VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMInternal.h@ 8533

Last change on this file since 8533 was 8533, checked in by vboxsync, 17 years ago

Start of 64 bits paging support

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 152.2 KB
Line 
1/* $Id: PGMInternal.h 8533 2008-05-02 16:04:51Z vboxsync $ */
2/** @file
3 * PGM - Internal header file.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22#ifndef ___PGMInternal_h
23#define ___PGMInternal_h
24
25#include <VBox/cdefs.h>
26#include <VBox/types.h>
27#include <VBox/err.h>
28#include <VBox/stam.h>
29#include <VBox/param.h>
30#include <VBox/vmm.h>
31#include <VBox/mm.h>
32#include <VBox/pdmcritsect.h>
33#include <VBox/pdmapi.h>
34#include <VBox/dis.h>
35#include <VBox/dbgf.h>
36#include <VBox/log.h>
37#include <VBox/gmm.h>
38#include <iprt/avl.h>
39#include <iprt/assert.h>
40#include <iprt/critsect.h>
41
42#if !defined(IN_PGM_R3) && !defined(IN_PGM_R0) && !defined(IN_PGM_GC)
43# error "Not in PGM! This is an internal header!"
44#endif
45
46
47/** @defgroup grp_pgm_int Internals
48 * @ingroup grp_pgm
49 * @internal
50 * @{
51 */
52
53
54/** @name PGM Compile Time Config
55 * @{
56 */
57
58/**
59 * Solve page is out of sync issues inside Guest Context (in PGMGC.cpp).
60 * Comment it if it will break something.
61 */
62#define PGM_OUT_OF_SYNC_IN_GC
63
64/**
65 * Virtualize the dirty bit
66 * This also makes a half-hearted attempt at the accessed bit. For full
67 * accessed bit virtualization define PGM_SYNC_ACCESSED_BIT.
68 */
69#define PGM_SYNC_DIRTY_BIT
70
71/**
72 * Fully virtualize the accessed bit.
73 * @remark This requires SYNC_DIRTY_ACCESSED_BITS to be defined!
74 */
75#define PGM_SYNC_ACCESSED_BIT
76
77/**
78 * Check and skip global PDEs for non-global flushes
79 */
80#define PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
81
82/**
83 * Sync N pages instead of a whole page table
84 */
85#define PGM_SYNC_N_PAGES
86
87/**
88 * Number of pages to sync during a page fault
89 *
90 * When PGMPOOL_WITH_GCPHYS_TRACKING is enabled using high values here
91 * causes a lot of unnecessary extents and also is slower than taking more \#PFs.
92 */
93#define PGM_SYNC_NR_PAGES 8
94
95/**
96 * Number of PGMPhysRead/Write cache entries (must be <= sizeof(uint64_t))
97 */
98#define PGM_MAX_PHYSCACHE_ENTRIES 64
99#define PGM_MAX_PHYSCACHE_ENTRIES_MASK (PGM_MAX_PHYSCACHE_ENTRIES-1)
100
101/**
102 * Enable caching of PGMR3PhysRead/WriteByte/Word/Dword
103 */
104#define PGM_PHYSMEMACCESS_CACHING
105
106/*
107 * Assert Sanity.
108 */
109#if defined(PGM_SYNC_ACCESSED_BIT) && !defined(PGM_SYNC_DIRTY_BIT)
110# error "PGM_SYNC_ACCESSED_BIT requires PGM_SYNC_DIRTY_BIT!"
111#endif
112
113/** @def PGMPOOL_WITH_CACHE
114 * Enable agressive caching using the page pool.
115 *
116 * This requires PGMPOOL_WITH_USER_TRACKING and PGMPOOL_WITH_MONITORING.
117 */
118#define PGMPOOL_WITH_CACHE
119
120/** @def PGMPOOL_WITH_MIXED_PT_CR3
121 * When defined, we'll deal with 'uncachable' pages.
122 */
123#ifdef PGMPOOL_WITH_CACHE
124# define PGMPOOL_WITH_MIXED_PT_CR3
125#endif
126
127/** @def PGMPOOL_WITH_MONITORING
128 * Monitor the guest pages which are shadowed.
129 * When this is enabled, PGMPOOL_WITH_CACHE or PGMPOOL_WITH_GCPHYS_TRACKING must
130 * be enabled as well.
131 * @remark doesn't really work without caching now. (Mixed PT/CR3 change.)
132 */
133#ifdef PGMPOOL_WITH_CACHE
134# define PGMPOOL_WITH_MONITORING
135#endif
136
137/** @def PGMPOOL_WITH_GCPHYS_TRACKING
138 * Tracking the of shadow pages mapping guest physical pages.
139 *
140 * This is very expensive, the current cache prototype is trying to figure out
141 * whether it will be acceptable with an agressive caching policy.
142 */
143#if defined(PGMPOOL_WITH_CACHE) || defined(PGMPOOL_WITH_MONITORING)
144# define PGMPOOL_WITH_GCPHYS_TRACKING
145#endif
146
147/** @def PGMPOOL_WITH_USER_TRACKNG
148 * Tracking users of shadow pages. This is required for the linking of shadow page
149 * tables and physical guest addresses.
150 */
151#if defined(PGMPOOL_WITH_GCPHYS_TRACKING) || defined(PGMPOOL_WITH_CACHE) || defined(PGMPOOL_WITH_MONITORING)
152# define PGMPOOL_WITH_USER_TRACKING
153#endif
154
155/** @def PGMPOOL_CFG_MAX_GROW
156 * The maximum number of pages to add to the pool in one go.
157 */
158#define PGMPOOL_CFG_MAX_GROW (_256K >> PAGE_SHIFT)
159
160/** @def VBOX_STRICT_PGM_HANDLER_VIRTUAL
161 * Enables some extra assertions for virtual handlers (mainly phys2virt related).
162 */
163#ifdef VBOX_STRICT
164# define VBOX_STRICT_PGM_HANDLER_VIRTUAL
165#endif
166/** @} */
167
168
169/** @name PDPT and PML4 flags.
170 * These are placed in the three bits available for system programs in
171 * the PDPT and PML4 entries.
172 * @{ */
173/** The entry is a permanent one and it's must always be present.
174 * Never free such an entry. */
175#define PGM_PLXFLAGS_PERMANENT RT_BIT_64(10)
176/** Mapping (hypervisor allocated pagetable). */
177#define PGM_PLXFLAGS_MAPPING RT_BIT_64(11)
178/** @} */
179
180/** @name Page directory flags.
181 * These are placed in the three bits available for system programs in
182 * the page directory entries.
183 * @{ */
184/** Mapping (hypervisor allocated pagetable). */
185#define PGM_PDFLAGS_MAPPING RT_BIT_64(10)
186/** Made read-only to facilitate dirty bit tracking. */
187#define PGM_PDFLAGS_TRACK_DIRTY RT_BIT_64(11)
188/** @} */
189
190/** @name Page flags.
191 * These are placed in the three bits available for system programs in
192 * the page entries.
193 * @{ */
194/** Made read-only to facilitate dirty bit tracking. */
195#define PGM_PTFLAGS_TRACK_DIRTY RT_BIT_64(9)
196
197#ifndef PGM_PTFLAGS_CSAM_VALIDATED
198/** Scanned and approved by CSAM (tm).
199 * NOTE: Must be identical to the one defined in CSAMInternal.h!!
200 * @todo Move PGM_PTFLAGS_* and PGM_PDFLAGS_* to VBox/pgm.h. */
201#define PGM_PTFLAGS_CSAM_VALIDATED RT_BIT_64(11)
202#endif
203/** @} */
204
205/** @name Defines used to indicate the shadow and guest paging in the templates.
206 * @{ */
207#define PGM_TYPE_REAL 1
208#define PGM_TYPE_PROT 2
209#define PGM_TYPE_32BIT 3
210#define PGM_TYPE_PAE 4
211#define PGM_TYPE_AMD64 5
212/** @} */
213
214/** Macro for checking if the guest is using paging.
215 * @param uType PGM_TYPE_*
216 * @remark ASSUMES certain order of the PGM_TYPE_* values.
217 */
218#define PGM_WITH_PAGING(uType) ((uType) >= PGM_TYPE_32BIT)
219
220/** Macro for checking if the guest supports the NX bit.
221 * @param uType PGM_TYPE_*
222 * @remark ASSUMES certain order of the PGM_TYPE_* values.
223 */
224#define PGM_WITH_NX(uType) ((uType) >= PGM_TYPE_PAE)
225
226
227/** @def PGM_HCPHYS_2_PTR
228 * Maps a HC physical page pool address to a virtual address.
229 *
230 * @returns VBox status code.
231 * @param pVM The VM handle.
232 * @param HCPhys The HC physical address to map to a virtual one.
233 * @param ppv Where to store the virtual address. No need to cast this.
234 *
235 * @remark In GC this uses PGMGCDynMapHCPage(), so it will consume of the
236 * small page window employeed by that function. Be careful.
237 * @remark There is no need to assert on the result.
238 */
239#ifdef IN_GC
240# define PGM_HCPHYS_2_PTR(pVM, HCPhys, ppv) PGMGCDynMapHCPage(pVM, HCPhys, (void **)(ppv))
241#else
242# define PGM_HCPHYS_2_PTR(pVM, HCPhys, ppv) MMPagePhys2PageEx(pVM, HCPhys, (void **)(ppv))
243#endif
244
245/** @def PGM_GCPHYS_2_PTR
246 * Maps a GC physical page address to a virtual address.
247 *
248 * @returns VBox status code.
249 * @param pVM The VM handle.
250 * @param GCPhys The GC physical address to map to a virtual one.
251 * @param ppv Where to store the virtual address. No need to cast this.
252 *
253 * @remark In GC this uses PGMGCDynMapGCPage(), so it will consume of the
254 * small page window employeed by that function. Be careful.
255 * @remark There is no need to assert on the result.
256 */
257#ifdef IN_GC
258# define PGM_GCPHYS_2_PTR(pVM, GCPhys, ppv) PGMGCDynMapGCPage(pVM, GCPhys, (void **)(ppv))
259#else
260# define PGM_GCPHYS_2_PTR(pVM, GCPhys, ppv) PGMPhysGCPhys2HCPtr(pVM, GCPhys, 1 /* one page only */, (void **)(ppv)) /** @todo this isn't asserting, use PGMRamGCPhys2HCPtr! */
261#endif
262
263/** @def PGM_GCPHYS_2_PTR_EX
264 * Maps a unaligned GC physical page address to a virtual address.
265 *
266 * @returns VBox status code.
267 * @param pVM The VM handle.
268 * @param GCPhys The GC physical address to map to a virtual one.
269 * @param ppv Where to store the virtual address. No need to cast this.
270 *
271 * @remark In GC this uses PGMGCDynMapGCPage(), so it will consume of the
272 * small page window employeed by that function. Be careful.
273 * @remark There is no need to assert on the result.
274 */
275#ifdef IN_GC
276# define PGM_GCPHYS_2_PTR_EX(pVM, GCPhys, ppv) PGMGCDynMapGCPageEx(pVM, GCPhys, (void **)(ppv))
277#else
278# define PGM_GCPHYS_2_PTR_EX(pVM, GCPhys, ppv) PGMPhysGCPhys2HCPtr(pVM, GCPhys, 1 /* one page only */, (void **)(ppv)) /** @todo this isn't asserting, use PGMRamGCPhys2HCPtr! */
279#endif
280
281/** @def PGM_INVL_PG
282 * Invalidates a page when in GC does nothing in HC.
283 *
284 * @param GCVirt The virtual address of the page to invalidate.
285 */
286#ifdef IN_GC
287# define PGM_INVL_PG(GCVirt) ASMInvalidatePage((void *)(GCVirt))
288#else
289# define PGM_INVL_PG(GCVirt) ((void)0)
290#endif
291
292/** @def PGM_INVL_BIG_PG
293 * Invalidates a 4MB page directory entry when in GC does nothing in HC.
294 *
295 * @param GCVirt The virtual address within the page directory to invalidate.
296 */
297#ifdef IN_GC
298# define PGM_INVL_BIG_PG(GCVirt) ASMReloadCR3()
299#else
300# define PGM_INVL_BIG_PG(GCVirt) ((void)0)
301#endif
302
303/** @def PGM_INVL_GUEST_TLBS()
304 * Invalidates all guest TLBs.
305 */
306#ifdef IN_GC
307# define PGM_INVL_GUEST_TLBS() ASMReloadCR3()
308#else
309# define PGM_INVL_GUEST_TLBS() ((void)0)
310#endif
311
312
313/**
314 * Structure for tracking GC Mappings.
315 *
316 * This structure is used by linked list in both GC and HC.
317 */
318typedef struct PGMMAPPING
319{
320 /** Pointer to next entry. */
321 R3PTRTYPE(struct PGMMAPPING *) pNextR3;
322 /** Pointer to next entry. */
323 R0PTRTYPE(struct PGMMAPPING *) pNextR0;
324 /** Pointer to next entry. */
325 GCPTRTYPE(struct PGMMAPPING *) pNextGC;
326 /** Start Virtual address. */
327 RTGCUINTPTR GCPtr;
328 /** Last Virtual address (inclusive). */
329 RTGCUINTPTR GCPtrLast;
330 /** Range size (bytes). */
331 RTGCUINTPTR cb;
332 /** Pointer to relocation callback function. */
333 R3PTRTYPE(PFNPGMRELOCATE) pfnRelocate;
334 /** User argument to the callback. */
335 R3PTRTYPE(void *) pvUser;
336 /** Mapping description / name. For easing debugging. */
337 R3PTRTYPE(const char *) pszDesc;
338 /** Number of page tables. */
339 RTUINT cPTs;
340#if HC_ARCH_BITS != GC_ARCH_BITS
341 RTUINT uPadding0; /**< Alignment padding. */
342#endif
343 /** Array of page table mapping data. Each entry
344 * describes one page table. The array can be longer
345 * than the declared length.
346 */
347 struct
348 {
349 /** The HC physical address of the page table. */
350 RTHCPHYS HCPhysPT;
351 /** The HC physical address of the first PAE page table. */
352 RTHCPHYS HCPhysPaePT0;
353 /** The HC physical address of the second PAE page table. */
354 RTHCPHYS HCPhysPaePT1;
355 /** The HC virtual address of the 32-bit page table. */
356 R3PTRTYPE(PX86PT) pPTR3;
357 /** The HC virtual address of the two PAE page table. (i.e 1024 entries instead of 512) */
358 R3PTRTYPE(PX86PTPAE) paPaePTsR3;
359 /** The GC virtual address of the 32-bit page table. */
360 GCPTRTYPE(PX86PT) pPTGC;
361 /** The GC virtual address of the two PAE page table. */
362 GCPTRTYPE(PX86PTPAE) paPaePTsGC;
363 /** The GC virtual address of the 32-bit page table. */
364 R0PTRTYPE(PX86PT) pPTR0;
365 /** The GC virtual address of the two PAE page table. */
366 R0PTRTYPE(PX86PTPAE) paPaePTsR0;
367 } aPTs[1];
368} PGMMAPPING;
369/** Pointer to structure for tracking GC Mappings. */
370typedef struct PGMMAPPING *PPGMMAPPING;
371
372
373/**
374 * Physical page access handler structure.
375 *
376 * This is used to keep track of physical address ranges
377 * which are being monitored in some kind of way.
378 */
379typedef struct PGMPHYSHANDLER
380{
381 AVLROGCPHYSNODECORE Core;
382 /** Access type. */
383 PGMPHYSHANDLERTYPE enmType;
384 /** Number of pages to update. */
385 uint32_t cPages;
386 /** Pointer to R3 callback function. */
387 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3;
388 /** User argument for R3 handlers. */
389 R3PTRTYPE(void *) pvUserR3;
390 /** Pointer to R0 callback function. */
391 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0;
392 /** User argument for R0 handlers. */
393 R0PTRTYPE(void *) pvUserR0;
394 /** Pointer to GC callback function. */
395 GCPTRTYPE(PFNPGMGCPHYSHANDLER) pfnHandlerGC;
396 /** User argument for GC handlers. */
397 GCPTRTYPE(void *) pvUserGC;
398 /** Description / Name. For easing debugging. */
399 R3PTRTYPE(const char *) pszDesc;
400#ifdef VBOX_WITH_STATISTICS
401 /** Profiling of this handler. */
402 STAMPROFILE Stat;
403#endif
404} PGMPHYSHANDLER;
405/** Pointer to a physical page access handler structure. */
406typedef PGMPHYSHANDLER *PPGMPHYSHANDLER;
407
408
409/**
410 * Cache node for the physical addresses covered by a virtual handler.
411 */
412typedef struct PGMPHYS2VIRTHANDLER
413{
414 /** Core node for the tree based on physical ranges. */
415 AVLROGCPHYSNODECORE Core;
416 /** Offset from this struct to the PGMVIRTHANDLER structure. */
417 int32_t offVirtHandler;
418 /** Offset of the next alias relative to this one.
419 * Bit 0 is used for indicating whether we're in the tree.
420 * Bit 1 is used for indicating that we're the head node.
421 */
422 int32_t offNextAlias;
423} PGMPHYS2VIRTHANDLER;
424/** Pointer to a phys to virtual handler structure. */
425typedef PGMPHYS2VIRTHANDLER *PPGMPHYS2VIRTHANDLER;
426
427/** The bit in PGMPHYS2VIRTHANDLER::offNextAlias used to indicate that the
428 * node is in the tree. */
429#define PGMPHYS2VIRTHANDLER_IN_TREE RT_BIT(0)
430/** The bit in PGMPHYS2VIRTHANDLER::offNextAlias used to indicate that the
431 * node is in the head of an alias chain.
432 * The PGMPHYS2VIRTHANDLER_IN_TREE is always set if this bit is set. */
433#define PGMPHYS2VIRTHANDLER_IS_HEAD RT_BIT(1)
434/** The mask to apply to PGMPHYS2VIRTHANDLER::offNextAlias to get the offset. */
435#define PGMPHYS2VIRTHANDLER_OFF_MASK (~(int32_t)3)
436
437
438/**
439 * Virtual page access handler structure.
440 *
441 * This is used to keep track of virtual address ranges
442 * which are being monitored in some kind of way.
443 */
444typedef struct PGMVIRTHANDLER
445{
446 /** Core node for the tree based on virtual ranges. */
447 AVLROGCPTRNODECORE Core;
448 /** Number of cache pages. */
449 uint32_t u32Padding;
450 /** Access type. */
451 PGMVIRTHANDLERTYPE enmType;
452 /** Number of cache pages. */
453 uint32_t cPages;
454
455/** @todo The next two members are redundant. It adds some readability though. */
456 /** Start of the range. */
457 RTGCPTR GCPtr;
458 /** End of the range (exclusive). */
459 RTGCPTR GCPtrLast;
460 /** Size of the range (in bytes). */
461 RTGCUINTPTR cb;
462 /** Pointer to the GC callback function. */
463 GCPTRTYPE(PFNPGMGCVIRTHANDLER) pfnHandlerGC;
464 /** Pointer to the HC callback function for invalidation. */
465 R3PTRTYPE(PFNPGMHCVIRTINVALIDATE) pfnInvalidateHC;
466 /** Pointer to the HC callback function. */
467 R3PTRTYPE(PFNPGMHCVIRTHANDLER) pfnHandlerHC;
468 /** Description / Name. For easing debugging. */
469 R3PTRTYPE(const char *) pszDesc;
470#ifdef VBOX_WITH_STATISTICS
471 /** Profiling of this handler. */
472 STAMPROFILE Stat;
473#endif
474 /** Array of cached physical addresses for the monitored ranged. */
475 PGMPHYS2VIRTHANDLER aPhysToVirt[HC_ARCH_BITS == 32 ? 1 : 2];
476} PGMVIRTHANDLER;
477/** Pointer to a virtual page access handler structure. */
478typedef PGMVIRTHANDLER *PPGMVIRTHANDLER;
479
480
481/**
482 * Page type.
483 * @remarks This enum has to fit in a 3-bit field (see PGMPAGE::u3Type).
484 * @todo convert to \#defines.
485 */
486typedef enum PGMPAGETYPE
487{
488 /** The usual invalid zero entry. */
489 PGMPAGETYPE_INVALID = 0,
490 /** RAM page. (RWX) */
491 PGMPAGETYPE_RAM,
492 /** MMIO2 page. (RWX) */
493 PGMPAGETYPE_MMIO2,
494 /** Shadowed ROM. (RWX) */
495 PGMPAGETYPE_ROM_SHADOW,
496 /** ROM page. (R-X) */
497 PGMPAGETYPE_ROM,
498 /** MMIO page. (---) */
499 PGMPAGETYPE_MMIO,
500 /** End of valid entries. */
501 PGMPAGETYPE_END
502} PGMPAGETYPE;
503AssertCompile(PGMPAGETYPE_END < 7);
504
505/** @name Page type predicates.
506 * @{ */
507#define PGMPAGETYPE_IS_READABLE(type) ( (type) <= PGMPAGETYPE_ROM )
508#define PGMPAGETYPE_IS_WRITEABLE(type) ( (type) <= PGMPAGETYPE_ROM_SHADOW )
509#define PGMPAGETYPE_IS_RWX(type) ( (type) <= PGMPAGETYPE_ROM_SHADOW )
510#define PGMPAGETYPE_IS_ROX(type) ( (type) == PGMPAGETYPE_ROM )
511#define PGMPAGETYPE_IS_NP(type) ( (type) == PGMPAGETYPE_MMIO )
512/** @} */
513
514
515/**
516 * A Physical Guest Page tracking structure.
517 *
518 * The format of this structure is complicated because we have to fit a lot
519 * of information into as few bits as possible. The format is also subject
520 * to change (there is one comming up soon). Which means that for we'll be
521 * using PGM_PAGE_GET_*, PGM_PAGE_IS_ and PGM_PAGE_SET_* macros for *all*
522 * accessess to the structure.
523 */
524typedef struct PGMPAGE
525{
526 /** The physical address and a whole lot of other stuff. All bits are used! */
527 RTHCPHYS HCPhys;
528 /** The page state. */
529 uint32_t u2StateX : 2;
530 /** Flag indicating that a write monitored page was written to when set. */
531 uint32_t fWrittenToX : 1;
532 /** For later. */
533 uint32_t fSomethingElse : 1;
534 /** The Page ID.
535 * @todo Merge with HCPhys once we've liberated HCPhys of its stuff.
536 * The HCPhys will be 100% static. */
537 uint32_t idPageX : 28;
538 /** The page type (PGMPAGETYPE). */
539 uint32_t u3Type : 3;
540 /** The physical handler state (PGM_PAGE_HNDL_PHYS_STATE*) */
541 uint32_t u2HandlerPhysStateX : 2;
542 /** The virtual handler state (PGM_PAGE_HNDL_VIRT_STATE*) */
543 uint32_t u2HandlerVirtStateX : 2;
544 uint32_t u29B : 25;
545} PGMPAGE;
546AssertCompileSize(PGMPAGE, 16);
547/** Pointer to a physical guest page. */
548typedef PGMPAGE *PPGMPAGE;
549/** Pointer to a const physical guest page. */
550typedef const PGMPAGE *PCPGMPAGE;
551/** Pointer to a physical guest page pointer. */
552typedef PPGMPAGE *PPPGMPAGE;
553
554
555/**
556 * Clears the page structure.
557 * @param pPage Pointer to the physical guest page tracking structure.
558 */
559#define PGM_PAGE_CLEAR(pPage) \
560 do { \
561 (pPage)->HCPhys = 0; \
562 (pPage)->u2StateX = 0; \
563 (pPage)->fWrittenToX = 0; \
564 (pPage)->fSomethingElse = 0; \
565 (pPage)->idPageX = 0; \
566 (pPage)->u3Type = 0; \
567 (pPage)->u29B = 0; \
568 } while (0)
569
570/**
571 * Initializes the page structure.
572 * @param pPage Pointer to the physical guest page tracking structure.
573 */
574#define PGM_PAGE_INIT(pPage, _HCPhys, _idPage, _uType, _uState) \
575 do { \
576 (pPage)->HCPhys = (_HCPhys); \
577 (pPage)->u2StateX = (_uState); \
578 (pPage)->fWrittenToX = 0; \
579 (pPage)->fSomethingElse = 0; \
580 (pPage)->idPageX = (_idPage); \
581 /*(pPage)->u3Type = (_uType); - later */ \
582 PGM_PAGE_SET_TYPE(pPage, _uType); \
583 (pPage)->u29B = 0; \
584 } while (0)
585
586/**
587 * Initializes the page structure of a ZERO page.
588 * @param pPage Pointer to the physical guest page tracking structure.
589 */
590#ifdef VBOX_WITH_NEW_PHYS_CODE
591# define PGM_PAGE_INIT_ZERO(pPage, pVM, _uType) \
592 PGM_PAGE_INIT(pPage, (pVM)->pgm.s.HCPhysZeroPg, NIL_GMM_PAGEID, (_uType), PGM_PAGE_STATE_ZERO)
593#else
594# define PGM_PAGE_INIT_ZERO(pPage, pVM, _uType) \
595 PGM_PAGE_INIT(pPage, 0, NIL_GMM_PAGEID, (_uType), PGM_PAGE_STATE_ZERO)
596#endif
597/** Temporary hack. Replaced by PGM_PAGE_INIT_ZERO once the old code is kicked out. */
598# define PGM_PAGE_INIT_ZERO_REAL(pPage, pVM, _uType) \
599 PGM_PAGE_INIT(pPage, (pVM)->pgm.s.HCPhysZeroPg, NIL_GMM_PAGEID, (_uType), PGM_PAGE_STATE_ZERO)
600
601
602/** @name The Page state, PGMPAGE::u2StateX.
603 * @{ */
604/** The zero page.
605 * This is a per-VM page that's never ever mapped writable. */
606#define PGM_PAGE_STATE_ZERO 0
607/** A allocated page.
608 * This is a per-VM page allocated from the page pool (or wherever
609 * we get MMIO2 pages from if the type is MMIO2).
610 */
611#define PGM_PAGE_STATE_ALLOCATED 1
612/** A allocated page that's being monitored for writes.
613 * The shadow page table mappings are read-only. When a write occurs, the
614 * fWrittenTo member is set, the page remapped as read-write and the state
615 * moved back to allocated. */
616#define PGM_PAGE_STATE_WRITE_MONITORED 2
617/** The page is shared, aka. copy-on-write.
618 * This is a page that's shared with other VMs. */
619#define PGM_PAGE_STATE_SHARED 3
620/** @} */
621
622
623/**
624 * Gets the page state.
625 * @returns page state (PGM_PAGE_STATE_*).
626 * @param pPage Pointer to the physical guest page tracking structure.
627 */
628#define PGM_PAGE_GET_STATE(pPage) ( (pPage)->u2StateX )
629
630/**
631 * Sets the page state.
632 * @param pPage Pointer to the physical guest page tracking structure.
633 * @param _uState The new page state.
634 */
635#define PGM_PAGE_SET_STATE(pPage, _uState) \
636 do { (pPage)->u2StateX = (_uState); } while (0)
637
638
639/**
640 * Gets the host physical address of the guest page.
641 * @returns host physical address (RTHCPHYS).
642 * @param pPage Pointer to the physical guest page tracking structure.
643 */
644#define PGM_PAGE_GET_HCPHYS(pPage) ( (pPage)->HCPhys & UINT64_C(0x0000fffffffff000) )
645
646/**
647 * Sets the host physical address of the guest page.
648 * @param pPage Pointer to the physical guest page tracking structure.
649 * @param _HCPhys The new host physical address.
650 */
651#define PGM_PAGE_SET_HCPHYS(pPage, _HCPhys) \
652 do { (pPage)->HCPhys = (((pPage)->HCPhys) & UINT64_C(0xffff000000000fff)) \
653 | ((_HCPhys) & UINT64_C(0x0000fffffffff000)); } while (0)
654
655/**
656 * Get the Page ID.
657 * @returns The Page ID; NIL_GMM_PAGEID if it's a ZERO page.
658 * @param pPage Pointer to the physical guest page tracking structure.
659 */
660#define PGM_PAGE_GET_PAGEID(pPage) ( (pPage)->idPageX )
661/* later:
662#define PGM_PAGE_GET_PAGEID(pPage) ( ((uint32_t)(pPage)->HCPhys >> (48 - 12))
663 | ((uint32_t)(pPage)->HCPhys & 0xfff) )
664*/
665/**
666 * Sets the Page ID.
667 * @param pPage Pointer to the physical guest page tracking structure.
668 */
669#define PGM_PAGE_SET_PAGEID(pPage, _idPage) do { (pPage)->idPageX = (_idPage); } while (0)
670/* later:
671#define PGM_PAGE_SET_PAGEID(pPage, _idPage) do { (pPage)->HCPhys = (((pPage)->HCPhys) & UINT64_C(0x0000fffffffff000)) \
672 | ((_idPage) & 0xfff) \
673 | (((_idPage) & 0x0ffff000) << (48-12)); } while (0)
674*/
675
676/**
677 * Get the Chunk ID.
678 * @returns The Chunk ID; NIL_GMM_CHUNKID if it's a ZERO page.
679 * @param pPage Pointer to the physical guest page tracking structure.
680 */
681#define PGM_PAGE_GET_CHUNKID(pPage) ( (pPage)->idPageX >> GMM_CHUNKID_SHIFT )
682/* later:
683#if GMM_CHUNKID_SHIFT == 12
684# define PGM_PAGE_GET_CHUNKID(pPage) ( (uint32_t)((pPage)->HCPhys >> 48) )
685#elif GMM_CHUNKID_SHIFT > 12
686# define PGM_PAGE_GET_CHUNKID(pPage) ( (uint32_t)((pPage)->HCPhys >> (48 + (GMM_CHUNKID_SHIFT - 12)) )
687#elif GMM_CHUNKID_SHIFT < 12
688# define PGM_PAGE_GET_CHUNKID(pPage) ( ( (uint32_t)((pPage)->HCPhys >> 48) << (12 - GMM_CHUNKID_SHIFT) ) \
689 | ( (uint32_t)((pPage)->HCPhys & 0xfff) >> GMM_CHUNKID_SHIFT ) )
690#else
691# error "GMM_CHUNKID_SHIFT isn't defined or something."
692#endif
693*/
694
695/**
696 * Get the index of the page within the allocaiton chunk.
697 * @returns The page index.
698 * @param pPage Pointer to the physical guest page tracking structure.
699 */
700#define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (pPage)->idPageX & GMM_PAGEID_IDX_MASK )
701/* later:
702#if GMM_CHUNKID_SHIFT <= 12
703# define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (uint32_t)((pPage)->HCPhys & GMM_PAGEID_IDX_MASK) )
704#else
705# define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (uint32_t)((pPage)->HCPhys & 0xfff) \
706 | ( (uint32_t)((pPage)->HCPhys >> 48) & (RT_BIT_32(GMM_CHUNKID_SHIFT - 12) - 1) ) )
707#endif
708*/
709
710
711/**
712 * Gets the page type.
713 * @returns The page type.
714 * @param pPage Pointer to the physical guest page tracking structure.
715 */
716#define PGM_PAGE_GET_TYPE(pPage) (pPage)->u3Type
717
718/**
719 * Sets the page type.
720 * @param pPage Pointer to the physical guest page tracking structure.
721 * @param _enmType The new page type (PGMPAGETYPE).
722 */
723#ifdef VBOX_WITH_NEW_PHYS_CODE
724#define PGM_PAGE_SET_TYPE(pPage, _enmType) \
725 do { (pPage)->u3Type = (_enmType); } while (0)
726#else
727#define PGM_PAGE_SET_TYPE(pPage, _enmType) \
728 do { \
729 (pPage)->u3Type = (_enmType); \
730 if ((_enmType) == PGMPAGETYPE_ROM) \
731 (pPage)->HCPhys |= MM_RAM_FLAGS_ROM; \
732 else if ((_enmType) == PGMPAGETYPE_ROM_SHADOW) \
733 (pPage)->HCPhys |= MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO2; \
734 else if ((_enmType) == PGMPAGETYPE_MMIO2) \
735 (pPage)->HCPhys |= MM_RAM_FLAGS_MMIO2; \
736 } while (0)
737#endif
738
739
740/**
741 * Checks if the page is 'reserved'.
742 * @returns true/false.
743 * @param pPage Pointer to the physical guest page tracking structure.
744 */
745#define PGM_PAGE_IS_RESERVED(pPage) ( !!((pPage)->HCPhys & MM_RAM_FLAGS_RESERVED) )
746
747/**
748 * Checks if the page is marked for MMIO.
749 * @returns true/false.
750 * @param pPage Pointer to the physical guest page tracking structure.
751 */
752#define PGM_PAGE_IS_MMIO(pPage) ( !!((pPage)->HCPhys & MM_RAM_FLAGS_MMIO) )
753
754/**
755 * Checks if the page is backed by the ZERO page.
756 * @returns true/false.
757 * @param pPage Pointer to the physical guest page tracking structure.
758 */
759#define PGM_PAGE_IS_ZERO(pPage) ( (pPage)->u2StateX == PGM_PAGE_STATE_ZERO )
760
761/**
762 * Checks if the page is backed by a SHARED page.
763 * @returns true/false.
764 * @param pPage Pointer to the physical guest page tracking structure.
765 */
766#define PGM_PAGE_IS_SHARED(pPage) ( (pPage)->u2StateX == PGM_PAGE_STATE_SHARED )
767
768
769/**
770 * Marks the paget as written to (for GMM change monitoring).
771 * @param pPage Pointer to the physical guest page tracking structure.
772 */
773#define PGM_PAGE_SET_WRITTEN_TO(pPage) do { (pPage)->fWrittenToX = 1; } while (0)
774
775/**
776 * Clears the written-to indicator.
777 * @param pPage Pointer to the physical guest page tracking structure.
778 */
779#define PGM_PAGE_CLEAR_WRITTEN_TO(pPage) do { (pPage)->fWrittenToX = 0; } while (0)
780
781/**
782 * Checks if the page was marked as written-to.
783 * @returns true/false.
784 * @param pPage Pointer to the physical guest page tracking structure.
785 */
786#define PGM_PAGE_IS_WRITTEN_TO(pPage) ( (pPage)->fWrittenToX )
787
788
789/** @name Physical Access Handler State values (PGMPAGE::u2HandlerPhysStateX).
790 *
791 * @remarks The values are assigned in order of priority, so we can calculate
792 * the correct state for a page with different handlers installed.
793 * @{ */
794/** No handler installed. */
795#define PGM_PAGE_HNDL_PHYS_STATE_NONE 0
796/** Monitoring is temporarily disabled. */
797#define PGM_PAGE_HNDL_PHYS_STATE_DISABLED 1
798/** Write access is monitored. */
799#define PGM_PAGE_HNDL_PHYS_STATE_WRITE 2
800/** All access is monitored. */
801#define PGM_PAGE_HNDL_PHYS_STATE_ALL 3
802/** @} */
803
804/**
805 * Gets the physical access handler state of a page.
806 * @returns PGM_PAGE_HNDL_PHYS_STATE_* value.
807 * @param pPage Pointer to the physical guest page tracking structure.
808 */
809#define PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) ( (pPage)->u2HandlerPhysStateX )
810
811/**
812 * Sets the physical access handler state of a page.
813 * @param pPage Pointer to the physical guest page tracking structure.
814 * @param _uState The new state value.
815 */
816#define PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, _uState) \
817 do { (pPage)->u2HandlerPhysStateX = (_uState); } while (0)
818
819/**
820 * Checks if the page has any physical access handlers, including temporariliy disabled ones.
821 * @returns true/false
822 * @param pPage Pointer to the physical guest page tracking structure.
823 */
824#define PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage) ( (pPage)->u2HandlerPhysStateX != PGM_PAGE_HNDL_PHYS_STATE_NONE )
825
826/**
827 * Checks if the page has any active physical access handlers.
828 * @returns true/false
829 * @param pPage Pointer to the physical guest page tracking structure.
830 */
831#define PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage) ( (pPage)->u2HandlerPhysStateX >= PGM_PAGE_HNDL_PHYS_STATE_WRITE )
832
833
834/** @name Virtual Access Handler State values (PGMPAGE::u2HandlerVirtStateX).
835 *
836 * @remarks The values are assigned in order of priority, so we can calculate
837 * the correct state for a page with different handlers installed.
838 * @{ */
839/** No handler installed. */
840#define PGM_PAGE_HNDL_VIRT_STATE_NONE 0
841/* 1 is reserved so the lineup is identical with the physical ones. */
842/** Write access is monitored. */
843#define PGM_PAGE_HNDL_VIRT_STATE_WRITE 2
844/** All access is monitored. */
845#define PGM_PAGE_HNDL_VIRT_STATE_ALL 3
846/** @} */
847
848/**
849 * Gets the virtual access handler state of a page.
850 * @returns PGM_PAGE_HNDL_VIRT_STATE_* value.
851 * @param pPage Pointer to the physical guest page tracking structure.
852 */
853#define PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) ( (pPage)->u2HandlerVirtStateX )
854
855/**
856 * Sets the virtual access handler state of a page.
857 * @param pPage Pointer to the physical guest page tracking structure.
858 * @param _uState The new state value.
859 */
860#define PGM_PAGE_SET_HNDL_VIRT_STATE(pPage, _uState) \
861 do { (pPage)->u2HandlerVirtStateX = (_uState); } while (0)
862
863/**
864 * Checks if the page has any virtual access handlers.
865 * @returns true/false
866 * @param pPage Pointer to the physical guest page tracking structure.
867 */
868#define PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(pPage) ( (pPage)->u2HandlerVirtStateX != PGM_PAGE_HNDL_VIRT_STATE_NONE )
869
870/**
871 * Same as PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS - can't disable pages in
872 * virtual handlers.
873 * @returns true/false
874 * @param pPage Pointer to the physical guest page tracking structure.
875 */
876#define PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage) PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(pPage)
877
878
879
880/**
881 * Checks if the page has any access handlers, including temporarily disabled ones.
882 * @returns true/false
883 * @param pPage Pointer to the physical guest page tracking structure.
884 */
885#define PGM_PAGE_HAS_ANY_HANDLERS(pPage) \
886 ( (pPage)->u2HandlerPhysStateX != PGM_PAGE_HNDL_PHYS_STATE_NONE \
887 || (pPage)->u2HandlerVirtStateX != PGM_PAGE_HNDL_VIRT_STATE_NONE )
888
889/**
890 * Checks if the page has any active access handlers.
891 * @returns true/false
892 * @param pPage Pointer to the physical guest page tracking structure.
893 */
894#define PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) \
895 ( (pPage)->u2HandlerPhysStateX >= PGM_PAGE_HNDL_PHYS_STATE_WRITE \
896 || (pPage)->u2HandlerVirtStateX >= PGM_PAGE_HNDL_VIRT_STATE_WRITE )
897
898/**
899 * Checks if the page has any active access handlers catching all accesses.
900 * @returns true/false
901 * @param pPage Pointer to the physical guest page tracking structure.
902 */
903#define PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage) \
904 ( (pPage)->u2HandlerPhysStateX == PGM_PAGE_HNDL_PHYS_STATE_ALL \
905 || (pPage)->u2HandlerVirtStateX == PGM_PAGE_HNDL_VIRT_STATE_ALL )
906
907
908/**
909 * Ram range for GC Phys to HC Phys conversion.
910 *
911 * Can be used for HC Virt to GC Phys and HC Virt to HC Phys
912 * conversions too, but we'll let MM handle that for now.
913 *
914 * This structure is used by linked lists in both GC and HC.
915 */
916typedef struct PGMRAMRANGE
917{
918 /** Pointer to the next RAM range - for R3. */
919 R3PTRTYPE(struct PGMRAMRANGE *) pNextR3;
920 /** Pointer to the next RAM range - for R0. */
921 R0PTRTYPE(struct PGMRAMRANGE *) pNextR0;
922 /** Pointer to the next RAM range - for GC. */
923 GCPTRTYPE(struct PGMRAMRANGE *) pNextGC;
924#if GC_ARCH_BITS == 32
925 /** Pointer alignment. */
926 RTGCPTR GCPtrAlignment;
927#endif
928 /** Start of the range. Page aligned. */
929 RTGCPHYS GCPhys;
930 /** Last address in the range (inclusive). Page aligned (-1). */
931 RTGCPHYS GCPhysLast;
932 /** Size of the range. (Page aligned of course). */
933 RTGCPHYS cb;
934 /** MM_RAM_* flags */
935 uint32_t fFlags;
936#ifdef VBOX_WITH_NEW_PHYS_CODE
937 uint32_t u32Alignment; /**< alignment. */
938#else
939 /** HC virtual lookup ranges for chunks. Currently only used with MM_RAM_FLAGS_DYNAMIC_ALLOC ranges. */
940 GCPTRTYPE(PRTHCPTR) pavHCChunkGC;
941 /** HC virtual lookup ranges for chunks. Currently only used with MM_RAM_FLAGS_DYNAMIC_ALLOC ranges. */
942 R3R0PTRTYPE(PRTHCPTR) pavHCChunkHC;
943#endif
944 /** Start of the HC mapping of the range. This is only used for MMIO2. */
945 R3PTRTYPE(void *) pvHC;
946 /** The range description. */
947 R3PTRTYPE(const char *) pszDesc;
948
949 /** Padding to make aPage aligned on sizeof(PGMPAGE). */
950#ifdef VBOX_WITH_NEW_PHYS_CODE
951 uint32_t au32Reserved[2];
952#elif HC_ARCH_BITS == 32
953 uint32_t au32Reserved[1];
954#endif
955
956 /** Array of physical guest page tracking structures. */
957 PGMPAGE aPages[1];
958} PGMRAMRANGE;
959/** Pointer to Ram range for GC Phys to HC Phys conversion. */
960typedef PGMRAMRANGE *PPGMRAMRANGE;
961
962/** Return hc ptr corresponding to the ram range and physical offset */
963#define PGMRAMRANGE_GETHCPTR(pRam, off) \
964 (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) ? (RTHCPTR)((RTHCUINTPTR)CTXSUFF(pRam->pavHCChunk)[(off >> PGM_DYNAMIC_CHUNK_SHIFT)] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK)) \
965 : (RTHCPTR)((RTHCUINTPTR)pRam->pvHC + off);
966
967/**
968 * Per page tracking structure for ROM image.
969 *
970 * A ROM image may have a shadow page, in which case we may have
971 * two pages backing it. This structure contains the PGMPAGE for
972 * both while PGMRAMRANGE have a copy of the active one. It is
973 * important that these aren't out of sync in any regard other
974 * than page pool tracking data.
975 */
976typedef struct PGMROMPAGE
977{
978 /** The page structure for the virgin ROM page. */
979 PGMPAGE Virgin;
980 /** The page structure for the shadow RAM page. */
981 PGMPAGE Shadow;
982 /** The current protection setting. */
983 PGMROMPROT enmProt;
984 /** Pad the structure size to a multiple of 8. */
985 uint32_t u32Padding;
986} PGMROMPAGE;
987/** Pointer to a ROM page tracking structure. */
988typedef PGMROMPAGE *PPGMROMPAGE;
989
990
991/**
992 * A registered ROM image.
993 *
994 * This is needed to keep track of ROM image since they generally
995 * intrude into a PGMRAMRANGE. It also keeps track of additional
996 * info like the two page sets (read-only virgin and read-write shadow),
997 * the current state of each page.
998 *
999 * Because access handlers cannot easily be executed in a different
1000 * context, the ROM ranges needs to be accessible and in all contexts.
1001 */
1002typedef struct PGMROMRANGE
1003{
1004 /** Pointer to the next range - R3. */
1005 R3PTRTYPE(struct PGMROMRANGE *) pNextR3;
1006 /** Pointer to the next range - R0. */
1007 R0PTRTYPE(struct PGMROMRANGE *) pNextR0;
1008 /** Pointer to the next range - GC. */
1009 GCPTRTYPE(struct PGMROMRANGE *) pNextGC;
1010#if GC_ARCH_BITS == 32
1011 RTGCPTR GCPtrAlignment; /**< Pointer alignment. */
1012#endif
1013 /** Address of the range. */
1014 RTGCPHYS GCPhys;
1015 /** Address of the last byte in the range. */
1016 RTGCPHYS GCPhysLast;
1017 /** Size of the range. */
1018 RTGCPHYS cb;
1019 /** The flags (PGMPHYS_ROM_FLAG_*). */
1020 uint32_t fFlags;
1021 /**< Alignment padding ensuring that aPages is sizeof(PGMROMPAGE) aligned. */
1022 uint32_t au32Alignemnt[HC_ARCH_BITS == 32 ? 7 : 3];
1023 /** Pointer to the original bits when PGMPHYS_ROM_FLAG_PERMANENT_BINARY was specified.
1024 * This is used for strictness checks. */
1025 R3PTRTYPE(const void *) pvOriginal;
1026 /** The ROM description. */
1027 R3PTRTYPE(const char *) pszDesc;
1028 /** The per page tracking structures. */
1029 PGMROMPAGE aPages[1];
1030} PGMROMRANGE;
1031/** Pointer to a ROM range. */
1032typedef PGMROMRANGE *PPGMROMRANGE;
1033
1034
1035/**
1036 * A registered MMIO2 (= Device RAM) range.
1037 *
1038 * There are a few reason why we need to keep track of these
1039 * registrations. One of them is the deregistration & cleanup
1040 * stuff, while another is that the PGMRAMRANGE associated with
1041 * such a region may have to be removed from the ram range list.
1042 *
1043 * Overlapping with a RAM range has to be 100% or none at all. The
1044 * pages in the existing RAM range must not be ROM nor MMIO. A guru
1045 * meditation will be raised if a partial overlap or an overlap of
1046 * ROM pages is encountered. On an overlap we will free all the
1047 * existing RAM pages and put in the ram range pages instead.
1048 */
1049typedef struct PGMMMIO2RANGE
1050{
1051 /** The owner of the range. (a device) */
1052 PPDMDEVINSR3 pDevInsR3;
1053 /** Pointer to the ring-3 mapping of the allocation. */
1054 RTR3PTR pvR3;
1055 /** Pointer to the next range - R3. */
1056 R3PTRTYPE(struct PGMMMIO2RANGE *) pNextR3;
1057 /** Whether it's mapped or not. */
1058 bool fMapped;
1059 /** Whether it's overlapping or not. */
1060 bool fOverlapping;
1061 /** The PCI region number.
1062 * @remarks This ASSUMES that nobody will ever really need to have multiple
1063 * PCI devices with matching MMIO region numbers on a single device. */
1064 uint8_t iRegion;
1065 /**< Alignment padding for putting the ram range on a PGMPAGE alignment boundrary. */
1066 uint8_t abAlignemnt[HC_ARCH_BITS == 32 ? 1 : 5];
1067 /** The associated RAM range. */
1068 PGMRAMRANGE RamRange;
1069} PGMMMIO2RANGE;
1070/** Pointer to a MMIO2 range. */
1071typedef PGMMMIO2RANGE *PPGMMMIO2RANGE;
1072
1073
1074
1075
1076/** @todo r=bird: fix typename. */
1077/**
1078 * PGMPhysRead/Write cache entry
1079 */
1080typedef struct PGMPHYSCACHE_ENTRY
1081{
1082 /** HC pointer to physical page */
1083 R3PTRTYPE(uint8_t *) pbHC;
1084 /** GC Physical address for cache entry */
1085 RTGCPHYS GCPhys;
1086#if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
1087 RTGCPHYS u32Padding0; /**< alignment padding. */
1088#endif
1089} PGMPHYSCACHE_ENTRY;
1090
1091/**
1092 * PGMPhysRead/Write cache to reduce REM memory access overhead
1093 */
1094typedef struct PGMPHYSCACHE
1095{
1096 /** Bitmap of valid cache entries */
1097 uint64_t aEntries;
1098 /** Cache entries */
1099 PGMPHYSCACHE_ENTRY Entry[PGM_MAX_PHYSCACHE_ENTRIES];
1100} PGMPHYSCACHE;
1101
1102
1103/** Pointer to an allocation chunk ring-3 mapping. */
1104typedef struct PGMCHUNKR3MAP *PPGMCHUNKR3MAP;
1105/** Pointer to an allocation chunk ring-3 mapping pointer. */
1106typedef PPGMCHUNKR3MAP *PPPGMCHUNKR3MAP;
1107
1108/**
1109 * Ring-3 tracking structore for an allocation chunk ring-3 mapping.
1110 *
1111 * The primary tree (Core) uses the chunk id as key.
1112 * The secondary tree (AgeCore) is used for ageing and uses ageing sequence number as key.
1113 */
1114typedef struct PGMCHUNKR3MAP
1115{
1116 /** The key is the chunk id. */
1117 AVLU32NODECORE Core;
1118 /** The key is the ageing sequence number. */
1119 AVLLU32NODECORE AgeCore;
1120 /** The current age thingy. */
1121 uint32_t iAge;
1122 /** The current reference count. */
1123 uint32_t volatile cRefs;
1124 /** The current permanent reference count. */
1125 uint32_t volatile cPermRefs;
1126 /** The mapping address. */
1127 void *pv;
1128} PGMCHUNKR3MAP;
1129
1130/**
1131 * Allocation chunk ring-3 mapping TLB entry.
1132 */
1133typedef struct PGMCHUNKR3MAPTLBE
1134{
1135 /** The chunk id. */
1136 uint32_t volatile idChunk;
1137#if HC_ARCH_BITS == 64
1138 uint32_t u32Padding; /**< alignment padding. */
1139#endif
1140 /** The chunk map. */
1141 R3R0PTRTYPE(PPGMCHUNKR3MAP) volatile pChunk;
1142} PGMCHUNKR3MAPTLBE;
1143/** Pointer to the an allocation chunk ring-3 mapping TLB entry. */
1144typedef PGMCHUNKR3MAPTLBE *PPGMCHUNKR3MAPTLBE;
1145
1146/** The number of TLB entries in PGMCHUNKR3MAPTLB.
1147 * @remark Must be a power of two value. */
1148#define PGM_CHUNKR3MAPTLB_ENTRIES 32
1149
1150/**
1151 * Allocation chunk ring-3 mapping TLB.
1152 *
1153 * @remarks We use a TLB to speed up lookups by avoiding walking the AVL.
1154 * At first glance this might look kinda odd since AVL trees are
1155 * supposed to give the most optimial lookup times of all trees
1156 * due to their balancing. However, take a tree with 1023 nodes
1157 * in it, that's 10 levels, meaning that most searches has to go
1158 * down 9 levels before they find what they want. This isn't fast
1159 * compared to a TLB hit. There is the factor of cache misses,
1160 * and of course the problem with trees and branch prediction.
1161 * This is why we use TLBs in front of most of the trees.
1162 *
1163 * @todo Generalize this TLB + AVL stuff, shouldn't be all that
1164 * difficult when we switch to inlined AVL trees (from kStuff).
1165 */
1166typedef struct PGMCHUNKR3MAPTLB
1167{
1168 /** The TLB entries. */
1169 PGMCHUNKR3MAPTLBE aEntries[PGM_CHUNKR3MAPTLB_ENTRIES];
1170} PGMCHUNKR3MAPTLB;
1171
1172/**
1173 * Calculates the index of a guest page in the Ring-3 Chunk TLB.
1174 * @returns Chunk TLB index.
1175 * @param idChunk The Chunk ID.
1176 */
1177#define PGM_CHUNKR3MAPTLB_IDX(idChunk) ( (idChunk) & (PGM_CHUNKR3MAPTLB_ENTRIES - 1) )
1178
1179
1180/**
1181 * Ring-3 guest page mapping TLB entry.
1182 * @remarks used in ring-0 as well at the moment.
1183 */
1184typedef struct PGMPAGER3MAPTLBE
1185{
1186 /** Address of the page. */
1187 RTGCPHYS volatile GCPhys;
1188 /** The guest page. */
1189 R3R0PTRTYPE(PPGMPAGE) volatile pPage;
1190 /** Pointer to the page mapping tracking structure, PGMCHUNKR3MAP. */
1191 R3R0PTRTYPE(PPGMCHUNKR3MAP) volatile pMap;
1192 /** The address */
1193 R3R0PTRTYPE(void *) volatile pv;
1194#if HC_ARCH_BITS == 32
1195 uint32_t u32Padding; /**< alignment padding. */
1196#endif
1197} PGMPAGER3MAPTLBE;
1198/** Pointer to an entry in the HC physical TLB. */
1199typedef PGMPAGER3MAPTLBE *PPGMPAGER3MAPTLBE;
1200
1201
1202/** The number of entries in the ring-3 guest page mapping TLB.
1203 * @remarks The value must be a power of two. */
1204#define PGM_PAGER3MAPTLB_ENTRIES 64
1205
1206/**
1207 * Ring-3 guest page mapping TLB.
1208 * @remarks used in ring-0 as well at the moment.
1209 */
1210typedef struct PGMPAGER3MAPTLB
1211{
1212 /** The TLB entries. */
1213 PGMPAGER3MAPTLBE aEntries[PGM_PAGER3MAPTLB_ENTRIES];
1214} PGMPAGER3MAPTLB;
1215/** Pointer to the ring-3 guest page mapping TLB. */
1216typedef PGMPAGER3MAPTLB *PPGMPAGER3MAPTLB;
1217
1218/**
1219 * Calculates the index of the TLB entry for the specified guest page.
1220 * @returns Physical TLB index.
1221 * @param GCPhys The guest physical address.
1222 */
1223#define PGM_PAGER3MAPTLB_IDX(GCPhys) ( ((GCPhys) >> PAGE_SHIFT) & (PGM_PAGER3MAPTLB_ENTRIES - 1) )
1224
1225
1226/** @name Context neutrual page mapper TLB.
1227 *
1228 * Hoping to avoid some code and bug duplication parts of the GCxxx->CCPtr
1229 * code is writting in a kind of context neutrual way. Time will show whether
1230 * this actually makes sense or not...
1231 *
1232 * @{ */
1233/** @typedef PPGMPAGEMAPTLB
1234 * The page mapper TLB pointer type for the current context. */
1235/** @typedef PPGMPAGEMAPTLB
1236 * The page mapper TLB entry pointer type for the current context. */
1237/** @typedef PPGMPAGEMAPTLB
1238 * The page mapper TLB entry pointer pointer type for the current context. */
1239/** @def PGMPAGEMAPTLB_ENTRIES
1240 * The number of TLB entries in the page mapper TLB for the current context. */
1241/** @def PGM_PAGEMAPTLB_IDX
1242 * Calculate the TLB index for a guest physical address.
1243 * @returns The TLB index.
1244 * @param GCPhys The guest physical address. */
1245/** @typedef PPGMPAGEMAP
1246 * Pointer to a page mapper unit for current context. */
1247/** @typedef PPPGMPAGEMAP
1248 * Pointer to a page mapper unit pointer for current context. */
1249#ifdef IN_GC
1250// typedef PPGMPAGEGCMAPTLB PPGMPAGEMAPTLB;
1251// typedef PPGMPAGEGCMAPTLBE PPGMPAGEMAPTLBE;
1252// typedef PPGMPAGEGCMAPTLBE *PPPGMPAGEMAPTLBE;
1253# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGEGCMAPTLB_ENTRIES
1254# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGEGCMAPTLB_IDX(GCPhys)
1255 typedef void * PPGMPAGEMAP;
1256 typedef void ** PPPGMPAGEMAP;
1257//#elif IN_RING0
1258// typedef PPGMPAGER0MAPTLB PPGMPAGEMAPTLB;
1259// typedef PPGMPAGER0MAPTLBE PPGMPAGEMAPTLBE;
1260// typedef PPGMPAGER0MAPTLBE *PPPGMPAGEMAPTLBE;
1261//# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGER0MAPTLB_ENTRIES
1262//# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGER0MAPTLB_IDX(GCPhys)
1263// typedef PPGMCHUNKR0MAP PPGMPAGEMAP;
1264// typedef PPPGMCHUNKR0MAP PPPGMPAGEMAP;
1265#else
1266 typedef PPGMPAGER3MAPTLB PPGMPAGEMAPTLB;
1267 typedef PPGMPAGER3MAPTLBE PPGMPAGEMAPTLBE;
1268 typedef PPGMPAGER3MAPTLBE *PPPGMPAGEMAPTLBE;
1269# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGER3MAPTLB_ENTRIES
1270# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGER3MAPTLB_IDX(GCPhys)
1271 typedef PPGMCHUNKR3MAP PPGMPAGEMAP;
1272 typedef PPPGMCHUNKR3MAP PPPGMPAGEMAP;
1273#endif
1274/** @} */
1275
1276
1277/** @name PGM Pool Indexes.
1278 * Aka. the unique shadow page identifier.
1279 * @{ */
1280/** NIL page pool IDX. */
1281#define NIL_PGMPOOL_IDX 0
1282/** The first normal index. */
1283#define PGMPOOL_IDX_FIRST_SPECIAL 1
1284/** Page directory (32-bit root). */
1285#define PGMPOOL_IDX_PD 1
1286/** The extended PAE page directory (2048 entries, works as root currently). */
1287#define PGMPOOL_IDX_PAE_PD 2
1288 /** PAE Page Directory Table 0. */
1289#define PGMPOOL_IDX_PAE_PD_0 3
1290 /** PAE Page Directory Table 1. */
1291#define PGMPOOL_IDX_PAE_PD_1 4
1292 /** PAE Page Directory Table 2. */
1293#define PGMPOOL_IDX_PAE_PD_2 5
1294 /** PAE Page Directory Table 3. */
1295#define PGMPOOL_IDX_PAE_PD_3 6
1296/** Page Directory Pointer Table (PAE root, not currently used). */
1297#define PGMPOOL_IDX_PDPT 7
1298/** Page Map Level-4 (64-bit root). */
1299#define PGMPOOL_IDX_PML4 8
1300/** The first normal index. */
1301#define PGMPOOL_IDX_FIRST 9
1302/** The last valid index. (inclusive, 14 bits) */
1303#define PGMPOOL_IDX_LAST 0x3fff
1304/** @} */
1305
1306/** The NIL index for the parent chain. */
1307#define NIL_PGMPOOL_USER_INDEX ((uint16_t)0xffff)
1308
1309/**
1310 * Node in the chain linking a shadowed page to it's parent (user).
1311 */
1312#pragma pack(1)
1313typedef struct PGMPOOLUSER
1314{
1315 /** The index to the next item in the chain. NIL_PGMPOOL_USER_INDEX is no next. */
1316 uint16_t iNext;
1317 /** The user page index. */
1318 uint16_t iUser;
1319 /** Index into the user table. */
1320 uint16_t iUserTable;
1321} PGMPOOLUSER, *PPGMPOOLUSER;
1322typedef const PGMPOOLUSER *PCPGMPOOLUSER;
1323#pragma pack()
1324
1325
1326/** The NIL index for the phys ext chain. */
1327#define NIL_PGMPOOL_PHYSEXT_INDEX ((uint16_t)0xffff)
1328
1329/**
1330 * Node in the chain of physical cross reference extents.
1331 */
1332#pragma pack(1)
1333typedef struct PGMPOOLPHYSEXT
1334{
1335 /** The index to the next item in the chain. NIL_PGMPOOL_PHYSEXT_INDEX is no next. */
1336 uint16_t iNext;
1337 /** The user page index. */
1338 uint16_t aidx[3];
1339} PGMPOOLPHYSEXT, *PPGMPOOLPHYSEXT;
1340typedef const PGMPOOLPHYSEXT *PCPGMPOOLPHYSEXT;
1341#pragma pack()
1342
1343
1344/**
1345 * The kind of page that's being shadowed.
1346 */
1347typedef enum PGMPOOLKIND
1348{
1349 /** The virtual invalid 0 entry. */
1350 PGMPOOLKIND_INVALID = 0,
1351 /** The entry is free (=unused). */
1352 PGMPOOLKIND_FREE,
1353
1354 /** Shw: 32-bit page table; Gst: no paging */
1355 PGMPOOLKIND_32BIT_PT_FOR_PHYS,
1356 /** Shw: 32-bit page table; Gst: 32-bit page table. */
1357 PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT,
1358 /** Shw: 32-bit page table; Gst: 4MB page. */
1359 PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB,
1360 /** Shw: PAE page table; Gst: no paging */
1361 PGMPOOLKIND_PAE_PT_FOR_PHYS,
1362 /** Shw: PAE page table; Gst: 32-bit page table. */
1363 PGMPOOLKIND_PAE_PT_FOR_32BIT_PT,
1364 /** Shw: PAE page table; Gst: Half of a 4MB page. */
1365 PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB,
1366 /** Shw: PAE page table; Gst: PAE page table. */
1367 PGMPOOLKIND_PAE_PT_FOR_PAE_PT,
1368 /** Shw: PAE page table; Gst: 2MB page. */
1369 PGMPOOLKIND_PAE_PT_FOR_PAE_2MB,
1370
1371 /** Shw: PAE page directory; Gst: 32-bit page directory. */
1372 PGMPOOLKIND_PAE_PD_FOR_32BIT_PD,
1373 /** Shw: PAE page directory; Gst: PAE page directory. */
1374 PGMPOOLKIND_PAE_PD_FOR_PAE_PD,
1375
1376 /** Shw: 64-bit page directory pointer table; Gst: 64-bit page directory pointer table. */
1377 PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT,
1378 /** Shw: 64-bit page directory table; Gst: 64-bit page directory table. */
1379 PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD,
1380
1381 /** Shw: Root 32-bit page directory. */
1382 PGMPOOLKIND_ROOT_32BIT_PD,
1383 /** Shw: Root PAE page directory */
1384 PGMPOOLKIND_ROOT_PAE_PD,
1385 /** Shw: Root PAE page directory pointer table (legacy, 4 entries). */
1386 PGMPOOLKIND_ROOT_PDPT,
1387 /** Shw: Root page map level-4 table. */
1388 PGMPOOLKIND_ROOT_PML4,
1389
1390 /** The last valid entry. */
1391 PGMPOOLKIND_LAST = PGMPOOLKIND_ROOT_PML4
1392} PGMPOOLKIND;
1393
1394
1395/**
1396 * The tracking data for a page in the pool.
1397 */
1398typedef struct PGMPOOLPAGE
1399{
1400 /** AVL node code with the (HC) physical address of this page. */
1401 AVLOHCPHYSNODECORE Core;
1402 /** Pointer to the HC mapping of the page. */
1403 R3R0PTRTYPE(void *) pvPageHC;
1404 /** The guest physical address. */
1405 RTGCPHYS GCPhys;
1406 /** The kind of page we're shadowing. (This is really a PGMPOOLKIND enum.) */
1407 uint8_t enmKind;
1408 uint8_t bPadding;
1409 /** The index of this page. */
1410 uint16_t idx;
1411 /** The next entry in the list this page currently resides in.
1412 * It's either in the free list or in the GCPhys hash. */
1413 uint16_t iNext;
1414#ifdef PGMPOOL_WITH_USER_TRACKING
1415 /** Head of the user chain. NIL_PGMPOOL_USER_INDEX if not currently in use. */
1416 uint16_t iUserHead;
1417 /** The number of present entries. */
1418 uint16_t cPresent;
1419 /** The first entry in the table which is present. */
1420 uint16_t iFirstPresent;
1421#endif
1422#ifdef PGMPOOL_WITH_MONITORING
1423 /** The number of modifications to the monitored page. */
1424 uint16_t cModifications;
1425 /** The next modified page. NIL_PGMPOOL_IDX if tail. */
1426 uint16_t iModifiedNext;
1427 /** The previous modified page. NIL_PGMPOOL_IDX if head. */
1428 uint16_t iModifiedPrev;
1429 /** The next page sharing access handler. NIL_PGMPOOL_IDX if tail. */
1430 uint16_t iMonitoredNext;
1431 /** The previous page sharing access handler. NIL_PGMPOOL_IDX if head. */
1432 uint16_t iMonitoredPrev;
1433#endif
1434#ifdef PGMPOOL_WITH_CACHE
1435 /** The next page in the age list. */
1436 uint16_t iAgeNext;
1437 /** The previous page in the age list. */
1438 uint16_t iAgePrev;
1439#endif /* PGMPOOL_WITH_CACHE */
1440 /** Used to indicate that the page is zeroed. */
1441 bool fZeroed;
1442 /** Used to indicate that a PT has non-global entries. */
1443 bool fSeenNonGlobal;
1444 /** Used to indicate that we're monitoring writes to the guest page. */
1445 bool fMonitored;
1446 /** Used to indicate that the page is in the cache (e.g. in the GCPhys hash).
1447 * (All pages are in the age list.) */
1448 bool fCached;
1449 /** This is used by the R3 access handlers when invoked by an async thread.
1450 * It's a hack required because of REMR3NotifyHandlerPhysicalDeregister. */
1451 bool volatile fReusedFlushPending;
1452 /** Used to indicate that the guest is mapping the page is also used as a CR3.
1453 * In these cases the access handler acts differently and will check
1454 * for mapping conflicts like the normal CR3 handler.
1455 * @todo When we change the CR3 shadowing to use pool pages, this flag can be
1456 * replaced by a list of pages which share access handler.
1457 */
1458 bool fCR3Mix;
1459} PGMPOOLPAGE, *PPGMPOOLPAGE, **PPPGMPOOLPAGE;
1460
1461
1462#ifdef PGMPOOL_WITH_CACHE
1463/** The hash table size. */
1464# define PGMPOOL_HASH_SIZE 0x40
1465/** The hash function. */
1466# define PGMPOOL_HASH(GCPhys) ( ((GCPhys) >> PAGE_SHIFT) & (PGMPOOL_HASH_SIZE - 1) )
1467#endif
1468
1469
1470/**
1471 * The shadow page pool instance data.
1472 *
1473 * It's all one big allocation made at init time, except for the
1474 * pages that is. The user nodes follows immediatly after the
1475 * page structures.
1476 */
1477typedef struct PGMPOOL
1478{
1479 /** The VM handle - HC Ptr. */
1480 R3R0PTRTYPE(PVM) pVMHC;
1481 /** The VM handle - GC Ptr. */
1482 GCPTRTYPE(PVM) pVMGC;
1483 /** The max pool size. This includes the special IDs. */
1484 uint16_t cMaxPages;
1485 /** The current pool size. */
1486 uint16_t cCurPages;
1487 /** The head of the free page list. */
1488 uint16_t iFreeHead;
1489 /* Padding. */
1490 uint16_t u16Padding;
1491#ifdef PGMPOOL_WITH_USER_TRACKING
1492 /** Head of the chain of free user nodes. */
1493 uint16_t iUserFreeHead;
1494 /** The number of user nodes we've allocated. */
1495 uint16_t cMaxUsers;
1496 /** The number of present page table entries in the entire pool. */
1497 uint32_t cPresent;
1498 /** Pointer to the array of user nodes - GC pointer. */
1499 GCPTRTYPE(PPGMPOOLUSER) paUsersGC;
1500 /** Pointer to the array of user nodes - HC pointer. */
1501 R3R0PTRTYPE(PPGMPOOLUSER) paUsersHC;
1502#endif /* PGMPOOL_WITH_USER_TRACKING */
1503#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1504 /** Head of the chain of free phys ext nodes. */
1505 uint16_t iPhysExtFreeHead;
1506 /** The number of user nodes we've allocated. */
1507 uint16_t cMaxPhysExts;
1508 /** Pointer to the array of physical xref extent - GC pointer. */
1509 GCPTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsGC;
1510 /** Pointer to the array of physical xref extent nodes - HC pointer. */
1511 R3R0PTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsHC;
1512#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
1513#ifdef PGMPOOL_WITH_CACHE
1514 /** Hash table for GCPhys addresses. */
1515 uint16_t aiHash[PGMPOOL_HASH_SIZE];
1516 /** The head of the age list. */
1517 uint16_t iAgeHead;
1518 /** The tail of the age list. */
1519 uint16_t iAgeTail;
1520 /** Set if the cache is enabled. */
1521 bool fCacheEnabled;
1522#endif /* PGMPOOL_WITH_CACHE */
1523#ifdef PGMPOOL_WITH_MONITORING
1524 /** Head of the list of modified pages. */
1525 uint16_t iModifiedHead;
1526 /** The current number of modified pages. */
1527 uint16_t cModifiedPages;
1528 /** Access handler, GC. */
1529 GCPTRTYPE(PFNPGMGCPHYSHANDLER) pfnAccessHandlerGC;
1530 /** Access handler, R0. */
1531 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnAccessHandlerR0;
1532 /** Access handler, R3. */
1533 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnAccessHandlerR3;
1534 /** The access handler description (HC ptr). */
1535 R3PTRTYPE(const char *) pszAccessHandler;
1536#endif /* PGMPOOL_WITH_MONITORING */
1537 /** The number of pages currently in use. */
1538 uint16_t cUsedPages;
1539#ifdef VBOX_WITH_STATISTICS
1540 /** The high wather mark for cUsedPages. */
1541 uint16_t cUsedPagesHigh;
1542 uint32_t Alignment1; /**< Align the next member on a 64-bit boundrary. */
1543 /** Profiling pgmPoolAlloc(). */
1544 STAMPROFILEADV StatAlloc;
1545 /** Profiling pgmPoolClearAll(). */
1546 STAMPROFILE StatClearAll;
1547 /** Profiling pgmPoolFlushAllInt(). */
1548 STAMPROFILE StatFlushAllInt;
1549 /** Profiling pgmPoolFlushPage(). */
1550 STAMPROFILE StatFlushPage;
1551 /** Profiling pgmPoolFree(). */
1552 STAMPROFILE StatFree;
1553 /** Profiling time spent zeroing pages. */
1554 STAMPROFILE StatZeroPage;
1555# ifdef PGMPOOL_WITH_USER_TRACKING
1556 /** Profiling of pgmPoolTrackDeref. */
1557 STAMPROFILE StatTrackDeref;
1558 /** Profiling pgmTrackFlushGCPhysPT. */
1559 STAMPROFILE StatTrackFlushGCPhysPT;
1560 /** Profiling pgmTrackFlushGCPhysPTs. */
1561 STAMPROFILE StatTrackFlushGCPhysPTs;
1562 /** Profiling pgmTrackFlushGCPhysPTsSlow. */
1563 STAMPROFILE StatTrackFlushGCPhysPTsSlow;
1564 /** Number of times we've been out of user records. */
1565 STAMCOUNTER StatTrackFreeUpOneUser;
1566# endif
1567# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1568 /** Profiling deref activity related tracking GC physical pages. */
1569 STAMPROFILE StatTrackDerefGCPhys;
1570 /** Number of linear searches for a HCPhys in the ram ranges. */
1571 STAMCOUNTER StatTrackLinearRamSearches;
1572 /** The number of failing pgmPoolTrackPhysExtAlloc calls. */
1573 STAMCOUNTER StamTrackPhysExtAllocFailures;
1574# endif
1575# ifdef PGMPOOL_WITH_MONITORING
1576 /** Profiling the GC PT access handler. */
1577 STAMPROFILE StatMonitorGC;
1578 /** Times we've failed interpreting the instruction. */
1579 STAMCOUNTER StatMonitorGCEmulateInstr;
1580 /** Profiling the pgmPoolFlushPage calls made from the GC PT access handler. */
1581 STAMPROFILE StatMonitorGCFlushPage;
1582 /** Times we've detected fork(). */
1583 STAMCOUNTER StatMonitorGCFork;
1584 /** Profiling the GC access we've handled (except REP STOSD). */
1585 STAMPROFILE StatMonitorGCHandled;
1586 /** Times we've failed interpreting a patch code instruction. */
1587 STAMCOUNTER StatMonitorGCIntrFailPatch1;
1588 /** Times we've failed interpreting a patch code instruction during flushing. */
1589 STAMCOUNTER StatMonitorGCIntrFailPatch2;
1590 /** The number of times we've seen rep prefixes we can't handle. */
1591 STAMCOUNTER StatMonitorGCRepPrefix;
1592 /** Profiling the REP STOSD cases we've handled. */
1593 STAMPROFILE StatMonitorGCRepStosd;
1594
1595 /** Profiling the HC PT access handler. */
1596 STAMPROFILE StatMonitorHC;
1597 /** Times we've failed interpreting the instruction. */
1598 STAMCOUNTER StatMonitorHCEmulateInstr;
1599 /** Profiling the pgmPoolFlushPage calls made from the HC PT access handler. */
1600 STAMPROFILE StatMonitorHCFlushPage;
1601 /** Times we've detected fork(). */
1602 STAMCOUNTER StatMonitorHCFork;
1603 /** Profiling the HC access we've handled (except REP STOSD). */
1604 STAMPROFILE StatMonitorHCHandled;
1605 /** The number of times we've seen rep prefixes we can't handle. */
1606 STAMCOUNTER StatMonitorHCRepPrefix;
1607 /** Profiling the REP STOSD cases we've handled. */
1608 STAMPROFILE StatMonitorHCRepStosd;
1609 /** The number of times we're called in an async thread an need to flush. */
1610 STAMCOUNTER StatMonitorHCAsync;
1611 /** The high wather mark for cModifiedPages. */
1612 uint16_t cModifiedPagesHigh;
1613 uint16_t Alignment2[3]; /**< Align the next member on a 64-bit boundrary. */
1614# endif
1615# ifdef PGMPOOL_WITH_CACHE
1616 /** The number of cache hits. */
1617 STAMCOUNTER StatCacheHits;
1618 /** The number of cache misses. */
1619 STAMCOUNTER StatCacheMisses;
1620 /** The number of times we've got a conflict of 'kind' in the cache. */
1621 STAMCOUNTER StatCacheKindMismatches;
1622 /** Number of times we've been out of pages. */
1623 STAMCOUNTER StatCacheFreeUpOne;
1624 /** The number of cacheable allocations. */
1625 STAMCOUNTER StatCacheCacheable;
1626 /** The number of uncacheable allocations. */
1627 STAMCOUNTER StatCacheUncacheable;
1628# endif
1629#elif HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
1630 uint32_t Alignment1; /**< Align the next member on a 64-bit boundrary. */
1631#endif
1632 /** The AVL tree for looking up a page by its HC physical address. */
1633 AVLOHCPHYSTREE HCPhysTree;
1634 uint32_t Alignment3; /**< Align the next member on a 64-bit boundrary. */
1635 /** Array of pages. (cMaxPages in length)
1636 * The Id is the index into thist array.
1637 */
1638 PGMPOOLPAGE aPages[PGMPOOL_IDX_FIRST];
1639} PGMPOOL, *PPGMPOOL, **PPPGMPOOL;
1640
1641
1642/** @def PGMPOOL_PAGE_2_PTR
1643 * Maps a pool page pool into the current context.
1644 *
1645 * @returns VBox status code.
1646 * @param pVM The VM handle.
1647 * @param pPage The pool page.
1648 *
1649 * @remark In HC this uses PGMGCDynMapHCPage(), so it will consume of the
1650 * small page window employeed by that function. Be careful.
1651 * @remark There is no need to assert on the result.
1652 */
1653#ifdef IN_GC
1654# define PGMPOOL_PAGE_2_PTR(pVM, pPage) pgmGCPoolMapPage((pVM), (pPage))
1655#else
1656# define PGMPOOL_PAGE_2_PTR(pVM, pPage) ((pPage)->pvPageHC)
1657#endif
1658
1659
1660/**
1661 * Trees are using self relative offsets as pointers.
1662 * So, all its data, including the root pointer, must be in the heap for HC and GC
1663 * to have the same layout.
1664 */
1665typedef struct PGMTREES
1666{
1667 /** Physical access handlers (AVL range+offsetptr tree). */
1668 AVLROGCPHYSTREE PhysHandlers;
1669 /** Virtual access handlers (AVL range + GC ptr tree). */
1670 AVLROGCPTRTREE VirtHandlers;
1671 /** Virtual access handlers (Phys range AVL range + offsetptr tree). */
1672 AVLROGCPHYSTREE PhysToVirtHandlers;
1673 /** Virtual access handlers for the hypervisor (AVL range + GC ptr tree). */
1674 AVLROGCPTRTREE HyperVirtHandlers;
1675} PGMTREES;
1676/** Pointer to PGM trees. */
1677typedef PGMTREES *PPGMTREES;
1678
1679
1680/** @name Paging mode macros
1681 * @{ */
1682#ifdef IN_GC
1683# define PGM_CTX(a,b) a##GC##b
1684# define PGM_CTX_STR(a,b) a "GC" b
1685# define PGM_CTX_DECL(type) PGMGCDECL(type)
1686#else
1687# ifdef IN_RING3
1688# define PGM_CTX(a,b) a##R3##b
1689# define PGM_CTX_STR(a,b) a "R3" b
1690# define PGM_CTX_DECL(type) DECLCALLBACK(type)
1691# else
1692# define PGM_CTX(a,b) a##R0##b
1693# define PGM_CTX_STR(a,b) a "R0" b
1694# define PGM_CTX_DECL(type) PGMDECL(type)
1695# endif
1696#endif
1697
1698#define PGM_GST_NAME_REAL(name) PGM_CTX(pgm,GstReal##name)
1699#define PGM_GST_NAME_GC_REAL_STR(name) "pgmGCGstReal" #name
1700#define PGM_GST_NAME_R0_REAL_STR(name) "pgmR0GstReal" #name
1701#define PGM_GST_NAME_PROT(name) PGM_CTX(pgm,GstProt##name)
1702#define PGM_GST_NAME_GC_PROT_STR(name) "pgmGCGstProt" #name
1703#define PGM_GST_NAME_R0_PROT_STR(name) "pgmR0GstProt" #name
1704#define PGM_GST_NAME_32BIT(name) PGM_CTX(pgm,Gst32Bit##name)
1705#define PGM_GST_NAME_GC_32BIT_STR(name) "pgmGCGst32Bit" #name
1706#define PGM_GST_NAME_R0_32BIT_STR(name) "pgmR0Gst32Bit" #name
1707#define PGM_GST_NAME_PAE(name) PGM_CTX(pgm,GstPAE##name)
1708#define PGM_GST_NAME_GC_PAE_STR(name) "pgmGCGstPAE" #name
1709#define PGM_GST_NAME_R0_PAE_STR(name) "pgmR0GstPAE" #name
1710#define PGM_GST_NAME_AMD64(name) PGM_CTX(pgm,GstAMD64##name)
1711#define PGM_GST_NAME_GC_AMD64_STR(name) "pgmGCGstAMD64" #name
1712#define PGM_GST_NAME_R0_AMD64_STR(name) "pgmR0GstAMD64" #name
1713#define PGM_GST_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Gst##name))
1714#define PGM_GST_DECL(type, name) PGM_CTX_DECL(type) PGM_GST_NAME(name)
1715
1716#define PGM_SHW_NAME_32BIT(name) PGM_CTX(pgm,Shw32Bit##name)
1717#define PGM_SHW_NAME_GC_32BIT_STR(name) "pgmGCShw32Bit" #name
1718#define PGM_SHW_NAME_R0_32BIT_STR(name) "pgmR0Shw32Bit" #name
1719#define PGM_SHW_NAME_PAE(name) PGM_CTX(pgm,ShwPAE##name)
1720#define PGM_SHW_NAME_GC_PAE_STR(name) "pgmGCShwPAE" #name
1721#define PGM_SHW_NAME_R0_PAE_STR(name) "pgmR0ShwPAE" #name
1722#define PGM_SHW_NAME_AMD64(name) PGM_CTX(pgm,ShwAMD64##name)
1723#define PGM_SHW_NAME_GC_AMD64_STR(name) "pgmGCShwAMD64" #name
1724#define PGM_SHW_NAME_R0_AMD64_STR(name) "pgmR0ShwAMD64" #name
1725#define PGM_SHW_DECL(type, name) PGM_CTX_DECL(type) PGM_SHW_NAME(name)
1726#define PGM_SHW_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Shw##name))
1727
1728/* Shw_Gst */
1729#define PGM_BTH_NAME_32BIT_REAL(name) PGM_CTX(pgm,Bth32BitReal##name)
1730#define PGM_BTH_NAME_32BIT_PROT(name) PGM_CTX(pgm,Bth32BitProt##name)
1731#define PGM_BTH_NAME_32BIT_32BIT(name) PGM_CTX(pgm,Bth32Bit32Bit##name)
1732#define PGM_BTH_NAME_PAE_REAL(name) PGM_CTX(pgm,BthPAEReal##name)
1733#define PGM_BTH_NAME_PAE_PROT(name) PGM_CTX(pgm,BthPAEProt##name)
1734#define PGM_BTH_NAME_PAE_32BIT(name) PGM_CTX(pgm,BthPAE32Bit##name)
1735#define PGM_BTH_NAME_PAE_PAE(name) PGM_CTX(pgm,BthPAEPAE##name)
1736#define PGM_BTH_NAME_AMD64_AMD64(name) PGM_CTX(pgm,BthAMD64AMD64##name)
1737#define PGM_BTH_NAME_GC_32BIT_REAL_STR(name) "pgmGCBth32BitReal" #name
1738#define PGM_BTH_NAME_GC_32BIT_PROT_STR(name) "pgmGCBth32BitProt" #name
1739#define PGM_BTH_NAME_GC_32BIT_32BIT_STR(name) "pgmGCBth32Bit32Bit" #name
1740#define PGM_BTH_NAME_GC_PAE_REAL_STR(name) "pgmGCBthPAEReal" #name
1741#define PGM_BTH_NAME_GC_PAE_PROT_STR(name) "pgmGCBthPAEProt" #name
1742#define PGM_BTH_NAME_GC_PAE_32BIT_STR(name) "pgmGCBthPAE32Bit" #name
1743#define PGM_BTH_NAME_GC_PAE_PAE_STR(name) "pgmGCBthPAEPAE" #name
1744#define PGM_BTH_NAME_GC_AMD64_AMD64_STR(name) "pgmGCBthAMD64AMD64" #name
1745#define PGM_BTH_NAME_R0_32BIT_REAL_STR(name) "pgmR0Bth32BitReal" #name
1746#define PGM_BTH_NAME_R0_32BIT_PROT_STR(name) "pgmR0Bth32BitProt" #name
1747#define PGM_BTH_NAME_R0_32BIT_32BIT_STR(name) "pgmR0Bth32Bit32Bit" #name
1748#define PGM_BTH_NAME_R0_PAE_REAL_STR(name) "pgmR0BthPAEReal" #name
1749#define PGM_BTH_NAME_R0_PAE_PROT_STR(name) "pgmR0BthPAEProt" #name
1750#define PGM_BTH_NAME_R0_PAE_32BIT_STR(name) "pgmR0BthPAE32Bit" #name
1751#define PGM_BTH_NAME_R0_PAE_PAE_STR(name) "pgmR0BthPAEPAE" #name
1752#define PGM_BTH_NAME_R0_AMD64_AMD64_STR(name) "pgmR0BthAMD64AMD64" #name
1753#define PGM_BTH_DECL(type, name) PGM_CTX_DECL(type) PGM_BTH_NAME(name)
1754#define PGM_BTH_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Bth##name))
1755/** @} */
1756
1757/**
1758 * Data for each paging mode.
1759 */
1760typedef struct PGMMODEDATA
1761{
1762 /** The guest mode type. */
1763 uint32_t uGstType;
1764 /** The shadow mode type. */
1765 uint32_t uShwType;
1766
1767 /** @name Function pointers for Shadow paging.
1768 * @{
1769 */
1770 DECLR3CALLBACKMEMBER(int, pfnR3ShwRelocate,(PVM pVM, RTGCUINTPTR offDelta));
1771 DECLR3CALLBACKMEMBER(int, pfnR3ShwExit,(PVM pVM));
1772 DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
1773 DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
1774 DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPDEByIndex,(PVM pVM, uint32_t iPD, PX86PDEPAE pPde));
1775 DECLR3CALLBACKMEMBER(int, pfnR3ShwSetPDEByIndex,(PVM pVM, uint32_t iPD, X86PDEPAE Pde));
1776 DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPDEByIndex,(PVM pVM, uint32_t iPD, uint64_t fFlags, uint64_t fMask));
1777
1778 DECLGCCALLBACKMEMBER(int, pfnGCShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
1779 DECLGCCALLBACKMEMBER(int, pfnGCShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
1780 DECLGCCALLBACKMEMBER(int, pfnGCShwGetPDEByIndex,(PVM pVM, uint32_t iPD, PX86PDEPAE pPde));
1781 DECLGCCALLBACKMEMBER(int, pfnGCShwSetPDEByIndex,(PVM pVM, uint32_t iPD, X86PDEPAE Pde));
1782 DECLGCCALLBACKMEMBER(int, pfnGCShwModifyPDEByIndex,(PVM pVM, uint32_t iPD, uint64_t fFlags, uint64_t fMask));
1783
1784 DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
1785 DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
1786 DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPDEByIndex,(PVM pVM, uint32_t iPD, PX86PDEPAE pPde));
1787 DECLR0CALLBACKMEMBER(int, pfnR0ShwSetPDEByIndex,(PVM pVM, uint32_t iPD, X86PDEPAE Pde));
1788 DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPDEByIndex,(PVM pVM, uint32_t iPD, uint64_t fFlags, uint64_t fMask));
1789 /** @} */
1790
1791 /** @name Function pointers for Guest paging.
1792 * @{
1793 */
1794 DECLR3CALLBACKMEMBER(int, pfnR3GstRelocate,(PVM pVM, RTGCUINTPTR offDelta));
1795 DECLR3CALLBACKMEMBER(int, pfnR3GstExit,(PVM pVM));
1796 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
1797 DECLR3CALLBACKMEMBER(int, pfnR3GstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
1798 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde));
1799 DECLR3CALLBACKMEMBER(int, pfnR3GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
1800 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmonitorCR3,(PVM pVM));
1801 DECLR3CALLBACKMEMBER(int, pfnR3GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
1802 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmapCR3,(PVM pVM));
1803 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstWriteHandlerCR3;
1804 R3PTRTYPE(const char *) pszR3GstWriteHandlerCR3;
1805 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstPAEWriteHandlerCR3;
1806 R3PTRTYPE(const char *) pszR3GstPAEWriteHandlerCR3;
1807
1808 DECLGCCALLBACKMEMBER(int, pfnGCGstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
1809 DECLGCCALLBACKMEMBER(int, pfnGCGstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
1810 DECLGCCALLBACKMEMBER(int, pfnGCGstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde));
1811 DECLGCCALLBACKMEMBER(int, pfnGCGstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
1812 DECLGCCALLBACKMEMBER(int, pfnGCGstUnmonitorCR3,(PVM pVM));
1813 DECLGCCALLBACKMEMBER(int, pfnGCGstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
1814 DECLGCCALLBACKMEMBER(int, pfnGCGstUnmapCR3,(PVM pVM));
1815 GCPTRTYPE(PFNPGMGCPHYSHANDLER) pfnGCGstWriteHandlerCR3;
1816 GCPTRTYPE(PFNPGMGCPHYSHANDLER) pfnGCGstPAEWriteHandlerCR3;
1817
1818 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
1819 DECLR0CALLBACKMEMBER(int, pfnR0GstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
1820 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde));
1821 DECLR0CALLBACKMEMBER(int, pfnR0GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
1822 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmonitorCR3,(PVM pVM));
1823 DECLR0CALLBACKMEMBER(int, pfnR0GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
1824 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmapCR3,(PVM pVM));
1825 R0PTRTYPE(PFNPGMGCPHYSHANDLER) pfnR0GstWriteHandlerCR3;
1826 R0PTRTYPE(PFNPGMGCPHYSHANDLER) pfnR0GstPAEWriteHandlerCR3;
1827 /** @} */
1828
1829 /** @name Function pointers for Both Shadow and Guest paging.
1830 * @{
1831 */
1832 DECLR3CALLBACKMEMBER(int, pfnR3BthRelocate,(PVM pVM, RTGCUINTPTR offDelta));
1833 DECLR3CALLBACKMEMBER(int, pfnR3BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
1834 DECLR3CALLBACKMEMBER(int, pfnR3BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
1835 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
1836 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError));
1837 DECLR3CALLBACKMEMBER(int, pfnR3BthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage));
1838 DECLR3CALLBACKMEMBER(int, pfnR3BthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError));
1839#ifdef VBOX_STRICT
1840 DECLR3CALLBACKMEMBER(unsigned, pfnR3BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb));
1841#endif
1842
1843 DECLGCCALLBACKMEMBER(int, pfnGCBthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
1844 DECLGCCALLBACKMEMBER(int, pfnGCBthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
1845 DECLGCCALLBACKMEMBER(int, pfnGCBthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
1846 DECLGCCALLBACKMEMBER(int, pfnGCBthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError));
1847 DECLGCCALLBACKMEMBER(int, pfnGCBthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage));
1848 DECLGCCALLBACKMEMBER(int, pfnGCBthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError));
1849#ifdef VBOX_STRICT
1850 DECLGCCALLBACKMEMBER(unsigned, pfnGCBthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb));
1851#endif
1852
1853 DECLR0CALLBACKMEMBER(int, pfnR0BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
1854 DECLR0CALLBACKMEMBER(int, pfnR0BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
1855 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
1856 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError));
1857 DECLR0CALLBACKMEMBER(int, pfnR0BthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage));
1858 DECLR0CALLBACKMEMBER(int, pfnR0BthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError));
1859#ifdef VBOX_STRICT
1860 DECLR0CALLBACKMEMBER(unsigned, pfnR0BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb));
1861#endif
1862 /** @} */
1863} PGMMODEDATA, *PPGMMODEDATA;
1864
1865
1866
1867/**
1868 * Converts a PGM pointer into a VM pointer.
1869 * @returns Pointer to the VM structure the PGM is part of.
1870 * @param pPGM Pointer to PGM instance data.
1871 */
1872#define PGM2VM(pPGM) ( (PVM)((char*)pPGM - pPGM->offVM) )
1873
1874/**
1875 * PGM Data (part of VM)
1876 */
1877typedef struct PGM
1878{
1879 /** Offset to the VM structure. */
1880 RTINT offVM;
1881
1882 /*
1883 * This will be redefined at least two more times before we're done, I'm sure.
1884 * The current code is only to get on with the coding.
1885 * - 2004-06-10: initial version, bird.
1886 * - 2004-07-02: 1st time, bird.
1887 * - 2004-10-18: 2nd time, bird.
1888 * - 2005-07-xx: 3rd time, bird.
1889 */
1890
1891 /** Pointer to the page table entries for the dynamic page mapping area - GCPtr. */
1892 GCPTRTYPE(PX86PTE) paDynPageMap32BitPTEsGC;
1893 /** Pointer to the page table entries for the dynamic page mapping area - GCPtr. */
1894 GCPTRTYPE(PX86PTEPAE) paDynPageMapPaePTEsGC;
1895
1896 /** The host paging mode. (This is what SUPLib reports.) */
1897 SUPPAGINGMODE enmHostMode;
1898 /** The shadow paging mode. */
1899 PGMMODE enmShadowMode;
1900 /** The guest paging mode. */
1901 PGMMODE enmGuestMode;
1902
1903 /** The current physical address representing in the guest CR3 register. */
1904 RTGCPHYS GCPhysCR3;
1905 /** Pointer to the 5 page CR3 content mapping.
1906 * The first page is always the CR3 (in some form) while the 4 other pages
1907 * are used of the PDs in PAE mode. */
1908 RTGCPTR GCPtrCR3Mapping;
1909#if HC_ARCH_BITS == 64
1910 uint32_t u32Alignment;
1911#endif
1912 /** The physical address of the currently monitored guest CR3 page.
1913 * When this value is NIL_RTGCPHYS no page is being monitored. */
1914 RTGCPHYS GCPhysGstCR3Monitored;
1915
1916 /** @name 32-bit Guest Paging.
1917 * @{ */
1918 /** The guest's page directory, HC pointer. */
1919 R3R0PTRTYPE(PX86PD) pGuestPDHC;
1920 /** The guest's page directory, static GC mapping. */
1921 GCPTRTYPE(PX86PD) pGuestPDGC;
1922 /** @} */
1923
1924 /** @name PAE Guest Paging.
1925 * @{ */
1926 /** The guest's page directory pointer table, static GC mapping. */
1927 GCPTRTYPE(PX86PDPT) pGstPaePDPTGC;
1928 /** The guest's page directory pointer table, HC pointer. */
1929 R3R0PTRTYPE(PX86PDPT) pGstPaePDPTHC;
1930 /** The guest's page directories, HC pointers.
1931 * These are individual pointers and don't have to be adjecent.
1932 * These don't have to be up-to-date - use pgmGstGetPaePD() to access them. */
1933 R3R0PTRTYPE(PX86PDPAE) apGstPaePDsHC[4];
1934 /** The guest's page directories, static GC mapping.
1935 * Unlike the HC array the first entry can be accessed as a 2048 entry PD.
1936 * These don't have to be up-to-date - use pgmGstGetPaePD() to access them. */
1937 GCPTRTYPE(PX86PDPAE) apGstPaePDsGC[4];
1938 /** The physical addresses of the guest page directories (PAE) pointed to by apGstPagePDsHC/GC. */
1939 RTGCPHYS aGCPhysGstPaePDs[4];
1940 /** The physical addresses of the monitored guest page directories (PAE). */
1941 RTGCPHYS aGCPhysGstPaePDsMonitored[4];
1942 /** @} */
1943
1944 /** @name AMD64 Guest Paging.
1945 * @{ */
1946 /** The guest's page directory pointer table, HC pointer. */
1947 R3R0PTRTYPE(PX86PML4) pGstPaePML4HC;
1948 /** @} */
1949
1950 /** @name 32-bit Shadow Paging
1951 * @{ */
1952 /** The 32-Bit PD - HC Ptr. */
1953 R3R0PTRTYPE(PX86PD) pHC32BitPD;
1954 /** The 32-Bit PD - GC Ptr. */
1955 GCPTRTYPE(PX86PD) pGC32BitPD;
1956#if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
1957 uint32_t u32Padding1; /**< alignment padding. */
1958#endif
1959 /** The Physical Address (HC) of the 32-Bit PD. */
1960 RTHCPHYS HCPhys32BitPD;
1961 /** @} */
1962
1963 /** @name PAE Shadow Paging
1964 * @{ */
1965 /** The four PDs for the low 4GB - HC Ptr.
1966 * Even though these are 4 pointers, what they point at is a single table.
1967 * Thus, it's possible to walk the 2048 entries starting where apHCPaePDs[0] points. */
1968 R3R0PTRTYPE(PX86PDPAE) apHCPaePDs[4];
1969 /** The four PDs for the low 4GB - GC Ptr.
1970 * Same kind of mapping as apHCPaePDs. */
1971 GCPTRTYPE(PX86PDPAE) apGCPaePDs[4];
1972 /** The Physical Address (HC) of the four PDs for the low 4GB.
1973 * These are *NOT* 4 contiguous pages. */
1974 RTHCPHYS aHCPhysPaePDs[4];
1975 /** The PAE PDP - HC Ptr. */
1976 R3R0PTRTYPE(PX86PDPT) pHCPaePDPT;
1977 /** The Physical Address (HC) of the PAE PDPT. */
1978 RTHCPHYS HCPhysPaePDPT;
1979 /** The PAE PDPT - GC Ptr. */
1980 GCPTRTYPE(PX86PDPT) pGCPaePDPT;
1981 /** @} */
1982
1983 /** @name AMD64 Shadow Paging
1984 * Extends PAE Paging.
1985 * @{ */
1986#if GC_ARCH_BITS == 32 && HC_ARCH_BITS == 64
1987 RTGCPTR alignment5; /**< structure size alignment. */
1988#endif
1989 /** The Page Map Level 4 table - HC Ptr. */
1990 R3R0PTRTYPE(PX86PML4) pHCPaePML4;
1991 /** The Physical Address (HC) of the Page Map Level 4 table. */
1992 RTHCPHYS HCPhysPaePML4;
1993 /** @}*/
1994
1995 /** @name Function pointers for Shadow paging.
1996 * @{
1997 */
1998 DECLR3CALLBACKMEMBER(int, pfnR3ShwRelocate,(PVM pVM, RTGCUINTPTR offDelta));
1999 DECLR3CALLBACKMEMBER(int, pfnR3ShwExit,(PVM pVM));
2000 DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2001 DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2002 DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPDEByIndex,(PVM pVM, uint32_t iPD, PX86PDEPAE pPde));
2003 DECLR3CALLBACKMEMBER(int, pfnR3ShwSetPDEByIndex,(PVM pVM, uint32_t iPD, X86PDEPAE Pde));
2004 DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPDEByIndex,(PVM pVM, uint32_t iPD, uint64_t fFlags, uint64_t fMask));
2005
2006 DECLGCCALLBACKMEMBER(int, pfnGCShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2007 DECLGCCALLBACKMEMBER(int, pfnGCShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2008 DECLGCCALLBACKMEMBER(int, pfnGCShwGetPDEByIndex,(PVM pVM, uint32_t iPD, PX86PDEPAE pPde));
2009 DECLGCCALLBACKMEMBER(int, pfnGCShwSetPDEByIndex,(PVM pVM, uint32_t iPD, X86PDEPAE Pde));
2010 DECLGCCALLBACKMEMBER(int, pfnGCShwModifyPDEByIndex,(PVM pVM, uint32_t iPD, uint64_t fFlags, uint64_t fMask));
2011#if GC_ARCH_BITS == 32 && HC_ARCH_BITS == 64
2012 RTGCPTR alignment0; /**< structure size alignment. */
2013#endif
2014
2015 DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2016 DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2017 DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPDEByIndex,(PVM pVM, uint32_t iPD, PX86PDEPAE pPde));
2018 DECLR0CALLBACKMEMBER(int, pfnR0ShwSetPDEByIndex,(PVM pVM, uint32_t iPD, X86PDEPAE Pde));
2019 DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPDEByIndex,(PVM pVM, uint32_t iPD, uint64_t fFlags, uint64_t fMask));
2020
2021 /** @} */
2022
2023 /** @name Function pointers for Guest paging.
2024 * @{
2025 */
2026 DECLR3CALLBACKMEMBER(int, pfnR3GstRelocate,(PVM pVM, RTGCUINTPTR offDelta));
2027 DECLR3CALLBACKMEMBER(int, pfnR3GstExit,(PVM pVM));
2028 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2029 DECLR3CALLBACKMEMBER(int, pfnR3GstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2030 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde));
2031 DECLR3CALLBACKMEMBER(int, pfnR3GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2032 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmonitorCR3,(PVM pVM));
2033 DECLR3CALLBACKMEMBER(int, pfnR3GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2034 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmapCR3,(PVM pVM));
2035 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstWriteHandlerCR3;
2036 R3PTRTYPE(const char *) pszR3GstWriteHandlerCR3;
2037 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstPAEWriteHandlerCR3;
2038 R3PTRTYPE(const char *) pszR3GstPAEWriteHandlerCR3;
2039
2040 DECLGCCALLBACKMEMBER(int, pfnGCGstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2041 DECLGCCALLBACKMEMBER(int, pfnGCGstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2042 DECLGCCALLBACKMEMBER(int, pfnGCGstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde));
2043 DECLGCCALLBACKMEMBER(int, pfnGCGstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2044 DECLGCCALLBACKMEMBER(int, pfnGCGstUnmonitorCR3,(PVM pVM));
2045 DECLGCCALLBACKMEMBER(int, pfnGCGstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2046 DECLGCCALLBACKMEMBER(int, pfnGCGstUnmapCR3,(PVM pVM));
2047 GCPTRTYPE(PFNPGMGCPHYSHANDLER) pfnGCGstWriteHandlerCR3;
2048 GCPTRTYPE(PFNPGMGCPHYSHANDLER) pfnGCGstPAEWriteHandlerCR3;
2049#if GC_ARCH_BITS == 32 && HC_ARCH_BITS == 64
2050 RTGCPTR alignment3; /**< structure size alignment. */
2051#endif
2052
2053 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPage,(PVM pVM, RTGCUINTPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2054 DECLR0CALLBACKMEMBER(int, pfnR0GstModifyPage,(PVM pVM, RTGCUINTPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2055 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPDE,(PVM pVM, RTGCUINTPTR GCPtr, PX86PDEPAE pPde));
2056 DECLR0CALLBACKMEMBER(int, pfnR0GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2057 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmonitorCR3,(PVM pVM));
2058 DECLR0CALLBACKMEMBER(int, pfnR0GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2059 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmapCR3,(PVM pVM));
2060 R0PTRTYPE(PFNPGMGCPHYSHANDLER) pfnR0GstWriteHandlerCR3;
2061 R0PTRTYPE(PFNPGMGCPHYSHANDLER) pfnR0GstPAEWriteHandlerCR3;
2062 /** @} */
2063
2064 /** @name Function pointers for Both Shadow and Guest paging.
2065 * @{
2066 */
2067 DECLR3CALLBACKMEMBER(int, pfnR3BthRelocate,(PVM pVM, RTGCUINTPTR offDelta));
2068 DECLR3CALLBACKMEMBER(int, pfnR3BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2069 DECLR3CALLBACKMEMBER(int, pfnR3BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2070 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2071 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError));
2072 DECLR3CALLBACKMEMBER(int, pfnR3BthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage));
2073 DECLR3CALLBACKMEMBER(int, pfnR3BthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError));
2074 DECLR3CALLBACKMEMBER(unsigned, pfnR3BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb));
2075
2076 DECLR0CALLBACKMEMBER(int, pfnR0BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2077 DECLR0CALLBACKMEMBER(int, pfnR0BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2078 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2079 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError));
2080 DECLR0CALLBACKMEMBER(int, pfnR0BthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage));
2081 DECLR0CALLBACKMEMBER(int, pfnR0BthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError));
2082 DECLR0CALLBACKMEMBER(unsigned, pfnR0BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb));
2083
2084 DECLGCCALLBACKMEMBER(int, pfnGCBthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2085 DECLGCCALLBACKMEMBER(int, pfnGCBthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2086 DECLGCCALLBACKMEMBER(int, pfnGCBthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2087 DECLGCCALLBACKMEMBER(int, pfnGCBthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCUINTPTR GCPtrPage, unsigned cPages, unsigned uError));
2088 DECLGCCALLBACKMEMBER(int, pfnGCBthPrefetchPage,(PVM pVM, RTGCUINTPTR GCPtrPage));
2089 DECLGCCALLBACKMEMBER(int, pfnGCBthVerifyAccessSyncPage,(PVM pVM, RTGCUINTPTR GCPtrPage, unsigned fFlags, unsigned uError));
2090 DECLGCCALLBACKMEMBER(unsigned, pfnGCBthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCUINTPTR GCPtr, RTGCUINTPTR cb));
2091#if GC_ARCH_BITS == 32 && HC_ARCH_BITS == 64
2092 RTGCPTR alignment2; /**< structure size alignment. */
2093#endif
2094 /** @} */
2095
2096 /** Pointer to SHW+GST mode data (function pointers).
2097 * The index into this table is made up from */
2098 R3PTRTYPE(PPGMMODEDATA) paModeData;
2099
2100 /** Pointer to the list of RAM ranges (Phys GC -> Phys HC conversion) - for R3.
2101 * This is sorted by physical address and contains no overlapping ranges. */
2102 R3PTRTYPE(PPGMRAMRANGE) pRamRangesR3;
2103 /** R0 pointer corresponding to PGM::pRamRangesR3. */
2104 R0PTRTYPE(PPGMRAMRANGE) pRamRangesR0;
2105 /** GC pointer corresponding to PGM::pRamRangesR3. */
2106 GCPTRTYPE(PPGMRAMRANGE) pRamRangesGC;
2107 /** The configured RAM size. */
2108 RTUINT cbRamSize;
2109
2110 /** Pointer to the list of ROM ranges - for R3.
2111 * This is sorted by physical address and contains no overlapping ranges. */
2112 R3PTRTYPE(PPGMROMRANGE) pRomRangesR3;
2113 /** R0 pointer corresponding to PGM::pRomRangesR3. */
2114 R0PTRTYPE(PPGMRAMRANGE) pRomRangesR0;
2115 /** GC pointer corresponding to PGM::pRomRangesR3. */
2116 GCPTRTYPE(PPGMRAMRANGE) pRomRangesGC;
2117 /** Alignment padding. */
2118 RTGCPTR GCPtrPadding2;
2119
2120 /** Pointer to the list of MMIO2 ranges - for R3.
2121 * Registration order. */
2122 R3PTRTYPE(PPGMMMIO2RANGE) pMmio2RangesR3;
2123
2124 /** PGM offset based trees - HC Ptr. */
2125 R3R0PTRTYPE(PPGMTREES) pTreesHC;
2126 /** PGM offset based trees - GC Ptr. */
2127 GCPTRTYPE(PPGMTREES) pTreesGC;
2128
2129 /** Linked list of GC mappings - for GC.
2130 * The list is sorted ascending on address.
2131 */
2132 GCPTRTYPE(PPGMMAPPING) pMappingsGC;
2133 /** Linked list of GC mappings - for HC.
2134 * The list is sorted ascending on address.
2135 */
2136 R3PTRTYPE(PPGMMAPPING) pMappingsR3;
2137 /** Linked list of GC mappings - for R0.
2138 * The list is sorted ascending on address.
2139 */
2140 R0PTRTYPE(PPGMMAPPING) pMappingsR0;
2141
2142 /** If set no conflict checks are required. (boolean) */
2143 bool fMappingsFixed;
2144 /** If set, then no mappings are put into the shadow page table. (boolean) */
2145 bool fDisableMappings;
2146 /** Size of fixed mapping */
2147 uint32_t cbMappingFixed;
2148 /** Base address (GC) of fixed mapping */
2149 RTGCPTR GCPtrMappingFixed;
2150#if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
2151 uint32_t u32Padding0; /**< alignment padding. */
2152#endif
2153
2154
2155 /** @name Intermediate Context
2156 * @{ */
2157 /** Pointer to the intermediate page directory - Normal. */
2158 R3PTRTYPE(PX86PD) pInterPD;
2159 /** Pointer to the intermedate page tables - Normal.
2160 * There are two page tables, one for the identity mapping and one for
2161 * the host context mapping (of the core code). */
2162 R3PTRTYPE(PX86PT) apInterPTs[2];
2163 /** Pointer to the intermedate page tables - PAE. */
2164 R3PTRTYPE(PX86PTPAE) apInterPaePTs[2];
2165 /** Pointer to the intermedate page directory - PAE. */
2166 R3PTRTYPE(PX86PDPAE) apInterPaePDs[4];
2167 /** Pointer to the intermedate page directory - PAE. */
2168 R3PTRTYPE(PX86PDPT) pInterPaePDPT;
2169 /** Pointer to the intermedate page-map level 4 - AMD64. */
2170 R3PTRTYPE(PX86PML4) pInterPaePML4;
2171 /** Pointer to the intermedate page directory - AMD64. */
2172 R3PTRTYPE(PX86PDPT) pInterPaePDPT64;
2173 /** The Physical Address (HC) of the intermediate Page Directory - Normal. */
2174 RTHCPHYS HCPhysInterPD;
2175 /** The Physical Address (HC) of the intermediate Page Directory Pointer Table - PAE. */
2176 RTHCPHYS HCPhysInterPaePDPT;
2177 /** The Physical Address (HC) of the intermediate Page Map Level 4 table - AMD64. */
2178 RTHCPHYS HCPhysInterPaePML4;
2179 /** @} */
2180
2181 /** Base address of the dynamic page mapping area.
2182 * The array is MM_HYPER_DYNAMIC_SIZE bytes big.
2183 */
2184 GCPTRTYPE(uint8_t *) pbDynPageMapBaseGC;
2185 /** The index of the last entry used in the dynamic page mapping area. */
2186 RTUINT iDynPageMapLast;
2187 /** Cache containing the last entries in the dynamic page mapping area.
2188 * The cache size is covering half of the mapping area. */
2189 RTHCPHYS aHCPhysDynPageMapCache[MM_HYPER_DYNAMIC_SIZE >> (PAGE_SHIFT + 1)];
2190
2191 /** A20 gate mask.
2192 * Our current approach to A20 emulation is to let REM do it and don't bother
2193 * anywhere else. The interesting Guests will be operating with it enabled anyway.
2194 * But whould need arrise, we'll subject physical addresses to this mask. */
2195 RTGCPHYS GCPhysA20Mask;
2196 /** A20 gate state - boolean! */
2197 RTUINT fA20Enabled;
2198
2199 /** What needs syncing (PGM_SYNC_*).
2200 * This is used to queue operations for PGMSyncCR3, PGMInvalidatePage,
2201 * PGMFlushTLB, and PGMR3Load. */
2202 RTUINT fSyncFlags;
2203
2204 /** PGM critical section.
2205 * This protects the physical & virtual access handlers, ram ranges,
2206 * and the page flag updating (some of it anyway).
2207 */
2208 PDMCRITSECT CritSect;
2209
2210 /** Shadow Page Pool - HC Ptr. */
2211 R3R0PTRTYPE(PPGMPOOL) pPoolHC;
2212 /** Shadow Page Pool - GC Ptr. */
2213 GCPTRTYPE(PPGMPOOL) pPoolGC;
2214
2215 /** We're not in a state which permits writes to guest memory.
2216 * (Only used in strict builds.) */
2217 bool fNoMorePhysWrites;
2218
2219 /** Flush the cache on the next access. */
2220 bool fPhysCacheFlushPending;
2221/** @todo r=bird: Fix member names!*/
2222 /** PGMPhysRead cache */
2223 PGMPHYSCACHE pgmphysreadcache;
2224 /** PGMPhysWrite cache */
2225 PGMPHYSCACHE pgmphyswritecache;
2226
2227 /**
2228 * Data associated with managing the ring-3 mappings of the allocation chunks.
2229 */
2230 struct
2231 {
2232 /** The chunk tree, ordered by chunk id. */
2233 R3R0PTRTYPE(PAVLU32NODECORE) pTree;
2234 /** The chunk mapping TLB. */
2235 PGMCHUNKR3MAPTLB Tlb;
2236 /** The number of mapped chunks. */
2237 uint32_t c;
2238 /** The maximum number of mapped chunks.
2239 * @cfgm PGM/MaxRing3Chunks */
2240 uint32_t cMax;
2241 /** The chunk age tree, ordered by ageing sequence number. */
2242 R3PTRTYPE(PAVLLU32NODECORE) pAgeTree;
2243 /** The current time. */
2244 uint32_t iNow;
2245 /** Number of pgmR3PhysChunkFindUnmapCandidate calls left to the next ageing. */
2246 uint32_t AgeingCountdown;
2247 } ChunkR3Map;
2248
2249 /**
2250 * The page mapping TLB for ring-3 and (for the time being) ring-0.
2251 */
2252 PGMPAGER3MAPTLB PhysTlbHC;
2253
2254 /** @name The zero page.
2255 * @{ */
2256 /** The host physical address of the zero page. */
2257 RTHCPHYS HCPhysZeroPg;
2258 /** The ring-3 mapping of the zero page. */
2259 RTR3PTR pvZeroPgR3;
2260 /** The ring-0 mapping of the zero page. */
2261 RTR0PTR pvZeroPgR0;
2262 /** The GC mapping of the zero page. */
2263 RTGCPTR pvZeroPgGC;
2264#if GC_ARCH_BITS != 32
2265 uint32_t u32ZeroAlignment; /**< Alignment padding. */
2266#endif
2267 /** @}*/
2268
2269 /** The number of handy pages. */
2270 uint32_t cHandyPages;
2271 /**
2272 * Array of handy pages.
2273 *
2274 * This array is used in a two way communication between pgmPhysAllocPage
2275 * and GMMR0AllocateHandyPages, with PGMR3PhysAllocateHandyPages serving as
2276 * an intermediary.
2277 *
2278 * The size of this array is important, see pgmPhysEnsureHandyPage for details.
2279 * (The current size of 32 pages, means 128 KB of handy memory.)
2280 */
2281 GMMPAGEDESC aHandyPages[32];
2282
2283 /** @name Release Statistics
2284 * @{ */
2285 uint32_t cAllPages; /**< The total number of pages. (Should be Private + Shared + Zero.) */
2286 uint32_t cPrivatePages; /**< The number of private pages. */
2287 uint32_t cSharedPages; /**< The number of shared pages. */
2288 uint32_t cZeroPages; /**< The number of zero backed pages. */
2289 /** The number of times the guest has switched mode since last reset or statistics reset. */
2290 STAMCOUNTER cGuestModeChanges;
2291 /** @} */
2292
2293#ifdef VBOX_WITH_STATISTICS
2294 /** GC: Which statistic this \#PF should be attributed to. */
2295 GCPTRTYPE(PSTAMPROFILE) pStatTrap0eAttributionGC;
2296 RTGCPTR padding0;
2297 /** HC: Which statistic this \#PF should be attributed to. */
2298 R3R0PTRTYPE(PSTAMPROFILE) pStatTrap0eAttributionHC;
2299 RTHCPTR padding1;
2300 STAMPROFILE StatGCTrap0e; /**< GC: PGMGCTrap0eHandler() profiling. */
2301 STAMPROFILE StatTrap0eCSAM; /**< Profiling of the Trap0eHandler body when the cause is CSAM. */
2302 STAMPROFILE StatTrap0eDirtyAndAccessedBits; /**< Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation. */
2303 STAMPROFILE StatTrap0eGuestTrap; /**< Profiling of the Trap0eHandler body when the cause is a guest trap. */
2304 STAMPROFILE StatTrap0eHndPhys; /**< Profiling of the Trap0eHandler body when the cause is a physical handler. */
2305 STAMPROFILE StatTrap0eHndVirt; /**< Profiling of the Trap0eHandler body when the cause is a virtual handler. */
2306 STAMPROFILE StatTrap0eHndUnhandled; /**< Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page. */
2307 STAMPROFILE StatTrap0eMisc; /**< Profiling of the Trap0eHandler body when the cause is not known. */
2308 STAMPROFILE StatTrap0eOutOfSync; /**< Profiling of the Trap0eHandler body when the cause is an out-of-sync page. */
2309 STAMPROFILE StatTrap0eOutOfSyncHndPhys; /**< Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page. */
2310 STAMPROFILE StatTrap0eOutOfSyncHndVirt; /**< Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page. */
2311 STAMPROFILE StatTrap0eOutOfSyncObsHnd; /**< Profiling of the Trap0eHandler body when the cause is an obsolete handler page. */
2312 STAMPROFILE StatTrap0eSyncPT; /**< Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT. */
2313
2314 STAMCOUNTER StatTrap0eMapHandler; /**< Number of traps due to access handlers in mappings. */
2315 STAMCOUNTER StatGCTrap0eConflicts; /**< GC: The number of times \#PF was caused by an undetected conflict. */
2316
2317 STAMCOUNTER StatGCTrap0eUSNotPresentRead;
2318 STAMCOUNTER StatGCTrap0eUSNotPresentWrite;
2319 STAMCOUNTER StatGCTrap0eUSWrite;
2320 STAMCOUNTER StatGCTrap0eUSReserved;
2321 STAMCOUNTER StatGCTrap0eUSNXE;
2322 STAMCOUNTER StatGCTrap0eUSRead;
2323
2324 STAMCOUNTER StatGCTrap0eSVNotPresentRead;
2325 STAMCOUNTER StatGCTrap0eSVNotPresentWrite;
2326 STAMCOUNTER StatGCTrap0eSVWrite;
2327 STAMCOUNTER StatGCTrap0eSVReserved;
2328 STAMCOUNTER StatGCTrap0eSNXE;
2329
2330 STAMCOUNTER StatTrap0eWPEmulGC;
2331 STAMCOUNTER StatTrap0eWPEmulR3;
2332
2333 STAMCOUNTER StatGCTrap0eUnhandled;
2334 STAMCOUNTER StatGCTrap0eMap;
2335
2336 /** GC: PGMSyncPT() profiling. */
2337 STAMPROFILE StatGCSyncPT;
2338 /** GC: The number of times PGMSyncPT() needed to allocate page tables. */
2339 STAMCOUNTER StatGCSyncPTAlloc;
2340 /** GC: The number of times PGMSyncPT() detected conflicts. */
2341 STAMCOUNTER StatGCSyncPTConflict;
2342 /** GC: The number of times PGMSyncPT() failed. */
2343 STAMCOUNTER StatGCSyncPTFailed;
2344 /** GC: PGMGCInvalidatePage() profiling. */
2345 STAMPROFILE StatGCInvalidatePage;
2346 /** GC: The number of times PGMGCInvalidatePage() was called for a 4KB page. */
2347 STAMCOUNTER StatGCInvalidatePage4KBPages;
2348 /** GC: The number of times PGMGCInvalidatePage() was called for a 4MB page. */
2349 STAMCOUNTER StatGCInvalidatePage4MBPages;
2350 /** GC: The number of times PGMGCInvalidatePage() skipped a 4MB page. */
2351 STAMCOUNTER StatGCInvalidatePage4MBPagesSkip;
2352 /** GC: The number of times PGMGCInvalidatePage() was called for a not accessed page directory. */
2353 STAMCOUNTER StatGCInvalidatePagePDNAs;
2354 /** GC: The number of times PGMGCInvalidatePage() was called for a not present page directory. */
2355 STAMCOUNTER StatGCInvalidatePagePDNPs;
2356 /** GC: The number of times PGMGCInvalidatePage() was called for a page directory containing mappings (no conflict). */
2357 STAMCOUNTER StatGCInvalidatePagePDMappings;
2358 /** GC: The number of times PGMGCInvalidatePage() was called for an out of sync page directory. */
2359 STAMCOUNTER StatGCInvalidatePagePDOutOfSync;
2360 /** HC: The number of times PGMGCInvalidatePage() was skipped due to not present shw or pending pending SyncCR3. */
2361 STAMCOUNTER StatGCInvalidatePageSkipped;
2362 /** GC: The number of times user page is out of sync was detected in GC. */
2363 STAMCOUNTER StatGCPageOutOfSyncUser;
2364 /** GC: The number of times supervisor page is out of sync was detected in GC. */
2365 STAMCOUNTER StatGCPageOutOfSyncSupervisor;
2366 /** GC: The number of dynamic page mapping cache hits */
2367 STAMCOUNTER StatDynMapCacheMisses;
2368 /** GC: The number of dynamic page mapping cache misses */
2369 STAMCOUNTER StatDynMapCacheHits;
2370 /** GC: The number of times pgmGCGuestPDWriteHandler() was successfully called. */
2371 STAMCOUNTER StatGCGuestCR3WriteHandled;
2372 /** GC: The number of times pgmGCGuestPDWriteHandler() was called and we had to fall back to the recompiler. */
2373 STAMCOUNTER StatGCGuestCR3WriteUnhandled;
2374 /** GC: The number of times pgmGCGuestPDWriteHandler() was called and a conflict was detected. */
2375 STAMCOUNTER StatGCGuestCR3WriteConflict;
2376 /** GC: Number of out-of-sync handled pages. */
2377 STAMCOUNTER StatHandlersOutOfSync;
2378 /** GC: Number of traps due to physical access handlers. */
2379 STAMCOUNTER StatHandlersPhysical;
2380 /** GC: Number of traps due to virtual access handlers. */
2381 STAMCOUNTER StatHandlersVirtual;
2382 /** GC: Number of traps due to virtual access handlers found by physical address. */
2383 STAMCOUNTER StatHandlersVirtualByPhys;
2384 /** GC: Number of traps due to virtual access handlers found by virtual address (without proper physical flags). */
2385 STAMCOUNTER StatHandlersVirtualUnmarked;
2386 /** GC: Number of traps due to access outside range of monitored page(s). */
2387 STAMCOUNTER StatHandlersUnhandled;
2388 /** GC: Number of traps due to access to invalid physical memory. */
2389 STAMCOUNTER StatHandlersInvalid;
2390
2391 /** GC: The number of times pgmGCGuestROMWriteHandler() was successfully called. */
2392 STAMCOUNTER StatGCGuestROMWriteHandled;
2393 /** GC: The number of times pgmGCGuestROMWriteHandler() was called and we had to fall back to the recompiler */
2394 STAMCOUNTER StatGCGuestROMWriteUnhandled;
2395
2396 /** HC: PGMR3InvalidatePage() profiling. */
2397 STAMPROFILE StatHCInvalidatePage;
2398 /** HC: The number of times PGMR3InvalidatePage() was called for a 4KB page. */
2399 STAMCOUNTER StatHCInvalidatePage4KBPages;
2400 /** HC: The number of times PGMR3InvalidatePage() was called for a 4MB page. */
2401 STAMCOUNTER StatHCInvalidatePage4MBPages;
2402 /** HC: The number of times PGMR3InvalidatePage() skipped a 4MB page. */
2403 STAMCOUNTER StatHCInvalidatePage4MBPagesSkip;
2404 /** HC: The number of times PGMR3InvalidatePage() was called for a not accessed page directory. */
2405 STAMCOUNTER StatHCInvalidatePagePDNAs;
2406 /** HC: The number of times PGMR3InvalidatePage() was called for a not present page directory. */
2407 STAMCOUNTER StatHCInvalidatePagePDNPs;
2408 /** HC: The number of times PGMR3InvalidatePage() was called for a page directory containing mappings (no conflict). */
2409 STAMCOUNTER StatHCInvalidatePagePDMappings;
2410 /** HC: The number of times PGMGCInvalidatePage() was called for an out of sync page directory. */
2411 STAMCOUNTER StatHCInvalidatePagePDOutOfSync;
2412 /** HC: The number of times PGMR3InvalidatePage() was skipped due to not present shw or pending pending SyncCR3. */
2413 STAMCOUNTER StatHCInvalidatePageSkipped;
2414 /** HC: PGMR3SyncPT() profiling. */
2415 STAMPROFILE StatHCSyncPT;
2416 /** HC: pgmr3SyncPTResolveConflict() profiling (includes the entire relocation). */
2417 STAMPROFILE StatHCResolveConflict;
2418 /** HC: Number of times PGMR3CheckMappingConflicts() detected a conflict. */
2419 STAMCOUNTER StatHCDetectedConflicts;
2420 /** HC: The total number of times pgmHCGuestPDWriteHandler() was called. */
2421 STAMCOUNTER StatHCGuestPDWrite;
2422 /** HC: The number of times pgmHCGuestPDWriteHandler() detected a conflict */
2423 STAMCOUNTER StatHCGuestPDWriteConflict;
2424
2425 /** HC: The number of pages marked not present for accessed bit emulation. */
2426 STAMCOUNTER StatHCAccessedPage;
2427 /** HC: The number of pages marked read-only for dirty bit tracking. */
2428 STAMCOUNTER StatHCDirtyPage;
2429 /** HC: The number of pages marked read-only for dirty bit tracking. */
2430 STAMCOUNTER StatHCDirtyPageBig;
2431 /** HC: The number of traps generated for dirty bit tracking. */
2432 STAMCOUNTER StatHCDirtyPageTrap;
2433 /** HC: The number of pages already dirty or readonly. */
2434 STAMCOUNTER StatHCDirtyPageSkipped;
2435
2436 /** GC: The number of pages marked not present for accessed bit emulation. */
2437 STAMCOUNTER StatGCAccessedPage;
2438 /** GC: The number of pages marked read-only for dirty bit tracking. */
2439 STAMCOUNTER StatGCDirtyPage;
2440 /** GC: The number of pages marked read-only for dirty bit tracking. */
2441 STAMCOUNTER StatGCDirtyPageBig;
2442 /** GC: The number of traps generated for dirty bit tracking. */
2443 STAMCOUNTER StatGCDirtyPageTrap;
2444 /** GC: The number of pages already dirty or readonly. */
2445 STAMCOUNTER StatGCDirtyPageSkipped;
2446 /** GC: The number of pages marked dirty because of write accesses. */
2447 STAMCOUNTER StatGCDirtiedPage;
2448 /** GC: The number of pages already marked dirty because of write accesses. */
2449 STAMCOUNTER StatGCPageAlreadyDirty;
2450 /** GC: The number of real pages faults during dirty bit tracking. */
2451 STAMCOUNTER StatGCDirtyTrackRealPF;
2452
2453 /** GC: Profiling of the PGMTrackDirtyBit() body */
2454 STAMPROFILE StatGCDirtyBitTracking;
2455 /** HC: Profiling of the PGMTrackDirtyBit() body */
2456 STAMPROFILE StatHCDirtyBitTracking;
2457
2458 /** GC: Profiling of the PGMGstModifyPage() body */
2459 STAMPROFILE StatGCGstModifyPage;
2460 /** HC: Profiling of the PGMGstModifyPage() body */
2461 STAMPROFILE StatHCGstModifyPage;
2462
2463 /** GC: The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit. */
2464 STAMCOUNTER StatGCSyncPagePDNAs;
2465 /** GC: The number of time we've encountered an out-of-sync PD in SyncPage. */
2466 STAMCOUNTER StatGCSyncPagePDOutOfSync;
2467 /** HC: The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit. */
2468 STAMCOUNTER StatHCSyncPagePDNAs;
2469 /** HC: The number of time we've encountered an out-of-sync PD in SyncPage. */
2470 STAMCOUNTER StatHCSyncPagePDOutOfSync;
2471
2472 STAMCOUNTER StatSynPT4kGC;
2473 STAMCOUNTER StatSynPT4kHC;
2474 STAMCOUNTER StatSynPT4MGC;
2475 STAMCOUNTER StatSynPT4MHC;
2476
2477 /** Profiling of the PGMFlushTLB() body. */
2478 STAMPROFILE StatFlushTLB;
2479 /** The number of times PGMFlushTLB was called with a new CR3, non-global. (switch) */
2480 STAMCOUNTER StatFlushTLBNewCR3;
2481 /** The number of times PGMFlushTLB was called with a new CR3, global. (switch) */
2482 STAMCOUNTER StatFlushTLBNewCR3Global;
2483 /** The number of times PGMFlushTLB was called with the same CR3, non-global. (flush) */
2484 STAMCOUNTER StatFlushTLBSameCR3;
2485 /** The number of times PGMFlushTLB was called with the same CR3, global. (flush) */
2486 STAMCOUNTER StatFlushTLBSameCR3Global;
2487
2488 STAMPROFILE StatGCSyncCR3; /**< GC: PGMSyncCR3() profiling. */
2489 STAMPROFILE StatGCSyncCR3Handlers; /**< GC: Profiling of the PGMSyncCR3() update handler section. */
2490 STAMPROFILE StatGCSyncCR3HandlerVirtualReset; /**< GC: Profiling of the virtual handler resets. */
2491 STAMPROFILE StatGCSyncCR3HandlerVirtualUpdate; /**< GC: Profiling of the virtual handler updates. */
2492 STAMCOUNTER StatGCSyncCR3Global; /**< GC: The number of global CR3 syncs. */
2493 STAMCOUNTER StatGCSyncCR3NotGlobal; /**< GC: The number of non-global CR3 syncs. */
2494 STAMCOUNTER StatGCSyncCR3DstFreed; /**< GC: The number of times we've had to free a shadow entry. */
2495 STAMCOUNTER StatGCSyncCR3DstFreedSrcNP; /**< GC: The number of times we've had to free a shadow entry for which the source entry was not present. */
2496 STAMCOUNTER StatGCSyncCR3DstNotPresent; /**< GC: The number of times we've encountered a not present shadow entry for a present guest entry. */
2497 STAMCOUNTER StatGCSyncCR3DstSkippedGlobalPD; /**< GC: The number of times a global page directory wasn't flushed. */
2498 STAMCOUNTER StatGCSyncCR3DstSkippedGlobalPT; /**< GC: The number of times a page table with only global entries wasn't flushed. */
2499 STAMCOUNTER StatGCSyncCR3DstCacheHit; /**< GC: The number of times we got some kind of cache hit on a page table. */
2500
2501 STAMPROFILE StatHCSyncCR3; /**< HC: PGMSyncCR3() profiling. */
2502 STAMPROFILE StatHCSyncCR3Handlers; /**< HC: Profiling of the PGMSyncCR3() update handler section. */
2503 STAMPROFILE StatHCSyncCR3HandlerVirtualReset; /**< HC: Profiling of the virtual handler resets. */
2504 STAMPROFILE StatHCSyncCR3HandlerVirtualUpdate; /**< HC: Profiling of the virtual handler updates. */
2505 STAMCOUNTER StatHCSyncCR3Global; /**< HC: The number of global CR3 syncs. */
2506 STAMCOUNTER StatHCSyncCR3NotGlobal; /**< HC: The number of non-global CR3 syncs. */
2507 STAMCOUNTER StatHCSyncCR3DstFreed; /**< HC: The number of times we've had to free a shadow entry. */
2508 STAMCOUNTER StatHCSyncCR3DstFreedSrcNP; /**< HC: The number of times we've had to free a shadow entry for which the source entry was not present. */
2509 STAMCOUNTER StatHCSyncCR3DstNotPresent; /**< HC: The number of times we've encountered a not present shadow entry for a present guest entry. */
2510 STAMCOUNTER StatHCSyncCR3DstSkippedGlobalPD; /**< HC: The number of times a global page directory wasn't flushed. */
2511 STAMCOUNTER StatHCSyncCR3DstSkippedGlobalPT; /**< HC: The number of times a page table with only global entries wasn't flushed. */
2512 STAMCOUNTER StatHCSyncCR3DstCacheHit; /**< HC: The number of times we got some kind of cache hit on a page table. */
2513
2514 /** GC: Profiling of pgmHandlerVirtualFindByPhysAddr. */
2515 STAMPROFILE StatVirtHandleSearchByPhysGC;
2516 /** HC: Profiling of pgmHandlerVirtualFindByPhysAddr. */
2517 STAMPROFILE StatVirtHandleSearchByPhysHC;
2518 /** HC: The number of times PGMR3HandlerPhysicalReset is called. */
2519 STAMCOUNTER StatHandlePhysicalReset;
2520
2521 STAMPROFILE StatCheckPageFault;
2522 STAMPROFILE StatLazySyncPT;
2523 STAMPROFILE StatMapping;
2524 STAMPROFILE StatOutOfSync;
2525 STAMPROFILE StatHandlers;
2526 STAMPROFILE StatEIPHandlers;
2527 STAMPROFILE StatHCPrefetch;
2528
2529# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2530 /** The number of first time shadowings. */
2531 STAMCOUNTER StatTrackVirgin;
2532 /** The number of times switching to cRef2, i.e. the page is being shadowed by two PTs. */
2533 STAMCOUNTER StatTrackAliased;
2534 /** The number of times we're tracking using cRef2. */
2535 STAMCOUNTER StatTrackAliasedMany;
2536 /** The number of times we're hitting pages which has overflowed cRef2. */
2537 STAMCOUNTER StatTrackAliasedLots;
2538 /** The number of times the extent list grows to long. */
2539 STAMCOUNTER StatTrackOverflows;
2540 /** Profiling of SyncPageWorkerTrackDeref (expensive). */
2541 STAMPROFILE StatTrackDeref;
2542# endif
2543
2544 /** Ring-3/0 page mapper TLB hits. */
2545 STAMCOUNTER StatPageHCMapTlbHits;
2546 /** Ring-3/0 page mapper TLB misses. */
2547 STAMCOUNTER StatPageHCMapTlbMisses;
2548 /** Ring-3/0 chunk mapper TLB hits. */
2549 STAMCOUNTER StatChunkR3MapTlbHits;
2550 /** Ring-3/0 chunk mapper TLB misses. */
2551 STAMCOUNTER StatChunkR3MapTlbMisses;
2552 /** Times a shared page has been replaced by a private one. */
2553 STAMCOUNTER StatPageReplaceShared;
2554 /** Times the zero page has been replaced by a private one. */
2555 STAMCOUNTER StatPageReplaceZero;
2556 /** The number of times we've executed GMMR3AllocateHandyPages. */
2557 STAMCOUNTER StatPageHandyAllocs;
2558
2559 /** Allocated mbs of guest ram */
2560 STAMCOUNTER StatDynRamTotal;
2561 /** Nr of pgmr3PhysGrowRange calls. */
2562 STAMCOUNTER StatDynRamGrow;
2563
2564 STAMCOUNTER StatGCTrap0ePD[X86_PG_ENTRIES];
2565 STAMCOUNTER StatGCSyncPtPD[X86_PG_ENTRIES];
2566 STAMCOUNTER StatGCSyncPagePD[X86_PG_ENTRIES];
2567#endif
2568} PGM, *PPGM;
2569
2570
2571/** @name PGM::fSyncFlags Flags
2572 * @{
2573 */
2574/** Updates the virtual access handler state bit in PGMPAGE. */
2575#define PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL RT_BIT(0)
2576/** Always sync CR3. */
2577#define PGM_SYNC_ALWAYS RT_BIT(1)
2578/** Check monitoring on next CR3 (re)load and invalidate page. */
2579#define PGM_SYNC_MONITOR_CR3 RT_BIT(2)
2580/** Clear the page pool (a light weight flush). */
2581#define PGM_SYNC_CLEAR_PGM_POOL RT_BIT(8)
2582/** @} */
2583
2584
2585__BEGIN_DECLS
2586
2587int pgmLock(PVM pVM);
2588void pgmUnlock(PVM pVM);
2589
2590PGMGCDECL(int) pgmGCGuestPDWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, void *pvFault, RTGCPHYS GCPhysFault, void *pvUser);
2591PGMDECL(int) pgmPhysRomWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, void *pvFault, RTGCPHYS GCPhysFault, void *pvUser);
2592int pgmR3ChangeMode(PVM pVM, PGMMODE enmGuestMode);
2593
2594int pgmR3SyncPTResolveConflict(PVM pVM, PPGMMAPPING pMapping, PX86PD pPDSrc, RTGCPTR GCPtrOldMapping);
2595int pgmR3SyncPTResolveConflictPAE(PVM pVM, PPGMMAPPING pMapping, RTGCPTR GCPtrOldMapping);
2596PPGMMAPPING pgmGetMapping(PVM pVM, RTGCPTR GCPtr);
2597void pgmR3MapRelocate(PVM pVM, PPGMMAPPING pMapping, RTGCPTR GCPtrOldMapping, RTGCPTR GCPtrNewMapping);
2598DECLCALLBACK(void) pgmR3MapInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
2599
2600void pgmR3HandlerPhysicalUpdateAll(PVM pVM);
2601int pgmHandlerVirtualFindByPhysAddr(PVM pVM, RTGCPHYS GCPhys, PPGMVIRTHANDLER *ppVirt, unsigned *piPage);
2602DECLCALLBACK(int) pgmHandlerVirtualResetOne(PAVLROGCPTRNODECORE pNode, void *pvUser);
2603#if defined(VBOX_STRICT) || defined(LOG_ENABLED)
2604void pgmHandlerVirtualDumpPhysPages(PVM pVM);
2605#else
2606# define pgmHandlerVirtualDumpPhysPages(a) do { } while (0)
2607#endif
2608DECLCALLBACK(void) pgmR3InfoHandlers(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
2609
2610
2611void pgmPhysFreePage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys);
2612int pgmPhysPageLoadIntoTlb(PPGM pPGM, RTGCPHYS GCPhys);
2613int pgmPhysPageMakeWritable(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys);
2614int pgmPhysPageMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPPGMPAGEMAP ppMap, void **ppv);
2615#ifdef IN_RING3
2616int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk);
2617int pgmR3PhysRamReset(PVM pVM);
2618int pgmR3PhysRomReset(PVM pVM);
2619#ifndef VBOX_WITH_NEW_PHYS_CODE
2620int pgmr3PhysGrowRange(PVM pVM, RTGCPHYS GCPhys);
2621#endif
2622
2623int pgmR3PoolInit(PVM pVM);
2624void pgmR3PoolRelocate(PVM pVM);
2625void pgmR3PoolReset(PVM pVM);
2626
2627#endif /* IN_RING3 */
2628#ifdef IN_GC
2629void *pgmGCPoolMapPage(PVM pVM, PPGMPOOLPAGE pPage);
2630#endif
2631int pgmPoolAlloc(PVM pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, uint16_t iUser, uint16_t iUserTable, PPPGMPOOLPAGE ppPage);
2632PPGMPOOLPAGE pgmPoolGetPageByHCPhys(PVM pVM, RTHCPHYS HCPhys);
2633void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint16_t iUserTable);
2634void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint16_t iUserTable);
2635int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
2636void pgmPoolFlushAll(PVM pVM);
2637void pgmPoolClearAll(PVM pVM);
2638void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs);
2639void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, uint16_t iPhysExt);
2640int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage);
2641PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt);
2642void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt);
2643void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt);
2644uint16_t pgmPoolTrackPhysExtAddref(PVM pVM, uint16_t u16, uint16_t iShwPT);
2645void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPoolPage, PPGMPAGE pPhysPage);
2646#ifdef PGMPOOL_WITH_MONITORING
2647# ifdef IN_RING3
2648void pgmPoolMonitorChainChanging(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, RTHCPTR pvAddress, PDISCPUSTATE pCpu);
2649# else
2650void pgmPoolMonitorChainChanging(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, RTGCPTR pvAddress, PDISCPUSTATE pCpu);
2651# endif
2652int pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
2653void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
2654void pgmPoolMonitorModifiedClearAll(PVM pVM);
2655int pgmPoolMonitorMonitorCR3(PPGMPOOL pPool, uint16_t idxRoot, RTGCPHYS GCPhysCR3);
2656int pgmPoolMonitorUnmonitorCR3(PPGMPOOL pPool, uint16_t idxRoot);
2657#endif
2658
2659__END_DECLS
2660
2661
2662/**
2663 * Gets the PGMRAMRANGE structure for a guest page.
2664 *
2665 * @returns Pointer to the RAM range on success.
2666 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
2667 *
2668 * @param pPGM PGM handle.
2669 * @param GCPhys The GC physical address.
2670 */
2671DECLINLINE(PPGMRAMRANGE) pgmPhysGetRange(PPGM pPGM, RTGCPHYS GCPhys)
2672{
2673 /*
2674 * Optimize for the first range.
2675 */
2676 PPGMRAMRANGE pRam = CTXALLSUFF(pPGM->pRamRanges);
2677 RTGCPHYS off = GCPhys - pRam->GCPhys;
2678 if (RT_UNLIKELY(off >= pRam->cb))
2679 {
2680 do
2681 {
2682 pRam = CTXALLSUFF(pRam->pNext);
2683 if (RT_UNLIKELY(!pRam))
2684 break;
2685 off = GCPhys - pRam->GCPhys;
2686 } while (off >= pRam->cb);
2687 }
2688 return pRam;
2689}
2690
2691
2692/**
2693 * Gets the PGMPAGE structure for a guest page.
2694 *
2695 * @returns Pointer to the page on success.
2696 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
2697 *
2698 * @param pPGM PGM handle.
2699 * @param GCPhys The GC physical address.
2700 */
2701DECLINLINE(PPGMPAGE) pgmPhysGetPage(PPGM pPGM, RTGCPHYS GCPhys)
2702{
2703 /*
2704 * Optimize for the first range.
2705 */
2706 PPGMRAMRANGE pRam = CTXALLSUFF(pPGM->pRamRanges);
2707 RTGCPHYS off = GCPhys - pRam->GCPhys;
2708 if (RT_UNLIKELY(off >= pRam->cb))
2709 {
2710 do
2711 {
2712 pRam = CTXALLSUFF(pRam->pNext);
2713 if (RT_UNLIKELY(!pRam))
2714 return NULL;
2715 off = GCPhys - pRam->GCPhys;
2716 } while (off >= pRam->cb);
2717 }
2718 return &pRam->aPages[off >> PAGE_SHIFT];
2719}
2720
2721
2722/**
2723 * Gets the PGMPAGE structure for a guest page.
2724 *
2725 * Old Phys code: Will make sure the page is present.
2726 *
2727 * @returns VBox status code.
2728 * @retval VINF_SUCCESS and a valid *ppPage on success.
2729 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if the address isn't valid.
2730 *
2731 * @param pPGM PGM handle.
2732 * @param GCPhys The GC physical address.
2733 * @param ppPage Where to store the page poitner on success.
2734 */
2735DECLINLINE(int) pgmPhysGetPageEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage)
2736{
2737 /*
2738 * Optimize for the first range.
2739 */
2740 PPGMRAMRANGE pRam = CTXALLSUFF(pPGM->pRamRanges);
2741 RTGCPHYS off = GCPhys - pRam->GCPhys;
2742 if (RT_UNLIKELY(off >= pRam->cb))
2743 {
2744 do
2745 {
2746 pRam = CTXALLSUFF(pRam->pNext);
2747 if (RT_UNLIKELY(!pRam))
2748 {
2749 *ppPage = NULL; /* avoid incorrect and very annoying GCC warnings */
2750 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
2751 }
2752 off = GCPhys - pRam->GCPhys;
2753 } while (off >= pRam->cb);
2754 }
2755 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
2756#ifndef VBOX_WITH_NEW_PHYS_CODE
2757
2758 /*
2759 * Make sure it's present.
2760 */
2761 if (RT_UNLIKELY( !PGM_PAGE_GET_HCPHYS(*ppPage)
2762 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)))
2763 {
2764#ifdef IN_RING3
2765 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys);
2766#else
2767 int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
2768#endif
2769 if (VBOX_FAILURE(rc))
2770 {
2771 *ppPage = NULL; /* avoid incorrect and very annoying GCC warnings */
2772 return rc;
2773 }
2774 Assert(rc == VINF_SUCCESS);
2775 }
2776#endif
2777 return VINF_SUCCESS;
2778}
2779
2780
2781
2782
2783/**
2784 * Gets the PGMPAGE structure for a guest page.
2785 *
2786 * Old Phys code: Will make sure the page is present.
2787 *
2788 * @returns VBox status code.
2789 * @retval VINF_SUCCESS and a valid *ppPage on success.
2790 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if the address isn't valid.
2791 *
2792 * @param pPGM PGM handle.
2793 * @param GCPhys The GC physical address.
2794 * @param ppPage Where to store the page poitner on success.
2795 * @param ppRamHint Where to read and store the ram list hint.
2796 * The caller initializes this to NULL before the call.
2797 */
2798DECLINLINE(int) pgmPhysGetPageWithHintEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage, PPGMRAMRANGE *ppRamHint)
2799{
2800 RTGCPHYS off;
2801 PPGMRAMRANGE pRam = *ppRamHint;
2802 if ( !pRam
2803 || RT_UNLIKELY((off = GCPhys - pRam->GCPhys) >= pRam->cb))
2804 {
2805 pRam = CTXALLSUFF(pPGM->pRamRanges);
2806 off = GCPhys - pRam->GCPhys;
2807 if (RT_UNLIKELY(off >= pRam->cb))
2808 {
2809 do
2810 {
2811 pRam = CTXALLSUFF(pRam->pNext);
2812 if (RT_UNLIKELY(!pRam))
2813 {
2814 *ppPage = NULL; /* Kill the incorrect and extremely annoying GCC warnings. */
2815 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
2816 }
2817 off = GCPhys - pRam->GCPhys;
2818 } while (off >= pRam->cb);
2819 }
2820 *ppRamHint = pRam;
2821 }
2822 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
2823#ifndef VBOX_WITH_NEW_PHYS_CODE
2824
2825 /*
2826 * Make sure it's present.
2827 */
2828 if (RT_UNLIKELY( !PGM_PAGE_GET_HCPHYS(*ppPage)
2829 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)))
2830 {
2831#ifdef IN_RING3
2832 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys);
2833#else
2834 int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
2835#endif
2836 if (VBOX_FAILURE(rc))
2837 {
2838 *ppPage = NULL; /* Shut up annoying smart ass. */
2839 return rc;
2840 }
2841 Assert(rc == VINF_SUCCESS);
2842 }
2843#endif
2844 return VINF_SUCCESS;
2845}
2846
2847
2848/**
2849 * Gets the PGMPAGE structure for a guest page together with the PGMRAMRANGE.
2850 *
2851 * @returns Pointer to the page on success.
2852 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
2853 *
2854 * @param pPGM PGM handle.
2855 * @param GCPhys The GC physical address.
2856 * @param ppRam Where to store the pointer to the PGMRAMRANGE.
2857 */
2858DECLINLINE(PPGMPAGE) pgmPhysGetPageAndRange(PPGM pPGM, RTGCPHYS GCPhys, PPGMRAMRANGE *ppRam)
2859{
2860 /*
2861 * Optimize for the first range.
2862 */
2863 PPGMRAMRANGE pRam = CTXALLSUFF(pPGM->pRamRanges);
2864 RTGCPHYS off = GCPhys - pRam->GCPhys;
2865 if (RT_UNLIKELY(off >= pRam->cb))
2866 {
2867 do
2868 {
2869 pRam = CTXALLSUFF(pRam->pNext);
2870 if (RT_UNLIKELY(!pRam))
2871 return NULL;
2872 off = GCPhys - pRam->GCPhys;
2873 } while (off >= pRam->cb);
2874 }
2875 *ppRam = pRam;
2876 return &pRam->aPages[off >> PAGE_SHIFT];
2877}
2878
2879
2880
2881
2882/**
2883 * Gets the PGMPAGE structure for a guest page together with the PGMRAMRANGE.
2884 *
2885 * @returns Pointer to the page on success.
2886 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
2887 *
2888 * @param pPGM PGM handle.
2889 * @param GCPhys The GC physical address.
2890 * @param ppPage Where to store the pointer to the PGMPAGE structure.
2891 * @param ppRam Where to store the pointer to the PGMRAMRANGE structure.
2892 */
2893DECLINLINE(int) pgmPhysGetPageAndRangeEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage, PPGMRAMRANGE *ppRam)
2894{
2895 /*
2896 * Optimize for the first range.
2897 */
2898 PPGMRAMRANGE pRam = CTXALLSUFF(pPGM->pRamRanges);
2899 RTGCPHYS off = GCPhys - pRam->GCPhys;
2900 if (RT_UNLIKELY(off >= pRam->cb))
2901 {
2902 do
2903 {
2904 pRam = CTXALLSUFF(pRam->pNext);
2905 if (RT_UNLIKELY(!pRam))
2906 {
2907 *ppRam = NULL; /* Shut up silly GCC warnings. */
2908 *ppPage = NULL; /* ditto */
2909 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
2910 }
2911 off = GCPhys - pRam->GCPhys;
2912 } while (off >= pRam->cb);
2913 }
2914 *ppRam = pRam;
2915 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
2916#ifndef VBOX_WITH_NEW_PHYS_CODE
2917
2918 /*
2919 * Make sure it's present.
2920 */
2921 if (RT_UNLIKELY( !PGM_PAGE_GET_HCPHYS(*ppPage)
2922 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)))
2923 {
2924#ifdef IN_RING3
2925 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys);
2926#else
2927 int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
2928#endif
2929 if (VBOX_FAILURE(rc))
2930 {
2931 *ppPage = NULL; /* Shut up silly GCC warnings. */
2932 *ppPage = NULL; /* ditto */
2933 return rc;
2934 }
2935 Assert(rc == VINF_SUCCESS);
2936
2937 }
2938#endif
2939 return VINF_SUCCESS;
2940}
2941
2942
2943/**
2944 * Convert GC Phys to HC Phys.
2945 *
2946 * @returns VBox status.
2947 * @param pPGM PGM handle.
2948 * @param GCPhys The GC physical address.
2949 * @param pHCPhys Where to store the corresponding HC physical address.
2950 *
2951 * @deprecated Doesn't deal with zero, shared or write monitored pages.
2952 * Avoid when writing new code!
2953 */
2954DECLINLINE(int) pgmRamGCPhys2HCPhys(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPHYS pHCPhys)
2955{
2956 PPGMPAGE pPage;
2957 int rc = pgmPhysGetPageEx(pPGM, GCPhys, &pPage);
2958 if (VBOX_FAILURE(rc))
2959 return rc;
2960 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK);
2961 return VINF_SUCCESS;
2962}
2963
2964
2965#ifndef IN_GC
2966/**
2967 * Queries the Physical TLB entry for a physical guest page,
2968 * attemting to load the TLB entry if necessary.
2969 *
2970 * @returns VBox status code.
2971 * @retval VINF_SUCCESS on success
2972 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
2973 * @param pPGM The PGM instance handle.
2974 * @param GCPhys The address of the guest page.
2975 * @param ppTlbe Where to store the pointer to the TLB entry.
2976 */
2977
2978DECLINLINE(int) pgmPhysPageQueryTlbe(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGEMAPTLBE ppTlbe)
2979{
2980 int rc;
2981 PPGMPAGEMAPTLBE pTlbe = &pPGM->CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)];
2982 if (pTlbe->GCPhys == (GCPhys & X86_PTE_PAE_PG_MASK))
2983 {
2984 STAM_COUNTER_INC(&pPGM->CTXMID(StatPage,MapTlbHits));
2985 rc = VINF_SUCCESS;
2986 }
2987 else
2988 rc = pgmPhysPageLoadIntoTlb(pPGM, GCPhys);
2989 *ppTlbe = pTlbe;
2990 return rc;
2991}
2992#endif /* !IN_GC */
2993
2994
2995#ifndef VBOX_WITH_NEW_PHYS_CODE
2996/**
2997 * Convert GC Phys to HC Virt.
2998 *
2999 * @returns VBox status.
3000 * @param pPGM PGM handle.
3001 * @param GCPhys The GC physical address.
3002 * @param pHCPtr Where to store the corresponding HC virtual address.
3003 *
3004 * @deprecated This will be eliminated by PGMPhysGCPhys2CCPtr.
3005 */
3006DECLINLINE(int) pgmRamGCPhys2HCPtr(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPTR pHCPtr)
3007{
3008 PPGMRAMRANGE pRam;
3009 PPGMPAGE pPage;
3010 int rc = pgmPhysGetPageAndRangeEx(pPGM, GCPhys, &pPage, &pRam);
3011 if (VBOX_FAILURE(rc))
3012 {
3013 *pHCPtr = 0; /* Shut up silly GCC warnings. */
3014 return rc;
3015 }
3016 RTGCPHYS off = GCPhys - pRam->GCPhys;
3017
3018 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
3019 {
3020 unsigned iChunk = off >> PGM_DYNAMIC_CHUNK_SHIFT;
3021 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)CTXSUFF(pRam->pavHCChunk)[iChunk] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
3022 return VINF_SUCCESS;
3023 }
3024 if (pRam->pvHC)
3025 {
3026 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)pRam->pvHC + off);
3027 return VINF_SUCCESS;
3028 }
3029 *pHCPtr = 0; /* Shut up silly GCC warnings. */
3030 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3031}
3032#endif /* !VBOX_WITH_NEW_PHYS_CODE */
3033
3034
3035/**
3036 * Convert GC Phys to HC Virt.
3037 *
3038 * @returns VBox status.
3039 * @param PVM VM handle.
3040 * @param pRam Ram range
3041 * @param GCPhys The GC physical address.
3042 * @param pHCPtr Where to store the corresponding HC virtual address.
3043 *
3044 * @deprecated This will be eliminated. Don't use it.
3045 */
3046DECLINLINE(int) pgmRamGCPhys2HCPtrWithRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, PRTHCPTR pHCPtr)
3047{
3048 RTGCPHYS off = GCPhys - pRam->GCPhys;
3049 Assert(off < pRam->cb);
3050
3051 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
3052 {
3053 unsigned idx = (off >> PGM_DYNAMIC_CHUNK_SHIFT);
3054 /* Physical chunk in dynamically allocated range not present? */
3055 if (RT_UNLIKELY(!CTXSUFF(pRam->pavHCChunk)[idx]))
3056 {
3057#ifdef IN_RING3
3058 int rc = pgmr3PhysGrowRange(pVM, GCPhys);
3059#else
3060 int rc = CTXALLMID(VMM, CallHost)(pVM, VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
3061#endif
3062 if (rc != VINF_SUCCESS)
3063 {
3064 *pHCPtr = 0; /* GCC crap */
3065 return rc;
3066 }
3067 }
3068 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)CTXSUFF(pRam->pavHCChunk)[idx] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
3069 return VINF_SUCCESS;
3070 }
3071 if (pRam->pvHC)
3072 {
3073 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)pRam->pvHC + off);
3074 return VINF_SUCCESS;
3075 }
3076 *pHCPtr = 0; /* GCC crap */
3077 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3078}
3079
3080
3081/**
3082 * Convert GC Phys to HC Virt and HC Phys.
3083 *
3084 * @returns VBox status.
3085 * @param pPGM PGM handle.
3086 * @param GCPhys The GC physical address.
3087 * @param pHCPtr Where to store the corresponding HC virtual address.
3088 * @param pHCPhys Where to store the HC Physical address and its flags.
3089 *
3090 * @deprecated Will go away or be changed. Only user is MapCR3. MapCR3 will have to do ring-3
3091 * and ring-0 locking of the CR3 in a lazy fashion I'm fear... or perhaps not. we'll see.
3092 */
3093DECLINLINE(int) pgmRamGCPhys2HCPtrAndHCPhysWithFlags(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPTR pHCPtr, PRTHCPHYS pHCPhys)
3094{
3095 PPGMRAMRANGE pRam;
3096 PPGMPAGE pPage;
3097 int rc = pgmPhysGetPageAndRangeEx(pPGM, GCPhys, &pPage, &pRam);
3098 if (VBOX_FAILURE(rc))
3099 {
3100 *pHCPtr = 0; /* Shut up crappy GCC warnings */
3101 *pHCPhys = 0; /* ditto */
3102 return rc;
3103 }
3104 RTGCPHYS off = GCPhys - pRam->GCPhys;
3105
3106 *pHCPhys = pPage->HCPhys; /** @todo PAGE FLAGS */
3107 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
3108 {
3109 unsigned idx = (off >> PGM_DYNAMIC_CHUNK_SHIFT);
3110 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)CTXSUFF(pRam->pavHCChunk)[idx] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
3111 return VINF_SUCCESS;
3112 }
3113 if (pRam->pvHC)
3114 {
3115 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)pRam->pvHC + off);
3116 return VINF_SUCCESS;
3117 }
3118 *pHCPtr = 0;
3119 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3120}
3121
3122
3123/**
3124 * Clears flags associated with a RAM address.
3125 *
3126 * @returns VBox status code.
3127 * @param pPGM PGM handle.
3128 * @param GCPhys Guest context physical address.
3129 * @param fFlags fFlags to clear. (Bits 0-11.)
3130 */
3131DECLINLINE(int) pgmRamFlagsClearByGCPhys(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags)
3132{
3133 PPGMPAGE pPage;
3134 int rc = pgmPhysGetPageEx(pPGM, GCPhys, &pPage);
3135 if (VBOX_FAILURE(rc))
3136 return rc;
3137
3138 fFlags &= ~X86_PTE_PAE_PG_MASK;
3139 pPage->HCPhys &= ~(RTHCPHYS)fFlags; /** @todo PAGE FLAGS */
3140 return VINF_SUCCESS;
3141}
3142
3143
3144/**
3145 * Clears flags associated with a RAM address.
3146 *
3147 * @returns VBox status code.
3148 * @param pPGM PGM handle.
3149 * @param GCPhys Guest context physical address.
3150 * @param fFlags fFlags to clear. (Bits 0-11.)
3151 * @param ppRamHint Where to read and store the ram list hint.
3152 * The caller initializes this to NULL before the call.
3153 */
3154DECLINLINE(int) pgmRamFlagsClearByGCPhysWithHint(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags, PPGMRAMRANGE *ppRamHint)
3155{
3156 PPGMPAGE pPage;
3157 int rc = pgmPhysGetPageWithHintEx(pPGM, GCPhys, &pPage, ppRamHint);
3158 if (VBOX_FAILURE(rc))
3159 return rc;
3160
3161 fFlags &= ~X86_PTE_PAE_PG_MASK;
3162 pPage->HCPhys &= ~(RTHCPHYS)fFlags; /** @todo PAGE FLAGS */
3163 return VINF_SUCCESS;
3164}
3165
3166/**
3167 * Sets (bitwise OR) flags associated with a RAM address.
3168 *
3169 * @returns VBox status code.
3170 * @param pPGM PGM handle.
3171 * @param GCPhys Guest context physical address.
3172 * @param fFlags fFlags to set clear. (Bits 0-11.)
3173 */
3174DECLINLINE(int) pgmRamFlagsSetByGCPhys(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags)
3175{
3176 PPGMPAGE pPage;
3177 int rc = pgmPhysGetPageEx(pPGM, GCPhys, &pPage);
3178 if (VBOX_FAILURE(rc))
3179 return rc;
3180
3181 fFlags &= ~X86_PTE_PAE_PG_MASK;
3182 pPage->HCPhys |= fFlags; /** @todo PAGE FLAGS */
3183 return VINF_SUCCESS;
3184}
3185
3186
3187/**
3188 * Sets (bitwise OR) flags associated with a RAM address.
3189 *
3190 * @returns VBox status code.
3191 * @param pPGM PGM handle.
3192 * @param GCPhys Guest context physical address.
3193 * @param fFlags fFlags to set clear. (Bits 0-11.)
3194 * @param ppRamHint Where to read and store the ram list hint.
3195 * The caller initializes this to NULL before the call.
3196 */
3197DECLINLINE(int) pgmRamFlagsSetByGCPhysWithHint(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags, PPGMRAMRANGE *ppRamHint)
3198{
3199 PPGMPAGE pPage;
3200 int rc = pgmPhysGetPageWithHintEx(pPGM, GCPhys, &pPage, ppRamHint);
3201 if (VBOX_FAILURE(rc))
3202 return rc;
3203
3204 fFlags &= ~X86_PTE_PAE_PG_MASK;
3205 pPage->HCPhys |= fFlags; /** @todo PAGE FLAGS */
3206 return VINF_SUCCESS;
3207}
3208
3209
3210/**
3211 * Gets the page directory for the specified address.
3212 *
3213 * @returns Pointer to the page directory in question.
3214 * @returns NULL if the page directory is not present or on an invalid page.
3215 * @param pPGM Pointer to the PGM instance data.
3216 * @param GCPtr The address.
3217 */
3218DECLINLINE(PX86PDPAE) pgmGstGetPaePD(PPGM pPGM, RTGCUINTPTR GCPtr)
3219{
3220 const unsigned iPdPt = GCPtr >> X86_PDPT_SHIFT;
3221 if (CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].n.u1Present)
3222 {
3223 if ((CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
3224 return CTXSUFF(pPGM->apGstPaePDs)[iPdPt];
3225
3226 /* cache is out-of-sync. */
3227 PX86PDPAE pPD;
3228 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3229 if (VBOX_SUCCESS(rc))
3230 return pPD;
3231 AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u));
3232 /* returning NIL_RTGCPHYS is ok if we assume it's just an invalid page of some kind emulated as all 0s. */
3233 }
3234 return NULL;
3235}
3236
3237
3238/**
3239 * Gets the page directory entry for the specified address.
3240 *
3241 * @returns Pointer to the page directory entry in question.
3242 * @returns NULL if the page directory is not present or on an invalid page.
3243 * @param pPGM Pointer to the PGM instance data.
3244 * @param GCPtr The address.
3245 */
3246DECLINLINE(PX86PDEPAE) pgmGstGetPaePDEPtr(PPGM pPGM, RTGCUINTPTR GCPtr)
3247{
3248 const unsigned iPdPt = GCPtr >> X86_PDPT_SHIFT;
3249 if (CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].n.u1Present)
3250 {
3251 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3252 if ((CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
3253 return &CTXSUFF(pPGM->apGstPaePDs)[iPdPt]->a[iPD];
3254
3255 /* The cache is out-of-sync. */
3256 PX86PDPAE pPD;
3257 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3258 if (VBOX_SUCCESS(rc))
3259 return &pPD->a[iPD];
3260 AssertMsgFailed(("Impossible! rc=%Vrc PDPE=%RX64\n", rc, CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u));
3261 /* returning NIL_RTGCPHYS is ok if we assume it's just an invalid page or something which we'll emulate as all 0s. */
3262 }
3263 return NULL;
3264}
3265
3266
3267/**
3268 * Gets the page directory entry for the specified address.
3269 *
3270 * @returns The page directory entry in question.
3271 * @returns A non-present entry if the page directory is not present or on an invalid page.
3272 * @param pPGM Pointer to the PGM instance data.
3273 * @param GCPtr The address.
3274 */
3275DECLINLINE(uint64_t) pgmGstGetPaePDE(PPGM pPGM, RTGCUINTPTR GCPtr)
3276{
3277 const unsigned iPdPt = GCPtr >> X86_PDPT_SHIFT;
3278 if (CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].n.u1Present)
3279 {
3280 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3281 if ((CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
3282 return CTXSUFF(pPGM->apGstPaePDs)[iPdPt]->a[iPD].u;
3283
3284 /* cache is out-of-sync. */
3285 PX86PDPAE pPD;
3286 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3287 if (VBOX_SUCCESS(rc))
3288 return pPD->a[iPD].u;
3289 AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u));
3290 }
3291 return 0ULL;
3292}
3293
3294
3295/**
3296 * Gets the page directory pointer table entry for the specified address
3297 * and returns the index into the page directory
3298 *
3299 * @returns Pointer to the page directory in question.
3300 * @returns NULL if the page directory is not present or on an invalid page.
3301 * @param pPGM Pointer to the PGM instance data.
3302 * @param GCPtr The address.
3303 * @param piPD Receives the index into the returned page directory
3304 */
3305DECLINLINE(PX86PDPAE) pgmGstGetPaePDPtr(PPGM pPGM, RTGCUINTPTR GCPtr, unsigned *piPD)
3306{
3307 const unsigned iPdPt = GCPtr >> X86_PDPT_SHIFT;
3308 if (CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].n.u1Present)
3309 {
3310 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3311 if ((CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
3312 {
3313 *piPD = iPD;
3314 return CTXSUFF(pPGM->apGstPaePDs)[iPdPt];
3315 }
3316
3317 /* cache is out-of-sync. */
3318 PX86PDPAE pPD;
3319 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3320 if (VBOX_SUCCESS(rc))
3321 {
3322 *piPD = iPD;
3323 return pPD;
3324 }
3325 AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, CTXSUFF(pPGM->pGstPaePDPT)->a[iPdPt].u));
3326 /* returning NIL_RTGCPHYS is ok if we assume it's just an invalid page of some kind emulated as all 0s. */
3327 }
3328 return NULL;
3329}
3330
3331#ifndef IN_GC
3332/**
3333 * Gets the page directory pointer entry for the specified address.
3334 *
3335 * @returns Pointer to the page directory pointer entry in question.
3336 * @returns NULL if the page directory is not present or on an invalid page.
3337 * @param pPGM Pointer to the PGM instance data.
3338 * @param GCPtr The address.
3339 * @param ppPml4e Page Map Level-4 Entry (out)
3340 */
3341DECLINLINE(PX86PDPE) pgmGstGetLongModePDPTPtr(PPGM pPGM, RTGCUINTPTR64 GCPtr, PX86PML4E *ppPml4e)
3342{
3343 const unsigned iPml4e = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3344
3345 *ppPml4e = &pPGM->pGstPaePML4HC->a[iPml4e];
3346 if ((*ppPml4e)->n.u1Present)
3347 {
3348 PX86PDPT pPdpt;
3349 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), (*ppPml4e)->u & X86_PML4E_PG_MASK, &pPdpt);
3350 if (VBOX_FAILURE(rc))
3351 {
3352 AssertFailed();
3353 return NULL;
3354 }
3355 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3356 return &pPdpt->a[iPdPt];
3357 }
3358 return NULL;
3359}
3360
3361/**
3362 * Gets the page directory entry for the specified address.
3363 *
3364 * @returns The page directory entry in question.
3365 * @returns A non-present entry if the page directory is not present or on an invalid page.
3366 * @param pPGM Pointer to the PGM instance data.
3367 * @param GCPtr The address.
3368 * @param ppPml4e Page Map Level-4 Entry (out)
3369 * @param pPdpe Page directory pointer table entry (out)
3370 */
3371DECLINLINE(uint64_t) pgmGstGetLongModePDE(PPGM pPGM, RTGCUINTPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPE pPdpe)
3372{
3373 const unsigned iPml4e = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3374
3375 *ppPml4e = &pPGM->pGstPaePML4HC->a[iPml4e];
3376 if ((*ppPml4e)->n.u1Present)
3377 {
3378 PX86PDPT pPdptTemp;
3379 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), (*ppPml4e)->u & X86_PML4E_PG_MASK, &pPdptTemp);
3380 if (VBOX_FAILURE(rc))
3381 {
3382 AssertFailed();
3383 return 0ULL;
3384 }
3385
3386 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3387 *pPdpe = pPdptTemp->a[iPdPt];
3388 if (pPdpe->n.u1Present)
3389 {
3390 PX86PDPAE pPD;
3391
3392 rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPdpe->u & X86_PDPE_PG_MASK, &pPD);
3393 if (VBOX_FAILURE(rc))
3394 {
3395 AssertFailed();
3396 return 0ULL;
3397 }
3398 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3399 return pPD->a[iPD].u;
3400 }
3401 }
3402 return 0ULL;
3403}
3404
3405/**
3406 * Gets the page directory entry for the specified address.
3407 *
3408 * @returns The page directory entry in question.
3409 * @returns A non-present entry if the page directory is not present or on an invalid page.
3410 * @param pPGM Pointer to the PGM instance data.
3411 * @param GCPtr The address.
3412 */
3413DECLINLINE(uint64_t) pgmGstGetLongModePDE(PPGM pPGM, RTGCUINTPTR64 GCPtr)
3414{
3415 const unsigned iPml4e = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3416
3417 if (pPGM->pGstPaePML4HC->a[iPml4e].n.u1Present)
3418 {
3419 PX86PDPT pPdptTemp;
3420 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPGM->pGstPaePML4HC->a[iPml4e].u & X86_PML4E_PG_MASK, &pPdptTemp);
3421 if (VBOX_FAILURE(rc))
3422 {
3423 AssertFailed();
3424 return 0ULL;
3425 }
3426
3427 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3428 if (pPdptTemp->a[iPdPt].n.u1Present)
3429 {
3430 PX86PDPAE pPD;
3431
3432 rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3433 if (VBOX_FAILURE(rc))
3434 {
3435 AssertFailed();
3436 return 0ULL;
3437 }
3438 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3439 return pPD->a[iPD].u;
3440 }
3441 }
3442 return 0ULL;
3443}
3444
3445/**
3446 * Gets the page directory entry for the specified address.
3447 *
3448 * @returns Pointer to the page directory entry in question.
3449 * @returns NULL if the page directory is not present or on an invalid page.
3450 * @param pPGM Pointer to the PGM instance data.
3451 * @param GCPtr The address.
3452 */
3453DECLINLINE(PX86PDEPAE) pgmGstGetLongModePDEPtr(PPGM pPGM, RTGCUINTPTR64 GCPtr)
3454{
3455 const unsigned iPml4e = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3456
3457 if (pPGM->pGstPaePML4HC->a[iPml4e].n.u1Present)
3458 {
3459 PX86PDPT pPdptTemp;
3460 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPGM->pGstPaePML4HC->a[iPml4e].u & X86_PML4E_PG_MASK, &pPdptTemp);
3461 if (VBOX_FAILURE(rc))
3462 {
3463 AssertFailed();
3464 return NULL;
3465 }
3466
3467 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3468 if (pPdptTemp->a[iPdPt].n.u1Present)
3469 {
3470 PX86PDPAE pPD;
3471
3472 rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3473 if (VBOX_FAILURE(rc))
3474 {
3475 AssertFailed();
3476 return NULL;
3477 }
3478 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3479 return &pPD->a[iPD];
3480 }
3481 }
3482 return NULL;
3483}
3484
3485
3486/**
3487 * Gets the GUEST page directory pointer for the specified address.
3488 *
3489 * @returns The page directory in question.
3490 * @returns NULL if the page directory is not present or on an invalid page.
3491 * @param pPGM Pointer to the PGM instance data.
3492 * @param GCPtr The address.
3493 * @param ppPml4e Page Map Level-4 Entry (out)
3494 * @param pPdpe Page directory pointer table entry (out)
3495 * @param piPD Receives the index into the returned page directory
3496 */
3497DECLINLINE(PX86PDPAE) pgmGstGetLongModePDPtr(PPGM pPGM, RTGCUINTPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPE pPdpe, unsigned *piPD)
3498{
3499 const unsigned iPml4e = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3500
3501 *ppPml4e = &pPGM->pGstPaePML4HC->a[iPml4e];
3502 if ((*ppPml4e)->n.u1Present)
3503 {
3504 PX86PDPT pPdptTemp;
3505 int rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), (*ppPml4e)->u & X86_PML4E_PG_MASK, &pPdptTemp);
3506 if (VBOX_FAILURE(rc))
3507 {
3508 AssertFailed();
3509 return 0ULL;
3510 }
3511
3512 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3513 *pPdpe = pPdptTemp->a[iPdPt];
3514 if (pPdpe->n.u1Present)
3515 {
3516 PX86PDPAE pPD;
3517
3518 rc = PGM_GCPHYS_2_PTR(PGM2VM(pPGM), pPdpe->u & X86_PDPE_PG_MASK, &pPD);
3519 if (VBOX_FAILURE(rc))
3520 {
3521 AssertFailed();
3522 return 0ULL;
3523 }
3524 *piPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3525 return pPD;
3526 }
3527 }
3528 return 0ULL;
3529}
3530#endif /* !IN_GC */
3531
3532/**
3533 * Checks if any of the specified page flags are set for the given page.
3534 *
3535 * @returns true if any of the flags are set.
3536 * @returns false if all the flags are clear.
3537 * @param pPGM PGM handle.
3538 * @param GCPhys The GC physical address.
3539 * @param fFlags The flags to check for.
3540 */
3541DECLINLINE(bool) pgmRamTestFlags(PPGM pPGM, RTGCPHYS GCPhys, uint64_t fFlags)
3542{
3543 PPGMPAGE pPage = pgmPhysGetPage(pPGM, GCPhys);
3544 return pPage
3545 && (pPage->HCPhys & fFlags) != 0; /** @todo PAGE FLAGS */
3546}
3547
3548
3549/**
3550 * Gets the page state for a physical handler.
3551 *
3552 * @returns The physical handler page state.
3553 * @param pCur The physical handler in question.
3554 */
3555DECLINLINE(unsigned) pgmHandlerPhysicalCalcState(PPGMPHYSHANDLER pCur)
3556{
3557 switch (pCur->enmType)
3558 {
3559 case PGMPHYSHANDLERTYPE_PHYSICAL_WRITE:
3560 return PGM_PAGE_HNDL_PHYS_STATE_WRITE;
3561
3562 case PGMPHYSHANDLERTYPE_MMIO:
3563 case PGMPHYSHANDLERTYPE_PHYSICAL_ALL:
3564 return PGM_PAGE_HNDL_PHYS_STATE_ALL;
3565
3566 default:
3567 AssertFatalMsgFailed(("Invalid type %d\n", pCur->enmType));
3568 }
3569}
3570
3571
3572/**
3573 * Gets the page state for a virtual handler.
3574 *
3575 * @returns The virtual handler page state.
3576 * @param pCur The virtual handler in question.
3577 * @remarks This should never be used on a hypervisor access handler.
3578 */
3579DECLINLINE(unsigned) pgmHandlerVirtualCalcState(PPGMVIRTHANDLER pCur)
3580{
3581 switch (pCur->enmType)
3582 {
3583 case PGMVIRTHANDLERTYPE_WRITE:
3584 return PGM_PAGE_HNDL_VIRT_STATE_WRITE;
3585 case PGMVIRTHANDLERTYPE_ALL:
3586 return PGM_PAGE_HNDL_VIRT_STATE_ALL;
3587 default:
3588 AssertFatalMsgFailed(("Invalid type %d\n", pCur->enmType));
3589 }
3590}
3591
3592
3593/**
3594 * Clears one physical page of a virtual handler
3595 *
3596 * @param pPGM Pointer to the PGM instance.
3597 * @param pCur Virtual handler structure
3598 * @param iPage Physical page index
3599 *
3600 * @remark Only used when PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL is being set, so no
3601 * need to care about other handlers in the same page.
3602 */
3603DECLINLINE(void) pgmHandlerVirtualClearPage(PPGM pPGM, PPGMVIRTHANDLER pCur, unsigned iPage)
3604{
3605 const PPGMPHYS2VIRTHANDLER pPhys2Virt = &pCur->aPhysToVirt[iPage];
3606
3607 /*
3608 * Remove the node from the tree (it's supposed to be in the tree if we get here!).
3609 */
3610#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
3611 AssertReleaseMsg(pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_IN_TREE,
3612 ("pPhys2Virt=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3613 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias));
3614#endif
3615 if (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_IS_HEAD)
3616 {
3617 /* We're the head of the alias chain. */
3618 PPGMPHYS2VIRTHANDLER pRemove = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysRemove(&pPGM->CTXSUFF(pTrees)->PhysToVirtHandlers, pPhys2Virt->Core.Key); NOREF(pRemove);
3619#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
3620 AssertReleaseMsg(pRemove != NULL,
3621 ("pPhys2Virt=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3622 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias));
3623 AssertReleaseMsg(pRemove == pPhys2Virt,
3624 ("wanted: pPhys2Virt=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
3625 " got: pRemove=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3626 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias,
3627 pRemove, pRemove->Core.Key, pRemove->Core.KeyLast, pRemove->offVirtHandler, pRemove->offNextAlias));
3628#endif
3629 if (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
3630 {
3631 /* Insert the next list in the alias chain into the tree. */
3632 PPGMPHYS2VIRTHANDLER pNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPhys2Virt + (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
3633#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
3634 AssertReleaseMsg(pNext->offNextAlias & PGMPHYS2VIRTHANDLER_IN_TREE,
3635 ("pNext=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
3636 pNext, pNext->Core.Key, pNext->Core.KeyLast, pNext->offVirtHandler, pNext->offNextAlias));
3637#endif
3638 pNext->offNextAlias |= PGMPHYS2VIRTHANDLER_IS_HEAD;
3639 bool fRc = RTAvlroGCPhysInsert(&pPGM->CTXSUFF(pTrees)->PhysToVirtHandlers, &pNext->Core);
3640 AssertRelease(fRc);
3641 }
3642 }
3643 else
3644 {
3645 /* Locate the previous node in the alias chain. */
3646 PPGMPHYS2VIRTHANDLER pPrev = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysGet(&pPGM->CTXSUFF(pTrees)->PhysToVirtHandlers, pPhys2Virt->Core.Key);
3647#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
3648 AssertReleaseMsg(pPrev != pPhys2Virt,
3649 ("pPhys2Virt=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32} pPrev=%p\n",
3650 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias, pPrev));
3651#endif
3652 for (;;)
3653 {
3654 PPGMPHYS2VIRTHANDLER pNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPrev + (pPrev->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
3655 if (pNext == pPhys2Virt)
3656 {
3657 /* unlink. */
3658 LogFlow(("pgmHandlerVirtualClearPage: removed %p:{.offNextAlias=%#RX32} from alias chain. prev %p:{.offNextAlias=%#RX32} [%VGp-%VGp]\n",
3659 pPhys2Virt, pPhys2Virt->offNextAlias, pPrev, pPrev->offNextAlias, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast));
3660 if (!(pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
3661 pPrev->offNextAlias &= ~PGMPHYS2VIRTHANDLER_OFF_MASK;
3662 else
3663 {
3664 PPGMPHYS2VIRTHANDLER pNewNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPhys2Virt + (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
3665 pPrev->offNextAlias = ((intptr_t)pNewNext - (intptr_t)pPrev)
3666 | (pPrev->offNextAlias & ~PGMPHYS2VIRTHANDLER_OFF_MASK);
3667 }
3668 break;
3669 }
3670
3671 /* next */
3672 if (pNext == pPrev)
3673 {
3674#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
3675 AssertReleaseMsg(pNext != pPrev,
3676 ("pPhys2Virt=%p:{.Core.Key=%VGp, .Core.KeyLast=%VGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32} pPrev=%p\n",
3677 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias, pPrev));
3678#endif
3679 break;
3680 }
3681 pPrev = pNext;
3682 }
3683 }
3684 Log2(("PHYS2VIRT: Removing %VGp-%VGp %#RX32 %s\n",
3685 pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offNextAlias, HCSTRING(pCur->pszDesc)));
3686 pPhys2Virt->offNextAlias = 0;
3687 pPhys2Virt->Core.KeyLast = NIL_RTGCPHYS; /* require reinsert */
3688
3689 /*
3690 * Clear the ram flags for this page.
3691 */
3692 PPGMPAGE pPage = pgmPhysGetPage(pPGM, pPhys2Virt->Core.Key);
3693 AssertReturnVoid(pPage);
3694 PGM_PAGE_SET_HNDL_VIRT_STATE(pPage, PGM_PAGE_HNDL_VIRT_STATE_NONE);
3695}
3696
3697
3698/**
3699 * Internal worker for finding a 'in-use' shadow page give by it's physical address.
3700 *
3701 * @returns Pointer to the shadow page structure.
3702 * @param pPool The pool.
3703 * @param HCPhys The HC physical address of the shadow page.
3704 */
3705DECLINLINE(PPGMPOOLPAGE) pgmPoolGetPage(PPGMPOOL pPool, RTHCPHYS HCPhys)
3706{
3707 /*
3708 * Look up the page.
3709 */
3710 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK);
3711 AssertFatalMsg(pPage && pPage->enmKind != PGMPOOLKIND_FREE, ("HCPhys=%VHp pPage=%p type=%d\n", HCPhys, pPage, (pPage) ? pPage->enmKind : 0));
3712 return pPage;
3713}
3714
3715
3716/**
3717 * Internal worker for finding a 'in-use' shadow page give by it's physical address.
3718 *
3719 * @returns Pointer to the shadow page structure.
3720 * @param pPool The pool.
3721 * @param idx The pool page index.
3722 */
3723DECLINLINE(PPGMPOOLPAGE) pgmPoolGetPageByIdx(PPGMPOOL pPool, unsigned idx)
3724{
3725 AssertFatalMsg(idx >= PGMPOOL_IDX_FIRST && idx < pPool->cCurPages, ("idx=%d\n", idx));
3726 return &pPool->aPages[idx];
3727}
3728
3729
3730#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
3731/**
3732 * Clear references to guest physical memory.
3733 *
3734 * @param pPool The pool.
3735 * @param pPoolPage The pool page.
3736 * @param pPhysPage The physical guest page tracking structure.
3737 */
3738DECLINLINE(void) pgmTrackDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPoolPage, PPGMPAGE pPhysPage)
3739{
3740 /*
3741 * Just deal with the simple case here.
3742 */
3743#ifdef LOG_ENABLED
3744 const RTHCPHYS HCPhysOrg = pPhysPage->HCPhys; /** @todo PAGE FLAGS */
3745#endif
3746 const unsigned cRefs = pPhysPage->HCPhys >> MM_RAM_FLAGS_CREFS_SHIFT; /** @todo PAGE FLAGS */
3747 if (cRefs == 1)
3748 {
3749 Assert(pPoolPage->idx == ((pPhysPage->HCPhys >> MM_RAM_FLAGS_IDX_SHIFT) & MM_RAM_FLAGS_IDX_MASK));
3750 pPhysPage->HCPhys = pPhysPage->HCPhys & MM_RAM_FLAGS_NO_REFS_MASK;
3751 }
3752 else
3753 pgmPoolTrackPhysExtDerefGCPhys(pPool, pPoolPage, pPhysPage);
3754 LogFlow(("pgmTrackDerefGCPhys: HCPhys=%RHp -> %RHp\n", HCPhysOrg, pPhysPage->HCPhys));
3755}
3756#endif
3757
3758
3759#ifdef PGMPOOL_WITH_CACHE
3760/**
3761 * Moves the page to the head of the age list.
3762 *
3763 * This is done when the cached page is used in one way or another.
3764 *
3765 * @param pPool The pool.
3766 * @param pPage The cached page.
3767 * @todo inline in PGMInternal.h!
3768 */
3769DECLINLINE(void) pgmPoolCacheUsed(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
3770{
3771 /*
3772 * Move to the head of the age list.
3773 */
3774 if (pPage->iAgePrev != NIL_PGMPOOL_IDX)
3775 {
3776 /* unlink */
3777 pPool->aPages[pPage->iAgePrev].iAgeNext = pPage->iAgeNext;
3778 if (pPage->iAgeNext != NIL_PGMPOOL_IDX)
3779 pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->iAgePrev;
3780 else
3781 pPool->iAgeTail = pPage->iAgePrev;
3782
3783 /* insert at head */
3784 pPage->iAgePrev = NIL_PGMPOOL_IDX;
3785 pPage->iAgeNext = pPool->iAgeHead;
3786 Assert(pPage->iAgeNext != NIL_PGMPOOL_IDX); /* we would've already been head then */
3787 pPool->iAgeHead = pPage->idx;
3788 pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->idx;
3789 }
3790}
3791#endif /* PGMPOOL_WITH_CACHE */
3792
3793/**
3794 * Tells if mappings are to be put into the shadow page table or not
3795 *
3796 * @returns boolean result
3797 * @param pVM VM handle.
3798 */
3799
3800DECLINLINE(bool) pgmMapAreMappingsEnabled(PPGM pPGM)
3801{
3802#ifdef IN_RING0
3803 /* There are no mappings in VT-x and AMD-V mode. */
3804 Assert(pPGM->fDisableMappings);
3805 return false;
3806#else
3807 return !pPGM->fDisableMappings;
3808#endif
3809}
3810
3811/** @} */
3812
3813#endif
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette