VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMInternal.h@ 7660

Last change on this file since 7660 was 7642, checked in by vboxsync, 17 years ago

Additional cleanup

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 144.8 KB
Line 
1/* $Id: PGMInternal.h 7642 2008-03-31 10:06:59Z vboxsync $ */
2/** @file
3 * PGM - Internal header file.
4 */
5
6/*
7 * Copyright (C) 2006-2007 innotek GmbH
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18#ifndef ___PGMInternal_h
19#define ___PGMInternal_h
20
21#include <VBox/cdefs.h>
22#include <VBox/types.h>
23#include <VBox/err.h>
24#include <VBox/stam.h>
25#include <VBox/param.h>
26#include <VBox/vmm.h>
27#include <VBox/mm.h>
28#include <VBox/pdmcritsect.h>
29#include <VBox/pdmapi.h>
30#include <VBox/dis.h>
31#include <VBox/dbgf.h>
32#include <VBox/log.h>
33#include <VBox/gmm.h>
34#include <iprt/avl.h>
35#include <iprt/assert.h>
36#include <iprt/critsect.h>
37
38#if !defined(IN_PGM_R3) && !defined(IN_PGM_R0) && !defined(IN_PGM_GC)
39# error "Not in PGM! This is an internal header!"
40#endif
41
42
43/** @defgroup grp_pgm_int Internals
44 * @ingroup grp_pgm
45 * @internal
46 * @{
47 */
48
49
50/** @name PGM Compile Time Config
51 * @{
52 */
53
54/**
55 * Solve page is out of sync issues inside Guest Context (in PGMGC.cpp).
56 * Comment it if it will break something.
57 */
58#define PGM_OUT_OF_SYNC_IN_GC
59
60/**
61 * Virtualize the dirty bit
62 * This also makes a half-hearted attempt at the accessed bit. For full
63 * accessed bit virtualization define PGM_SYNC_ACCESSED_BIT.
64 */
65#define PGM_SYNC_DIRTY_BIT
66
67/**
68 * Fully virtualize the accessed bit.
69 * @remark This requires SYNC_DIRTY_ACCESSED_BITS to be defined!
70 */
71#define PGM_SYNC_ACCESSED_BIT
72
73/**
74 * Check and skip global PDEs for non-global flushes
75 */
76#define PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
77
78/**
79 * Sync N pages instead of a whole page table
80 */
81#define PGM_SYNC_N_PAGES
82
83/**
84 * Number of pages to sync during a page fault
85 *
86 * When PGMPOOL_WITH_GCPHYS_TRACKING is enabled using high values here
87 * causes a lot of unnecessary extents and also is slower than taking more \#PFs.
88 */
89#define PGM_SYNC_NR_PAGES 8
90
91/**
92 * Number of PGMPhysRead/Write cache entries (must be <= sizeof(uint64_t))
93 */
94#define PGM_MAX_PHYSCACHE_ENTRIES 64
95#define PGM_MAX_PHYSCACHE_ENTRIES_MASK (PGM_MAX_PHYSCACHE_ENTRIES-1)
96
97/**
98 * Enable caching of PGMR3PhysRead/WriteByte/Word/Dword
99 */
100#define PGM_PHYSMEMACCESS_CACHING
101
102/*
103 * Assert Sanity.
104 */
105#if defined(PGM_SYNC_ACCESSED_BIT) && !defined(PGM_SYNC_DIRTY_BIT)
106# error "PGM_SYNC_ACCESSED_BIT requires PGM_SYNC_DIRTY_BIT!"
107#endif
108
109/** @def PGMPOOL_WITH_CACHE
110 * Enable agressive caching using the page pool.
111 *
112 * This requires PGMPOOL_WITH_USER_TRACKING and PGMPOOL_WITH_MONITORING.
113 */
114#define PGMPOOL_WITH_CACHE
115
116/** @def PGMPOOL_WITH_MIXED_PT_CR3
117 * When defined, we'll deal with 'uncachable' pages.
118 */
119#ifdef PGMPOOL_WITH_CACHE
120# define PGMPOOL_WITH_MIXED_PT_CR3
121#endif
122
123/** @def PGMPOOL_WITH_MONITORING
124 * Monitor the guest pages which are shadowed.
125 * When this is enabled, PGMPOOL_WITH_CACHE or PGMPOOL_WITH_GCPHYS_TRACKING must
126 * be enabled as well.
127 * @remark doesn't really work without caching now. (Mixed PT/CR3 change.)
128 */
129#ifdef PGMPOOL_WITH_CACHE
130# define PGMPOOL_WITH_MONITORING
131#endif
132
133/** @def PGMPOOL_WITH_GCPHYS_TRACKING
134 * Tracking the of shadow pages mapping guest physical pages.
135 *
136 * This is very expensive, the current cache prototype is trying to figure out
137 * whether it will be acceptable with an agressive caching policy.
138 */
139#if defined(PGMPOOL_WITH_CACHE) || defined(PGMPOOL_WITH_MONITORING)
140# define PGMPOOL_WITH_GCPHYS_TRACKING
141#endif
142
143/** @def PGMPOOL_WITH_USER_TRACKNG
144 * Tracking users of shadow pages. This is required for the linking of shadow page
145 * tables and physical guest addresses.
146 */
147#if defined(PGMPOOL_WITH_GCPHYS_TRACKING) || defined(PGMPOOL_WITH_CACHE) || defined(PGMPOOL_WITH_MONITORING)
148# define PGMPOOL_WITH_USER_TRACKING
149#endif
150
151/** @def PGMPOOL_CFG_MAX_GROW
152 * The maximum number of pages to add to the pool in one go.
153 */
154#define PGMPOOL_CFG_MAX_GROW (_256K >> PAGE_SHIFT)
155
156/** @def VBOX_STRICT_PGM_HANDLER_VIRTUAL
157 * Enables some extra assertions for virtual handlers (mainly phys2virt related).
158 */
159#ifdef VBOX_STRICT
160# define VBOX_STRICT_PGM_HANDLER_VIRTUAL
161#endif
162/** @} */
163
164
165/** @name PDPTR and PML4 flags.
166 * These are placed in the three bits available for system programs in
167 * the PDPTR and PML4 entries.
168 * @{ */
169/** The entry is a permanent one and it's must always be present.
170 * Never free such an entry. */
171#define PGM_PLXFLAGS_PERMANENT RT_BIT_64(10)
172/** @} */
173
174/** @name Page directory flags.
175 * These are placed in the three bits available for system programs in
176 * the page directory entries.
177 * @{ */
178/** Mapping (hypervisor allocated pagetable). */
179#define PGM_PDFLAGS_MAPPING RT_BIT_64(10)
180/** Made read-only to facilitate dirty bit tracking. */
181#define PGM_PDFLAGS_TRACK_DIRTY RT_BIT_64(11)
182/** @} */
183
184/** @name Page flags.
185 * These are placed in the three bits available for system programs in
186 * the page entries.
187 * @{ */
188/** Made read-only to facilitate dirty bit tracking. */
189#define PGM_PTFLAGS_TRACK_DIRTY RT_BIT_64(9)
190
191#ifndef PGM_PTFLAGS_CSAM_VALIDATED
192/** Scanned and approved by CSAM (tm).
193 * NOTE: Must be identical to the one defined in CSAMInternal.h!!
194 * @todo Move PGM_PTFLAGS_* and PGM_PDFLAGS_* to VBox/pgm.h. */
195#define PGM_PTFLAGS_CSAM_VALIDATED RT_BIT_64(11)
196#endif
197/** @} */
198
199/** @name Defines used to indicate the shadow and guest paging in the templates.
200 * @{ */
201#define PGM_TYPE_REAL 1
202#define PGM_TYPE_PROT 2
203#define PGM_TYPE_32BIT 3
204#define PGM_TYPE_PAE 4
205#define PGM_TYPE_AMD64 5
206/** @} */
207
208/** Macro for checking if the guest is using paging.
209 * @param uType PGM_TYPE_*
210 * @remark ASSUMES certain order of the PGM_TYPE_* values.
211 */
212#define PGM_WITH_PAGING(uType) ((uType) >= PGM_TYPE_32BIT)
213
214/** Macro for checking if the guest supports the NX bit.
215 * @param uType PGM_TYPE_*
216 * @remark ASSUMES certain order of the PGM_TYPE_* values.
217 */
218#define PGM_WITH_NX(uType) ((uType) >= PGM_TYPE_PAE)
219
220
221/** @def PGM_HCPHYS_2_PTR
222 * Maps a HC physical page pool address to a virtual address.
223 *
224 * @returns VBox status code.
225 * @param pVM The VM handle.
226 * @param HCPhys The HC physical address to map to a virtual one.
227 * @param ppv Where to store the virtual address. No need to cast this.
228 *
229 * @remark In GC this uses PGMGCDynMapHCPage(), so it will consume of the
230 * small page window employeed by that function. Be careful.
231 * @remark There is no need to assert on the result.
232 */
233#ifdef IN_GC
234# define PGM_HCPHYS_2_PTR(pVM, HCPhys, ppv) PGMGCDynMapHCPage(pVM, HCPhys, (void **)(ppv))
235#else
236# define PGM_HCPHYS_2_PTR(pVM, HCPhys, ppv) MMPagePhys2PageEx(pVM, HCPhys, (void **)(ppv))
237#endif
238
239/** @def PGM_GCPHYS_2_PTR
240 * Maps a GC physical page address to a virtual address.
241 *
242 * @returns VBox status code.
243 * @param pVM The VM handle.
244 * @param GCPhys The GC physical address to map to a virtual one.
245 * @param ppv Where to store the virtual address. No need to cast this.
246 *
247 * @remark In GC this uses PGMGCDynMapGCPage(), so it will consume of the
248 * small page window employeed by that function. Be careful.
249 * @remark There is no need to assert on the result.
250 */
251#ifdef IN_GC
252# define PGM_GCPHYS_2_PTR(pVM, GCPhys, ppv) PGMGCDynMapGCPage(pVM, GCPhys, (void **)(ppv))
253#else
254# define PGM_GCPHYS_2_PTR(pVM, GCPhys, ppv) PGMPhysGCPhys2HCPtr(pVM, GCPhys, 1 /* one page only */, (void **)(ppv)) /** @todo this isn't asserting, use PGMRamGCPhys2HCPtr! */
255#endif
256
257/** @def PGM_GCPHYS_2_PTR_EX
258 * Maps a unaligned GC physical page address to a virtual address.
259 *
260 * @returns VBox status code.
261 * @param pVM The VM handle.
262 * @param GCPhys The GC physical address to map to a virtual one.
263 * @param ppv Where to store the virtual address. No need to cast this.
264 *
265 * @remark In GC this uses PGMGCDynMapGCPage(), so it will consume of the
266 * small page window employeed by that function. Be careful.
267 * @remark There is no need to assert on the result.
268 */
269#ifdef IN_GC
270# define PGM_GCPHYS_2_PTR_EX(pVM, GCPhys, ppv) PGMGCDynMapGCPageEx(pVM, GCPhys, (void **)(ppv))
271#else
272# define PGM_GCPHYS_2_PTR_EX(pVM, GCPhys, ppv) PGMPhysGCPhys2HCPtr(pVM, GCPhys, 1 /* one page only */, (void **)(ppv)) /** @todo this isn't asserting, use PGMRamGCPhys2HCPtr! */
273#endif
274
275/** @def PGM_INVL_PG
276 * Invalidates a page when in GC does nothing in HC.
277 *
278 * @param GCVirt The virtual address of the page to invalidate.
279 */
280#ifdef IN_GC
281# define PGM_INVL_PG(GCVirt) ASMInvalidatePage((void *)(GCVirt))
282#else
283# define PGM_INVL_PG(GCVirt) ((void)0)
284#endif
285
286/** @def PGM_INVL_BIG_PG
287 * Invalidates a 4MB page directory entry when in GC does nothing in HC.
288 *
289 * @param GCVirt The virtual address within the page directory to invalidate.
290 */
291#ifdef IN_GC
292# define PGM_INVL_BIG_PG(GCVirt) ASMReloadCR3()
293#else
294# define PGM_INVL_BIG_PG(GCVirt) ((void)0)
295#endif
296
297/** @def PGM_INVL_GUEST_TLBS()
298 * Invalidates all guest TLBs.
299 */
300#ifdef IN_GC
301# define PGM_INVL_GUEST_TLBS() ASMReloadCR3()
302#else
303# define PGM_INVL_GUEST_TLBS() ((void)0)
304#endif
305
306
307/**
308 * Structure for tracking GC Mappings.
309 *
310 * This structure is used by linked list in both GC and HC.
311 */
312typedef struct PGMMAPPING
313{
314 /** Pointer to next entry. */
315 R3PTRTYPE(struct PGMMAPPING *) pNextR3;
316 /** Pointer to next entry. */
317 R0PTRTYPE(struct PGMMAPPING *) pNextR0;
318 /** Pointer to next entry. */
319 GCPTRTYPE(struct PGMMAPPING *) pNextGC;
320 /** Start Virtual address. */
321 RTGCUINTPTR GCPtr;
322 /** Last Virtual address (inclusive). */
323 RTGCUINTPTR GCPtrLast;
324 /** Range size (bytes). */
325 RTGCUINTPTR cb;
326 /** Pointer to relocation callback function. */
327 R3PTRTYPE(PFNPGMRELOCATE) pfnRelocate;
328 /** User argument to the callback. */
329 R3PTRTYPE(void *) pvUser;
330 /** Mapping description / name. For easing debugging. */
331 R3PTRTYPE(const char *) pszDesc;
332 /** Number of page tables. */
333 RTUINT cPTs;
334#if HC_ARCH_BITS != GC_ARCH_BITS
335 RTUINT uPadding0; /**< Alignment padding. */
336#endif
337 /** Array of page table mapping data. Each entry
338 * describes one page table. The array can be longer
339 * than the declared length.
340 */
341 struct
342 {
343 /** The HC physical address of the page table. */
344 RTHCPHYS HCPhysPT;
345 /** The HC physical address of the first PAE page table. */
346 RTHCPHYS HCPhysPaePT0;
347 /** The HC physical address of the second PAE page table. */
348 RTHCPHYS HCPhysPaePT1;
349 /** The HC virtual address of the 32-bit page table. */
350 R3PTRTYPE(PX86PT) pPTR3;
351 /** The HC virtual address of the two PAE page table. (i.e 1024 entries instead of 512) */
352 R3PTRTYPE(PX86PTPAE) paPaePTsR3;
353 /** The GC virtual address of the 32-bit page table. */
354 GCPTRTYPE(PX86PT) pPTGC;
355 /** The GC virtual address of the two PAE page table. */
356 GCPTRTYPE(PX86PTPAE) paPaePTsGC;
357 /** The GC virtual address of the 32-bit page table. */
358 R0PTRTYPE(PX86PT) pPTR0;
359 /** The GC virtual address of the two PAE page table. */
360 R0PTRTYPE(PX86PTPAE) paPaePTsR0;
361 } aPTs[1];
362} PGMMAPPING;
363/** Pointer to structure for tracking GC Mappings. */
364typedef struct PGMMAPPING *PPGMMAPPING;
365
366
367/**
368 * Physical page access handler structure.
369 *
370 * This is used to keep track of physical address ranges
371 * which are being monitored in some kind of way.
372 */
373typedef struct PGMPHYSHANDLER
374{
375 AVLROGCPHYSNODECORE Core;
376 /** Access type. */
377 PGMPHYSHANDLERTYPE enmType;
378 /** Number of pages to update. */
379 uint32_t cPages;
380 /** Pointer to R3 callback function. */
381 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3;
382 /** User argument for R3 handlers. */
383 R3PTRTYPE(void *) pvUserR3;
384 /** Pointer to R0 callback function. */
385 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0;
386 /** User argument for R0 handlers. */
387 R0PTRTYPE(void *) pvUserR0;
388 /** Pointer to GC callback function. */
389 GCPTRTYPE(PFNPGMGCPHYSHANDLER) pfnHandlerGC;
390 /** User argument for GC handlers. */
391 GCPTRTYPE(void *) pvUserGC;
392 /** Description / Name. For easing debugging. */
393 R3PTRTYPE(const char *) pszDesc;
394#ifdef VBOX_WITH_STATISTICS
395 /** Profiling of this handler. */
396 STAMPROFILE Stat;
397#endif
398} PGMPHYSHANDLER;
399/** Pointer to a physical page access handler structure. */
400typedef PGMPHYSHANDLER *PPGMPHYSHANDLER;
401
402
403/**
404 * Cache node for the physical addresses covered by a virtual handler.
405 */
406typedef struct PGMPHYS2VIRTHANDLER
407{
408 /** Core node for the tree based on physical ranges. */
409 AVLROGCPHYSNODECORE Core;
410 /** Offset from this struct to the PGMVIRTHANDLER structure. */
411 int32_t offVirtHandler;
412 /** Offset of the next alias relative to this one.
413 * Bit 0 is used for indicating whether we're in the tree.
414 * Bit 1 is used for indicating that we're the head node.
415 */
416 int32_t offNextAlias;
417} PGMPHYS2VIRTHANDLER;
418/** Pointer to a phys to virtual handler structure. */
419typedef PGMPHYS2VIRTHANDLER *PPGMPHYS2VIRTHANDLER;
420
421/** The bit in PGMPHYS2VIRTHANDLER::offNextAlias used to indicate that the
422 * node is in the tree. */
423#define PGMPHYS2VIRTHANDLER_IN_TREE RT_BIT(0)
424/** The bit in PGMPHYS2VIRTHANDLER::offNextAlias used to indicate that the
425 * node is in the head of an alias chain.
426 * The PGMPHYS2VIRTHANDLER_IN_TREE is always set if this bit is set. */
427#define PGMPHYS2VIRTHANDLER_IS_HEAD RT_BIT(1)
428/** The mask to apply to PGMPHYS2VIRTHANDLER::offNextAlias to get the offset. */
429#define PGMPHYS2VIRTHANDLER_OFF_MASK (~(int32_t)3)
430
431
432/**
433 * Virtual page access handler structure.
434 *
435 * This is used to keep track of virtual address ranges
436 * which are being monitored in some kind of way.
437 */
438typedef struct PGMVIRTHANDLER
439{
440 /** Core node for the tree based on virtual ranges. */
441 AVLROGCPTRNODECORE Core;
442 /** Number of cache pages. */
443 uint32_t u32Padding;
444 /** Access type. */
445 PGMVIRTHANDLERTYPE enmType;
446 /** Number of cache pages. */
447 uint32_t cPages;
448
449/** @todo The next two members are redundant. It adds some readability though. */
450 /** Start of the range. */
451 RTGCPTR GCPtr;
452 /** End of the range (exclusive). */
453 RTGCPTR GCPtrLast;
454 /** Size of the range (in bytes). */
455 RTGCUINTPTR cb;
456 /** Pointer to the GC callback function. */
457 GCPTRTYPE(PFNPGMGCVIRTHANDLER) pfnHandlerGC;
458 /** Pointer to the HC callback function for invalidation. */
459 R3PTRTYPE(PFNPGMHCVIRTINVALIDATE) pfnInvalidateHC;
460 /** Pointer to the HC callback function. */
461 R3PTRTYPE(PFNPGMHCVIRTHANDLER) pfnHandlerHC;
462 /** Description / Name. For easing debugging. */
463 R3PTRTYPE(const char *) pszDesc;
464#ifdef VBOX_WITH_STATISTICS
465 /** Profiling of this handler. */
466 STAMPROFILE Stat;
467#endif
468 /** Array of cached physical addresses for the monitored ranged. */
469 PGMPHYS2VIRTHANDLER aPhysToVirt[HC_ARCH_BITS == 32 ? 1 : 2];
470} PGMVIRTHANDLER;
471/** Pointer to a virtual page access handler structure. */
472typedef PGMVIRTHANDLER *PPGMVIRTHANDLER;
473
474
475/**
476 * Page type.
477 * @remarks This enum has to fit in a 3-bit field (see PGMPAGE::u3Type).
478 * @todo convert to \#defines.
479 */
480typedef enum PGMPAGETYPE
481{
482 /** The usual invalid zero entry. */
483 PGMPAGETYPE_INVALID = 0,
484 /** RAM page. (RWX) */
485 PGMPAGETYPE_RAM,
486 /** MMIO2 page. (RWX) */
487 PGMPAGETYPE_MMIO2,
488 /** Shadowed ROM. (RWX) */
489 PGMPAGETYPE_ROM_SHADOW,
490 /** ROM page. (R-X) */
491 PGMPAGETYPE_ROM,
492 /** MMIO page. (---) */
493 PGMPAGETYPE_MMIO,
494 /** End of valid entries. */
495 PGMPAGETYPE_END
496} PGMPAGETYPE;
497AssertCompile(PGMPAGETYPE_END < 7);
498
499/** @name Page type predicates.
500 * @{ */
501#define PGMPAGETYPE_IS_READABLE(type) ( (type) <= PGMPAGETYPE_ROM )
502#define PGMPAGETYPE_IS_WRITEABLE(type) ( (type) <= PGMPAGETYPE_ROM_SHADOW )
503#define PGMPAGETYPE_IS_RWX(type) ( (type) <= PGMPAGETYPE_ROM_SHADOW )
504#define PGMPAGETYPE_IS_ROX(type) ( (type) == PGMPAGETYPE_ROM )
505#define PGMPAGETYPE_IS_NP(type) ( (type) == PGMPAGETYPE_MMIO )
506/** @} */
507
508
509/**
510 * A Physical Guest Page tracking structure.
511 *
512 * The format of this structure is complicated because we have to fit a lot
513 * of information into as few bits as possible. The format is also subject
514 * to change (there is one comming up soon). Which means that for we'll be
515 * using PGM_PAGE_GET_*, PGM_PAGE_IS_ and PGM_PAGE_SET_* macros for *all*
516 * accessess to the structure.
517 */
518typedef struct PGMPAGE
519{
520 /** The physical address and a whole lot of other stuff. All bits are used! */
521 RTHCPHYS HCPhys;
522 /** The page state. */
523 uint32_t u2StateX : 2;
524 /** Flag indicating that a write monitored page was written to when set. */
525 uint32_t fWrittenToX : 1;
526 /** For later. */
527 uint32_t fSomethingElse : 1;
528 /** The Page ID.
529 * @todo Merge with HCPhys once we've liberated HCPhys of its stuff.
530 * The HCPhys will be 100% static. */
531 uint32_t idPageX : 28;
532 /** The page type (PGMPAGETYPE). */
533 uint32_t u3Type : 3;
534 /** The physical handler state (PGM_PAGE_HNDL_PHYS_STATE*) */
535 uint32_t u2HandlerPhysStateX : 2;
536 /** The virtual handler state (PGM_PAGE_HNDL_VIRT_STATE*) */
537 uint32_t u2HandlerVirtStateX : 2;
538 uint32_t u29B : 25;
539} PGMPAGE;
540AssertCompileSize(PGMPAGE, 16);
541/** Pointer to a physical guest page. */
542typedef PGMPAGE *PPGMPAGE;
543/** Pointer to a const physical guest page. */
544typedef const PGMPAGE *PCPGMPAGE;
545/** Pointer to a physical guest page pointer. */
546typedef PPGMPAGE *PPPGMPAGE;
547
548
549/**
550 * Clears the page structure.
551 * @param pPage Pointer to the physical guest page tracking structure.
552 */
553#define PGM_PAGE_CLEAR(pPage) \
554 do { \
555 (pPage)->HCPhys = 0; \
556 (pPage)->u2StateX = 0; \
557 (pPage)->fWrittenToX = 0; \
558 (pPage)->fSomethingElse = 0; \
559 (pPage)->idPageX = 0; \
560 (pPage)->u3Type = 0; \
561 (pPage)->u29B = 0; \
562 } while (0)
563
564/**
565 * Clears the page structure.
566 * @param pPage Pointer to the physical guest page tracking structure.
567 */
568#define PGM_PAGE_INIT(pPage, _HCPhys, _idPage, _uType, _uState) \
569 do { \
570 (pPage)->HCPhys = (_HCPhys); \
571 (pPage)->u2StateX = (_uState); \
572 (pPage)->fWrittenToX = 0; \
573 (pPage)->fSomethingElse = 0; \
574 (pPage)->idPageX = (_idPage); \
575 /*(pPage)->u3Type = (_uType); - later */ \
576 PGM_PAGE_SET_TYPE(pPage, _uType); \
577 (pPage)->u29B = 0; \
578 } while (0)
579
580/**
581 * Clears the page structure.
582 * @param pPage Pointer to the physical guest page tracking structure.
583 */
584#ifdef VBOX_WITH_NEW_PHYS_CODE
585# define PGM_PAGE_INIT_ZERO(pPage, pVM, _uType) \
586 PGM_PAGE_INIT(pPage, (pVM)->pgm.s.HCPhysZeroPg, NIL_GMM_PAGEID, PGM_PAGE_STATE_ZERO, (_uType))
587#else
588# define PGM_PAGE_INIT_ZERO(pPage, pVM, _uType) \
589 PGM_PAGE_INIT(pPage, 0, NIL_GMM_PAGEID, PGM_PAGE_STATE_ZERO, (_uType))
590#endif
591/** Temporary hack. Replaced by PGM_PAGE_INIT_ZERO once the old code is kicked out. */
592# define PGM_PAGE_INIT_ZERO_REAL(pPage, pVM, _uType) \
593 PGM_PAGE_INIT(pPage, (pVM)->pgm.s.HCPhysZeroPg, NIL_GMM_PAGEID, PGM_PAGE_STATE_ZERO, (_uType))
594
595
596/** @name The Page state, PGMPAGE::u2StateX.
597 * @{ */
598/** The zero page.
599 * This is a per-VM page that's never ever mapped writable. */
600#define PGM_PAGE_STATE_ZERO 0
601/** A allocated page.
602 * This is a per-VM page allocated from the page pool (or wherever
603 * we get MMIO2 pages from if the type is MMIO2).
604 */
605#define PGM_PAGE_STATE_ALLOCATED 1
606/** A allocated page that's being monitored for writes.
607 * The shadow page table mappings are read-only. When a write occurs, the
608 * fWrittenTo member is set, the page remapped as read-write and the state
609 * moved back to allocated. */
610#define PGM_PAGE_STATE_WRITE_MONITORED 2
611/** The page is shared, aka. copy-on-write.
612 * This is a page that's shared with other VMs. */
613#define PGM_PAGE_STATE_SHARED 3
614/** @} */
615
616
617/**
618 * Gets the page state.
619 * @returns page state (PGM_PAGE_STATE_*).
620 * @param pPage Pointer to the physical guest page tracking structure.
621 */
622#define PGM_PAGE_GET_STATE(pPage) ( (pPage)->u2StateX )
623
624/**
625 * Sets the page state.
626 * @param pPage Pointer to the physical guest page tracking structure.
627 * @param _uState The new page state.
628 */
629#define PGM_PAGE_SET_STATE(pPage, _uState) \
630 do { (pPage)->u2StateX = (_uState); } while (0)
631
632
633/**
634 * Gets the host physical address of the guest page.
635 * @returns host physical address (RTHCPHYS).
636 * @param pPage Pointer to the physical guest page tracking structure.
637 */
638#define PGM_PAGE_GET_HCPHYS(pPage) ( (pPage)->HCPhys & UINT64_C(0x0000fffffffff000) )
639
640/**
641 * Sets the host physical address of the guest page.
642 * @param pPage Pointer to the physical guest page tracking structure.
643 * @param _HCPhys The new host physical address.
644 */
645#define PGM_PAGE_SET_HCPHYS(pPage, _HCPhys) \
646 do { (pPage)->HCPhys = (((pPage)->HCPhys) & UINT64_C(0xffff000000000fff)) \
647 | ((_HCPhys) & UINT64_C(0x0000fffffffff000)); } while (0)
648
649/**
650 * Get the Page ID.
651 * @returns The Page ID; NIL_GMM_PAGEID if it's a ZERO page.
652 * @param pPage Pointer to the physical guest page tracking structure.
653 */
654#define PGM_PAGE_GET_PAGEID(pPage) ( (pPage)->idPageX )
655/* later:
656#define PGM_PAGE_GET_PAGEID(pPage) ( ((uint32_t)(pPage)->HCPhys >> (48 - 12))
657 | ((uint32_t)(pPage)->HCPhys & 0xfff) )
658*/
659/**
660 * Sets the Page ID.
661 * @param pPage Pointer to the physical guest page tracking structure.
662 */
663#define PGM_PAGE_SET_PAGEID(pPage, _idPage) do { (pPage)->idPageX = (_idPage); } while (0)
664/* later:
665#define PGM_PAGE_SET_PAGEID(pPage, _idPage) do { (pPage)->HCPhys = (((pPage)->HCPhys) & UINT64_C(0x0000fffffffff000)) \
666 | ((_idPage) & 0xfff) \
667 | (((_idPage) & 0x0ffff000) << (48-12)); } while (0)
668*/
669
670/**
671 * Get the Chunk ID.
672 * @returns The Chunk ID; NIL_GMM_CHUNKID if it's a ZERO page.
673 * @param pPage Pointer to the physical guest page tracking structure.
674 */
675#define PGM_PAGE_GET_CHUNKID(pPage) ( (pPage)->idPageX >> GMM_CHUNKID_SHIFT )
676/* later:
677#if GMM_CHUNKID_SHIFT == 12
678# define PGM_PAGE_GET_CHUNKID(pPage) ( (uint32_t)((pPage)->HCPhys >> 48) )
679#elif GMM_CHUNKID_SHIFT > 12
680# define PGM_PAGE_GET_CHUNKID(pPage) ( (uint32_t)((pPage)->HCPhys >> (48 + (GMM_CHUNKID_SHIFT - 12)) )
681#elif GMM_CHUNKID_SHIFT < 12
682# define PGM_PAGE_GET_CHUNKID(pPage) ( ( (uint32_t)((pPage)->HCPhys >> 48) << (12 - GMM_CHUNKID_SHIFT) ) \
683 | ( (uint32_t)((pPage)->HCPhys & 0xfff) >> GMM_CHUNKID_SHIFT ) )
684#else
685# error "GMM_CHUNKID_SHIFT isn't defined or something."
686#endif
687*/
688
689/**
690 * Get the index of the page within the allocaiton chunk.
691 * @returns The page index.
692 * @param pPage Pointer to the physical guest page tracking structure.
693 */
694#define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (pPage)->idPageX & GMM_PAGEID_IDX_MASK )
695/* later:
696#if GMM_CHUNKID_SHIFT <= 12
697# define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (uint32_t)((pPage)->HCPhys & GMM_PAGEID_IDX_MASK) )
698#else
699# define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (uint32_t)((pPage)->HCPhys & 0xfff) \
700 | ( (uint32_t)((pPage)->HCPhys >> 48) & (RT_BIT_32(GMM_CHUNKID_SHIFT - 12) - 1) ) )
701#endif
702*/
703
704
705/**
706 * Gets the page type.
707 * @returns The page type.
708 * @param pPage Pointer to the physical guest page tracking structure.
709 */
710#define PGM_PAGE_GET_TYPE(pPage) (pPage)->u3Type
711
712/**
713 * Sets the page type.
714 * @param pPage Pointer to the physical guest page tracking structure.
715 * @param _enmType The new page type (PGMPAGETYPE).
716 */
717#ifdef VBOX_WITH_NEW_PHYS_CODE
718#define PGM_PAGE_SET_TYPE(pPage, _enmType) \
719 do { (pPage)->u3Type = (_enmType); } while (0)
720#else
721#define PGM_PAGE_SET_TYPE(pPage, _enmType) \
722 do { \
723 (pPage)->u3Type = (_enmType); \
724 if ((_enmType) == PGMPAGETYPE_ROM) \
725 (pPage)->HCPhys |= MM_RAM_FLAGS_ROM; \
726 else if ((_enmType) == PGMPAGETYPE_ROM_SHADOW) \
727 (pPage)->HCPhys |= MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO2; \
728 else if ((_enmType) == PGMPAGETYPE_MMIO2) \
729 (pPage)->HCPhys |= MM_RAM_FLAGS_MMIO2; \
730 } while (0)
731#endif
732
733
734/**
735 * Checks if the page is 'reserved'.
736 * @returns true/false.
737 * @param pPage Pointer to the physical guest page tracking structure.
738 */
739#define PGM_PAGE_IS_RESERVED(pPage) ( !!((pPage)->HCPhys & MM_RAM_FLAGS_RESERVED) )
740
741/**
742 * Checks if the page is marked for MMIO.
743 * @returns true/false.
744 * @param pPage Pointer to the physical guest page tracking structure.
745 */
746#define PGM_PAGE_IS_MMIO(pPage) ( !!((pPage)->HCPhys & MM_RAM_FLAGS_MMIO) )
747
748/**
749 * Checks if the page is backed by the ZERO page.
750 * @returns true/false.
751 * @param pPage Pointer to the physical guest page tracking structure.
752 */
753#define PGM_PAGE_IS_ZERO(pPage) ( (pPage)->u2StateX == PGM_PAGE_STATE_ZERO )
754
755/**
756 * Checks if the page is backed by a SHARED page.
757 * @returns true/false.
758 * @param pPage Pointer to the physical guest page tracking structure.
759 */
760#define PGM_PAGE_IS_SHARED(pPage) ( (pPage)->u2StateX == PGM_PAGE_STATE_SHARED )
761
762
763/**
764 * Marks the paget as written to (for GMM change monitoring).
765 * @param pPage Pointer to the physical guest page tracking structure.
766 */
767#define PGM_PAGE_SET_WRITTEN_TO(pPage) do { (pPage)->fWrittenToX = 1; } while (0)
768
769/**
770 * Clears the written-to indicator.
771 * @param pPage Pointer to the physical guest page tracking structure.
772 */
773#define PGM_PAGE_CLEAR_WRITTEN_TO(pPage) do { (pPage)->fWrittenToX = 0; } while (0)
774
775/**
776 * Checks if the page was marked as written-to.
777 * @returns true/false.
778 * @param pPage Pointer to the physical guest page tracking structure.
779 */
780#define PGM_PAGE_IS_WRITTEN_TO(pPage) ( (pPage)->fWrittenToX )
781
782
783/** @name Physical Access Handler State values (PGMPAGE::u2HandlerPhysStateX).
784 *
785 * @remarks The values are assigned in order of priority, so we can calculate
786 * the correct state for a page with different handlers installed.
787 * @{ */
788/** No handler installed. */
789#define PGM_PAGE_HNDL_PHYS_STATE_NONE 0
790/** Monitoring is temporarily disabled. */
791#define PGM_PAGE_HNDL_PHYS_STATE_DISABLED 1
792/** Write access is monitored. */
793#define PGM_PAGE_HNDL_PHYS_STATE_WRITE 2
794/** All access is monitored. */
795#define PGM_PAGE_HNDL_PHYS_STATE_ALL 3
796/** @} */
797
798/**
799 * Gets the physical access handler state of a page.
800 * @returns PGM_PAGE_HNDL_PHYS_STATE_* value.
801 * @param pPage Pointer to the physical guest page tracking structure.
802 */
803#define PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) ( (pPage)->u2HandlerPhysStateX )
804
805/**
806 * Sets the physical access handler state of a page.
807 * @param pPage Pointer to the physical guest page tracking structure.
808 * @param _uState The new state value.
809 */
810#define PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, _uState) \
811 do { (pPage)->u2HandlerPhysStateX = (_uState); } while (0)
812
813/**
814 * Checks if the page has any physical access handlers, including temporariliy disabled ones.
815 * @returns true/false
816 * @param pPage Pointer to the physical guest page tracking structure.
817 */
818#define PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage) ( (pPage)->u2HandlerPhysStateX != PGM_PAGE_HNDL_PHYS_STATE_NONE )
819
820/**
821 * Checks if the page has any active physical access handlers.
822 * @returns true/false
823 * @param pPage Pointer to the physical guest page tracking structure.
824 */
825#define PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage) ( (pPage)->u2HandlerPhysStateX >= PGM_PAGE_HNDL_PHYS_STATE_WRITE )
826
827
828/** @name Virtual Access Handler State values (PGMPAGE::u2HandlerVirtStateX).
829 *
830 * @remarks The values are assigned in order of priority, so we can calculate
831 * the correct state for a page with different handlers installed.
832 * @{ */
833/** No handler installed. */
834#define PGM_PAGE_HNDL_VIRT_STATE_NONE 0
835/* 1 is reserved so the lineup is identical with the physical ones. */
836/** Write access is monitored. */
837#define PGM_PAGE_HNDL_VIRT_STATE_WRITE 2
838/** All access is monitored. */
839#define PGM_PAGE_HNDL_VIRT_STATE_ALL 3
840/** @} */
841
842/**
843 * Gets the virtual access handler state of a page.
844 * @returns PGM_PAGE_HNDL_VIRT_STATE_* value.
845 * @param pPage Pointer to the physical guest page tracking structure.
846 */
847#define PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) ( (pPage)->u2HandlerVirtStateX )
848
849/**
850 * Sets the virtual access handler state of a page.
851 * @param pPage Pointer to the physical guest page tracking structure.
852 * @param _uState The new state value.
853 */
854#define PGM_PAGE_SET_HNDL_VIRT_STATE(pPage, _uState) \
855 do { (pPage)->u2HandlerVirtStateX = (_uState); } while (0)
856
857/**
858 * Checks if the page has any virtual access handlers.
859 * @returns true/false
860 * @param pPage Pointer to the physical guest page tracking structure.
861 */
862#define PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(pPage) ( (pPage)->u2HandlerVirtStateX != PGM_PAGE_HNDL_VIRT_STATE_NONE )
863
864/**
865 * Same as PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS - can't disable pages in
866 * virtual handlers.
867 * @returns true/false
868 * @param pPage Pointer to the physical guest page tracking structure.
869 */
870#define PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage) PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(pPage)
871
872
873
874/**
875 * Checks if the page has any access handlers, including temporarily disabled ones.
876 * @returns true/false
877 * @param pPage Pointer to the physical guest page tracking structure.
878 */
879#define PGM_PAGE_HAS_ANY_HANDLERS(pPage) \
880 ( (pPage)->u2HandlerPhysStateX != PGM_PAGE_HNDL_PHYS_STATE_NONE \
881 || (pPage)->u2HandlerVirtStateX != PGM_PAGE_HNDL_VIRT_STATE_NONE )
882
883/**
884 * Checks if the page has any active access handlers.
885 * @returns true/false
886 * @param pPage Pointer to the physical guest page tracking structure.
887 */
888#define PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) \
889 ( (pPage)->u2HandlerPhysStateX >= PGM_PAGE_HNDL_PHYS_STATE_WRITE \
890 || (pPage)->u2HandlerVirtStateX >= PGM_PAGE_HNDL_VIRT_STATE_WRITE )
891
892/**
893 * Checks if the page has any active access handlers catching all accesses.
894 * @returns true/false
895 * @param pPage Pointer to the physical guest page tracking structure.
896 */
897#define PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage) \
898 ( (pPage)->u2HandlerPhysStateX == PGM_PAGE_HNDL_PHYS_STATE_ALL \
899 || (pPage)->u2HandlerVirtStateX == PGM_PAGE_HNDL_VIRT_STATE_ALL )
900
901
902/**
903 * Ram range for GC Phys to HC Phys conversion.
904 *
905 * Can be used for HC Virt to GC Phys and HC Virt to HC Phys
906 * conversions too, but we'll let MM handle that for now.
907 *
908 * This structure is used by linked lists in both GC and HC.
909 */
910typedef struct PGMRAMRANGE
911{
912 /** Pointer to the next RAM range - for R3. */
913 R3PTRTYPE(struct PGMRAMRANGE *) pNextR3;
914 /** Pointer to the next RAM range - for R0. */
915 R0PTRTYPE(struct PGMRAMRANGE *) pNextR0;
916 /** Pointer to the next RAM range - for GC. */
917 GCPTRTYPE(struct PGMRAMRANGE *) pNextGC;
918#if GC_ARCH_BITS == 32
919 /** Pointer alignment. */
920 RTGCPTR GCPtrAlignment;
921#endif
922 /** Start of the range. Page aligned. */
923 RTGCPHYS GCPhys;
924 /** Last address in the range (inclusive). Page aligned (-1). */
925 RTGCPHYS GCPhysLast;
926 /** Size of the range. (Page aligned of course). */
927 RTGCPHYS cb;
928 /** MM_RAM_* flags */
929 uint32_t fFlags;
930#ifdef VBOX_WITH_NEW_PHYS_CODE
931 uint32_t u32Alignment; /**< alignment. */
932#else
933 /** HC virtual lookup ranges for chunks. Currently only used with MM_RAM_FLAGS_DYNAMIC_ALLOC ranges. */
934 GCPTRTYPE(PRTHCPTR) pavHCChunkGC;
935 /** HC virtual lookup ranges for chunks. Currently only used with MM_RAM_FLAGS_DYNAMIC_ALLOC ranges. */
936 R3R0PTRTYPE(PRTHCPTR) pavHCChunkHC;
937#endif
938 /** Start of the HC mapping of the range. This is only used for MMIO2. */
939 R3PTRTYPE(void *) pvHC;
940 /** The range description. */
941 R3PTRTYPE(const char *) pszDesc;
942
943 /** Padding to make aPage aligned on sizeof(PGMPAGE). */
944#ifdef VBOX_WITH_NEW_PHYS_CODE
945 uint32_t au32Reserved[2];
946#elif HC_ARCH_BITS == 32
947 uint32_t au32Reserved[1];
948#endif
949
950 /** Array of physical guest page tracking structures. */
951 PGMPAGE aPages[1];
952} PGMRAMRANGE;
953/** Pointer to Ram range for GC Phys to HC Phys conversion. */
954typedef PGMRAMRANGE *PPGMRAMRANGE;
955
956/** Return hc ptr corresponding to the ram range and physical offset */
957#define PGMRAMRANGE_GETHCPTR(pRam, off) \
958 (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) ? (RTHCPTR)((RTHCUINTPTR)CTXSUFF(pRam->pavHCChunk)[(off >> PGM_DYNAMIC_CHUNK_SHIFT)] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK)) \
959 : (RTHCPTR)((RTHCUINTPTR)pRam->pvHC + off);
960
961/**
962 * Per page tracking structure for ROM image.
963 *
964 * A ROM image may have a shadow page, in which case we may have
965 * two pages backing it. This structure contains the PGMPAGE for
966 * both while PGMRAMRANGE have a copy of the active one. It is
967 * important that these aren't out of sync in any regard other
968 * than page pool tracking data.
969 */
970typedef struct PGMROMPAGE
971{
972 /** The page structure for the virgin ROM page. */
973 PGMPAGE Virgin;
974 /** The page structure for the shadow RAM page. */
975 PGMPAGE Shadow;
976 /** The current protection setting. */
977 PGMROMPROT enmProt;
978 /** Pad the structure size to a multiple of 8. */
979 uint32_t u32Padding;
980} PGMROMPAGE;
981/** Pointer to a ROM page tracking structure. */
982typedef PGMROMPAGE *PPGMROMPAGE;
983
984
985/**
986 * A registered ROM image.
987 *
988 * This is needed to keep track of ROM image since they generally
989 * intrude into a PGMRAMRANGE. It also keeps track of additional
990 * info like the two page sets (read-only virgin and read-write shadow),
991 * the current state of each page.
992 *
993 * Because access handlers cannot easily be executed in a different
994 * context, the ROM ranges needs to be accessible and in all contexts.
995 */
996typedef struct PGMROMRANGE
997{
998 /** Pointer to the next range - R3. */
999 R3PTRTYPE(struct PGMROMRANGE *) pNextR3;
1000 /** Pointer to the next range - R0. */
1001 R0PTRTYPE(struct PGMROMRANGE *) pNextR0;
1002 /** Pointer to the next range - GC. */
1003 GCPTRTYPE(struct PGMROMRANGE *) pNextGC;
1004#if GC_ARCH_BITS == 32
1005 RTGCPTR GCPtrAlignment; /**< Pointer alignment. */
1006#endif
1007 /** Address of the range. */
1008 RTGCPHYS GCPhys;
1009 /** Address of the last byte in the range. */
1010 RTGCPHYS GCPhysLast;
1011 /** Size of the range. */
1012 RTGCPHYS cb;
1013 /** The flags (PGMPHYS_ROM_FLAG_*). */
1014 uint32_t fFlags;
1015 /**< Alignment padding ensuring that aPages is sizeof(PGMROMPAGE) aligned. */
1016 uint32_t au32Alignemnt[HC_ARCH_BITS == 32 ? 7 : 3];
1017 /** Pointer to the original bits when PGMPHYS_ROM_FLAG_PERMANENT_BINARY was specified.
1018 * This is used for strictness checks. */
1019 R3PTRTYPE(const void *) pvOriginal;
1020 /** The ROM description. */
1021 R3PTRTYPE(const char *) pszDesc;
1022 /** The per page tracking structures. */
1023 PGMROMPAGE aPages[1];
1024} PGMROMRANGE;
1025/** Pointer to a ROM range. */
1026typedef PGMROMRANGE *PPGMROMRANGE;
1027
1028
1029/**
1030 * A registered MMIO2 (= Device RAM) range.
1031 *
1032 * There are a few reason why we need to keep track of these
1033 * registrations. One of them is the deregistration & cleanup
1034 * stuff, while another is that the PGMRAMRANGE associated with
1035 * such a region may have to be removed from the ram range list.
1036 *
1037 * Overlapping with a RAM range has to be 100% or none at all. The
1038 * pages in the existing RAM range must not be ROM nor MMIO. A guru
1039 * meditation will be raised if a partial overlap or an overlap of
1040 * ROM pages is encountered. On an overlap we will free all the
1041 * existing RAM pages and put in the ram range pages instead.
1042 */
1043typedef struct PGMMMIO2RANGE
1044{
1045 /** The owner of the range. (a device) */
1046 PPDMDEVINSR3 pDevInsR3;
1047 /** Pointer to the ring-3 mapping of the allocation. */
1048 RTR3PTR pvR3;
1049 /** Pointer to the next range - R3. */
1050 R3PTRTYPE(struct PGMMMIO2RANGE *) pNextR3;
1051 /** Whether it's mapped or not. */
1052 bool fMapped;
1053 /** Whether it's overlapping or not. */
1054 bool fOverlapping;
1055 /** The PCI region number.
1056 * @remarks This ASSUMES that nobody will ever really need to have multiple
1057 * PCI devices with matching MMIO region numbers on a single device. */
1058 uint8_t iRegion;
1059 /**< Alignment padding for putting the ram range on a PGMPAGE alignment boundrary. */
1060 uint8_t abAlignemnt[HC_ARCH_BITS == 32 ? 1 : 5];
1061 /** The associated RAM range. */
1062 PGMRAMRANGE RamRange;
1063} PGMMMIO2RANGE;
1064/** Pointer to a MMIO2 range. */
1065typedef PGMMMIO2RANGE *PPGMMMIO2RANGE;
1066
1067
1068
1069
1070/** @todo r=bird: fix typename. */
1071/**
1072 * PGMPhysRead/Write cache entry
1073 */
1074typedef struct PGMPHYSCACHE_ENTRY
1075{
1076 /** HC pointer to physical page */
1077 R3PTRTYPE(uint8_t *) pbHC;
1078 /** GC Physical address for cache entry */
1079 RTGCPHYS GCPhys;
1080#if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
1081 RTGCPHYS u32Padding0; /**< alignment padding. */
1082#endif
1083} PGMPHYSCACHE_ENTRY;
1084
1085/**
1086 * PGMPhysRead/Write cache to reduce REM memory access overhead
1087 */
1088typedef struct PGMPHYSCACHE
1089{
1090 /** Bitmap of valid cache entries */
1091 uint64_t aEntries;
1092 /** Cache entries */
1093 PGMPHYSCACHE_ENTRY Entry[PGM_MAX_PHYSCACHE_ENTRIES];
1094} PGMPHYSCACHE;
1095
1096
1097/** Pointer to an allocation chunk ring-3 mapping. */
1098typedef struct PGMCHUNKR3MAP *PPGMCHUNKR3MAP;
1099/** Pointer to an allocation chunk ring-3 mapping pointer. */
1100typedef PPGMCHUNKR3MAP *PPPGMCHUNKR3MAP;
1101
1102/**
1103 * Ring-3 tracking structore for an allocation chunk ring-3 mapping.
1104 *
1105 * The primary tree (Core) uses the chunk id as key.
1106 * The secondary tree (AgeCore) is used for ageing and uses ageing sequence number as key.
1107 */
1108typedef struct PGMCHUNKR3MAP
1109{
1110 /** The key is the chunk id. */
1111 AVLU32NODECORE Core;
1112 /** The key is the ageing sequence number. */
1113 AVLLU32NODECORE AgeCore;
1114 /** The current age thingy. */
1115 uint32_t iAge;
1116 /** The current reference count. */
1117 uint32_t volatile cRefs;
1118 /** The current permanent reference count. */
1119 uint32_t volatile cPermRefs;
1120 /** The mapping address. */
1121 void *pv;
1122} PGMCHUNKR3MAP;
1123
1124/**
1125 * Allocation chunk ring-3 mapping TLB entry.
1126 */
1127typedef struct PGMCHUNKR3MAPTLBE
1128{
1129 /** The chunk id. */
1130 uint32_t volatile idChunk;
1131#if HC_ARCH_BITS == 64
1132 uint32_t u32Padding; /**< alignment padding. */
1133#endif
1134 /** The chunk map. */
1135 R3R0PTRTYPE(PPGMCHUNKR3MAP) volatile pChunk;
1136} PGMCHUNKR3MAPTLBE;
1137/** Pointer to the an allocation chunk ring-3 mapping TLB entry. */
1138typedef PGMCHUNKR3MAPTLBE *PPGMCHUNKR3MAPTLBE;
1139
1140/** The number of TLB entries in PGMCHUNKR3MAPTLB.
1141 * @remark Must be a power of two value. */
1142#define PGM_CHUNKR3MAPTLB_ENTRIES 32
1143
1144/**
1145 * Allocation chunk ring-3 mapping TLB.
1146 *
1147 * @remarks We use a TLB to speed up lookups by avoiding walking the AVL.
1148 * At first glance this might look kinda odd since AVL trees are
1149 * supposed to give the most optimial lookup times of all trees
1150 * due to their balancing. However, take a tree with 1023 nodes
1151 * in it, that's 10 levels, meaning that most searches has to go
1152 * down 9 levels before they find what they want. This isn't fast
1153 * compared to a TLB hit. There is the factor of cache misses,
1154 * and of course the problem with trees and branch prediction.
1155 * This is why we use TLBs in front of most of the trees.
1156 *
1157 * @todo Generalize this TLB + AVL stuff, shouldn't be all that
1158 * difficult when we switch to inlined AVL trees (from kStuff).
1159 */
1160typedef struct PGMCHUNKR3MAPTLB
1161{
1162 /** The TLB entries. */
1163 PGMCHUNKR3MAPTLBE aEntries[PGM_CHUNKR3MAPTLB_ENTRIES];
1164} PGMCHUNKR3MAPTLB;
1165
1166/**
1167 * Calculates the index of a guest page in the Ring-3 Chunk TLB.
1168 * @returns Chunk TLB index.
1169 * @param idChunk The Chunk ID.
1170 */
1171#define PGM_CHUNKR3MAPTLB_IDX(idChunk) ( (idChunk) & (PGM_CHUNKR3MAPTLB_ENTRIES - 1) )
1172
1173
1174/**
1175 * Ring-3 guest page mapping TLB entry.
1176 * @remarks used in ring-0 as well at the moment.
1177 */
1178typedef struct PGMPAGER3MAPTLBE
1179{
1180 /** Address of the page. */
1181 RTGCPHYS volatile GCPhys;
1182 /** The guest page. */
1183 R3R0PTRTYPE(PPGMPAGE) volatile pPage;
1184 /** Pointer to the page mapping tracking structure, PGMCHUNKR3MAP. */
1185 R3R0PTRTYPE(PPGMCHUNKR3MAP) volatile pMap;
1186 /** The address */
1187 R3R0PTRTYPE(void *) volatile pv;
1188#if HC_ARCH_BITS == 32
1189 uint32_t u32Padding; /**< alignment padding. */
1190#endif
1191} PGMPAGER3MAPTLBE;
1192/** Pointer to an entry in the HC physical TLB. */
1193typedef PGMPAGER3MAPTLBE *PPGMPAGER3MAPTLBE;
1194
1195
1196/** The number of entries in the ring-3 guest page mapping TLB.
1197 * @remarks The value must be a power of two. */
1198#define PGM_PAGER3MAPTLB_ENTRIES 64
1199
1200/**
1201 * Ring-3 guest page mapping TLB.
1202 * @remarks used in ring-0 as well at the moment.
1203 */
1204typedef struct PGMPAGER3MAPTLB
1205{
1206 /** The TLB entries. */
1207 PGMPAGER3MAPTLBE aEntries[PGM_PAGER3MAPTLB_ENTRIES];
1208} PGMPAGER3MAPTLB;
1209/** Pointer to the ring-3 guest page mapping TLB. */
1210typedef PGMPAGER3MAPTLB *PPGMPAGER3MAPTLB;
1211
1212/**
1213 * Calculates the index of the TLB entry for the specified guest page.
1214 * @returns Physical TLB index.
1215 * @param GCPhys The guest physical address.
1216 */
1217#define PGM_PAGER3MAPTLB_IDX(GCPhys) ( ((GCPhys) >> PAGE_SHIFT) & (PGM_PAGER3MAPTLB_ENTRIES - 1) )
1218
1219
1220/** @name Context neutrual page mapper TLB.
1221 *
1222 * Hoping to avoid some code and bug duplication parts of the GCxxx->CCPtr
1223 * code is writting in a kind of context neutrual way. Time will show whether
1224 * this actually makes sense or not...
1225 *
1226 * @{ */
1227/** @typedef PPGMPAGEMAPTLB
1228 * The page mapper TLB pointer type for the current context. */
1229/** @typedef PPGMPAGEMAPTLB
1230 * The page mapper TLB entry pointer type for the current context. */
1231/** @typedef PPGMPAGEMAPTLB
1232 * The page mapper TLB entry pointer pointer type for the current context. */
1233/** @def PGMPAGEMAPTLB_ENTRIES
1234 * The number of TLB entries in the page mapper TLB for the current context. */
1235/** @def PGM_PAGEMAPTLB_IDX
1236 * Calculate the TLB index for a guest physical address.
1237 * @returns The TLB index.
1238 * @param GCPhys The guest physical address. */
1239/** @typedef PPGMPAGEMAP
1240 * Pointer to a page mapper unit for current context. */
1241/** @typedef PPPGMPAGEMAP
1242 * Pointer to a page mapper unit pointer for current context. */
1243#ifdef IN_GC
1244// typedef PPGMPAGEGCMAPTLB PPGMPAGEMAPTLB;
1245// typedef PPGMPAGEGCMAPTLBE PPGMPAGEMAPTLBE;
1246// typedef PPGMPAGEGCMAPTLBE *PPPGMPAGEMAPTLBE;
1247# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGEGCMAPTLB_ENTRIES
1248# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGEGCMAPTLB_IDX(GCPhys)
1249 typedef void * PPGMPAGEMAP;
1250 typedef void ** PPPGMPAGEMAP;
1251//#elif IN_RING0
1252// typedef PPGMPAGER0MAPTLB PPGMPAGEMAPTLB;
1253// typedef PPGMPAGER0MAPTLBE PPGMPAGEMAPTLBE;
1254// typedef PPGMPAGER0MAPTLBE *PPPGMPAGEMAPTLBE;
1255//# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGER0MAPTLB_ENTRIES
1256//# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGER0MAPTLB_IDX(GCPhys)
1257// typedef PPGMCHUNKR0MAP PPGMPAGEMAP;
1258// typedef PPPGMCHUNKR0MAP PPPGMPAGEMAP;
1259#else
1260 typedef PPGMPAGER3MAPTLB PPGMPAGEMAPTLB;
1261 typedef PPGMPAGER3MAPTLBE PPGMPAGEMAPTLBE;
1262 typedef PPGMPAGER3MAPTLBE *PPPGMPAGEMAPTLBE;
1263# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGER3MAPTLB_ENTRIES
1264# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGER3MAPTLB_IDX(GCPhys)
1265 typedef PPGMCHUNKR3MAP PPGMPAGEMAP;
1266 typedef PPPGMCHUNKR3MAP PPPGMPAGEMAP;
1267#endif
1268/** @} */
1269
1270
1271/** @name PGM Pool Indexes.
1272 * Aka. the unique shadow page identifier.
1273 * @{ */
1274/** NIL page pool IDX. */
1275#define NIL_PGMPOOL_IDX 0
1276/** The first normal index. */
1277#define PGMPOOL_IDX_FIRST_SPECIAL 1
1278/** Page directory (32-bit root). */
1279#define PGMPOOL_IDX_PD 1
1280/** The extended PAE page directory (2048 entries, works as root currently). */
1281#define PGMPOOL_IDX_PAE_PD 2
1282/** Page Directory Pointer Table (PAE root, not currently used). */
1283#define PGMPOOL_IDX_PDPTR 3
1284/** Page Map Level-4 (64-bit root). */
1285#define PGMPOOL_IDX_PML4 4
1286/** The first normal index. */
1287#define PGMPOOL_IDX_FIRST 5
1288/** The last valid index. (inclusive, 14 bits) */
1289#define PGMPOOL_IDX_LAST 0x3fff
1290/** @} */
1291
1292/** The NIL index for the parent chain. */
1293#define NIL_PGMPOOL_USER_INDEX ((uint16_t)0xffff)
1294
1295/**
1296 * Node in the chain linking a shadowed page to it's parent (user).
1297 */
1298#pragma pack(1)
1299typedef struct PGMPOOLUSER
1300{
1301 /** The index to the next item in the chain. NIL_PGMPOOL_USER_INDEX is no next. */
1302 uint16_t iNext;
1303 /** The user page index. */
1304 uint16_t iUser;
1305 /** Index into the user table. */
1306 uint16_t iUserTable;
1307} PGMPOOLUSER, *PPGMPOOLUSER;
1308typedef const PGMPOOLUSER *PCPGMPOOLUSER;
1309#pragma pack()
1310
1311
1312/** The NIL index for the phys ext chain. */
1313#define NIL_PGMPOOL_PHYSEXT_INDEX ((uint16_t)0xffff)
1314
1315/**
1316 * Node in the chain of physical cross reference extents.
1317 */
1318#pragma pack(1)
1319typedef struct PGMPOOLPHYSEXT
1320{
1321 /** The index to the next item in the chain. NIL_PGMPOOL_PHYSEXT_INDEX is no next. */
1322 uint16_t iNext;
1323 /** The user page index. */
1324 uint16_t aidx[3];
1325} PGMPOOLPHYSEXT, *PPGMPOOLPHYSEXT;
1326typedef const PGMPOOLPHYSEXT *PCPGMPOOLPHYSEXT;
1327#pragma pack()
1328
1329
1330/**
1331 * The kind of page that's being shadowed.
1332 */
1333typedef enum PGMPOOLKIND
1334{
1335 /** The virtual invalid 0 entry. */
1336 PGMPOOLKIND_INVALID = 0,
1337 /** The entry is free (=unused). */
1338 PGMPOOLKIND_FREE,
1339
1340 /** Shw: 32-bit page table; Gst: no paging */
1341 PGMPOOLKIND_32BIT_PT_FOR_PHYS,
1342 /** Shw: 32-bit page table; Gst: 32-bit page table. */
1343 PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT,
1344 /** Shw: 32-bit page table; Gst: 4MB page. */
1345 PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB,
1346 /** Shw: PAE page table; Gst: no paging */
1347 PGMPOOLKIND_PAE_PT_FOR_PHYS,
1348 /** Shw: PAE page table; Gst: 32-bit page table. */
1349 PGMPOOLKIND_PAE_PT_FOR_32BIT_PT,
1350 /** Shw: PAE page table; Gst: Half of a 4MB page. */
1351 PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB,
1352 /** Shw: PAE page table; Gst: PAE page table. */
1353 PGMPOOLKIND_PAE_PT_FOR_PAE_PT,
1354 /** Shw: PAE page table; Gst: 2MB page. */
1355 PGMPOOLKIND_PAE_PT_FOR_PAE_2MB,
1356
1357 /** Shw: PAE page directory; Gst: 32-bit page directory. */
1358 PGMPOOLKIND_PAE_PD_FOR_32BIT_PD,
1359 /** Shw: PAE page directory; Gst: PAE page directory. */
1360 PGMPOOLKIND_PAE_PD_FOR_PAE_PD,
1361
1362 /** Shw: 64-bit page directory pointer table; Gst: 64-bit page directory pointer table. */
1363 PGMPOOLKIND_64BIT_PDPTR_FOR_64BIT_PDPTR,
1364
1365 /** Shw: Root 32-bit page directory. */
1366 PGMPOOLKIND_ROOT_32BIT_PD,
1367 /** Shw: Root PAE page directory */
1368 PGMPOOLKIND_ROOT_PAE_PD,
1369 /** Shw: Root PAE page directory pointer table (legacy, 4 entries). */
1370 PGMPOOLKIND_ROOT_PDPTR,
1371 /** Shw: Root page map level-4 table. */
1372 PGMPOOLKIND_ROOT_PML4,
1373
1374 /** The last valid entry. */
1375 PGMPOOLKIND_LAST = PGMPOOLKIND_ROOT_PML4
1376} PGMPOOLKIND;
1377
1378
1379/**
1380 * The tracking data for a page in the pool.
1381 */
1382typedef struct PGMPOOLPAGE
1383{
1384 /** AVL node code with the (HC) physical address of this page. */
1385 AVLOHCPHYSNODECORE Core;
1386 /** Pointer to the HC mapping of the page. */
1387 R3R0PTRTYPE(void *) pvPageHC;
1388 /** The guest physical address. */
1389 RTGCPHYS GCPhys;
1390 /** The kind of page we're shadowing. (This is really a PGMPOOLKIND enum.) */
1391 uint8_t enmKind;
1392 uint8_t bPadding;
1393 /** The index of this page. */
1394 uint16_t idx;
1395 /** The next entry in the list this page currently resides in.
1396 * It's either in the free list or in the GCPhys hash. */
1397 uint16_t iNext;
1398#ifdef PGMPOOL_WITH_USER_TRACKING
1399 /** Head of the user chain. NIL_PGMPOOL_USER_INDEX if not currently in use. */
1400 uint16_t iUserHead;
1401 /** The number of present entries. */
1402 uint16_t cPresent;
1403 /** The first entry in the table which is present. */
1404 uint16_t iFirstPresent;
1405#endif
1406#ifdef PGMPOOL_WITH_MONITORING
1407 /** The number of modifications to the monitored page. */
1408 uint16_t cModifications;
1409 /** The next modified page. NIL_PGMPOOL_IDX if tail. */
1410 uint16_t iModifiedNext;
1411 /** The previous modified page. NIL_PGMPOOL_IDX if head. */
1412 uint16_t iModifiedPrev;
1413 /** The next page sharing access handler. NIL_PGMPOOL_IDX if tail. */
1414 uint16_t iMonitoredNext;
1415 /** The previous page sharing access handler. NIL_PGMPOOL_IDX if head. */
1416 uint16_t iMonitoredPrev;
1417#endif
1418#ifdef PGMPOOL_WITH_CACHE
1419 /** The next page in the age list. */
1420 uint16_t iAgeNext;
1421 /** The previous page in the age list. */
1422 uint16_t iAgePrev;
1423#endif /* PGMPOOL_WITH_CACHE */
1424 /** Used to indicate that the page is zeroed. */
1425 bool fZeroed;
1426 /** Used to indicate that a PT has non-global entries. */
1427 bool fSeenNonGlobal;
1428 /** Used to indicate that we're monitoring writes to the guest page. */
1429 bool fMonitored;
1430 /** Used to indicate that the page is in the cache (e.g. in the GCPhys hash).
1431 * (All pages are in the age list.) */
1432 bool fCached;
1433 /** This is used by the R3 access handlers when invoked by an async thread.
1434 * It's a hack required because of REMR3NotifyHandlerPhysicalDeregister. */
1435 bool volatile fReusedFlushPending;
1436 /** Used to indicate that the guest is mapping the page is also used as a CR3.
1437 * In these cases the access handler acts differently and will check
1438 * for mapping conflicts like the normal CR3 handler.
1439 * @todo When we change the CR3 shadowing to use pool pages, this flag can be
1440 * replaced by a list of pages which share access handler.
1441 */
1442 bool fCR3Mix;
1443} PGMPOOLPAGE, *PPGMPOOLPAGE, **PPPGMPOOLPAGE;
1444
1445
1446#ifdef PGMPOOL_WITH_CACHE
1447/** The hash table size. */
1448# define PGMPOOL_HASH_SIZE 0x40
1449/** The hash function. */
1450# define PGMPOOL_HASH(GCPhys) ( ((GCPhys) >> PAGE_SHIFT) & (PGMPOOL_HASH_SIZE - 1) )
1451#endif
1452
1453
1454/**
1455 * The shadow page pool instance data.
1456 *
1457 * It's all one big allocation made at init time, except for the
1458 * pages that is. The user nodes follows immediatly after the
1459 * page structures.
1460 */
1461typedef struct PGMPOOL
1462{
1463 /** The VM handle - HC Ptr. */
1464 R3R0PTRTYPE(PVM) pVMHC;
1465 /** The VM handle - GC Ptr. */
1466 GCPTRTYPE(PVM) pVMGC;
1467 /** The max pool size. This includes the special IDs. */
1468 uint16_t cMaxPages;
1469 /** The current pool size. */
1470 uint16_t cCurPages;
1471 /** The head of the free page list. */
1472 uint16_t iFreeHead;
1473 /* Padding. */
1474 uint16_t u16Padding;
1475#ifdef PGMPOOL_WITH_USER_TRACKING
1476 /** Head of the chain of free user nodes. */
1477 uint16_t iUserFreeHead;
1478 /** The number of user nodes we've allocated. */
1479 uint16_t cMaxUsers;
1480 /** The number of present page table entries in the entire pool. */
1481 uint32_t cPresent;
1482 /** Pointer to the array of user nodes - GC pointer. */
1483 GCPTRTYPE(PPGMPOOLUSER) paUsersGC;
1484 /** Pointer to the array of user nodes - HC pointer. */
1485 R3R0PTRTYPE(PPGMPOOLUSER) paUsersHC;
1486#endif /* PGMPOOL_WITH_USER_TRACKING */
1487#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1488 /** Head of the chain of free phys ext nodes. */
1489 uint16_t iPhysExtFreeHead;
1490 /** The number of user nodes we've allocated. */
1491 uint16_t cMaxPhysExts;
1492 /** Pointer to the array of physical xref extent - GC pointer. */
1493 GCPTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsGC;
1494 /** Pointer to the array of physical xref extent nodes - HC pointer. */
1495 R3R0PTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsHC;
1496#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
1497#ifdef PGMPOOL_WITH_CACHE
1498 /** Hash table for GCPhys addresses. */
1499 uint16_t aiHash[PGMPOOL_HASH_SIZE];
1500 /** The head of the age list. */
1501 uint16_t iAgeHead;
1502 /** The tail of the age list. */
1503 uint16_t iAgeTail;
1504 /** Set if the cache is enabled. */
1505 bool fCacheEnabled;
1506#endif /* PGMPOOL_WITH_CACHE */
1507#ifdef PGMPOOL_WITH_MONITORING
1508 /** Head of the list of modified pages. */
1509 uint16_t iModifiedHead;
1510 /** The current number of modified pages. */
1511 uint16_t cModifiedPages;
1512 /** Access handler, GC. */
1513 GCPTRTYPE(PFNPGMGCPHYSHANDLER) pfnAccessHandlerGC;
1514 /** Access handler, R0. */
1515 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnAccessHandlerR0;
1516 /** Access handler, R3. */
1517 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnAccessHandlerR3;
1518 /** The access handler description (HC ptr). */
1519 R3PTRTYPE(const char *) pszAccessHandler;
1520#endif /* PGMPOOL_WITH_MONITORING */
1521 /** The number of pages currently in use. */
1522 uint16_t cUsedPages;
1523#ifdef VBOX_WITH_STATISTICS
1524 /** The high wather mark for cUsedPages. */
1525 uint16_t cUsedPagesHigh;
1526 uint32_t Alignment1; /**< Align the next member on a 64-bit boundrary. */
1527 /** Profiling pgmPoolAlloc(). */
1528 STAMPROFILEADV StatAlloc;
1529 /** Profiling pgmPoolClearAll(). */
1530 STAMPROFILE StatClearAll;
1531 /** Profiling pgmPoolFlushAllInt(). */
1532 STAMPROFILE StatFlushAllInt;
1533 /** Profiling pgmPoolFlushPage(). */
1534 STAMPROFILE StatFlushPage;
1535 /** Profiling pgmPoolFree(). */
1536 STAMPROFILE StatFree;
1537 /** Profiling time spent zeroing pages. */
1538 STAMPROFILE StatZeroPage;
1539# ifdef PGMPOOL_WITH_USER_TRACKING
1540 /** Profiling of pgmPoolTrackDeref. */
1541 STAMPROFILE StatTrackDeref;
1542 /** Profiling pgmTrackFlushGCPhysPT. */
1543 STAMPROFILE StatTrackFlushGCPhysPT;
1544 /** Profiling pgmTrackFlushGCPhysPTs. */
1545 STAMPROFILE StatTrackFlushGCPhysPTs;
1546 /** Profiling pgmTrackFlushGCPhysPTsSlow. */
1547 STAMPROFILE StatTrackFlushGCPhysPTsSlow;
1548 /** Number of times we've been out of user records. */
1549 STAMCOUNTER StatTrackFreeUpOneUser;
1550# endif
1551# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1552 /** Profiling deref activity related tracking GC physical pages. */
1553 STAMPROFILE StatTrackDerefGCPhys;
1554 /** Number of linear searches for a HCPhys in the ram ranges. */
1555 STAMCOUNTER StatTrackLinearRamSearches;
1556 /** The number of failing pgmPoolTrackPhysExtAlloc calls. */
1557 STAMCOUNTER StamTrackPhysExtAllocFailures;
1558# endif
1559# ifdef PGMPOOL_WITH_MONITORING
1560 /** Profiling the GC PT access handler. */
1561 STAMPROFILE StatMonitorGC;
1562 /** Times we've failed interpreting the instruction. */
1563 STAMCOUNTER StatMonitorGCEmulateInstr;
1564 /** Profiling the pgmPoolFlushPage calls made from the GC PT access handler. */
1565 STAMPROFILE StatMonitorGCFlushPage;
1566 /** Times we've detected fork(). */
1567 STAMCOUNTER StatMonitorGCFork;
1568 /** Profiling the GC access we've handled (except REP STOSD). */
1569 STAMPROFILE StatMonitorGCHandled;
1570 /** Times we've failed interpreting a patch code instruction. */
1571 STAMCOUNTER StatMonitorGCIntrFailPatch1;
1572 /** Times we've failed interpreting a patch code instruction during flushing. */
1573 STAMCOUNTER StatMonitorGCIntrFailPatch2;
1574 /** The number of times we've seen rep prefixes we can't handle. */
1575 STAMCOUNTER StatMonitorGCRepPrefix;
1576 /** Profiling the REP STOSD cases we've handled. */
1577 STAMPROFILE StatMonitorGCRepStosd;
1578
1579 /** Profiling the HC PT access handler. */
1580 STAMPROFILE StatMonitorHC;
1581 /** Times we've failed interpreting the instruction. */
1582 STAMCOUNTER StatMonitorHCEmulateInstr;
1583 /** Profiling the pgmPoolFlushPage calls made from the HC PT access handler. */
1584 STAMPROFILE StatMonitorHCFlushPage;
1585 /** Times we've detected fork(). */
1586 STAMCOUNTER StatMonitorHCFork;
1587 /** Profiling the HC access we've handled (except REP STOSD). */
1588 STAMPROFILE StatMonitorHCHandled;
1589 /** The number of times we've seen rep prefixes we can't handle. */
1590 STAMCOUNTER StatMonitorHCRepPrefix;
1591 /** Profiling the REP STOSD cases we've handled. */
1592 STAMPROFILE StatMonitorHCRepStosd;
1593 /** The number of times we're called in an async thread an need to flush. */
1594 STAMCOUNTER StatMonitorHCAsync;
1595 /** The high wather mark for cModifiedPages. */
1596 uint16_t cModifiedPagesHigh;
1597 uint16_t Alignment2[3]; /**< Align the next member on a 64-bit boundrary. */
1598# endif
1599# ifdef PGMPOOL_WITH_CACHE
1600 /** The number of cache hits. */
1601 STAMCOUNTER StatCacheHits;
1602 /** The number of cache misses. */
1603 STAMCOUNTER StatCacheMisses;
1604 /** The number of times we've got a conflict of 'kind' in the cache. */
1605 STAMCOUNTER StatCacheKindMismatches;
1606 /** Number of times we've been out of pages. */
1607 STAMCOUNTER StatCacheFreeUpOne;
1608 /** The number of cacheable allocations. */
1609 STAMCOUNTER StatCacheCacheable;
1610 /** The number of uncacheable allocations. */
1611 STAMCOUNTER StatCacheUncacheable;
1612# endif
1613#elif HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
1614 uint32_t Alignment1; /**< Align the next member on a 64-bit boundrary. */
1615#endif
1616 /** The AVL tree for looking up a page by its HC physical address. */
1617 AVLOHCPHYSTREE HCPhysTree;
1618 uint32_t Alignment3; /**< Align the next member on a 64-bit boundrary. */
1619 /** Array of pages. (cMaxPages in length)
1620 * The Id is the index into thist array.
1621 */
1622 PGMPOOLPAGE aPages[PGMPOOL_IDX_FIRST];
1623} PGMPOOL, *PPGMPOOL, **PPPGMPOOL;
1624
1625
1626/** @def PGMPOOL_PAGE_2_PTR
1627 * Maps a pool page pool into the current context.
1628 *
1629 * @returns VBox status code.
1630 * @param pVM The VM handle.
1631 * @param pPage The pool page.
1632 *
1633 * @remark In HC this uses PGMGCDynMapHCPage(), so it will consume of the
1634 * small page window employeed by that function. Be careful.
1635 * @remark There is no need to assert on the result.
1636 */
1637#ifdef IN_GC
1638# define PGMPOOL_PAGE_2_PTR(pVM, pPage) pgmGCPoolMapPage((pVM), (pPage))
1639#else
1640# define PGMPOOL_PAGE_2_PTR(pVM, pPage) ((pPage)->pvPageHC)
1641#endif
1642
1643
1644/**
1645 * Trees are using self relative offsets as pointers.
1646 * So, all its data, including the root pointer, must be in the heap for HC and GC
1647 * to have the same layout.
1648 */
1649typedef struct PGMTREES
1650{
1651 /** Physical access handlers (AVL range+offsetptr tree). */
1652 AVLROGCPHYSTREE PhysHandlers;
1653 /** Virtual access handlers (AVL range + GC ptr tree). */
1654 AVLROGCPTRTREE VirtHandlers;
1655 /** Virtual access handlers (Phys range AVL range + offsetptr tree). */
1656 AVLROGCPHYSTREE PhysToVirtHandlers;
1657 /** Virtual access handlers for the hypervisor (AVL range + GC ptr tree). */
1658 AVLROGCPTRTREE HyperVirtHandlers;
1659} PGMTREES;
1660/** Pointer to PGM trees. */
1661typedef PGMTREES *PPGMTREES;
1662
1663
1664/** @name Paging mode macros
1665 * @{ */
1666#ifdef IN_GC
1667# define PGM_CTX(a,b) a##GC##b
1668# define PGM_CTX_STR(a,b) a "GC" b
1669# define PGM_CTX_DECL(type) PGMGCDECL(type)
1670#else
1671# ifdef IN_RING3
1672# define PGM_CTX(a,b) a##R3##b
1673# define PGM_CTX_STR(a,b) a "R3" b
1674# define PGM_CTX_DECL(type) DECLCALLBACK(type)
1675# else
1676# define PGM_CTX(a,b) a##R0##b
1677# define PGM_CTX_STR(a,b) a "R0" b
1678# define PGM_CTX_DECL(type) PGMDECL(type)
1679# endif
1680#endif
1681
1682#define PGM_GST_NAME_REAL(name) PGM_CTX(pgm,GstReal##name)
1683#define PGM_GST_NAME_GC_REAL_STR(name) "pgmGCGstReal" #name
1684#define PGM_GST_NAME_R0_REAL_STR(name) "pgmR0GstReal" #name
1685#define PGM_GST_NAME_PROT(name) PGM_CTX(pgm,GstProt##name)
1686#define PGM_GST_NAME_GC_PROT_STR(name) "pgmGCGstProt" #name
1687#define PGM_GST_NAME_R0_PROT_STR(name) "pgmR0GstProt" #name
1688#define PGM_GST_NAME_32BIT(name) PGM_CTX(pgm,Gst32Bit##name)
1689#define PGM_GST_NAME_GC_32BIT_STR(name) "pgmGCGst32Bit" #name
1690#define PGM_GST_NAME_R0_32BIT_STR(name) "pgmR0Gst32Bit" #name
1691#define PGM_GST_NAME_PAE(name) PGM_CTX(pgm,GstPAE##name)
1692#define PGM_GST_NAME_GC_PAE_STR(name) "pgmGCGstPAE" #name
1693#define PGM_GST_NAME_R0_PAE_STR(name) "pgmR0GstPAE" #name
1694#define PGM_GST_NAME_AMD64(name) PGM_CTX(pgm,GstAMD64##name)
1695#define PGM_GST_NAME_GC_AMD64_STR(name) "pgmGCGstAMD64" #name
1696#define PGM_GST_NAME_R0_AMD64_STR(name) "pgmR0GstAMD64" #name
1697#define PGM_GST_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Gst##name))
1698#define PGM_GST_DECL(type, name) PGM_CTX_DECL(type) PGM_GST_NAME(name)
1699
1700#define PGM_SHW_NAME_32BIT(name) PGM_CTX(pgm,Shw32Bit##name)
1701#define PGM_SHW_NAME_GC_32BIT_STR(name) "pgmGCShw32Bit" #name
1702#define PGM_SHW_NAME_R0_32BIT_STR(name) "pgmR0Shw32Bit" #name
1703#define PGM_SHW_NAME_PAE(name) PGM_CTX(pgm,ShwPAE##name)
1704#define PGM_SHW_NAME_GC_PAE_STR(name) "pgmGCShwPAE" #name
1705#define PGM_SHW_NAME_R0_PAE_STR(name) "pgmR0ShwPAE" #name
1706#define PGM_SHW_NAME_AMD64(name) PGM_CTX(pgm,ShwAMD64##name)
1707#define PGM_SHW_NAME_GC_AMD64_STR(name) "pgmGCShwAMD64" #name
1708#define PGM_SHW_NAME_R0_AMD64_STR(name) "pgmR0ShwAMD64" #name
1709#define PGM_SHW_DECL(type, name) PGM_CTX_DECL(type) PGM_SHW_NAME(name)
1710#define PGM_SHW_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Shw##name))
1711
1712/* Shw_Gst */
1713#define PGM_BTH_NAME_32BIT_REAL(name) PGM_CTX(pgm,Bth32BitReal##name)
1714#define PGM_BTH_NAME_32BIT_PROT(name) PGM_CTX(pgm,Bth32BitProt##name)
1715#define PGM_BTH_NAME_32BIT_32BIT(name) PGM_CTX(pgm,Bth32Bit32Bit##name)
1716#define PGM_BTH_NAME_PAE_REAL(name) PGM_CTX(pgm,BthPAEReal##name)
1717#define PGM_BTH_NAME_PAE_PROT(name) PGM_CTX(pgm,BthPAEProt##name)
1718#define PGM_BTH_NAME_PAE_32BIT(name) PGM_CTX(pgm,BthPAE32Bit##name)
1719#define PGM_BTH_NAME_PAE_PAE(name) PGM_CTX(pgm,BthPAEPAE##name)
1720#define PGM_BTH_NAME_AMD64_REAL(name) PGM_CTX(pgm,BthAMD64Real##name)
1721#define PGM_BTH_NAME_AMD64_PROT(name) PGM_CTX(pgm,BthAMD64Prot##name)
1722#define PGM_BTH_NAME_AMD64_AMD64(name) PGM_CTX(pgm,BthAMD64AMD64##name)
1723#define PGM_BTH_NAME_GC_32BIT_REAL_STR(name) "pgmGCBth32BitReal" #name
1724#define PGM_BTH_NAME_GC_32BIT_PROT_STR(name) "pgmGCBth32BitProt" #name
1725#define PGM_BTH_NAME_GC_32BIT_32BIT_STR(name) "pgmGCBth32Bit32Bit" #name
1726#define PGM_BTH_NAME_GC_PAE_REAL_STR(name) "pgmGCBthPAEReal" #name
1727#define PGM_BTH_NAME_GC_PAE_PROT_STR(name) "pgmGCBthPAEProt" #name
1728#define PGM_BTH_NAME_GC_PAE_32BIT_STR(name) "pgmGCBthPAE32Bit" #name
1729#define PGM_BTH_NAME_GC_PAE_PAE_STR(name) "pgmGCBthPAEPAE" #name
1730#define PGM_BTH_NAME_GC_AMD64_REAL_STR(name) "pgmGCBthAMD64Real" #name
1731#define PGM_BTH_NAME_GC_AMD64_PROT_STR(name) "pgmGCBthAMD64Prot" #name
1732#define PGM_BTH_NAME_GC_AMD64_AMD64_STR(name) "pgmGCBthAMD64AMD64" #name
1733#define PGM_BTH_NAME_R0_32BIT_REAL_STR(name) "pgmR0Bth32BitReal" #name
1734#define PGM_BTH_NAME_R0_32BIT_PROT_STR(name) "pgmR0Bth32BitProt" #name
1735#define PGM_BTH_NAME_R0_32BIT_32BIT_STR(name) "pgmR0Bth32Bit32Bit" #name
1736#define PGM_BTH_NAME_R0_PAE_REAL_STR(name) "pgmR0BthPAEReal" #name
1737#define PGM_BTH_NAME_R0_PAE_PROT_STR(name) "pgmR0BthPAEProt" #name
1738#define PGM_BTH_NAME_R0_PAE_32BIT_STR(name) "pgmR0BthPAE32Bit" #name
1739#define PGM_BTH_NAME_R0_PAE_PAE_STR(name) "pgmR0BthPAEPAE" #name
1740#define PGM_BTH_NAME_R0_AMD64_REAL_STR(name) "pgmR0BthAMD64Real" #name
1741#define PGM_BTH_NAME_R0_AMD64_PROT_STR(name) "pgmR0BthAMD64Prot" #name
1742#define PGM_BTH_NAME_R0_AMD64_AMD64_STR(name) "pgmR0BthAMD64AMD64" #name
1743#define PGM_BTH_DECL(type, name) PGM_CTX_DECL(type) PGM_BTH_NAME(name)
1744#define PGM_BTH_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Bth##name))
1745/** @} */
1746
1747/**
1748 * Data for each paging mode.
1749 */
1750typedef struct PGMMODEDATA
1751{
1752 /** The guest mode type. */
1753 uint32_t uGstType;
1754 /** The shadow mode type. */
1755 uint32_t uShwType;
1756
1757 /** @name Function pointers for Shadow paging.
1758 * @{
1759 */
1760 DECLR3CALLBACKMEMBER(int, pfnR3ShwRelocate,(PVM pVM, RTGCUINTPTR offDelta));
1761 DECLR3CALLBACKMEMBER(int, pfnR3ShwExit,(PVM pVM));
1762 DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
1763 DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
1764 DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPDEByIndex,(PVM pVM, uint32_t iPD, PX86PDEPAE pPde));
1765 DECLR3CALLBACKMEMBER(int, pfnR3ShwSetPDEByIndex,(PVM pVM, uint32_t iPD, X86PDEPAE Pde));
1766 DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPDEByIndex,(PVM pVM, uint32_t iPD, uint64_t fFlags, uint64_t fMask));
1767
1768 DECLGCCALLBACKMEMBER(int, pfnGCShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
1769 DECLGCCALLBACKMEMBER(int, pfnGCShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
1770 DECLGCCALLBACKMEMBER(int, pfnGCShwGetPDEByIndex,(PVM pVM, uint32_t iPD, PX86PDEPAE pPde));
1771 DECLGCCALLBACKMEMBER(int, pfnGCShwSetPDEByIndex,(PVM pVM, uint32_t iPD, X86PDEPAE Pde));
1772 DECLGCCALLBACKMEMBER(int, pfnGCShwModifyPDEByIndex,(PVM pVM, uint32_t iPD, uint64_t fFlags, uint64_t fMask));
1773
1774 DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
1775 DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
1776 DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPDEByIndex,(PVM pVM, uint32_t iPD, PX86PDEPAE pPde));
1777 DECLR0CALLBACKMEMBER(int, pfnR0ShwSetPDEByIndex,(PVM pVM, uint32_t iPD, X86PDEPAE Pde));
1778 DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPDEByIndex,(PVM pVM, uint32_t iPD, uint64_t fFlags, uint64_t fMask));
1779 /** @} */
1780
1781 /** @name Function pointers for Guest paging.
1782 * @{
1783 */
1784 DECLR3CALLBACKMEMBER(int, pfnR3GstRelocate,(PVM pVM, RTGCUINTPTR offDelta));
1785 DECLR3CALLBACKMEMBER(int, pfnR3GstExit,(PVM pVM));
1786 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
1787 DECLR3CALLBACKMEMBER(int, pfnR3GstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
1788 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde));
1789 DECLR3CALLBACKMEMBER(int, pfnR3GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
1790 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmonitorCR3,(PVM pVM));
1791 DECLR3CALLBACKMEMBER(int, pfnR3GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
1792 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmapCR3,(PVM pVM));
1793 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstWriteHandlerCR3;
1794 R3PTRTYPE(const char *) pszR3GstWriteHandlerCR3;
1795 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstPAEWriteHandlerCR3;
1796 R3PTRTYPE(const char *) pszR3GstPAEWriteHandlerCR3;
1797
1798 DECLGCCALLBACKMEMBER(int, pfnGCGstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
1799 DECLGCCALLBACKMEMBER(int, pfnGCGstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
1800 DECLGCCALLBACKMEMBER(int, pfnGCGstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde));
1801 DECLGCCALLBACKMEMBER(int, pfnGCGstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
1802 DECLGCCALLBACKMEMBER(int, pfnGCGstUnmonitorCR3,(PVM pVM));
1803 DECLGCCALLBACKMEMBER(int, pfnGCGstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
1804 DECLGCCALLBACKMEMBER(int, pfnGCGstUnmapCR3,(PVM pVM));
1805 GCPTRTYPE(PFNPGMGCPHYSHANDLER) pfnGCGstWriteHandlerCR3;
1806 GCPTRTYPE(PFNPGMGCPHYSHANDLER) pfnGCGstPAEWriteHandlerCR3;
1807
1808 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
1809 DECLR0CALLBACKMEMBER(int, pfnR0GstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
1810 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde));
1811 DECLR0CALLBACKMEMBER(int, pfnR0GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
1812 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmonitorCR3,(PVM pVM));
1813 DECLR0CALLBACKMEMBER(int, pfnR0GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
1814 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmapCR3,(PVM pVM));
1815 R0PTRTYPE(PFNPGMGCPHYSHANDLER) pfnR0GstWriteHandlerCR3;
1816 R0PTRTYPE(PFNPGMGCPHYSHANDLER) pfnR0GstPAEWriteHandlerCR3;
1817 /** @} */
1818
1819 /** @name Function pointers for Both Shadow and Guest paging.
1820 * @{
1821 */
1822 DECLR3CALLBACKMEMBER(int, pfnR3BthRelocate,(PVM pVM, RTGCUINTPTR offDelta));
1823 DECLR3CALLBACKMEMBER(int, pfnR3BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
1824 DECLR3CALLBACKMEMBER(int, pfnR3BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
1825 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncCR3,(PVM pVM, uint32_t cr0, uint32_t cr3, uint32_t cr4, bool fGlobal));
1826 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError));
1827 DECLR3CALLBACKMEMBER(int, pfnR3BthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage));
1828 DECLR3CALLBACKMEMBER(int, pfnR3BthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError));
1829#ifdef VBOX_STRICT
1830 DECLR3CALLBACKMEMBER(unsigned, pfnR3BthAssertCR3,(PVM pVM, uint32_t cr3, uint32_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb));
1831#endif
1832
1833 DECLGCCALLBACKMEMBER(int, pfnGCBthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
1834 DECLGCCALLBACKMEMBER(int, pfnGCBthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
1835 DECLGCCALLBACKMEMBER(int, pfnGCBthSyncCR3,(PVM pVM, uint32_t cr0, uint32_t cr3, uint32_t cr4, bool fGlobal));
1836 DECLGCCALLBACKMEMBER(int, pfnGCBthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError));
1837 DECLGCCALLBACKMEMBER(int, pfnGCBthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage));
1838 DECLGCCALLBACKMEMBER(int, pfnGCBthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError));
1839#ifdef VBOX_STRICT
1840 DECLGCCALLBACKMEMBER(unsigned, pfnGCBthAssertCR3,(PVM pVM, uint32_t cr3, uint32_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb));
1841#endif
1842
1843 DECLR0CALLBACKMEMBER(int, pfnR0BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
1844 DECLR0CALLBACKMEMBER(int, pfnR0BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
1845 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncCR3,(PVM pVM, uint32_t cr0, uint32_t cr3, uint32_t cr4, bool fGlobal));
1846 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError));
1847 DECLR0CALLBACKMEMBER(int, pfnR0BthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage));
1848 DECLR0CALLBACKMEMBER(int, pfnR0BthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError));
1849#ifdef VBOX_STRICT
1850 DECLR0CALLBACKMEMBER(unsigned, pfnR0BthAssertCR3,(PVM pVM, uint32_t cr3, uint32_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb));
1851#endif
1852 /** @} */
1853} PGMMODEDATA, *PPGMMODEDATA;
1854
1855
1856
1857/**
1858 * Converts a PGM pointer into a VM pointer.
1859 * @returns Pointer to the VM structure the PGM is part of.
1860 * @param pPGM Pointer to PGM instance data.
1861 */
1862#define PGM2VM(pPGM) ( (PVM)((char*)pPGM - pPGM->offVM) )
1863
1864/**
1865 * PGM Data (part of VM)
1866 */
1867typedef struct PGM
1868{
1869 /** Offset to the VM structure. */
1870 RTINT offVM;
1871
1872 /*
1873 * This will be redefined at least two more times before we're done, I'm sure.
1874 * The current code is only to get on with the coding.
1875 * - 2004-06-10: initial version, bird.
1876 * - 2004-07-02: 1st time, bird.
1877 * - 2004-10-18: 2nd time, bird.
1878 * - 2005-07-xx: 3rd time, bird.
1879 */
1880
1881 /** Pointer to the page table entries for the dynamic page mapping area - GCPtr. */
1882 GCPTRTYPE(PX86PTE) paDynPageMap32BitPTEsGC;
1883 /** Pointer to the page table entries for the dynamic page mapping area - GCPtr. */
1884 GCPTRTYPE(PX86PTEPAE) paDynPageMapPaePTEsGC;
1885
1886 /** The host paging mode. (This is what SUPLib reports.) */
1887 SUPPAGINGMODE enmHostMode;
1888 /** The shadow paging mode. */
1889 PGMMODE enmShadowMode;
1890 /** The guest paging mode. */
1891 PGMMODE enmGuestMode;
1892
1893 /** The current physical address representing in the guest CR3 register. */
1894 RTGCPHYS GCPhysCR3;
1895 /** Pointer to the 5 page CR3 content mapping.
1896 * The first page is always the CR3 (in some form) while the 4 other pages
1897 * are used of the PDs in PAE mode. */
1898 RTGCPTR GCPtrCR3Mapping;
1899#if HC_ARCH_BITS == 64
1900 uint32_t u32Alignment;
1901#endif
1902 /** The physical address of the currently monitored guest CR3 page.
1903 * When this value is NIL_RTGCPHYS no page is being monitored. */
1904 RTGCPHYS GCPhysGstCR3Monitored;
1905
1906 /** @name 32-bit Guest Paging.
1907 * @{ */
1908 /** The guest's page directory, HC pointer. */
1909 R3R0PTRTYPE(PX86PD) pGuestPDHC;
1910 /** The guest's page directory, static GC mapping. */
1911 GCPTRTYPE(PX86PD) pGuestPDGC;
1912 /** @} */
1913
1914 /** @name PAE Guest Paging.
1915 * @{ */
1916 /** The guest's page directory pointer table, static GC mapping. */
1917 GCPTRTYPE(PX86PDPTR) pGstPaePDPTRGC;
1918 /** The guest's page directory pointer table, HC pointer. */
1919 R3R0PTRTYPE(PX86PDPTR) pGstPaePDPTRHC;
1920 /** The guest's page directories, HC pointers.
1921 * These are individual pointers and doesn't have to be adjecent.
1922 * These doesn't have to be update to date - use pgmGstGetPaePD() to access them. */
1923 R3R0PTRTYPE(PX86PDPAE) apGstPaePDsHC[4];
1924 /** The guest's page directories, static GC mapping.
1925 * Unlike the HC array the first entry can be accessed as a 2048 entry PD.
1926 * These doesn't have to be update to date - use pgmGstGetPaePD() to access them. */
1927 GCPTRTYPE(PX86PDPAE) apGstPaePDsGC[4];
1928 /** The physical addresses of the guest page directories (PAE) pointed to by apGstPagePDsHC/GC. */
1929 RTGCPHYS aGCPhysGstPaePDs[4];
1930 /** The physical addresses of the monitored guest page directories (PAE). */
1931 RTGCPHYS aGCPhysGstPaePDsMonitored[4];
1932 /** @} */
1933
1934
1935 /** @name 32-bit Shadow Paging
1936 * @{ */
1937 /** The 32-Bit PD - HC Ptr. */
1938 R3R0PTRTYPE(PX86PD) pHC32BitPD;
1939 /** The 32-Bit PD - GC Ptr. */
1940 GCPTRTYPE(PX86PD) pGC32BitPD;
1941#if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
1942 uint32_t u32Padding1; /**< alignment padding. */
1943#endif
1944 /** The Physical Address (HC) of the 32-Bit PD. */
1945 RTHCPHYS HCPhys32BitPD;
1946 /** @} */
1947
1948 /** @name PAE Shadow Paging
1949 * @{ */
1950 /** The four PDs for the low 4GB - HC Ptr.
1951 * Even though these are 4 pointers, what they point at is a single table.
1952 * Thus, it's possible to walk the 2048 entries starting where apHCPaePDs[0] points. */
1953 R3R0PTRTYPE(PX86PDPAE) apHCPaePDs[4];
1954 /** The four PDs for the low 4GB - GC Ptr.
1955 * Same kind of mapping as apHCPaePDs. */
1956 GCPTRTYPE(PX86PDPAE) apGCPaePDs[4];
1957 /** The Physical Address (HC) of the four PDs for the low 4GB.
1958 * These are *NOT* 4 contiguous pages. */
1959 RTHCPHYS aHCPhysPaePDs[4];
1960 /** The PAE PDPTR - HC Ptr. */
1961 R3R0PTRTYPE(PX86PDPTR) pHCPaePDPTR;
1962 /** The Physical Address (HC) of the PAE PDPTR. */
1963 RTHCPHYS HCPhysPaePDPTR;
1964 /** The PAE PDPTR - GC Ptr. */
1965 GCPTRTYPE(PX86PDPTR) pGCPaePDPTR;
1966 /** @} */
1967
1968 /** @name AMD64 Shadow Paging
1969 * Extends PAE Paging.
1970 * @{ */
1971 /** The Page Map Level 4 table - HC Ptr. */
1972 GCPTRTYPE(PX86PML4) pGCPaePML4;
1973 /** The Page Map Level 4 table - GC Ptr. */
1974 R3R0PTRTYPE(PX86PML4) pHCPaePML4;
1975 /** The Physical Address (HC) of the Page Map Level 4 table. */
1976 RTHCPHYS HCPhysPaePML4;
1977 /** @}*/
1978
1979 /** @name Function pointers for Shadow paging.
1980 * @{
1981 */
1982 DECLR3CALLBACKMEMBER(int, pfnR3ShwRelocate,(PVM pVM, RTGCUINTPTR offDelta));
1983 DECLR3CALLBACKMEMBER(int, pfnR3ShwExit,(PVM pVM));
1984 DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
1985 DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
1986 DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPDEByIndex,(PVM pVM, uint32_t iPD, PX86PDEPAE pPde));
1987 DECLR3CALLBACKMEMBER(int, pfnR3ShwSetPDEByIndex,(PVM pVM, uint32_t iPD, X86PDEPAE Pde));
1988 DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPDEByIndex,(PVM pVM, uint32_t iPD, uint64_t fFlags, uint64_t fMask));
1989
1990 DECLGCCALLBACKMEMBER(int, pfnGCShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
1991 DECLGCCALLBACKMEMBER(int, pfnGCShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
1992 DECLGCCALLBACKMEMBER(int, pfnGCShwGetPDEByIndex,(PVM pVM, uint32_t iPD, PX86PDEPAE pPde));
1993 DECLGCCALLBACKMEMBER(int, pfnGCShwSetPDEByIndex,(PVM pVM, uint32_t iPD, X86PDEPAE Pde));
1994 DECLGCCALLBACKMEMBER(int, pfnGCShwModifyPDEByIndex,(PVM pVM, uint32_t iPD, uint64_t fFlags, uint64_t fMask));
1995#if GC_ARCH_BITS == 32 && HC_ARCH_BITS == 64
1996 RTGCPTR alignment0; /**< structure size alignment. */
1997#endif
1998
1999 DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2000 DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2001 DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPDEByIndex,(PVM pVM, uint32_t iPD, PX86PDEPAE pPde));
2002 DECLR0CALLBACKMEMBER(int, pfnR0ShwSetPDEByIndex,(PVM pVM, uint32_t iPD, X86PDEPAE Pde));
2003 DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPDEByIndex,(PVM pVM, uint32_t iPD, uint64_t fFlags, uint64_t fMask));
2004
2005 /** @} */
2006
2007 /** @name Function pointers for Guest paging.
2008 * @{
2009 */
2010 DECLR3CALLBACKMEMBER(int, pfnR3GstRelocate,(PVM pVM, RTGCUINTPTR offDelta));
2011 DECLR3CALLBACKMEMBER(int, pfnR3GstExit,(PVM pVM));
2012 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2013 DECLR3CALLBACKMEMBER(int, pfnR3GstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2014 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde));
2015 DECLR3CALLBACKMEMBER(int, pfnR3GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2016 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmonitorCR3,(PVM pVM));
2017 DECLR3CALLBACKMEMBER(int, pfnR3GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2018 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmapCR3,(PVM pVM));
2019 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstWriteHandlerCR3;
2020 R3PTRTYPE(const char *) pszR3GstWriteHandlerCR3;
2021 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstPAEWriteHandlerCR3;
2022 R3PTRTYPE(const char *) pszR3GstPAEWriteHandlerCR3;
2023
2024 DECLGCCALLBACKMEMBER(int, pfnGCGstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2025 DECLGCCALLBACKMEMBER(int, pfnGCGstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2026 DECLGCCALLBACKMEMBER(int, pfnGCGstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde));
2027 DECLGCCALLBACKMEMBER(int, pfnGCGstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2028 DECLGCCALLBACKMEMBER(int, pfnGCGstUnmonitorCR3,(PVM pVM));
2029 DECLGCCALLBACKMEMBER(int, pfnGCGstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2030 DECLGCCALLBACKMEMBER(int, pfnGCGstUnmapCR3,(PVM pVM));
2031 GCPTRTYPE(PFNPGMGCPHYSHANDLER) pfnGCGstWriteHandlerCR3;
2032 GCPTRTYPE(PFNPGMGCPHYSHANDLER) pfnGCGstPAEWriteHandlerCR3;
2033#if GC_ARCH_BITS == 32 && HC_ARCH_BITS == 64
2034 RTGCPTR alignment3; /**< structure size alignment. */
2035#endif
2036
2037 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2038 DECLR0CALLBACKMEMBER(int, pfnR0GstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2039 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde));
2040 DECLR0CALLBACKMEMBER(int, pfnR0GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2041 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmonitorCR3,(PVM pVM));
2042 DECLR0CALLBACKMEMBER(int, pfnR0GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2043 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmapCR3,(PVM pVM));
2044 R0PTRTYPE(PFNPGMGCPHYSHANDLER) pfnR0GstWriteHandlerCR3;
2045 R0PTRTYPE(PFNPGMGCPHYSHANDLER) pfnR0GstPAEWriteHandlerCR3;
2046 /** @} */
2047
2048 /** @name Function pointers for Both Shadow and Guest paging.
2049 * @{
2050 */
2051 DECLR3CALLBACKMEMBER(int, pfnR3BthRelocate,(PVM pVM, RTGCUINTPTR offDelta));
2052 DECLR3CALLBACKMEMBER(int, pfnR3BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2053 DECLR3CALLBACKMEMBER(int, pfnR3BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2054 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncCR3,(PVM pVM, uint32_t cr0, uint32_t cr3, uint32_t cr4, bool fGlobal));
2055 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError));
2056 DECLR3CALLBACKMEMBER(int, pfnR3BthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage));
2057 DECLR3CALLBACKMEMBER(int, pfnR3BthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError));
2058 DECLR3CALLBACKMEMBER(unsigned, pfnR3BthAssertCR3,(PVM pVM, uint32_t cr3, uint32_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb));
2059
2060 DECLR0CALLBACKMEMBER(int, pfnR0BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2061 DECLR0CALLBACKMEMBER(int, pfnR0BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2062 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncCR3,(PVM pVM, uint32_t cr0, uint32_t cr3, uint32_t cr4, bool fGlobal));
2063 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError));
2064 DECLR0CALLBACKMEMBER(int, pfnR0BthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage));
2065 DECLR0CALLBACKMEMBER(int, pfnR0BthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError));
2066 DECLR0CALLBACKMEMBER(unsigned, pfnR0BthAssertCR3,(PVM pVM, uint32_t cr3, uint32_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb));
2067
2068 DECLGCCALLBACKMEMBER(int, pfnGCBthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2069 DECLGCCALLBACKMEMBER(int, pfnGCBthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2070 DECLGCCALLBACKMEMBER(int, pfnGCBthSyncCR3,(PVM pVM, uint32_t cr0, uint32_t cr3, uint32_t cr4, bool fGlobal));
2071 DECLGCCALLBACKMEMBER(int, pfnGCBthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError));
2072 DECLGCCALLBACKMEMBER(int, pfnGCBthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage));
2073 DECLGCCALLBACKMEMBER(int, pfnGCBthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError));
2074 DECLGCCALLBACKMEMBER(unsigned, pfnGCBthAssertCR3,(PVM pVM, uint32_t cr3, uint32_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb));
2075#if GC_ARCH_BITS == 32 && HC_ARCH_BITS == 64
2076 RTGCPTR alignment2; /**< structure size alignment. */
2077#endif
2078 /** @} */
2079
2080 /** Pointer to SHW+GST mode data (function pointers).
2081 * The index into this table is made up from */
2082 R3PTRTYPE(PPGMMODEDATA) paModeData;
2083
2084 /** Pointer to the list of RAM ranges (Phys GC -> Phys HC conversion) - for R3.
2085 * This is sorted by physical address and contains no overlapping ranges. */
2086 R3PTRTYPE(PPGMRAMRANGE) pRamRangesR3;
2087 /** R0 pointer corresponding to PGM::pRamRangesR3. */
2088 R0PTRTYPE(PPGMRAMRANGE) pRamRangesR0;
2089 /** GC pointer corresponding to PGM::pRamRangesR3. */
2090 GCPTRTYPE(PPGMRAMRANGE) pRamRangesGC;
2091 /** The configured RAM size. */
2092 RTUINT cbRamSize;
2093
2094 /** Pointer to the list of ROM ranges - for R3.
2095 * This is sorted by physical address and contains no overlapping ranges. */
2096 R3PTRTYPE(PPGMROMRANGE) pRomRangesR3;
2097 /** R0 pointer corresponding to PGM::pRomRangesR3. */
2098 R0PTRTYPE(PPGMRAMRANGE) pRomRangesR0;
2099 /** GC pointer corresponding to PGM::pRomRangesR3. */
2100 GCPTRTYPE(PPGMRAMRANGE) pRomRangesGC;
2101 /** Alignment padding. */
2102 RTGCPTR GCPtrPadding2;
2103
2104 /** Pointer to the list of MMIO2 ranges - for R3.
2105 * Registration order. */
2106 R3PTRTYPE(PPGMMMIO2RANGE) pMmio2RangesR3;
2107
2108 /** PGM offset based trees - HC Ptr. */
2109 R3R0PTRTYPE(PPGMTREES) pTreesHC;
2110 /** PGM offset based trees - GC Ptr. */
2111 GCPTRTYPE(PPGMTREES) pTreesGC;
2112
2113 /** Linked list of GC mappings - for GC.
2114 * The list is sorted ascending on address.
2115 */
2116 GCPTRTYPE(PPGMMAPPING) pMappingsGC;
2117 /** Linked list of GC mappings - for HC.
2118 * The list is sorted ascending on address.
2119 */
2120 R3PTRTYPE(PPGMMAPPING) pMappingsR3;
2121 /** Linked list of GC mappings - for R0.
2122 * The list is sorted ascending on address.
2123 */
2124 R0PTRTYPE(PPGMMAPPING) pMappingsR0;
2125
2126 /** If set no conflict checks are required. (boolean) */
2127 bool fMappingsFixed;
2128 /** If set, then no mappings are put into the shadow page table. (boolean) */
2129 bool fDisableMappings;
2130 /** Size of fixed mapping */
2131 uint32_t cbMappingFixed;
2132 /** Base address (GC) of fixed mapping */
2133 RTGCPTR GCPtrMappingFixed;
2134#if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
2135 uint32_t u32Padding0; /**< alignment padding. */
2136#endif
2137
2138
2139 /** @name Intermediate Context
2140 * @{ */
2141 /** Pointer to the intermediate page directory - Normal. */
2142 R3PTRTYPE(PX86PD) pInterPD;
2143 /** Pointer to the intermedate page tables - Normal.
2144 * There are two page tables, one for the identity mapping and one for
2145 * the host context mapping (of the core code). */
2146 R3PTRTYPE(PX86PT) apInterPTs[2];
2147 /** Pointer to the intermedate page tables - PAE. */
2148 R3PTRTYPE(PX86PTPAE) apInterPaePTs[2];
2149 /** Pointer to the intermedate page directory - PAE. */
2150 R3PTRTYPE(PX86PDPAE) apInterPaePDs[4];
2151 /** Pointer to the intermedate page directory - PAE. */
2152 R3PTRTYPE(PX86PDPTR) pInterPaePDPTR;
2153 /** Pointer to the intermedate page-map level 4 - AMD64. */
2154 R3PTRTYPE(PX86PML4) pInterPaePML4;
2155 /** Pointer to the intermedate page directory - AMD64. */
2156 R3PTRTYPE(PX86PDPTR) pInterPaePDPTR64;
2157 /** The Physical Address (HC) of the intermediate Page Directory - Normal. */
2158 RTHCPHYS HCPhysInterPD;
2159 /** The Physical Address (HC) of the intermediate Page Directory Pointer Table - PAE. */
2160 RTHCPHYS HCPhysInterPaePDPTR;
2161 /** The Physical Address (HC) of the intermediate Page Map Level 4 table - AMD64. */
2162 RTHCPHYS HCPhysInterPaePML4;
2163 /** @} */
2164
2165 /** Base address of the dynamic page mapping area.
2166 * The array is MM_HYPER_DYNAMIC_SIZE bytes big.
2167 */
2168 GCPTRTYPE(uint8_t *) pbDynPageMapBaseGC;
2169 /** The index of the last entry used in the dynamic page mapping area. */
2170 RTUINT iDynPageMapLast;
2171 /** Cache containing the last entries in the dynamic page mapping area.
2172 * The cache size is covering half of the mapping area. */
2173 RTHCPHYS aHCPhysDynPageMapCache[MM_HYPER_DYNAMIC_SIZE >> (PAGE_SHIFT + 1)];
2174
2175 /** A20 gate mask.
2176 * Our current approach to A20 emulation is to let REM do it and don't bother
2177 * anywhere else. The interesting Guests will be operating with it enabled anyway.
2178 * But whould need arrise, we'll subject physical addresses to this mask. */
2179 RTGCPHYS GCPhysA20Mask;
2180 /** A20 gate state - boolean! */
2181 RTUINT fA20Enabled;
2182
2183 /** What needs syncing (PGM_SYNC_*).
2184 * This is used to queue operations for PGMSyncCR3, PGMInvalidatePage,
2185 * PGMFlushTLB, and PGMR3Load. */
2186 RTUINT fSyncFlags;
2187
2188 /** PGM critical section.
2189 * This protects the physical & virtual access handlers, ram ranges,
2190 * and the page flag updating (some of it anyway).
2191 */
2192 PDMCRITSECT CritSect;
2193
2194 /** Shadow Page Pool - HC Ptr. */
2195 R3R0PTRTYPE(PPGMPOOL) pPoolHC;
2196 /** Shadow Page Pool - GC Ptr. */
2197 GCPTRTYPE(PPGMPOOL) pPoolGC;
2198
2199 /** We're not in a state which permits writes to guest memory.
2200 * (Only used in strict builds.) */
2201 bool fNoMorePhysWrites;
2202
2203 /** Flush the cache on the next access. */
2204 bool fPhysCacheFlushPending;
2205/** @todo r=bird: Fix member names!*/
2206 /** PGMPhysRead cache */
2207 PGMPHYSCACHE pgmphysreadcache;
2208 /** PGMPhysWrite cache */
2209 PGMPHYSCACHE pgmphyswritecache;
2210
2211 /**
2212 * Data associated with managing the ring-3 mappings of the allocation chunks.
2213 */
2214 struct
2215 {
2216 /** The chunk tree, ordered by chunk id. */
2217 R3R0PTRTYPE(PAVLU32NODECORE) pTree;
2218 /** The chunk mapping TLB. */
2219 PGMCHUNKR3MAPTLB Tlb;
2220 /** The number of mapped chunks. */
2221 uint32_t c;
2222 /** The maximum number of mapped chunks.
2223 * @cfgm PGM/MaxRing3Chunks */
2224 uint32_t cMax;
2225 /** The chunk age tree, ordered by ageing sequence number. */
2226 R3PTRTYPE(PAVLLU32NODECORE) pAgeTree;
2227 /** The current time. */
2228 uint32_t iNow;
2229 /** Number of pgmR3PhysChunkFindUnmapCandidate calls left to the next ageing. */
2230 uint32_t AgeingCountdown;
2231 } ChunkR3Map;
2232
2233 /**
2234 * The page mapping TLB for ring-3 and (for the time being) ring-0.
2235 */
2236 PGMPAGER3MAPTLB PhysTlbHC;
2237
2238 /** @name The zero page.
2239 * @{ */
2240 /** The host physical address of the zero page. */
2241 RTHCPHYS HCPhysZeroPg;
2242 /** The ring-3 mapping of the zero page. */
2243 RTR3PTR pvZeroPgR3;
2244 /** The ring-0 mapping of the zero page. */
2245 RTR0PTR pvZeroPgR0;
2246 /** The GC mapping of the zero page. */
2247 RTGCPTR pvZeroPgGC;
2248#if GC_ARCH_BITS != 32
2249 uint32_t u32ZeroAlignment; /**< Alignment padding. */
2250#endif
2251 /** @}*/
2252
2253 /** The number of handy pages. */
2254 uint32_t cHandyPages;
2255 /**
2256 * Array of handy pages.
2257 *
2258 * This array is used in a two way communication between pgmPhysAllocPage
2259 * and GMMR0AllocateHandyPages, with PGMR3PhysAllocateHandyPages serving as
2260 * an intermediary.
2261 *
2262 * The size of this array is important, see pgmPhysEnsureHandyPage for details.
2263 * (The current size of 32 pages, means 128 KB of handy memory.)
2264 */
2265 GMMPAGEDESC aHandyPages[32];
2266
2267 /** @name Release Statistics
2268 * @{ */
2269 uint32_t cAllPages; /**< The total number of pages. (Should be Private + Shared + Zero.) */
2270 uint32_t cPrivatePages; /**< The number of private pages. */
2271 uint32_t cSharedPages; /**< The number of shared pages. */
2272 uint32_t cZeroPages; /**< The number of zero backed pages. */
2273 /** The number of times the guest has switched mode since last reset or statistics reset. */
2274 STAMCOUNTER cGuestModeChanges;
2275 /** @} */
2276
2277#ifdef VBOX_WITH_STATISTICS
2278 /** GC: Which statistic this \#PF should be attributed to. */
2279 GCPTRTYPE(PSTAMPROFILE) pStatTrap0eAttributionGC;
2280 RTGCPTR padding0;
2281 /** HC: Which statistic this \#PF should be attributed to. */
2282 R3R0PTRTYPE(PSTAMPROFILE) pStatTrap0eAttributionHC;
2283 RTHCPTR padding1;
2284 STAMPROFILE StatGCTrap0e; /**< GC: PGMGCTrap0eHandler() profiling. */
2285 STAMPROFILE StatTrap0eCSAM; /**< Profiling of the Trap0eHandler body when the cause is CSAM. */
2286 STAMPROFILE StatTrap0eDirtyAndAccessedBits; /**< Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation. */
2287 STAMPROFILE StatTrap0eGuestTrap; /**< Profiling of the Trap0eHandler body when the cause is a guest trap. */
2288 STAMPROFILE StatTrap0eHndPhys; /**< Profiling of the Trap0eHandler body when the cause is a physical handler. */
2289 STAMPROFILE StatTrap0eHndVirt; /**< Profiling of the Trap0eHandler body when the cause is a virtual handler. */
2290 STAMPROFILE StatTrap0eHndUnhandled; /**< Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page. */
2291 STAMPROFILE StatTrap0eMisc; /**< Profiling of the Trap0eHandler body when the cause is not known. */
2292 STAMPROFILE StatTrap0eOutOfSync; /**< Profiling of the Trap0eHandler body when the cause is an out-of-sync page. */
2293 STAMPROFILE StatTrap0eOutOfSyncHndPhys; /**< Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page. */
2294 STAMPROFILE StatTrap0eOutOfSyncHndVirt; /**< Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page. */
2295 STAMPROFILE StatTrap0eOutOfSyncObsHnd; /**< Profiling of the Trap0eHandler body when the cause is an obsolete handler page. */
2296 STAMPROFILE StatTrap0eSyncPT; /**< Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT. */
2297
2298 STAMCOUNTER StatTrap0eMapHandler; /**< Number of traps due to access handlers in mappings. */
2299 STAMCOUNTER StatGCTrap0eConflicts; /**< GC: The number of times \#PF was caused by an undetected conflict. */
2300
2301 STAMCOUNTER StatGCTrap0eUSNotPresentRead;
2302 STAMCOUNTER StatGCTrap0eUSNotPresentWrite;
2303 STAMCOUNTER StatGCTrap0eUSWrite;
2304 STAMCOUNTER StatGCTrap0eUSReserved;
2305 STAMCOUNTER StatGCTrap0eUSNXE;
2306 STAMCOUNTER StatGCTrap0eUSRead;
2307
2308 STAMCOUNTER StatGCTrap0eSVNotPresentRead;
2309 STAMCOUNTER StatGCTrap0eSVNotPresentWrite;
2310 STAMCOUNTER StatGCTrap0eSVWrite;
2311 STAMCOUNTER StatGCTrap0eSVReserved;
2312 STAMCOUNTER StatGCTrap0eSNXE;
2313
2314 STAMCOUNTER StatGCTrap0eUnhandled;
2315 STAMCOUNTER StatGCTrap0eMap;
2316
2317 /** GC: PGMSyncPT() profiling. */
2318 STAMPROFILE StatGCSyncPT;
2319 /** GC: The number of times PGMSyncPT() needed to allocate page tables. */
2320 STAMCOUNTER StatGCSyncPTAlloc;
2321 /** GC: The number of times PGMSyncPT() detected conflicts. */
2322 STAMCOUNTER StatGCSyncPTConflict;
2323 /** GC: The number of times PGMSyncPT() failed. */
2324 STAMCOUNTER StatGCSyncPTFailed;
2325 /** GC: PGMGCInvalidatePage() profiling. */
2326 STAMPROFILE StatGCInvalidatePage;
2327 /** GC: The number of times PGMGCInvalidatePage() was called for a 4KB page. */
2328 STAMCOUNTER StatGCInvalidatePage4KBPages;
2329 /** GC: The number of times PGMGCInvalidatePage() was called for a 4MB page. */
2330 STAMCOUNTER StatGCInvalidatePage4MBPages;
2331 /** GC: The number of times PGMGCInvalidatePage() skipped a 4MB page. */
2332 STAMCOUNTER StatGCInvalidatePage4MBPagesSkip;
2333 /** GC: The number of times PGMGCInvalidatePage() was called for a not accessed page directory. */
2334 STAMCOUNTER StatGCInvalidatePagePDNAs;
2335 /** GC: The number of times PGMGCInvalidatePage() was called for a not present page directory. */
2336 STAMCOUNTER StatGCInvalidatePagePDNPs;
2337 /** GC: The number of times PGMGCInvalidatePage() was called for a page directory containing mappings (no conflict). */
2338 STAMCOUNTER StatGCInvalidatePagePDMappings;
2339 /** GC: The number of times PGMGCInvalidatePage() was called for an out of sync page directory. */
2340 STAMCOUNTER StatGCInvalidatePagePDOutOfSync;
2341 /** HC: The number of times PGMGCInvalidatePage() was skipped due to not present shw or pending pending SyncCR3. */
2342 STAMCOUNTER StatGCInvalidatePageSkipped;
2343 /** GC: The number of times user page is out of sync was detected in GC. */
2344 STAMCOUNTER StatGCPageOutOfSyncUser;
2345 /** GC: The number of times supervisor page is out of sync was detected in GC. */
2346 STAMCOUNTER StatGCPageOutOfSyncSupervisor;
2347 /** GC: The number of dynamic page mapping cache hits */
2348 STAMCOUNTER StatDynMapCacheMisses;
2349 /** GC: The number of dynamic page mapping cache misses */
2350 STAMCOUNTER StatDynMapCacheHits;
2351 /** GC: The number of times pgmGCGuestPDWriteHandler() was successfully called. */
2352 STAMCOUNTER StatGCGuestCR3WriteHandled;
2353 /** GC: The number of times pgmGCGuestPDWriteHandler() was called and we had to fall back to the recompiler. */
2354 STAMCOUNTER StatGCGuestCR3WriteUnhandled;
2355 /** GC: The number of times pgmGCGuestPDWriteHandler() was called and a conflict was detected. */
2356 STAMCOUNTER StatGCGuestCR3WriteConflict;
2357 /** GC: Number of out-of-sync handled pages. */
2358 STAMCOUNTER StatHandlersOutOfSync;
2359 /** GC: Number of traps due to physical access handlers. */
2360 STAMCOUNTER StatHandlersPhysical;
2361 /** GC: Number of traps due to virtual access handlers. */
2362 STAMCOUNTER StatHandlersVirtual;
2363 /** GC: Number of traps due to virtual access handlers found by physical address. */
2364 STAMCOUNTER StatHandlersVirtualByPhys;
2365 /** GC: Number of traps due to virtual access handlers found by virtual address (without proper physical flags). */
2366 STAMCOUNTER StatHandlersVirtualUnmarked;
2367 /** GC: Number of traps due to access outside range of monitored page(s). */
2368 STAMCOUNTER StatHandlersUnhandled;
2369
2370 /** GC: The number of times pgmGCGuestROMWriteHandler() was successfully called. */
2371 STAMCOUNTER StatGCGuestROMWriteHandled;
2372 /** GC: The number of times pgmGCGuestROMWriteHandler() was called and we had to fall back to the recompiler */
2373 STAMCOUNTER StatGCGuestROMWriteUnhandled;
2374
2375 /** HC: PGMR3InvalidatePage() profiling. */
2376 STAMPROFILE StatHCInvalidatePage;
2377 /** HC: The number of times PGMR3InvalidatePage() was called for a 4KB page. */
2378 STAMCOUNTER StatHCInvalidatePage4KBPages;
2379 /** HC: The number of times PGMR3InvalidatePage() was called for a 4MB page. */
2380 STAMCOUNTER StatHCInvalidatePage4MBPages;
2381 /** HC: The number of times PGMR3InvalidatePage() skipped a 4MB page. */
2382 STAMCOUNTER StatHCInvalidatePage4MBPagesSkip;
2383 /** HC: The number of times PGMR3InvalidatePage() was called for a not accessed page directory. */
2384 STAMCOUNTER StatHCInvalidatePagePDNAs;
2385 /** HC: The number of times PGMR3InvalidatePage() was called for a not present page directory. */
2386 STAMCOUNTER StatHCInvalidatePagePDNPs;
2387 /** HC: The number of times PGMR3InvalidatePage() was called for a page directory containing mappings (no conflict). */
2388 STAMCOUNTER StatHCInvalidatePagePDMappings;
2389 /** HC: The number of times PGMGCInvalidatePage() was called for an out of sync page directory. */
2390 STAMCOUNTER StatHCInvalidatePagePDOutOfSync;
2391 /** HC: The number of times PGMR3InvalidatePage() was skipped due to not present shw or pending pending SyncCR3. */
2392 STAMCOUNTER StatHCInvalidatePageSkipped;
2393 /** HC: PGMR3SyncPT() profiling. */
2394 STAMPROFILE StatHCSyncPT;
2395 /** HC: pgmr3SyncPTResolveConflict() profiling (includes the entire relocation). */
2396 STAMPROFILE StatHCResolveConflict;
2397 /** HC: Number of times PGMR3CheckMappingConflicts() detected a conflict. */
2398 STAMCOUNTER StatHCDetectedConflicts;
2399 /** HC: The total number of times pgmHCGuestPDWriteHandler() was called. */
2400 STAMCOUNTER StatHCGuestPDWrite;
2401 /** HC: The number of times pgmHCGuestPDWriteHandler() detected a conflict */
2402 STAMCOUNTER StatHCGuestPDWriteConflict;
2403
2404 /** HC: The number of pages marked not present for accessed bit emulation. */
2405 STAMCOUNTER StatHCAccessedPage;
2406 /** HC: The number of pages marked read-only for dirty bit tracking. */
2407 STAMCOUNTER StatHCDirtyPage;
2408 /** HC: The number of pages marked read-only for dirty bit tracking. */
2409 STAMCOUNTER StatHCDirtyPageBig;
2410 /** HC: The number of traps generated for dirty bit tracking. */
2411 STAMCOUNTER StatHCDirtyPageTrap;
2412 /** HC: The number of pages already dirty or readonly. */
2413 STAMCOUNTER StatHCDirtyPageSkipped;
2414
2415 /** GC: The number of pages marked not present for accessed bit emulation. */
2416 STAMCOUNTER StatGCAccessedPage;
2417 /** GC: The number of pages marked read-only for dirty bit tracking. */
2418 STAMCOUNTER StatGCDirtyPage;
2419 /** GC: The number of pages marked read-only for dirty bit tracking. */
2420 STAMCOUNTER StatGCDirtyPageBig;
2421 /** GC: The number of traps generated for dirty bit tracking. */
2422 STAMCOUNTER StatGCDirtyPageTrap;
2423 /** GC: The number of pages already dirty or readonly. */
2424 STAMCOUNTER StatGCDirtyPageSkipped;
2425 /** GC: The number of pages marked dirty because of write accesses. */
2426 STAMCOUNTER StatGCDirtiedPage;
2427 /** GC: The number of pages already marked dirty because of write accesses. */
2428 STAMCOUNTER StatGCPageAlreadyDirty;
2429 /** GC: The number of real pages faults during dirty bit tracking. */
2430 STAMCOUNTER StatGCDirtyTrackRealPF;
2431
2432 /** GC: Profiling of the PGMTrackDirtyBit() body */
2433 STAMPROFILE StatGCDirtyBitTracking;
2434 /** HC: Profiling of the PGMTrackDirtyBit() body */
2435 STAMPROFILE StatHCDirtyBitTracking;
2436
2437 /** GC: Profiling of the PGMGstModifyPage() body */
2438 STAMPROFILE StatGCGstModifyPage;
2439 /** HC: Profiling of the PGMGstModifyPage() body */
2440 STAMPROFILE StatHCGstModifyPage;
2441
2442 /** GC: The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit. */
2443 STAMCOUNTER StatGCSyncPagePDNAs;
2444 /** GC: The number of time we've encountered an out-of-sync PD in SyncPage. */
2445 STAMCOUNTER StatGCSyncPagePDOutOfSync;
2446 /** HC: The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit. */
2447 STAMCOUNTER StatHCSyncPagePDNAs;
2448 /** HC: The number of time we've encountered an out-of-sync PD in SyncPage. */
2449 STAMCOUNTER StatHCSyncPagePDOutOfSync;
2450
2451 STAMCOUNTER StatSynPT4kGC;
2452 STAMCOUNTER StatSynPT4kHC;
2453 STAMCOUNTER StatSynPT4MGC;
2454 STAMCOUNTER StatSynPT4MHC;
2455
2456 /** Profiling of the PGMFlushTLB() body. */
2457 STAMPROFILE StatFlushTLB;
2458 /** The number of times PGMFlushTLB was called with a new CR3, non-global. (switch) */
2459 STAMCOUNTER StatFlushTLBNewCR3;
2460 /** The number of times PGMFlushTLB was called with a new CR3, global. (switch) */
2461 STAMCOUNTER StatFlushTLBNewCR3Global;
2462 /** The number of times PGMFlushTLB was called with the same CR3, non-global. (flush) */
2463 STAMCOUNTER StatFlushTLBSameCR3;
2464 /** The number of times PGMFlushTLB was called with the same CR3, global. (flush) */
2465 STAMCOUNTER StatFlushTLBSameCR3Global;
2466
2467 STAMPROFILE StatGCSyncCR3; /**< GC: PGMSyncCR3() profiling. */
2468 STAMPROFILE StatGCSyncCR3Handlers; /**< GC: Profiling of the PGMSyncCR3() update handler section. */
2469 STAMPROFILE StatGCSyncCR3HandlerVirtualReset; /**< GC: Profiling of the virtual handler resets. */
2470 STAMPROFILE StatGCSyncCR3HandlerVirtualUpdate; /**< GC: Profiling of the virtual handler updates. */
2471 STAMCOUNTER StatGCSyncCR3Global; /**< GC: The number of global CR3 syncs. */
2472 STAMCOUNTER StatGCSyncCR3NotGlobal; /**< GC: The number of non-global CR3 syncs. */
2473 STAMCOUNTER StatGCSyncCR3DstFreed; /**< GC: The number of times we've had to free a shadow entry. */
2474 STAMCOUNTER StatGCSyncCR3DstFreedSrcNP; /**< GC: The number of times we've had to free a shadow entry for which the source entry was not present. */
2475 STAMCOUNTER StatGCSyncCR3DstNotPresent; /**< GC: The number of times we've encountered a not present shadow entry for a present guest entry. */
2476 STAMCOUNTER StatGCSyncCR3DstSkippedGlobalPD; /**< GC: The number of times a global page directory wasn't flushed. */
2477 STAMCOUNTER StatGCSyncCR3DstSkippedGlobalPT; /**< GC: The number of times a page table with only global entries wasn't flushed. */
2478 STAMCOUNTER StatGCSyncCR3DstCacheHit; /**< GC: The number of times we got some kind of cache hit on a page table. */
2479
2480 STAMPROFILE StatHCSyncCR3; /**< HC: PGMSyncCR3() profiling. */
2481 STAMPROFILE StatHCSyncCR3Handlers; /**< HC: Profiling of the PGMSyncCR3() update handler section. */
2482 STAMPROFILE StatHCSyncCR3HandlerVirtualReset; /**< HC: Profiling of the virtual handler resets. */
2483 STAMPROFILE StatHCSyncCR3HandlerVirtualUpdate; /**< HC: Profiling of the virtual handler updates. */
2484 STAMCOUNTER StatHCSyncCR3Global; /**< HC: The number of global CR3 syncs. */
2485 STAMCOUNTER StatHCSyncCR3NotGlobal; /**< HC: The number of non-global CR3 syncs. */
2486 STAMCOUNTER StatHCSyncCR3DstFreed; /**< HC: The number of times we've had to free a shadow entry. */
2487 STAMCOUNTER StatHCSyncCR3DstFreedSrcNP; /**< HC: The number of times we've had to free a shadow entry for which the source entry was not present. */
2488 STAMCOUNTER StatHCSyncCR3DstNotPresent; /**< HC: The number of times we've encountered a not present shadow entry for a present guest entry. */
2489 STAMCOUNTER StatHCSyncCR3DstSkippedGlobalPD; /**< HC: The number of times a global page directory wasn't flushed. */
2490 STAMCOUNTER StatHCSyncCR3DstSkippedGlobalPT; /**< HC: The number of times a page table with only global entries wasn't flushed. */
2491 STAMCOUNTER StatHCSyncCR3DstCacheHit; /**< HC: The number of times we got some kind of cache hit on a page table. */
2492
2493 /** GC: Profiling of pgmHandlerVirtualFindByPhysAddr. */
2494 STAMPROFILE StatVirtHandleSearchByPhysGC;
2495 /** HC: Profiling of pgmHandlerVirtualFindByPhysAddr. */
2496 STAMPROFILE StatVirtHandleSearchByPhysHC;
2497 /** HC: The number of times PGMR3HandlerPhysicalReset is called. */
2498 STAMCOUNTER StatHandlePhysicalReset;
2499
2500 STAMPROFILE StatCheckPageFault;
2501 STAMPROFILE StatLazySyncPT;
2502 STAMPROFILE StatMapping;
2503 STAMPROFILE StatOutOfSync;
2504 STAMPROFILE StatHandlers;
2505 STAMPROFILE StatEIPHandlers;
2506 STAMPROFILE StatHCPrefetch;
2507
2508# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2509 /** The number of first time shadowings. */
2510 STAMCOUNTER StatTrackVirgin;
2511 /** The number of times switching to cRef2, i.e. the page is being shadowed by two PTs. */
2512 STAMCOUNTER StatTrackAliased;
2513 /** The number of times we're tracking using cRef2. */
2514 STAMCOUNTER StatTrackAliasedMany;
2515 /** The number of times we're hitting pages which has overflowed cRef2. */
2516 STAMCOUNTER StatTrackAliasedLots;
2517 /** The number of times the extent list grows to long. */
2518 STAMCOUNTER StatTrackOverflows;
2519 /** Profiling of SyncPageWorkerTrackDeref (expensive). */
2520 STAMPROFILE StatTrackDeref;
2521# endif
2522
2523 /** Ring-3/0 page mapper TLB hits. */
2524 STAMCOUNTER StatPageHCMapTlbHits;
2525 /** Ring-3/0 page mapper TLB misses. */
2526 STAMCOUNTER StatPageHCMapTlbMisses;
2527 /** Ring-3/0 chunk mapper TLB hits. */
2528 STAMCOUNTER StatChunkR3MapTlbHits;
2529 /** Ring-3/0 chunk mapper TLB misses. */
2530 STAMCOUNTER StatChunkR3MapTlbMisses;
2531 /** Times a shared page has been replaced by a private one. */
2532 STAMCOUNTER StatPageReplaceShared;
2533 /** Times the zero page has been replaced by a private one. */
2534 STAMCOUNTER StatPageReplaceZero;
2535 /** The number of times we've executed GMMR3AllocateHandyPages. */
2536 STAMCOUNTER StatPageHandyAllocs;
2537
2538 /** Allocated mbs of guest ram */
2539 STAMCOUNTER StatDynRamTotal;
2540 /** Nr of pgmr3PhysGrowRange calls. */
2541 STAMCOUNTER StatDynRamGrow;
2542
2543 STAMCOUNTER StatGCTrap0ePD[X86_PG_ENTRIES];
2544 STAMCOUNTER StatGCSyncPtPD[X86_PG_ENTRIES];
2545 STAMCOUNTER StatGCSyncPagePD[X86_PG_ENTRIES];
2546#endif
2547} PGM, *PPGM;
2548
2549
2550/** @name PGM::fSyncFlags Flags
2551 * @{
2552 */
2553/** Updates the virtual access handler state bit in PGMPAGE. */
2554#define PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL RT_BIT(0)
2555/** Always sync CR3. */
2556#define PGM_SYNC_ALWAYS RT_BIT(1)
2557/** Check monitoring on next CR3 (re)load and invalidate page. */
2558#define PGM_SYNC_MONITOR_CR3 RT_BIT(2)
2559/** Clear the page pool (a light weight flush). */
2560#define PGM_SYNC_CLEAR_PGM_POOL RT_BIT(8)
2561/** @} */
2562
2563
2564__BEGIN_DECLS
2565
2566int pgmLock(PVM pVM);
2567void pgmUnlock(PVM pVM);
2568
2569PGMGCDECL(int) pgmGCGuestPDWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, void *pvFault, RTGCPHYS GCPhysFault, void *pvUser);
2570PGMDECL(int) pgmPhysRomWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, void *pvFault, RTGCPHYS GCPhysFault, void *pvUser);
2571int pgmR3ChangeMode(PVM pVM, PGMMODE enmGuestMode);
2572
2573int pgmR3SyncPTResolveConflict(PVM pVM, PPGMMAPPING pMapping, PX86PD pPDSrc, int iPDOld);
2574PPGMMAPPING pgmGetMapping(PVM pVM, RTGCPTR GCPtr);
2575void pgmR3MapRelocate(PVM pVM, PPGMMAPPING pMapping, int iPDOld, int iPDNew);
2576DECLCALLBACK(void) pgmR3MapInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
2577
2578void pgmR3HandlerPhysicalUpdateAll(PVM pVM);
2579int pgmHandlerVirtualFindByPhysAddr(PVM pVM, RTGCPHYS GCPhys, PPGMVIRTHANDLER *ppVirt, unsigned *piPage);
2580DECLCALLBACK(int) pgmHandlerVirtualResetOne(PAVLROGCPTRNODECORE pNode, void *pvUser);
2581#if defined(VBOX_STRICT) || defined(LOG_ENABLED)
2582void pgmHandlerVirtualDumpPhysPages(PVM pVM);
2583#else
2584# define pgmHandlerVirtualDumpPhysPages(a) do { } while (0)
2585#endif
2586DECLCALLBACK(void) pgmR3InfoHandlers(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
2587
2588
2589void pgmPhysFreePage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys);
2590int pgmPhysPageLoadIntoTlb(PPGM pPGM, RTGCPHYS GCPhys);
2591int pgmPhysPageMakeWritable(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys);
2592int pgmPhysPageMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPPGMPAGEMAP ppMap, void **ppv);
2593#ifdef IN_RING3
2594int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk);
2595int pgmR3PhysRomReset(PVM pVM);
2596#ifndef VBOX_WITH_NEW_PHYS_CODE
2597int pgmr3PhysGrowRange(PVM pVM, RTGCPHYS GCPhys);
2598#endif
2599
2600int pgmR3PoolInit(PVM pVM);
2601void pgmR3PoolRelocate(PVM pVM);
2602void pgmR3PoolReset(PVM pVM);
2603
2604#endif /* IN_RING3 */
2605#ifdef IN_GC
2606void *pgmGCPoolMapPage(PVM pVM, PPGMPOOLPAGE pPage);
2607#endif
2608int pgmPoolAlloc(PVM pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, uint16_t iUser, uint16_t iUserTable, PPPGMPOOLPAGE ppPage);
2609PPGMPOOLPAGE pgmPoolGetPageByHCPhys(PVM pVM, RTHCPHYS HCPhys);
2610void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint16_t iUserTable);
2611void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint16_t iUserTable);
2612int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
2613void pgmPoolFlushAll(PVM pVM);
2614void pgmPoolClearAll(PVM pVM);
2615void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs);
2616void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, uint16_t iPhysExt);
2617int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage);
2618PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt);
2619void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt);
2620void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt);
2621uint16_t pgmPoolTrackPhysExtAddref(PVM pVM, uint16_t u16, uint16_t iShwPT);
2622void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPoolPage, PPGMPAGE pPhysPage);
2623#ifdef PGMPOOL_WITH_MONITORING
2624# ifdef IN_RING3
2625void pgmPoolMonitorChainChanging(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, RTHCPTR pvAddress, PDISCPUSTATE pCpu);
2626# else
2627void pgmPoolMonitorChainChanging(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, RTGCPTR pvAddress, PDISCPUSTATE pCpu);
2628# endif
2629int pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
2630void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
2631void pgmPoolMonitorModifiedClearAll(PVM pVM);
2632int pgmPoolMonitorMonitorCR3(PPGMPOOL pPool, uint16_t idxRoot, RTGCPHYS GCPhysCR3);
2633int pgmPoolMonitorUnmonitorCR3(PPGMPOOL pPool, uint16_t idxRoot);
2634#endif
2635
2636__END_DECLS
2637
2638
2639/**
2640 * Gets the PGMRAMRANGE structure for a guest page.
2641 *
2642 * @returns Pointer to the RAM range on success.
2643 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
2644 *
2645 * @param pPGM PGM handle.
2646 * @param GCPhys The GC physical address.
2647 */
2648DECLINLINE(PPGMRAMRANGE) pgmPhysGetRange(PPGM pPGM, RTGCPHYS GCPhys)
2649{
2650 /*
2651 * Optimize for the first range.
2652 */
2653 PPGMRAMRANGE pRam = CTXALLSUFF(pPGM->pRamRanges);
2654 RTGCPHYS off = GCPhys - pRam->GCPhys;
2655 if (RT_UNLIKELY(off >= pRam->cb))
2656 {
2657 do
2658 {
2659 pRam = CTXALLSUFF(pRam->pNext);
2660 if (RT_UNLIKELY(!pRam))
2661 break;
2662 off = GCPhys - pRam->GCPhys;
2663 } while (off >= pRam->cb);
2664 }
2665 return pRam;
2666}
2667
2668
2669/**
2670 * Gets the PGMPAGE structure for a guest page.
2671 *
2672 * @returns Pointer to the page on success.
2673 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
2674 *
2675 * @param pPGM PGM handle.
2676 * @param GCPhys The GC physical address.
2677 */
2678DECLINLINE(PPGMPAGE) pgmPhysGetPage(PPGM pPGM, RTGCPHYS GCPhys)
2679{
2680 /*
2681 * Optimize for the first range.
2682 */
2683 PPGMRAMRANGE pRam = CTXALLSUFF(pPGM->pRamRanges);
2684 RTGCPHYS off = GCPhys - pRam->GCPhys;
2685 if (RT_UNLIKELY(off >= pRam->cb))
2686 {
2687 do
2688 {
2689 pRam = CTXALLSUFF(pRam->pNext);
2690 if (RT_UNLIKELY(!pRam))
2691 return NULL;
2692 off = GCPhys - pRam->GCPhys;
2693 } while (off >= pRam->cb);
2694 }
2695 return &pRam->aPages[off >> PAGE_SHIFT];
2696}
2697
2698
2699/**
2700 * Gets the PGMPAGE structure for a guest page.
2701 *
2702 * Old Phys code: Will make sure the page is present.
2703 *
2704 * @returns VBox status code.
2705 * @retval VINF_SUCCESS and a valid *ppPage on success.
2706 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if the address isn't valid.
2707 *
2708 * @param pPGM PGM handle.
2709 * @param GCPhys The GC physical address.
2710 * @param ppPage Where to store the page poitner on success.
2711 */
2712DECLINLINE(int) pgmPhysGetPageEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage)
2713{
2714 /*
2715 * Optimize for the first range.
2716 */
2717 PPGMRAMRANGE pRam = CTXALLSUFF(pPGM->pRamRanges);
2718 RTGCPHYS off = GCPhys - pRam->GCPhys;
2719 if (RT_UNLIKELY(off >= pRam->cb))
2720 {
2721 do
2722 {
2723 pRam = CTXALLSUFF(pRam->pNext);
2724 if (RT_UNLIKELY(!pRam))
2725 {
2726 *ppPage = NULL; /* avoid incorrect and very annoying GCC warnings */
2727 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
2728 }
2729 off = GCPhys - pRam->GCPhys;
2730 } while (off >= pRam->cb);
2731 }
2732 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
2733#ifndef VBOX_WITH_NEW_PHYS_CODE
2734
2735 /*
2736 * Make sure it's present.
2737 */
2738 if (RT_UNLIKELY( !PGM_PAGE_GET_HCPHYS(*ppPage)
2739 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)))
2740 {
2741#ifdef IN_RING3
2742 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys);
2743#else
2744 int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
2745#endif
2746 if (VBOX_FAILURE(rc))
2747 {
2748 *ppPage = NULL; /* avoid incorrect and very annoying GCC warnings */
2749 return rc;
2750 }
2751 Assert(rc == VINF_SUCCESS);
2752 }
2753#endif
2754 return VINF_SUCCESS;
2755}
2756
2757
2758
2759
2760/**
2761 * Gets the PGMPAGE structure for a guest page.
2762 *
2763 * Old Phys code: Will make sure the page is present.
2764 *
2765 * @returns VBox status code.
2766 * @retval VINF_SUCCESS and a valid *ppPage on success.
2767 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if the address isn't valid.
2768 *
2769 * @param pPGM PGM handle.
2770 * @param GCPhys The GC physical address.
2771 * @param ppPage Where to store the page poitner on success.
2772 * @param ppRamHint Where to read and store the ram list hint.
2773 * The caller initializes this to NULL before the call.
2774 */
2775DECLINLINE(int) pgmPhysGetPageWithHintEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage, PPGMRAMRANGE *ppRamHint)
2776{
2777 RTGCPHYS off;
2778 PPGMRAMRANGE pRam = *ppRamHint;
2779 if ( !pRam
2780 || RT_UNLIKELY((off = GCPhys - pRam->GCPhys) >= pRam->cb))
2781 {
2782 pRam = CTXALLSUFF(pPGM->pRamRanges);
2783 off = GCPhys - pRam->GCPhys;
2784 if (RT_UNLIKELY(off >= pRam->cb))
2785 {
2786 do
2787 {
2788 pRam = CTXALLSUFF(pRam->pNext);
2789 if (RT_UNLIKELY(!pRam))
2790 {
2791 *ppPage = NULL; /* Kill the incorrect and extremely annoying GCC warnings. */
2792 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
2793 }
2794 off = GCPhys - pRam->GCPhys;
2795 } while (off >= pRam->cb);
2796 }
2797 *ppRamHint = pRam;
2798 }
2799 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
2800#ifndef VBOX_WITH_NEW_PHYS_CODE
2801
2802 /*
2803 * Make sure it's present.
2804 */
2805 if (RT_UNLIKELY( !PGM_PAGE_GET_HCPHYS(*ppPage)
2806 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)))
2807 {
2808#ifdef IN_RING3
2809 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys);
2810#else
2811 int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
2812#endif
2813 if (VBOX_FAILURE(rc))
2814 {
2815 *ppPage = NULL; /* Shut up annoying smart ass. */
2816 return rc;
2817 }
2818 Assert(rc == VINF_SUCCESS);
2819 }
2820#endif
2821 return VINF_SUCCESS;
2822}
2823
2824
2825/**
2826 * Gets the PGMPAGE structure for a guest page together with the PGMRAMRANGE.
2827 *
2828 * @returns Pointer to the page on success.
2829 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
2830 *
2831 * @param pPGM PGM handle.
2832 * @param GCPhys The GC physical address.
2833 * @param ppRam Where to store the pointer to the PGMRAMRANGE.
2834 */
2835DECLINLINE(PPGMPAGE) pgmPhysGetPageAndRange(PPGM pPGM, RTGCPHYS GCPhys, PPGMRAMRANGE *ppRam)
2836{
2837 /*
2838 * Optimize for the first range.
2839 */
2840 PPGMRAMRANGE pRam = CTXALLSUFF(pPGM->pRamRanges);
2841 RTGCPHYS off = GCPhys - pRam->GCPhys;
2842 if (RT_UNLIKELY(off >= pRam->cb))
2843 {
2844 do
2845 {
2846 pRam = CTXALLSUFF(pRam->pNext);
2847 if (RT_UNLIKELY(!pRam))
2848 return NULL;
2849 off = GCPhys - pRam->GCPhys;
2850 } while (off >= pRam->cb);
2851 }
2852 *ppRam = pRam;
2853 return &pRam->aPages[off >> PAGE_SHIFT];
2854}
2855
2856
2857
2858
2859/**
2860 * Gets the PGMPAGE structure for a guest page together with the PGMRAMRANGE.
2861 *
2862 * @returns Pointer to the page on success.
2863 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
2864 *
2865 * @param pPGM PGM handle.
2866 * @param GCPhys The GC physical address.
2867 * @param ppPage Where to store the pointer to the PGMPAGE structure.
2868 * @param ppRam Where to store the pointer to the PGMRAMRANGE structure.
2869 */
2870DECLINLINE(int) pgmPhysGetPageAndRangeEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage, PPGMRAMRANGE *ppRam)
2871{
2872 /*
2873 * Optimize for the first range.
2874 */
2875 PPGMRAMRANGE pRam = CTXALLSUFF(pPGM->pRamRanges);
2876 RTGCPHYS off = GCPhys - pRam->GCPhys;
2877 if (RT_UNLIKELY(off >= pRam->cb))
2878 {
2879 do
2880 {
2881 pRam = CTXALLSUFF(pRam->pNext);
2882 if (RT_UNLIKELY(!pRam))
2883 {
2884 *ppRam = NULL; /* Shut up silly GCC warnings. */
2885 *ppPage = NULL; /* ditto */
2886 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
2887 }
2888 off = GCPhys - pRam->GCPhys;
2889 } while (off >= pRam->cb);
2890 }
2891 *ppRam = pRam;
2892 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
2893#ifndef VBOX_WITH_NEW_PHYS_CODE
2894
2895 /*
2896 * Make sure it's present.
2897 */
2898 if (RT_UNLIKELY( !PGM_PAGE_GET_HCPHYS(*ppPage)
2899 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)))
2900 {
2901#ifdef IN_RING3
2902 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys);
2903#else
2904 int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
2905#endif
2906 if (VBOX_FAILURE(rc))
2907 {
2908 *ppPage = NULL; /* Shut up silly GCC warnings. */
2909 *ppPage = NULL; /* ditto */
2910 return rc;
2911 }
2912 Assert(rc == VINF_SUCCESS);
2913
2914 }
2915#endif
2916 return VINF_SUCCESS;
2917}
2918
2919
2920/**
2921 * Convert GC Phys to HC Phys.
2922 *
2923 * @returns VBox status.
2924 * @param pPGM PGM handle.
2925 * @param GCPhys The GC physical address.
2926 * @param pHCPhys Where to store the corresponding HC physical address.
2927 *
2928 * @deprecated Doesn't deal with zero, shared or write monitored pages.
2929 * Avoid when writing new code!
2930 */
2931DECLINLINE(int) pgmRamGCPhys2HCPhys(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPHYS pHCPhys)
2932{
2933 PPGMPAGE pPage;
2934 int rc = pgmPhysGetPageEx(pPGM, GCPhys, &pPage);
2935 if (VBOX_FAILURE(rc))
2936 return rc;
2937 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK);
2938 return VINF_SUCCESS;
2939}
2940
2941
2942#ifndef IN_GC
2943/**
2944 * Queries the Physical TLB entry for a physical guest page,
2945 * attemting to load the TLB entry if necessary.
2946 *
2947 * @returns VBox status code.
2948 * @retval VINF_SUCCESS on success
2949 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
2950 * @param pPGM The PGM instance handle.
2951 * @param GCPhys The address of the guest page.
2952 * @param ppTlbe Where to store the pointer to the TLB entry.
2953 */
2954
2955DECLINLINE(int) pgmPhysPageQueryTlbe(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGEMAPTLBE ppTlbe)
2956{
2957 int rc;
2958 PPGMPAGEMAPTLBE pTlbe = &pPGM->CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)];
2959 if (pTlbe->GCPhys == (GCPhys & X86_PTE_PAE_PG_MASK))
2960 {
2961 STAM_COUNTER_INC(&pPGM->CTXMID(StatPage,MapTlbHits));
2962 rc = VINF_SUCCESS;
2963 }
2964 else
2965 rc = pgmPhysPageLoadIntoTlb(pPGM, GCPhys);
2966 *ppTlbe = pTlbe;
2967 return rc;
2968}
2969#endif /* !IN_GC */
2970
2971
2972#ifndef VBOX_WITH_NEW_PHYS_CODE
2973/**
2974 * Convert GC Phys to HC Virt.
2975 *
2976 * @returns VBox status.
2977 * @param pPGM PGM handle.
2978 * @param GCPhys The GC physical address.
2979 * @param pHCPtr Where to store the corresponding HC virtual address.
2980 *
2981 * @deprecated This will be eliminated by PGMPhysGCPhys2CCPtr.
2982 */
2983DECLINLINE(int) pgmRamGCPhys2HCPtr(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPTR pHCPtr)
2984{
2985 PPGMRAMRANGE pRam;
2986 PPGMPAGE pPage;
2987 int rc = pgmPhysGetPageAndRangeEx(pPGM, GCPhys, &pPage, &pRam);
2988 if (VBOX_FAILURE(rc))
2989 {
2990 *pHCPtr = 0; /* Shut up silly GCC warnings. */
2991 return rc;
2992 }
2993 RTGCPHYS off = GCPhys - pRam->GCPhys;
2994
2995 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
2996 {
2997 unsigned iChunk = off >> PGM_DYNAMIC_CHUNK_SHIFT;
2998 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)CTXSUFF(pRam->pavHCChunk)[iChunk] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
2999 return VINF_SUCCESS;
3000 }
3001 if (pRam->pvHC)
3002 {
3003 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)pRam->pvHC + off);
3004 return VINF_SUCCESS;
3005 }
3006 *pHCPtr = 0; /* Shut up silly GCC warnings. */
3007 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3008}
3009#endif /* !VBOX_WITH_NEW_PHYS_CODE */
3010
3011
3012/**
3013 * Convert GC Phys to HC Virt.
3014 *
3015 * @returns VBox status.
3016 * @param PVM VM handle.
3017 * @param pRam Ram range
3018 * @param GCPhys The GC physical address.
3019 * @param pHCPtr Where to store the corresponding HC virtual address.
3020 *
3021 * @deprecated This will be eliminated. Don't use it.
3022 */
3023DECLINLINE(int) pgmRamGCPhys2HCPtrWithRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, PRTHCPTR pHCPtr)
3024{
3025 RTGCPHYS off = GCPhys - pRam->GCPhys;
3026 Assert(off < pRam->cb);
3027
3028 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
3029 {
3030 unsigned idx = (off >> PGM_DYNAMIC_CHUNK_SHIFT);
3031 /* Physical chunk in dynamically allocated range not present? */
3032 if (RT_UNLIKELY(!CTXSUFF(pRam->pavHCChunk)[idx]))
3033 {
3034#ifdef IN_RING3
3035 int rc = pgmr3PhysGrowRange(pVM, GCPhys);
3036#else
3037 int rc = CTXALLMID(VMM, CallHost)(pVM, VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
3038#endif
3039 if (rc != VINF_SUCCESS)
3040 {
3041 *pHCPtr = 0; /* GCC crap */
3042 return rc;
3043 }
3044 }
3045 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)CTXSUFF(pRam->pavHCChunk)[idx] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
3046 return VINF_SUCCESS;
3047 }
3048 if (pRam->pvHC)
3049 {
3050 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)pRam->pvHC + off);
3051 return VINF_SUCCESS;
3052 }
3053 *pHCPtr = 0; /* GCC crap */
3054 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3055}
3056
3057
3058/**
3059 * Convert GC Phys to HC Virt and HC Phys.
3060 *
3061 * @returns VBox status.
3062 * @param pPGM PGM handle.
3063 * @param GCPhys The GC physical address.
3064 * @param pHCPtr Where to store the corresponding HC virtual address.
3065 * @param pHCPhys Where to store the HC Physical address and its flags.
3066 *
3067 * @deprecated Will go away or be changed. Only user is MapCR3. MapCR3 will have to do ring-3
3068 * and ring-0 locking of the CR3 in a lazy fashion I'm fear... or perhaps not. we'll see.
3069 */
3070DECLINLINE(int) pgmRamGCPhys2HCPtrAndHCPhysWithFlags(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPTR pHCPtr, PRTHCPHYS pHCPhys)
3071{
3072 PPGMRAMRANGE pRam;
3073 PPGMPAGE pPage;
3074 int rc = pgmPhysGetPageAndRangeEx(pPGM, GCPhys, &pPage, &pRam);
3075 if (VBOX_FAILURE(rc))
3076 {
3077 *pHCPtr = 0; /* Shut up crappy GCC warnings */
3078 *pHCPhys = 0; /* ditto */
3079 return rc;
3080 }
3081 RTGCPHYS off = GCPhys - pRam->GCPhys;
3082
3083 *pHCPhys = pPage->HCPhys; /** @todo PAGE FLAGS */
3084 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
3085 {
3086 unsigned idx = (off >> PGM_DYNAMIC_CHUNK_SHIFT);
3087 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)CTXSUFF(pRam->pavHCChunk)[idx] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
3088 return VINF_SUCCESS;
3089 }
3090 if (pRam->pvHC)
3091 {
3092 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)pRam->pvHC + off);
3093 return VINF_SUCCESS;
3094 }
3095 *pHCPtr = 0;
3096 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3097}
3098
3099
3100/**
3101 * Clears flags associated with a RAM address.
3102 *
3103 * @returns VBox status code.
3104 * @param pPGM PGM handle.
3105 * @param GCPhys Guest context physical address.
3106 * @param fFlags fFlags to clear. (Bits 0-11.)
3107 */
3108DECLINLINE(int) pgmRamFlagsClearByGCPhys(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags)
3109{
3110 PPGMPAGE pPage;
3111 int rc = pgmPhysGetPageEx(pPGM, GCPhys, &pPage);
3112 if (VBOX_FAILURE(rc))
3113 return rc;
3114
3115 fFlags &= ~X86_PTE_PAE_PG_MASK;
3116 pPage->HCPhys &= ~(RTHCPHYS)fFlags; /** @todo PAGE FLAGS */
3117 return VINF_SUCCESS;
3118}
3119
3120
3121/**
3122 * Clears flags associated with a RAM address.
3123 *
3124 * @returns VBox status code.
3125 * @param pPGM PGM handle.
3126 * @param GCPhys Guest context physical address.
3127 * @param fFlags fFlags to clear. (Bits 0-11.)
3128 * @param ppRamHint Where to read and store the ram list hint.
3129 * The caller initializes this to NULL before the call.
3130 */
3131DECLINLINE(int) pgmRamFlagsClearByGCPhysWithHint(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags, PPGMRAMRANGE *ppRamHint)
3132{
3133 PPGMPAGE pPage;
3134 int rc = pgmPhysGetPageWithHintEx(pPGM, GCPhys, &pPage, ppRamHint);
3135 if (VBOX_FAILURE(rc))
3136 return rc;
3137
3138 fFlags &= ~X86_PTE_PAE_PG_MASK;
3139 pPage->HCPhys &= ~(RTHCPHYS)fFlags; /** @todo PAGE FLAGS */
3140 return VINF_SUCCESS;
3141}
3142
3143/**
3144 * Sets (bitwise OR) flags associated with a RAM address.
3145 *
3146 * @returns VBox status code.
3147 * @param pPGM PGM handle.
3148 * @param GCPhys Guest context physical address.
3149 * @param fFlags fFlags to set clear. (Bits 0-11.)
3150 */
3151DECLINLINE(int) pgmRamFlagsSetByGCPhys(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags)
3152{
3153 PPGMPAGE pPage;
3154 int rc = pgmPhysGetPageEx(pPGM, GCPhys, &pPage);
3155 if (VBOX_FAILURE(rc))
3156 return rc;
3157
3158 fFlags &= ~X86_PTE_PAE_PG_MASK;
3159 pPage->HCPhys |= fFlags; /** @todo PAGE FLAGS */
3160 return VINF_SUCCESS;
3161}
3162
3163
3164/**
3165 * Sets (bitwise OR) flags associated with a RAM address.
3166 *
3167 * @returns VBox status code.
3168 * @param pPGM PGM handle.
3169 * @param GCPhys Guest context physical address.
3170 * @param fFlags fFlags to set clear. (Bits 0-11.)
3171 * @param ppRamHint Where to read and store the ram list hint.
3172 * The caller initializes this to NULL before the call.
3173 */
3174DECLINLINE(int) pgmRamFlagsSetByGCPhysWithHint(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags, PPGMRAMRANGE *ppRamHint)
3175{
3176 PPGMPAGE pPage;
3177 int rc = pgmPhysGetPageWithHintEx(pPGM, GCPhys, &pPage, ppRamHint);
3178 if (VBOX_FAILURE(rc))
3179 return rc;
3180
3181 fFlags &= ~X86_PTE_PAE_PG_MASK;
3182 pPage->HCPhys |= fFlags; /** @todo PAGE FLAGS */
3183 return VINF_SUCCESS;
3184}
3185
3186
3187/**
3188 * Gets the page directory for the specified address.
3189 *
3190 * @returns Pointer to the page directory in question.
3191 * @returns NULL if the page directory is not present or on an invalid page.
3192 * @param pPGM Pointer to the PGM instance data.
3193 * @param GCPtr The address.
3194 */
3195DECLINLINE(PX86PDPAE) pgmGstGetPaePD(PPGM pPGM, RTGCUINTPTR GCPtr)
3196{
3197 const unsigned iPdPtr = GCPtr >> X86_PDPTR_SHIFT;
3198 if (CTXSUFF(pPGM->pGstPaePDPTR)->a[iPdPtr].n.u1Present)
3199 {
3200 if ((CTXSUFF(pPGM->pGstPaePDPTR)->a[iPdPtr].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPtr])
3201 return CTXSUFF(pPGM->apGstPaePDs)[iPdPtr];
3202
3203 /* cache is out-of-sync. */
3204 PX86PDPAE pPD;
3205 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), CTXSUFF(pPGM->pGstPaePDPTR)->a[iPdPtr].u & X86_PDPE_PG_MASK, &pPD);
3206 if (VBOX_SUCCESS(rc))
3207 return pPD;
3208 AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, CTXSUFF(pPGM->pGstPaePDPTR)->a[iPdPtr].u));
3209 /* returning NIL_RTGCPHYS is ok if we assume it's just an invalid page of some kind emulated as all 0s. */
3210 }
3211 return NULL;
3212}
3213
3214
3215/**
3216 * Gets the page directory entry for the specified address.
3217 *
3218 * @returns Pointer to the page directory entry in question.
3219 * @returns NULL if the page directory is not present or on an invalid page.
3220 * @param pPGM Pointer to the PGM instance data.
3221 * @param GCPtr The address.
3222 */
3223DECLINLINE(PX86PDEPAE) pgmGstGetPaePDEPtr(PPGM pPGM, RTGCUINTPTR GCPtr)
3224{
3225 const unsigned iPdPtr = GCPtr >> X86_PDPTR_SHIFT;
3226 if (CTXSUFF(pPGM->pGstPaePDPTR)->a[iPdPtr].n.u1Present)
3227 {
3228 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3229 if ((CTXSUFF(pPGM->pGstPaePDPTR)->a[iPdPtr].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPtr])
3230 return &CTXSUFF(pPGM->apGstPaePDs)[iPdPtr]->a[iPD];
3231
3232 /* The cache is out-of-sync. */
3233 PX86PDPAE pPD;
3234 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), CTXSUFF(pPGM->pGstPaePDPTR)->a[iPdPtr].u & X86_PDPE_PG_MASK, &pPD);
3235 if (VBOX_SUCCESS(rc))
3236 return &pPD->a[iPD];
3237 AssertMsgFailed(("Impossible! rc=%Vrc PDPE=%RX64\n", rc, CTXSUFF(pPGM->pGstPaePDPTR)->a[iPdPtr].u));
3238 /* returning NIL_RTGCPHYS is ok if we assume it's just an invalid page or something which we'll emulate as all 0s. */
3239 }
3240 return NULL;
3241}
3242
3243
3244/**
3245 * Gets the page directory entry for the specified address.
3246 *
3247 * @returns The page directory entry in question.
3248 * @returns A non-present entry if the page directory is not present or on an invalid page.
3249 * @param pPGM Pointer to the PGM instance data.
3250 * @param GCPtr The address.
3251 */
3252DECLINLINE(uint64_t) pgmGstGetPaePDE(PPGM pPGM, RTGCUINTPTR GCPtr)
3253{
3254 const unsigned iPdPtr = GCPtr >> X86_PDPTR_SHIFT;
3255 if (CTXSUFF(pPGM->pGstPaePDPTR)->a[iPdPtr].n.u1Present)
3256 {
3257 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3258 if ((CTXSUFF(pPGM->pGstPaePDPTR)->a[iPdPtr].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPtr])
3259 return CTXSUFF(pPGM->apGstPaePDs)[iPdPtr]->a[iPD].u;
3260
3261 /* cache is out-of-sync. */
3262 PX86PDPAE pPD;
3263 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), CTXSUFF(pPGM->pGstPaePDPTR)->a[iPdPtr].u & X86_PDPE_PG_MASK, &pPD);
3264 if (VBOX_SUCCESS(rc))
3265 return pPD->a[iPD].u;
3266 AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, CTXSUFF(pPGM->pGstPaePDPTR)->a[iPdPtr].u));
3267 }
3268 return 0ULL;
3269}
3270
3271
3272/**
3273 * Gets the page directory for the specified address and returns the index into the page directory
3274 *
3275 * @returns Pointer to the page directory in question.
3276 * @returns NULL if the page directory is not present or on an invalid page.
3277 * @param pPGM Pointer to the PGM instance data.
3278 * @param GCPtr The address.
3279 * @param piPD Receives the index into the returned page directory
3280 */
3281DECLINLINE(PX86PDPAE) pgmGstGetPaePDPtr(PPGM pPGM, RTGCUINTPTR GCPtr, unsigned *piPD)
3282{
3283 const unsigned iPdPtr = GCPtr >> X86_PDPTR_SHIFT;
3284 if (CTXSUFF(pPGM->pGstPaePDPTR)->a[iPdPtr].n.u1Present)
3285 {
3286 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3287 if ((CTXSUFF(pPGM->pGstPaePDPTR)->a[iPdPtr].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPtr])
3288 {
3289 *piPD = iPD;
3290 return CTXSUFF(pPGM->apGstPaePDs)[iPdPtr];
3291 }
3292
3293 /* cache is out-of-sync. */
3294 PX86PDPAE pPD;
3295 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), CTXSUFF(pPGM->pGstPaePDPTR)->a[iPdPtr].u & X86_PDPE_PG_MASK, &pPD);
3296 if (VBOX_SUCCESS(rc))
3297 {
3298 *piPD = iPD;
3299 return pPD;
3300 }
3301 AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, CTXSUFF(pPGM->pGstPaePDPTR)->a[iPdPtr].u));
3302 /* returning NIL_RTGCPHYS is ok if we assume it's just an invalid page of some kind emulated as all 0s. */
3303 }
3304 return NULL;
3305}
3306
3307
3308/**
3309 * Checks if any of the specified page flags are set for the given page.
3310 *
3311 * @returns true if any of the flags are set.
3312 * @returns false if all the flags are clear.
3313 * @param pPGM PGM handle.
3314 * @param GCPhys The GC physical address.
3315 * @param fFlags The flags to check for.
3316 */
3317DECLINLINE(bool) pgmRamTestFlags(PPGM pPGM, RTGCPHYS GCPhys, uint64_t fFlags)
3318{
3319 PPGMPAGE pPage = pgmPhysGetPage(pPGM, GCPhys);
3320 return pPage
3321 && (pPage->HCPhys & fFlags) != 0; /** @todo PAGE FLAGS */
3322}
3323
3324
3325/**
3326 * Gets the page state for a physical handler.
3327 *
3328 * @returns The physical handler page state.
3329 * @param pCur The physical handler in question.
3330 */
3331DECLINLINE(unsigned) pgmHandlerPhysicalCalcState(PPGMPHYSHANDLER pCur)
3332{
3333 switch (pCur->enmType)
3334 {
3335 case PGMPHYSHANDLERTYPE_PHYSICAL_WRITE:
3336 return PGM_PAGE_HNDL_PHYS_STATE_WRITE;
3337
3338 case PGMPHYSHANDLERTYPE_MMIO:
3339 case PGMPHYSHANDLERTYPE_PHYSICAL_ALL:
3340 return PGM_PAGE_HNDL_PHYS_STATE_ALL;
3341
3342 default:
3343 AssertFatalMsgFailed(("Invalid type %d\n", pCur->enmType));
3344 }
3345}
3346
3347
3348/**
3349 * Gets the page state for a virtual handler.
3350 *
3351 * @returns The virtual handler page state.
3352 * @param pCur The virtual handler in question.
3353 * @remarks This should never be used on a hypervisor access handler.
3354 */
3355DECLINLINE(unsigned) pgmHandlerVirtualCalcState(PPGMVIRTHANDLER pCur)
3356{
3357 switch (pCur->enmType)
3358 {
3359 case PGMVIRTHANDLERTYPE_WRITE:
3360 return PGM_PAGE_HNDL_VIRT_STATE_WRITE;
3361 case PGMVIRTHANDLERTYPE_ALL:
3362 return PGM_PAGE_HNDL_VIRT_STATE_ALL;
3363 default:
3364 AssertFatalMsgFailed(("Invalid type %d\n", pCur->enmType));
3365 }
3366}
3367
3368
3369/**
3370 * Clears one physical page of a virtual handler
3371 *
3372 * @param pPGM Pointer to the PGM instance.
3373 * @param pCur Virtual handler structure
3374 * @param iPage Physical page index
3375 *
3376 * @remark Only used when PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL is being set, so no
3377 * need to care about other handlers in the same page.
3378 */
3379DECLINLINE(void) pgmHandlerVirtualClearPage(PPGM pPGM, PPGMVIRTHANDLER pCur, unsigned iPage)
3380{
3381 const PPGMPHYS2VIRTHANDLER pPhys2Virt = &pCur->aPhysToVirt[iPage];
3382
3383 /*
3384 * Remove the node from the tree (it's supposed to be in the tree if we get here!).
3385 */
3386#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
3387 AssertReleaseMsg(pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_IN_TREE,
3388 ("pPhys2Virt=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3389 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias));
3390#endif
3391 if (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_IS_HEAD)
3392 {
3393 /* We're the head of the alias chain. */
3394 PPGMPHYS2VIRTHANDLER pRemove = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysRemove(&pPGM->CTXSUFF(pTrees)->PhysToVirtHandlers, pPhys2Virt->Core.Key); NOREF(pRemove);
3395#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
3396 AssertReleaseMsg(pRemove != NULL,
3397 ("pPhys2Virt=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3398 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias));
3399 AssertReleaseMsg(pRemove == pPhys2Virt,
3400 ("wanted: pPhys2Virt=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
3401 " got: pRemove=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3402 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias,
3403 pRemove, pRemove->Core.Key, pRemove->Core.KeyLast, pRemove->offVirtHandler, pRemove->offNextAlias));
3404#endif
3405 if (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
3406 {
3407 /* Insert the next list in the alias chain into the tree. */
3408 PPGMPHYS2VIRTHANDLER pNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPhys2Virt + (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
3409#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
3410 AssertReleaseMsg(pNext->offNextAlias & PGMPHYS2VIRTHANDLER_IN_TREE,
3411 ("pNext=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3412 pNext, pNext->Core.Key, pNext->Core.KeyLast, pNext->offVirtHandler, pNext->offNextAlias));
3413#endif
3414 pNext->offNextAlias |= PGMPHYS2VIRTHANDLER_IS_HEAD;
3415 bool fRc = RTAvlroGCPhysInsert(&pPGM->CTXSUFF(pTrees)->PhysToVirtHandlers, &pNext->Core);
3416 AssertRelease(fRc);
3417 }
3418 }
3419 else
3420 {
3421 /* Locate the previous node in the alias chain. */
3422 PPGMPHYS2VIRTHANDLER pPrev = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysGet(&pPGM->CTXSUFF(pTrees)->PhysToVirtHandlers, pPhys2Virt->Core.Key);
3423#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
3424 AssertReleaseMsg(pPrev != pPhys2Virt,
3425 ("pPhys2Virt=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32} pPrev=%p\n",
3426 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias, pPrev));
3427#endif
3428 for (;;)
3429 {
3430 PPGMPHYS2VIRTHANDLER pNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPrev + (pPrev->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
3431 if (pNext == pPhys2Virt)
3432 {
3433 /* unlink. */
3434 LogFlow(("pgmHandlerVirtualClearPage: removed %p:{.offNextAlias=%#RX32} from alias chain. prev %p:{.offNextAlias=%#RX32} [%VGp-%VGp]\n",
3435 pPhys2Virt, pPhys2Virt->offNextAlias, pPrev, pPrev->offNextAlias, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast));
3436 if (!(pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
3437 pPrev->offNextAlias &= ~PGMPHYS2VIRTHANDLER_OFF_MASK;
3438 else
3439 {
3440 PPGMPHYS2VIRTHANDLER pNewNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPhys2Virt + (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
3441 pPrev->offNextAlias = ((intptr_t)pNewNext - (intptr_t)pPrev)
3442 | (pPrev->offNextAlias & ~PGMPHYS2VIRTHANDLER_OFF_MASK);
3443 }
3444 break;
3445 }
3446
3447 /* next */
3448 if (pNext == pPrev)
3449 {
3450#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
3451 AssertReleaseMsg(pNext != pPrev,
3452 ("pPhys2Virt=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32} pPrev=%p\n",
3453 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias, pPrev));
3454#endif
3455 break;
3456 }
3457 pPrev = pNext;
3458 }
3459 }
3460 Log2(("PHYS2VIRT: Removing %VGp-%VGp %#RX32 %s\n",
3461 pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offNextAlias, HCSTRING(pCur->pszDesc)));
3462 pPhys2Virt->offNextAlias = 0;
3463 pPhys2Virt->Core.KeyLast = NIL_RTGCPHYS; /* require reinsert */
3464
3465 /*
3466 * Clear the ram flags for this page.
3467 */
3468 PPGMPAGE pPage = pgmPhysGetPage(pPGM, pPhys2Virt->Core.Key);
3469 AssertReturnVoid(pPage);
3470 PGM_PAGE_SET_HNDL_VIRT_STATE(pPage, PGM_PAGE_HNDL_VIRT_STATE_NONE);
3471}
3472
3473
3474/**
3475 * Internal worker for finding a 'in-use' shadow page give by it's physical address.
3476 *
3477 * @returns Pointer to the shadow page structure.
3478 * @param pPool The pool.
3479 * @param HCPhys The HC physical address of the shadow page.
3480 */
3481DECLINLINE(PPGMPOOLPAGE) pgmPoolGetPage(PPGMPOOL pPool, RTHCPHYS HCPhys)
3482{
3483 /*
3484 * Look up the page.
3485 */
3486 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK);
3487 AssertFatalMsg(pPage && pPage->enmKind != PGMPOOLKIND_FREE, ("HCPhys=%VHp pPage=%p type=%d\n", HCPhys, pPage, (pPage) ? pPage->enmKind : 0));
3488 return pPage;
3489}
3490
3491
3492/**
3493 * Internal worker for finding a 'in-use' shadow page give by it's physical address.
3494 *
3495 * @returns Pointer to the shadow page structure.
3496 * @param pPool The pool.
3497 * @param idx The pool page index.
3498 */
3499DECLINLINE(PPGMPOOLPAGE) pgmPoolGetPageByIdx(PPGMPOOL pPool, unsigned idx)
3500{
3501 AssertFatalMsg(idx >= PGMPOOL_IDX_FIRST && idx < pPool->cCurPages, ("idx=%d\n", idx));
3502 return &pPool->aPages[idx];
3503}
3504
3505
3506#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
3507/**
3508 * Clear references to guest physical memory.
3509 *
3510 * @param pPool The pool.
3511 * @param pPoolPage The pool page.
3512 * @param pPhysPage The physical guest page tracking structure.
3513 */
3514DECLINLINE(void) pgmTrackDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPoolPage, PPGMPAGE pPhysPage)
3515{
3516 /*
3517 * Just deal with the simple case here.
3518 */
3519#ifdef LOG_ENABLED
3520 const RTHCPHYS HCPhysOrg = pPhysPage->HCPhys; /** @todo PAGE FLAGS */
3521#endif
3522 const unsigned cRefs = pPhysPage->HCPhys >> MM_RAM_FLAGS_CREFS_SHIFT; /** @todo PAGE FLAGS */
3523 if (cRefs == 1)
3524 {
3525 Assert(pPoolPage->idx == ((pPhysPage->HCPhys >> MM_RAM_FLAGS_IDX_SHIFT) & MM_RAM_FLAGS_IDX_MASK));
3526 pPhysPage->HCPhys = pPhysPage->HCPhys & MM_RAM_FLAGS_NO_REFS_MASK;
3527 }
3528 else
3529 pgmPoolTrackPhysExtDerefGCPhys(pPool, pPoolPage, pPhysPage);
3530 LogFlow(("pgmTrackDerefGCPhys: HCPhys=%RHp -> %RHp\n", HCPhysOrg, pPhysPage->HCPhys));
3531}
3532#endif
3533
3534
3535#ifdef PGMPOOL_WITH_CACHE
3536/**
3537 * Moves the page to the head of the age list.
3538 *
3539 * This is done when the cached page is used in one way or another.
3540 *
3541 * @param pPool The pool.
3542 * @param pPage The cached page.
3543 * @todo inline in PGMInternal.h!
3544 */
3545DECLINLINE(void) pgmPoolCacheUsed(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
3546{
3547 /*
3548 * Move to the head of the age list.
3549 */
3550 if (pPage->iAgePrev != NIL_PGMPOOL_IDX)
3551 {
3552 /* unlink */
3553 pPool->aPages[pPage->iAgePrev].iAgeNext = pPage->iAgeNext;
3554 if (pPage->iAgeNext != NIL_PGMPOOL_IDX)
3555 pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->iAgePrev;
3556 else
3557 pPool->iAgeTail = pPage->iAgePrev;
3558
3559 /* insert at head */
3560 pPage->iAgePrev = NIL_PGMPOOL_IDX;
3561 pPage->iAgeNext = pPool->iAgeHead;
3562 Assert(pPage->iAgeNext != NIL_PGMPOOL_IDX); /* we would've already been head then */
3563 pPool->iAgeHead = pPage->idx;
3564 pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->idx;
3565 }
3566}
3567#endif /* PGMPOOL_WITH_CACHE */
3568
3569/**
3570 * Tells if mappings are to be put into the shadow page table or not
3571 *
3572 * @returns boolean result
3573 * @param pVM VM handle.
3574 */
3575
3576DECLINLINE(bool) pgmMapAreMappingsEnabled(PPGM pPGM)
3577{
3578 return !pPGM->fDisableMappings;
3579}
3580
3581/** @} */
3582
3583#endif
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette