VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMInternal.h@ 17290

Last change on this file since 17290 was 17290, checked in by vboxsync, 16 years ago

PGM: -MM_RAM_FLAGS_IDX_SHIFT, -MM_RAM_FLAGS_IDX_MASK

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 198.3 KB
Line 
1/* $Id: PGMInternal.h 17290 2009-03-03 15:05:31Z vboxsync $ */
2/** @file
3 * PGM - Internal header file.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22#ifndef ___PGMInternal_h
23#define ___PGMInternal_h
24
25#include <VBox/cdefs.h>
26#include <VBox/types.h>
27#include <VBox/err.h>
28#include <VBox/stam.h>
29#include <VBox/param.h>
30#include <VBox/vmm.h>
31#include <VBox/mm.h>
32#include <VBox/pdmcritsect.h>
33#include <VBox/pdmapi.h>
34#include <VBox/dis.h>
35#include <VBox/dbgf.h>
36#include <VBox/log.h>
37#include <VBox/gmm.h>
38#include <VBox/hwaccm.h>
39#include <iprt/avl.h>
40#include <iprt/assert.h>
41#include <iprt/critsect.h>
42
43
44
45/** @defgroup grp_pgm_int Internals
46 * @ingroup grp_pgm
47 * @internal
48 * @{
49 */
50
51
52/** @name PGM Compile Time Config
53 * @{
54 */
55
56/*
57 * Enable to use the PGM pool for all levels in the paging chain in all paging modes.
58 */
59#define VBOX_WITH_PGMPOOL_PAGING_ONLY
60
61/**
62 * Solve page is out of sync issues inside Guest Context (in PGMGC.cpp).
63 * Comment it if it will break something.
64 */
65#define PGM_OUT_OF_SYNC_IN_GC
66
67/**
68 * Check and skip global PDEs for non-global flushes
69 */
70#define PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
71
72/**
73 * Sync N pages instead of a whole page table
74 */
75#define PGM_SYNC_N_PAGES
76
77/**
78 * Number of pages to sync during a page fault
79 *
80 * When PGMPOOL_WITH_GCPHYS_TRACKING is enabled using high values here
81 * causes a lot of unnecessary extents and also is slower than taking more \#PFs.
82 */
83#define PGM_SYNC_NR_PAGES 8
84
85/**
86 * Number of PGMPhysRead/Write cache entries (must be <= sizeof(uint64_t))
87 */
88#define PGM_MAX_PHYSCACHE_ENTRIES 64
89#define PGM_MAX_PHYSCACHE_ENTRIES_MASK (PGM_MAX_PHYSCACHE_ENTRIES-1)
90
91/**
92 * Enable caching of PGMR3PhysRead/WriteByte/Word/Dword
93 */
94#define PGM_PHYSMEMACCESS_CACHING
95
96/** @def PGMPOOL_WITH_CACHE
97 * Enable agressive caching using the page pool.
98 *
99 * This requires PGMPOOL_WITH_USER_TRACKING and PGMPOOL_WITH_MONITORING.
100 */
101#define PGMPOOL_WITH_CACHE
102
103/** @def PGMPOOL_WITH_MIXED_PT_CR3
104 * When defined, we'll deal with 'uncachable' pages.
105 */
106#ifdef PGMPOOL_WITH_CACHE
107# define PGMPOOL_WITH_MIXED_PT_CR3
108#endif
109
110/** @def PGMPOOL_WITH_MONITORING
111 * Monitor the guest pages which are shadowed.
112 * When this is enabled, PGMPOOL_WITH_CACHE or PGMPOOL_WITH_GCPHYS_TRACKING must
113 * be enabled as well.
114 * @remark doesn't really work without caching now. (Mixed PT/CR3 change.)
115 */
116#ifdef PGMPOOL_WITH_CACHE
117# define PGMPOOL_WITH_MONITORING
118#endif
119
120/** @def PGMPOOL_WITH_GCPHYS_TRACKING
121 * Tracking the of shadow pages mapping guest physical pages.
122 *
123 * This is very expensive, the current cache prototype is trying to figure out
124 * whether it will be acceptable with an agressive caching policy.
125 */
126#if defined(PGMPOOL_WITH_CACHE) || defined(PGMPOOL_WITH_MONITORING)
127# define PGMPOOL_WITH_GCPHYS_TRACKING
128#endif
129
130/** @def PGMPOOL_WITH_USER_TRACKING
131 * Tracking users of shadow pages. This is required for the linking of shadow page
132 * tables and physical guest addresses.
133 */
134#if defined(PGMPOOL_WITH_GCPHYS_TRACKING) || defined(PGMPOOL_WITH_CACHE) || defined(PGMPOOL_WITH_MONITORING)
135# define PGMPOOL_WITH_USER_TRACKING
136#endif
137
138/** @def PGMPOOL_CFG_MAX_GROW
139 * The maximum number of pages to add to the pool in one go.
140 */
141#define PGMPOOL_CFG_MAX_GROW (_256K >> PAGE_SHIFT)
142
143/** @def VBOX_STRICT_PGM_HANDLER_VIRTUAL
144 * Enables some extra assertions for virtual handlers (mainly phys2virt related).
145 */
146#ifdef VBOX_STRICT
147# define VBOX_STRICT_PGM_HANDLER_VIRTUAL
148#endif
149/** @} */
150
151
152/** @name PDPT and PML4 flags.
153 * These are placed in the three bits available for system programs in
154 * the PDPT and PML4 entries.
155 * @{ */
156/** The entry is a permanent one and it's must always be present.
157 * Never free such an entry. */
158#define PGM_PLXFLAGS_PERMANENT RT_BIT_64(10)
159/** Mapping (hypervisor allocated pagetable). */
160#define PGM_PLXFLAGS_MAPPING RT_BIT_64(11)
161/** @} */
162
163/** @name Page directory flags.
164 * These are placed in the three bits available for system programs in
165 * the page directory entries.
166 * @{ */
167/** Mapping (hypervisor allocated pagetable). */
168#define PGM_PDFLAGS_MAPPING RT_BIT_64(10)
169/** Made read-only to facilitate dirty bit tracking. */
170#define PGM_PDFLAGS_TRACK_DIRTY RT_BIT_64(11)
171/** @} */
172
173/** @name Page flags.
174 * These are placed in the three bits available for system programs in
175 * the page entries.
176 * @{ */
177/** Made read-only to facilitate dirty bit tracking. */
178#define PGM_PTFLAGS_TRACK_DIRTY RT_BIT_64(9)
179
180#ifndef PGM_PTFLAGS_CSAM_VALIDATED
181/** Scanned and approved by CSAM (tm).
182 * NOTE: Must be identical to the one defined in CSAMInternal.h!!
183 * @todo Move PGM_PTFLAGS_* and PGM_PDFLAGS_* to VBox/pgm.h. */
184#define PGM_PTFLAGS_CSAM_VALIDATED RT_BIT_64(11)
185#endif
186
187/** Mark a dynamic map entry (PGMDynMapHCPage) as locked. */
188#define PGM_PTFLAGS_DYN_LOCKED RT_BIT(9)
189
190/** @} */
191
192/** @name Defines used to indicate the shadow and guest paging in the templates.
193 * @{ */
194#define PGM_TYPE_REAL 1
195#define PGM_TYPE_PROT 2
196#define PGM_TYPE_32BIT 3
197#define PGM_TYPE_PAE 4
198#define PGM_TYPE_AMD64 5
199#define PGM_TYPE_NESTED 6
200#define PGM_TYPE_EPT 7
201#define PGM_TYPE_MAX PGM_TYPE_EPT
202/** @} */
203
204/** Macro for checking if the guest is using paging.
205 * @param uGstType PGM_TYPE_*
206 * @param uShwType PGM_TYPE_*
207 * @remark ASSUMES certain order of the PGM_TYPE_* values.
208 */
209#define PGM_WITH_PAGING(uGstType, uShwType) \
210 ( (uGstType) >= PGM_TYPE_32BIT \
211 && (uShwType) != PGM_TYPE_NESTED \
212 && (uShwType) != PGM_TYPE_EPT)
213
214/** Macro for checking if the guest supports the NX bit.
215 * @param uGstType PGM_TYPE_*
216 * @param uShwType PGM_TYPE_*
217 * @remark ASSUMES certain order of the PGM_TYPE_* values.
218 */
219#define PGM_WITH_NX(uGstType, uShwType) \
220 ( (uGstType) >= PGM_TYPE_PAE \
221 && (uShwType) != PGM_TYPE_NESTED \
222 && (uShwType) != PGM_TYPE_EPT)
223
224
225/** @def PGM_HCPHYS_2_PTR
226 * Maps a HC physical page pool address to a virtual address.
227 *
228 * @returns VBox status code.
229 * @param pVM The VM handle.
230 * @param HCPhys The HC physical address to map to a virtual one.
231 * @param ppv Where to store the virtual address. No need to cast this.
232 *
233 * @remark In GC this uses PGMGCDynMapHCPage(), so it will consume of the
234 * small page window employeed by that function. Be careful.
235 * @remark There is no need to assert on the result.
236 */
237#ifdef IN_RC
238# define PGM_HCPHYS_2_PTR(pVM, HCPhys, ppv) \
239 PGMDynMapHCPage(pVM, HCPhys, (void **)(ppv))
240#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
241# define PGM_HCPHYS_2_PTR(pVM, HCPhys, ppv) \
242 pgmR0DynMapHCPageInlined(&(pVM)->pgm.s, HCPhys, (void **)(ppv))
243#else
244# define PGM_HCPHYS_2_PTR(pVM, HCPhys, ppv) \
245 MMPagePhys2PageEx(pVM, HCPhys, (void **)(ppv))
246#endif
247
248/** @def PGM_HCPHYS_2_PTR_BY_PGM
249 * Maps a HC physical page pool address to a virtual address.
250 *
251 * @returns VBox status code.
252 * @param pPGM The PGM instance data.
253 * @param HCPhys The HC physical address to map to a virtual one.
254 * @param ppv Where to store the virtual address. No need to cast this.
255 *
256 * @remark In GC this uses PGMGCDynMapHCPage(), so it will consume of the
257 * small page window employeed by that function. Be careful.
258 * @remark There is no need to assert on the result.
259 */
260#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
261# define PGM_HCPHYS_2_PTR_BY_PGM(pPGM, HCPhys, ppv) \
262 pgmR0DynMapHCPageInlined(pPGM, HCPhys, (void **)(ppv))
263#else
264# define PGM_HCPHYS_2_PTR_BY_PGM(pPGM, HCPhys, ppv) \
265 PGM_HCPHYS_2_PTR(PGM2VM(pPGM), HCPhys, (void **)(ppv))
266#endif
267
268/** @def PGM_GCPHYS_2_PTR
269 * Maps a GC physical page address to a virtual address.
270 *
271 * @returns VBox status code.
272 * @param pVM The VM handle.
273 * @param GCPhys The GC physical address to map to a virtual one.
274 * @param ppv Where to store the virtual address. No need to cast this.
275 *
276 * @remark In GC this uses PGMGCDynMapGCPage(), so it will consume of the
277 * small page window employeed by that function. Be careful.
278 * @remark There is no need to assert on the result.
279 */
280#ifdef IN_RC
281# define PGM_GCPHYS_2_PTR(pVM, GCPhys, ppv) \
282 PGMDynMapGCPage(pVM, GCPhys, (void **)(ppv))
283#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
284# define PGM_GCPHYS_2_PTR(pVM, GCPhys, ppv) \
285 pgmR0DynMapGCPageInlined(&(pVM)->pgm.s, GCPhys, (void **)(ppv))
286#else
287# define PGM_GCPHYS_2_PTR(pVM, GCPhys, ppv) \
288 PGMPhysGCPhys2R3Ptr(pVM, GCPhys, 1 /* one page only */, (PRTR3PTR)(ppv)) /** @todo this isn't asserting, use PGMRamGCPhys2HCPtr! */
289#endif
290
291/** @def PGM_GCPHYS_2_PTR_BY_PGM
292 * Maps a GC physical page address to a virtual address.
293 *
294 * @returns VBox status code.
295 * @param pPGM Pointer to the PGM instance data.
296 * @param GCPhys The GC physical address to map to a virtual one.
297 * @param ppv Where to store the virtual address. No need to cast this.
298 *
299 * @remark In GC this uses PGMGCDynMapGCPage(), so it will consume of the
300 * small page window employeed by that function. Be careful.
301 * @remark There is no need to assert on the result.
302 */
303#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
304# define PGM_GCPHYS_2_PTR_BY_PGM(pPGM, GCPhys, ppv) \
305 pgmR0DynMapGCPageInlined(pPGM, GCPhys, (void **)(ppv))
306#else
307# define PGM_GCPHYS_2_PTR_BY_PGM(pPGM, GCPhys, ppv) \
308 PGM_GCPHYS_2_PTR(PGM2VM(pPGM), GCPhys, ppv)
309#endif
310
311/** @def PGM_GCPHYS_2_PTR_EX
312 * Maps a unaligned GC physical page address to a virtual address.
313 *
314 * @returns VBox status code.
315 * @param pVM The VM handle.
316 * @param GCPhys The GC physical address to map to a virtual one.
317 * @param ppv Where to store the virtual address. No need to cast this.
318 *
319 * @remark In GC this uses PGMGCDynMapGCPage(), so it will consume of the
320 * small page window employeed by that function. Be careful.
321 * @remark There is no need to assert on the result.
322 */
323#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
324# define PGM_GCPHYS_2_PTR_EX(pVM, GCPhys, ppv) \
325 PGMDynMapGCPageOff(pVM, GCPhys, (void **)(ppv))
326#else
327# define PGM_GCPHYS_2_PTR_EX(pVM, GCPhys, ppv) \
328 PGMPhysGCPhys2R3Ptr(pVM, GCPhys, 1 /* one page only */, (PRTR3PTR)(ppv)) /** @todo this isn't asserting, use PGMRamGCPhys2HCPtr! */
329#endif
330
331/** @def PGM_INVL_PG
332 * Invalidates a page when in GC does nothing in HC.
333 *
334 * @param GCVirt The virtual address of the page to invalidate.
335 */
336#ifdef IN_RC
337# define PGM_INVL_PG(GCVirt) ASMInvalidatePage((void *)(GCVirt))
338#elif defined(IN_RING0)
339# define PGM_INVL_PG(GCVirt) HWACCMInvalidatePage(pVM, (RTGCPTR)(GCVirt))
340#else
341# define PGM_INVL_PG(GCVirt) HWACCMInvalidatePage(pVM, (RTGCPTR)(GCVirt))
342#endif
343
344/** @def PGM_INVL_BIG_PG
345 * Invalidates a 4MB page directory entry when in GC does nothing in HC.
346 *
347 * @param GCVirt The virtual address within the page directory to invalidate.
348 */
349#ifdef IN_RC
350# define PGM_INVL_BIG_PG(GCVirt) ASMReloadCR3()
351#elif defined(IN_RING0)
352# define PGM_INVL_BIG_PG(GCVirt) HWACCMFlushTLB(pVM)
353#else
354# define PGM_INVL_BIG_PG(GCVirt) HWACCMFlushTLB(pVM)
355#endif
356
357/** @def PGM_INVL_GUEST_TLBS()
358 * Invalidates all guest TLBs.
359 */
360#ifdef IN_RC
361# define PGM_INVL_GUEST_TLBS() ASMReloadCR3()
362#elif defined(IN_RING0)
363# define PGM_INVL_GUEST_TLBS() HWACCMFlushTLB(pVM)
364#else
365# define PGM_INVL_GUEST_TLBS() HWACCMFlushTLB(pVM)
366#endif
367
368
369/**
370 * Structure for tracking GC Mappings.
371 *
372 * This structure is used by linked list in both GC and HC.
373 */
374typedef struct PGMMAPPING
375{
376 /** Pointer to next entry. */
377 R3PTRTYPE(struct PGMMAPPING *) pNextR3;
378 /** Pointer to next entry. */
379 R0PTRTYPE(struct PGMMAPPING *) pNextR0;
380 /** Pointer to next entry. */
381 RCPTRTYPE(struct PGMMAPPING *) pNextRC;
382 /** Indicate whether this entry is finalized. */
383 bool fFinalized;
384 /** Start Virtual address. */
385 RTGCPTR GCPtr;
386 /** Last Virtual address (inclusive). */
387 RTGCPTR GCPtrLast;
388 /** Range size (bytes). */
389 RTGCPTR cb;
390 /** Pointer to relocation callback function. */
391 R3PTRTYPE(PFNPGMRELOCATE) pfnRelocate;
392 /** User argument to the callback. */
393 R3PTRTYPE(void *) pvUser;
394 /** Mapping description / name. For easing debugging. */
395 R3PTRTYPE(const char *) pszDesc;
396 /** Number of page tables. */
397 uint32_t cPTs;
398#if HC_ARCH_BITS != GC_ARCH_BITS || GC_ARCH_BITS == 64
399 uint32_t uPadding1; /**< Alignment padding. */
400#endif
401 /** Array of page table mapping data. Each entry
402 * describes one page table. The array can be longer
403 * than the declared length.
404 */
405 struct
406 {
407 /** The HC physical address of the page table. */
408 RTHCPHYS HCPhysPT;
409 /** The HC physical address of the first PAE page table. */
410 RTHCPHYS HCPhysPaePT0;
411 /** The HC physical address of the second PAE page table. */
412 RTHCPHYS HCPhysPaePT1;
413 /** The HC virtual address of the 32-bit page table. */
414 R3PTRTYPE(PX86PT) pPTR3;
415 /** The HC virtual address of the two PAE page table. (i.e 1024 entries instead of 512) */
416 R3PTRTYPE(PX86PTPAE) paPaePTsR3;
417 /** The GC virtual address of the 32-bit page table. */
418 RCPTRTYPE(PX86PT) pPTRC;
419 /** The GC virtual address of the two PAE page table. */
420 RCPTRTYPE(PX86PTPAE) paPaePTsRC;
421 /** The GC virtual address of the 32-bit page table. */
422 R0PTRTYPE(PX86PT) pPTR0;
423 /** The GC virtual address of the two PAE page table. */
424 R0PTRTYPE(PX86PTPAE) paPaePTsR0;
425 } aPTs[1];
426} PGMMAPPING;
427/** Pointer to structure for tracking GC Mappings. */
428typedef struct PGMMAPPING *PPGMMAPPING;
429
430
431/**
432 * Physical page access handler structure.
433 *
434 * This is used to keep track of physical address ranges
435 * which are being monitored in some kind of way.
436 */
437typedef struct PGMPHYSHANDLER
438{
439 AVLROGCPHYSNODECORE Core;
440 /** Access type. */
441 PGMPHYSHANDLERTYPE enmType;
442 /** Number of pages to update. */
443 uint32_t cPages;
444 /** Pointer to R3 callback function. */
445 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3;
446 /** User argument for R3 handlers. */
447 R3PTRTYPE(void *) pvUserR3;
448 /** Pointer to R0 callback function. */
449 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0;
450 /** User argument for R0 handlers. */
451 R0PTRTYPE(void *) pvUserR0;
452 /** Pointer to GC callback function. */
453 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnHandlerRC;
454 /** User argument for RC handlers. */
455 RCPTRTYPE(void *) pvUserRC;
456 /** Description / Name. For easing debugging. */
457 R3PTRTYPE(const char *) pszDesc;
458#ifdef VBOX_WITH_STATISTICS
459 /** Profiling of this handler. */
460 STAMPROFILE Stat;
461#endif
462} PGMPHYSHANDLER;
463/** Pointer to a physical page access handler structure. */
464typedef PGMPHYSHANDLER *PPGMPHYSHANDLER;
465
466
467/**
468 * Cache node for the physical addresses covered by a virtual handler.
469 */
470typedef struct PGMPHYS2VIRTHANDLER
471{
472 /** Core node for the tree based on physical ranges. */
473 AVLROGCPHYSNODECORE Core;
474 /** Offset from this struct to the PGMVIRTHANDLER structure. */
475 int32_t offVirtHandler;
476 /** Offset of the next alias relative to this one.
477 * Bit 0 is used for indicating whether we're in the tree.
478 * Bit 1 is used for indicating that we're the head node.
479 */
480 int32_t offNextAlias;
481} PGMPHYS2VIRTHANDLER;
482/** Pointer to a phys to virtual handler structure. */
483typedef PGMPHYS2VIRTHANDLER *PPGMPHYS2VIRTHANDLER;
484
485/** The bit in PGMPHYS2VIRTHANDLER::offNextAlias used to indicate that the
486 * node is in the tree. */
487#define PGMPHYS2VIRTHANDLER_IN_TREE RT_BIT(0)
488/** The bit in PGMPHYS2VIRTHANDLER::offNextAlias used to indicate that the
489 * node is in the head of an alias chain.
490 * The PGMPHYS2VIRTHANDLER_IN_TREE is always set if this bit is set. */
491#define PGMPHYS2VIRTHANDLER_IS_HEAD RT_BIT(1)
492/** The mask to apply to PGMPHYS2VIRTHANDLER::offNextAlias to get the offset. */
493#define PGMPHYS2VIRTHANDLER_OFF_MASK (~(int32_t)3)
494
495
496/**
497 * Virtual page access handler structure.
498 *
499 * This is used to keep track of virtual address ranges
500 * which are being monitored in some kind of way.
501 */
502typedef struct PGMVIRTHANDLER
503{
504 /** Core node for the tree based on virtual ranges. */
505 AVLROGCPTRNODECORE Core;
506 /** Size of the range (in bytes). */
507 RTGCPTR cb;
508 /** Number of cache pages. */
509 uint32_t cPages;
510 /** Access type. */
511 PGMVIRTHANDLERTYPE enmType;
512 /** Pointer to the RC callback function. */
513 RCPTRTYPE(PFNPGMRCVIRTHANDLER) pfnHandlerRC;
514#if HC_ARCH_BITS == 64
515 RTRCPTR padding;
516#endif
517 /** Pointer to the R3 callback function for invalidation. */
518 R3PTRTYPE(PFNPGMR3VIRTINVALIDATE) pfnInvalidateR3;
519 /** Pointer to the R3 callback function. */
520 R3PTRTYPE(PFNPGMR3VIRTHANDLER) pfnHandlerR3;
521 /** Description / Name. For easing debugging. */
522 R3PTRTYPE(const char *) pszDesc;
523#ifdef VBOX_WITH_STATISTICS
524 /** Profiling of this handler. */
525 STAMPROFILE Stat;
526#endif
527 /** Array of cached physical addresses for the monitored ranged. */
528 PGMPHYS2VIRTHANDLER aPhysToVirt[HC_ARCH_BITS == 32 ? 1 : 2];
529} PGMVIRTHANDLER;
530/** Pointer to a virtual page access handler structure. */
531typedef PGMVIRTHANDLER *PPGMVIRTHANDLER;
532
533
534/**
535 * Page type.
536 * @remarks This enum has to fit in a 3-bit field (see PGMPAGE::u3Type).
537 * @todo convert to \#defines.
538 */
539typedef enum PGMPAGETYPE
540{
541 /** The usual invalid zero entry. */
542 PGMPAGETYPE_INVALID = 0,
543 /** RAM page. (RWX) */
544 PGMPAGETYPE_RAM,
545 /** MMIO2 page. (RWX) */
546 PGMPAGETYPE_MMIO2,
547 /** Shadowed ROM. (RWX) */
548 PGMPAGETYPE_ROM_SHADOW,
549 /** ROM page. (R-X) */
550 PGMPAGETYPE_ROM,
551 /** MMIO page. (---) */
552 PGMPAGETYPE_MMIO,
553 /** End of valid entries. */
554 PGMPAGETYPE_END
555} PGMPAGETYPE;
556AssertCompile(PGMPAGETYPE_END < 7);
557
558/** @name Page type predicates.
559 * @{ */
560#define PGMPAGETYPE_IS_READABLE(type) ( (type) <= PGMPAGETYPE_ROM )
561#define PGMPAGETYPE_IS_WRITEABLE(type) ( (type) <= PGMPAGETYPE_ROM_SHADOW )
562#define PGMPAGETYPE_IS_RWX(type) ( (type) <= PGMPAGETYPE_ROM_SHADOW )
563#define PGMPAGETYPE_IS_ROX(type) ( (type) == PGMPAGETYPE_ROM )
564#define PGMPAGETYPE_IS_NP(type) ( (type) == PGMPAGETYPE_MMIO )
565/** @} */
566
567
568/**
569 * A Physical Guest Page tracking structure.
570 *
571 * The format of this structure is complicated because we have to fit a lot
572 * of information into as few bits as possible. The format is also subject
573 * to change (there is one comming up soon). Which means that for we'll be
574 * using PGM_PAGE_GET_*, PGM_PAGE_IS_ and PGM_PAGE_SET_* macros for *all*
575 * accessess to the structure.
576 */
577typedef struct PGMPAGE
578{
579 /** The physical address and a whole lot of other stuff. All bits are used! */
580 RTHCPHYS HCPhys;
581 /** The page state. */
582 uint32_t u2StateX : 2;
583 /** Flag indicating that a write monitored page was written to when set. */
584 uint32_t fWrittenToX : 1;
585 /** For later. */
586 uint32_t fSomethingElse : 1;
587 /** The Page ID.
588 * @todo Merge with HCPhys once we've liberated HCPhys of its stuff.
589 * The HCPhys will be 100% static. */
590 uint32_t idPageX : 28;
591 /** The page type (PGMPAGETYPE). */
592 uint32_t u3Type : 3;
593 /** The physical handler state (PGM_PAGE_HNDL_PHYS_STATE*) */
594 uint32_t u2HandlerPhysStateX : 2;
595 /** The virtual handler state (PGM_PAGE_HNDL_VIRT_STATE*) */
596 uint32_t u2HandlerVirtStateX : 2;
597 uint32_t u29B : 25;
598} PGMPAGE;
599AssertCompileSize(PGMPAGE, 16);
600/** Pointer to a physical guest page. */
601typedef PGMPAGE *PPGMPAGE;
602/** Pointer to a const physical guest page. */
603typedef const PGMPAGE *PCPGMPAGE;
604/** Pointer to a physical guest page pointer. */
605typedef PPGMPAGE *PPPGMPAGE;
606
607
608/**
609 * Clears the page structure.
610 * @param pPage Pointer to the physical guest page tracking structure.
611 */
612#define PGM_PAGE_CLEAR(pPage) \
613 do { \
614 (pPage)->HCPhys = 0; \
615 (pPage)->u2StateX = 0; \
616 (pPage)->fWrittenToX = 0; \
617 (pPage)->fSomethingElse = 0; \
618 (pPage)->idPageX = 0; \
619 (pPage)->u3Type = 0; \
620 (pPage)->u29B = 0; \
621 } while (0)
622
623/**
624 * Initializes the page structure.
625 * @param pPage Pointer to the physical guest page tracking structure.
626 */
627#define PGM_PAGE_INIT(pPage, _HCPhys, _idPage, _uType, _uState) \
628 do { \
629 (pPage)->HCPhys = (_HCPhys); \
630 (pPage)->u2StateX = (_uState); \
631 (pPage)->fWrittenToX = 0; \
632 (pPage)->fSomethingElse = 0; \
633 (pPage)->idPageX = (_idPage); \
634 /*(pPage)->u3Type = (_uType); - later */ \
635 PGM_PAGE_SET_TYPE(pPage, _uType); \
636 (pPage)->u29B = 0; \
637 } while (0)
638
639/**
640 * Initializes the page structure of a ZERO page.
641 * @param pPage Pointer to the physical guest page tracking structure.
642 */
643#ifdef VBOX_WITH_NEW_PHYS_CODE
644# define PGM_PAGE_INIT_ZERO(pPage, pVM, _uType) \
645 PGM_PAGE_INIT(pPage, (pVM)->pgm.s.HCPhysZeroPg, NIL_GMM_PAGEID, (_uType), PGM_PAGE_STATE_ZERO)
646#else
647# define PGM_PAGE_INIT_ZERO(pPage, pVM, _uType) \
648 PGM_PAGE_INIT(pPage, 0, NIL_GMM_PAGEID, (_uType), PGM_PAGE_STATE_ZERO)
649#endif
650/** Temporary hack. Replaced by PGM_PAGE_INIT_ZERO once the old code is kicked out. */
651# define PGM_PAGE_INIT_ZERO_REAL(pPage, pVM, _uType) \
652 PGM_PAGE_INIT(pPage, (pVM)->pgm.s.HCPhysZeroPg, NIL_GMM_PAGEID, (_uType), PGM_PAGE_STATE_ZERO)
653
654
655/** @name The Page state, PGMPAGE::u2StateX.
656 * @{ */
657/** The zero page.
658 * This is a per-VM page that's never ever mapped writable. */
659#define PGM_PAGE_STATE_ZERO 0
660/** A allocated page.
661 * This is a per-VM page allocated from the page pool (or wherever
662 * we get MMIO2 pages from if the type is MMIO2).
663 */
664#define PGM_PAGE_STATE_ALLOCATED 1
665/** A allocated page that's being monitored for writes.
666 * The shadow page table mappings are read-only. When a write occurs, the
667 * fWrittenTo member is set, the page remapped as read-write and the state
668 * moved back to allocated. */
669#define PGM_PAGE_STATE_WRITE_MONITORED 2
670/** The page is shared, aka. copy-on-write.
671 * This is a page that's shared with other VMs. */
672#define PGM_PAGE_STATE_SHARED 3
673/** @} */
674
675
676/**
677 * Gets the page state.
678 * @returns page state (PGM_PAGE_STATE_*).
679 * @param pPage Pointer to the physical guest page tracking structure.
680 */
681#define PGM_PAGE_GET_STATE(pPage) ( (pPage)->u2StateX )
682
683/**
684 * Sets the page state.
685 * @param pPage Pointer to the physical guest page tracking structure.
686 * @param _uState The new page state.
687 */
688#define PGM_PAGE_SET_STATE(pPage, _uState) \
689 do { (pPage)->u2StateX = (_uState); } while (0)
690
691
692/**
693 * Gets the host physical address of the guest page.
694 * @returns host physical address (RTHCPHYS).
695 * @param pPage Pointer to the physical guest page tracking structure.
696 */
697#define PGM_PAGE_GET_HCPHYS(pPage) ( (pPage)->HCPhys & UINT64_C(0x0000fffffffff000) )
698
699/**
700 * Sets the host physical address of the guest page.
701 * @param pPage Pointer to the physical guest page tracking structure.
702 * @param _HCPhys The new host physical address.
703 */
704#define PGM_PAGE_SET_HCPHYS(pPage, _HCPhys) \
705 do { (pPage)->HCPhys = (((pPage)->HCPhys) & UINT64_C(0xffff000000000fff)) \
706 | ((_HCPhys) & UINT64_C(0x0000fffffffff000)); } while (0)
707
708/**
709 * Get the Page ID.
710 * @returns The Page ID; NIL_GMM_PAGEID if it's a ZERO page.
711 * @param pPage Pointer to the physical guest page tracking structure.
712 */
713#define PGM_PAGE_GET_PAGEID(pPage) ( (pPage)->idPageX )
714/* later:
715#define PGM_PAGE_GET_PAGEID(pPage) ( ((uint32_t)(pPage)->HCPhys >> (48 - 12))
716 | ((uint32_t)(pPage)->HCPhys & 0xfff) )
717*/
718/**
719 * Sets the Page ID.
720 * @param pPage Pointer to the physical guest page tracking structure.
721 */
722#define PGM_PAGE_SET_PAGEID(pPage, _idPage) do { (pPage)->idPageX = (_idPage); } while (0)
723/* later:
724#define PGM_PAGE_SET_PAGEID(pPage, _idPage) do { (pPage)->HCPhys = (((pPage)->HCPhys) & UINT64_C(0x0000fffffffff000)) \
725 | ((_idPage) & 0xfff) \
726 | (((_idPage) & 0x0ffff000) << (48-12)); } while (0)
727*/
728
729/**
730 * Get the Chunk ID.
731 * @returns The Chunk ID; NIL_GMM_CHUNKID if it's a ZERO page.
732 * @param pPage Pointer to the physical guest page tracking structure.
733 */
734#define PGM_PAGE_GET_CHUNKID(pPage) ( (pPage)->idPageX >> GMM_CHUNKID_SHIFT )
735/* later:
736#if GMM_CHUNKID_SHIFT == 12
737# define PGM_PAGE_GET_CHUNKID(pPage) ( (uint32_t)((pPage)->HCPhys >> 48) )
738#elif GMM_CHUNKID_SHIFT > 12
739# define PGM_PAGE_GET_CHUNKID(pPage) ( (uint32_t)((pPage)->HCPhys >> (48 + (GMM_CHUNKID_SHIFT - 12)) )
740#elif GMM_CHUNKID_SHIFT < 12
741# define PGM_PAGE_GET_CHUNKID(pPage) ( ( (uint32_t)((pPage)->HCPhys >> 48) << (12 - GMM_CHUNKID_SHIFT) ) \
742 | ( (uint32_t)((pPage)->HCPhys & 0xfff) >> GMM_CHUNKID_SHIFT ) )
743#else
744# error "GMM_CHUNKID_SHIFT isn't defined or something."
745#endif
746*/
747
748/**
749 * Get the index of the page within the allocaiton chunk.
750 * @returns The page index.
751 * @param pPage Pointer to the physical guest page tracking structure.
752 */
753#define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (pPage)->idPageX & GMM_PAGEID_IDX_MASK )
754/* later:
755#if GMM_CHUNKID_SHIFT <= 12
756# define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (uint32_t)((pPage)->HCPhys & GMM_PAGEID_IDX_MASK) )
757#else
758# define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (uint32_t)((pPage)->HCPhys & 0xfff) \
759 | ( (uint32_t)((pPage)->HCPhys >> 48) & (RT_BIT_32(GMM_CHUNKID_SHIFT - 12) - 1) ) )
760#endif
761*/
762
763
764/**
765 * Gets the page type.
766 * @returns The page type.
767 * @param pPage Pointer to the physical guest page tracking structure.
768 */
769#define PGM_PAGE_GET_TYPE(pPage) (pPage)->u3Type
770
771/**
772 * Sets the page type.
773 * @param pPage Pointer to the physical guest page tracking structure.
774 * @param _enmType The new page type (PGMPAGETYPE).
775 */
776#ifdef VBOX_WITH_NEW_PHYS_CODE
777#define PGM_PAGE_SET_TYPE(pPage, _enmType) \
778 do { (pPage)->u3Type = (_enmType); } while (0)
779#else
780#define PGM_PAGE_SET_TYPE(pPage, _enmType) \
781 do { \
782 (pPage)->u3Type = (_enmType); \
783 if ((_enmType) == PGMPAGETYPE_ROM) \
784 (pPage)->HCPhys |= MM_RAM_FLAGS_ROM; \
785 else if ((_enmType) == PGMPAGETYPE_ROM_SHADOW) \
786 (pPage)->HCPhys |= MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO2; \
787 else if ((_enmType) == PGMPAGETYPE_MMIO2) \
788 (pPage)->HCPhys |= MM_RAM_FLAGS_MMIO2; \
789 } while (0)
790#endif
791
792
793/**
794 * Checks if the page is 'reserved'.
795 * @returns true/false.
796 * @param pPage Pointer to the physical guest page tracking structure.
797 */
798#define PGM_PAGE_IS_RESERVED(pPage) ( !!((pPage)->HCPhys & MM_RAM_FLAGS_RESERVED) )
799
800/**
801 * Checks if the page is marked for MMIO.
802 * @returns true/false.
803 * @param pPage Pointer to the physical guest page tracking structure.
804 */
805#define PGM_PAGE_IS_MMIO(pPage) ( !!((pPage)->HCPhys & MM_RAM_FLAGS_MMIO) )
806
807/**
808 * Checks if the page is backed by the ZERO page.
809 * @returns true/false.
810 * @param pPage Pointer to the physical guest page tracking structure.
811 */
812#define PGM_PAGE_IS_ZERO(pPage) ( (pPage)->u2StateX == PGM_PAGE_STATE_ZERO )
813
814/**
815 * Checks if the page is backed by a SHARED page.
816 * @returns true/false.
817 * @param pPage Pointer to the physical guest page tracking structure.
818 */
819#define PGM_PAGE_IS_SHARED(pPage) ( (pPage)->u2StateX == PGM_PAGE_STATE_SHARED )
820
821
822/**
823 * Marks the paget as written to (for GMM change monitoring).
824 * @param pPage Pointer to the physical guest page tracking structure.
825 */
826#define PGM_PAGE_SET_WRITTEN_TO(pPage) do { (pPage)->fWrittenToX = 1; } while (0)
827
828/**
829 * Clears the written-to indicator.
830 * @param pPage Pointer to the physical guest page tracking structure.
831 */
832#define PGM_PAGE_CLEAR_WRITTEN_TO(pPage) do { (pPage)->fWrittenToX = 0; } while (0)
833
834/**
835 * Checks if the page was marked as written-to.
836 * @returns true/false.
837 * @param pPage Pointer to the physical guest page tracking structure.
838 */
839#define PGM_PAGE_IS_WRITTEN_TO(pPage) ( (pPage)->fWrittenToX )
840
841
842/** @name Physical Access Handler State values (PGMPAGE::u2HandlerPhysStateX).
843 *
844 * @remarks The values are assigned in order of priority, so we can calculate
845 * the correct state for a page with different handlers installed.
846 * @{ */
847/** No handler installed. */
848#define PGM_PAGE_HNDL_PHYS_STATE_NONE 0
849/** Monitoring is temporarily disabled. */
850#define PGM_PAGE_HNDL_PHYS_STATE_DISABLED 1
851/** Write access is monitored. */
852#define PGM_PAGE_HNDL_PHYS_STATE_WRITE 2
853/** All access is monitored. */
854#define PGM_PAGE_HNDL_PHYS_STATE_ALL 3
855/** @} */
856
857/**
858 * Gets the physical access handler state of a page.
859 * @returns PGM_PAGE_HNDL_PHYS_STATE_* value.
860 * @param pPage Pointer to the physical guest page tracking structure.
861 */
862#define PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) ( (pPage)->u2HandlerPhysStateX )
863
864/**
865 * Sets the physical access handler state of a page.
866 * @param pPage Pointer to the physical guest page tracking structure.
867 * @param _uState The new state value.
868 */
869#define PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, _uState) \
870 do { (pPage)->u2HandlerPhysStateX = (_uState); } while (0)
871
872/**
873 * Checks if the page has any physical access handlers, including temporariliy disabled ones.
874 * @returns true/false
875 * @param pPage Pointer to the physical guest page tracking structure.
876 */
877#define PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage) ( (pPage)->u2HandlerPhysStateX != PGM_PAGE_HNDL_PHYS_STATE_NONE )
878
879/**
880 * Checks if the page has any active physical access handlers.
881 * @returns true/false
882 * @param pPage Pointer to the physical guest page tracking structure.
883 */
884#define PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage) ( (pPage)->u2HandlerPhysStateX >= PGM_PAGE_HNDL_PHYS_STATE_WRITE )
885
886
887/** @name Virtual Access Handler State values (PGMPAGE::u2HandlerVirtStateX).
888 *
889 * @remarks The values are assigned in order of priority, so we can calculate
890 * the correct state for a page with different handlers installed.
891 * @{ */
892/** No handler installed. */
893#define PGM_PAGE_HNDL_VIRT_STATE_NONE 0
894/* 1 is reserved so the lineup is identical with the physical ones. */
895/** Write access is monitored. */
896#define PGM_PAGE_HNDL_VIRT_STATE_WRITE 2
897/** All access is monitored. */
898#define PGM_PAGE_HNDL_VIRT_STATE_ALL 3
899/** @} */
900
901/**
902 * Gets the virtual access handler state of a page.
903 * @returns PGM_PAGE_HNDL_VIRT_STATE_* value.
904 * @param pPage Pointer to the physical guest page tracking structure.
905 */
906#define PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) ( (pPage)->u2HandlerVirtStateX )
907
908/**
909 * Sets the virtual access handler state of a page.
910 * @param pPage Pointer to the physical guest page tracking structure.
911 * @param _uState The new state value.
912 */
913#define PGM_PAGE_SET_HNDL_VIRT_STATE(pPage, _uState) \
914 do { (pPage)->u2HandlerVirtStateX = (_uState); } while (0)
915
916/**
917 * Checks if the page has any virtual access handlers.
918 * @returns true/false
919 * @param pPage Pointer to the physical guest page tracking structure.
920 */
921#define PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(pPage) ( (pPage)->u2HandlerVirtStateX != PGM_PAGE_HNDL_VIRT_STATE_NONE )
922
923/**
924 * Same as PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS - can't disable pages in
925 * virtual handlers.
926 * @returns true/false
927 * @param pPage Pointer to the physical guest page tracking structure.
928 */
929#define PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage) PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(pPage)
930
931
932
933/**
934 * Checks if the page has any access handlers, including temporarily disabled ones.
935 * @returns true/false
936 * @param pPage Pointer to the physical guest page tracking structure.
937 */
938#define PGM_PAGE_HAS_ANY_HANDLERS(pPage) \
939 ( (pPage)->u2HandlerPhysStateX != PGM_PAGE_HNDL_PHYS_STATE_NONE \
940 || (pPage)->u2HandlerVirtStateX != PGM_PAGE_HNDL_VIRT_STATE_NONE )
941
942/**
943 * Checks if the page has any active access handlers.
944 * @returns true/false
945 * @param pPage Pointer to the physical guest page tracking structure.
946 */
947#define PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) \
948 ( (pPage)->u2HandlerPhysStateX >= PGM_PAGE_HNDL_PHYS_STATE_WRITE \
949 || (pPage)->u2HandlerVirtStateX >= PGM_PAGE_HNDL_VIRT_STATE_WRITE )
950
951/**
952 * Checks if the page has any active access handlers catching all accesses.
953 * @returns true/false
954 * @param pPage Pointer to the physical guest page tracking structure.
955 */
956#define PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage) \
957 ( (pPage)->u2HandlerPhysStateX == PGM_PAGE_HNDL_PHYS_STATE_ALL \
958 || (pPage)->u2HandlerVirtStateX == PGM_PAGE_HNDL_VIRT_STATE_ALL )
959
960
961
962
963/** @def PGM_PAGE_GET_TRACKING
964 * Gets the packed shadow page pool tracking data associated with a guest page.
965 * @returns uint16_t containing the data.
966 * @param pPage Pointer to the physical guest page tracking structure.
967 */
968#define PGM_PAGE_GET_TRACKING(pPage) \
969 ( *((uint16_t *)&(pPage)->HCPhys + 3) )
970
971/** @def PGM_PAGE_SET_TRACKING
972 * Sets the packed shadow page pool tracking data associated with a guest page.
973 * @param pPage Pointer to the physical guest page tracking structure.
974 * @param u16TrackingData The tracking data to store.
975 */
976#define PGM_PAGE_SET_TRACKING(pPage, u16TrackingData) \
977 do { *((uint16_t *)&(pPage)->HCPhys + 3) = (u16TrackingData); } while (0)
978
979/** @def PGM_PAGE_GET_TD_CREFS
980 * Gets the @a cRefs tracking data member.
981 * @returns cRefs.
982 * @param pPage Pointer to the physical guest page tracking structure.
983 */
984#define PGM_PAGE_GET_TD_CREFS(pPage) \
985 ((PGM_PAGE_GET_TRACKING(pPage) >> PGMPOOL_TD_CREFS_SHIFT) & PGMPOOL_TD_CREFS_MASK)
986
987#define PGM_PAGE_GET_TD_IDX(pPage) \
988 ((PGM_PAGE_GET_TRACKING(pPage) >> PGMPOOL_TD_IDX_SHIFT) & PGMPOOL_TD_IDX_MASK)
989
990/**
991 * Ram range for GC Phys to HC Phys conversion.
992 *
993 * Can be used for HC Virt to GC Phys and HC Virt to HC Phys
994 * conversions too, but we'll let MM handle that for now.
995 *
996 * This structure is used by linked lists in both GC and HC.
997 */
998typedef struct PGMRAMRANGE
999{
1000 /** Pointer to the next RAM range - for R3. */
1001 R3PTRTYPE(struct PGMRAMRANGE *) pNextR3;
1002 /** Pointer to the next RAM range - for R0. */
1003 R0PTRTYPE(struct PGMRAMRANGE *) pNextR0;
1004 /** Pointer to the next RAM range - for RC. */
1005 RCPTRTYPE(struct PGMRAMRANGE *) pNextRC;
1006 /** Pointer alignment. */
1007 RTRCPTR RCPtrAlignment;
1008 /** Start of the range. Page aligned. */
1009 RTGCPHYS GCPhys;
1010 /** Last address in the range (inclusive). Page aligned (-1). */
1011 RTGCPHYS GCPhysLast;
1012 /** Size of the range. (Page aligned of course). */
1013 RTGCPHYS cb;
1014 /** MM_RAM_* flags */
1015 uint32_t fFlags;
1016 uint32_t u32Alignment; /**< alignment. */
1017#ifndef VBOX_WITH_NEW_PHYS_CODE
1018 /** R3 virtual lookup ranges for chunks.
1019 * Currently only used with MM_RAM_FLAGS_DYNAMIC_ALLOC ranges.
1020 * @remarks This is occationally accessed from ring-0!! (not darwin) */
1021# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
1022 R3PTRTYPE(PRTR3UINTPTR) paChunkR3Ptrs;
1023# else
1024 R3R0PTRTYPE(PRTR3UINTPTR) paChunkR3Ptrs;
1025# endif
1026#endif
1027 /** Start of the HC mapping of the range. This is only used for MMIO2. */
1028 R3PTRTYPE(void *) pvR3;
1029 /** The range description. */
1030 R3PTRTYPE(const char *) pszDesc;
1031
1032 /** Padding to make aPage aligned on sizeof(PGMPAGE). */
1033#ifdef VBOX_WITH_NEW_PHYS_CODE
1034 uint32_t au32Reserved[2];
1035#elif HC_ARCH_BITS == 32
1036 uint32_t au32Reserved[1];
1037#endif
1038
1039 /** Array of physical guest page tracking structures. */
1040 PGMPAGE aPages[1];
1041} PGMRAMRANGE;
1042/** Pointer to Ram range for GC Phys to HC Phys conversion. */
1043typedef PGMRAMRANGE *PPGMRAMRANGE;
1044
1045/** Return hc ptr corresponding to the ram range and physical offset */
1046#define PGMRAMRANGE_GETHCPTR(pRam, off) \
1047 (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) ? (RTHCPTR)((pRam)->paChunkR3Ptrs[(off) >> PGM_DYNAMIC_CHUNK_SHIFT] + ((off) & PGM_DYNAMIC_CHUNK_OFFSET_MASK)) \
1048 : (RTHCPTR)((RTR3UINTPTR)(pRam)->pvR3 + (off));
1049
1050/**
1051 * Per page tracking structure for ROM image.
1052 *
1053 * A ROM image may have a shadow page, in which case we may have
1054 * two pages backing it. This structure contains the PGMPAGE for
1055 * both while PGMRAMRANGE have a copy of the active one. It is
1056 * important that these aren't out of sync in any regard other
1057 * than page pool tracking data.
1058 */
1059typedef struct PGMROMPAGE
1060{
1061 /** The page structure for the virgin ROM page. */
1062 PGMPAGE Virgin;
1063 /** The page structure for the shadow RAM page. */
1064 PGMPAGE Shadow;
1065 /** The current protection setting. */
1066 PGMROMPROT enmProt;
1067 /** Pad the structure size to a multiple of 8. */
1068 uint32_t u32Padding;
1069} PGMROMPAGE;
1070/** Pointer to a ROM page tracking structure. */
1071typedef PGMROMPAGE *PPGMROMPAGE;
1072
1073
1074/**
1075 * A registered ROM image.
1076 *
1077 * This is needed to keep track of ROM image since they generally
1078 * intrude into a PGMRAMRANGE. It also keeps track of additional
1079 * info like the two page sets (read-only virgin and read-write shadow),
1080 * the current state of each page.
1081 *
1082 * Because access handlers cannot easily be executed in a different
1083 * context, the ROM ranges needs to be accessible and in all contexts.
1084 */
1085typedef struct PGMROMRANGE
1086{
1087 /** Pointer to the next range - R3. */
1088 R3PTRTYPE(struct PGMROMRANGE *) pNextR3;
1089 /** Pointer to the next range - R0. */
1090 R0PTRTYPE(struct PGMROMRANGE *) pNextR0;
1091 /** Pointer to the next range - RC. */
1092 RCPTRTYPE(struct PGMROMRANGE *) pNextRC;
1093 /** Pointer alignment */
1094 RTRCPTR GCPtrAlignment;
1095 /** Address of the range. */
1096 RTGCPHYS GCPhys;
1097 /** Address of the last byte in the range. */
1098 RTGCPHYS GCPhysLast;
1099 /** Size of the range. */
1100 RTGCPHYS cb;
1101 /** The flags (PGMPHYS_ROM_FLAG_*). */
1102 uint32_t fFlags;
1103 /** Alignment padding ensuring that aPages is sizeof(PGMROMPAGE) aligned. */
1104 uint32_t au32Alignemnt[HC_ARCH_BITS == 32 ? 7 : 3];
1105 /** Pointer to the original bits when PGMPHYS_ROM_FLAG_PERMANENT_BINARY was specified.
1106 * This is used for strictness checks. */
1107 R3PTRTYPE(const void *) pvOriginal;
1108 /** The ROM description. */
1109 R3PTRTYPE(const char *) pszDesc;
1110 /** The per page tracking structures. */
1111 PGMROMPAGE aPages[1];
1112} PGMROMRANGE;
1113/** Pointer to a ROM range. */
1114typedef PGMROMRANGE *PPGMROMRANGE;
1115
1116
1117/**
1118 * A registered MMIO2 (= Device RAM) range.
1119 *
1120 * There are a few reason why we need to keep track of these
1121 * registrations. One of them is the deregistration & cleanup
1122 * stuff, while another is that the PGMRAMRANGE associated with
1123 * such a region may have to be removed from the ram range list.
1124 *
1125 * Overlapping with a RAM range has to be 100% or none at all. The
1126 * pages in the existing RAM range must not be ROM nor MMIO. A guru
1127 * meditation will be raised if a partial overlap or an overlap of
1128 * ROM pages is encountered. On an overlap we will free all the
1129 * existing RAM pages and put in the ram range pages instead.
1130 */
1131typedef struct PGMMMIO2RANGE
1132{
1133 /** The owner of the range. (a device) */
1134 PPDMDEVINSR3 pDevInsR3;
1135 /** Pointer to the ring-3 mapping of the allocation. */
1136 RTR3PTR pvR3;
1137 /** Pointer to the next range - R3. */
1138 R3PTRTYPE(struct PGMMMIO2RANGE *) pNextR3;
1139 /** Whether it's mapped or not. */
1140 bool fMapped;
1141 /** Whether it's overlapping or not. */
1142 bool fOverlapping;
1143 /** The PCI region number.
1144 * @remarks This ASSUMES that nobody will ever really need to have multiple
1145 * PCI devices with matching MMIO region numbers on a single device. */
1146 uint8_t iRegion;
1147 /** Alignment padding for putting the ram range on a PGMPAGE alignment boundrary. */
1148 uint8_t abAlignemnt[HC_ARCH_BITS == 32 ? 1 : 5];
1149 /** The associated RAM range. */
1150 PGMRAMRANGE RamRange;
1151} PGMMMIO2RANGE;
1152/** Pointer to a MMIO2 range. */
1153typedef PGMMMIO2RANGE *PPGMMMIO2RANGE;
1154
1155
1156
1157
1158/**
1159 * PGMPhysRead/Write cache entry
1160 */
1161typedef struct PGMPHYSCACHEENTRY
1162{
1163 /** R3 pointer to physical page. */
1164 R3PTRTYPE(uint8_t *) pbR3;
1165 /** GC Physical address for cache entry */
1166 RTGCPHYS GCPhys;
1167#if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
1168 RTGCPHYS u32Padding0; /**< alignment padding. */
1169#endif
1170} PGMPHYSCACHEENTRY;
1171
1172/**
1173 * PGMPhysRead/Write cache to reduce REM memory access overhead
1174 */
1175typedef struct PGMPHYSCACHE
1176{
1177 /** Bitmap of valid cache entries */
1178 uint64_t aEntries;
1179 /** Cache entries */
1180 PGMPHYSCACHEENTRY Entry[PGM_MAX_PHYSCACHE_ENTRIES];
1181} PGMPHYSCACHE;
1182
1183
1184/** Pointer to an allocation chunk ring-3 mapping. */
1185typedef struct PGMCHUNKR3MAP *PPGMCHUNKR3MAP;
1186/** Pointer to an allocation chunk ring-3 mapping pointer. */
1187typedef PPGMCHUNKR3MAP *PPPGMCHUNKR3MAP;
1188
1189/**
1190 * Ring-3 tracking structore for an allocation chunk ring-3 mapping.
1191 *
1192 * The primary tree (Core) uses the chunk id as key.
1193 * The secondary tree (AgeCore) is used for ageing and uses ageing sequence number as key.
1194 */
1195typedef struct PGMCHUNKR3MAP
1196{
1197 /** The key is the chunk id. */
1198 AVLU32NODECORE Core;
1199 /** The key is the ageing sequence number. */
1200 AVLLU32NODECORE AgeCore;
1201 /** The current age thingy. */
1202 uint32_t iAge;
1203 /** The current reference count. */
1204 uint32_t volatile cRefs;
1205 /** The current permanent reference count. */
1206 uint32_t volatile cPermRefs;
1207 /** The mapping address. */
1208 void *pv;
1209} PGMCHUNKR3MAP;
1210
1211/**
1212 * Allocation chunk ring-3 mapping TLB entry.
1213 */
1214typedef struct PGMCHUNKR3MAPTLBE
1215{
1216 /** The chunk id. */
1217 uint32_t volatile idChunk;
1218#if HC_ARCH_BITS == 64
1219 uint32_t u32Padding; /**< alignment padding. */
1220#endif
1221 /** The chunk map. */
1222#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1223 R3PTRTYPE(PPGMCHUNKR3MAP) volatile pChunk;
1224#else
1225 R3R0PTRTYPE(PPGMCHUNKR3MAP) volatile pChunk;
1226#endif
1227} PGMCHUNKR3MAPTLBE;
1228/** Pointer to the an allocation chunk ring-3 mapping TLB entry. */
1229typedef PGMCHUNKR3MAPTLBE *PPGMCHUNKR3MAPTLBE;
1230
1231/** The number of TLB entries in PGMCHUNKR3MAPTLB.
1232 * @remark Must be a power of two value. */
1233#define PGM_CHUNKR3MAPTLB_ENTRIES 32
1234
1235/**
1236 * Allocation chunk ring-3 mapping TLB.
1237 *
1238 * @remarks We use a TLB to speed up lookups by avoiding walking the AVL.
1239 * At first glance this might look kinda odd since AVL trees are
1240 * supposed to give the most optimial lookup times of all trees
1241 * due to their balancing. However, take a tree with 1023 nodes
1242 * in it, that's 10 levels, meaning that most searches has to go
1243 * down 9 levels before they find what they want. This isn't fast
1244 * compared to a TLB hit. There is the factor of cache misses,
1245 * and of course the problem with trees and branch prediction.
1246 * This is why we use TLBs in front of most of the trees.
1247 *
1248 * @todo Generalize this TLB + AVL stuff, shouldn't be all that
1249 * difficult when we switch to the new inlined AVL trees (from kStuff).
1250 */
1251typedef struct PGMCHUNKR3MAPTLB
1252{
1253 /** The TLB entries. */
1254 PGMCHUNKR3MAPTLBE aEntries[PGM_CHUNKR3MAPTLB_ENTRIES];
1255} PGMCHUNKR3MAPTLB;
1256
1257/**
1258 * Calculates the index of a guest page in the Ring-3 Chunk TLB.
1259 * @returns Chunk TLB index.
1260 * @param idChunk The Chunk ID.
1261 */
1262#define PGM_CHUNKR3MAPTLB_IDX(idChunk) ( (idChunk) & (PGM_CHUNKR3MAPTLB_ENTRIES - 1) )
1263
1264
1265/**
1266 * Ring-3 guest page mapping TLB entry.
1267 * @remarks used in ring-0 as well at the moment.
1268 */
1269typedef struct PGMPAGER3MAPTLBE
1270{
1271 /** Address of the page. */
1272 RTGCPHYS volatile GCPhys;
1273 /** The guest page. */
1274#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1275 R3PTRTYPE(PPGMPAGE) volatile pPage;
1276#else
1277 R3R0PTRTYPE(PPGMPAGE) volatile pPage;
1278#endif
1279 /** Pointer to the page mapping tracking structure, PGMCHUNKR3MAP. */
1280#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1281 R3PTRTYPE(PPGMCHUNKR3MAP) volatile pMap;
1282#else
1283 R3R0PTRTYPE(PPGMCHUNKR3MAP) volatile pMap;
1284#endif
1285 /** The address */
1286#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1287 R3PTRTYPE(void *) volatile pv;
1288#else
1289 R3R0PTRTYPE(void *) volatile pv;
1290#endif
1291#if HC_ARCH_BITS == 32
1292 uint32_t u32Padding; /**< alignment padding. */
1293#endif
1294} PGMPAGER3MAPTLBE;
1295/** Pointer to an entry in the HC physical TLB. */
1296typedef PGMPAGER3MAPTLBE *PPGMPAGER3MAPTLBE;
1297
1298
1299/** The number of entries in the ring-3 guest page mapping TLB.
1300 * @remarks The value must be a power of two. */
1301#define PGM_PAGER3MAPTLB_ENTRIES 64
1302
1303/**
1304 * Ring-3 guest page mapping TLB.
1305 * @remarks used in ring-0 as well at the moment.
1306 */
1307typedef struct PGMPAGER3MAPTLB
1308{
1309 /** The TLB entries. */
1310 PGMPAGER3MAPTLBE aEntries[PGM_PAGER3MAPTLB_ENTRIES];
1311} PGMPAGER3MAPTLB;
1312/** Pointer to the ring-3 guest page mapping TLB. */
1313typedef PGMPAGER3MAPTLB *PPGMPAGER3MAPTLB;
1314
1315/**
1316 * Calculates the index of the TLB entry for the specified guest page.
1317 * @returns Physical TLB index.
1318 * @param GCPhys The guest physical address.
1319 */
1320#define PGM_PAGER3MAPTLB_IDX(GCPhys) ( ((GCPhys) >> PAGE_SHIFT) & (PGM_PAGER3MAPTLB_ENTRIES - 1) )
1321
1322
1323/**
1324 * Mapping cache usage set entry.
1325 *
1326 * @remarks 16-bit ints was choosen as the set is not expected to be used beyond
1327 * the dynamic ring-0 and (to some extent) raw-mode context mapping
1328 * cache. If it's extended to include ring-3, well, then something will
1329 * have be changed here...
1330 */
1331typedef struct PGMMAPSETENTRY
1332{
1333 /** The mapping cache index. */
1334 uint16_t iPage;
1335 /** The number of references.
1336 * The max is UINT16_MAX - 1. */
1337 uint16_t cRefs;
1338 /** Pointer to the page. */
1339 RTR0PTR pvPage;
1340 /** The physical address for this entry. */
1341 RTHCPHYS HCPhys;
1342} PGMMAPSETENTRY;
1343/** Pointer to a mapping cache usage set entry. */
1344typedef PGMMAPSETENTRY *PPGMMAPSETENTRY;
1345
1346/**
1347 * Mapping cache usage set.
1348 *
1349 * This is used in ring-0 and the raw-mode context to track dynamic mappings
1350 * done during exits / traps. The set is
1351 */
1352typedef struct PGMMAPSET
1353{
1354 /** The number of occupied entries.
1355 * This is PGMMAPSET_CLOSED if the set is closed and we're not supposed to do
1356 * dynamic mappings. */
1357 uint32_t cEntries;
1358 /** The start of the current subset.
1359 * This is UINT32_MAX if no subset is currently open. */
1360 uint32_t iSubset;
1361 /** The index of the current CPU, only valid if the set is open. */
1362 int32_t iCpu;
1363 /** The entries. */
1364 PGMMAPSETENTRY aEntries[64];
1365 /** HCPhys -> iEntry fast lookup table.
1366 * Use PGMMAPSET_HASH for hashing.
1367 * The entries may or may not be valid, check against cEntries. */
1368 uint8_t aiHashTable[128];
1369} PGMMAPSET;
1370/** Pointer to the mapping cache set. */
1371typedef PGMMAPSET *PPGMMAPSET;
1372
1373/** PGMMAPSET::cEntries value for a closed set. */
1374#define PGMMAPSET_CLOSED UINT32_C(0xdeadc0fe)
1375
1376/** Hash function for aiHashTable. */
1377#define PGMMAPSET_HASH(HCPhys) (((HCPhys) >> PAGE_SHIFT) & 127)
1378
1379/** The max fill size (strict builds). */
1380#define PGMMAPSET_MAX_FILL (64U * 80U / 100U)
1381
1382
1383/** @name Context neutrual page mapper TLB.
1384 *
1385 * Hoping to avoid some code and bug duplication parts of the GCxxx->CCPtr
1386 * code is writting in a kind of context neutrual way. Time will show whether
1387 * this actually makes sense or not...
1388 *
1389 * @todo this needs to be reconsidered and dropped/redone since the ring-0
1390 * context ends up using a global mapping cache on some platforms
1391 * (darwin).
1392 *
1393 * @{ */
1394/** @typedef PPGMPAGEMAPTLB
1395 * The page mapper TLB pointer type for the current context. */
1396/** @typedef PPGMPAGEMAPTLB
1397 * The page mapper TLB entry pointer type for the current context. */
1398/** @typedef PPGMPAGEMAPTLB
1399 * The page mapper TLB entry pointer pointer type for the current context. */
1400/** @def PGM_PAGEMAPTLB_ENTRIES
1401 * The number of TLB entries in the page mapper TLB for the current context. */
1402/** @def PGM_PAGEMAPTLB_IDX
1403 * Calculate the TLB index for a guest physical address.
1404 * @returns The TLB index.
1405 * @param GCPhys The guest physical address. */
1406/** @typedef PPGMPAGEMAP
1407 * Pointer to a page mapper unit for current context. */
1408/** @typedef PPPGMPAGEMAP
1409 * Pointer to a page mapper unit pointer for current context. */
1410#ifdef IN_RC
1411// typedef PPGMPAGEGCMAPTLB PPGMPAGEMAPTLB;
1412// typedef PPGMPAGEGCMAPTLBE PPGMPAGEMAPTLBE;
1413// typedef PPGMPAGEGCMAPTLBE *PPPGMPAGEMAPTLBE;
1414# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGEGCMAPTLB_ENTRIES
1415# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGEGCMAPTLB_IDX(GCPhys)
1416 typedef void * PPGMPAGEMAP;
1417 typedef void ** PPPGMPAGEMAP;
1418//#elif IN_RING0
1419// typedef PPGMPAGER0MAPTLB PPGMPAGEMAPTLB;
1420// typedef PPGMPAGER0MAPTLBE PPGMPAGEMAPTLBE;
1421// typedef PPGMPAGER0MAPTLBE *PPPGMPAGEMAPTLBE;
1422//# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGER0MAPTLB_ENTRIES
1423//# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGER0MAPTLB_IDX(GCPhys)
1424// typedef PPGMCHUNKR0MAP PPGMPAGEMAP;
1425// typedef PPPGMCHUNKR0MAP PPPGMPAGEMAP;
1426#else
1427 typedef PPGMPAGER3MAPTLB PPGMPAGEMAPTLB;
1428 typedef PPGMPAGER3MAPTLBE PPGMPAGEMAPTLBE;
1429 typedef PPGMPAGER3MAPTLBE *PPPGMPAGEMAPTLBE;
1430# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGER3MAPTLB_ENTRIES
1431# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGER3MAPTLB_IDX(GCPhys)
1432 typedef PPGMCHUNKR3MAP PPGMPAGEMAP;
1433 typedef PPPGMCHUNKR3MAP PPPGMPAGEMAP;
1434#endif
1435/** @} */
1436
1437
1438/** @name PGM Pool Indexes.
1439 * Aka. the unique shadow page identifier.
1440 * @{ */
1441/** NIL page pool IDX. */
1442#define NIL_PGMPOOL_IDX 0
1443/** The first normal index. */
1444#define PGMPOOL_IDX_FIRST_SPECIAL 1
1445#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
1446/** Page directory (32-bit root). */
1447#define PGMPOOL_IDX_PD 1
1448/** Page Directory Pointer Table (PAE root). */
1449#define PGMPOOL_IDX_PDPT 2
1450/** AMD64 CR3 level index.*/
1451#define PGMPOOL_IDX_AMD64_CR3 3
1452/** Nested paging root.*/
1453#define PGMPOOL_IDX_NESTED_ROOT 4
1454/** The first normal index. */
1455#define PGMPOOL_IDX_FIRST 5
1456#else
1457/** Page directory (32-bit root). */
1458#define PGMPOOL_IDX_PD 1
1459/** The extended PAE page directory (2048 entries, works as root currently). */
1460#define PGMPOOL_IDX_PAE_PD 2
1461/** PAE Page Directory Table 0. */
1462#define PGMPOOL_IDX_PAE_PD_0 3
1463/** PAE Page Directory Table 1. */
1464#define PGMPOOL_IDX_PAE_PD_1 4
1465/** PAE Page Directory Table 2. */
1466#define PGMPOOL_IDX_PAE_PD_2 5
1467/** PAE Page Directory Table 3. */
1468#define PGMPOOL_IDX_PAE_PD_3 6
1469/** Page Directory Pointer Table (PAE root, not currently used). */
1470#define PGMPOOL_IDX_PDPT 7
1471/** AMD64 CR3 level index.*/
1472#define PGMPOOL_IDX_AMD64_CR3 8
1473/** Nested paging root.*/
1474#define PGMPOOL_IDX_NESTED_ROOT 9
1475/** The first normal index. */
1476#define PGMPOOL_IDX_FIRST 10
1477#endif
1478/** The last valid index. (inclusive, 14 bits) */
1479#define PGMPOOL_IDX_LAST 0x3fff
1480/** @} */
1481
1482/** The NIL index for the parent chain. */
1483#define NIL_PGMPOOL_USER_INDEX ((uint16_t)0xffff)
1484
1485/**
1486 * Node in the chain linking a shadowed page to it's parent (user).
1487 */
1488#pragma pack(1)
1489typedef struct PGMPOOLUSER
1490{
1491 /** The index to the next item in the chain. NIL_PGMPOOL_USER_INDEX is no next. */
1492 uint16_t iNext;
1493 /** The user page index. */
1494 uint16_t iUser;
1495 /** Index into the user table. */
1496 uint32_t iUserTable;
1497} PGMPOOLUSER, *PPGMPOOLUSER;
1498typedef const PGMPOOLUSER *PCPGMPOOLUSER;
1499#pragma pack()
1500
1501
1502/** The NIL index for the phys ext chain. */
1503#define NIL_PGMPOOL_PHYSEXT_INDEX ((uint16_t)0xffff)
1504
1505/**
1506 * Node in the chain of physical cross reference extents.
1507 * @todo Calling this an 'extent' is not quite right, find a better name.
1508 */
1509#pragma pack(1)
1510typedef struct PGMPOOLPHYSEXT
1511{
1512 /** The index to the next item in the chain. NIL_PGMPOOL_PHYSEXT_INDEX is no next. */
1513 uint16_t iNext;
1514 /** The user page index. */
1515 uint16_t aidx[3];
1516} PGMPOOLPHYSEXT, *PPGMPOOLPHYSEXT;
1517typedef const PGMPOOLPHYSEXT *PCPGMPOOLPHYSEXT;
1518#pragma pack()
1519
1520
1521/**
1522 * The kind of page that's being shadowed.
1523 */
1524typedef enum PGMPOOLKIND
1525{
1526 /** The virtual invalid 0 entry. */
1527 PGMPOOLKIND_INVALID = 0,
1528 /** The entry is free (=unused). */
1529 PGMPOOLKIND_FREE,
1530
1531 /** Shw: 32-bit page table; Gst: no paging */
1532 PGMPOOLKIND_32BIT_PT_FOR_PHYS,
1533 /** Shw: 32-bit page table; Gst: 32-bit page table. */
1534 PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT,
1535 /** Shw: 32-bit page table; Gst: 4MB page. */
1536 PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB,
1537 /** Shw: PAE page table; Gst: no paging */
1538 PGMPOOLKIND_PAE_PT_FOR_PHYS,
1539 /** Shw: PAE page table; Gst: 32-bit page table. */
1540 PGMPOOLKIND_PAE_PT_FOR_32BIT_PT,
1541 /** Shw: PAE page table; Gst: Half of a 4MB page. */
1542 PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB,
1543 /** Shw: PAE page table; Gst: PAE page table. */
1544 PGMPOOLKIND_PAE_PT_FOR_PAE_PT,
1545 /** Shw: PAE page table; Gst: 2MB page. */
1546 PGMPOOLKIND_PAE_PT_FOR_PAE_2MB,
1547
1548 /** Shw: 32-bit page directory. Gst: 32-bit page directory. */
1549 PGMPOOLKIND_32BIT_PD,
1550 /** Shw: 32-bit page directory. Gst: no paging. */
1551 PGMPOOLKIND_32BIT_PD_PHYS,
1552 /** Shw: PAE page directory 0; Gst: 32-bit page directory. */
1553 PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD,
1554 /** Shw: PAE page directory 1; Gst: 32-bit page directory. */
1555 PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD,
1556 /** Shw: PAE page directory 2; Gst: 32-bit page directory. */
1557 PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD,
1558 /** Shw: PAE page directory 3; Gst: 32-bit page directory. */
1559 PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD,
1560 /** Shw: PAE page directory; Gst: PAE page directory. */
1561 PGMPOOLKIND_PAE_PD_FOR_PAE_PD,
1562 /** Shw: PAE page directory; Gst: no paging. */
1563 PGMPOOLKIND_PAE_PD_PHYS,
1564
1565 /** Shw: PAE page directory pointer table (legacy, 4 entries); Gst 32 bits paging. */
1566 PGMPOOLKIND_PAE_PDPT_FOR_32BIT,
1567 /** Shw: PAE page directory pointer table (legacy, 4 entries); Gst PAE PDPT. */
1568 PGMPOOLKIND_PAE_PDPT,
1569 /** Shw: PAE page directory pointer table (legacy, 4 entries); Gst: no paging. */
1570 PGMPOOLKIND_PAE_PDPT_PHYS,
1571
1572 /** Shw: 64-bit page directory pointer table; Gst: 64-bit page directory pointer table. */
1573 PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT,
1574 /** Shw: 64-bit page directory pointer table; Gst: no paging */
1575 PGMPOOLKIND_64BIT_PDPT_FOR_PHYS,
1576 /** Shw: 64-bit page directory table; Gst: 64-bit page directory table. */
1577 PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD,
1578 /** Shw: 64-bit page directory table; Gst: no paging */
1579 PGMPOOLKIND_64BIT_PD_FOR_PHYS, /* 22 */
1580
1581 /** Shw: 64-bit PML4; Gst: 64-bit PML4. */
1582 PGMPOOLKIND_64BIT_PML4,
1583
1584 /** Shw: EPT page directory pointer table; Gst: no paging */
1585 PGMPOOLKIND_EPT_PDPT_FOR_PHYS,
1586 /** Shw: EPT page directory table; Gst: no paging */
1587 PGMPOOLKIND_EPT_PD_FOR_PHYS,
1588 /** Shw: EPT page table; Gst: no paging */
1589 PGMPOOLKIND_EPT_PT_FOR_PHYS,
1590
1591#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1592 /** Shw: Root 32-bit page directory. */
1593 PGMPOOLKIND_ROOT_32BIT_PD,
1594 /** Shw: Root PAE page directory */
1595 PGMPOOLKIND_ROOT_PAE_PD,
1596 /** Shw: Root PAE page directory pointer table (legacy, 4 entries). */
1597 PGMPOOLKIND_ROOT_PDPT,
1598#endif
1599 /** Shw: Root Nested paging table. */
1600 PGMPOOLKIND_ROOT_NESTED,
1601
1602 /** The last valid entry. */
1603 PGMPOOLKIND_LAST = PGMPOOLKIND_ROOT_NESTED
1604} PGMPOOLKIND;
1605
1606
1607/**
1608 * The tracking data for a page in the pool.
1609 */
1610typedef struct PGMPOOLPAGE
1611{
1612 /** AVL node code with the (R3) physical address of this page. */
1613 AVLOHCPHYSNODECORE Core;
1614 /** Pointer to the R3 mapping of the page. */
1615#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1616 R3PTRTYPE(void *) pvPageR3;
1617#else
1618 R3R0PTRTYPE(void *) pvPageR3;
1619#endif
1620 /** The guest physical address. */
1621#if HC_ARCH_BITS == 32 && GC_ARCH_BITS == 64
1622 uint32_t Alignment0;
1623#endif
1624 RTGCPHYS GCPhys;
1625 /** The kind of page we're shadowing. (This is really a PGMPOOLKIND enum.) */
1626 uint8_t enmKind;
1627 uint8_t bPadding;
1628 /** The index of this page. */
1629 uint16_t idx;
1630 /** The next entry in the list this page currently resides in.
1631 * It's either in the free list or in the GCPhys hash. */
1632 uint16_t iNext;
1633#ifdef PGMPOOL_WITH_USER_TRACKING
1634 /** Head of the user chain. NIL_PGMPOOL_USER_INDEX if not currently in use. */
1635 uint16_t iUserHead;
1636 /** The number of present entries. */
1637 uint16_t cPresent;
1638 /** The first entry in the table which is present. */
1639 uint16_t iFirstPresent;
1640#endif
1641#ifdef PGMPOOL_WITH_MONITORING
1642 /** The number of modifications to the monitored page. */
1643 uint16_t cModifications;
1644 /** The next modified page. NIL_PGMPOOL_IDX if tail. */
1645 uint16_t iModifiedNext;
1646 /** The previous modified page. NIL_PGMPOOL_IDX if head. */
1647 uint16_t iModifiedPrev;
1648 /** The next page sharing access handler. NIL_PGMPOOL_IDX if tail. */
1649 uint16_t iMonitoredNext;
1650 /** The previous page sharing access handler. NIL_PGMPOOL_IDX if head. */
1651 uint16_t iMonitoredPrev;
1652#endif
1653#ifdef PGMPOOL_WITH_CACHE
1654 /** The next page in the age list. */
1655 uint16_t iAgeNext;
1656 /** The previous page in the age list. */
1657 uint16_t iAgePrev;
1658#endif /* PGMPOOL_WITH_CACHE */
1659 /** Used to indicate that the page is zeroed. */
1660 bool fZeroed;
1661 /** Used to indicate that a PT has non-global entries. */
1662 bool fSeenNonGlobal;
1663 /** Used to indicate that we're monitoring writes to the guest page. */
1664 bool fMonitored;
1665 /** Used to indicate that the page is in the cache (e.g. in the GCPhys hash).
1666 * (All pages are in the age list.) */
1667 bool fCached;
1668 /** This is used by the R3 access handlers when invoked by an async thread.
1669 * It's a hack required because of REMR3NotifyHandlerPhysicalDeregister. */
1670 bool volatile fReusedFlushPending;
1671#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
1672 /** Used to indicate that this page can't be flushed. Important for cr3 root pages or shadow pae pd pages). */
1673 bool fLocked;
1674#else
1675 /** Used to indicate that the guest is mapping the page is also used as a CR3.
1676 * In these cases the access handler acts differently and will check
1677 * for mapping conflicts like the normal CR3 handler.
1678 * @todo When we change the CR3 shadowing to use pool pages, this flag can be
1679 * replaced by a list of pages which share access handler.
1680 */
1681 bool fCR3Mix;
1682#endif
1683} PGMPOOLPAGE, *PPGMPOOLPAGE, **PPPGMPOOLPAGE;
1684
1685
1686#ifdef PGMPOOL_WITH_CACHE
1687/** The hash table size. */
1688# define PGMPOOL_HASH_SIZE 0x40
1689/** The hash function. */
1690# define PGMPOOL_HASH(GCPhys) ( ((GCPhys) >> PAGE_SHIFT) & (PGMPOOL_HASH_SIZE - 1) )
1691#endif
1692
1693
1694/**
1695 * The shadow page pool instance data.
1696 *
1697 * It's all one big allocation made at init time, except for the
1698 * pages that is. The user nodes follows immediatly after the
1699 * page structures.
1700 */
1701typedef struct PGMPOOL
1702{
1703 /** The VM handle - R3 Ptr. */
1704 PVMR3 pVMR3;
1705 /** The VM handle - R0 Ptr. */
1706 PVMR0 pVMR0;
1707 /** The VM handle - RC Ptr. */
1708 PVMRC pVMRC;
1709 /** The max pool size. This includes the special IDs. */
1710 uint16_t cMaxPages;
1711 /** The current pool size. */
1712 uint16_t cCurPages;
1713 /** The head of the free page list. */
1714 uint16_t iFreeHead;
1715 /* Padding. */
1716 uint16_t u16Padding;
1717#ifdef PGMPOOL_WITH_USER_TRACKING
1718 /** Head of the chain of free user nodes. */
1719 uint16_t iUserFreeHead;
1720 /** The number of user nodes we've allocated. */
1721 uint16_t cMaxUsers;
1722 /** The number of present page table entries in the entire pool. */
1723 uint32_t cPresent;
1724 /** Pointer to the array of user nodes - RC pointer. */
1725 RCPTRTYPE(PPGMPOOLUSER) paUsersRC;
1726 /** Pointer to the array of user nodes - R3 pointer. */
1727 R3PTRTYPE(PPGMPOOLUSER) paUsersR3;
1728 /** Pointer to the array of user nodes - R0 pointer. */
1729 R0PTRTYPE(PPGMPOOLUSER) paUsersR0;
1730#endif /* PGMPOOL_WITH_USER_TRACKING */
1731#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1732 /** Head of the chain of free phys ext nodes. */
1733 uint16_t iPhysExtFreeHead;
1734 /** The number of user nodes we've allocated. */
1735 uint16_t cMaxPhysExts;
1736 /** Pointer to the array of physical xref extent - RC pointer. */
1737 RCPTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsRC;
1738 /** Pointer to the array of physical xref extent nodes - R3 pointer. */
1739 R3PTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsR3;
1740 /** Pointer to the array of physical xref extent nodes - R0 pointer. */
1741 R0PTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsR0;
1742#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
1743#ifdef PGMPOOL_WITH_CACHE
1744 /** Hash table for GCPhys addresses. */
1745 uint16_t aiHash[PGMPOOL_HASH_SIZE];
1746 /** The head of the age list. */
1747 uint16_t iAgeHead;
1748 /** The tail of the age list. */
1749 uint16_t iAgeTail;
1750 /** Set if the cache is enabled. */
1751 bool fCacheEnabled;
1752#endif /* PGMPOOL_WITH_CACHE */
1753#ifdef PGMPOOL_WITH_MONITORING
1754 /** Head of the list of modified pages. */
1755 uint16_t iModifiedHead;
1756 /** The current number of modified pages. */
1757 uint16_t cModifiedPages;
1758 /** Access handler, RC. */
1759 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnAccessHandlerRC;
1760 /** Access handler, R0. */
1761 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnAccessHandlerR0;
1762 /** Access handler, R3. */
1763 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnAccessHandlerR3;
1764 /** The access handler description (HC ptr). */
1765 R3PTRTYPE(const char *) pszAccessHandler;
1766#endif /* PGMPOOL_WITH_MONITORING */
1767 /** The number of pages currently in use. */
1768 uint16_t cUsedPages;
1769#ifdef VBOX_WITH_STATISTICS
1770 /** The high wather mark for cUsedPages. */
1771 uint16_t cUsedPagesHigh;
1772 uint32_t Alignment1; /**< Align the next member on a 64-bit boundrary. */
1773 /** Profiling pgmPoolAlloc(). */
1774 STAMPROFILEADV StatAlloc;
1775 /** Profiling pgmPoolClearAll(). */
1776 STAMPROFILE StatClearAll;
1777 /** Profiling pgmPoolFlushAllInt(). */
1778 STAMPROFILE StatFlushAllInt;
1779 /** Profiling pgmPoolFlushPage(). */
1780 STAMPROFILE StatFlushPage;
1781 /** Profiling pgmPoolFree(). */
1782 STAMPROFILE StatFree;
1783 /** Profiling time spent zeroing pages. */
1784 STAMPROFILE StatZeroPage;
1785# ifdef PGMPOOL_WITH_USER_TRACKING
1786 /** Profiling of pgmPoolTrackDeref. */
1787 STAMPROFILE StatTrackDeref;
1788 /** Profiling pgmTrackFlushGCPhysPT. */
1789 STAMPROFILE StatTrackFlushGCPhysPT;
1790 /** Profiling pgmTrackFlushGCPhysPTs. */
1791 STAMPROFILE StatTrackFlushGCPhysPTs;
1792 /** Profiling pgmTrackFlushGCPhysPTsSlow. */
1793 STAMPROFILE StatTrackFlushGCPhysPTsSlow;
1794 /** Number of times we've been out of user records. */
1795 STAMCOUNTER StatTrackFreeUpOneUser;
1796# endif
1797# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1798 /** Profiling deref activity related tracking GC physical pages. */
1799 STAMPROFILE StatTrackDerefGCPhys;
1800 /** Number of linear searches for a HCPhys in the ram ranges. */
1801 STAMCOUNTER StatTrackLinearRamSearches;
1802 /** The number of failing pgmPoolTrackPhysExtAlloc calls. */
1803 STAMCOUNTER StamTrackPhysExtAllocFailures;
1804# endif
1805# ifdef PGMPOOL_WITH_MONITORING
1806 /** Profiling the RC/R0 access handler. */
1807 STAMPROFILE StatMonitorRZ;
1808 /** Times we've failed interpreting the instruction. */
1809 STAMCOUNTER StatMonitorRZEmulateInstr;
1810 /** Profiling the pgmPoolFlushPage calls made from the RC/R0 access handler. */
1811 STAMPROFILE StatMonitorRZFlushPage;
1812 /** Times we've detected fork(). */
1813 STAMCOUNTER StatMonitorRZFork;
1814 /** Profiling the RC/R0 access we've handled (except REP STOSD). */
1815 STAMPROFILE StatMonitorRZHandled;
1816 /** Times we've failed interpreting a patch code instruction. */
1817 STAMCOUNTER StatMonitorRZIntrFailPatch1;
1818 /** Times we've failed interpreting a patch code instruction during flushing. */
1819 STAMCOUNTER StatMonitorRZIntrFailPatch2;
1820 /** The number of times we've seen rep prefixes we can't handle. */
1821 STAMCOUNTER StatMonitorRZRepPrefix;
1822 /** Profiling the REP STOSD cases we've handled. */
1823 STAMPROFILE StatMonitorRZRepStosd;
1824
1825 /** Profiling the R3 access handler. */
1826 STAMPROFILE StatMonitorR3;
1827 /** Times we've failed interpreting the instruction. */
1828 STAMCOUNTER StatMonitorR3EmulateInstr;
1829 /** Profiling the pgmPoolFlushPage calls made from the R3 access handler. */
1830 STAMPROFILE StatMonitorR3FlushPage;
1831 /** Times we've detected fork(). */
1832 STAMCOUNTER StatMonitorR3Fork;
1833 /** Profiling the R3 access we've handled (except REP STOSD). */
1834 STAMPROFILE StatMonitorR3Handled;
1835 /** The number of times we've seen rep prefixes we can't handle. */
1836 STAMCOUNTER StatMonitorR3RepPrefix;
1837 /** Profiling the REP STOSD cases we've handled. */
1838 STAMPROFILE StatMonitorR3RepStosd;
1839 /** The number of times we're called in an async thread an need to flush. */
1840 STAMCOUNTER StatMonitorR3Async;
1841 /** The high wather mark for cModifiedPages. */
1842 uint16_t cModifiedPagesHigh;
1843 uint16_t Alignment2[3]; /**< Align the next member on a 64-bit boundrary. */
1844# endif
1845# ifdef PGMPOOL_WITH_CACHE
1846 /** The number of cache hits. */
1847 STAMCOUNTER StatCacheHits;
1848 /** The number of cache misses. */
1849 STAMCOUNTER StatCacheMisses;
1850 /** The number of times we've got a conflict of 'kind' in the cache. */
1851 STAMCOUNTER StatCacheKindMismatches;
1852 /** Number of times we've been out of pages. */
1853 STAMCOUNTER StatCacheFreeUpOne;
1854 /** The number of cacheable allocations. */
1855 STAMCOUNTER StatCacheCacheable;
1856 /** The number of uncacheable allocations. */
1857 STAMCOUNTER StatCacheUncacheable;
1858# endif
1859#elif HC_ARCH_BITS == 64
1860 uint32_t Alignment3; /**< Align the next member on a 64-bit boundrary. */
1861#endif
1862 /** The AVL tree for looking up a page by its HC physical address. */
1863 AVLOHCPHYSTREE HCPhysTree;
1864 uint32_t Alignment4; /**< Align the next member on a 64-bit boundrary. */
1865 /** Array of pages. (cMaxPages in length)
1866 * The Id is the index into thist array.
1867 */
1868 PGMPOOLPAGE aPages[PGMPOOL_IDX_FIRST];
1869} PGMPOOL, *PPGMPOOL, **PPPGMPOOL;
1870
1871
1872/** @def PGMPOOL_PAGE_2_PTR
1873 * Maps a pool page pool into the current context.
1874 *
1875 * @returns VBox status code.
1876 * @param pVM The VM handle.
1877 * @param pPage The pool page.
1878 *
1879 * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the
1880 * small page window employeed by that function. Be careful.
1881 * @remark There is no need to assert on the result.
1882 */
1883#if defined(IN_RC)
1884# define PGMPOOL_PAGE_2_PTR(pVM, pPage) pgmPoolMapPageInlined(&(pVM)->pgm.s, (pPage))
1885#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1886# define PGMPOOL_PAGE_2_PTR(pVM, pPage) pgmPoolMapPageInlined(&(pVM)->pgm.s, (pPage))
1887#elif defined(VBOX_STRICT)
1888# define PGMPOOL_PAGE_2_PTR(pVM, pPage) pgmPoolMapPageStrict(pPage)
1889DECLINLINE(void *) pgmPoolMapPageStrict(PPGMPOOLPAGE pPage)
1890{
1891 Assert(pPage->pvPageR3);
1892 return pPage->pvPageR3;
1893}
1894#else
1895# define PGMPOOL_PAGE_2_PTR(pVM, pPage) ((pPage)->pvPageR3)
1896#endif
1897
1898/** @def PGMPOOL_PAGE_2_PTR_BY_PGM
1899 * Maps a pool page pool into the current context.
1900 *
1901 * @returns VBox status code.
1902 * @param pPGM Pointer to the PGM instance data.
1903 * @param pPage The pool page.
1904 *
1905 * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the
1906 * small page window employeed by that function. Be careful.
1907 * @remark There is no need to assert on the result.
1908 */
1909#if defined(IN_RC)
1910# define PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pPage) pgmPoolMapPageInlined((pPGM), (pPage))
1911#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1912# define PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pPage) pgmPoolMapPageInlined((pPGM), (pPage))
1913#else
1914# define PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pPage) PGMPOOL_PAGE_2_PTR(PGM2VM(pPGM), pPage)
1915#endif
1916
1917
1918/** @name Per guest page tracking data.
1919 * This is currently as a 16-bit word in the PGMPAGE structure, the idea though
1920 * is to use more bits for it and split it up later on. But for now we'll play
1921 * safe and change as little as possible.
1922 *
1923 * The 16-bit word has two parts:
1924 *
1925 * The first 14-bit forms the @a idx field. It is either the index of a page in
1926 * the shadow page pool, or and index into the extent list.
1927 *
1928 * The 2 topmost bits makes up the @a cRefs field, which counts the number of
1929 * shadow page pool references to the page. If cRefs equals
1930 * PGMPOOL_CREFS_PHYSEXT, then the @a idx field is an indext into the extent
1931 * (misnomer) table and not the shadow page pool.
1932 *
1933 * See PGM_PAGE_GET_TRACKING and PGM_PAGE_SET_TRACKING for how to get and set
1934 * the 16-bit word.
1935 *
1936 * @{ */
1937/** The shift count for getting to the cRefs part. */
1938#define PGMPOOL_TD_CREFS_SHIFT 14
1939/** The mask applied after shifting the tracking data down by
1940 * PGMPOOL_TD_CREFS_SHIFT. */
1941#define PGMPOOL_TD_CREFS_MASK 0x3
1942/** The cRef value used to indiciate that the idx is the head of a
1943 * physical cross reference list. */
1944#define PGMPOOL_TD_CREFS_PHYSEXT PGMPOOL_TD_CREFS_MASK
1945/** The shift used to get idx. */
1946#define PGMPOOL_TD_IDX_SHIFT 0
1947/** The mask applied to the idx after shifting down by PGMPOOL_TD_IDX_SHIFT. */
1948#define PGMPOOL_TD_IDX_MASK 0x3fff
1949/** The idx value when we're out of of PGMPOOLPHYSEXT entries or/and there are
1950 * simply too many mappings of this page. */
1951#define PGMPOOL_TD_IDX_OVERFLOWED PGMPOOL_TD_IDX_MASK
1952
1953/** @def PGMPOOL_TD_MAKE
1954 * Makes a 16-bit tracking data word.
1955 *
1956 * @returns tracking data.
1957 * @param cRefs The @a cRefs field. Must be within bounds!
1958 * @param idx The @a idx field. Must also be within bounds! */
1959#define PGMPOOL_TD_MAKE(cRefs, idx) ( ((cRefs) << PGMPOOL_TD_CREFS_SHIFT) | (idx) )
1960
1961/** @def PGMPOOL_TD_GET_CREFS
1962 * Get the @a cRefs field from a tracking data word.
1963 *
1964 * @returns The @a cRefs field
1965 * @param u16 The tracking data word. */
1966#define PGMPOOL_TD_GET_CREFS(u16) ( ((u16) >> PGMPOOL_TD_CREFS_SHIFT) & PGMPOOL_TD_CREFS_MASK )
1967
1968/** @def PGMPOOL_TD_GET_IDX
1969 * Get the @a idx field from a tracking data word.
1970 *
1971 * @returns The @a idx field
1972 * @param u16 The tracking data word. */
1973#define PGMPOOL_TD_GET_IDX(u16) ( ((u16) >> PGMPOOL_TD_IDX_SHIFT) & PGMPOOL_TD_IDX_MASK )
1974/** @} */
1975
1976
1977/**
1978 * Trees are using self relative offsets as pointers.
1979 * So, all its data, including the root pointer, must be in the heap for HC and GC
1980 * to have the same layout.
1981 */
1982typedef struct PGMTREES
1983{
1984 /** Physical access handlers (AVL range+offsetptr tree). */
1985 AVLROGCPHYSTREE PhysHandlers;
1986 /** Virtual access handlers (AVL range + GC ptr tree). */
1987 AVLROGCPTRTREE VirtHandlers;
1988 /** Virtual access handlers (Phys range AVL range + offsetptr tree). */
1989 AVLROGCPHYSTREE PhysToVirtHandlers;
1990 /** Virtual access handlers for the hypervisor (AVL range + GC ptr tree). */
1991 AVLROGCPTRTREE HyperVirtHandlers;
1992} PGMTREES;
1993/** Pointer to PGM trees. */
1994typedef PGMTREES *PPGMTREES;
1995
1996
1997/** @name Paging mode macros
1998 * @{ */
1999#ifdef IN_RC
2000# define PGM_CTX(a,b) a##RC##b
2001# define PGM_CTX_STR(a,b) a "GC" b
2002# define PGM_CTX_DECL(type) VMMRCDECL(type)
2003#else
2004# ifdef IN_RING3
2005# define PGM_CTX(a,b) a##R3##b
2006# define PGM_CTX_STR(a,b) a "R3" b
2007# define PGM_CTX_DECL(type) DECLCALLBACK(type)
2008# else
2009# define PGM_CTX(a,b) a##R0##b
2010# define PGM_CTX_STR(a,b) a "R0" b
2011# define PGM_CTX_DECL(type) VMMDECL(type)
2012# endif
2013#endif
2014
2015#define PGM_GST_NAME_REAL(name) PGM_CTX(pgm,GstReal##name)
2016#define PGM_GST_NAME_RC_REAL_STR(name) "pgmRCGstReal" #name
2017#define PGM_GST_NAME_R0_REAL_STR(name) "pgmR0GstReal" #name
2018#define PGM_GST_NAME_PROT(name) PGM_CTX(pgm,GstProt##name)
2019#define PGM_GST_NAME_RC_PROT_STR(name) "pgmRCGstProt" #name
2020#define PGM_GST_NAME_R0_PROT_STR(name) "pgmR0GstProt" #name
2021#define PGM_GST_NAME_32BIT(name) PGM_CTX(pgm,Gst32Bit##name)
2022#define PGM_GST_NAME_RC_32BIT_STR(name) "pgmRCGst32Bit" #name
2023#define PGM_GST_NAME_R0_32BIT_STR(name) "pgmR0Gst32Bit" #name
2024#define PGM_GST_NAME_PAE(name) PGM_CTX(pgm,GstPAE##name)
2025#define PGM_GST_NAME_RC_PAE_STR(name) "pgmRCGstPAE" #name
2026#define PGM_GST_NAME_R0_PAE_STR(name) "pgmR0GstPAE" #name
2027#define PGM_GST_NAME_AMD64(name) PGM_CTX(pgm,GstAMD64##name)
2028#define PGM_GST_NAME_RC_AMD64_STR(name) "pgmRCGstAMD64" #name
2029#define PGM_GST_NAME_R0_AMD64_STR(name) "pgmR0GstAMD64" #name
2030#define PGM_GST_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Gst##name))
2031#define PGM_GST_DECL(type, name) PGM_CTX_DECL(type) PGM_GST_NAME(name)
2032
2033#define PGM_SHW_NAME_32BIT(name) PGM_CTX(pgm,Shw32Bit##name)
2034#define PGM_SHW_NAME_RC_32BIT_STR(name) "pgmRCShw32Bit" #name
2035#define PGM_SHW_NAME_R0_32BIT_STR(name) "pgmR0Shw32Bit" #name
2036#define PGM_SHW_NAME_PAE(name) PGM_CTX(pgm,ShwPAE##name)
2037#define PGM_SHW_NAME_RC_PAE_STR(name) "pgmRCShwPAE" #name
2038#define PGM_SHW_NAME_R0_PAE_STR(name) "pgmR0ShwPAE" #name
2039#define PGM_SHW_NAME_AMD64(name) PGM_CTX(pgm,ShwAMD64##name)
2040#define PGM_SHW_NAME_RC_AMD64_STR(name) "pgmRCShwAMD64" #name
2041#define PGM_SHW_NAME_R0_AMD64_STR(name) "pgmR0ShwAMD64" #name
2042#define PGM_SHW_NAME_NESTED(name) PGM_CTX(pgm,ShwNested##name)
2043#define PGM_SHW_NAME_RC_NESTED_STR(name) "pgmRCShwNested" #name
2044#define PGM_SHW_NAME_R0_NESTED_STR(name) "pgmR0ShwNested" #name
2045#define PGM_SHW_NAME_EPT(name) PGM_CTX(pgm,ShwEPT##name)
2046#define PGM_SHW_NAME_RC_EPT_STR(name) "pgmRCShwEPT" #name
2047#define PGM_SHW_NAME_R0_EPT_STR(name) "pgmR0ShwEPT" #name
2048#define PGM_SHW_DECL(type, name) PGM_CTX_DECL(type) PGM_SHW_NAME(name)
2049#define PGM_SHW_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Shw##name))
2050
2051/* Shw_Gst */
2052#define PGM_BTH_NAME_32BIT_REAL(name) PGM_CTX(pgm,Bth32BitReal##name)
2053#define PGM_BTH_NAME_32BIT_PROT(name) PGM_CTX(pgm,Bth32BitProt##name)
2054#define PGM_BTH_NAME_32BIT_32BIT(name) PGM_CTX(pgm,Bth32Bit32Bit##name)
2055#define PGM_BTH_NAME_PAE_REAL(name) PGM_CTX(pgm,BthPAEReal##name)
2056#define PGM_BTH_NAME_PAE_PROT(name) PGM_CTX(pgm,BthPAEProt##name)
2057#define PGM_BTH_NAME_PAE_32BIT(name) PGM_CTX(pgm,BthPAE32Bit##name)
2058#define PGM_BTH_NAME_PAE_PAE(name) PGM_CTX(pgm,BthPAEPAE##name)
2059#define PGM_BTH_NAME_AMD64_PROT(name) PGM_CTX(pgm,BthAMD64Prot##name)
2060#define PGM_BTH_NAME_AMD64_AMD64(name) PGM_CTX(pgm,BthAMD64AMD64##name)
2061#define PGM_BTH_NAME_NESTED_REAL(name) PGM_CTX(pgm,BthNestedReal##name)
2062#define PGM_BTH_NAME_NESTED_PROT(name) PGM_CTX(pgm,BthNestedProt##name)
2063#define PGM_BTH_NAME_NESTED_32BIT(name) PGM_CTX(pgm,BthNested32Bit##name)
2064#define PGM_BTH_NAME_NESTED_PAE(name) PGM_CTX(pgm,BthNestedPAE##name)
2065#define PGM_BTH_NAME_NESTED_AMD64(name) PGM_CTX(pgm,BthNestedAMD64##name)
2066#define PGM_BTH_NAME_EPT_REAL(name) PGM_CTX(pgm,BthEPTReal##name)
2067#define PGM_BTH_NAME_EPT_PROT(name) PGM_CTX(pgm,BthEPTProt##name)
2068#define PGM_BTH_NAME_EPT_32BIT(name) PGM_CTX(pgm,BthEPT32Bit##name)
2069#define PGM_BTH_NAME_EPT_PAE(name) PGM_CTX(pgm,BthEPTPAE##name)
2070#define PGM_BTH_NAME_EPT_AMD64(name) PGM_CTX(pgm,BthEPTAMD64##name)
2071
2072#define PGM_BTH_NAME_RC_32BIT_REAL_STR(name) "pgmRCBth32BitReal" #name
2073#define PGM_BTH_NAME_RC_32BIT_PROT_STR(name) "pgmRCBth32BitProt" #name
2074#define PGM_BTH_NAME_RC_32BIT_32BIT_STR(name) "pgmRCBth32Bit32Bit" #name
2075#define PGM_BTH_NAME_RC_PAE_REAL_STR(name) "pgmRCBthPAEReal" #name
2076#define PGM_BTH_NAME_RC_PAE_PROT_STR(name) "pgmRCBthPAEProt" #name
2077#define PGM_BTH_NAME_RC_PAE_32BIT_STR(name) "pgmRCBthPAE32Bit" #name
2078#define PGM_BTH_NAME_RC_PAE_PAE_STR(name) "pgmRCBthPAEPAE" #name
2079#define PGM_BTH_NAME_RC_AMD64_AMD64_STR(name) "pgmRCBthAMD64AMD64" #name
2080#define PGM_BTH_NAME_RC_NESTED_REAL_STR(name) "pgmRCBthNestedReal" #name
2081#define PGM_BTH_NAME_RC_NESTED_PROT_STR(name) "pgmRCBthNestedProt" #name
2082#define PGM_BTH_NAME_RC_NESTED_32BIT_STR(name) "pgmRCBthNested32Bit" #name
2083#define PGM_BTH_NAME_RC_NESTED_PAE_STR(name) "pgmRCBthNestedPAE" #name
2084#define PGM_BTH_NAME_RC_NESTED_AMD64_STR(name) "pgmRCBthNestedAMD64" #name
2085#define PGM_BTH_NAME_RC_EPT_REAL_STR(name) "pgmRCBthEPTReal" #name
2086#define PGM_BTH_NAME_RC_EPT_PROT_STR(name) "pgmRCBthEPTProt" #name
2087#define PGM_BTH_NAME_RC_EPT_32BIT_STR(name) "pgmRCBthEPT32Bit" #name
2088#define PGM_BTH_NAME_RC_EPT_PAE_STR(name) "pgmRCBthEPTPAE" #name
2089#define PGM_BTH_NAME_RC_EPT_AMD64_STR(name) "pgmRCBthEPTAMD64" #name
2090#define PGM_BTH_NAME_R0_32BIT_REAL_STR(name) "pgmR0Bth32BitReal" #name
2091#define PGM_BTH_NAME_R0_32BIT_PROT_STR(name) "pgmR0Bth32BitProt" #name
2092#define PGM_BTH_NAME_R0_32BIT_32BIT_STR(name) "pgmR0Bth32Bit32Bit" #name
2093#define PGM_BTH_NAME_R0_PAE_REAL_STR(name) "pgmR0BthPAEReal" #name
2094#define PGM_BTH_NAME_R0_PAE_PROT_STR(name) "pgmR0BthPAEProt" #name
2095#define PGM_BTH_NAME_R0_PAE_32BIT_STR(name) "pgmR0BthPAE32Bit" #name
2096#define PGM_BTH_NAME_R0_PAE_PAE_STR(name) "pgmR0BthPAEPAE" #name
2097#define PGM_BTH_NAME_R0_AMD64_PROT_STR(name) "pgmR0BthAMD64Prot" #name
2098#define PGM_BTH_NAME_R0_AMD64_AMD64_STR(name) "pgmR0BthAMD64AMD64" #name
2099#define PGM_BTH_NAME_R0_NESTED_REAL_STR(name) "pgmR0BthNestedReal" #name
2100#define PGM_BTH_NAME_R0_NESTED_PROT_STR(name) "pgmR0BthNestedProt" #name
2101#define PGM_BTH_NAME_R0_NESTED_32BIT_STR(name) "pgmR0BthNested32Bit" #name
2102#define PGM_BTH_NAME_R0_NESTED_PAE_STR(name) "pgmR0BthNestedPAE" #name
2103#define PGM_BTH_NAME_R0_NESTED_AMD64_STR(name) "pgmR0BthNestedAMD64" #name
2104#define PGM_BTH_NAME_R0_EPT_REAL_STR(name) "pgmR0BthEPTReal" #name
2105#define PGM_BTH_NAME_R0_EPT_PROT_STR(name) "pgmR0BthEPTProt" #name
2106#define PGM_BTH_NAME_R0_EPT_32BIT_STR(name) "pgmR0BthEPT32Bit" #name
2107#define PGM_BTH_NAME_R0_EPT_PAE_STR(name) "pgmR0BthEPTPAE" #name
2108#define PGM_BTH_NAME_R0_EPT_AMD64_STR(name) "pgmR0BthEPTAMD64" #name
2109
2110#define PGM_BTH_DECL(type, name) PGM_CTX_DECL(type) PGM_BTH_NAME(name)
2111#define PGM_BTH_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Bth##name))
2112/** @} */
2113
2114/**
2115 * Data for each paging mode.
2116 */
2117typedef struct PGMMODEDATA
2118{
2119 /** The guest mode type. */
2120 uint32_t uGstType;
2121 /** The shadow mode type. */
2122 uint32_t uShwType;
2123
2124 /** @name Function pointers for Shadow paging.
2125 * @{
2126 */
2127 DECLR3CALLBACKMEMBER(int, pfnR3ShwRelocate,(PVM pVM, RTGCPTR offDelta));
2128 DECLR3CALLBACKMEMBER(int, pfnR3ShwExit,(PVM pVM));
2129 DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2130 DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2131
2132 DECLRCCALLBACKMEMBER(int, pfnRCShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2133 DECLRCCALLBACKMEMBER(int, pfnRCShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2134
2135 DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2136 DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2137 /** @} */
2138
2139 /** @name Function pointers for Guest paging.
2140 * @{
2141 */
2142 DECLR3CALLBACKMEMBER(int, pfnR3GstRelocate,(PVM pVM, RTGCPTR offDelta));
2143 DECLR3CALLBACKMEMBER(int, pfnR3GstExit,(PVM pVM));
2144 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2145 DECLR3CALLBACKMEMBER(int, pfnR3GstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2146 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
2147#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2148 DECLR3CALLBACKMEMBER(int, pfnR3GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2149 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmonitorCR3,(PVM pVM));
2150#endif
2151#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2152 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstWriteHandlerCR3;
2153 R3PTRTYPE(const char *) pszR3GstWriteHandlerCR3;
2154 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstPAEWriteHandlerCR3;
2155 R3PTRTYPE(const char *) pszR3GstPAEWriteHandlerCR3;
2156#endif
2157 DECLRCCALLBACKMEMBER(int, pfnRCGstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2158 DECLRCCALLBACKMEMBER(int, pfnRCGstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2159 DECLRCCALLBACKMEMBER(int, pfnRCGstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
2160#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2161 DECLRCCALLBACKMEMBER(int, pfnRCGstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2162 DECLRCCALLBACKMEMBER(int, pfnRCGstUnmonitorCR3,(PVM pVM));
2163#endif
2164#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2165 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnRCGstWriteHandlerCR3;
2166 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnRCGstPAEWriteHandlerCR3;
2167#endif
2168 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2169 DECLR0CALLBACKMEMBER(int, pfnR0GstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2170 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
2171#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2172 DECLR0CALLBACKMEMBER(int, pfnR0GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2173 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmonitorCR3,(PVM pVM));
2174#endif
2175#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2176 R0PTRTYPE(PFNPGMRCPHYSHANDLER) pfnR0GstWriteHandlerCR3;
2177 R0PTRTYPE(PFNPGMRCPHYSHANDLER) pfnR0GstPAEWriteHandlerCR3;
2178#endif
2179 /** @} */
2180
2181 /** @name Function pointers for Both Shadow and Guest paging.
2182 * @{
2183 */
2184 DECLR3CALLBACKMEMBER(int, pfnR3BthRelocate,(PVM pVM, RTGCPTR offDelta));
2185 /* no pfnR3BthTrap0eHandler */
2186 DECLR3CALLBACKMEMBER(int, pfnR3BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2187 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2188 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2189 DECLR3CALLBACKMEMBER(int, pfnR3BthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2190 DECLR3CALLBACKMEMBER(int, pfnR3BthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2191#ifdef VBOX_STRICT
2192 DECLR3CALLBACKMEMBER(unsigned, pfnR3BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2193#endif
2194 DECLR3CALLBACKMEMBER(int, pfnR3BthMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2195 DECLR3CALLBACKMEMBER(int, pfnR3BthUnmapCR3,(PVM pVM));
2196
2197 DECLRCCALLBACKMEMBER(int, pfnRCBthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2198 DECLRCCALLBACKMEMBER(int, pfnRCBthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2199 DECLRCCALLBACKMEMBER(int, pfnRCBthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2200 DECLRCCALLBACKMEMBER(int, pfnRCBthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2201 DECLRCCALLBACKMEMBER(int, pfnRCBthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2202 DECLRCCALLBACKMEMBER(int, pfnRCBthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2203#ifdef VBOX_STRICT
2204 DECLRCCALLBACKMEMBER(unsigned, pfnRCBthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2205#endif
2206 DECLRCCALLBACKMEMBER(int, pfnRCBthMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2207 DECLRCCALLBACKMEMBER(int, pfnRCBthUnmapCR3,(PVM pVM));
2208
2209 DECLR0CALLBACKMEMBER(int, pfnR0BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2210 DECLR0CALLBACKMEMBER(int, pfnR0BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2211 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2212 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2213 DECLR0CALLBACKMEMBER(int, pfnR0BthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2214 DECLR0CALLBACKMEMBER(int, pfnR0BthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2215#ifdef VBOX_STRICT
2216 DECLR0CALLBACKMEMBER(unsigned, pfnR0BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2217#endif
2218 DECLR0CALLBACKMEMBER(int, pfnR0BthMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2219 DECLR0CALLBACKMEMBER(int, pfnR0BthUnmapCR3,(PVM pVM));
2220 /** @} */
2221} PGMMODEDATA, *PPGMMODEDATA;
2222
2223
2224
2225/**
2226 * Converts a PGM pointer into a VM pointer.
2227 * @returns Pointer to the VM structure the PGM is part of.
2228 * @param pPGM Pointer to PGM instance data.
2229 */
2230#define PGM2VM(pPGM) ( (PVM)((char*)pPGM - pPGM->offVM) )
2231
2232/**
2233 * PGM Data (part of VM)
2234 */
2235typedef struct PGM
2236{
2237 /** Offset to the VM structure. */
2238 RTINT offVM;
2239 /** Offset of the PGMCPU structure relative to VMCPU. */
2240 int32_t offVCpu;
2241 /** Alignment padding. */
2242 int32_t i32Alignment;
2243
2244 /*
2245 * This will be redefined at least two more times before we're done, I'm sure.
2246 * The current code is only to get on with the coding.
2247 * - 2004-06-10: initial version, bird.
2248 * - 2004-07-02: 1st time, bird.
2249 * - 2004-10-18: 2nd time, bird.
2250 * - 2005-07-xx: 3rd time, bird.
2251 */
2252
2253 /** Pointer to the page table entries for the dynamic page mapping area - GCPtr. */
2254 RCPTRTYPE(PX86PTE) paDynPageMap32BitPTEsGC;
2255 /** Pointer to the page table entries for the dynamic page mapping area - GCPtr. */
2256 RCPTRTYPE(PX86PTEPAE) paDynPageMapPaePTEsGC;
2257
2258 /** The host paging mode. (This is what SUPLib reports.) */
2259 SUPPAGINGMODE enmHostMode;
2260 /** The shadow paging mode. */
2261 PGMMODE enmShadowMode;
2262 /** The guest paging mode. */
2263 PGMMODE enmGuestMode;
2264
2265 /** The current physical address representing in the guest CR3 register. */
2266 RTGCPHYS GCPhysCR3;
2267 /** Pointer to the 5 page CR3 content mapping.
2268 * The first page is always the CR3 (in some form) while the 4 other pages
2269 * are used of the PDs in PAE mode. */
2270 RTGCPTR GCPtrCR3Mapping;
2271#if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
2272 uint32_t u32Alignment;
2273#endif
2274#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2275 /** The physical address of the currently monitored guest CR3 page.
2276 * When this value is NIL_RTGCPHYS no page is being monitored. */
2277 RTGCPHYS GCPhysGstCR3Monitored;
2278#endif
2279 /** @name 32-bit Guest Paging.
2280 * @{ */
2281 /** The guest's page directory, R3 pointer. */
2282 R3PTRTYPE(PX86PD) pGst32BitPdR3;
2283#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2284 /** The guest's page directory, R0 pointer. */
2285 R0PTRTYPE(PX86PD) pGst32BitPdR0;
2286#endif
2287 /** The guest's page directory, static RC mapping. */
2288 RCPTRTYPE(PX86PD) pGst32BitPdRC;
2289 /** @} */
2290
2291 /** @name PAE Guest Paging.
2292 * @{ */
2293 /** The guest's page directory pointer table, static RC mapping. */
2294 RCPTRTYPE(PX86PDPT) pGstPaePdptRC;
2295 /** The guest's page directory pointer table, R3 pointer. */
2296 R3PTRTYPE(PX86PDPT) pGstPaePdptR3;
2297#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2298 /** The guest's page directory pointer table, R0 pointer. */
2299 R0PTRTYPE(PX86PDPT) pGstPaePdptR0;
2300#endif
2301
2302 /** The guest's page directories, R3 pointers.
2303 * These are individual pointers and don't have to be adjecent.
2304 * These don't have to be up-to-date - use pgmGstGetPaePD() to access them. */
2305 R3PTRTYPE(PX86PDPAE) apGstPaePDsR3[4];
2306 /** The guest's page directories, R0 pointers.
2307 * Same restrictions as apGstPaePDsR3. */
2308#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2309 R0PTRTYPE(PX86PDPAE) apGstPaePDsR0[4];
2310#endif
2311 /** The guest's page directories, static GC mapping.
2312 * Unlike the R3/R0 array the first entry can be accessed as a 2048 entry PD.
2313 * These don't have to be up-to-date - use pgmGstGetPaePD() to access them. */
2314 RCPTRTYPE(PX86PDPAE) apGstPaePDsRC[4];
2315 /** The physical addresses of the guest page directories (PAE) pointed to by apGstPagePDsHC/GC. */
2316 RTGCPHYS aGCPhysGstPaePDs[4];
2317 /** The physical addresses of the monitored guest page directories (PAE). */
2318 RTGCPHYS aGCPhysGstPaePDsMonitored[4];
2319 /** @} */
2320
2321 /** @name AMD64 Guest Paging.
2322 * @{ */
2323 /** The guest's page directory pointer table, R3 pointer. */
2324 R3PTRTYPE(PX86PML4) pGstAmd64Pml4R3;
2325#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2326 /** The guest's page directory pointer table, R0 pointer. */
2327 R0PTRTYPE(PX86PML4) pGstAmd64Pml4R0;
2328#endif
2329 /** @} */
2330
2331 /** @name Shadow paging
2332 * @{ */
2333 /** The root page table - R3 Ptr. */
2334 R3PTRTYPE(void *) pShwRootR3;
2335# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2336 /** The root page table - R0 Ptr. */
2337 R0PTRTYPE(void *) pShwRootR0;
2338# endif
2339 /** The root page table - RC Ptr. */
2340 RCPTRTYPE(void *) pShwRootRC;
2341# if HC_ARCH_BITS == 64
2342 uint32_t u32Padding1; /**< alignment padding. */
2343# endif
2344 /** The Physical Address (HC) of the current active shadow CR3. */
2345 RTHCPHYS HCPhysShwCR3;
2346 /** Pointer to the page of the current active CR3 - R3 Ptr. */
2347 R3PTRTYPE(PPGMPOOLPAGE) pShwPageCR3R3;
2348 /** Pointer to the page of the current active CR3 - R0 Ptr. */
2349 R0PTRTYPE(PPGMPOOLPAGE) pShwPageCR3R0;
2350 /** Pointer to the page of the current active CR3 - RC Ptr. */
2351 RCPTRTYPE(PPGMPOOLPAGE) pShwPageCR3RC;
2352 /* The shadow page pool index of the user table as specified during allocation; useful for freeing root pages */
2353 uint32_t iShwUser;
2354 /* The index into the user table (shadowed) as specified during allocation; useful for freeing root pages. */
2355 uint32_t iShwUserTable;
2356# if HC_ARCH_BITS == 64
2357 RTRCPTR alignment6; /**< structure size alignment. */
2358# endif
2359 /** @} */
2360#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2361 /** @name 32-bit Shadow Paging
2362 * @{ */
2363 /** The 32-Bit PD - R3 Ptr. */
2364 R3PTRTYPE(PX86PD) pShw32BitPdR3;
2365 /** The 32-Bit PD - R0 Ptr. */
2366 R0PTRTYPE(PX86PD) pShw32BitPdR0;
2367 /** The 32-Bit PD - RC Ptr. */
2368 RCPTRTYPE(PX86PD) pShw32BitPdRC;
2369# if HC_ARCH_BITS == 64
2370 uint32_t u32Padding10; /**< alignment padding. */
2371# endif
2372 /** The Physical Address (HC) of the 32-Bit PD. */
2373 RTHCPHYS HCPhysShw32BitPD;
2374 /** @} */
2375
2376 /** @name PAE Shadow Paging
2377 * @{ */
2378 /** The four PDs for the low 4GB - R3 Ptr.
2379 * Even though these are 4 pointers, what they point at is a single table.
2380 * Thus, it's possible to walk the 2048 entries starting where apHCPaePDs[0] points. */
2381 R3PTRTYPE(PX86PDPAE) apShwPaePDsR3[4];
2382# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2383 /** The four PDs for the low 4GB - R0 Ptr.
2384 * Same kind of mapping as apHCPaePDs. */
2385 R0PTRTYPE(PX86PDPAE) apShwPaePDsR0[4];
2386# endif
2387 /** The four PDs for the low 4GB - RC Ptr.
2388 * Same kind of mapping as apHCPaePDs. */
2389 RCPTRTYPE(PX86PDPAE) apShwPaePDsRC[4];
2390 /** The Physical Address (HC) of the four PDs for the low 4GB.
2391 * These are *NOT* 4 contiguous pages. */
2392 RTHCPHYS aHCPhysPaePDs[4];
2393 /** The Physical Address (HC) of the PAE PDPT. */
2394 RTHCPHYS HCPhysShwPaePdpt;
2395 /** The PAE PDPT - R3 Ptr. */
2396 R3PTRTYPE(PX86PDPT) pShwPaePdptR3;
2397 /** The PAE PDPT - R0 Ptr. */
2398 R0PTRTYPE(PX86PDPT) pShwPaePdptR0;
2399 /** The PAE PDPT - RC Ptr. */
2400 RCPTRTYPE(PX86PDPT) pShwPaePdptRC;
2401 /** @} */
2402# if HC_ARCH_BITS == 64
2403 RTRCPTR alignment5; /**< structure size alignment. */
2404# endif
2405#endif /* !VBOX_WITH_PGMPOOL_PAGING_ONLY */
2406 /** @name Nested Shadow Paging
2407 * @{ */
2408 /** Root table; format depends on the host paging mode (AMD-V) or EPT - R3 pointer. */
2409 RTR3PTR pShwNestedRootR3;
2410# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2411 /** Root table; format depends on the host paging mode (AMD-V) or EPT - R0 pointer. */
2412 RTR0PTR pShwNestedRootR0;
2413# endif
2414 /** The Physical Address (HC) of the nested paging root. */
2415 RTHCPHYS HCPhysShwNestedRoot;
2416 /** @} */
2417
2418 /** @name Function pointers for Shadow paging.
2419 * @{
2420 */
2421 DECLR3CALLBACKMEMBER(int, pfnR3ShwRelocate,(PVM pVM, RTGCPTR offDelta));
2422 DECLR3CALLBACKMEMBER(int, pfnR3ShwExit,(PVM pVM));
2423 DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2424 DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2425
2426 DECLRCCALLBACKMEMBER(int, pfnRCShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2427 DECLRCCALLBACKMEMBER(int, pfnRCShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2428
2429 DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2430 DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2431
2432 /** @} */
2433
2434 /** @name Function pointers for Guest paging.
2435 * @{
2436 */
2437 DECLR3CALLBACKMEMBER(int, pfnR3GstRelocate,(PVM pVM, RTGCPTR offDelta));
2438 DECLR3CALLBACKMEMBER(int, pfnR3GstExit,(PVM pVM));
2439 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2440 DECLR3CALLBACKMEMBER(int, pfnR3GstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2441 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
2442#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2443 DECLR3CALLBACKMEMBER(int, pfnR3GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2444 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmonitorCR3,(PVM pVM));
2445#endif
2446#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2447 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstWriteHandlerCR3;
2448 R3PTRTYPE(const char *) pszR3GstWriteHandlerCR3;
2449 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstPAEWriteHandlerCR3;
2450 R3PTRTYPE(const char *) pszR3GstPAEWriteHandlerCR3;
2451#endif
2452 DECLRCCALLBACKMEMBER(int, pfnRCGstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2453 DECLRCCALLBACKMEMBER(int, pfnRCGstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2454 DECLRCCALLBACKMEMBER(int, pfnRCGstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
2455#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2456 DECLRCCALLBACKMEMBER(int, pfnRCGstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2457 DECLRCCALLBACKMEMBER(int, pfnRCGstUnmonitorCR3,(PVM pVM));
2458#endif
2459#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2460 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnRCGstWriteHandlerCR3;
2461 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnRCGstPAEWriteHandlerCR3;
2462#endif
2463#if HC_ARCH_BITS == 64
2464 RTRCPTR alignment3; /**< structure size alignment. */
2465#endif
2466
2467 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2468 DECLR0CALLBACKMEMBER(int, pfnR0GstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2469 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
2470#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2471 DECLR0CALLBACKMEMBER(int, pfnR0GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2472 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmonitorCR3,(PVM pVM));
2473#endif
2474#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2475 R0PTRTYPE(PFNPGMRCPHYSHANDLER) pfnR0GstWriteHandlerCR3;
2476 R0PTRTYPE(PFNPGMRCPHYSHANDLER) pfnR0GstPAEWriteHandlerCR3;
2477#endif
2478 /** @} */
2479
2480 /** @name Function pointers for Both Shadow and Guest paging.
2481 * @{
2482 */
2483 DECLR3CALLBACKMEMBER(int, pfnR3BthRelocate,(PVM pVM, RTGCPTR offDelta));
2484 /* no pfnR3BthTrap0eHandler */
2485 DECLR3CALLBACKMEMBER(int, pfnR3BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2486 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2487 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2488 DECLR3CALLBACKMEMBER(int, pfnR3BthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2489 DECLR3CALLBACKMEMBER(int, pfnR3BthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2490 DECLR3CALLBACKMEMBER(unsigned, pfnR3BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2491 DECLR3CALLBACKMEMBER(int, pfnR3BthMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2492 DECLR3CALLBACKMEMBER(int, pfnR3BthUnmapCR3,(PVM pVM));
2493
2494 DECLR0CALLBACKMEMBER(int, pfnR0BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2495 DECLR0CALLBACKMEMBER(int, pfnR0BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2496 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2497 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2498 DECLR0CALLBACKMEMBER(int, pfnR0BthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2499 DECLR0CALLBACKMEMBER(int, pfnR0BthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2500 DECLR0CALLBACKMEMBER(unsigned, pfnR0BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2501 DECLR0CALLBACKMEMBER(int, pfnR0BthMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2502 DECLR0CALLBACKMEMBER(int, pfnR0BthUnmapCR3,(PVM pVM));
2503
2504 DECLRCCALLBACKMEMBER(int, pfnRCBthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2505 DECLRCCALLBACKMEMBER(int, pfnRCBthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2506 DECLRCCALLBACKMEMBER(int, pfnRCBthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2507 DECLRCCALLBACKMEMBER(int, pfnRCBthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2508 DECLRCCALLBACKMEMBER(int, pfnRCBthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2509 DECLRCCALLBACKMEMBER(int, pfnRCBthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2510 DECLRCCALLBACKMEMBER(unsigned, pfnRCBthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2511 DECLRCCALLBACKMEMBER(int, pfnRCBthMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2512 DECLRCCALLBACKMEMBER(int, pfnRCBthUnmapCR3,(PVM pVM));
2513#if HC_ARCH_BITS == 64
2514 RTRCPTR alignment2; /**< structure size alignment. */
2515#endif
2516 /** @} */
2517
2518 /** Pointer to SHW+GST mode data (function pointers).
2519 * The index into this table is made up from */
2520 R3PTRTYPE(PPGMMODEDATA) paModeData;
2521
2522 /** Pointer to the list of RAM ranges (Phys GC -> Phys HC conversion) - for R3.
2523 * This is sorted by physical address and contains no overlapping ranges. */
2524 R3PTRTYPE(PPGMRAMRANGE) pRamRangesR3;
2525 /** R0 pointer corresponding to PGM::pRamRangesR3. */
2526 R0PTRTYPE(PPGMRAMRANGE) pRamRangesR0;
2527 /** RC pointer corresponding to PGM::pRamRangesR3. */
2528 RCPTRTYPE(PPGMRAMRANGE) pRamRangesRC;
2529 /** The configured RAM size. */
2530 RTUINT cbRamSize;
2531
2532 /** Pointer to the list of ROM ranges - for R3.
2533 * This is sorted by physical address and contains no overlapping ranges. */
2534 R3PTRTYPE(PPGMROMRANGE) pRomRangesR3;
2535 /** R0 pointer corresponding to PGM::pRomRangesR3. */
2536 R0PTRTYPE(PPGMROMRANGE) pRomRangesR0;
2537 /** RC pointer corresponding to PGM::pRomRangesR3. */
2538 RCPTRTYPE(PPGMROMRANGE) pRomRangesRC;
2539 /** Alignment padding. */
2540 RTRCPTR GCPtrPadding2;
2541
2542 /** Pointer to the list of MMIO2 ranges - for R3.
2543 * Registration order. */
2544 R3PTRTYPE(PPGMMMIO2RANGE) pMmio2RangesR3;
2545
2546 /** PGM offset based trees - R3 Ptr. */
2547 R3PTRTYPE(PPGMTREES) pTreesR3;
2548 /** PGM offset based trees - R0 Ptr. */
2549 R0PTRTYPE(PPGMTREES) pTreesR0;
2550 /** PGM offset based trees - RC Ptr. */
2551 RCPTRTYPE(PPGMTREES) pTreesRC;
2552
2553 /** Linked list of GC mappings - for RC.
2554 * The list is sorted ascending on address.
2555 */
2556 RCPTRTYPE(PPGMMAPPING) pMappingsRC;
2557 /** Linked list of GC mappings - for HC.
2558 * The list is sorted ascending on address.
2559 */
2560 R3PTRTYPE(PPGMMAPPING) pMappingsR3;
2561 /** Linked list of GC mappings - for R0.
2562 * The list is sorted ascending on address.
2563 */
2564 R0PTRTYPE(PPGMMAPPING) pMappingsR0;
2565
2566 /** Indicates that PGMR3FinalizeMappings has been called and that further
2567 * PGMR3MapIntermediate calls will be rejected. */
2568 bool fFinalizedMappings;
2569 /** If set no conflict checks are required. (boolean) */
2570 bool fMappingsFixed;
2571 /** If set, then no mappings are put into the shadow page table. (boolean) */
2572 bool fDisableMappings;
2573 /** Size of fixed mapping */
2574 uint32_t cbMappingFixed;
2575 /** Base address (GC) of fixed mapping */
2576 RTGCPTR GCPtrMappingFixed;
2577#if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
2578 uint32_t u32Padding0; /**< alignment padding. */
2579#endif
2580
2581
2582 /** @name Intermediate Context
2583 * @{ */
2584 /** Pointer to the intermediate page directory - Normal. */
2585 R3PTRTYPE(PX86PD) pInterPD;
2586 /** Pointer to the intermedate page tables - Normal.
2587 * There are two page tables, one for the identity mapping and one for
2588 * the host context mapping (of the core code). */
2589 R3PTRTYPE(PX86PT) apInterPTs[2];
2590 /** Pointer to the intermedate page tables - PAE. */
2591 R3PTRTYPE(PX86PTPAE) apInterPaePTs[2];
2592 /** Pointer to the intermedate page directory - PAE. */
2593 R3PTRTYPE(PX86PDPAE) apInterPaePDs[4];
2594 /** Pointer to the intermedate page directory - PAE. */
2595 R3PTRTYPE(PX86PDPT) pInterPaePDPT;
2596 /** Pointer to the intermedate page-map level 4 - AMD64. */
2597 R3PTRTYPE(PX86PML4) pInterPaePML4;
2598 /** Pointer to the intermedate page directory - AMD64. */
2599 R3PTRTYPE(PX86PDPT) pInterPaePDPT64;
2600 /** The Physical Address (HC) of the intermediate Page Directory - Normal. */
2601 RTHCPHYS HCPhysInterPD;
2602 /** The Physical Address (HC) of the intermediate Page Directory Pointer Table - PAE. */
2603 RTHCPHYS HCPhysInterPaePDPT;
2604 /** The Physical Address (HC) of the intermediate Page Map Level 4 table - AMD64. */
2605 RTHCPHYS HCPhysInterPaePML4;
2606 /** @} */
2607
2608 /** Base address of the dynamic page mapping area.
2609 * The array is MM_HYPER_DYNAMIC_SIZE bytes big.
2610 */
2611 RCPTRTYPE(uint8_t *) pbDynPageMapBaseGC;
2612 /** The index of the last entry used in the dynamic page mapping area. */
2613 RTUINT iDynPageMapLast;
2614 /** Cache containing the last entries in the dynamic page mapping area.
2615 * The cache size is covering half of the mapping area. */
2616 RTHCPHYS aHCPhysDynPageMapCache[MM_HYPER_DYNAMIC_SIZE >> (PAGE_SHIFT + 1)];
2617
2618 /** The address of the ring-0 mapping cache if we're making use of it. */
2619 RTR0PTR pvR0DynMapUsed;
2620#if HC_ARCH_BITS == 32
2621 RTR0PTR R0PtrPadding0; /**< Alignment. */
2622#endif
2623
2624
2625 /** 4 MB page mask; 32 or 36 bits depending on PSE-36 */
2626 RTGCPHYS GCPhys4MBPSEMask;
2627
2628 /** A20 gate mask.
2629 * Our current approach to A20 emulation is to let REM do it and don't bother
2630 * anywhere else. The interesting Guests will be operating with it enabled anyway.
2631 * But whould need arrise, we'll subject physical addresses to this mask. */
2632 RTGCPHYS GCPhysA20Mask;
2633 /** A20 gate state - boolean! */
2634 RTUINT fA20Enabled;
2635
2636 /** What needs syncing (PGM_SYNC_*).
2637 * This is used to queue operations for PGMSyncCR3, PGMInvalidatePage,
2638 * PGMFlushTLB, and PGMR3Load. */
2639 RTUINT fSyncFlags;
2640
2641 /** PGM critical section.
2642 * This protects the physical & virtual access handlers, ram ranges,
2643 * and the page flag updating (some of it anyway).
2644 */
2645 PDMCRITSECT CritSect;
2646
2647 /** Shadow Page Pool - R3 Ptr. */
2648 R3PTRTYPE(PPGMPOOL) pPoolR3;
2649 /** Shadow Page Pool - R0 Ptr. */
2650 R0PTRTYPE(PPGMPOOL) pPoolR0;
2651 /** Shadow Page Pool - RC Ptr. */
2652 RCPTRTYPE(PPGMPOOL) pPoolRC;
2653
2654 /** We're not in a state which permits writes to guest memory.
2655 * (Only used in strict builds.) */
2656 bool fNoMorePhysWrites;
2657
2658 /** Flush the cache on the next access. */
2659 bool fPhysCacheFlushPending;
2660/** @todo r=bird: Fix member names!*/
2661 /** PGMPhysRead cache */
2662 PGMPHYSCACHE pgmphysreadcache;
2663 /** PGMPhysWrite cache */
2664 PGMPHYSCACHE pgmphyswritecache;
2665
2666 /**
2667 * Data associated with managing the ring-3 mappings of the allocation chunks.
2668 */
2669 struct
2670 {
2671 /** The chunk tree, ordered by chunk id. */
2672#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2673 R3PTRTYPE(PAVLU32NODECORE) pTree;
2674#else
2675 R3R0PTRTYPE(PAVLU32NODECORE) pTree;
2676#endif
2677 /** The chunk mapping TLB. */
2678 PGMCHUNKR3MAPTLB Tlb;
2679 /** The number of mapped chunks. */
2680 uint32_t c;
2681 /** The maximum number of mapped chunks.
2682 * @cfgm PGM/MaxRing3Chunks */
2683 uint32_t cMax;
2684 /** The chunk age tree, ordered by ageing sequence number. */
2685 R3PTRTYPE(PAVLLU32NODECORE) pAgeTree;
2686 /** The current time. */
2687 uint32_t iNow;
2688 /** Number of pgmR3PhysChunkFindUnmapCandidate calls left to the next ageing. */
2689 uint32_t AgeingCountdown;
2690 } ChunkR3Map;
2691
2692 /**
2693 * The page mapping TLB for ring-3 and (for the time being) ring-0.
2694 */
2695 PGMPAGER3MAPTLB PhysTlbHC;
2696
2697 /** @name The zero page.
2698 * @{ */
2699 /** The host physical address of the zero page. */
2700 RTHCPHYS HCPhysZeroPg;
2701 /** The ring-3 mapping of the zero page. */
2702 RTR3PTR pvZeroPgR3;
2703 /** The ring-0 mapping of the zero page. */
2704 RTR0PTR pvZeroPgR0;
2705 /** The GC mapping of the zero page. */
2706 RTGCPTR pvZeroPgGC;
2707#if GC_ARCH_BITS != 32
2708 uint32_t u32ZeroAlignment; /**< Alignment padding. */
2709#endif
2710 /** @}*/
2711
2712 /** The number of handy pages. */
2713 uint32_t cHandyPages;
2714 /**
2715 * Array of handy pages.
2716 *
2717 * This array is used in a two way communication between pgmPhysAllocPage
2718 * and GMMR0AllocateHandyPages, with PGMR3PhysAllocateHandyPages serving as
2719 * an intermediary.
2720 *
2721 * The size of this array is important, see pgmPhysEnsureHandyPage for details.
2722 * (The current size of 32 pages, means 128 KB of handy memory.)
2723 */
2724 GMMPAGEDESC aHandyPages[32];
2725
2726 /** @name Release Statistics
2727 * @{ */
2728 uint32_t cAllPages; /**< The total number of pages. (Should be Private + Shared + Zero.) */
2729 uint32_t cPrivatePages; /**< The number of private pages. */
2730 uint32_t cSharedPages; /**< The number of shared pages. */
2731 uint32_t cZeroPages; /**< The number of zero backed pages. */
2732 /** The number of times the guest has switched mode since last reset or statistics reset. */
2733 STAMCOUNTER cGuestModeChanges;
2734 /** The number of times we were forced to change the hypervisor region location. */
2735 STAMCOUNTER cRelocations;
2736 /** @} */
2737
2738#ifdef VBOX_WITH_STATISTICS /** @todo move this chunk to the heap. */
2739 /** RC: Which statistic this \#PF should be attributed to. */
2740 RCPTRTYPE(PSTAMPROFILE) pStatTrap0eAttributionRC;
2741 RTRCPTR padding0;
2742 /** R0: Which statistic this \#PF should be attributed to. */
2743 R0PTRTYPE(PSTAMPROFILE) pStatTrap0eAttributionR0;
2744 RTR0PTR padding1;
2745
2746 /* Common */
2747# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2748 STAMCOUNTER StatTrackVirgin; /**< The number of first time shadowings. */
2749 STAMCOUNTER StatTrackAliased; /**< The number of times switching to cRef2, i.e. the page is being shadowed by two PTs. */
2750 STAMCOUNTER StatTrackAliasedMany; /**< The number of times we're tracking using cRef2. */
2751 STAMCOUNTER StatTrackAliasedLots; /**< The number of times we're hitting pages which has overflowed cRef2. */
2752 STAMCOUNTER StatTrackOverflows; /**< The number of times the extent list grows to long. */
2753 STAMPROFILE StatTrackDeref; /**< Profiling of SyncPageWorkerTrackDeref (expensive). */
2754# endif
2755 STAMCOUNTER StatSyncPtPD[X86_PG_ENTRIES]; /**< SyncPT - PD distribution. */
2756 STAMCOUNTER StatSyncPagePD[X86_PG_ENTRIES]; /**< SyncPage - PD distribution. */
2757
2758 /* R3 only: */
2759 STAMCOUNTER StatR3DetectedConflicts; /**< R3: Number of times PGMR3MapHasConflicts() detected a conflict. */
2760 STAMPROFILE StatR3ResolveConflict; /**< R3: pgmR3SyncPTResolveConflict() profiling (includes the entire relocation). */
2761 STAMCOUNTER StatR3GuestPDWrite; /**< R3: The total number of times pgmHCGuestPDWriteHandler() was called. */
2762 STAMCOUNTER StatR3GuestPDWriteConflict; /**< R3: The number of times GuestPDWriteContlict() detected a conflict. */
2763 STAMCOUNTER StatR3DynRamTotal; /**< R3: Allocated MBs of guest ram */
2764 STAMCOUNTER StatR3DynRamGrow; /**< R3: Nr of pgmr3PhysGrowRange calls. */
2765
2766 /* R0 only: */
2767 STAMCOUNTER StatR0DynMapMigrateInvlPg; /**< R0: invlpg in PGMDynMapMigrateAutoSet. */
2768 STAMPROFILE StatR0DynMapGCPageInl; /**< R0: Calls to pgmR0DynMapGCPageInlined. */
2769 STAMCOUNTER StatR0DynMapGCPageInlHits; /**< R0: Hash table lookup hits. */
2770 STAMCOUNTER StatR0DynMapGCPageInlMisses; /**< R0: Misses that falls back to code common with PGMDynMapHCPage. */
2771 STAMCOUNTER StatR0DynMapGCPageInlRamHits; /**< R0: 1st ram range hits. */
2772 STAMCOUNTER StatR0DynMapGCPageInlRamMisses; /**< R0: 1st ram range misses, takes slow path. */
2773 STAMPROFILE StatR0DynMapHCPageInl; /**< R0: Calls to pgmR0DynMapHCPageInlined. */
2774 STAMCOUNTER StatR0DynMapHCPageInlHits; /**< R0: Hash table lookup hits. */
2775 STAMCOUNTER StatR0DynMapHCPageInlMisses; /**< R0: Misses that falls back to code common with PGMDynMapHCPage. */
2776 STAMPROFILE StatR0DynMapHCPage; /**< R0: Calls to PGMDynMapHCPage. */
2777 STAMCOUNTER StatR0DynMapSetOptimize; /**< R0: Calls to pgmDynMapOptimizeAutoSet. */
2778 STAMCOUNTER StatR0DynMapSetSearchFlushes; /**< R0: Set search restorting to subset flushes. */
2779 STAMCOUNTER StatR0DynMapSetSearchHits; /**< R0: Set search hits. */
2780 STAMCOUNTER StatR0DynMapSetSearchMisses; /**< R0: Set search misses. */
2781 STAMCOUNTER StatR0DynMapPage; /**< R0: Calls to pgmR0DynMapPage. */
2782 STAMCOUNTER StatR0DynMapPageHits0; /**< R0: Hits at iPage+0. */
2783 STAMCOUNTER StatR0DynMapPageHits1; /**< R0: Hits at iPage+1. */
2784 STAMCOUNTER StatR0DynMapPageHits2; /**< R0: Hits at iPage+2. */
2785 STAMCOUNTER StatR0DynMapPageInvlPg; /**< R0: invlpg. */
2786 STAMCOUNTER StatR0DynMapPageSlow; /**< R0: Calls to pgmR0DynMapPageSlow. */
2787 STAMCOUNTER StatR0DynMapPageSlowLoopHits; /**< R0: Hits in the pgmR0DynMapPageSlow search loop. */
2788 STAMCOUNTER StatR0DynMapPageSlowLoopMisses; /**< R0: Misses in the pgmR0DynMapPageSlow search loop. */
2789 //STAMCOUNTER StatR0DynMapPageSlowLostHits; /**< R0: Lost hits. */
2790 STAMCOUNTER StatR0DynMapSubsets; /**< R0: Times PGMDynMapPushAutoSubset was called. */
2791 STAMCOUNTER StatR0DynMapPopFlushes; /**< R0: Times PGMDynMapPopAutoSubset flushes the subset. */
2792 STAMCOUNTER aStatR0DynMapSetSize[11]; /**< R0: Set size distribution. */
2793
2794 /* RC only: */
2795 STAMCOUNTER StatRCDynMapCacheMisses; /**< RC: The number of dynamic page mapping cache hits */
2796 STAMCOUNTER StatRCDynMapCacheHits; /**< RC: The number of dynamic page mapping cache misses */
2797 STAMCOUNTER StatRCInvlPgConflict; /**< RC: Number of times PGMInvalidatePage() detected a mapping conflict. */
2798 STAMCOUNTER StatRCInvlPgSyncMonCR3; /**< RC: Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3. */
2799
2800 /* RZ only: */
2801 STAMPROFILE StatRZTrap0e; /**< RC/R0: PGMTrap0eHandler() profiling. */
2802 STAMPROFILE StatRZTrap0eTimeCheckPageFault;
2803 STAMPROFILE StatRZTrap0eTimeSyncPT;
2804 STAMPROFILE StatRZTrap0eTimeMapping;
2805 STAMPROFILE StatRZTrap0eTimeOutOfSync;
2806 STAMPROFILE StatRZTrap0eTimeHandlers;
2807 STAMPROFILE StatRZTrap0eTime2CSAM; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is CSAM. */
2808 STAMPROFILE StatRZTrap0eTime2DirtyAndAccessed; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation. */
2809 STAMPROFILE StatRZTrap0eTime2GuestTrap; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is a guest trap. */
2810 STAMPROFILE StatRZTrap0eTime2HndPhys; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is a physical handler. */
2811 STAMPROFILE StatRZTrap0eTime2HndVirt; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is a virtual handler. */
2812 STAMPROFILE StatRZTrap0eTime2HndUnhandled; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page. */
2813 STAMPROFILE StatRZTrap0eTime2Misc; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is not known. */
2814 STAMPROFILE StatRZTrap0eTime2OutOfSync; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an out-of-sync page. */
2815 STAMPROFILE StatRZTrap0eTime2OutOfSyncHndPhys; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page. */
2816 STAMPROFILE StatRZTrap0eTime2OutOfSyncHndVirt; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page. */
2817 STAMPROFILE StatRZTrap0eTime2OutOfSyncHndObs; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an obsolete handler page. */
2818 STAMPROFILE StatRZTrap0eTime2SyncPT; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT. */
2819 STAMCOUNTER StatRZTrap0eConflicts; /**< RC/R0: The number of times \#PF was caused by an undetected conflict. */
2820 STAMCOUNTER StatRZTrap0eHandlersMapping; /**< RC/R0: Number of traps due to access handlers in mappings. */
2821 STAMCOUNTER StatRZTrap0eHandlersOutOfSync; /**< RC/R0: Number of out-of-sync handled pages. */
2822 STAMCOUNTER StatRZTrap0eHandlersPhysical; /**< RC/R0: Number of traps due to physical access handlers. */
2823 STAMCOUNTER StatRZTrap0eHandlersVirtual; /**< RC/R0: Number of traps due to virtual access handlers. */
2824 STAMCOUNTER StatRZTrap0eHandlersVirtualByPhys; /**< RC/R0: Number of traps due to virtual access handlers found by physical address. */
2825 STAMCOUNTER StatRZTrap0eHandlersVirtualUnmarked;/**< RC/R0: Number of traps due to virtual access handlers found by virtual address (without proper physical flags). */
2826 STAMCOUNTER StatRZTrap0eHandlersUnhandled; /**< RC/R0: Number of traps due to access outside range of monitored page(s). */
2827 STAMCOUNTER StatRZTrap0eHandlersInvalid; /**< RC/R0: Number of traps due to access to invalid physical memory. */
2828 STAMCOUNTER StatRZTrap0eUSNotPresentRead; /**< RC/R0: #PF err kind */
2829 STAMCOUNTER StatRZTrap0eUSNotPresentWrite; /**< RC/R0: #PF err kind */
2830 STAMCOUNTER StatRZTrap0eUSWrite; /**< RC/R0: #PF err kind */
2831 STAMCOUNTER StatRZTrap0eUSReserved; /**< RC/R0: #PF err kind */
2832 STAMCOUNTER StatRZTrap0eUSNXE; /**< RC/R0: #PF err kind */
2833 STAMCOUNTER StatRZTrap0eUSRead; /**< RC/R0: #PF err kind */
2834 STAMCOUNTER StatRZTrap0eSVNotPresentRead; /**< RC/R0: #PF err kind */
2835 STAMCOUNTER StatRZTrap0eSVNotPresentWrite; /**< RC/R0: #PF err kind */
2836 STAMCOUNTER StatRZTrap0eSVWrite; /**< RC/R0: #PF err kind */
2837 STAMCOUNTER StatRZTrap0eSVReserved; /**< RC/R0: #PF err kind */
2838 STAMCOUNTER StatRZTrap0eSNXE; /**< RC/R0: #PF err kind */
2839 STAMCOUNTER StatRZTrap0eGuestPF; /**< RC/R0: Real guest #PFs. */
2840 STAMCOUNTER StatRZTrap0eGuestPFUnh; /**< RC/R0: Real guest #PF ending up at the end of the #PF code. */
2841 STAMCOUNTER StatRZTrap0eGuestPFMapping; /**< RC/R0: Real guest #PF to HMA or other mapping. */
2842 STAMCOUNTER StatRZTrap0eWPEmulInRZ; /**< RC/R0: WP=0 virtualization trap, handled. */
2843 STAMCOUNTER StatRZTrap0eWPEmulToR3; /**< RC/R0: WP=0 virtualization trap, chickened out. */
2844 STAMCOUNTER StatRZTrap0ePD[X86_PG_ENTRIES]; /**< RC/R0: PD distribution of the #PFs. */
2845 STAMCOUNTER StatRZGuestCR3WriteHandled; /**< RC/R0: The number of times WriteHandlerCR3() was successfully called. */
2846 STAMCOUNTER StatRZGuestCR3WriteUnhandled; /**< RC/R0: The number of times WriteHandlerCR3() was called and we had to fall back to the recompiler. */
2847 STAMCOUNTER StatRZGuestCR3WriteConflict; /**< RC/R0: The number of times WriteHandlerCR3() was called and a conflict was detected. */
2848 STAMCOUNTER StatRZGuestROMWriteHandled; /**< RC/R0: The number of times pgmPhysRomWriteHandler() was successfully called. */
2849 STAMCOUNTER StatRZGuestROMWriteUnhandled; /**< RC/R0: The number of times pgmPhysRomWriteHandler() was called and we had to fall back to the recompiler */
2850
2851 /* HC - R3 and (maybe) R0: */
2852
2853 /* RZ & R3: */
2854 STAMPROFILE StatRZSyncCR3; /**< RC/R0: PGMSyncCR3() profiling. */
2855 STAMPROFILE StatRZSyncCR3Handlers; /**< RC/R0: Profiling of the PGMSyncCR3() update handler section. */
2856 STAMPROFILE StatRZSyncCR3HandlerVirtualReset; /**< RC/R0: Profiling of the virtual handler resets. */
2857 STAMPROFILE StatRZSyncCR3HandlerVirtualUpdate; /**< RC/R0: Profiling of the virtual handler updates. */
2858 STAMCOUNTER StatRZSyncCR3Global; /**< RC/R0: The number of global CR3 syncs. */
2859 STAMCOUNTER StatRZSyncCR3NotGlobal; /**< RC/R0: The number of non-global CR3 syncs. */
2860 STAMCOUNTER StatRZSyncCR3DstCacheHit; /**< RC/R0: The number of times we got some kind of cache hit on a page table. */
2861 STAMCOUNTER StatRZSyncCR3DstFreed; /**< RC/R0: The number of times we've had to free a shadow entry. */
2862 STAMCOUNTER StatRZSyncCR3DstFreedSrcNP; /**< RC/R0: The number of times we've had to free a shadow entry for which the source entry was not present. */
2863 STAMCOUNTER StatRZSyncCR3DstNotPresent; /**< RC/R0: The number of times we've encountered a not present shadow entry for a present guest entry. */
2864 STAMCOUNTER StatRZSyncCR3DstSkippedGlobalPD; /**< RC/R0: The number of times a global page directory wasn't flushed. */
2865 STAMCOUNTER StatRZSyncCR3DstSkippedGlobalPT; /**< RC/R0: The number of times a page table with only global entries wasn't flushed. */
2866 STAMPROFILE StatRZSyncPT; /**< RC/R0: PGMSyncPT() profiling. */
2867 STAMCOUNTER StatRZSyncPTFailed; /**< RC/R0: The number of times PGMSyncPT() failed. */
2868 STAMCOUNTER StatRZSyncPT4K; /**< RC/R0: Number of 4KB syncs. */
2869 STAMCOUNTER StatRZSyncPT4M; /**< RC/R0: Number of 4MB syncs. */
2870 STAMCOUNTER StatRZSyncPagePDNAs; /**< RC/R0: The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit. */
2871 STAMCOUNTER StatRZSyncPagePDOutOfSync; /**< RC/R0: The number of time we've encountered an out-of-sync PD in SyncPage. */
2872 STAMCOUNTER StatRZAccessedPage; /**< RC/R0: The number of pages marked not present for accessed bit emulation. */
2873 STAMPROFILE StatRZDirtyBitTracking; /**< RC/R0: Profiling the dirty bit tracking in CheckPageFault().. */
2874 STAMCOUNTER StatRZDirtyPage; /**< RC/R0: The number of pages marked read-only for dirty bit tracking. */
2875 STAMCOUNTER StatRZDirtyPageBig; /**< RC/R0: The number of pages marked read-only for dirty bit tracking. */
2876 STAMCOUNTER StatRZDirtyPageSkipped; /**< RC/R0: The number of pages already dirty or readonly. */
2877 STAMCOUNTER StatRZDirtyPageTrap; /**< RC/R0: The number of traps generated for dirty bit tracking. */
2878 STAMCOUNTER StatRZDirtyTrackRealPF; /**< RC/R0: The number of real pages faults during dirty bit tracking. */
2879 STAMCOUNTER StatRZDirtiedPage; /**< RC/R0: The number of pages marked dirty because of write accesses. */
2880 STAMCOUNTER StatRZPageAlreadyDirty; /**< RC/R0: The number of pages already marked dirty because of write accesses. */
2881 STAMPROFILE StatRZInvalidatePage; /**< RC/R0: PGMInvalidatePage() profiling. */
2882 STAMCOUNTER StatRZInvalidatePage4KBPages; /**< RC/R0: The number of times PGMInvalidatePage() was called for a 4KB page. */
2883 STAMCOUNTER StatRZInvalidatePage4MBPages; /**< RC/R0: The number of times PGMInvalidatePage() was called for a 4MB page. */
2884 STAMCOUNTER StatRZInvalidatePage4MBPagesSkip; /**< RC/R0: The number of times PGMInvalidatePage() skipped a 4MB page. */
2885 STAMCOUNTER StatRZInvalidatePagePDMappings; /**< RC/R0: The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict). */
2886 STAMCOUNTER StatRZInvalidatePagePDNAs; /**< RC/R0: The number of times PGMInvalidatePage() was called for a not accessed page directory. */
2887 STAMCOUNTER StatRZInvalidatePagePDNPs; /**< RC/R0: The number of times PGMInvalidatePage() was called for a not present page directory. */
2888 STAMCOUNTER StatRZInvalidatePagePDOutOfSync; /**< RC/R0: The number of times PGMInvalidatePage() was called for an out of sync page directory. */
2889 STAMCOUNTER StatRZInvalidatePageSkipped; /**< RC/R0: The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3. */
2890 STAMPROFILE StatRZVirtHandlerSearchByPhys; /**< RC/R0: Profiling of pgmHandlerVirtualFindByPhysAddr. */
2891 STAMCOUNTER StatRZPhysHandlerReset; /**< RC/R0: The number of times PGMHandlerPhysicalReset is called. */
2892 STAMCOUNTER StatRZPageOutOfSyncUser; /**< RC/R0: The number of times user page is out of sync was detected in #PF or VerifyAccessSyncPage. */
2893 STAMCOUNTER StatRZPageOutOfSyncSupervisor; /**< RC/R0: The number of times supervisor page is out of sync was detected in in #PF or VerifyAccessSyncPage. */
2894 STAMPROFILE StatRZPrefetch; /**< RC/R0: PGMPrefetchPage. */
2895 STAMCOUNTER StatRZChunkR3MapTlbHits; /**< RC/R0: Ring-3/0 chunk mapper TLB hits. */
2896 STAMCOUNTER StatRZChunkR3MapTlbMisses; /**< RC/R0: Ring-3/0 chunk mapper TLB misses. */
2897 STAMCOUNTER StatRZPageMapTlbHits; /**< RC/R0: Ring-3/0 page mapper TLB hits. */
2898 STAMCOUNTER StatRZPageMapTlbMisses; /**< RC/R0: Ring-3/0 page mapper TLB misses. */
2899 STAMCOUNTER StatRZPageReplaceShared; /**< RC/R0: Times a shared page has been replaced by a private one. */
2900 STAMCOUNTER StatRZPageReplaceZero; /**< RC/R0: Times the zero page has been replaced by a private one. */
2901/// @todo STAMCOUNTER StatRZPageHandyAllocs; /**< RC/R0: The number of times we've executed GMMR3AllocateHandyPages. */
2902 STAMPROFILE StatRZFlushTLB; /**< RC/R0: Profiling of the PGMFlushTLB() body. */
2903 STAMCOUNTER StatRZFlushTLBNewCR3; /**< RC/R0: The number of times PGMFlushTLB was called with a new CR3, non-global. (switch) */
2904 STAMCOUNTER StatRZFlushTLBNewCR3Global; /**< RC/R0: The number of times PGMFlushTLB was called with a new CR3, global. (switch) */
2905 STAMCOUNTER StatRZFlushTLBSameCR3; /**< RC/R0: The number of times PGMFlushTLB was called with the same CR3, non-global. (flush) */
2906 STAMCOUNTER StatRZFlushTLBSameCR3Global; /**< RC/R0: The number of times PGMFlushTLB was called with the same CR3, global. (flush) */
2907 STAMPROFILE StatRZGstModifyPage; /**< RC/R0: Profiling of the PGMGstModifyPage() body */
2908
2909 STAMPROFILE StatR3SyncCR3; /**< R3: PGMSyncCR3() profiling. */
2910 STAMPROFILE StatR3SyncCR3Handlers; /**< R3: Profiling of the PGMSyncCR3() update handler section. */
2911 STAMPROFILE StatR3SyncCR3HandlerVirtualReset; /**< R3: Profiling of the virtual handler resets. */
2912 STAMPROFILE StatR3SyncCR3HandlerVirtualUpdate; /**< R3: Profiling of the virtual handler updates. */
2913 STAMCOUNTER StatR3SyncCR3Global; /**< R3: The number of global CR3 syncs. */
2914 STAMCOUNTER StatR3SyncCR3NotGlobal; /**< R3: The number of non-global CR3 syncs. */
2915 STAMCOUNTER StatR3SyncCR3DstFreed; /**< R3: The number of times we've had to free a shadow entry. */
2916 STAMCOUNTER StatR3SyncCR3DstFreedSrcNP; /**< R3: The number of times we've had to free a shadow entry for which the source entry was not present. */
2917 STAMCOUNTER StatR3SyncCR3DstNotPresent; /**< R3: The number of times we've encountered a not present shadow entry for a present guest entry. */
2918 STAMCOUNTER StatR3SyncCR3DstSkippedGlobalPD; /**< R3: The number of times a global page directory wasn't flushed. */
2919 STAMCOUNTER StatR3SyncCR3DstSkippedGlobalPT; /**< R3: The number of times a page table with only global entries wasn't flushed. */
2920 STAMCOUNTER StatR3SyncCR3DstCacheHit; /**< R3: The number of times we got some kind of cache hit on a page table. */
2921 STAMPROFILE StatR3SyncPT; /**< R3: PGMSyncPT() profiling. */
2922 STAMCOUNTER StatR3SyncPTFailed; /**< R3: The number of times PGMSyncPT() failed. */
2923 STAMCOUNTER StatR3SyncPT4K; /**< R3: Number of 4KB syncs. */
2924 STAMCOUNTER StatR3SyncPT4M; /**< R3: Number of 4MB syncs. */
2925 STAMCOUNTER StatR3SyncPagePDNAs; /**< R3: The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit. */
2926 STAMCOUNTER StatR3SyncPagePDOutOfSync; /**< R3: The number of time we've encountered an out-of-sync PD in SyncPage. */
2927 STAMCOUNTER StatR3AccessedPage; /**< R3: The number of pages marked not present for accessed bit emulation. */
2928 STAMPROFILE StatR3DirtyBitTracking; /**< R3: Profiling the dirty bit tracking in CheckPageFault(). */
2929 STAMCOUNTER StatR3DirtyPage; /**< R3: The number of pages marked read-only for dirty bit tracking. */
2930 STAMCOUNTER StatR3DirtyPageBig; /**< R3: The number of pages marked read-only for dirty bit tracking. */
2931 STAMCOUNTER StatR3DirtyPageSkipped; /**< R3: The number of pages already dirty or readonly. */
2932 STAMCOUNTER StatR3DirtyPageTrap; /**< R3: The number of traps generated for dirty bit tracking. */
2933 STAMCOUNTER StatR3DirtyTrackRealPF; /**< R3: The number of real pages faults during dirty bit tracking. */
2934 STAMCOUNTER StatR3DirtiedPage; /**< R3: The number of pages marked dirty because of write accesses. */
2935 STAMCOUNTER StatR3PageAlreadyDirty; /**< R3: The number of pages already marked dirty because of write accesses. */
2936 STAMPROFILE StatR3InvalidatePage; /**< R3: PGMInvalidatePage() profiling. */
2937 STAMCOUNTER StatR3InvalidatePage4KBPages; /**< R3: The number of times PGMInvalidatePage() was called for a 4KB page. */
2938 STAMCOUNTER StatR3InvalidatePage4MBPages; /**< R3: The number of times PGMInvalidatePage() was called for a 4MB page. */
2939 STAMCOUNTER StatR3InvalidatePage4MBPagesSkip; /**< R3: The number of times PGMInvalidatePage() skipped a 4MB page. */
2940 STAMCOUNTER StatR3InvalidatePagePDNAs; /**< R3: The number of times PGMInvalidatePage() was called for a not accessed page directory. */
2941 STAMCOUNTER StatR3InvalidatePagePDNPs; /**< R3: The number of times PGMInvalidatePage() was called for a not present page directory. */
2942 STAMCOUNTER StatR3InvalidatePagePDMappings; /**< R3: The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict). */
2943 STAMCOUNTER StatR3InvalidatePagePDOutOfSync; /**< R3: The number of times PGMInvalidatePage() was called for an out of sync page directory. */
2944 STAMCOUNTER StatR3InvalidatePageSkipped; /**< R3: The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3. */
2945 STAMPROFILE StatR3VirtHandlerSearchByPhys; /**< R3: Profiling of pgmHandlerVirtualFindByPhysAddr. */
2946 STAMCOUNTER StatR3PhysHandlerReset; /**< R3: The number of times PGMHandlerPhysicalReset is called. */
2947 STAMCOUNTER StatR3PageOutOfSyncUser; /**< R3: The number of times user page is out of sync was detected in #PF or VerifyAccessSyncPage. */
2948 STAMCOUNTER StatR3PageOutOfSyncSupervisor; /**< R3: The number of times supervisor page is out of sync was detected in in #PF or VerifyAccessSyncPage. */
2949 STAMPROFILE StatR3Prefetch; /**< R3: PGMPrefetchPage. */
2950 STAMCOUNTER StatR3ChunkR3MapTlbHits; /**< R3: Ring-3/0 chunk mapper TLB hits. */
2951 STAMCOUNTER StatR3ChunkR3MapTlbMisses; /**< R3: Ring-3/0 chunk mapper TLB misses. */
2952 STAMCOUNTER StatR3PageMapTlbHits; /**< R3: Ring-3/0 page mapper TLB hits. */
2953 STAMCOUNTER StatR3PageMapTlbMisses; /**< R3: Ring-3/0 page mapper TLB misses. */
2954 STAMCOUNTER StatR3PageReplaceShared; /**< R3: Times a shared page has been replaced by a private one. */
2955 STAMCOUNTER StatR3PageReplaceZero; /**< R3: Times the zero page has been replaced by a private one. */
2956/// @todo STAMCOUNTER StatR3PageHandyAllocs; /**< R3: The number of times we've executed GMMR3AllocateHandyPages. */
2957 STAMPROFILE StatR3FlushTLB; /**< R3: Profiling of the PGMFlushTLB() body. */
2958 STAMCOUNTER StatR3FlushTLBNewCR3; /**< R3: The number of times PGMFlushTLB was called with a new CR3, non-global. (switch) */
2959 STAMCOUNTER StatR3FlushTLBNewCR3Global; /**< R3: The number of times PGMFlushTLB was called with a new CR3, global. (switch) */
2960 STAMCOUNTER StatR3FlushTLBSameCR3; /**< R3: The number of times PGMFlushTLB was called with the same CR3, non-global. (flush) */
2961 STAMCOUNTER StatR3FlushTLBSameCR3Global; /**< R3: The number of times PGMFlushTLB was called with the same CR3, global. (flush) */
2962 STAMPROFILE StatR3GstModifyPage; /**< R3: Profiling of the PGMGstModifyPage() body */
2963#endif /* VBOX_WITH_STATISTICS */
2964} PGM;
2965/** Pointer to the PGM instance data. */
2966typedef PGM *PPGM;
2967
2968
2969/**
2970 * PGMCPU Data (part of VMCPU).
2971 */
2972typedef struct PGMCPU
2973{
2974 /** Offset to the VMCPU structure. */
2975 RTINT offVMCPU;
2976 /** Automatically tracked physical memory mapping set.
2977 * Ring-0 and strict raw-mode builds. */
2978 PGMMAPSET AutoSet;
2979} PGMCPU;
2980/** Pointer to the per-cpu PGM data. */
2981typedef PGMCPU *PPGMCPU;
2982
2983
2984/** @name PGM::fSyncFlags Flags
2985 * @{
2986 */
2987/** Updates the virtual access handler state bit in PGMPAGE. */
2988#define PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL RT_BIT(0)
2989/** Always sync CR3. */
2990#define PGM_SYNC_ALWAYS RT_BIT(1)
2991/** Check monitoring on next CR3 (re)load and invalidate page. */
2992#define PGM_SYNC_MONITOR_CR3 RT_BIT(2)
2993/** Check guest mapping in SyncCR3. */
2994#define PGM_SYNC_MAP_CR3 RT_BIT(3)
2995/** Clear the page pool (a light weight flush). */
2996#define PGM_SYNC_CLEAR_PGM_POOL RT_BIT(8)
2997/** @} */
2998
2999
3000__BEGIN_DECLS
3001
3002int pgmLock(PVM pVM);
3003void pgmUnlock(PVM pVM);
3004
3005VMMRCDECL(int) pgmGCGuestPDWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, void *pvFault, RTGCPHYS GCPhysFault, void *pvUser);
3006VMMDECL(int) pgmPhysRomWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, void *pvFault, RTGCPHYS GCPhysFault, void *pvUser);
3007
3008int pgmR3SyncPTResolveConflict(PVM pVM, PPGMMAPPING pMapping, PX86PD pPDSrc, RTGCPTR GCPtrOldMapping);
3009int pgmR3SyncPTResolveConflictPAE(PVM pVM, PPGMMAPPING pMapping, RTGCPTR GCPtrOldMapping);
3010PPGMMAPPING pgmGetMapping(PVM pVM, RTGCPTR GCPtr);
3011void pgmR3MapRelocate(PVM pVM, PPGMMAPPING pMapping, RTGCPTR GCPtrOldMapping, RTGCPTR GCPtrNewMapping);
3012DECLCALLBACK(void) pgmR3MapInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
3013
3014void pgmR3HandlerPhysicalUpdateAll(PVM pVM);
3015bool pgmHandlerPhysicalIsAll(PVM pVM, RTGCPHYS GCPhys);
3016int pgmHandlerVirtualFindByPhysAddr(PVM pVM, RTGCPHYS GCPhys, PPGMVIRTHANDLER *ppVirt, unsigned *piPage);
3017DECLCALLBACK(int) pgmHandlerVirtualResetOne(PAVLROGCPTRNODECORE pNode, void *pvUser);
3018#if defined(VBOX_STRICT) || defined(LOG_ENABLED)
3019void pgmHandlerVirtualDumpPhysPages(PVM pVM);
3020#else
3021# define pgmHandlerVirtualDumpPhysPages(a) do { } while (0)
3022#endif
3023DECLCALLBACK(void) pgmR3InfoHandlers(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
3024
3025
3026void pgmPhysFreePage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys);
3027int pgmPhysPageLoadIntoTlb(PPGM pPGM, RTGCPHYS GCPhys);
3028int pgmPhysPageMakeWritable(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys);
3029int pgmPhysPageMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPPGMPAGEMAP ppMap, void **ppv);
3030#ifdef IN_RING3
3031int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk);
3032int pgmR3PhysRamReset(PVM pVM);
3033int pgmR3PhysRomReset(PVM pVM);
3034# ifndef VBOX_WITH_NEW_PHYS_CODE
3035int pgmr3PhysGrowRange(PVM pVM, RTGCPHYS GCPhys);
3036# endif
3037
3038int pgmR3PoolInit(PVM pVM);
3039void pgmR3PoolRelocate(PVM pVM);
3040void pgmR3PoolReset(PVM pVM);
3041
3042#endif /* IN_RING3 */
3043#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3044int pgmR0DynMapHCPageCommon(PVM pVM, PPGMMAPSET pSet, RTHCPHYS HCPhys, void **ppv);
3045#endif
3046#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
3047void *pgmPoolMapPageFallback(PPGM pPGM, PPGMPOOLPAGE pPage);
3048#endif
3049int pgmPoolAlloc(PVM pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage);
3050PPGMPOOLPAGE pgmPoolGetPageByHCPhys(PVM pVM, RTHCPHYS HCPhys);
3051void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint32_t iUserTable);
3052void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable);
3053int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
3054void pgmPoolFlushAll(PVM pVM);
3055void pgmPoolClearAll(PVM pVM);
3056int pgmPoolSyncCR3(PVM pVM);
3057void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs);
3058void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, uint16_t iPhysExt);
3059int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage);
3060PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt);
3061void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt);
3062void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt);
3063uint16_t pgmPoolTrackPhysExtAddref(PVM pVM, uint16_t u16, uint16_t iShwPT);
3064void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPoolPage, PPGMPAGE pPhysPage);
3065#ifdef PGMPOOL_WITH_MONITORING
3066void pgmPoolMonitorChainChanging(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, CTXTYPE(RTGCPTR, RTHCPTR, RTGCPTR) pvAddress, PDISCPUSTATE pCpu);
3067int pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
3068void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
3069void pgmPoolMonitorModifiedClearAll(PVM pVM);
3070int pgmPoolMonitorMonitorCR3(PPGMPOOL pPool, uint16_t idxRoot, RTGCPHYS GCPhysCR3);
3071int pgmPoolMonitorUnmonitorCR3(PPGMPOOL pPool, uint16_t idxRoot);
3072#endif
3073
3074#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
3075void pgmMapClearShadowPDEs(PVM pVM, PPGMPOOLPAGE pShwPageCR3, PPGMMAPPING pMap, unsigned iOldPDE);
3076void pgmMapSetShadowPDEs(PVM pVM, PPGMMAPPING pMap, unsigned iNewPDE);
3077int pgmShwSyncPaePDPtr(PVM pVM, RTGCPTR GCPtr, PX86PDPE pGstPdpe, PX86PDPAE *ppPD);
3078#endif
3079int pgmMapDeactivateCR3(PVM pVM, PPGMPOOLPAGE pShwPageCR3);
3080int pgmMapActivateCR3(PVM pVM, PPGMPOOLPAGE pShwPageCR3);
3081
3082#ifndef IN_RC
3083int pgmShwSyncLongModePDPtr(PVM pVM, RTGCPTR64 GCPtr, PX86PML4E pGstPml4e, PX86PDPE pGstPdpe, PX86PDPAE *ppPD);
3084#endif
3085int pgmShwGetEPTPDPtr(PVM pVM, RTGCPTR64 GCPtr, PEPTPDPT *ppPdpt, PEPTPD *ppPD);
3086
3087__END_DECLS
3088
3089
3090/**
3091 * Gets the PGMRAMRANGE structure for a guest page.
3092 *
3093 * @returns Pointer to the RAM range on success.
3094 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
3095 *
3096 * @param pPGM PGM handle.
3097 * @param GCPhys The GC physical address.
3098 */
3099DECLINLINE(PPGMRAMRANGE) pgmPhysGetRange(PPGM pPGM, RTGCPHYS GCPhys)
3100{
3101 /*
3102 * Optimize for the first range.
3103 */
3104 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
3105 RTGCPHYS off = GCPhys - pRam->GCPhys;
3106 if (RT_UNLIKELY(off >= pRam->cb))
3107 {
3108 do
3109 {
3110 pRam = pRam->CTX_SUFF(pNext);
3111 if (RT_UNLIKELY(!pRam))
3112 break;
3113 off = GCPhys - pRam->GCPhys;
3114 } while (off >= pRam->cb);
3115 }
3116 return pRam;
3117}
3118
3119
3120/**
3121 * Gets the PGMPAGE structure for a guest page.
3122 *
3123 * @returns Pointer to the page on success.
3124 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
3125 *
3126 * @param pPGM PGM handle.
3127 * @param GCPhys The GC physical address.
3128 */
3129DECLINLINE(PPGMPAGE) pgmPhysGetPage(PPGM pPGM, RTGCPHYS GCPhys)
3130{
3131 /*
3132 * Optimize for the first range.
3133 */
3134 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
3135 RTGCPHYS off = GCPhys - pRam->GCPhys;
3136 if (RT_UNLIKELY(off >= pRam->cb))
3137 {
3138 do
3139 {
3140 pRam = pRam->CTX_SUFF(pNext);
3141 if (RT_UNLIKELY(!pRam))
3142 return NULL;
3143 off = GCPhys - pRam->GCPhys;
3144 } while (off >= pRam->cb);
3145 }
3146 return &pRam->aPages[off >> PAGE_SHIFT];
3147}
3148
3149
3150/**
3151 * Gets the PGMPAGE structure for a guest page.
3152 *
3153 * Old Phys code: Will make sure the page is present.
3154 *
3155 * @returns VBox status code.
3156 * @retval VINF_SUCCESS and a valid *ppPage on success.
3157 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if the address isn't valid.
3158 *
3159 * @param pPGM PGM handle.
3160 * @param GCPhys The GC physical address.
3161 * @param ppPage Where to store the page poitner on success.
3162 */
3163DECLINLINE(int) pgmPhysGetPageEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage)
3164{
3165 /*
3166 * Optimize for the first range.
3167 */
3168 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
3169 RTGCPHYS off = GCPhys - pRam->GCPhys;
3170 if (RT_UNLIKELY(off >= pRam->cb))
3171 {
3172 do
3173 {
3174 pRam = pRam->CTX_SUFF(pNext);
3175 if (RT_UNLIKELY(!pRam))
3176 {
3177 *ppPage = NULL; /* avoid incorrect and very annoying GCC warnings */
3178 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3179 }
3180 off = GCPhys - pRam->GCPhys;
3181 } while (off >= pRam->cb);
3182 }
3183 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
3184#ifndef VBOX_WITH_NEW_PHYS_CODE
3185
3186 /*
3187 * Make sure it's present.
3188 */
3189 if (RT_UNLIKELY( !PGM_PAGE_GET_HCPHYS(*ppPage)
3190 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)))
3191 {
3192#ifdef IN_RING3
3193 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys);
3194#else
3195 int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
3196#endif
3197 if (RT_FAILURE(rc))
3198 {
3199 *ppPage = NULL; /* avoid incorrect and very annoying GCC warnings */
3200 return rc;
3201 }
3202 Assert(rc == VINF_SUCCESS);
3203 }
3204#endif
3205 return VINF_SUCCESS;
3206}
3207
3208
3209
3210
3211/**
3212 * Gets the PGMPAGE structure for a guest page.
3213 *
3214 * Old Phys code: Will make sure the page is present.
3215 *
3216 * @returns VBox status code.
3217 * @retval VINF_SUCCESS and a valid *ppPage on success.
3218 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if the address isn't valid.
3219 *
3220 * @param pPGM PGM handle.
3221 * @param GCPhys The GC physical address.
3222 * @param ppPage Where to store the page poitner on success.
3223 * @param ppRamHint Where to read and store the ram list hint.
3224 * The caller initializes this to NULL before the call.
3225 */
3226DECLINLINE(int) pgmPhysGetPageWithHintEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage, PPGMRAMRANGE *ppRamHint)
3227{
3228 RTGCPHYS off;
3229 PPGMRAMRANGE pRam = *ppRamHint;
3230 if ( !pRam
3231 || RT_UNLIKELY((off = GCPhys - pRam->GCPhys) >= pRam->cb))
3232 {
3233 pRam = pPGM->CTX_SUFF(pRamRanges);
3234 off = GCPhys - pRam->GCPhys;
3235 if (RT_UNLIKELY(off >= pRam->cb))
3236 {
3237 do
3238 {
3239 pRam = pRam->CTX_SUFF(pNext);
3240 if (RT_UNLIKELY(!pRam))
3241 {
3242 *ppPage = NULL; /* Kill the incorrect and extremely annoying GCC warnings. */
3243 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3244 }
3245 off = GCPhys - pRam->GCPhys;
3246 } while (off >= pRam->cb);
3247 }
3248 *ppRamHint = pRam;
3249 }
3250 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
3251#ifndef VBOX_WITH_NEW_PHYS_CODE
3252
3253 /*
3254 * Make sure it's present.
3255 */
3256 if (RT_UNLIKELY( !PGM_PAGE_GET_HCPHYS(*ppPage)
3257 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)))
3258 {
3259#ifdef IN_RING3
3260 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys);
3261#else
3262 int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
3263#endif
3264 if (RT_FAILURE(rc))
3265 {
3266 *ppPage = NULL; /* Shut up annoying smart ass. */
3267 return rc;
3268 }
3269 Assert(rc == VINF_SUCCESS);
3270 }
3271#endif
3272 return VINF_SUCCESS;
3273}
3274
3275
3276/**
3277 * Gets the PGMPAGE structure for a guest page together with the PGMRAMRANGE.
3278 *
3279 * @returns Pointer to the page on success.
3280 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
3281 *
3282 * @param pPGM PGM handle.
3283 * @param GCPhys The GC physical address.
3284 * @param ppRam Where to store the pointer to the PGMRAMRANGE.
3285 */
3286DECLINLINE(PPGMPAGE) pgmPhysGetPageAndRange(PPGM pPGM, RTGCPHYS GCPhys, PPGMRAMRANGE *ppRam)
3287{
3288 /*
3289 * Optimize for the first range.
3290 */
3291 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
3292 RTGCPHYS off = GCPhys - pRam->GCPhys;
3293 if (RT_UNLIKELY(off >= pRam->cb))
3294 {
3295 do
3296 {
3297 pRam = pRam->CTX_SUFF(pNext);
3298 if (RT_UNLIKELY(!pRam))
3299 return NULL;
3300 off = GCPhys - pRam->GCPhys;
3301 } while (off >= pRam->cb);
3302 }
3303 *ppRam = pRam;
3304 return &pRam->aPages[off >> PAGE_SHIFT];
3305}
3306
3307
3308/**
3309 * Gets the PGMPAGE structure for a guest page together with the PGMRAMRANGE.
3310 *
3311 * @returns Pointer to the page on success.
3312 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
3313 *
3314 * @param pPGM PGM handle.
3315 * @param GCPhys The GC physical address.
3316 * @param ppPage Where to store the pointer to the PGMPAGE structure.
3317 * @param ppRam Where to store the pointer to the PGMRAMRANGE structure.
3318 */
3319DECLINLINE(int) pgmPhysGetPageAndRangeEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage, PPGMRAMRANGE *ppRam)
3320{
3321 /*
3322 * Optimize for the first range.
3323 */
3324 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
3325 RTGCPHYS off = GCPhys - pRam->GCPhys;
3326 if (RT_UNLIKELY(off >= pRam->cb))
3327 {
3328 do
3329 {
3330 pRam = pRam->CTX_SUFF(pNext);
3331 if (RT_UNLIKELY(!pRam))
3332 {
3333 *ppRam = NULL; /* Shut up silly GCC warnings. */
3334 *ppPage = NULL; /* ditto */
3335 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3336 }
3337 off = GCPhys - pRam->GCPhys;
3338 } while (off >= pRam->cb);
3339 }
3340 *ppRam = pRam;
3341 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
3342#ifndef VBOX_WITH_NEW_PHYS_CODE
3343
3344 /*
3345 * Make sure it's present.
3346 */
3347 if (RT_UNLIKELY( !PGM_PAGE_GET_HCPHYS(*ppPage)
3348 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)))
3349 {
3350#ifdef IN_RING3
3351 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys);
3352#else
3353 int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
3354#endif
3355 if (RT_FAILURE(rc))
3356 {
3357 *ppPage = NULL; /* Shut up silly GCC warnings. */
3358 *ppPage = NULL; /* ditto */
3359 return rc;
3360 }
3361 Assert(rc == VINF_SUCCESS);
3362
3363 }
3364#endif
3365 return VINF_SUCCESS;
3366}
3367
3368
3369/**
3370 * Convert GC Phys to HC Phys.
3371 *
3372 * @returns VBox status.
3373 * @param pPGM PGM handle.
3374 * @param GCPhys The GC physical address.
3375 * @param pHCPhys Where to store the corresponding HC physical address.
3376 *
3377 * @deprecated Doesn't deal with zero, shared or write monitored pages.
3378 * Avoid when writing new code!
3379 */
3380DECLINLINE(int) pgmRamGCPhys2HCPhys(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPHYS pHCPhys)
3381{
3382 PPGMPAGE pPage;
3383 int rc = pgmPhysGetPageEx(pPGM, GCPhys, &pPage);
3384 if (RT_FAILURE(rc))
3385 return rc;
3386 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK);
3387 return VINF_SUCCESS;
3388}
3389
3390#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3391
3392/**
3393 * Inlined version of the ring-0 version of PGMDynMapHCPage that
3394 * optimizes access to pages already in the set.
3395 *
3396 * @returns VINF_SUCCESS. Will bail out to ring-3 on failure.
3397 * @param pPGM Pointer to the PVM instance data.
3398 * @param HCPhys The physical address of the page.
3399 * @param ppv Where to store the mapping address.
3400 */
3401DECLINLINE(int) pgmR0DynMapHCPageInlined(PPGM pPGM, RTHCPHYS HCPhys, void **ppv)
3402{
3403 STAM_PROFILE_START(&pPGM->StatR0DynMapHCPageInl, a);
3404 PPGMMAPSET pSet = &((PPGMCPU)((uint8_t *)VMMGetCpu(PGM2VM(pPGM)) + pPGM->offVCpu))->AutoSet; /* very pretty ;-) */
3405 Assert(!(HCPhys & PAGE_OFFSET_MASK));
3406 Assert(pSet->cEntries <= RT_ELEMENTS(pSet->aEntries));
3407
3408 unsigned iHash = PGMMAPSET_HASH(HCPhys);
3409 unsigned iEntry = pSet->aiHashTable[iHash];
3410 if ( iEntry < pSet->cEntries
3411 && pSet->aEntries[iEntry].HCPhys == HCPhys)
3412 {
3413 *ppv = pSet->aEntries[iEntry].pvPage;
3414 STAM_COUNTER_INC(&pPGM->StatR0DynMapHCPageInlHits);
3415 }
3416 else
3417 {
3418 STAM_COUNTER_INC(&pPGM->StatR0DynMapHCPageInlMisses);
3419 pgmR0DynMapHCPageCommon(PGM2VM(pPGM), pSet, HCPhys, ppv);
3420 }
3421
3422 STAM_PROFILE_STOP(&pPGM->StatR0DynMapHCPageInl, a);
3423 return VINF_SUCCESS;
3424}
3425
3426
3427/**
3428 * Inlined version of the ring-0 version of PGMDynMapGCPage that optimizes
3429 * access to pages already in the set.
3430 *
3431 * @returns See PGMDynMapGCPage.
3432 * @param pPGM Pointer to the PVM instance data.
3433 * @param HCPhys The physical address of the page.
3434 * @param ppv Where to store the mapping address.
3435 */
3436DECLINLINE(int) pgmR0DynMapGCPageInlined(PPGM pPGM, RTGCPHYS GCPhys, void **ppv)
3437{
3438 STAM_PROFILE_START(&pPGM->StatR0DynMapGCPageInl, a);
3439 Assert(!(GCPhys & PAGE_OFFSET_MASK));
3440
3441 /*
3442 * Get the ram range.
3443 */
3444 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
3445 RTGCPHYS off = GCPhys - pRam->GCPhys;
3446 if (RT_UNLIKELY(off >= pRam->cb
3447 /** @todo || page state stuff */))
3448 {
3449 /* This case is not counted into StatR0DynMapGCPageInl. */
3450 STAM_COUNTER_INC(&pPGM->StatR0DynMapGCPageInlRamMisses);
3451 return PGMDynMapGCPage(PGM2VM(pPGM), GCPhys, ppv);
3452 }
3453
3454 RTHCPHYS HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[off >> PAGE_SHIFT]);
3455 STAM_COUNTER_INC(&pPGM->StatR0DynMapGCPageInlRamHits);
3456
3457 /*
3458 * pgmR0DynMapHCPageInlined with out stats.
3459 */
3460 PPGMMAPSET pSet = &((PPGMCPU)((uint8_t *)VMMGetCpu(PGM2VM(pPGM)) + pPGM->offVCpu))->AutoSet; /* very pretty ;-) */
3461 Assert(!(HCPhys & PAGE_OFFSET_MASK));
3462 Assert(pSet->cEntries <= RT_ELEMENTS(pSet->aEntries));
3463
3464 unsigned iHash = PGMMAPSET_HASH(HCPhys);
3465 unsigned iEntry = pSet->aiHashTable[iHash];
3466 if ( iEntry < pSet->cEntries
3467 && pSet->aEntries[iEntry].HCPhys == HCPhys)
3468 {
3469 *ppv = pSet->aEntries[iEntry].pvPage;
3470 STAM_COUNTER_INC(&pPGM->StatR0DynMapGCPageInlHits);
3471 }
3472 else
3473 {
3474 STAM_COUNTER_INC(&pPGM->StatR0DynMapGCPageInlMisses);
3475 pgmR0DynMapHCPageCommon(PGM2VM(pPGM), pSet, HCPhys, ppv);
3476 }
3477
3478 STAM_PROFILE_STOP(&pPGM->StatR0DynMapGCPageInl, a);
3479 return VINF_SUCCESS;
3480}
3481
3482#endif /* VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */
3483
3484#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
3485/**
3486 * Maps the page into current context (RC and maybe R0).
3487 *
3488 * @returns pointer to the mapping.
3489 * @param pVM Pointer to the PGM instance data.
3490 * @param pPage The page.
3491 */
3492DECLINLINE(void *) pgmPoolMapPageInlined(PPGM pPGM, PPGMPOOLPAGE pPage)
3493{
3494 if (pPage->idx >= PGMPOOL_IDX_FIRST)
3495 {
3496 Assert(pPage->idx < pPGM->CTX_SUFF(pPool)->cCurPages);
3497 void *pv;
3498# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3499 pgmR0DynMapHCPageInlined(pPGM, pPage->Core.Key, &pv);
3500# else
3501 PGMDynMapHCPage(PGM2VM(pPGM), pPage->Core.Key, &pv);
3502# endif
3503 return pv;
3504 }
3505 return pgmPoolMapPageFallback(pPGM, pPage);
3506}
3507
3508/**
3509 * Temporarily maps one host page specified by HC physical address, returning
3510 * pointer within the page.
3511 *
3512 * Be WARNED that the dynamic page mapping area is small, 8 pages, thus the space is
3513 * reused after 8 mappings (or perhaps a few more if you score with the cache).
3514 *
3515 * @returns The address corresponding to HCPhys.
3516 * @param pPGM Pointer to the PVM instance data.
3517 * @param HCPhys HC Physical address of the page.
3518 */
3519DECLINLINE(void *) pgmDynMapHCPageOff(PPGM pPGM, RTHCPHYS HCPhys)
3520{
3521 void *pv;
3522# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3523 pgmR0DynMapHCPageInlined(pPGM, HCPhys & ~(RTHCPHYS)PAGE_OFFSET_MASK, &pv);
3524# else
3525 PGMDynMapHCPage(PGM2VM(pPGM), HCPhys & ~(RTHCPHYS)PAGE_OFFSET_MASK, &pv);
3526# endif
3527 pv = (void *)((uintptr_t)pv | (HCPhys & PAGE_OFFSET_MASK));
3528 return pv;
3529}
3530#endif /* VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 || IN_RC */
3531
3532
3533#ifndef IN_RC
3534/**
3535 * Queries the Physical TLB entry for a physical guest page,
3536 * attemting to load the TLB entry if necessary.
3537 *
3538 * @returns VBox status code.
3539 * @retval VINF_SUCCESS on success
3540 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
3541 * @param pPGM The PGM instance handle.
3542 * @param GCPhys The address of the guest page.
3543 * @param ppTlbe Where to store the pointer to the TLB entry.
3544 */
3545
3546DECLINLINE(int) pgmPhysPageQueryTlbe(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGEMAPTLBE ppTlbe)
3547{
3548 int rc;
3549 PPGMPAGEMAPTLBE pTlbe = &pPGM->CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)];
3550 if (pTlbe->GCPhys == (GCPhys & X86_PTE_PAE_PG_MASK))
3551 {
3552 STAM_COUNTER_INC(&pPGM->CTX_MID_Z(Stat,PageMapTlbHits));
3553 rc = VINF_SUCCESS;
3554 }
3555 else
3556 rc = pgmPhysPageLoadIntoTlb(pPGM, GCPhys);
3557 *ppTlbe = pTlbe;
3558 return rc;
3559}
3560#endif /* !IN_RC */
3561
3562#if !defined(IN_RC) && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
3563
3564# ifndef VBOX_WITH_NEW_PHYS_CODE
3565/**
3566 * Convert GC Phys to HC Virt.
3567 *
3568 * @returns VBox status.
3569 * @param pPGM PGM handle.
3570 * @param GCPhys The GC physical address.
3571 * @param pHCPtr Where to store the corresponding HC virtual address.
3572 *
3573 * @deprecated This will be eliminated by PGMPhysGCPhys2CCPtr. Only user is
3574 * pgmPoolMonitorGCPtr2CCPtr.
3575 */
3576DECLINLINE(int) pgmRamGCPhys2HCPtr(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPTR pHCPtr)
3577{
3578 PPGMRAMRANGE pRam;
3579 PPGMPAGE pPage;
3580 int rc = pgmPhysGetPageAndRangeEx(pPGM, GCPhys, &pPage, &pRam);
3581 if (RT_FAILURE(rc))
3582 {
3583 *pHCPtr = 0; /* Shut up silly GCC warnings. */
3584 return rc;
3585 }
3586 RTGCPHYS off = GCPhys - pRam->GCPhys;
3587
3588 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
3589 {
3590 unsigned iChunk = off >> PGM_DYNAMIC_CHUNK_SHIFT;
3591 *pHCPtr = (RTHCPTR)(pRam->paChunkR3Ptrs[iChunk] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
3592 return VINF_SUCCESS;
3593 }
3594 if (pRam->pvR3)
3595 {
3596 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)pRam->pvR3 + off);
3597 return VINF_SUCCESS;
3598 }
3599 *pHCPtr = 0; /* Shut up silly GCC warnings. */
3600 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3601}
3602# endif /* !VBOX_WITH_NEW_PHYS_CODE */
3603#endif /* !IN_RC && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) */
3604
3605/**
3606 * Convert GC Phys to HC Virt and HC Phys.
3607 *
3608 * @returns VBox status.
3609 * @param pPGM PGM handle.
3610 * @param GCPhys The GC physical address.
3611 * @param pHCPtr Where to store the corresponding HC virtual address.
3612 * @param pHCPhys Where to store the HC Physical address and its flags.
3613 *
3614 * @deprecated Will go away or be changed. Only user is MapCR3. MapCR3 will have to do ring-3
3615 * and ring-0 locking of the CR3 in a lazy fashion I'm fear... or perhaps not. we'll see.
3616 */
3617DECLINLINE(int) pgmRamGCPhys2HCPtrAndHCPhysWithFlags(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPTR pHCPtr, PRTHCPHYS pHCPhys)
3618{
3619 PPGMRAMRANGE pRam;
3620 PPGMPAGE pPage;
3621 int rc = pgmPhysGetPageAndRangeEx(pPGM, GCPhys, &pPage, &pRam);
3622 if (RT_FAILURE(rc))
3623 {
3624 *pHCPtr = 0; /* Shut up crappy GCC warnings */
3625 *pHCPhys = 0; /* ditto */
3626 return rc;
3627 }
3628 RTGCPHYS off = GCPhys - pRam->GCPhys;
3629
3630 *pHCPhys = pPage->HCPhys; /** @todo PAGE FLAGS */
3631 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
3632 {
3633 unsigned idx = (off >> PGM_DYNAMIC_CHUNK_SHIFT);
3634#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) /* ASSUMES only MapCR3 usage. */
3635 PRTR3UINTPTR paChunkR3Ptrs = (PRTR3UINTPTR)MMHyperR3ToCC(PGM2VM(pPGM), pRam->paChunkR3Ptrs);
3636 *pHCPtr = (RTHCPTR)(paChunkR3Ptrs[idx] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
3637#else
3638 *pHCPtr = (RTHCPTR)(pRam->paChunkR3Ptrs[idx] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
3639#endif
3640 return VINF_SUCCESS;
3641 }
3642 if (pRam->pvR3)
3643 {
3644 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)pRam->pvR3 + off);
3645 return VINF_SUCCESS;
3646 }
3647 *pHCPtr = 0;
3648 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3649}
3650
3651
3652/**
3653 * Clears flags associated with a RAM address.
3654 *
3655 * @returns VBox status code.
3656 * @param pPGM PGM handle.
3657 * @param GCPhys Guest context physical address.
3658 * @param fFlags fFlags to clear. (Bits 0-11.)
3659 */
3660DECLINLINE(int) pgmRamFlagsClearByGCPhys(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags)
3661{
3662 PPGMPAGE pPage;
3663 int rc = pgmPhysGetPageEx(pPGM, GCPhys, &pPage);
3664 if (RT_FAILURE(rc))
3665 return rc;
3666
3667 fFlags &= ~X86_PTE_PAE_PG_MASK;
3668 pPage->HCPhys &= ~(RTHCPHYS)fFlags; /** @todo PAGE FLAGS */
3669 return VINF_SUCCESS;
3670}
3671
3672
3673/**
3674 * Clears flags associated with a RAM address.
3675 *
3676 * @returns VBox status code.
3677 * @param pPGM PGM handle.
3678 * @param GCPhys Guest context physical address.
3679 * @param fFlags fFlags to clear. (Bits 0-11.)
3680 * @param ppRamHint Where to read and store the ram list hint.
3681 * The caller initializes this to NULL before the call.
3682 */
3683DECLINLINE(int) pgmRamFlagsClearByGCPhysWithHint(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags, PPGMRAMRANGE *ppRamHint)
3684{
3685 PPGMPAGE pPage;
3686 int rc = pgmPhysGetPageWithHintEx(pPGM, GCPhys, &pPage, ppRamHint);
3687 if (RT_FAILURE(rc))
3688 return rc;
3689
3690 fFlags &= ~X86_PTE_PAE_PG_MASK;
3691 pPage->HCPhys &= ~(RTHCPHYS)fFlags; /** @todo PAGE FLAGS */
3692 return VINF_SUCCESS;
3693}
3694
3695
3696/**
3697 * Sets (bitwise OR) flags associated with a RAM address.
3698 *
3699 * @returns VBox status code.
3700 * @param pPGM PGM handle.
3701 * @param GCPhys Guest context physical address.
3702 * @param fFlags fFlags to set clear. (Bits 0-11.)
3703 */
3704DECLINLINE(int) pgmRamFlagsSetByGCPhys(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags)
3705{
3706 PPGMPAGE pPage;
3707 int rc = pgmPhysGetPageEx(pPGM, GCPhys, &pPage);
3708 if (RT_FAILURE(rc))
3709 return rc;
3710
3711 fFlags &= ~X86_PTE_PAE_PG_MASK;
3712 pPage->HCPhys |= fFlags; /** @todo PAGE FLAGS */
3713 return VINF_SUCCESS;
3714}
3715
3716
3717/**
3718 * Sets (bitwise OR) flags associated with a RAM address.
3719 *
3720 * @returns VBox status code.
3721 * @param pPGM PGM handle.
3722 * @param GCPhys Guest context physical address.
3723 * @param fFlags fFlags to set clear. (Bits 0-11.)
3724 * @param ppRamHint Where to read and store the ram list hint.
3725 * The caller initializes this to NULL before the call.
3726 */
3727DECLINLINE(int) pgmRamFlagsSetByGCPhysWithHint(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags, PPGMRAMRANGE *ppRamHint)
3728{
3729 PPGMPAGE pPage;
3730 int rc = pgmPhysGetPageWithHintEx(pPGM, GCPhys, &pPage, ppRamHint);
3731 if (RT_FAILURE(rc))
3732 return rc;
3733
3734 fFlags &= ~X86_PTE_PAE_PG_MASK;
3735 pPage->HCPhys |= fFlags; /** @todo PAGE FLAGS */
3736 return VINF_SUCCESS;
3737}
3738
3739
3740/**
3741 * Calculated the guest physical address of the large (4 MB) page in 32 bits paging mode.
3742 * Takes PSE-36 into account.
3743 *
3744 * @returns guest physical address
3745 * @param pPGM Pointer to the PGM instance data.
3746 * @param Pde Guest Pde
3747 */
3748DECLINLINE(RTGCPHYS) pgmGstGet4MBPhysPage(PPGM pPGM, X86PDE Pde)
3749{
3750 RTGCPHYS GCPhys = Pde.u & X86_PDE4M_PG_MASK;
3751 GCPhys |= (RTGCPHYS)Pde.b.u8PageNoHigh << 32;
3752
3753 return GCPhys & pPGM->GCPhys4MBPSEMask;
3754}
3755
3756
3757/**
3758 * Gets the page directory entry for the specified address (32-bit paging).
3759 *
3760 * @returns The page directory entry in question.
3761 * @param pPGM Pointer to the PGM instance data.
3762 * @param GCPtr The address.
3763 */
3764DECLINLINE(X86PDE) pgmGstGet32bitPDE(PPGM pPGM, RTGCPTR GCPtr)
3765{
3766#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3767 PCX86PD pGuestPD = 0;
3768 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPD);
3769 if (RT_FAILURE(rc))
3770 {
3771 X86PDE ZeroPde = {0};
3772 AssertMsgFailedReturn(("%Rrc\n", rc), ZeroPde);
3773 }
3774 return pGuestPD->a[GCPtr >> X86_PD_SHIFT];
3775#else
3776 return pPGM->CTX_SUFF(pGst32BitPd)->a[GCPtr >> X86_PD_SHIFT];
3777#endif
3778}
3779
3780
3781/**
3782 * Gets the address of a specific page directory entry (32-bit paging).
3783 *
3784 * @returns Pointer the page directory entry in question.
3785 * @param pPGM Pointer to the PGM instance data.
3786 * @param GCPtr The address.
3787 */
3788DECLINLINE(PX86PDE) pgmGstGet32bitPDEPtr(PPGM pPGM, RTGCPTR GCPtr)
3789{
3790#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3791 PX86PD pGuestPD = 0;
3792 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPD);
3793 AssertRCReturn(rc, 0);
3794 return &pGuestPD->a[GCPtr >> X86_PD_SHIFT];
3795#else
3796 return &pPGM->CTX_SUFF(pGst32BitPd)->a[GCPtr >> X86_PD_SHIFT];
3797#endif
3798}
3799
3800
3801/**
3802 * Gets the address the guest page directory (32-bit paging).
3803 *
3804 * @returns Pointer the page directory entry in question.
3805 * @param pPGM Pointer to the PGM instance data.
3806 */
3807DECLINLINE(PX86PD) pgmGstGet32bitPDPtr(PPGM pPGM)
3808{
3809#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3810 PX86PD pGuestPD = 0;
3811 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPD);
3812 AssertRCReturn(rc, 0);
3813 return pGuestPD;
3814#else
3815 return pPGM->CTX_SUFF(pGst32BitPd);
3816#endif
3817}
3818
3819
3820/**
3821 * Gets the guest page directory pointer table.
3822 *
3823 * @returns Pointer to the page directory in question.
3824 * @returns NULL if the page directory is not present or on an invalid page.
3825 * @param pPGM Pointer to the PGM instance data.
3826 */
3827DECLINLINE(PX86PDPT) pgmGstGetPaePDPTPtr(PPGM pPGM)
3828{
3829#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3830 PX86PDPT pGuestPDPT = 0;
3831 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPDPT);
3832 AssertRCReturn(rc, 0);
3833 return pGuestPDPT;
3834#else
3835 return pPGM->CTX_SUFF(pGstPaePdpt);
3836#endif
3837}
3838
3839
3840/**
3841 * Gets the guest page directory pointer table entry for the specified address.
3842 *
3843 * @returns Pointer to the page directory in question.
3844 * @returns NULL if the page directory is not present or on an invalid page.
3845 * @param pPGM Pointer to the PGM instance data.
3846 * @param GCPtr The address.
3847 */
3848DECLINLINE(PX86PDPE) pgmGstGetPaePDPEPtr(PPGM pPGM, RTGCPTR GCPtr)
3849{
3850 AssertGCPtr32(GCPtr);
3851
3852#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3853 PX86PDPT pGuestPDPT = 0;
3854 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPDPT);
3855 AssertRCReturn(rc, 0);
3856 return &pGuestPDPT->a[(GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE];
3857#else
3858 return &pPGM->CTX_SUFF(pGstPaePdpt)->a[(GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE];
3859#endif
3860}
3861
3862
3863/**
3864 * Gets the page directory for the specified address.
3865 *
3866 * @returns Pointer to the page directory in question.
3867 * @returns NULL if the page directory is not present or on an invalid page.
3868 * @param pPGM Pointer to the PGM instance data.
3869 * @param GCPtr The address.
3870 */
3871DECLINLINE(PX86PDPAE) pgmGstGetPaePD(PPGM pPGM, RTGCPTR GCPtr)
3872{
3873 AssertGCPtr32(GCPtr);
3874
3875#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3876 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pPGM);
3877 AssertReturn(pGuestPDPT, 0);
3878#else
3879 PX86PDPT pGuestPDPT = pPGM->CTX_SUFF(pGstPaePdpt);
3880#endif
3881 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
3882 if (pGuestPDPT->a[iPdPt].n.u1Present)
3883 {
3884#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3885 if ((pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
3886 return pPGM->CTX_SUFF(apGstPaePDs)[iPdPt];
3887#endif
3888
3889 /* cache is out-of-sync. */
3890 PX86PDPAE pPD;
3891 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3892 if (RT_SUCCESS(rc))
3893 return pPD;
3894 AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, pGuestPDPT->a[iPdPt].u));
3895 /* returning NULL is ok if we assume it's just an invalid page of some kind emulated as all 0s. (not quite true) */
3896 }
3897 return NULL;
3898}
3899
3900
3901/**
3902 * Gets the page directory entry for the specified address.
3903 *
3904 * @returns Pointer to the page directory entry in question.
3905 * @returns NULL if the page directory is not present or on an invalid page.
3906 * @param pPGM Pointer to the PGM instance data.
3907 * @param GCPtr The address.
3908 */
3909DECLINLINE(PX86PDEPAE) pgmGstGetPaePDEPtr(PPGM pPGM, RTGCPTR GCPtr)
3910{
3911 AssertGCPtr32(GCPtr);
3912
3913#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3914 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pPGM);
3915 AssertReturn(pGuestPDPT, 0);
3916#else
3917 PX86PDPT pGuestPDPT = pPGM->CTX_SUFF(pGstPaePdpt);
3918#endif
3919 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
3920 if (pGuestPDPT->a[iPdPt].n.u1Present)
3921 {
3922 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3923#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3924 if ((pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
3925 return &pPGM->CTX_SUFF(apGstPaePDs)[iPdPt]->a[iPD];
3926#endif
3927
3928 /* The cache is out-of-sync. */
3929 PX86PDPAE pPD;
3930 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3931 if (RT_SUCCESS(rc))
3932 return &pPD->a[iPD];
3933 AssertMsgFailed(("Impossible! rc=%Rrc PDPE=%RX64\n", rc, pGuestPDPT->a[iPdPt].u));
3934 /* returning NIL_RTGCPHYS is ok if we assume it's just an invalid page or something which we'll emulate as all 0s. (not quite true) */
3935 }
3936 return NULL;
3937}
3938
3939
3940/**
3941 * Gets the page directory entry for the specified address.
3942 *
3943 * @returns The page directory entry in question.
3944 * @returns A non-present entry if the page directory is not present or on an invalid page.
3945 * @param pPGM Pointer to the PGM instance data.
3946 * @param GCPtr The address.
3947 */
3948DECLINLINE(X86PDEPAE) pgmGstGetPaePDE(PPGM pPGM, RTGCPTR GCPtr)
3949{
3950 AssertGCPtr32(GCPtr);
3951
3952#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3953 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pPGM);
3954 if (RT_LIKELY(pGuestPDPT))
3955#else
3956 PX86PDPT pGuestPDPT = pPGM->CTX_SUFF(pGstPaePdpt);
3957#endif
3958 {
3959 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
3960 if (pGuestPDPT->a[iPdPt].n.u1Present)
3961 {
3962 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3963#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3964 if ((pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
3965 return pPGM->CTX_SUFF(apGstPaePDs)[iPdPt]->a[iPD];
3966#endif
3967
3968 /* cache is out-of-sync. */
3969 PX86PDPAE pPD;
3970 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3971 if (RT_SUCCESS(rc))
3972 return pPD->a[iPD];
3973 AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, pGuestPDPT->a[iPdPt]));
3974 }
3975 }
3976 X86PDEPAE ZeroPde = {0};
3977 return ZeroPde;
3978}
3979
3980
3981/**
3982 * Gets the page directory pointer table entry for the specified address
3983 * and returns the index into the page directory
3984 *
3985 * @returns Pointer to the page directory in question.
3986 * @returns NULL if the page directory is not present or on an invalid page.
3987 * @param pPGM Pointer to the PGM instance data.
3988 * @param GCPtr The address.
3989 * @param piPD Receives the index into the returned page directory
3990 * @param pPdpe Receives the page directory pointer entry. Optional.
3991 */
3992DECLINLINE(PX86PDPAE) pgmGstGetPaePDPtr(PPGM pPGM, RTGCPTR GCPtr, unsigned *piPD, PX86PDPE pPdpe)
3993{
3994 AssertGCPtr32(GCPtr);
3995
3996#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3997 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pPGM);
3998 AssertReturn(pGuestPDPT, 0);
3999#else
4000 PX86PDPT pGuestPDPT = pPGM->CTX_SUFF(pGstPaePdpt);
4001#endif
4002 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
4003 if (pPdpe)
4004 *pPdpe = pGuestPDPT->a[iPdPt];
4005 if (pGuestPDPT->a[iPdPt].n.u1Present)
4006 {
4007 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4008#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4009 if ((pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
4010 {
4011 *piPD = iPD;
4012 return pPGM->CTX_SUFF(apGstPaePDs)[iPdPt];
4013 }
4014#endif
4015
4016 /* cache is out-of-sync. */
4017 PX86PDPAE pPD;
4018 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
4019 if (RT_SUCCESS(rc))
4020 {
4021 *piPD = iPD;
4022 return pPD;
4023 }
4024 AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, pGuestPDPT->a[iPdPt].u));
4025 /* returning NIL_RTGCPHYS is ok if we assume it's just an invalid page of some kind emulated as all 0s. */
4026 }
4027 return NULL;
4028}
4029
4030#ifndef IN_RC
4031
4032/**
4033 * Gets the page map level-4 pointer for the guest.
4034 *
4035 * @returns Pointer to the PML4 page.
4036 * @param pPGM Pointer to the PGM instance data.
4037 */
4038DECLINLINE(PX86PML4) pgmGstGetLongModePML4Ptr(PPGM pPGM)
4039{
4040#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4041 PX86PML4 pGuestPml4;
4042 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPml4);
4043 AssertRCReturn(rc, NULL);
4044 return pGuestPml4;
4045#else
4046 Assert(pPGM->CTX_SUFF(pGstAmd64Pml4));
4047 return pPGM->CTX_SUFF(pGstAmd64Pml4);
4048#endif
4049}
4050
4051
4052/**
4053 * Gets the pointer to a page map level-4 entry.
4054 *
4055 * @returns Pointer to the PML4 entry.
4056 * @param pPGM Pointer to the PGM instance data.
4057 * @param iPml4 The index.
4058 */
4059DECLINLINE(PX86PML4E) pgmGstGetLongModePML4EPtr(PPGM pPGM, unsigned int iPml4)
4060{
4061#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4062 PX86PML4 pGuestPml4;
4063 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPml4);
4064 AssertRCReturn(rc, NULL);
4065 return &pGuestPml4->a[iPml4];
4066#else
4067 Assert(pPGM->CTX_SUFF(pGstAmd64Pml4));
4068 return &pPGM->CTX_SUFF(pGstAmd64Pml4)->a[iPml4];
4069#endif
4070}
4071
4072
4073/**
4074 * Gets a page map level-4 entry.
4075 *
4076 * @returns The PML4 entry.
4077 * @param pPGM Pointer to the PGM instance data.
4078 * @param iPml4 The index.
4079 */
4080DECLINLINE(X86PML4E) pgmGstGetLongModePML4E(PPGM pPGM, unsigned int iPml4)
4081{
4082#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4083 PX86PML4 pGuestPml4;
4084 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPml4);
4085 if (RT_FAILURE(rc))
4086 {
4087 X86PML4E ZeroPml4e = {0};
4088 AssertMsgFailedReturn(("%Rrc\n", rc), ZeroPml4e);
4089 }
4090 return pGuestPml4->a[iPml4];
4091#else
4092 Assert(pPGM->CTX_SUFF(pGstAmd64Pml4));
4093 return pPGM->CTX_SUFF(pGstAmd64Pml4)->a[iPml4];
4094#endif
4095}
4096
4097
4098/**
4099 * Gets the page directory pointer entry for the specified address.
4100 *
4101 * @returns Pointer to the page directory pointer entry in question.
4102 * @returns NULL if the page directory is not present or on an invalid page.
4103 * @param pPGM Pointer to the PGM instance data.
4104 * @param GCPtr The address.
4105 * @param ppPml4e Page Map Level-4 Entry (out)
4106 */
4107DECLINLINE(PX86PDPE) pgmGstGetLongModePDPTPtr(PPGM pPGM, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e)
4108{
4109 PX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
4110 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
4111 PCX86PML4E pPml4e = *ppPml4e = &pGuestPml4->a[iPml4];
4112 if (pPml4e->n.u1Present)
4113 {
4114 PX86PDPT pPdpt;
4115 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPml4e->u & X86_PML4E_PG_MASK, &pPdpt);
4116 AssertRCReturn(rc, NULL);
4117
4118 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
4119 return &pPdpt->a[iPdPt];
4120 }
4121 return NULL;
4122}
4123
4124
4125/**
4126 * Gets the page directory entry for the specified address.
4127 *
4128 * @returns The page directory entry in question.
4129 * @returns A non-present entry if the page directory is not present or on an invalid page.
4130 * @param pPGM Pointer to the PGM instance data.
4131 * @param GCPtr The address.
4132 * @param ppPml4e Page Map Level-4 Entry (out)
4133 * @param pPdpe Page directory pointer table entry (out)
4134 */
4135DECLINLINE(X86PDEPAE) pgmGstGetLongModePDEEx(PPGM pPGM, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPE pPdpe)
4136{
4137 X86PDEPAE ZeroPde = {0};
4138 PX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
4139 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
4140 PCX86PML4E pPml4e = *ppPml4e = &pGuestPml4->a[iPml4];
4141 if (pPml4e->n.u1Present)
4142 {
4143 PCX86PDPT pPdptTemp;
4144 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPml4e->u & X86_PML4E_PG_MASK, &pPdptTemp);
4145 AssertRCReturn(rc, ZeroPde);
4146
4147 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
4148 *pPdpe = pPdptTemp->a[iPdPt];
4149 if (pPdptTemp->a[iPdPt].n.u1Present)
4150 {
4151 PCX86PDPAE pPD;
4152 rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
4153 AssertRCReturn(rc, ZeroPde);
4154
4155 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4156 return pPD->a[iPD];
4157 }
4158 }
4159
4160 return ZeroPde;
4161}
4162
4163
4164/**
4165 * Gets the page directory entry for the specified address.
4166 *
4167 * @returns The page directory entry in question.
4168 * @returns A non-present entry if the page directory is not present or on an invalid page.
4169 * @param pPGM Pointer to the PGM instance data.
4170 * @param GCPtr The address.
4171 */
4172DECLINLINE(X86PDEPAE) pgmGstGetLongModePDE(PPGM pPGM, RTGCPTR64 GCPtr)
4173{
4174 X86PDEPAE ZeroPde = {0};
4175 PCX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
4176 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
4177 if (pGuestPml4->a[iPml4].n.u1Present)
4178 {
4179 PCX86PDPT pPdptTemp;
4180 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pGuestPml4->a[iPml4].u & X86_PML4E_PG_MASK, &pPdptTemp);
4181 AssertRCReturn(rc, ZeroPde);
4182
4183 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
4184 if (pPdptTemp->a[iPdPt].n.u1Present)
4185 {
4186 PCX86PDPAE pPD;
4187 rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
4188 AssertRCReturn(rc, ZeroPde);
4189
4190 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4191 return pPD->a[iPD];
4192 }
4193 }
4194 return ZeroPde;
4195}
4196
4197
4198/**
4199 * Gets the page directory entry for the specified address.
4200 *
4201 * @returns Pointer to the page directory entry in question.
4202 * @returns NULL if the page directory is not present or on an invalid page.
4203 * @param pPGM Pointer to the PGM instance data.
4204 * @param GCPtr The address.
4205 */
4206DECLINLINE(PX86PDEPAE) pgmGstGetLongModePDEPtr(PPGM pPGM, RTGCPTR64 GCPtr)
4207{
4208 PCX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
4209 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
4210 if (pGuestPml4->a[iPml4].n.u1Present)
4211 {
4212 PCX86PDPT pPdptTemp;
4213 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pGuestPml4->a[iPml4].u & X86_PML4E_PG_MASK, &pPdptTemp);
4214 AssertRCReturn(rc, NULL);
4215
4216 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
4217 if (pPdptTemp->a[iPdPt].n.u1Present)
4218 {
4219 PX86PDPAE pPD;
4220 rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
4221 AssertRCReturn(rc, NULL);
4222
4223 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4224 return &pPD->a[iPD];
4225 }
4226 }
4227 return NULL;
4228}
4229
4230
4231/**
4232 * Gets the GUEST page directory pointer for the specified address.
4233 *
4234 * @returns The page directory in question.
4235 * @returns NULL if the page directory is not present or on an invalid page.
4236 * @param pPGM Pointer to the PGM instance data.
4237 * @param GCPtr The address.
4238 * @param ppPml4e Page Map Level-4 Entry (out)
4239 * @param pPdpe Page directory pointer table entry (out)
4240 * @param piPD Receives the index into the returned page directory
4241 */
4242DECLINLINE(PX86PDPAE) pgmGstGetLongModePDPtr(PPGM pPGM, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPE pPdpe, unsigned *piPD)
4243{
4244 PX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
4245 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
4246 PCX86PML4E pPml4e = *ppPml4e = &pGuestPml4->a[iPml4];
4247 if (pPml4e->n.u1Present)
4248 {
4249 PCX86PDPT pPdptTemp;
4250 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPml4e->u & X86_PML4E_PG_MASK, &pPdptTemp);
4251 AssertRCReturn(rc, NULL);
4252
4253 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
4254 *pPdpe = pPdptTemp->a[iPdPt];
4255 if (pPdptTemp->a[iPdPt].n.u1Present)
4256 {
4257 PX86PDPAE pPD;
4258 rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
4259 AssertRCReturn(rc, NULL);
4260
4261 *piPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4262 return pPD;
4263 }
4264 }
4265 return 0;
4266}
4267
4268#endif /* !IN_RC */
4269
4270
4271/**
4272 * Gets the shadow page directory, 32-bit.
4273 *
4274 * @returns Pointer to the shadow 32-bit PD.
4275 * @param pPGM Pointer to the PGM instance data.
4276 */
4277DECLINLINE(PX86PD) pgmShwGet32BitPDPtr(PPGM pPGM)
4278{
4279#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
4280 return (PX86PD)PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pPGM->CTX_SUFF(pShwPageCR3));
4281#else
4282# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4283 PX86PD pShwPd;
4284 Assert(pPGM->HCPhysShw32BitPD != 0 && pPGM->HCPhysShw32BitPD != NIL_RTHCPHYS);
4285 int rc = PGM_HCPHYS_2_PTR_BY_PGM(pPGM, pPGM->HCPhysShw32BitPD, &pShwPd);
4286 AssertRCReturn(rc, NULL);
4287 return pShwPd;
4288# else
4289 return pPGM->CTX_SUFF(pShw32BitPd);
4290# endif
4291#endif
4292}
4293
4294
4295/**
4296 * Gets the shadow page directory entry for the specified address, 32-bit.
4297 *
4298 * @returns Shadow 32-bit PDE.
4299 * @param pPGM Pointer to the PGM instance data.
4300 * @param GCPtr The address.
4301 */
4302DECLINLINE(X86PDE) pgmShwGet32BitPDE(PPGM pPGM, RTGCPTR GCPtr)
4303{
4304 const unsigned iPd = (GCPtr >> X86_PD_SHIFT) & X86_PD_MASK;
4305
4306 PX86PD pShwPde = pgmShwGet32BitPDPtr(pPGM);
4307 if (!pShwPde)
4308 {
4309 X86PDE ZeroPde = {0};
4310 return ZeroPde;
4311 }
4312 return pShwPde->a[iPd];
4313}
4314
4315
4316/**
4317 * Gets the pointer to the shadow page directory entry for the specified
4318 * address, 32-bit.
4319 *
4320 * @returns Pointer to the shadow 32-bit PDE.
4321 * @param pPGM Pointer to the PGM instance data.
4322 * @param GCPtr The address.
4323 */
4324DECLINLINE(PX86PDE) pgmShwGet32BitPDEPtr(PPGM pPGM, RTGCPTR GCPtr)
4325{
4326 const unsigned iPd = (GCPtr >> X86_PD_SHIFT) & X86_PD_MASK;
4327
4328 PX86PD pPde = pgmShwGet32BitPDPtr(pPGM);
4329 AssertReturn(pPde, NULL);
4330 return &pPde->a[iPd];
4331}
4332
4333
4334/**
4335 * Gets the shadow page pointer table, PAE.
4336 *
4337 * @returns Pointer to the shadow PAE PDPT.
4338 * @param pPGM Pointer to the PGM instance data.
4339 */
4340DECLINLINE(PX86PDPT) pgmShwGetPaePDPTPtr(PPGM pPGM)
4341{
4342#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
4343 return (PX86PDPT)PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pPGM->CTX_SUFF(pShwPageCR3));
4344#else
4345# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4346 PX86PDPT pShwPdpt;
4347 Assert(pPGM->HCPhysShwPaePdpt != 0 && pPGM->HCPhysShwPaePdpt != NIL_RTHCPHYS);
4348 int rc = PGM_HCPHYS_2_PTR_BY_PGM(pPGM, pPGM->HCPhysShwPaePdpt, &pShwPdpt);
4349 AssertRCReturn(rc, 0);
4350 return pShwPdpt;
4351# else
4352 return pPGM->CTX_SUFF(pShwPaePdpt);
4353# endif
4354#endif
4355}
4356
4357
4358/**
4359 * Gets the shadow page directory for the specified address, PAE.
4360 *
4361 * @returns Pointer to the shadow PD.
4362 * @param pPGM Pointer to the PGM instance data.
4363 * @param GCPtr The address.
4364 */
4365DECLINLINE(PX86PDPAE) pgmShwGetPaePDPtr(PPGM pPGM, RTGCPTR GCPtr)
4366{
4367#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
4368 const unsigned iPdpt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
4369 PX86PDPT pPdpt = pgmShwGetPaePDPTPtr(pPGM);
4370
4371 if (!pPdpt->a[iPdpt].n.u1Present)
4372 return NULL;
4373
4374 /* Fetch the pgm pool shadow descriptor. */
4375 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(PGM2VM(pPGM), pPdpt->a[iPdpt].u & X86_PDPE_PG_MASK);
4376 AssertReturn(pShwPde, NULL);
4377
4378 return (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pShwPde);
4379#else
4380 const unsigned iPdpt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
4381# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4382 PX86PDPAE pPD;
4383 int rc = PGM_HCPHYS_2_PTR_BY_PGM(pPGM, pPGM->aHCPhysPaePDs[iPdpt], &pPD);
4384 AssertRCReturn(rc, 0);
4385 return pPD;
4386# else
4387 PX86PDPAE pPD = pPGM->CTX_SUFF(apShwPaePDs)[iPdpt];
4388 Assert(pPD);
4389 return pPD;
4390# endif
4391#endif
4392}
4393
4394/**
4395 * Gets the shadow page directory for the specified address, PAE.
4396 *
4397 * @returns Pointer to the shadow PD.
4398 * @param pPGM Pointer to the PGM instance data.
4399 * @param GCPtr The address.
4400 */
4401DECLINLINE(PX86PDPAE) pgmShwGetPaePDPtr(PPGM pPGM, PX86PDPT pPdpt, RTGCPTR GCPtr)
4402{
4403#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
4404 const unsigned iPdpt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
4405
4406 if (!pPdpt->a[iPdpt].n.u1Present)
4407 return NULL;
4408
4409 /* Fetch the pgm pool shadow descriptor. */
4410 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(PGM2VM(pPGM), pPdpt->a[iPdpt].u & X86_PDPE_PG_MASK);
4411 AssertReturn(pShwPde, NULL);
4412
4413 return (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pShwPde);
4414#else
4415 AssertFailed();
4416 return NULL;
4417#endif
4418}
4419
4420/**
4421 * Gets the shadow page directory entry, PAE.
4422 *
4423 * @returns PDE.
4424 * @param pPGM Pointer to the PGM instance data.
4425 * @param GCPtr The address.
4426 */
4427DECLINLINE(X86PDEPAE) pgmShwGetPaePDE(PPGM pPGM, RTGCPTR GCPtr)
4428{
4429 const unsigned iPd = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4430
4431 PX86PDPAE pShwPde = pgmShwGetPaePDPtr(pPGM, GCPtr);
4432 if (!pShwPde)
4433 {
4434 X86PDEPAE ZeroPde = {0};
4435 return ZeroPde;
4436 }
4437 return pShwPde->a[iPd];
4438}
4439
4440
4441/**
4442 * Gets the pointer to the shadow page directory entry for an address, PAE.
4443 *
4444 * @returns Pointer to the PDE.
4445 * @param pPGM Pointer to the PGM instance data.
4446 * @param GCPtr The address.
4447 */
4448DECLINLINE(PX86PDEPAE) pgmShwGetPaePDEPtr(PPGM pPGM, RTGCPTR GCPtr)
4449{
4450 const unsigned iPd = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4451
4452 PX86PDPAE pPde = pgmShwGetPaePDPtr(pPGM, GCPtr);
4453 AssertReturn(pPde, NULL);
4454 return &pPde->a[iPd];
4455}
4456
4457#ifndef IN_RC
4458/**
4459 * Gets the shadow page map level-4 pointer.
4460 *
4461 * @returns Pointer to the shadow PML4.
4462 * @param pPGM Pointer to the PGM instance data.
4463 */
4464DECLINLINE(PX86PML4) pgmShwGetLongModePML4Ptr(PPGM pPGM)
4465{
4466#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
4467 return (PX86PML4)PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pPGM->CTX_SUFF(pShwPageCR3));
4468#else
4469# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4470 PX86PML4 pShwPml4;
4471 Assert(pPGM->HCPhysShwCR3 != 0 && pPGM->HCPhysShwCR3 != NIL_RTHCPHYS);
4472 int rc = PGM_HCPHYS_2_PTR_BY_PGM(pPGM, pPGM->HCPhysShwCR3, &pShwPml4);
4473 AssertRCReturn(rc, 0);
4474 return pShwPml4;
4475# else
4476 Assert(pPGM->CTX_SUFF(pShwRoot));
4477 return (PX86PML4)pPGM->CTX_SUFF(pShwRoot);
4478# endif
4479#endif
4480}
4481
4482
4483/**
4484 * Gets the shadow page map level-4 entry for the specified address.
4485 *
4486 * @returns The entry.
4487 * @param pPGM Pointer to the PGM instance data.
4488 * @param GCPtr The address.
4489 */
4490DECLINLINE(X86PML4E) pgmShwGetLongModePML4E(PPGM pPGM, RTGCPTR GCPtr)
4491{
4492 const unsigned iPml4 = ((RTGCUINTPTR64)GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
4493 PX86PML4 pShwPml4 = pgmShwGetLongModePML4Ptr(pPGM);
4494
4495 if (!pShwPml4)
4496 {
4497 X86PML4E ZeroPml4e = {0};
4498 return ZeroPml4e;
4499 }
4500 return pShwPml4->a[iPml4];
4501}
4502
4503
4504/**
4505 * Gets the pointer to the specified shadow page map level-4 entry.
4506 *
4507 * @returns The entry.
4508 * @param pPGM Pointer to the PGM instance data.
4509 * @param iPml4 The PML4 index.
4510 */
4511DECLINLINE(PX86PML4E) pgmShwGetLongModePML4EPtr(PPGM pPGM, unsigned int iPml4)
4512{
4513 PX86PML4 pShwPml4 = pgmShwGetLongModePML4Ptr(pPGM);
4514 if (!pShwPml4)
4515 return NULL;
4516 return &pShwPml4->a[iPml4];
4517}
4518
4519
4520/**
4521 * Gets the GUEST page directory pointer for the specified address.
4522 *
4523 * @returns The page directory in question.
4524 * @returns NULL if the page directory is not present or on an invalid page.
4525 * @param pPGM Pointer to the PGM instance data.
4526 * @param GCPtr The address.
4527 * @param piPD Receives the index into the returned page directory
4528 */
4529DECLINLINE(PX86PDPAE) pgmGstGetLongModePDPtr(PPGM pPGM, RTGCPTR64 GCPtr, unsigned *piPD)
4530{
4531 PCX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
4532 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
4533 if (pGuestPml4->a[iPml4].n.u1Present)
4534 {
4535 PCX86PDPT pPdptTemp;
4536 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pGuestPml4->a[iPml4].u & X86_PML4E_PG_MASK, &pPdptTemp);
4537 AssertRCReturn(rc, NULL);
4538
4539 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
4540 if (pPdptTemp->a[iPdPt].n.u1Present)
4541 {
4542 PX86PDPAE pPD;
4543 rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
4544 AssertRCReturn(rc, NULL);
4545
4546 *piPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4547 return pPD;
4548 }
4549 }
4550 return NULL;
4551}
4552
4553#endif /* !IN_RC */
4554
4555/**
4556 * Checks if any of the specified page flags are set for the given page.
4557 *
4558 * @returns true if any of the flags are set.
4559 * @returns false if all the flags are clear.
4560 * @param pPGM PGM handle.
4561 * @param GCPhys The GC physical address.
4562 * @param fFlags The flags to check for.
4563 */
4564DECLINLINE(bool) pgmRamTestFlags(PPGM pPGM, RTGCPHYS GCPhys, uint64_t fFlags)
4565{
4566 PPGMPAGE pPage = pgmPhysGetPage(pPGM, GCPhys);
4567 return pPage
4568 && (pPage->HCPhys & fFlags) != 0; /** @todo PAGE FLAGS */
4569}
4570
4571
4572/**
4573 * Gets the page state for a physical handler.
4574 *
4575 * @returns The physical handler page state.
4576 * @param pCur The physical handler in question.
4577 */
4578DECLINLINE(unsigned) pgmHandlerPhysicalCalcState(PPGMPHYSHANDLER pCur)
4579{
4580 switch (pCur->enmType)
4581 {
4582 case PGMPHYSHANDLERTYPE_PHYSICAL_WRITE:
4583 return PGM_PAGE_HNDL_PHYS_STATE_WRITE;
4584
4585 case PGMPHYSHANDLERTYPE_MMIO:
4586 case PGMPHYSHANDLERTYPE_PHYSICAL_ALL:
4587 return PGM_PAGE_HNDL_PHYS_STATE_ALL;
4588
4589 default:
4590 AssertFatalMsgFailed(("Invalid type %d\n", pCur->enmType));
4591 }
4592}
4593
4594
4595/**
4596 * Gets the page state for a virtual handler.
4597 *
4598 * @returns The virtual handler page state.
4599 * @param pCur The virtual handler in question.
4600 * @remarks This should never be used on a hypervisor access handler.
4601 */
4602DECLINLINE(unsigned) pgmHandlerVirtualCalcState(PPGMVIRTHANDLER pCur)
4603{
4604 switch (pCur->enmType)
4605 {
4606 case PGMVIRTHANDLERTYPE_WRITE:
4607 return PGM_PAGE_HNDL_VIRT_STATE_WRITE;
4608 case PGMVIRTHANDLERTYPE_ALL:
4609 return PGM_PAGE_HNDL_VIRT_STATE_ALL;
4610 default:
4611 AssertFatalMsgFailed(("Invalid type %d\n", pCur->enmType));
4612 }
4613}
4614
4615
4616/**
4617 * Clears one physical page of a virtual handler
4618 *
4619 * @param pPGM Pointer to the PGM instance.
4620 * @param pCur Virtual handler structure
4621 * @param iPage Physical page index
4622 *
4623 * @remark Only used when PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL is being set, so no
4624 * need to care about other handlers in the same page.
4625 */
4626DECLINLINE(void) pgmHandlerVirtualClearPage(PPGM pPGM, PPGMVIRTHANDLER pCur, unsigned iPage)
4627{
4628 const PPGMPHYS2VIRTHANDLER pPhys2Virt = &pCur->aPhysToVirt[iPage];
4629
4630 /*
4631 * Remove the node from the tree (it's supposed to be in the tree if we get here!).
4632 */
4633#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
4634 AssertReleaseMsg(pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_IN_TREE,
4635 ("pPhys2Virt=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4636 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias));
4637#endif
4638 if (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_IS_HEAD)
4639 {
4640 /* We're the head of the alias chain. */
4641 PPGMPHYS2VIRTHANDLER pRemove = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysRemove(&pPGM->CTX_SUFF(pTrees)->PhysToVirtHandlers, pPhys2Virt->Core.Key); NOREF(pRemove);
4642#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
4643 AssertReleaseMsg(pRemove != NULL,
4644 ("pPhys2Virt=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4645 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias));
4646 AssertReleaseMsg(pRemove == pPhys2Virt,
4647 ("wanted: pPhys2Virt=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4648 " got: pRemove=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4649 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias,
4650 pRemove, pRemove->Core.Key, pRemove->Core.KeyLast, pRemove->offVirtHandler, pRemove->offNextAlias));
4651#endif
4652 if (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4653 {
4654 /* Insert the next list in the alias chain into the tree. */
4655 PPGMPHYS2VIRTHANDLER pNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPhys2Virt + (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4656#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
4657 AssertReleaseMsg(pNext->offNextAlias & PGMPHYS2VIRTHANDLER_IN_TREE,
4658 ("pNext=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4659 pNext, pNext->Core.Key, pNext->Core.KeyLast, pNext->offVirtHandler, pNext->offNextAlias));
4660#endif
4661 pNext->offNextAlias |= PGMPHYS2VIRTHANDLER_IS_HEAD;
4662 bool fRc = RTAvlroGCPhysInsert(&pPGM->CTX_SUFF(pTrees)->PhysToVirtHandlers, &pNext->Core);
4663 AssertRelease(fRc);
4664 }
4665 }
4666 else
4667 {
4668 /* Locate the previous node in the alias chain. */
4669 PPGMPHYS2VIRTHANDLER pPrev = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysGet(&pPGM->CTX_SUFF(pTrees)->PhysToVirtHandlers, pPhys2Virt->Core.Key);
4670#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
4671 AssertReleaseMsg(pPrev != pPhys2Virt,
4672 ("pPhys2Virt=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32} pPrev=%p\n",
4673 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias, pPrev));
4674#endif
4675 for (;;)
4676 {
4677 PPGMPHYS2VIRTHANDLER pNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPrev + (pPrev->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4678 if (pNext == pPhys2Virt)
4679 {
4680 /* unlink. */
4681 LogFlow(("pgmHandlerVirtualClearPage: removed %p:{.offNextAlias=%#RX32} from alias chain. prev %p:{.offNextAlias=%#RX32} [%RGp-%RGp]\n",
4682 pPhys2Virt, pPhys2Virt->offNextAlias, pPrev, pPrev->offNextAlias, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast));
4683 if (!(pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4684 pPrev->offNextAlias &= ~PGMPHYS2VIRTHANDLER_OFF_MASK;
4685 else
4686 {
4687 PPGMPHYS2VIRTHANDLER pNewNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPhys2Virt + (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4688 pPrev->offNextAlias = ((intptr_t)pNewNext - (intptr_t)pPrev)
4689 | (pPrev->offNextAlias & ~PGMPHYS2VIRTHANDLER_OFF_MASK);
4690 }
4691 break;
4692 }
4693
4694 /* next */
4695 if (pNext == pPrev)
4696 {
4697#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
4698 AssertReleaseMsg(pNext != pPrev,
4699 ("pPhys2Virt=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32} pPrev=%p\n",
4700 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias, pPrev));
4701#endif
4702 break;
4703 }
4704 pPrev = pNext;
4705 }
4706 }
4707 Log2(("PHYS2VIRT: Removing %RGp-%RGp %#RX32 %s\n",
4708 pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offNextAlias, R3STRING(pCur->pszDesc)));
4709 pPhys2Virt->offNextAlias = 0;
4710 pPhys2Virt->Core.KeyLast = NIL_RTGCPHYS; /* require reinsert */
4711
4712 /*
4713 * Clear the ram flags for this page.
4714 */
4715 PPGMPAGE pPage = pgmPhysGetPage(pPGM, pPhys2Virt->Core.Key);
4716 AssertReturnVoid(pPage);
4717 PGM_PAGE_SET_HNDL_VIRT_STATE(pPage, PGM_PAGE_HNDL_VIRT_STATE_NONE);
4718}
4719
4720
4721/**
4722 * Internal worker for finding a 'in-use' shadow page give by it's physical address.
4723 *
4724 * @returns Pointer to the shadow page structure.
4725 * @param pPool The pool.
4726 * @param HCPhys The HC physical address of the shadow page.
4727 */
4728DECLINLINE(PPGMPOOLPAGE) pgmPoolGetPage(PPGMPOOL pPool, RTHCPHYS HCPhys)
4729{
4730 /*
4731 * Look up the page.
4732 */
4733 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK);
4734 AssertFatalMsg(pPage && pPage->enmKind != PGMPOOLKIND_FREE, ("HCPhys=%RHp pPage=%p idx=%d\n", HCPhys, pPage, (pPage) ? pPage->idx : 0));
4735 return pPage;
4736}
4737
4738
4739/**
4740 * Internal worker for finding a 'in-use' shadow page give by it's physical address.
4741 *
4742 * @returns Pointer to the shadow page structure.
4743 * @param pPool The pool.
4744 * @param idx The pool page index.
4745 */
4746DECLINLINE(PPGMPOOLPAGE) pgmPoolGetPageByIdx(PPGMPOOL pPool, unsigned idx)
4747{
4748 AssertFatalMsg(idx >= PGMPOOL_IDX_FIRST && idx < pPool->cCurPages, ("idx=%d\n", idx));
4749 return &pPool->aPages[idx];
4750}
4751
4752
4753#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
4754/**
4755 * Clear references to guest physical memory.
4756 *
4757 * @param pPool The pool.
4758 * @param pPoolPage The pool page.
4759 * @param pPhysPage The physical guest page tracking structure.
4760 */
4761DECLINLINE(void) pgmTrackDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPoolPage, PPGMPAGE pPhysPage)
4762{
4763 /*
4764 * Just deal with the simple case here.
4765 */
4766# ifdef LOG_ENABLED
4767 const unsigned uOrg = PGM_PAGE_GET_TRACKING(pPhysPage);
4768# endif
4769 const unsigned cRefs = PGM_PAGE_GET_TD_CREFS(pPhysPage);
4770 if (cRefs == 1)
4771 {
4772 Assert(pPoolPage->idx == PGM_PAGE_GET_TD_IDX(pPhysPage));
4773 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
4774 }
4775 else
4776 pgmPoolTrackPhysExtDerefGCPhys(pPool, pPoolPage, pPhysPage);
4777 Log2(("pgmTrackDerefGCPhys: %x -> %x HCPhys=%RGp\n", uOrg, PGM_PAGE_GET_TRACKING(pPhysPage), PGM_PAGE_GET_HCPHYS(pPhysPage) ));
4778}
4779#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
4780
4781
4782#ifdef PGMPOOL_WITH_CACHE
4783/**
4784 * Moves the page to the head of the age list.
4785 *
4786 * This is done when the cached page is used in one way or another.
4787 *
4788 * @param pPool The pool.
4789 * @param pPage The cached page.
4790 * @todo inline in PGMInternal.h!
4791 */
4792DECLINLINE(void) pgmPoolCacheUsed(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
4793{
4794 /*
4795 * Move to the head of the age list.
4796 */
4797 if (pPage->iAgePrev != NIL_PGMPOOL_IDX)
4798 {
4799 /* unlink */
4800 pPool->aPages[pPage->iAgePrev].iAgeNext = pPage->iAgeNext;
4801 if (pPage->iAgeNext != NIL_PGMPOOL_IDX)
4802 pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->iAgePrev;
4803 else
4804 pPool->iAgeTail = pPage->iAgePrev;
4805
4806 /* insert at head */
4807 pPage->iAgePrev = NIL_PGMPOOL_IDX;
4808 pPage->iAgeNext = pPool->iAgeHead;
4809 Assert(pPage->iAgeNext != NIL_PGMPOOL_IDX); /* we would've already been head then */
4810 pPool->iAgeHead = pPage->idx;
4811 pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->idx;
4812 }
4813}
4814#endif /* PGMPOOL_WITH_CACHE */
4815
4816#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
4817/**
4818 * Locks a page to prevent flushing (important for cr3 root pages or shadow pae pd pages).
4819 *
4820 * @returns VBox status code.
4821 * @param pVM VM Handle.
4822 * @param pPage PGM pool page
4823 */
4824DECLINLINE(int) pgmPoolLockPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
4825{
4826 Assert(!pPage->fLocked);
4827 pPage->fLocked = true;
4828 return VINF_SUCCESS;
4829}
4830
4831/**
4832 * Unlocks a page to allow flushing again
4833 *
4834 * @returns VBox status code.
4835 * @param pVM VM Handle.
4836 * @param pPage PGM pool page
4837 */
4838DECLINLINE(int) pgmPoolUnlockPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
4839{
4840 Assert(pPage->fLocked);
4841 pPage->fLocked = false;
4842 return VINF_SUCCESS;
4843}
4844
4845/**
4846 * Checks if the page is locked (e.g. the active CR3 or one of the four PDs of a PAE PDPT)
4847 *
4848 * @returns VBox status code.
4849 * @param pPage PGM pool page
4850 */
4851DECLINLINE(bool) pgmPoolIsPageLocked(PPGM pPGM, PPGMPOOLPAGE pPage)
4852{
4853 if (pPage->fLocked)
4854 {
4855 LogFlow(("pgmPoolIsPageLocked found root page %d\n", pPage->enmKind));
4856 if (pPage->cModifications)
4857 pPage->cModifications = 1; /* reset counter (can't use 0, or else it will be reinserted in the modified list) */
4858 return true;
4859 }
4860 return false;
4861}
4862#endif
4863
4864/**
4865 * Tells if mappings are to be put into the shadow page table or not
4866 *
4867 * @returns boolean result
4868 * @param pVM VM handle.
4869 */
4870
4871DECLINLINE(bool) pgmMapAreMappingsEnabled(PPGM pPGM)
4872{
4873#ifdef IN_RING0
4874 /* There are no mappings in VT-x and AMD-V mode. */
4875 Assert(pPGM->fDisableMappings);
4876 return false;
4877#else
4878 return !pPGM->fDisableMappings;
4879#endif
4880}
4881
4882/** @} */
4883
4884#endif
4885
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette