYPE(PX86PDPAE) apShwPaePDsR0[4];
2267# endif
2268 /** The four PDs for the low 4GB - RC Ptr.
2269 * Same kind of mapping as apHCPaePDs. */
2270 RCPTRTYPE(PX86PDPAE) apShwPaePDsRC[4];
2271 /** The Physical Address (HC) of the four PDs for the low 4GB.
2272 * These are *NOT* 4 contiguous pages. */
2273 RTHCPHYS aHCPhysPaePDs[4];
2274 /** The Physical Address (HC) of the PAE PDPT. */
2275 RTHCPHYS HCPhysShwPaePdpt;
2276 /** The PAE PDPT - R3 Ptr. */
2277 R3PTRTYPE(PX86PDPT) pShwPaePdptR3;
2278 /** The PAE PDPT - R0 Ptr. */
2279 R0PTRTYPE(PX86PDPT) pShwPaePdptR0;
2280 /** The PAE PDPT - RC Ptr. */
2281 RCPTRTYPE(PX86PDPT) pShwPaePdptRC;
2282 /** @} */
2283# if HC_ARCH_BITS == 64
2284 RTRCPTR alignment5; /**< structure size alignment. */
2285# endif
2286
2287 /** @name AMD64 Shadow Paging
2288 * Extends PAE Paging.
2289 * @{ */
2290 /** The Page Map Level 4 table - R3 Ptr. */
2291 R3PTRTYPE(PX86PML4) pShwPaePml4R3;
2292# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2293 /** The Page Map Level 4 table - R0 Ptr. */
2294 R0PTRTYPE(PX86PML4) pShwPaePml4R0;
2295# endif
2296 /** The Physical Address (HC) of the Page Map Level 4 table. */
2297 RTHCPHYS HCPhysShwPaePml4;
2298 /** The pgm pool page descriptor for the current active CR3 - R3 Ptr. */
2299 R3PTRTYPE(PPGMPOOLPAGE) pShwAmd64CR3R3;
2300 /** The pgm pool page descriptor for the current active CR3 - R0 Ptr. */
2301 R0PTRTYPE(PPGMPOOLPAGE) pShwAmd64CR3R0;
2302 /** @}*/
2303
2304 /** @name Nested Shadow Paging
2305 * @{ */
2306 /** Root table; format depends on the host paging mode (AMD-V) or EPT - R3 pointer. */
2307 RTR3PTR pShwNestedRootR3;
2308# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2309 /** Root table; format depends on the host paging mode (AMD-V) or EPT - R0 pointer. */
2310 RTR0PTR pShwNestedRootR0;
2311# endif
2312 /** The Physical Address (HC) of the nested paging root. */
2313 RTHCPHYS HCPhysShwNestedRoot;
2314#endif
2315 /** @} */
2316
2317 /** @name Function pointers for Shadow paging.
2318 * @{
2319 */
2320 DECLR3CALLBACKMEMBER(int, pfnR3ShwRelocate,(PVM pVM, RTGCPTR offDelta));
2321 DECLR3CALLBACKMEMBER(int, pfnR3ShwExit,(PVM pVM));
2322 DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2323 DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2324
2325 DECLRCCALLBACKMEMBER(int, pfnRCShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2326 DECLRCCALLBACKMEMBER(int, pfnRCShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2327
2328 DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2329 DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2330
2331 /** @} */
2332
2333 /** @name Function pointers for Guest paging.
2334 * @{
2335 */
2336 DECLR3CALLBACKMEMBER(int, pfnR3GstRelocate,(PVM pVM, RTGCPTR offDelta));
2337 DECLR3CALLBACKMEMBER(int, pfnR3GstExit,(PVM pVM));
2338 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2339 DECLR3CALLBACKMEMBER(int, pfnR3GstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2340 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
2341#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2342 DECLR3CALLBACKMEMBER(int, pfnR3GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2343 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmonitorCR3,(PVM pVM));
2344#endif
2345 DECLR3CALLBACKMEMBER(int, pfnR3GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2346 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmapCR3,(PVM pVM));
2347#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2348 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstWriteHandlerCR3;
2349 R3PTRTYPE(const char *) pszR3GstWriteHandlerCR3;
2350 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstPAEWriteHandlerCR3;
2351 R3PTRTYPE(const char *) pszR3GstPAEWriteHandlerCR3;
2352#endif
2353 DECLRCCALLBACKMEMBER(int, pfnRCGstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2354 DECLRCCALLBACKMEMBER(int, pfnRCGstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2355 DECLRCCALLBACKMEMBER(int, pfnRCGstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
2356#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2357 DECLRCCALLBACKMEMBER(int, pfnRCGstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2358 DECLRCCALLBACKMEMBER(int, pfnRCGstUnmonitorCR3,(PVM pVM));
2359#endif
2360 DECLRCCALLBACKMEMBER(int, pfnRCGstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2361 DECLRCCALLBACKMEMBER(int, pfnRCGstUnmapCR3,(PVM pVM));
2362#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2363 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnRCGstWriteHandlerCR3;
2364 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnRCGstPAEWriteHandlerCR3;
2365#endif
2366#if HC_ARCH_BITS == 64
2367 RTRCPTR alignment3; /**< structure size alignment. */
2368#endif
2369
2370 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2371 DECLR0CALLBACKMEMBER(int, pfnR0GstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2372 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
2373#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2374 DECLR0CALLBACKMEMBER(int, pfnR0GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2375 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmonitorCR3,(PVM pVM));
2376#endif
2377 DECLR0CALLBACKMEMBER(int, pfnR0GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2378 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmapCR3,(PVM pVM));
2379#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2380 R0PTRTYPE(PFNPGMRCPHYSHANDLER) pfnR0GstWriteHandlerCR3;
2381 R0PTRTYPE(PFNPGMRCPHYSHANDLER) pfnR0GstPAEWriteHandlerCR3;
2382#endif
2383 /** @} */
2384
2385 /** @name Function pointers for Both Shadow and Guest paging.
2386 * @{
2387 */
2388 DECLR3CALLBACKMEMBER(int, pfnR3BthRelocate,(PVM pVM, RTGCPTR offDelta));
2389 /* no pfnR3BthTrap0eHandler */
2390 DECLR3CALLBACKMEMBER(int, pfnR3BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2391 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2392 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2393 DECLR3CALLBACKMEMBER(int, pfnR3BthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2394 DECLR3CALLBACKMEMBER(int, pfnR3BthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2395 DECLR3CALLBACKMEMBER(unsigned, pfnR3BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2396
2397 DECLR0CALLBACKMEMBER(int, pfnR0BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2398 DECLR0CALLBACKMEMBER(int, pfnR0BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2399 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2400 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2401 DECLR0CALLBACKMEMBER(int, pfnR0BthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2402 DECLR0CALLBACKMEMBER(int, pfnR0BthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2403 DECLR0CALLBACKMEMBER(unsigned, pfnR0BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2404
2405 DECLRCCALLBACKMEMBER(int, pfnRCBthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2406 DECLRCCALLBACKMEMBER(int, pfnRCBthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2407 DECLRCCALLBACKMEMBER(int, pfnRCBthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2408 DECLRCCALLBACKMEMBER(int, pfnRCBthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2409 DECLRCCALLBACKMEMBER(int, pfnRCBthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2410 DECLRCCALLBACKMEMBER(int, pfnRCBthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2411 DECLRCCALLBACKMEMBER(unsigned, pfnRCBthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2412#if HC_ARCH_BITS == 64
2413 RTRCPTR alignment2; /**< structure size alignment. */
2414#endif
2415 /** @} */
2416
2417 /** Pointer to SHW+GST mode data (function pointers).
2418 * The index into this table is made up from */
2419 R3PTRTYPE(PPGMMODEDATA) paModeData;
2420
2421 /** Pointer to the list of RAM ranges (Phys GC -> Phys HC conversion) - for R3.
2422 * This is sorted by physical address and contains no overlapping ranges. */
2423 R3PTRTYPE(PPGMRAMRANGE) pRamRangesR3;
2424 /** R0 pointer corresponding to PGM::pRamRangesR3. */
2425 R0PTRTYPE(PPGMRAMRANGE) pRamRangesR0;
2426 /** RC pointer corresponding to PGM::pRamRangesR3. */
2427 RCPTRTYPE(PPGMRAMRANGE) pRamRangesRC;
2428 /** The configured RAM size. */
2429 RTUINT cbRamSize;
2430
2431 /** Pointer to the list of ROM ranges - for R3.
2432 * This is sorted by physical address and contains no overlapping ranges. */
2433 R3PTRTYPE(PPGMROMRANGE) pRomRangesR3;
2434 /** R0 pointer corresponding to PGM::pRomRangesR3. */
2435 R0PTRTYPE(PPGMROMRANGE) pRomRangesR0;
2436 /** RC pointer corresponding to PGM::pRomRangesR3. */
2437 RCPTRTYPE(PPGMROMRANGE) pRomRangesRC;
2438 /** Alignment padding. */
2439 RTRCPTR GCPtrPadding2;
2440
2441 /** Pointer to the list of MMIO2 ranges - for R3.
2442 * Registration order. */
2443 R3PTRTYPE(PPGMMMIO2RANGE) pMmio2RangesR3;
2444
2445 /** PGM offset based trees - R3 Ptr. */
2446 R3PTRTYPE(PPGMTREES) pTreesR3;
2447 /** PGM offset based trees - R0 Ptr. */
2448 R0PTRTYPE(PPGMTREES) pTreesR0;
2449 /** PGM offset based trees - RC Ptr. */
2450 RCPTRTYPE(PPGMTREES) pTreesRC;
2451
2452 /** Linked list of GC mappings - for RC.
2453 * The list is sorted ascending on address.
2454 */
2455 RCPTRTYPE(PPGMMAPPING) pMappingsRC;
2456 /** Linked list of GC mappings - for HC.
2457 * The list is sorted ascending on address.
2458 */
2459 R3PTRTYPE(PPGMMAPPING) pMappingsR3;
2460 /** Linked list of GC mappings - for R0.
2461 * The list is sorted ascending on address.
2462 */
2463 R0PTRTYPE(PPGMMAPPING) pMappingsR0;
2464
2465 /** If set no conflict checks are required. (boolean) */
2466 bool fMappingsFixed;
2467 /** If set, then no mappings are put into the shadow page table. (boolean) */
2468 bool fDisableMappings;
2469 /** Size of fixed mapping */
2470 uint32_t cbMappingFixed;
2471 /** Base address (GC) of fixed mapping */
2472 RTGCPTR GCPtrMappingFixed;
2473#if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
2474 uint32_t u32Padding0; /**< alignment padding. */
2475#endif
2476
2477
2478 /** @name Intermediate Context
2479 * @{ */
2480 /** Pointer to the intermediate page directory - Normal. */
2481 R3PTRTYPE(PX86PD) pInterPD;
2482 /** Pointer to the intermedate page tables - Normal.
2483 * There are two page tables, one for the identity mapping and one for
2484 * the host context mapping (of the core code). */
2485 R3PTRTYPE(PX86PT) apInterPTs[2];
2486 /** Pointer to the intermedate page tables - PAE. */
2487 R3PTRTYPE(PX86PTPAE) apInterPaePTs[2];
2488 /** Pointer to the intermedate page directory - PAE. */
2489 R3PTRTYPE(PX86PDPAE) apInterPaePDs[4];
2490 /** Pointer to the intermedate page directory - PAE. */
2491 R3PTRTYPE(PX86PDPT) pInterPaePDPT;
2492 /** Pointer to the intermedate page-map level 4 - AMD64. */
2493 R3PTRTYPE(PX86PML4) pInterPaePML4;
2494 /** Pointer to the intermedate page directory - AMD64. */
2495 R3PTRTYPE(PX86PDPT) pInterPaePDPT64;
2496 /** The Physical Address (HC) of the intermediate Page Directory - Normal. */
2497 RTHCPHYS HCPhysInterPD;
2498 /** The Physical Address (HC) of the intermediate Page Directory Pointer Table - PAE. */
2499 RTHCPHYS HCPhysInterPaePDPT;
2500 /** The Physical Address (HC) of the intermediate Page Map Level 4 table - AMD64. */
2501 RTHCPHYS HCPhysInterPaePML4;
2502 /** @} */
2503
2504 /** Base address of the dynamic page mapping area.
2505 * The array is MM_HYPER_DYNAMIC_SIZE bytes big.
2506 */
2507 RCPTRTYPE(uint8_t *) pbDynPageMapBaseGC;
2508 /** The index of the last entry used in the dynamic page mapping area. */
2509 RTUINT iDynPageMapLast;
2510 /** Cache containing the last entries in the dynamic page mapping area.
2511 * The cache size is covering half of the mapping area. */
2512 RTHCPHYS aHCPhysDynPageMapCache[MM_HYPER_DYNAMIC_SIZE >> (PAGE_SHIFT + 1)];
2513
2514 /** The address of the ring-0 mapping cache if we're making use of it. */
2515 RTR0PTR pvR0DynMapUsed;
2516#if HC_ARCH_BITS == 32
2517 RTR0PTR R0PtrPadding0; /**< Alignment. */
2518#endif
2519
2520
2521 /** 4 MB page mask; 32 or 36 bits depending on PSE-36 */
2522 RTGCPHYS GCPhys4MBPSEMask;
2523
2524 /** A20 gate mask.
2525 * Our current approach to A20 emulation is to let REM do it and don't bother
2526 * anywhere else. The interesting Guests will be operating with it enabled anyway.
2527 * But whould need arrise, we'll subject physical addresses to this mask. */
2528 RTGCPHYS GCPhysA20Mask;
2529 /** A20 gate state - boolean! */
2530 RTUINT fA20Enabled;
2531
2532 /** What needs syncing (PGM_SYNC_*).
2533 * This is used to queue operations for PGMSyncCR3, PGMInvalidatePage,
2534 * PGMFlushTLB, and PGMR3Load. */
2535 RTUINT fSyncFlags;
2536
2537 /** PGM critical section.
2538 * This protects the physical & virtual access handlers, ram ranges,
2539 * and the page flag updating (some of it anyway).
2540 */
2541 PDMCRITSECT CritSect;
2542
2543 /** Shadow Page Pool - R3 Ptr. */
2544 R3PTRTYPE(PPGMPOOL) pPoolR3;
2545 /** Shadow Page Pool - R0 Ptr. */
2546 R0PTRTYPE(PPGMPOOL) pPoolR0;
2547 /** Shadow Page Pool - RC Ptr. */
2548 RCPTRTYPE(PPGMPOOL) pPoolRC;
2549
2550 /** We're not in a state which permits writes to guest memory.
2551 * (Only used in strict builds.) */
2552 bool fNoMorePhysWrites;
2553
2554 /** Flush the cache on the next access. */
2555 bool fPhysCacheFlushPending;
2556/** @todo r=bird: Fix member names!*/
2557 /** PGMPhysRead cache */
2558 PGMPHYSCACHE pgmphysreadcache;
2559 /** PGMPhysWrite cache */
2560 PGMPHYSCACHE pgmphyswritecache;
2561
2562 /**
2563 * Data associated with managing the ring-3 mappings of the allocation chunks.
2564 */
2565 struct
2566 {
2567 /** The chunk tree, ordered by chunk id. */
2568#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2569 R3PTRTYPE(PAVLU32NODECORE) pTree;
2570#else
2571 R3R0PTRTYPE(PAVLU32NODECORE) pTree;
2572#endif
2573 /** The chunk mapping TLB. */
2574 PGMCHUNKR3MAPTLB Tlb;
2575 /** The number of mapped chunks. */
2576 uint32_t c;
2577 /** The maximum number of mapped chunks.
2578 * @cfgm PGM/MaxRing3Chunks */
2579 uint32_t cMax;
2580 /** The chunk age tree, ordered by ageing sequence number. */
2581 R3PTRTYPE(PAVLLU32NODECORE) pAgeTree;
2582 /** The current time. */
2583 uint32_t iNow;
2584 /** Number of pgmR3PhysChunkFindUnmapCandidate calls left to the next ageing. */
2585 uint32_t AgeingCountdown;
2586 } ChunkR3Map;
2587
2588 /**
2589 * The page mapping TLB for ring-3 and (for the time being) ring-0.
2590 */
2591 PGMPAGER3MAPTLB PhysTlbHC;
2592
2593 /** @name The zero page.
2594 * @{ */
2595 /** The host physical address of the zero page. */
2596 RTHCPHYS HCPhysZeroPg;
2597 /** The ring-3 mapping of the zero page. */
2598 RTR3PTR pvZeroPgR3;
2599 /** The ring-0 mapping of the zero page. */
2600 RTR0PTR pvZeroPgR0;
2601 /** The GC mapping of the zero page. */
2602 RTGCPTR pvZeroPgGC;
2603#if GC_ARCH_BITS != 32
2604 uint32_t u32ZeroAlignment; /**< Alignment padding. */
2605#endif
2606 /** @}*/
2607
2608 /** The number of handy pages. */
2609 uint32_t cHandyPages;
2610 /**
2611 * Array of handy pages.
2612 *
2613 * This array is used in a two way communication between pgmPhysAllocPage
2614 * and GMMR0AllocateHandyPages, with PGMR3PhysAllocateHandyPages serving as
2615 * an intermediary.
2616 *
2617 * The size of this array is important, see pgmPhysEnsureHandyPage for details.
2618 * (The current size of 32 pages, means 128 KB of handy memory.)
2619 */
2620 GMMPAGEDESC aHandyPages[32];
2621
2622 /** @name Release Statistics
2623 * @{ */
2624 uint32_t cAllPages; /**< The total number of pages. (Should be Private + Shared + Zero.) */
2625 uint32_t cPrivatePages; /**< The number of private pages. */
2626 uint32_t cSharedPages; /**< The number of shared pages. */
2627 uint32_t cZeroPages; /**< The number of zero backed pages. */
2628 /** The number of times the guest has switched mode since last reset or statistics reset. */
2629 STAMCOUNTER cGuestModeChanges;
2630 /** @} */
2631
2632#ifdef VBOX_WITH_STATISTICS /** @todo move this chunk to the heap. */
2633 /** RC: Which statistic this \#PF should be attributed to. */
2634 RCPTRTYPE(PSTAMPROFILE) pStatTrap0eAttributionRC;
2635 RTRCPTR padding0;
2636 /** R0: Which statistic this \#PF should be attributed to. */
2637 R0PTRTYPE(PSTAMPROFILE) pStatTrap0eAttributionR0;
2638 RTR0PTR padding1;
2639
2640 /* Common */
2641# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2642 STAMCOUNTER StatTrackVirgin; /**< The number of first time shadowings. */
2643 STAMCOUNTER StatTrackAliased; /**< The number of times switching to cRef2, i.e. the page is being shadowed by two PTs. */
2644 STAMCOUNTER StatTrackAliasedMany; /**< The number of times we're tracking using cRef2. */
2645 STAMCOUNTER StatTrackAliasedLots; /**< The number of times we're hitting pages which has overflowed cRef2. */
2646 STAMCOUNTER StatTrackOverflows; /**< The number of times the extent list grows to long. */
2647 STAMPROFILE StatTrackDeref; /**< Profiling of SyncPageWorkerTrackDeref (expensive). */
2648# endif
2649 STAMCOUNTER StatSyncPtPD[X86_PG_ENTRIES]; /**< SyncPT - PD distribution. */
2650 STAMCOUNTER StatSyncPagePD[X86_PG_ENTRIES]; /**< SyncPage - PD distribution. */
2651
2652 /* R3 only: */
2653 STAMCOUNTER StatR3DetectedConflicts; /**< R3: Number of times PGMR3MapHasConflicts() detected a conflict. */
2654 STAMPROFILE StatR3ResolveConflict; /**< R3: pgmR3SyncPTResolveConflict() profiling (includes the entire relocation). */
2655 STAMCOUNTER StatR3GuestPDWrite; /**< R3: The total number of times pgmHCGuestPDWriteHandler() was called. */
2656 STAMCOUNTER StatR3GuestPDWriteConflict; /**< R3: The number of times GuestPDWriteContlict() detected a conflict. */
2657 STAMCOUNTER StatR3DynRamTotal; /**< R3: Allocated MBs of guest ram */
2658 STAMCOUNTER StatR3DynRamGrow; /**< R3: Nr of pgmr3PhysGrowRange calls. */
2659
2660 /* R0 only: */
2661 STAMCOUNTER StatR0DynMapMigrateInvlPg; /**< R0: invlpg in PGMDynMapMigrateAutoSet. */
2662 STAMPROFILE StatR0DynMapGCPageInl; /**< R0: Calls to pgmR0DynMapGCPageInlined. */
2663 STAMCOUNTER StatR0DynMapGCPageInlHits; /**< R0: Hash table lookup hits. */
2664 STAMCOUNTER StatR0DynMapGCPageInlMisses; /**< R0: Misses that falls back to code common with PGMDynMapHCPage. */
2665 STAMCOUNTER StatR0DynMapGCPageInlRamHits; /**< R0: 1st ram range hits. */
2666 STAMCOUNTER StatR0DynMapGCPageInlRamMisses; /**< R0: 1st ram range misses, takes slow path. */
2667 STAMPROFILE StatR0DynMapHCPageInl; /**< R0: Calls to pgmR0DynMapHCPageInlined. */
2668 STAMCOUNTER StatR0DynMapHCPageInlHits; /**< R0: Hash table lookup hits. */
2669 STAMCOUNTER StatR0DynMapHCPageInlMisses; /**< R0: Misses that falls back to code common with PGMDynMapHCPage. */
2670 STAMPROFILE StatR0DynMapHCPage; /**< R0: Calls to PGMDynMapHCPage. */
2671 STAMCOUNTER StatR0DynMapSetOptimize; /**< R0: Calls to pgmDynMapOptimizeAutoSet. */
2672 STAMCOUNTER StatR0DynMapSetSearchFlushes; /**< R0: Set search restorting to subset flushes. */
2673 STAMCOUNTER StatR0DynMapSetSearchHits; /**< R0: Set search hits. */
2674 STAMCOUNTER StatR0DynMapSetSearchMisses; /**< R0: Set search misses. */
2675 STAMCOUNTER StatR0DynMapPage; /**< R0: Calls to pgmR0DynMapPage. */
2676 STAMCOUNTER StatR0DynMapPageHits0; /**< R0: Hits at iPage+0. */
2677 STAMCOUNTER StatR0DynMapPageHits1; /**< R0: Hits at iPage+1. */
2678 STAMCOUNTER StatR0DynMapPageHits2; /**< R0: Hits at iPage+2. */
2679 STAMCOUNTER StatR0DynMapPageInvlPg; /**< R0: invlpg. */
2680 STAMCOUNTER StatR0DynMapPageSlow; /**< R0: Calls to pgmR0DynMapPageSlow. */
2681 STAMCOUNTER StatR0DynMapPageSlowLoopHits; /**< R0: Hits in the pgmR0DynMapPageSlow search loop. */
2682 STAMCOUNTER StatR0DynMapPageSlowLoopMisses; /**< R0: Misses in the pgmR0DynMapPageSlow search loop. */
2683 //STAMCOUNTER StatR0DynMapPageSlowLostHits; /**< R0: Lost hits. */
2684 STAMCOUNTER StatR0DynMapSubsets; /**< R0: Times PGMDynMapPushAutoSubset was called. */
2685 STAMCOUNTER StatR0DynMapPopFlushes; /**< R0: Times PGMDynMapPopAutoSubset flushes the subset. */
2686 STAMCOUNTER aStatR0DynMapSetSize[11]; /**< R0: Set size distribution. */
2687
2688 /* RC only: */
2689 STAMCOUNTER StatRCDynMapCacheMisses; /**< RC: The number of dynamic page mapping cache hits */
2690 STAMCOUNTER StatRCDynMapCacheHits; /**< RC: The number of dynamic page mapping cache misses */
2691 STAMCOUNTER StatRCInvlPgConflict; /**< RC: Number of times PGMInvalidatePage() detected a mapping conflict. */
2692 STAMCOUNTER StatRCInvlPgSyncMonCR3; /**< RC: Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3. */
2693
2694 /* RZ only: */
2695 STAMPROFILE StatRZTrap0e; /**< RC/R0: PGMTrap0eHandler() profiling. */
2696 STAMPROFILE StatRZTrap0eTimeCheckPageFault;
2697 STAMPROFILE StatRZTrap0eTimeSyncPT;
2698 STAMPROFILE StatRZTrap0eTimeMapping;
2699 STAMPROFILE StatRZTrap0eTimeOutOfSync;
2700 STAMPROFILE StatRZTrap0eTimeHandlers;
2701 STAMPROFILE StatRZTrap0eTime2CSAM; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is CSAM. */
2702 STAMPROFILE StatRZTrap0eTime2DirtyAndAccessed; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation. */
2703 STAMPROFILE StatRZTrap0eTime2GuestTrap; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is a guest trap. */
2704 STAMPROFILE StatRZTrap0eTime2HndPhys; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is a physical handler. */
2705 STAMPROFILE StatRZTrap0eTime2HndVirt; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is a virtual handler. */
2706 STAMPROFILE StatRZTrap0eTime2HndUnhandled; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page. */
2707 STAMPROFILE StatRZTrap0eTime2Misc; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is not known. */
2708 STAMPROFILE StatRZTrap0eTime2OutOfSync; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an out-of-sync page. */
2709 STAMPROFILE StatRZTrap0eTime2OutOfSyncHndPhys; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page. */
2710 STAMPROFILE StatRZTrap0eTime2OutOfSyncHndVirt; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page. */
2711 STAMPROFILE StatRZTrap0eTime2OutOfSyncHndObs; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an obsolete handler page. */
2712 STAMPROFILE StatRZTrap0eTime2SyncPT; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT. */
2713 STAMCOUNTER StatRZTrap0eConflicts; /**< RC/R0: The number of times \#PF was caused by an undetected conflict. */
2714 STAMCOUNTER StatRZTrap0eHandlersMapping; /**< RC/R0: Number of traps due to access handlers in mappings. */
2715 STAMCOUNTER StatRZTrap0eHandlersOutOfSync; /**< RC/R0: Number of out-of-sync handled pages. */
2716 STAMCOUNTER StatRZTrap0eHandlersPhysical; /**< RC/R0: Number of traps due to physical access handlers. */
2717 STAMCOUNTER StatRZTrap0eHandlersVirtual; /**< RC/R0: Number of traps due to virtual access handlers. */
2718 STAMCOUNTER StatRZTrap0eHandlersVirtualByPhys; /**< RC/R0: Number of traps due to virtual access handlers found by physical address. */
2719 STAMCOUNTER StatRZTrap0eHandlersVirtualUnmarked;/**< RC/R0: Number of traps due to virtual access handlers found by virtual address (without proper physical flags). */
2720 STAMCOUNTER StatRZTrap0eHandlersUnhandled; /**< RC/R0: Number of traps due to access outside range of monitored page(s). */
2721 STAMCOUNTER StatRZTrap0eHandlersInvalid; /**< RC/R0: Number of traps due to access to invalid physical memory. */
2722 STAMCOUNTER StatRZTrap0eUSNotPresentRead; /**< RC/R0: #PF err kind */
2723 STAMCOUNTER StatRZTrap0eUSNotPresentWrite; /**< RC/R0: #PF err kind */
2724 STAMCOUNTER StatRZTrap0eUSWrite; /**< RC/R0: #PF err kind */
2725 STAMCOUNTER StatRZTrap0eUSReserved; /**< RC/R0: #PF err kind */
2726 STAMCOUNTER StatRZTrap0eUSNXE; /**< RC/R0: #PF err kind */
2727 STAMCOUNTER StatRZTrap0eUSRead; /**< RC/R0: #PF err kind */
2728 STAMCOUNTER StatRZTrap0eSVNotPresentRead; /**< RC/R0: #PF err kind */
2729 STAMCOUNTER StatRZTrap0eSVNotPresentWrite; /**< RC/R0: #PF err kind */
2730 STAMCOUNTER StatRZTrap0eSVWrite; /**< RC/R0: #PF err kind */
2731 STAMCOUNTER StatRZTrap0eSVReserved; /**< RC/R0: #PF err kind */
2732 STAMCOUNTER StatRZTrap0eSNXE; /**< RC/R0: #PF err kind */
2733 STAMCOUNTER StatRZTrap0eGuestPF; /**< RC/R0: Real guest #PFs. */
2734 STAMCOUNTER StatRZTrap0eGuestPFUnh; /**< RC/R0: Real guest #PF ending up at the end of the #PF code. */
2735 STAMCOUNTER StatRZTrap0eGuestPFMapping; /**< RC/R0: Real guest #PF to HMA or other mapping. */
2736 STAMCOUNTER StatRZTrap0eWPEmulInRZ; /**< RC/R0: WP=0 virtualization trap, handled. */
2737 STAMCOUNTER StatRZTrap0eWPEmulToR3; /**< RC/R0: WP=0 virtualization trap, chickened out. */
2738 STAMCOUNTER StatRZTrap0ePD[X86_PG_ENTRIES]; /**< RC/R0: PD distribution of the #PFs. */
2739 STAMCOUNTER StatRZGuestCR3WriteHandled; /**< RC/R0: The number of times WriteHandlerCR3() was successfully called. */
2740 STAMCOUNTER StatRZGuestCR3WriteUnhandled; /**< RC/R0: The number of times WriteHandlerCR3() was called and we had to fall back to the recompiler. */
2741 STAMCOUNTER StatRZGuestCR3WriteConflict; /**< RC/R0: The number of times WriteHandlerCR3() was called and a conflict was detected. */
2742 STAMCOUNTER StatRZGuestROMWriteHandled; /**< RC/R0: The number of times pgmPhysRomWriteHandler() was successfully called. */
2743 STAMCOUNTER StatRZGuestROMWriteUnhandled; /**< RC/R0: The number of times pgmPhysRomWriteHandler() was called and we had to fall back to the recompiler */
2744
2745 /* HC - R3 and (maybe) R0: */
2746
2747 /* RZ & R3: */
2748 STAMPROFILE StatRZSyncCR3; /**< RC/R0: PGMSyncCR3() profiling. */
2749 STAMPROFILE StatRZSyncCR3Handlers; /**< RC/R0: Profiling of the PGMSyncCR3() update handler section. */
2750 STAMPROFILE StatRZSyncCR3HandlerVirtualReset; /**< RC/R0: Profiling of the virtual handler resets. */
2751 STAMPROFILE StatRZSyncCR3HandlerVirtualUpdate; /**< RC/R0: Profiling of the virtual handler updates. */
2752 STAMCOUNTER StatRZSyncCR3Global; /**< RC/R0: The number of global CR3 syncs. */
2753 STAMCOUNTER StatRZSyncCR3NotGlobal; /**< RC/R0: The number of non-global CR3 syncs. */
2754 STAMCOUNTER StatRZSyncCR3DstCacheHit; /**< RC/R0: The number of times we got some kind of cache hit on a page table. */
2755 STAMCOUNTER StatRZSyncCR3DstFreed; /**< RC/R0: The number of times we've had to free a shadow entry. */
2756 STAMCOUNTER StatRZSyncCR3DstFreedSrcNP; /**< RC/R0: The number of times we've had to free a shadow entry for which the source entry was not present. */
2757 STAMCOUNTER StatRZSyncCR3DstNotPresent; /**< RC/R0: The number of times we've encountered a not present shadow entry for a present guest entry. */
2758 STAMCOUNTER StatRZSyncCR3DstSkippedGlobalPD; /**< RC/R0: The number of times a global page directory wasn't flushed. */
2759 STAMCOUNTER StatRZSyncCR3DstSkippedGlobalPT; /**< RC/R0: The number of times a page table with only global entries wasn't flushed. */
2760 STAMPROFILE StatRZSyncPT; /**< RC/R0: PGMSyncPT() profiling. */
2761 STAMCOUNTER StatRZSyncPTFailed; /**< RC/R0: The number of times PGMSyncPT() failed. */
2762 STAMCOUNTER StatRZSyncPT4K; /**< RC/R0: Number of 4KB syncs. */
2763 STAMCOUNTER StatRZSyncPT4M; /**< RC/R0: Number of 4MB syncs. */
2764 STAMCOUNTER StatRZSyncPagePDNAs; /**< RC/R0: The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit. */
2765 STAMCOUNTER StatRZSyncPagePDOutOfSync; /**< RC/R0: The number of time we've encountered an out-of-sync PD in SyncPage. */
2766 STAMCOUNTER StatRZAccessedPage; /**< RC/R0: The number of pages marked not present for accessed bit emulation. */
2767 STAMPROFILE StatRZDirtyBitTracking; /**< RC/R0: Profiling the dirty bit tracking in CheckPageFault().. */
2768 STAMCOUNTER StatRZDirtyPage; /**< RC/R0: The number of pages marked read-only for dirty bit tracking. */
2769 STAMCOUNTER StatRZDirtyPageBig; /**< RC/R0: The number of pages marked read-only for dirty bit tracking. */
2770 STAMCOUNTER StatRZDirtyPageSkipped; /**< RC/R0: The number of pages already dirty or readonly. */
2771 STAMCOUNTER StatRZDirtyPageTrap; /**< RC/R0: The number of traps generated for dirty bit tracking. */
2772 STAMCOUNTER StatRZDirtyTrackRealPF; /**< RC/R0: The number of real pages faults during dirty bit tracking. */
2773 STAMCOUNTER StatRZDirtiedPage; /**< RC/R0: The number of pages marked dirty because of write accesses. */
2774 STAMCOUNTER StatRZPageAlreadyDirty; /**< RC/R0: The number of pages already marked dirty because of write accesses. */
2775 STAMPROFILE StatRZInvalidatePage; /**< RC/R0: PGMInvalidatePage() profiling. */
2776 STAMCOUNTER StatRZInvalidatePage4KBPages; /**< RC/R0: The number of times PGMInvalidatePage() was called for a 4KB page. */
2777 STAMCOUNTER StatRZInvalidatePage4MBPages; /**< RC/R0: The number of times PGMInvalidatePage() was called for a 4MB page. */
2778 STAMCOUNTER StatRZInvalidatePage4MBPagesSkip; /**< RC/R0: The number of times PGMInvalidatePage() skipped a 4MB page. */
2779 STAMCOUNTER StatRZInvalidatePagePDMappings; /**< RC/R0: The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict). */
2780 STAMCOUNTER StatRZInvalidatePagePDNAs; /**< RC/R0: The number of times PGMInvalidatePage() was called for a not accessed page directory. */
2781 STAMCOUNTER StatRZInvalidatePagePDNPs; /**< RC/R0: The number of times PGMInvalidatePage() was called for a not present page directory. */
2782 STAMCOUNTER StatRZInvalidatePagePDOutOfSync; /**< RC/R0: The number of times PGMInvalidatePage() was called for an out of sync page directory. */
2783 STAMCOUNTER StatRZInvalidatePageSkipped; /**< RC/R0: The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3. */
2784 STAMPROFILE StatRZVirtHandlerSearchByPhys; /**< RC/R0: Profiling of pgmHandlerVirtualFindByPhysAddr. */
2785 STAMCOUNTER StatRZPhysHandlerReset; /**< RC/R0: The number of times PGMHandlerPhysicalReset is called. */
2786 STAMCOUNTER StatRZPageOutOfSyncUser; /**< RC/R0: The number of times user page is out of sync was detected in #PF or VerifyAccessSyncPage. */
2787 STAMCOUNTER StatRZPageOutOfSyncSupervisor; /**< RC/R0: The number of times supervisor page is out of sync was detected in in #PF or VerifyAccessSyncPage. */
2788 STAMPROFILE StatRZPrefetch; /**< RC/R0: PGMPrefetchPage. */
2789 STAMCOUNTER StatRZChunkR3MapTlbHits; /**< RC/R0: Ring-3/0 chunk mapper TLB hits. */
2790 STAMCOUNTER StatRZChunkR3MapTlbMisses; /**< RC/R0: Ring-3/0 chunk mapper TLB misses. */
2791 STAMCOUNTER StatRZPageMapTlbHits; /**< RC/R0: Ring-3/0 page mapper TLB hits. */
2792 STAMCOUNTER StatRZPageMapTlbMisses; /**< RC/R0: Ring-3/0 page mapper TLB misses. */
2793 STAMCOUNTER StatRZPageReplaceShared; /**< RC/R0: Times a shared page has been replaced by a private one. */
2794 STAMCOUNTER StatRZPageReplaceZero; /**< RC/R0: Times the zero page has been replaced by a private one. */
2795/// @todo STAMCOUNTER StatRZPageHandyAllocs; /**< RC/R0: The number of times we've executed GMMR3AllocateHandyPages. */
2796 STAMPROFILE StatRZFlushTLB; /**< RC/R0: Profiling of the PGMFlushTLB() body. */
2797 STAMCOUNTER StatRZFlushTLBNewCR3; /**< RC/R0: The number of times PGMFlushTLB was called with a new CR3, non-global. (switch) */
2798 STAMCOUNTER StatRZFlushTLBNewCR3Global; /**< RC/R0: The number of times PGMFlushTLB was called with a new CR3, global. (switch) */
2799 STAMCOUNTER StatRZFlushTLBSameCR3; /**< RC/R0: The number of times PGMFlushTLB was called with the same CR3, non-global. (flush) */
2800 STAMCOUNTER StatRZFlushTLBSameCR3Global; /**< RC/R0: The number of times PGMFlushTLB was called with the same CR3, global. (flush) */
2801 STAMPROFILE StatRZGstModifyPage; /**< RC/R0: Profiling of the PGMGstModifyPage() body */
2802
2803 STAMPROFILE StatR3SyncCR3; /**< R3: PGMSyncCR3() profiling. */
2804 STAMPROFILE StatR3SyncCR3Handlers; /**< R3: Profiling of the PGMSyncCR3() update handler section. */
2805 STAMPROFILE StatR3SyncCR3HandlerVirtualReset; /**< R3: Profiling of the virtual handler resets. */
2806 STAMPROFILE StatR3SyncCR3HandlerVirtualUpdate; /**< R3: Profiling of the virtual handler updates. */
2807 STAMCOUNTER StatR3SyncCR3Global; /**< R3: The number of global CR3 syncs. */
2808 STAMCOUNTER StatR3SyncCR3NotGlobal; /**< R3: The number of non-global CR3 syncs. */
2809 STAMCOUNTER StatR3SyncCR3DstFreed; /**< R3: The number of times we've had to free a shadow entry. */
2810 STAMCOUNTER StatR3SyncCR3DstFreedSrcNP; /**< R3: The number of times we've had to free a shadow entry for which the source entry was not present. */
2811 STAMCOUNTER StatR3SyncCR3DstNotPresent; /**< R3: The number of times we've encountered a not present shadow entry for a present guest entry. */
2812 STAMCOUNTER StatR3SyncCR3DstSkippedGlobalPD; /**< R3: The number of times a global page directory wasn't flushed. */
2813 STAMCOUNTER StatR3SyncCR3DstSkippedGlobalPT; /**< R3: The number of times a page table with only global entries wasn't flushed. */
2814 STAMCOUNTER StatR3SyncCR3DstCacheHit; /**< R3: The number of times we got some kind of cache hit on a page table. */
2815 STAMPROFILE StatR3SyncPT; /**< R3: PGMSyncPT() profiling. */
2816 STAMCOUNTER StatR3SyncPTFailed; /**< R3: The number of times PGMSyncPT() failed. */
2817 STAMCOUNTER StatR3SyncPT4K; /**< R3: Number of 4KB syncs. */
2818 STAMCOUNTER StatR3SyncPT4M; /**< R3: Number of 4MB syncs. */
2819 STAMCOUNTER StatR3SyncPagePDNAs; /**< R3: The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit. */
2820 STAMCOUNTER StatR3SyncPagePDOutOfSync; /**< R3: The number of time we've encountered an out-of-sync PD in SyncPage. */
2821 STAMCOUNTER StatR3AccessedPage; /**< R3: The number of pages marked not present for accessed bit emulation. */
2822 STAMPROFILE StatR3DirtyBitTracking; /**< R3: Profiling the dirty bit tracking in CheckPageFault(). */
2823 STAMCOUNTER StatR3DirtyPage; /**< R3: The number of pages marked read-only for dirty bit tracking. */
2824 STAMCOUNTER StatR3DirtyPageBig; /**< R3: The number of pages marked read-only for dirty bit tracking. */
2825 STAMCOUNTER StatR3DirtyPageSkipped; /**< R3: The number of pages already dirty or readonly. */
2826 STAMCOUNTER StatR3DirtyPageTrap; /**< R3: The number of traps generated for dirty bit tracking. */
2827 STAMCOUNTER StatR3DirtyTrackRealPF; /**< R3: The number of real pages faults during dirty bit tracking. */
2828 STAMCOUNTER StatR3DirtiedPage; /**< R3: The number of pages marked dirty because of write accesses. */
2829 STAMCOUNTER StatR3PageAlreadyDirty; /**< R3: The number of pages already marked dirty because of write accesses. */
2830 STAMPROFILE StatR3InvalidatePage; /**< R3: PGMInvalidatePage() profiling. */
2831 STAMCOUNTER StatR3InvalidatePage4KBPages; /**< R3: The number of times PGMInvalidatePage() was called for a 4KB page. */
2832 STAMCOUNTER StatR3InvalidatePage4MBPages; /**< R3: The number of times PGMInvalidatePage() was called for a 4MB page. */
2833 STAMCOUNTER StatR3InvalidatePage4MBPagesSkip; /**< R3: The number of times PGMInvalidatePage() skipped a 4MB page. */
2834 STAMCOUNTER StatR3InvalidatePagePDNAs; /**< R3: The number of times PGMInvalidatePage() was called for a not accessed page directory. */
2835 STAMCOUNTER StatR3InvalidatePagePDNPs; /**< R3: The number of times PGMInvalidatePage() was called for a not present page directory. */
2836 STAMCOUNTER StatR3InvalidatePagePDMappings; /**< R3: The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict). */
2837 STAMCOUNTER StatR3InvalidatePagePDOutOfSync; /**< R3: The number of times PGMInvalidatePage() was called for an out of sync page directory. */
2838 STAMCOUNTER StatR3InvalidatePageSkipped; /**< R3: The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3. */
2839 STAMPROFILE StatR3VirtHandlerSearchByPhys; /**< R3: Profiling of pgmHandlerVirtualFindByPhysAddr. */
2840 STAMCOUNTER StatR3PhysHandlerReset; /**< R3: The number of times PGMHandlerPhysicalReset is called. */
2841 STAMCOUNTER StatR3PageOutOfSyncUser; /**< R3: The number of times user page is out of sync was detected in #PF or VerifyAccessSyncPage. */
2842 STAMCOUNTER StatR3PageOutOfSyncSupervisor; /**< R3: The number of times supervisor page is out of sync was detected in in #PF or VerifyAccessSyncPage. */
2843 STAMPROFILE StatR3Prefetch; /**< R3: PGMPrefetchPage. */
2844 STAMCOUNTER StatR3ChunkR3MapTlbHits; /**< R3: Ring-3/0 chunk mapper TLB hits. */
2845 STAMCOUNTER StatR3ChunkR3MapTlbMisses; /**< R3: Ring-3/0 chunk mapper TLB misses. */
2846 STAMCOUNTER StatR3PageMapTlbHits; /**< R3: Ring-3/0 page mapper TLB hits. */
2847 STAMCOUNTER StatR3PageMapTlbMisses; /**< R3: Ring-3/0 page mapper TLB misses. */
2848 STAMCOUNTER StatR3PageReplaceShared; /**< R3: Times a shared page has been replaced by a private one. */
2849 STAMCOUNTER StatR3PageReplaceZero; /**< R3: Times the zero page has been replaced by a private one. */
2850/// @todo STAMCOUNTER StatR3PageHandyAllocs; /**< R3: The number of times we've executed GMMR3AllocateHandyPages. */
2851 STAMPROFILE StatR3FlushTLB; /**< R3: Profiling of the PGMFlushTLB() body. */
2852 STAMCOUNTER StatR3FlushTLBNewCR3; /**< R3: The number of times PGMFlushTLB was called with a new CR3, non-global. (switch) */
2853 STAMCOUNTER StatR3FlushTLBNewCR3Global; /**< R3: The number of times PGMFlushTLB was called with a new CR3, global. (switch) */
2854 STAMCOUNTER StatR3FlushTLBSameCR3; /**< R3: The number of times PGMFlushTLB was called with the same CR3, non-global. (flush) */
2855 STAMCOUNTER StatR3FlushTLBSameCR3Global; /**< R3: The number of times PGMFlushTLB was called with the same CR3, global. (flush) */
2856 STAMPROFILE StatR3GstModifyPage; /**< R3: Profiling of the PGMGstModifyPage() body */
2857#endif /* VBOX_WITH_STATISTICS */
2858} PGM;
2859/** Pointer to the PGM instance data. */
2860typedef PGM *PPGM;
2861
2862
2863/**
2864 * PGMCPU Data (part of VMCPU).
2865 */
2866typedef struct PGMCPU
2867{
2868 /** Offset to the VMCPU structure. */
2869 RTINT offVMCPU;
2870 /** Automatically tracked physical memory mapping set.
2871 * Ring-0 and strict raw-mode builds. */
2872 PGMMAPSET AutoSet;
2873} PGMCPU;
2874/** Pointer to the per-cpu PGM data. */
2875typedef PGMCPU *PPGMCPU;
2876
2877
2878/** @name PGM::fSyncFlags Flags
2879 * @{
2880 */
2881/** Updates the virtual access handler state bit in PGMPAGE. */
2882#define PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL RT_BIT(0)
2883/** Always sync CR3. */
2884#define PGM_SYNC_ALWAYS RT_BIT(1)
2885/** Check monitoring on next CR3 (re)load and invalidate page. */
2886#define PGM_SYNC_MONITOR_CR3 RT_BIT(2)
2887/** Check guest mapping in SyncCR3. */
2888#define PGM_SYNC_MAP_CR3 RT_BIT(3)
2889/** Clear the page pool (a light weight flush). */
2890#define PGM_SYNC_CLEAR_PGM_POOL RT_BIT(8)
2891/** @} */
2892
2893
2894__BEGIN_DECLS
2895
2896int pgmLock(PVM pVM);
2897void pgmUnlock(PVM pVM);
2898
2899VMMRCDECL(int) pgmGCGuestPDWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, void *pvFault, RTGCPHYS GCPhysFault, void *pvUser);
2900VMMDECL(int) pgmPhysRomWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, void *pvFault, RTGCPHYS GCPhysFault, void *pvUser);
2901
2902int pgmR3SyncPTResolveConflict(PVM pVM, PPGMMAPPING pMapping, PX86PD pPDSrc, RTGCPTR GCPtrOldMapping);
2903int pgmR3SyncPTResolveConflictPAE(PVM pVM, PPGMMAPPING pMapping, RTGCPTR GCPtrOldMapping);
2904PPGMMAPPING pgmGetMapping(PVM pVM, RTGCPTR GCPtr);
2905void pgmR3MapRelocate(PVM pVM, PPGMMAPPING pMapping, RTGCPTR GCPtrOldMapping, RTGCPTR GCPtrNewMapping);
2906DECLCALLBACK(void) pgmR3MapInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
2907
2908void pgmR3HandlerPhysicalUpdateAll(PVM pVM);
2909int pgmHandlerVirtualFindByPhysAddr(PVM pVM, RTGCPHYS GCPhys, PPGMVIRTHANDLER *ppVirt, unsigned *piPage);
2910DECLCALLBACK(int) pgmHandlerVirtualResetOne(PAVLROGCPTRNODECORE pNode, void *pvUser);
2911#if defined(VBOX_STRICT) || defined(LOG_ENABLED)
2912void pgmHandlerVirtualDumpPhysPages(PVM pVM);
2913#else
2914# define pgmHandlerVirtualDumpPhysPages(a) do { } while (0)
2915#endif
2916DECLCALLBACK(void) pgmR3InfoHandlers(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
2917
2918
2919void pgmPhysFreePage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys);
2920int pgmPhysPageLoadIntoTlb(PPGM pPGM, RTGCPHYS GCPhys);
2921int pgmPhysPageMakeWritable(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys);
2922int pgmPhysPageMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPPGMPAGEMAP ppMap, void **ppv);
2923#ifdef IN_RING3
2924int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk);
2925int pgmR3PhysRamReset(PVM pVM);
2926int pgmR3PhysRomReset(PVM pVM);
2927# ifndef VBOX_WITH_NEW_PHYS_CODE
2928int pgmr3PhysGrowRange(PVM pVM, RTGCPHYS GCPhys);
2929# endif
2930
2931int pgmR3PoolInit(PVM pVM);
2932void pgmR3PoolRelocate(PVM pVM);
2933void pgmR3PoolReset(PVM pVM);
2934
2935#endif /* IN_RING3 */
2936#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2937int pgmR0DynMapHCPageCommon(PVM pVM, PPGMMAPSET pSet, RTHCPHYS HCPhys, void **ppv);
2938#endif
2939#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
2940void *pgmPoolMapPageFallback(PPGM pPGM, PPGMPOOLPAGE pPage);
2941#endif
2942int pgmPoolAlloc(PVM pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage);
2943PPGMPOOLPAGE pgmPoolGetPageByHCPhys(PVM pVM, RTHCPHYS HCPhys);
2944void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint32_t iUserTable);
2945void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable);
2946int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
2947void pgmPoolFlushAll(PVM pVM);
2948void pgmPoolClearAll(PVM pVM);
2949int pgmPoolSyncCR3(PVM pVM);
2950void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs);
2951void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, uint16_t iPhysExt);
2952int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage);
2953PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt);
2954void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt);
2955void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt);
2956uint16_t pgmPoolTrackPhysExtAddref(PVM pVM, uint16_t u16, uint16_t iShwPT);
2957void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPoolPage, PPGMPAGE pPhysPage);
2958#ifdef PGMPOOL_WITH_MONITORING
2959# ifdef IN_RING3
2960void pgmPoolMonitorChainChanging(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, RTHCPTR pvAddress, PDISCPUSTATE pCpu);
2961# else
2962void pgmPoolMonitorChainChanging(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, RTGCPTR pvAddress, PDISCPUSTATE pCpu);
2963# endif
2964int pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
2965void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
2966void pgmPoolMonitorModifiedClearAll(PVM pVM);
2967int pgmPoolMonitorMonitorCR3(PPGMPOOL pPool, uint16_t idxRoot, RTGCPHYS GCPhysCR3);
2968int pgmPoolMonitorUnmonitorCR3(PPGMPOOL pPool, uint16_t idxRoot);
2969#endif
2970
2971__END_DECLS
2972
2973
2974/**
2975 * Gets the PGMRAMRANGE structure for a guest page.
2976 *
2977 * @returns Pointer to the RAM range on success.
2978 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
2979 *
2980 * @param pPGM PGM handle.
2981 * @param GCPhys The GC physical address.
2982 */
2983DECLINLINE(PPGMRAMRANGE) pgmPhysGetRange(PPGM pPGM, RTGCPHYS GCPhys)
2984{
2985 /*
2986 * Optimize for the first range.
2987 */
2988 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
2989 RTGCPHYS off = GCPhys - pRam->GCPhys;
2990 if (RT_UNLIKELY(off >= pRam->cb))
2991 {
2992 do
2993 {
2994 pRam = pRam->CTX_SUFF(pNext);
2995 if (RT_UNLIKELY(!pRam))
2996 break;
2997 off = GCPhys - pRam->GCPhys;
2998 } while (off >= pRam->cb);
2999 }
3000 return pRam;
3001}
3002
3003
3004/**
3005 * Gets the PGMPAGE structure for a guest page.
3006 *
3007 * @returns Pointer to the page on success.
3008 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
3009 *
3010 * @param pPGM PGM handle.
3011 * @param GCPhys The GC physical address.
3012 */
3013DECLINLINE(PPGMPAGE) pgmPhysGetPage(PPGM pPGM, RTGCPHYS GCPhys)
3014{
3015 /*
3016 * Optimize for the first range.
3017 */
3018 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
3019 RTGCPHYS off = GCPhys - pRam->GCPhys;
3020 if (RT_UNLIKELY(off >= pRam->cb))
3021 {
3022 do
3023 {
3024 pRam = pRam->CTX_SUFF(pNext);
3025 if (RT_UNLIKELY(!pRam))
3026 return NULL;
3027 off = GCPhys - pRam->GCPhys;
3028 } while (off >= pRam->cb);
3029 }
3030 return &pRam->aPages[off >> PAGE_SHIFT];
3031}
3032
3033
3034/**
3035 * Gets the PGMPAGE structure for a guest page.
3036 *
3037 * Old Phys code: Will make sure the page is present.
3038 *
3039 * @returns VBox status code.
3040 * @retval VINF_SUCCESS and a valid *ppPage on success.
3041 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if the address isn't valid.
3042 *
3043 * @param pPGM PGM handle.
3044 * @param GCPhys The GC physical address.
3045 * @param ppPage Where to store the page poitner on success.
3046 */
3047DECLINLINE(int) pgmPhysGetPageEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage)
3048{
3049 /*
3050 * Optimize for the first range.
3051 */
3052 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
3053 RTGCPHYS off = GCPhys - pRam->GCPhys;
3054 if (RT_UNLIKELY(off >= pRam->cb))
3055 {
3056 do
3057 {
3058 pRam = pRam->CTX_SUFF(pNext);
3059 if (RT_UNLIKELY(!pRam))
3060 {
3061 *ppPage = NULL; /* avoid incorrect and very annoying GCC warnings */
3062 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3063 }
3064 off = GCPhys - pRam->GCPhys;
3065 } while (off >= pRam->cb);
3066 }
3067 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
3068#ifndef VBOX_WITH_NEW_PHYS_CODE
3069
3070 /*
3071 * Make sure it's present.
3072 */
3073 if (RT_UNLIKELY( !PGM_PAGE_GET_HCPHYS(*ppPage)
3074 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)))
3075 {
3076#ifdef IN_RING3
3077 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys);
3078#else
3079 int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
3080#endif
3081 if (RT_FAILURE(rc))
3082 {
3083 *ppPage = NULL; /* avoid incorrect and very annoying GCC warnings */
3084 return rc;
3085 }
3086 Assert(rc == VINF_SUCCESS);
3087 }
3088#endif
3089 return VINF_SUCCESS;
3090}
3091
3092
3093
3094
3095/**
3096 * Gets the PGMPAGE structure for a guest page.
3097 *
3098 * Old Phys code: Will make sure the page is present.
3099 *
3100 * @returns VBox status code.
3101 * @retval VINF_SUCCESS and a valid *ppPage on success.
3102 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if the address isn't valid.
3103 *
3104 * @param pPGM PGM handle.
3105 * @param GCPhys The GC physical address.
3106 * @param ppPage Where to store the page poitner on success.
3107 * @param ppRamHint Where to read and store the ram list hint.
3108 * The caller initializes this to NULL before the call.
3109 */
3110DECLINLINE(int) pgmPhysGetPageWithHintEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage, PPGMRAMRANGE *ppRamHint)
3111{
3112 RTGCPHYS off;
3113 PPGMRAMRANGE pRam = *ppRamHint;
3114 if ( !pRam
3115 || RT_UNLIKELY((off = GCPhys - pRam->GCPhys) >= pRam->cb))
3116 {
3117 pRam = pPGM->CTX_SUFF(pRamRanges);
3118 off = GCPhys - pRam->GCPhys;
3119 if (RT_UNLIKELY(off >= pRam->cb))
3120 {
3121 do
3122 {
3123 pRam = pRam->CTX_SUFF(pNext);
3124 if (RT_UNLIKELY(!pRam))
3125 {
3126 *ppPage = NULL; /* Kill the incorrect and extremely annoying GCC warnings. */
3127 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3128 }
3129 off = GCPhys - pRam->GCPhys;
3130 } while (off >= pRam->cb);
3131 }
3132 *ppRamHint = pRam;
3133 }
3134 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
3135#ifndef VBOX_WITH_NEW_PHYS_CODE
3136
3137 /*
3138 * Make sure it's present.
3139 */
3140 if (RT_UNLIKELY( !PGM_PAGE_GET_HCPHYS(*ppPage)
3141 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)))
3142 {
3143#ifdef IN_RING3
3144 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys);
3145#else
3146 int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
3147#endif
3148 if (RT_FAILURE(rc))
3149 {
3150 *ppPage = NULL; /* Shut up annoying smart ass. */
3151 return rc;
3152 }
3153 Assert(rc == VINF_SUCCESS);
3154 }
3155#endif
3156 return VINF_SUCCESS;
3157}
3158
3159
3160/**
3161 * Gets the PGMPAGE structure for a guest page together with the PGMRAMRANGE.
3162 *
3163 * @returns Pointer to the page on success.
3164 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
3165 *
3166 * @param pPGM PGM handle.
3167 * @param GCPhys The GC physical address.
3168 * @param ppRam Where to store the pointer to the PGMRAMRANGE.
3169 */
3170DECLINLINE(PPGMPAGE) pgmPhysGetPageAndRange(PPGM pPGM, RTGCPHYS GCPhys, PPGMRAMRANGE *ppRam)
3171{
3172 /*
3173 * Optimize for the first range.
3174 */
3175 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
3176 RTGCPHYS off = GCPhys - pRam->GCPhys;
3177 if (RT_UNLIKELY(off >= pRam->cb))
3178 {
3179 do
3180 {
3181 pRam = pRam->CTX_SUFF(pNext);
3182 if (RT_UNLIKELY(!pRam))
3183 return NULL;
3184 off = GCPhys - pRam->GCPhys;
3185 } while (off >= pRam->cb);
3186 }
3187 *ppRam = pRam;
3188 return &pRam->aPages[off >> PAGE_SHIFT];
3189}
3190
3191
3192/**
3193 * Gets the PGMPAGE structure for a guest page together with the PGMRAMRANGE.
3194 *
3195 * @returns Pointer to the page on success.
3196 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
3197 *
3198 * @param pPGM PGM handle.
3199 * @param GCPhys The GC physical address.
3200 * @param ppPage Where to store the pointer to the PGMPAGE structure.
3201 * @param ppRam Where to store the pointer to the PGMRAMRANGE structure.
3202 */
3203DECLINLINE(int) pgmPhysGetPageAndRangeEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage, PPGMRAMRANGE *ppRam)
3204{
3205 /*
3206 * Optimize for the first range.
3207 */
3208 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
3209 RTGCPHYS off = GCPhys - pRam->GCPhys;
3210 if (RT_UNLIKELY(off >= pRam->cb))
3211 {
3212 do
3213 {
3214 pRam = pRam->CTX_SUFF(pNext);
3215 if (RT_UNLIKELY(!pRam))
3216 {
3217 *ppRam = NULL; /* Shut up silly GCC warnings. */
3218 *ppPage = NULL; /* ditto */
3219 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3220 }
3221 off = GCPhys - pRam->GCPhys;
3222 } while (off >= pRam->cb);
3223 }
3224 *ppRam = pRam;
3225 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
3226#ifndef VBOX_WITH_NEW_PHYS_CODE
3227
3228 /*
3229 * Make sure it's present.
3230 */
3231 if (RT_UNLIKELY( !PGM_PAGE_GET_HCPHYS(*ppPage)
3232 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)))
3233 {
3234#ifdef IN_RING3
3235 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys);
3236#else
3237 int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
3238#endif
3239 if (RT_FAILURE(rc))
3240 {
3241 *ppPage = NULL; /* Shut up silly GCC warnings. */
3242 *ppPage = NULL; /* ditto */
3243 return rc;
3244 }
3245 Assert(rc == VINF_SUCCESS);
3246
3247 }
3248#endif
3249 return VINF_SUCCESS;
3250}
3251
3252
3253/**
3254 * Convert GC Phys to HC Phys.
3255 *
3256 * @returns VBox status.
3257 * @param pPGM PGM handle.
3258 * @param GCPhys The GC physical address.
3259 * @param pHCPhys Where to store the corresponding HC physical address.
3260 *
3261 * @deprecated Doesn't deal with zero, shared or write monitored pages.
3262 * Avoid when writing new code!
3263 */
3264DECLINLINE(int) pgmRamGCPhys2HCPhys(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPHYS pHCPhys)
3265{
3266 PPGMPAGE pPage;
3267 int rc = pgmPhysGetPageEx(pPGM, GCPhys, &pPage);
3268 if (RT_FAILURE(rc))
3269 return rc;
3270 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK);
3271 return VINF_SUCCESS;
3272}
3273
3274#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3275
3276/**
3277 * Inlined version of the ring-0 version of PGMDynMapHCPage that
3278 * optimizes access to pages already in the set.
3279 *
3280 * @returns VINF_SUCCESS. Will bail out to ring-3 on failure.
3281 * @param pPGM Pointer to the PVM instance data.
3282 * @param HCPhys The physical address of the page.
3283 * @param ppv Where to store the mapping address.
3284 */
3285DECLINLINE(int) pgmR0DynMapHCPageInlined(PPGM pPGM, RTHCPHYS HCPhys, void **ppv)
3286{
3287 STAM_PROFILE_START(&pPGM->StatR0DynMapHCPageInl, a);
3288 PPGMMAPSET pSet = &((PPGMCPU)((uint8_t *)VMMGetCpu(PGM2VM(pPGM)) + pPGM->offVCpu))->AutoSet; /* very pretty ;-) */
3289 Assert(!(HCPhys & PAGE_OFFSET_MASK));
3290 Assert(pSet->cEntries <= RT_ELEMENTS(pSet->aEntries));
3291
3292 unsigned iHash = PGMMAPSET_HASH(HCPhys);
3293 unsigned iEntry = pSet->aiHashTable[iHash];
3294 if ( iEntry < pSet->cEntries
3295 && pSet->aEntries[iEntry].HCPhys == HCPhys)
3296 {
3297 *ppv = pSet->aEntries[iEntry].pvPage;
3298 STAM_COUNTER_INC(&pPGM->StatR0DynMapHCPageInlHits);
3299 }
3300 else
3301 {
3302 STAM_COUNTER_INC(&pPGM->StatR0DynMapHCPageInlMisses);
3303 pgmR0DynMapHCPageCommon(PGM2VM(pPGM), pSet, HCPhys, ppv);
3304 }
3305
3306 STAM_PROFILE_STOP(&pPGM->StatR0DynMapHCPageInl, a);
3307 return VINF_SUCCESS;
3308}
3309
3310
3311/**
3312 * Inlined version of the ring-0 version of PGMDynMapGCPage that optimizes
3313 * access to pages already in the set.
3314 *
3315 * @returns See PGMDynMapGCPage.
3316 * @param pPGM Pointer to the PVM instance data.
3317 * @param HCPhys The physical address of the page.
3318 * @param ppv Where to store the mapping address.
3319 */
3320DECLINLINE(int) pgmR0DynMapGCPageInlined(PPGM pPGM, RTGCPHYS GCPhys, void **ppv)
3321{
3322 STAM_PROFILE_START(&pPGM->StatR0DynMapGCPageInl, a);
3323 Assert(!(GCPhys & PAGE_OFFSET_MASK));
3324
3325 /*
3326 * Get the ram range.
3327 */
3328 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
3329 RTGCPHYS off = GCPhys - pRam->GCPhys;
3330 if (RT_UNLIKELY(off >= pRam->cb
3331 /** @todo || page state stuff */))
3332 {
3333 /* This case is not counted into StatR0DynMapGCPageInl. */
3334 STAM_COUNTER_INC(&pPGM->StatR0DynMapGCPageInlRamMisses);
3335 return PGMDynMapGCPage(PGM2VM(pPGM), GCPhys, ppv);
3336 }
3337
3338 RTHCPHYS HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[off >> PAGE_SHIFT]);
3339 STAM_COUNTER_INC(&pPGM->StatR0DynMapGCPageInlRamHits);
3340
3341 /*
3342 * pgmR0DynMapHCPageInlined with out stats.
3343 */
3344 PPGMMAPSET pSet = &((PPGMCPU)((uint8_t *)VMMGetCpu(PGM2VM(pPGM)) + pPGM->offVCpu))->AutoSet; /* very pretty ;-) */
3345 Assert(!(HCPhys & PAGE_OFFSET_MASK));
3346 Assert(pSet->cEntries <= RT_ELEMENTS(pSet->aEntries));
3347
3348 unsigned iHash = PGMMAPSET_HASH(HCPhys);
3349 unsigned iEntry = pSet->aiHashTable[iHash];
3350 if ( iEntry < pSet->cEntries
3351 && pSet->aEntries[iEntry].HCPhys == HCPhys)
3352 {
3353 *ppv = pSet->aEntries[iEntry].pvPage;
3354 STAM_COUNTER_INC(&pPGM->StatR0DynMapGCPageInlHits);
3355 }
3356 else
3357 {
3358 STAM_COUNTER_INC(&pPGM->StatR0DynMapGCPageInlMisses);
3359 pgmR0DynMapHCPageCommon(PGM2VM(pPGM), pSet, HCPhys, ppv);
3360 }
3361
3362 STAM_PROFILE_STOP(&pPGM->StatR0DynMapGCPageInl, a);
3363 return VINF_SUCCESS;
3364}
3365
3366#endif /* VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */
3367
3368#if defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) || defined(IN_RC)
3369/**
3370 * Temporarily maps one host page specified by HC physical address, returning
3371 * pointer within the page.
3372 *
3373 * Be WARNED that the dynamic page mapping area is small, 8 pages, thus the space is
3374 * reused after 8 mappings (or perhaps a few more if you score with the cache).
3375 *
3376 * @returns The address corresponding to HCPhys.
3377 * @param pPGM Pointer to the PVM instance data.
3378 * @param HCPhys HC Physical address of the page.
3379 */
3380DECLINLINE(void *) pgmDynMapHCPageOff(PPGM pPGM, RTHCPHYS HCPhys)
3381{
3382 void *pv;
3383# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3384 pgmR0DynMapHCPageInlined(pPGM, HCPhys & ~(RTHCPHYS)PAGE_OFFSET_MASK, &pv);
3385# else
3386 PGMDynMapHCPage(PGM2VM(pPGM), HCPhys & ~(RTHCPHYS)PAGE_OFFSET_MASK, &pv);
3387# endif
3388 pv = (void *)((uintptr_t)pv | (HCPhys & PAGE_OFFSET_MASK));
3389 return pv;
3390}
3391#endif /* VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 || IN_RC */
3392
3393
3394#ifndef IN_RC
3395/**
3396 * Queries the Physical TLB entry for a physical guest page,
3397 * attemting to load the TLB entry if necessary.
3398 *
3399 * @returns VBox status code.
3400 * @retval VINF_SUCCESS on success
3401 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
3402 * @param pPGM The PGM instance handle.
3403 * @param GCPhys The address of the guest page.
3404 * @param ppTlbe Where to store the pointer to the TLB entry.
3405 */
3406
3407DECLINLINE(int) pgmPhysPageQueryTlbe(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGEMAPTLBE ppTlbe)
3408{
3409 int rc;
3410 PPGMPAGEMAPTLBE pTlbe = &pPGM->CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)];
3411 if (pTlbe->GCPhys == (GCPhys & X86_PTE_PAE_PG_MASK))
3412 {
3413 STAM_COUNTER_INC(&pPGM->CTX_MID_Z(Stat,PageMapTlbHits));
3414 rc = VINF_SUCCESS;
3415 }
3416 else
3417 rc = pgmPhysPageLoadIntoTlb(pPGM, GCPhys);
3418 *ppTlbe = pTlbe;
3419 return rc;
3420}
3421#endif /* !IN_RC */
3422
3423#if !defined(IN_RC) && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
3424
3425# ifndef VBOX_WITH_NEW_PHYS_CODE
3426/**
3427 * Convert GC Phys to HC Virt.
3428 *
3429 * @returns VBox status.
3430 * @param pPGM PGM handle.
3431 * @param GCPhys The GC physical address.
3432 * @param pHCPtr Where to store the corresponding HC virtual address.
3433 *
3434 * @deprecated This will be eliminated by PGMPhysGCPhys2CCPtr. Only user is
3435 * pgmPoolMonitorGCPtr2CCPtr.
3436 */
3437DECLINLINE(int) pgmRamGCPhys2HCPtr(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPTR pHCPtr)
3438{
3439 PPGMRAMRANGE pRam;
3440 PPGMPAGE pPage;
3441 int rc = pgmPhysGetPageAndRangeEx(pPGM, GCPhys, &pPage, &pRam);
3442 if (RT_FAILURE(rc))
3443 {
3444 *pHCPtr = 0; /* Shut up silly GCC warnings. */
3445 return rc;
3446 }
3447 RTGCPHYS off = GCPhys - pRam->GCPhys;
3448
3449 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
3450 {
3451 unsigned iChunk = off >> PGM_DYNAMIC_CHUNK_SHIFT;
3452 *pHCPtr = (RTHCPTR)(pRam->paChunkR3Ptrs[iChunk] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
3453 return VINF_SUCCESS;
3454 }
3455 if (pRam->pvR3)
3456 {
3457 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)pRam->pvR3 + off);
3458 return VINF_SUCCESS;
3459 }
3460 *pHCPtr = 0; /* Shut up silly GCC warnings. */
3461 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3462}
3463# endif /* !VBOX_WITH_NEW_PHYS_CODE */
3464#endif /* !IN_RC && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) */
3465
3466/**
3467 * Convert GC Phys to HC Virt and HC Phys.
3468 *
3469 * @returns VBox status.
3470 * @param pPGM PGM handle.
3471 * @param GCPhys The GC physical address.
3472 * @param pHCPtr Where to store the corresponding HC virtual address.
3473 * @param pHCPhys Where to store the HC Physical address and its flags.
3474 *
3475 * @deprecated Will go away or be changed. Only user is MapCR3. MapCR3 will have to do ring-3
3476 * and ring-0 locking of the CR3 in a lazy fashion I'm fear... or perhaps not. we'll see.
3477 */
3478DECLINLINE(int) pgmRamGCPhys2HCPtrAndHCPhysWithFlags(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPTR pHCPtr, PRTHCPHYS pHCPhys)
3479{
3480 PPGMRAMRANGE pRam;
3481 PPGMPAGE pPage;
3482 int rc = pgmPhysGetPageAndRangeEx(pPGM, GCPhys, &pPage, &pRam);
3483 if (RT_FAILURE(rc))
3484 {
3485 *pHCPtr = 0; /* Shut up crappy GCC warnings */
3486 *pHCPhys = 0; /* ditto */
3487 return rc;
3488 }
3489 RTGCPHYS off = GCPhys - pRam->GCPhys;
3490
3491 *pHCPhys = pPage->HCPhys; /** @todo PAGE FLAGS */
3492 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
3493 {
3494 unsigned idx = (off >> PGM_DYNAMIC_CHUNK_SHIFT);
3495#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) /* ASSUMES only MapCR3 usage. */
3496 PRTR3UINTPTR paChunkR3Ptrs = (PRTR3UINTPTR)MMHyperR3ToCC(PGM2VM(pPGM), pRam->paChunkR3Ptrs);
3497 *pHCPtr = (RTHCPTR)(paChunkR3Ptrs[idx] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
3498#else
3499 *pHCPtr = (RTHCPTR)(pRam->paChunkR3Ptrs[idx] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
3500#endif
3501 return VINF_SUCCESS;
3502 }
3503 if (pRam->pvR3)
3504 {
3505 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)pRam->pvR3 + off);
3506 return VINF_SUCCESS;
3507 }
3508 *pHCPtr = 0;
3509 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3510}
3511
3512
3513/**
3514 * Clears flags associated with a RAM address.
3515 *
3516 * @returns VBox status code.
3517 * @param pPGM PGM handle.
3518 * @param GCPhys Guest context physical address.
3519 * @param fFlags fFlags to clear. (Bits 0-11.)
3520 */
3521DECLINLINE(int) pgmRamFlagsClearByGCPhys(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags)
3522{
3523 PPGMPAGE pPage;
3524 int rc = pgmPhysGetPageEx(pPGM, GCPhys, &pPage);
3525 if (RT_FAILURE(rc))
3526 return rc;
3527
3528 fFlags &= ~X86_PTE_PAE_PG_MASK;
3529 pPage->HCPhys &= ~(RTHCPHYS)fFlags; /** @todo PAGE FLAGS */
3530 return VINF_SUCCESS;
3531}
3532
3533
3534/**
3535 * Clears flags associated with a RAM address.
3536 *
3537 * @returns VBox status code.
3538 * @param pPGM PGM handle.
3539 * @param GCPhys Guest context physical address.
3540 * @param fFlags fFlags to clear. (Bits 0-11.)
3541 * @param ppRamHint Where to read and store the ram list hint.
3542 * The caller initializes this to NULL before the call.
3543 */
3544DECLINLINE(int) pgmRamFlagsClearByGCPhysWithHint(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags, PPGMRAMRANGE *ppRamHint)
3545{
3546 PPGMPAGE pPage;
3547 int rc = pgmPhysGetPageWithHintEx(pPGM, GCPhys, &pPage, ppRamHint);
3548 if (RT_FAILURE(rc))
3549 return rc;
3550
3551 fFlags &= ~X86_PTE_PAE_PG_MASK;
3552 pPage->HCPhys &= ~(RTHCPHYS)fFlags; /** @todo PAGE FLAGS */
3553 return VINF_SUCCESS;
3554}
3555
3556
3557/**
3558 * Sets (bitwise OR) flags associated with a RAM address.
3559 *
3560 * @returns VBox status code.
3561 * @param pPGM PGM handle.
3562 * @param GCPhys Guest context physical address.
3563 * @param fFlags fFlags to set clear. (Bits 0-11.)
3564 */
3565DECLINLINE(int) pgmRamFlagsSetByGCPhys(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags)
3566{
3567 PPGMPAGE pPage;
3568 int rc = pgmPhysGetPageEx(pPGM, GCPhys, &pPage);
3569 if (RT_FAILURE(rc))
3570 return rc;
3571
3572 fFlags &= ~X86_PTE_PAE_PG_MASK;
3573 pPage->HCPhys |= fFlags; /** @todo PAGE FLAGS */
3574 return VINF_SUCCESS;
3575}
3576
3577
3578/**
3579 * Sets (bitwise OR) flags associated with a RAM address.
3580 *
3581 * @returns VBox status code.
3582 * @param pPGM PGM handle.
3583 * @param GCPhys Guest context physical address.
3584 * @param fFlags fFlags to set clear. (Bits 0-11.)
3585 * @param ppRamHint Where to read and store the ram list hint.
3586 * The caller initializes this to NULL before the call.
3587 */
3588DECLINLINE(int) pgmRamFlagsSetByGCPhysWithHint(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags, PPGMRAMRANGE *ppRamHint)
3589{
3590 PPGMPAGE pPage;
3591 int rc = pgmPhysGetPageWithHintEx(pPGM, GCPhys, &pPage, ppRamHint);
3592 if (RT_FAILURE(rc))
3593 return rc;
3594
3595 fFlags &= ~X86_PTE_PAE_PG_MASK;
3596 pPage->HCPhys |= fFlags; /** @todo PAGE FLAGS */
3597 return VINF_SUCCESS;
3598}
3599
3600
3601/**
3602 * Calculated the guest physical address of the large (4 MB) page in 32 bits paging mode.
3603 * Takes PSE-36 into account.
3604 *
3605 * @returns guest physical address
3606 * @param pPGM Pointer to the PGM instance data.
3607 * @param Pde Guest Pde
3608 */
3609DECLINLINE(RTGCPHYS) pgmGstGet4MBPhysPage(PPGM pPGM, X86PDE Pde)
3610{
3611 RTGCPHYS GCPhys = Pde.u & X86_PDE4M_PG_MASK;
3612 GCPhys |= (RTGCPHYS)Pde.b.u8PageNoHigh << 32;
3613
3614 return GCPhys & pPGM->GCPhys4MBPSEMask;
3615}
3616
3617
3618/**
3619 * Gets the page directory entry for the specified address (32-bit paging).
3620 *
3621 * @returns The page directory entry in question.
3622 * @param pPGM Pointer to the PGM instance data.
3623 * @param GCPtr The address.
3624 */
3625DECLINLINE(X86PDE) pgmGstGet32bitPDE(PPGM pPGM, RTGCPTR GCPtr)
3626{
3627#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3628 PCX86PD pGuestPD = 0;
3629 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPD);
3630 if (RT_FAILURE(rc))
3631 {
3632 X86PDE ZeroPde = {0};
3633 AssertMsgFailedReturn(("%Rrc\n", rc), ZeroPde);
3634 }
3635 return pGuestPD->a[GCPtr >> X86_PD_SHIFT];
3636#else
3637 return pPGM->CTX_SUFF(pGst32BitPd)->a[GCPtr >> X86_PD_SHIFT];
3638#endif
3639}
3640
3641
3642/**
3643 * Gets the address of a specific page directory entry (32-bit paging).
3644 *
3645 * @returns Pointer the page directory entry in question.
3646 * @param pPGM Pointer to the PGM instance data.
3647 * @param GCPtr The address.
3648 */
3649DECLINLINE(PX86PDE) pgmGstGet32bitPDEPtr(PPGM pPGM, RTGCPTR GCPtr)
3650{
3651#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3652 PX86PD pGuestPD = 0;
3653 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPD);
3654 AssertRCReturn(rc, 0);
3655 return &pGuestPD->a[GCPtr >> X86_PD_SHIFT];
3656#else
3657 return &pPGM->CTX_SUFF(pGst32BitPd)->a[GCPtr >> X86_PD_SHIFT];
3658#endif
3659}
3660
3661
3662/**
3663 * Gets the address the guest page directory (32-bit paging).
3664 *
3665 * @returns Pointer the page directory entry in question.
3666 * @param pPGM Pointer to the PGM instance data.
3667 */
3668DECLINLINE(PX86PD) pgmGstGet32bitPDPtr(PPGM pPGM)
3669{
3670#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3671 PX86PD pGuestPD = 0;
3672 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPD);
3673 AssertRCReturn(rc, 0);
3674 return pGuestPD;
3675#else
3676 return pPGM->CTX_SUFF(pGst32BitPd);
3677#endif
3678}
3679
3680
3681/**
3682 * Gets the guest page directory pointer table.
3683 *
3684 * @returns Pointer to the page directory in question.
3685 * @returns NULL if the page directory is not present or on an invalid page.
3686 * @param pPGM Pointer to the PGM instance data.
3687 */
3688DECLINLINE(PX86PDPT) pgmGstGetPaePDPTPtr(PPGM pPGM)
3689{
3690#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3691 PX86PDPT pGuestPDPT = 0;
3692 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPDPT);
3693 AssertRCReturn(rc, 0);
3694 return pGuestPDPT;
3695#else
3696 return pPGM->CTX_SUFF(pGstPaePdpt);
3697#endif
3698}
3699
3700
3701/**
3702 * Gets the guest page directory pointer table entry for the specified address.
3703 *
3704 * @returns Pointer to the page directory in question.
3705 * @returns NULL if the page directory is not present or on an invalid page.
3706 * @param pPGM Pointer to the PGM instance data.
3707 * @param GCPtr The address.
3708 */
3709DECLINLINE(PX86PDPE) pgmGstGetPaePDPEPtr(PPGM pPGM, RTGCPTR GCPtr)
3710{
3711 AssertGCPtr32(GCPtr);
3712
3713#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3714 PX86PDPT pGuestPDPT = 0;
3715 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPDPT);
3716 AssertRCReturn(rc, 0);
3717 return &pGuestPDPT->a[(GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE];
3718#else
3719 return &pPGM->CTX_SUFF(pGstPaePdpt)->a[(GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE];
3720#endif
3721}
3722
3723
3724/**
3725 * Gets the page directory for the specified address.
3726 *
3727 * @returns Pointer to the page directory in question.
3728 * @returns NULL if the page directory is not present or on an invalid page.
3729 * @param pPGM Pointer to the PGM instance data.
3730 * @param GCPtr The address.
3731 */
3732DECLINLINE(PX86PDPAE) pgmGstGetPaePD(PPGM pPGM, RTGCPTR GCPtr)
3733{
3734 AssertGCPtr32(GCPtr);
3735
3736#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3737 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pPGM);
3738 AssertReturn(pGuestPDPT, 0);
3739#else
3740 PX86PDPT pGuestPDPT = pPGM->CTX_SUFF(pGstPaePdpt);
3741#endif
3742 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
3743 if (pGuestPDPT->a[iPdPt].n.u1Present)
3744 {
3745#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3746 if ((pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
3747 return pPGM->CTX_SUFF(apGstPaePDs)[iPdPt];
3748#endif
3749
3750 /* cache is out-of-sync. */
3751 PX86PDPAE pPD;
3752 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3753 if (RT_SUCCESS(rc))
3754 return pPD;
3755 AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, pGuestPDPT->a[iPdPt].u));
3756 /* returning NULL is ok if we assume it's just an invalid page of some kind emulated as all 0s. (not quite true) */
3757 }
3758 return NULL;
3759}
3760
3761
3762/**
3763 * Gets the page directory entry for the specified address.
3764 *
3765 * @returns Pointer to the page directory entry in question.
3766 * @returns NULL if the page directory is not present or on an invalid page.
3767 * @param pPGM Pointer to the PGM instance data.
3768 * @param GCPtr The address.
3769 */
3770DECLINLINE(PX86PDEPAE) pgmGstGetPaePDEPtr(PPGM pPGM, RTGCPTR GCPtr)
3771{
3772 AssertGCPtr32(GCPtr);
3773
3774#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3775 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pPGM);
3776 AssertReturn(pGuestPDPT, 0);
3777#else
3778 PX86PDPT pGuestPDPT = pPGM->CTX_SUFF(pGstPaePdpt);
3779#endif
3780 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
3781 if (pGuestPDPT->a[iPdPt].n.u1Present)
3782 {
3783 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3784#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3785 if ((pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
3786 return &pPGM->CTX_SUFF(apGstPaePDs)[iPdPt]->a[iPD];
3787#endif
3788
3789 /* The cache is out-of-sync. */
3790 PX86PDPAE pPD;
3791 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3792 if (RT_SUCCESS(rc))
3793 return &pPD->a[iPD];
3794 AssertMsgFailed(("Impossible! rc=%Rrc PDPE=%RX64\n", rc, pGuestPDPT->a[iPdPt].u));
3795 /* returning NIL_RTGCPHYS is ok if we assume it's just an invalid page or something which we'll emulate as all 0s. (not quite true) */
3796 }
3797 return NULL;
3798}
3799
3800
3801/**
3802 * Gets the page directory entry for the specified address.
3803 *
3804 * @returns The page directory entry in question.
3805 * @returns A non-present entry if the page directory is not present or on an invalid page.
3806 * @param pPGM Pointer to the PGM instance data.
3807 * @param GCPtr The address.
3808 */
3809DECLINLINE(X86PDEPAE) pgmGstGetPaePDE(PPGM pPGM, RTGCPTR GCPtr)
3810{
3811 AssertGCPtr32(GCPtr);
3812
3813#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3814 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pPGM);
3815 if (RT_LIKELY(pGuestPDPT))
3816#else
3817 PX86PDPT pGuestPDPT = pPGM->CTX_SUFF(pGstPaePdpt);
3818#endif
3819 {
3820 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
3821 if (pGuestPDPT->a[iPdPt].n.u1Present)
3822 {
3823 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3824#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3825 if ((pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
3826 return pPGM->CTX_SUFF(apGstPaePDs)[iPdPt]->a[iPD];
3827#endif
3828
3829 /* cache is out-of-sync. */
3830 PX86PDPAE pPD;
3831 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3832 if (RT_SUCCESS(rc))
3833 return pPD->a[iPD];
3834 AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, pGuestPDPT->a[iPdPt]));
3835 }
3836 }
3837 X86PDEPAE ZeroPde = {0};
3838 return ZeroPde;
3839}
3840
3841
3842/**
3843 * Gets the page directory pointer table entry for the specified address
3844 * and returns the index into the page directory
3845 *
3846 * @returns Pointer to the page directory in question.
3847 * @returns NULL if the page directory is not present or on an invalid page.
3848 * @param pPGM Pointer to the PGM instance data.
3849 * @param GCPtr The address.
3850 * @param piPD Receives the index into the returned page directory
3851 * @param pPdpe Receives the page directory pointer entry. Optional.
3852 */
3853DECLINLINE(PX86PDPAE) pgmGstGetPaePDPtr(PPGM pPGM, RTGCPTR GCPtr, unsigned *piPD, PX86PDPE pPdpe)
3854{
3855 AssertGCPtr32(GCPtr);
3856
3857#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3858 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pPGM);
3859 AssertReturn(pGuestPDPT, 0);
3860#else
3861 PX86PDPT pGuestPDPT = pPGM->CTX_SUFF(pGstPaePdpt);
3862#endif
3863 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
3864 if (pPdpe)
3865 *pPdpe = pGuestPDPT->a[iPdPt];
3866 if (pGuestPDPT->a[iPdPt].n.u1Present)
3867 {
3868 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3869#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3870 if ((pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
3871 {
3872 *piPD = iPD;
3873 return pPGM->CTX_SUFF(apGstPaePDs)[iPdPt];
3874 }
3875#endif
3876
3877 /* cache is out-of-sync. */
3878 PX86PDPAE pPD;
3879 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3880 if (RT_SUCCESS(rc))
3881 {
3882 *piPD = iPD;
3883 return pPD;
3884 }
3885 AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, pGuestPDPT->a[iPdPt].u));
3886 /* returning NIL_RTGCPHYS is ok if we assume it's just an invalid page of some kind emulated as all 0s. */
3887 }
3888 return NULL;
3889}
3890
3891#ifndef IN_RC
3892
3893/**
3894 * Gets the page map level-4 pointer for the guest.
3895 *
3896 * @returns Pointer to the PML4 page.
3897 * @param pPGM Pointer to the PGM instance data.
3898 */
3899DECLINLINE(PX86PML4) pgmGstGetLongModePML4Ptr(PPGM pPGM)
3900{
3901#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3902 PX86PML4 pGuestPml4;
3903 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPml4);
3904 AssertRCReturn(rc, NULL);
3905 return pGuestPml4;
3906#else
3907 Assert(pPGM->CTX_SUFF(pGstAmd64Pml4));
3908 return pPGM->CTX_SUFF(pGstAmd64Pml4);
3909#endif
3910}
3911
3912
3913/**
3914 * Gets the pointer to a page map level-4 entry.
3915 *
3916 * @returns Pointer to the PML4 entry.
3917 * @param pPGM Pointer to the PGM instance data.
3918 * @param iPml4 The index.
3919 */
3920DECLINLINE(PX86PML4E) pgmGstGetLongModePML4EPtr(PPGM pPGM, unsigned int iPml4)
3921{
3922#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3923 PX86PML4 pGuestPml4;
3924 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPml4);
3925 AssertRCReturn(rc, NULL);
3926 return &pGuestPml4->a[iPml4];
3927#else
3928 Assert(pPGM->CTX_SUFF(pGstAmd64Pml4));
3929 return &pPGM->CTX_SUFF(pGstAmd64Pml4)->a[iPml4];
3930#endif
3931}
3932
3933
3934/**
3935 * Gets a page map level-4 entry.
3936 *
3937 * @returns The PML4 entry.
3938 * @param pPGM Pointer to the PGM instance data.
3939 * @param iPml4 The index.
3940 */
3941DECLINLINE(X86PML4E) pgmGstGetLongModePML4E(PPGM pPGM, unsigned int iPml4)
3942{
3943#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3944 PX86PML4 pGuestPml4;
3945 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPml4);
3946 if (RT_FAILURE(rc))
3947 {
3948 X86PML4E ZeroPml4e = {0};
3949 AssertMsgFailedReturn(("%Rrc\n", rc), ZeroPml4e);
3950 }
3951 return pGuestPml4->a[iPml4];
3952#else
3953 Assert(pPGM->CTX_SUFF(pGstAmd64Pml4));
3954 return pPGM->CTX_SUFF(pGstAmd64Pml4)->a[iPml4];
3955#endif
3956}
3957
3958
3959/**
3960 * Gets the page directory pointer entry for the specified address.
3961 *
3962 * @returns Pointer to the page directory pointer entry in question.
3963 * @returns NULL if the page directory is not present or on an invalid page.
3964 * @param pPGM Pointer to the PGM instance data.
3965 * @param GCPtr The address.
3966 * @param ppPml4e Page Map Level-4 Entry (out)
3967 */
3968DECLINLINE(PX86PDPE) pgmGstGetLongModePDPTPtr(PPGM pPGM, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e)
3969{
3970 PX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
3971 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3972 PCX86PML4E pPml4e = *ppPml4e = &pGuestPml4->a[iPml4];
3973 if (pPml4e->n.u1Present)
3974 {
3975 PX86PDPT pPdpt;
3976 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPml4e->u & X86_PML4E_PG_MASK, &pPdpt);
3977 AssertRCReturn(rc, NULL);
3978
3979 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3980 return &pPdpt->a[iPdPt];
3981 }
3982 return NULL;
3983}
3984
3985
3986/**
3987 * Gets the page directory entry for the specified address.
3988 *
3989 * @returns The page directory entry in question.
3990 * @returns A non-present entry if the page directory is not present or on an invalid page.
3991 * @param pPGM Pointer to the PGM instance data.
3992 * @param GCPtr The address.
3993 * @param ppPml4e Page Map Level-4 Entry (out)
3994 * @param pPdpe Page directory pointer table entry (out)
3995 */
3996DECLINLINE(X86PDEPAE) pgmGstGetLongModePDEEx(PPGM pPGM, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPE pPdpe)
3997{
3998 X86PDEPAE ZeroPde = {0};
3999 PX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
4000 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
4001 PCX86PML4E pPml4e = *ppPml4e = &pGuestPml4->a[iPml4];
4002 if (pPml4e->n.u1Present)
4003 {
4004 PCX86PDPT pPdptTemp;
4005 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPml4e->u & X86_PML4E_PG_MASK, &pPdptTemp);
4006 AssertRCReturn(rc, ZeroPde);
4007
4008 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
4009 *pPdpe = pPdptTemp->a[iPdPt];
4010 if (pPdptTemp->a[iPdPt].n.u1Present)
4011 {
4012 PCX86PDPAE pPD;
4013 rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
4014 AssertRCReturn(rc, ZeroPde);
4015
4016 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4017 return pPD->a[iPD];
4018 }
4019 }
4020
4021 return ZeroPde;
4022}
4023
4024
4025/**
4026 * Gets the page directory entry for the specified address.
4027 *
4028 * @returns The page directory entry in question.
4029 * @returns A non-present entry if the page directory is not present or on an invalid page.
4030 * @param pPGM Pointer to the PGM instance data.
4031 * @param GCPtr The address.
4032 */
4033DECLINLINE(X86PDEPAE) pgmGstGetLongModePDE(PPGM pPGM, RTGCPTR64 GCPtr)
4034{
4035 X86PDEPAE ZeroPde = {0};
4036 PCX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
4037 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
4038 if (pGuestPml4->a[iPml4].n.u1Present)
4039 {
4040 PCX86PDPT pPdptTemp;
4041 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pGuestPml4->a[iPml4].u & X86_PML4E_PG_MASK, &pPdptTemp);
4042 AssertRCReturn(rc, ZeroPde);
4043
4044 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
4045 if (pPdptTemp->a[iPdPt].n.u1Present)
4046 {
4047 PCX86PDPAE pPD;
4048 rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
4049 AssertRCReturn(rc, ZeroPde);
4050
4051 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4052 return pPD->a[iPD];
4053 }
4054 }
4055 return ZeroPde;
4056}
4057
4058
4059/**
4060 * Gets the page directory entry for the specified address.
4061 *
4062 * @returns Pointer to the page directory entry in question.
4063 * @returns NULL if the page directory is not present or on an invalid page.
4064 * @param pPGM Pointer to the PGM instance data.
4065 * @param GCPtr The address.
4066 */
4067DECLINLINE(PX86PDEPAE) pgmGstGetLongModePDEPtr(PPGM pPGM, RTGCPTR64 GCPtr)
4068{
4069 PCX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
4070 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
4071 if (pGuestPml4->a[iPml4].n.u1Present)
4072 {
4073 PCX86PDPT pPdptTemp;
4074 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pGuestPml4->a[iPml4].u & X86_PML4E_PG_MASK, &pPdptTemp);
4075 AssertRCReturn(rc, NULL);
4076
4077 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
4078 if (pPdptTemp->a[iPdPt].n.u1Present)
4079 {
4080 PX86PDPAE pPD;
4081 rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
4082 AssertRCReturn(rc, NULL);
4083
4084 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4085 return &pPD->a[iPD];
4086 }
4087 }
4088 return NULL;
4089}
4090
4091
4092/**
4093 * Gets the GUEST page directory pointer for the specified address.
4094 *
4095 * @returns The page directory in question.
4096 * @returns NULL if the page directory is not present or on an invalid page.
4097 * @param pPGM Pointer to the PGM instance data.
4098 * @param GCPtr The address.
4099 * @param ppPml4e Page Map Level-4 Entry (out)
4100 * @param pPdpe Page directory pointer table entry (out)
4101 * @param piPD Receives the index into the returned page directory
4102 */
4103DECLINLINE(PX86PDPAE) pgmGstGetLongModePDPtr(PPGM pPGM, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPE pPdpe, unsigned *piPD)
4104{
4105 PX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
4106 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
4107 PCX86PML4E pPml4e = *ppPml4e = &pGuestPml4->a[iPml4];
4108 if (pPml4e->n.u1Present)
4109 {
4110 PCX86PDPT pPdptTemp;
4111 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPml4e->u & X86_PML4E_PG_MASK, &pPdptTemp);
4112 AssertRCReturn(rc, NULL);
4113
4114 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
4115 *pPdpe = pPdptTemp->a[iPdPt];
4116 if (pPdptTemp->a[iPdPt].n.u1Present)
4117 {
4118 PX86PDPAE pPD;
4119 rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
4120 AssertRCReturn(rc, NULL);
4121
4122 *piPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4123 return pPD;
4124 }
4125 }
4126 return 0;
4127}
4128
4129#endif /* !IN_RC */
4130
4131
4132/**
4133 * Gets the shadow page directory, 32-bit.
4134 *
4135 * @returns Pointer to the shadow 32-bit PD.
4136 * @param pPGM Pointer to the PGM instance data.
4137 */
4138DECLINLINE(PX86PD) pgmShwGet32BitPDPtr(PPGM pPGM)
4139{
4140#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
4141 return (PX86PD)PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pPGM->CTX_SUFF(pShwPageCR3));
4142#else
4143# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4144 PX86PD pShwPd;
4145 Assert(pPGM->HCPhysShw32BitPD != 0 && pPGM->HCPhysShw32BitPD != NIL_RTHCPHYS);
4146 int rc = PGM_HCPHYS_2_PTR_BY_PGM(pPGM, pPGM->HCPhysShw32BitPD, &pShwPd);
4147 AssertRCReturn(rc, NULL);
4148 return pShwPd;
4149# else
4150 return pPGM->CTX_SUFF(pShw32BitPd);
4151# endif
4152#endif
4153}
4154
4155
4156/**
4157 * Gets the shadow page directory entry for the specified address, 32-bit.
4158 *
4159 * @returns Shadow 32-bit PDE.
4160 * @param pPGM Pointer to the PGM instance data.
4161 * @param GCPtr The address.
4162 */
4163DECLINLINE(X86PDE) pgmShwGet32BitPDE(PPGM pPGM, RTGCPTR GCPtr)
4164{
4165 const unsigned iPd = (GCPtr >> X86_PD_SHIFT) & X86_PD_MASK;
4166
4167 PX86PD pShwPde = pgmShwGet32BitPDPtr(pPGM);
4168 if (!pShwPde)
4169 {
4170 X86PDE ZeroPde = {0};
4171 return ZeroPde;
4172 }
4173 return pShwPde->a[iPd];
4174}
4175
4176
4177/**
4178 * Gets the pointer to the shadow page directory entry for the specified
4179 * address, 32-bit.
4180 *
4181 * @returns Pointer to the shadow 32-bit PDE.
4182 * @param pPGM Pointer to the PGM instance data.
4183 * @param GCPtr The address.
4184 */
4185DECLINLINE(PX86PDE) pgmShwGet32BitPDEPtr(PPGM pPGM, RTGCPTR GCPtr)
4186{
4187 const unsigned iPd = (GCPtr >> X86_PD_SHIFT) & X86_PD_MASK;
4188
4189 PX86PD pPde = pgmShwGet32BitPDPtr(pPGM);
4190 AssertReturn(pPde, NULL);
4191 return &pPde->a[iPd];
4192}
4193
4194
4195/**
4196 * Gets the shadow page pointer table, PAE.
4197 *
4198 * @returns Pointer to the shadow PAE PDPT.
4199 * @param pPGM Pointer to the PGM instance data.
4200 */
4201DECLINLINE(PX86PDPT) pgmShwGetPaePDPTPtr(PPGM pPGM)
4202{
4203#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
4204 return (PX86PDPT)PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pPGM->CTX_SUFF(pShwPageCR3));
4205#else
4206# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4207 PX86PDPT pShwPdpt;
4208 Assert(pPGM->HCPhysShwPaePdpt != 0 && pPGM->HCPhysShwPaePdpt != NIL_RTHCPHYS);
4209 int rc = PGM_HCPHYS_2_PTR_BY_PGM(pPGM, pPGM->HCPhysShwPaePdpt, &pShwPdpt);
4210 AssertRCReturn(rc, 0);
4211 return pShwPdpt;
4212# else
4213 return pPGM->CTX_SUFF(pShwPaePdpt);
4214# endif
4215#endif
4216}
4217
4218
4219/**
4220 * Gets the shadow page directory for the specified address, PAE.
4221 *
4222 * @returns Pointer to the shadow PD.
4223 * @param pPGM Pointer to the PGM instance data.
4224 * @param GCPtr The address.
4225 */
4226DECLINLINE(PX86PDPAE) pgmShwGetPaePDPtr(PPGM pPGM, RTGCPTR GCPtr)
4227{
4228#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
4229 const unsigned iPdpt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
4230 PX86PDPT pPdpt = pgmShwGetPaePDPTPtr(pPGM);
4231
4232 /* Fetch the pgm pool shadow descriptor. */
4233 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(PGM2VM(pPGM), pPdpt->a[iPdpt].u & X86_PDPE_PG_MASK);
4234 AssertReturn(pShwPde, NULL);
4235
4236 return (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pShwPde);
4237#else
4238 const unsigned iPdpt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
4239# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4240 PX86PDPAE pPD;
4241 int rc = PGM_HCPHYS_2_PTR_BY_PGM(pPGM, pPGM->aHCPhysPaePDs[iPdpt], &pPD);
4242 AssertRCReturn(rc, 0);
4243 return pPD;
4244# else
4245 PX86PDPAE pPD = pPGM->CTX_SUFF(apShwPaePDs)[iPdpt];
4246 Assert(pPD);
4247 return pPD;
4248# endif
4249#endif
4250}
4251
4252
4253/**
4254 * Gets the shadow page directory entry, PAE.
4255 *
4256 * @returns PDE.
4257 * @param pPGM Pointer to the PGM instance data.
4258 * @param GCPtr The address.
4259 */
4260DECLINLINE(X86PDEPAE) pgmShwGetPaePDE(PPGM pPGM, RTGCPTR GCPtr)
4261{
4262 const unsigned iPd = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4263
4264 PX86PDPAE pShwPde = pgmShwGetPaePDPtr(pPGM, GCPtr);
4265 if (!pShwPde)
4266 {
4267 X86PDEPAE ZeroPde = {0};
4268 return ZeroPde;
4269 }
4270 return pShwPde->a[iPd];
4271}
4272
4273
4274/**
4275 * Gets the pointer to the shadow page directory entry for an address, PAE.
4276 *
4277 * @returns Pointer to the PDE.
4278 * @param pPGM Pointer to the PGM instance data.
4279 * @param GCPtr The address.
4280 */
4281DECLINLINE(PX86PDEPAE) pgmShwGetPaePDEPtr(PPGM pPGM, RTGCPTR GCPtr)
4282{
4283 const unsigned iPd = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4284
4285 PX86PDPAE pPde = pgmShwGetPaePDPtr(pPGM, GCPtr);
4286 AssertReturn(pPde, NULL);
4287 return &pPde->a[iPd];
4288}
4289
4290#ifndef IN_RC
4291
4292/**
4293 * Gets the shadow page map level-4 pointer.
4294 *
4295 * @returns Pointer to the shadow PML4.
4296 * @param pPGM Pointer to the PGM instance data.
4297 */
4298DECLINLINE(PX86PML4) pgmShwGetLongModePML4Ptr(PPGM pPGM)
4299{
4300#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
4301 return (PX86PML4)PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pPGM->CTX_SUFF(pShwPageCR3));
4302#else
4303# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4304 PX86PML4 pShwPml4;
4305 Assert(pPGM->HCPhysShwPaePml4 != 0 && pPGM->HCPhysShwPaePml4 != NIL_RTHCPHYS);
4306 int rc = PGM_HCPHYS_2_PTR_BY_PGM(pPGM, pPGM->HCPhysShwPaePml4, &pShwPml4);
4307 AssertRCReturn(rc, 0);
4308 return pShwPml4;
4309# else
4310 Assert(pPGM->CTX_SUFF(pShwPaePml4));
4311 return pPGM->CTX_SUFF(pShwPaePml4);
4312# endif
4313#endif
4314}
4315
4316
4317/**
4318 * Gets the shadow page map level-4 entry for the specified address.
4319 *
4320 * @returns The entry.
4321 * @param pPGM Pointer to the PGM instance data.
4322 * @param GCPtr The address.
4323 */
4324DECLINLINE(X86PML4E) pgmShwGetLongModePML4E(PPGM pPGM, RTGCPTR GCPtr)
4325{
4326 const unsigned iPml4 = ((RTGCUINTPTR64)GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
4327 PX86PML4 pShwPml4 = pgmShwGetLongModePML4Ptr(pPGM);
4328
4329 if (!pShwPml4)
4330 {
4331 X86PML4E ZeroPml4e = {0};
4332 return ZeroPml4e;
4333 }
4334 return pShwPml4->a[iPml4];
4335}
4336
4337
4338/**
4339 * Gets the pointer to the specified shadow page map level-4 entry.
4340 *
4341 * @returns The entry.
4342 * @param pPGM Pointer to the PGM instance data.
4343 * @param iPml4 The PML4 index.
4344 */
4345DECLINLINE(PX86PML4E) pgmShwGetLongModePML4EPtr(PPGM pPGM, unsigned int iPml4)
4346{
4347 PX86PML4 pShwPml4 = pgmShwGetLongModePML4Ptr(pPGM);
4348 if (!pShwPml4)
4349 return NULL;
4350 return &pShwPml4->a[iPml4];
4351}
4352
4353
4354/**
4355 * Gets the GUEST page directory pointer for the specified address.
4356 *
4357 * @returns The page directory in question.
4358 * @returns NULL if the page directory is not present or on an invalid page.
4359 * @param pPGM Pointer to the PGM instance data.
4360 * @param GCPtr The address.
4361 * @param piPD Receives the index into the returned page directory
4362 */
4363DECLINLINE(PX86PDPAE) pgmGstGetLongModePDPtr(PPGM pPGM, RTGCPTR64 GCPtr, unsigned *piPD)
4364{
4365 PCX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
4366 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
4367 if (pGuestPml4->a[iPml4].n.u1Present)
4368 {
4369 PCX86PDPT pPdptTemp;
4370 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pGuestPml4->a[iPml4].u & X86_PML4E_PG_MASK, &pPdptTemp);
4371 AssertRCReturn(rc, NULL);
4372
4373 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
4374 if (pPdptTemp->a[iPdPt].n.u1Present)
4375 {
4376 PX86PDPAE pPD;
4377 rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
4378 AssertRCReturn(rc, NULL);
4379
4380 *piPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4381 return pPD;
4382 }
4383 }
4384 return NULL;
4385}
4386
4387#endif /* !IN_RC */
4388
4389/**
4390 * Checks if any of the specified page flags are set for the given page.
4391 *
4392 * @returns true if any of the flags are set.
4393 * @returns false if all the flags are clear.
4394 * @param pPGM PGM handle.
4395 * @param GCPhys The GC physical address.
4396 * @param fFlags The flags to check for.
4397 */
4398DECLINLINE(bool) pgmRamTestFlags(PPGM pPGM, RTGCPHYS GCPhys, uint64_t fFlags)
4399{
4400 PPGMPAGE pPage = pgmPhysGetPage(pPGM, GCPhys);
4401 return pPage
4402 && (pPage->HCPhys & fFlags) != 0; /** @todo PAGE FLAGS */
4403}
4404
4405
4406/**
4407 * Gets the page state for a physical handler.
4408 *
4409 * @returns The physical handler page state.
4410 * @param pCur The physical handler in question.
4411 */
4412DECLINLINE(unsigned) pgmHandlerPhysicalCalcState(PPGMPHYSHANDLER pCur)
4413{
4414 switch (pCur->enmType)
4415 {
4416 case PGMPHYSHANDLERTYPE_PHYSICAL_WRITE:
4417 return PGM_PAGE_HNDL_PHYS_STATE_WRITE;
4418
4419 case PGMPHYSHANDLERTYPE_MMIO:
4420 case PGMPHYSHANDLERTYPE_PHYSICAL_ALL:
4421 return PGM_PAGE_HNDL_PHYS_STATE_ALL;
4422
4423 default:
4424 AssertFatalMsgFailed(("Invalid type %d\n", pCur->enmType));
4425 }
4426}
4427
4428
4429/**
4430 * Gets the page state for a virtual handler.
4431 *
4432 * @returns The virtual handler page state.
4433 * @param pCur The virtual handler in question.
4434 * @remarks This should never be used on a hypervisor access handler.
4435 */
4436DECLINLINE(unsigned) pgmHandlerVirtualCalcState(PPGMVIRTHANDLER pCur)
4437{
4438 switch (pCur->enmType)
4439 {
4440 case PGMVIRTHANDLERTYPE_WRITE:
4441 return PGM_PAGE_HNDL_VIRT_STATE_WRITE;
4442 case PGMVIRTHANDLERTYPE_ALL:
4443 return PGM_PAGE_HNDL_VIRT_STATE_ALL;
4444 default:
4445 AssertFatalMsgFailed(("Invalid type %d\n", pCur->enmType));
4446 }
4447}
4448
4449
4450/**
4451 * Clears one physical page of a virtual handler
4452 *
4453 * @param pPGM Pointer to the PGM instance.
4454 * @param pCur Virtual handler structure
4455 * @param iPage Physical page index
4456 *
4457 * @remark Only used when PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL is being set, so no
4458 * need to care about other handlers in the same page.
4459 */
4460DECLINLINE(void) pgmHandlerVirtualClearPage(PPGM pPGM, PPGMVIRTHANDLER pCur, unsigned iPage)
4461{
4462 const PPGMPHYS2VIRTHANDLER pPhys2Virt = &pCur->aPhysToVirt[iPage];
4463
4464 /*
4465 * Remove the node from the tree (it's supposed to be in the tree if we get here!).
4466 */
4467#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
4468 AssertReleaseMsg(pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_IN_TREE,
4469 ("pPhys2Virt=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4470 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias));
4471#endif
4472 if (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_IS_HEAD)
4473 {
4474 /* We're the head of the alias chain. */
4475 PPGMPHYS2VIRTHANDLER pRemove = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysRemove(&pPGM->CTX_SUFF(pTrees)->PhysToVirtHandlers, pPhys2Virt->Core.Key); NOREF(pRemove);
4476#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
4477 AssertReleaseMsg(pRemove != NULL,
4478 ("pPhys2Virt=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4479 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias));
4480 AssertReleaseMsg(pRemove == pPhys2Virt,
4481 ("wanted: pPhys2Virt=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4482 " got: pRemove=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4483 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias,
4484 pRemove, pRemove->Core.Key, pRemove->Core.KeyLast, pRemove->offVirtHandler, pRemove->offNextAlias));
4485#endif
4486 if (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4487 {
4488 /* Insert the next list in the alias chain into the tree. */
4489 PPGMPHYS2VIRTHANDLER pNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPhys2Virt + (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4490#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
4491 AssertReleaseMsg(pNext->offNextAlias & PGMPHYS2VIRTHANDLER_IN_TREE,
4492 ("pNext=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4493 pNext, pNext->Core.Key, pNext->Core.KeyLast, pNext->offVirtHandler, pNext->offNextAlias));
4494#endif
4495 pNext->offNextAlias |= PGMPHYS2VIRTHANDLER_IS_HEAD;
4496 bool fRc = RTAvlroGCPhysInsert(&pPGM->CTX_SUFF(pTrees)->PhysToVirtHandlers, &pNext->Core);
4497 AssertRelease(fRc);
4498 }
4499 }
4500 else
4501 {
4502 /* Locate the previous node in the alias chain. */
4503 PPGMPHYS2VIRTHANDLER pPrev = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysGet(&pPGM->CTX_SUFF(pTrees)->PhysToVirtHandlers, pPhys2Virt->Core.Key);
4504#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
4505 AssertReleaseMsg(pPrev != pPhys2Virt,
4506 ("pPhys2Virt=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32} pPrev=%p\n",
4507 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias, pPrev));
4508#endif
4509 for (;;)
4510 {
4511 PPGMPHYS2VIRTHANDLER pNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPrev + (pPrev->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4512 if (pNext == pPhys2Virt)
4513 {
4514 /* unlink. */
4515 LogFlow(("pgmHandlerVirtualClearPage: removed %p:{.offNextAlias=%#RX32} from alias chain. prev %p:{.offNextAlias=%#RX32} [%RGp-%RGp]\n",
4516 pPhys2Virt, pPhys2Virt->offNextAlias, pPrev, pPrev->offNextAlias, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast));
4517 if (!(pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4518 pPrev->offNextAlias &= ~PGMPHYS2VIRTHANDLER_OFF_MASK;
4519 else
4520 {
4521 PPGMPHYS2VIRTHANDLER pNewNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPhys2Virt + (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4522 pPrev->offNextAlias = ((intptr_t)pNewNext - (intptr_t)pPrev)
4523 | (pPrev->offNextAlias & ~PGMPHYS2VIRTHANDLER_OFF_MASK);
4524 }
4525 break;
4526 }
4527
4528 /* next */
4529 if (pNext == pPrev)
4530 {
4531#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
4532 AssertReleaseMsg(pNext != pPrev,
4533 ("pPhys2Virt=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32} pPrev=%p\n",
4534 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias, pPrev));
4535#endif
4536 break;
4537 }
4538 pPrev = pNext;
4539 }
4540 }
4541 Log2(("PHYS2VIRT: Removing %RGp-%RGp %#RX32 %s\n",
4542 pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offNextAlias, R3STRING(pCur->pszDesc)));
4543 pPhys2Virt->offNextAlias = 0;
4544 pPhys2Virt->Core.KeyLast = NIL_RTGCPHYS; /* require reinsert */
4545
4546 /*
4547 * Clear the ram flags for this page.
4548 */
4549 PPGMPAGE pPage = pgmPhysGetPage(pPGM, pPhys2Virt->Core.Key);
4550 AssertReturnVoid(pPage);
4551 PGM_PAGE_SET_HNDL_VIRT_STATE(pPage, PGM_PAGE_HNDL_VIRT_STATE_NONE);
4552}
4553
4554
4555/**
4556 * Internal worker for finding a 'in-use' shadow page give by it's physical address.
4557 *
4558 * @returns Pointer to the shadow page structure.
4559 * @param pPool The pool.
4560 * @param HCPhys The HC physical address of the shadow page.
4561 */
4562DECLINLINE(PPGMPOOLPAGE) pgmPoolGetPage(PPGMPOOL pPool, RTHCPHYS HCPhys)
4563{
4564 /*
4565 * Look up the page.
4566 */
4567 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK);
4568 AssertFatalMsg(pPage && pPage->enmKind != PGMPOOLKIND_FREE, ("HCPhys=%RHp pPage=%p idx=%d\n", HCPhys, pPage, (pPage) ? pPage->idx : 0));
4569 return pPage;
4570}
4571
4572
4573/**
4574 * Internal worker for finding a 'in-use' shadow page give by it's physical address.
4575 *
4576 * @returns Pointer to the shadow page structure.
4577 * @param pPool The pool.
4578 * @param idx The pool page index.
4579 */
4580DECLINLINE(PPGMPOOLPAGE) pgmPoolGetPageByIdx(PPGMPOOL pPool, unsigned idx)
4581{
4582 AssertFatalMsg(idx >= PGMPOOL_IDX_FIRST && idx < pPool->cCurPages, ("idx=%d\n", idx));
4583 return &pPool->aPages[idx];
4584}
4585
4586
4587#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
4588/**
4589 * Clear references to guest physical memory.
4590 *
4591 * @param pPool The pool.
4592 * @param pPoolPage The pool page.
4593 * @param pPhysPage The physical guest page tracking structure.
4594 */
4595DECLINLINE(void) pgmTrackDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPoolPage, PPGMPAGE pPhysPage)
4596{
4597 /*
4598 * Just deal with the simple case here.
4599 */
4600# ifdef LOG_ENABLED
4601 const RTHCPHYS HCPhysOrg = pPhysPage->HCPhys; /** @todo PAGE FLAGS */
4602# endif
4603 const unsigned cRefs = pPhysPage->HCPhys >> MM_RAM_FLAGS_CREFS_SHIFT; /** @todo PAGE FLAGS */
4604 if (cRefs == 1)
4605 {
4606 Assert(pPoolPage->idx == ((pPhysPage->HCPhys >> MM_RAM_FLAGS_IDX_SHIFT) & MM_RAM_FLAGS_IDX_MASK));
4607 pPhysPage->HCPhys = pPhysPage->HCPhys & MM_RAM_FLAGS_NO_REFS_MASK;
4608 }
4609 else
4610 pgmPoolTrackPhysExtDerefGCPhys(pPool, pPoolPage, pPhysPage);
4611 LogFlow(("pgmTrackDerefGCPhys: HCPhys=%RHp -> %RHp\n", HCPhysOrg, pPhysPage->HCPhys));
4612}
4613#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
4614
4615
4616#ifdef PGMPOOL_WITH_CACHE
4617/**
4618 * Moves the page to the head of the age list.
4619 *
4620 * This is done when the cached page is used in one way or another.
4621 *
4622 * @param pPool The pool.
4623 * @param pPage The cached page.
4624 * @todo inline in PGMInternal.h!
4625 */
4626DECLINLINE(void) pgmPoolCacheUsed(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
4627{
4628 /*
4629 * Move to the head of the age list.
4630 */
4631 if (pPage->iAgePrev != NIL_PGMPOOL_IDX)
4632 {
4633 /* unlink */
4634 pPool->aPages[pPage->iAgePrev].iAgeNext = pPage->iAgeNext;
4635 if (pPage->iAgeNext != NIL_PGMPOOL_IDX)
4636 pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->iAgePrev;
4637 else
4638 pPool->iAgeTail = pPage->iAgePrev;
4639
4640 /* insert at head */
4641 pPage->iAgePrev = NIL_PGMPOOL_IDX;
4642 pPage->iAgeNext = pPool->iAgeHead;
4643 Assert(pPage->iAgeNext != NIL_PGMPOOL_IDX); /* we would've already been head then */
4644 pPool->iAgeHead = pPage->idx;
4645 pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->idx;
4646 }
4647}
4648#endif /* PGMPOOL_WITH_CACHE */
4649
4650
4651#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4652/**
4653 * Maps the page into current context (RC and maybe R0).
4654 *
4655 * @returns pointer to the mapping.
4656 * @param pVM Pointer to the PGM instance data.
4657 * @param pPage The page.
4658 */
4659DECLINLINE(void *) pgmPoolMapPageInlined(PPGM pPGM, PPGMPOOLPAGE pPage)
4660{
4661 if (pPage->idx >= PGMPOOL_IDX_FIRST)
4662 {
4663 Assert(pPage->idx < pPGM->CTX_SUFF(pPool)->cCurPages);
4664 void *pv;
4665# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4666 pgmR0DynMapHCPageInlined(pPGM, pPage->Core.Key, &pv);
4667# else
4668 PGMDynMapHCPage(PGM2VM(pPGM), pPage->Core.Key, &pv);
4669# endif
4670 return pv;
4671 }
4672 return pgmPoolMapPageFallback(pPGM, pPage);
4673}
4674#endif
4675
4676
4677/**
4678 * Tells if mappings are to be put into the shadow page table or not
4679 *
4680 * @returns boolean result
4681 * @param pVM VM handle.
4682 */
4683
4684DECLINLINE(bool) pgmMapAreMappingsEnabled(PPGM pPGM)
4685{
4686#ifdef IN_RING0
4687 /* There are no mappings in VT-x and AMD-V mode. */
4688 Assert(pPGM->fDisableMappings);
4689 return false;
4690#else
4691 return !pPGM->fDisableMappings;
4692#endif
4693}
4694
4695/** @} */
4696
4697#endif
4698
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette