VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMMap.cpp@ 10464

Last change on this file since 10464 was 9303, checked in by vboxsync, 17 years ago

Signed/unsigned mismatch. More string format specifiers

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 41.1 KB
Line 
1/* $Id: PGMMap.cpp 9303 2008-06-02 13:47:21Z vboxsync $ */
2/** @file
3 * PGM - Page Manager, Guest Context Mappings.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_PGM
27#include <VBox/dbgf.h>
28#include <VBox/pgm.h>
29#include "PGMInternal.h"
30#include <VBox/vm.h>
31
32#include <VBox/log.h>
33#include <VBox/err.h>
34#include <iprt/asm.h>
35#include <iprt/assert.h>
36#include <iprt/string.h>
37
38
39/*******************************************************************************
40* Internal Functions *
41*******************************************************************************/
42static void pgmR3MapClearPDEs(PPGM pPGM, PPGMMAPPING pMap, unsigned iOldPDE);
43static void pgmR3MapSetPDEs(PVM pVM, PPGMMAPPING pMap, unsigned iNewPDE);
44static int pgmR3MapIntermediateCheckOne(PVM pVM, uintptr_t uAddress, unsigned cPages, PX86PT pPTDefault, PX86PTPAE pPTPaeDefault);
45static void pgmR3MapIntermediateDoOne(PVM pVM, uintptr_t uAddress, RTHCPHYS HCPhys, unsigned cPages, PX86PT pPTDefault, PX86PTPAE pPTPaeDefault);
46
47
48
49/**
50 * Creates a page table based mapping in GC.
51 *
52 * @returns VBox status code.
53 * @param pVM VM Handle.
54 * @param GCPtr Virtual Address. (Page table aligned!)
55 * @param cb Size of the range. Must be a 4MB aligned!
56 * @param pfnRelocate Relocation callback function.
57 * @param pvUser User argument to the callback.
58 * @param pszDesc Pointer to description string. This must not be freed.
59 */
60PGMR3DECL(int) PGMR3MapPT(PVM pVM, RTGCPTR GCPtr, uint32_t cb, PFNPGMRELOCATE pfnRelocate, void *pvUser, const char *pszDesc)
61{
62 LogFlow(("PGMR3MapPT: GCPtr=%#x cb=%d pfnRelocate=%p pvUser=%p pszDesc=%s\n", GCPtr, cb, pfnRelocate, pvUser, pszDesc));
63 AssertMsg(pVM->pgm.s.pInterPD && pVM->pgm.s.pHC32BitPD, ("Paging isn't initialized, init order problems!\n"));
64
65 /*
66 * Validate input.
67 */
68 if (cb < _2M || cb > 64 * _1M)
69 {
70 AssertMsgFailed(("Serious? cb=%d\n", cb));
71 return VERR_INVALID_PARAMETER;
72 }
73 cb = RT_ALIGN_32(cb, _4M);
74 RTGCPTR GCPtrLast = GCPtr + cb - 1;
75 if (GCPtrLast < GCPtr)
76 {
77 AssertMsgFailed(("Range wraps! GCPtr=%x GCPtrLast=%x\n", GCPtr, GCPtrLast));
78 return VERR_INVALID_PARAMETER;
79 }
80 if (pVM->pgm.s.fMappingsFixed)
81 {
82 AssertMsgFailed(("Mappings are fixed! It's not possible to add new mappings at this time!\n"));
83 return VERR_PGM_MAPPINGS_FIXED;
84 }
85 if (!pfnRelocate)
86 {
87 AssertMsgFailed(("Callback is required\n"));
88 return VERR_INVALID_PARAMETER;
89 }
90
91 /*
92 * Find list location.
93 */
94 PPGMMAPPING pPrev = NULL;
95 PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3;
96 while (pCur)
97 {
98 if (pCur->GCPtrLast >= GCPtr && pCur->GCPtr <= GCPtrLast)
99 {
100 AssertMsgFailed(("Address is already in use by %s. req %#x-%#x take %#x-%#x\n",
101 pCur->pszDesc, GCPtr, GCPtrLast, pCur->GCPtr, pCur->GCPtrLast));
102 LogRel(("VERR_PGM_MAPPING_CONFLICT: Address is already in use by %s. req %#x-%#x take %#x-%#x\n",
103 pCur->pszDesc, GCPtr, GCPtrLast, pCur->GCPtr, pCur->GCPtrLast));
104 return VERR_PGM_MAPPING_CONFLICT;
105 }
106 if (pCur->GCPtr > GCPtr)
107 break;
108 pPrev = pCur;
109 pCur = pCur->pNextR3;
110 }
111
112 /*
113 * Check for conflicts with intermediate mappings.
114 */
115 const unsigned iPageDir = GCPtr >> X86_PD_SHIFT;
116 const unsigned cPTs = cb >> X86_PD_SHIFT;
117 unsigned i;
118 for (i = 0; i < cPTs; i++)
119 {
120 if (pVM->pgm.s.pInterPD->a[iPageDir + i].n.u1Present)
121 {
122 AssertMsgFailed(("Address %#x is already in use by an intermediate mapping.\n", GCPtr + (i << PAGE_SHIFT)));
123 LogRel(("VERR_PGM_MAPPING_CONFLICT: Address %#x is already in use by an intermediate mapping.\n", GCPtr + (i << PAGE_SHIFT)));
124 return VERR_PGM_MAPPING_CONFLICT;
125 }
126 }
127 /** @todo AMD64: add check in PAE structures too, so we can remove all the 32-Bit paging stuff there. */
128
129 /*
130 * Allocate and initialize the new list node.
131 */
132 PPGMMAPPING pNew;
133 int rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMMAPPING, aPTs[cPTs]), 0, MM_TAG_PGM, (void **)&pNew);
134 if (VBOX_FAILURE(rc))
135 return rc;
136 pNew->GCPtr = GCPtr;
137 pNew->GCPtrLast = GCPtrLast;
138 pNew->cb = cb;
139 pNew->pszDesc = pszDesc;
140 pNew->pfnRelocate = pfnRelocate;
141 pNew->pvUser = pvUser;
142 pNew->cPTs = cPTs;
143
144 /*
145 * Allocate page tables and insert them into the page directories.
146 * (One 32-bit PT and two PAE PTs.)
147 */
148 uint8_t *pbPTs;
149 rc = MMHyperAlloc(pVM, PAGE_SIZE * 3 * cPTs, PAGE_SIZE, MM_TAG_PGM, (void **)&pbPTs);
150 if (VBOX_FAILURE(rc))
151 {
152 MMHyperFree(pVM, pNew);
153 return VERR_NO_MEMORY;
154 }
155
156 /*
157 * Init the page tables and insert them into the page directories.
158 */
159 Log4(("PGMR3MapPT: GCPtr=%VGv cPTs=%u pbPTs=%p\n", GCPtr, cPTs, pbPTs));
160 for (i = 0; i < cPTs; i++)
161 {
162 /*
163 * 32-bit.
164 */
165 pNew->aPTs[i].pPTR3 = (PX86PT)pbPTs;
166 pNew->aPTs[i].pPTGC = MMHyperR3ToGC(pVM, pNew->aPTs[i].pPTR3);
167 pNew->aPTs[i].pPTR0 = MMHyperR3ToR0(pVM, pNew->aPTs[i].pPTR3);
168 pNew->aPTs[i].HCPhysPT = MMR3HyperHCVirt2HCPhys(pVM, pNew->aPTs[i].pPTR3);
169 pbPTs += PAGE_SIZE;
170 Log4(("PGMR3MapPT: i=%d: pPTHC=%p pPTGC=%p HCPhysPT=%RHp\n",
171 i, pNew->aPTs[i].pPTR3, pNew->aPTs[i].pPTGC, pNew->aPTs[i].HCPhysPT));
172
173 /*
174 * PAE.
175 */
176 pNew->aPTs[i].HCPhysPaePT0 = MMR3HyperHCVirt2HCPhys(pVM, pbPTs);
177 pNew->aPTs[i].HCPhysPaePT1 = MMR3HyperHCVirt2HCPhys(pVM, pbPTs + PAGE_SIZE);
178 pNew->aPTs[i].paPaePTsR3 = (PX86PTPAE)pbPTs;
179 pNew->aPTs[i].paPaePTsGC = MMHyperR3ToGC(pVM, pbPTs);
180 pNew->aPTs[i].paPaePTsR0 = MMHyperR3ToR0(pVM, pbPTs);
181 pbPTs += PAGE_SIZE * 2;
182 Log4(("PGMR3MapPT: i=%d: paPaePTsHC=%p paPaePTsGC=%p HCPhysPaePT0=%RHp HCPhysPaePT1=%RHp\n",
183 i, pNew->aPTs[i].paPaePTsR3, pNew->aPTs[i].paPaePTsGC, pNew->aPTs[i].HCPhysPaePT0, pNew->aPTs[i].HCPhysPaePT1));
184 }
185 pgmR3MapSetPDEs(pVM, pNew, iPageDir);
186
187 /*
188 * Insert the new mapping.
189 */
190 pNew->pNextR3 = pCur;
191 pNew->pNextGC = pCur ? MMHyperR3ToGC(pVM, pCur) : 0;
192 pNew->pNextR0 = pCur ? MMHyperR3ToR0(pVM, pCur) : 0;
193 if (pPrev)
194 {
195 pPrev->pNextR3 = pNew;
196 pPrev->pNextGC = MMHyperR3ToGC(pVM, pNew);
197 pPrev->pNextR0 = MMHyperR3ToR0(pVM, pNew);
198 }
199 else
200 {
201 pVM->pgm.s.pMappingsR3 = pNew;
202 pVM->pgm.s.pMappingsGC = MMHyperR3ToGC(pVM, pNew);
203 pVM->pgm.s.pMappingsR0 = MMHyperR3ToR0(pVM, pNew);
204 }
205
206 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
207 return VINF_SUCCESS;
208}
209
210
211/**
212 * Removes a page table based mapping.
213 *
214 * @returns VBox status code.
215 * @param pVM VM Handle.
216 * @param GCPtr Virtual Address. (Page table aligned!)
217 */
218PGMR3DECL(int) PGMR3UnmapPT(PVM pVM, RTGCPTR GCPtr)
219{
220 LogFlow(("PGMR3UnmapPT: GCPtr=%#x\n", GCPtr));
221
222 /*
223 * Find it.
224 */
225 PPGMMAPPING pPrev = NULL;
226 PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3;
227 while (pCur)
228 {
229 if (pCur->GCPtr == GCPtr)
230 {
231 /*
232 * Unlink it.
233 */
234 if (pPrev)
235 {
236 pPrev->pNextR3 = pCur->pNextR3;
237 pPrev->pNextGC = pCur->pNextGC;
238 pPrev->pNextR0 = pCur->pNextR0;
239 }
240 else
241 {
242 pVM->pgm.s.pMappingsR3 = pCur->pNextR3;
243 pVM->pgm.s.pMappingsGC = pCur->pNextGC;
244 pVM->pgm.s.pMappingsR0 = pCur->pNextR0;
245 }
246
247 /*
248 * Free the page table memory, clear page directory entries
249 * and free the page tables and node memory.
250 */
251 MMHyperFree(pVM, pCur->aPTs[0].pPTR3);
252 pgmR3MapClearPDEs(&pVM->pgm.s, pCur, pCur->GCPtr >> X86_PD_SHIFT);
253 MMHyperFree(pVM, pCur);
254
255 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
256 return VINF_SUCCESS;
257 }
258
259 /* done? */
260 if (pCur->GCPtr > GCPtr)
261 break;
262
263 /* next */
264 pPrev = pCur;
265 pCur = pCur->pNextR3;
266 }
267
268 AssertMsgFailed(("No mapping for %#x found!\n", GCPtr));
269 return VERR_INVALID_PARAMETER;
270}
271
272
273/**
274 * Gets the size of the current guest mappings if they were to be
275 * put next to oneanother.
276 *
277 * @returns VBox status code.
278 * @param pVM The VM.
279 * @param pcb Where to store the size.
280 */
281PGMR3DECL(int) PGMR3MappingsSize(PVM pVM, uint32_t *pcb)
282{
283 RTGCUINTPTR cb = 0;
284 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
285 cb += pCur->cb;
286
287 *pcb = cb;
288 AssertReturn(*pcb == cb, VERR_NUMBER_TOO_BIG);
289 Log(("PGMR3MappingsSize: return %d (%#x) bytes\n", cb, cb));
290 return VINF_SUCCESS;
291}
292
293
294/**
295 * Fixes the guest context mappings in a range reserved from the Guest OS.
296 *
297 * @returns VBox status code.
298 * @param pVM The VM.
299 * @param GCPtrBase The address of the reserved range of guest memory.
300 * @param cb The size of the range starting at GCPtrBase.
301 */
302PGMR3DECL(int) PGMR3MappingsFix(PVM pVM, RTGCPTR GCPtrBase, uint32_t cb)
303{
304 Log(("PGMR3MappingsFix: GCPtrBase=%#x cb=%#x\n", GCPtrBase, cb));
305
306 /*
307 * This is all or nothing at all. So, a tiny bit of paranoia first.
308 */
309 if (GCPtrBase & X86_PAGE_4M_OFFSET_MASK)
310 {
311 AssertMsgFailed(("GCPtrBase (%#x) has to be aligned on a 4MB address!\n", GCPtrBase));
312 return VERR_INVALID_PARAMETER;
313 }
314 if (!cb || (cb & X86_PAGE_4M_OFFSET_MASK))
315 {
316 AssertMsgFailed(("cb (%#x) is 0 or not aligned on a 4MB address!\n", cb));
317 return VERR_INVALID_PARAMETER;
318 }
319
320 /*
321 * Before we do anything we'll do a forced PD sync to try make sure any
322 * pending relocations because of these mappings have been resolved.
323 */
324 PGMSyncCR3(pVM, CPUMGetGuestCR0(pVM), CPUMGetGuestCR3(pVM), CPUMGetGuestCR4(pVM), true);
325
326 /*
327 * Check that it's not conflicting with a core code mapping in the intermediate page table.
328 */
329 unsigned iPDNew = GCPtrBase >> X86_PD_SHIFT;
330 unsigned i = cb >> X86_PD_SHIFT;
331 while (i-- > 0)
332 {
333 if (pVM->pgm.s.pInterPD->a[iPDNew + i].n.u1Present)
334 {
335 /* Check that it's not one or our mappings. */
336 PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3;
337 while (pCur)
338 {
339 if (iPDNew + i - (pCur->GCPtr >> X86_PD_SHIFT) < (pCur->cb >> X86_PD_SHIFT))
340 break;
341 pCur = pCur->pNextR3;
342 }
343 if (!pCur)
344 {
345 LogRel(("PGMR3MappingsFix: Conflicts with intermediate PDE %#x (GCPtrBase=%VGv cb=%#zx). The guest should retry.\n",
346 iPDNew + i, GCPtrBase, cb));
347 return VERR_PGM_MAPPINGS_FIX_CONFLICT;
348 }
349 }
350 }
351
352 /*
353 * Loop the mappings and check that they all agree on their new locations.
354 */
355 RTGCPTR GCPtrCur = GCPtrBase;
356 PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3;
357 while (pCur)
358 {
359 if (!pCur->pfnRelocate(pVM, pCur->GCPtr, GCPtrCur, PGMRELOCATECALL_SUGGEST, pCur->pvUser))
360 {
361 AssertMsgFailed(("The suggested fixed address %#x was rejected by '%s'!\n", GCPtrCur, pCur->pszDesc));
362 return VERR_PGM_MAPPINGS_FIX_REJECTED;
363 }
364 /* next */
365 GCPtrCur += pCur->cb;
366 pCur = pCur->pNextR3;
367 }
368 if (GCPtrCur > GCPtrBase + cb)
369 {
370 AssertMsgFailed(("cb (%#x) is less than the required range %#x!\n", cb, GCPtrCur - GCPtrBase));
371 return VERR_PGM_MAPPINGS_FIX_TOO_SMALL;
372 }
373
374 /*
375 * Loop the table assigning the mappings to the passed in memory
376 * and call their relocator callback.
377 */
378 GCPtrCur = GCPtrBase;
379 pCur = pVM->pgm.s.pMappingsR3;
380 while (pCur)
381 {
382 unsigned iPDOld = pCur->GCPtr >> X86_PD_SHIFT;
383 iPDNew = GCPtrCur >> X86_PD_SHIFT;
384
385 /*
386 * Relocate the page table(s).
387 */
388 pgmR3MapClearPDEs(&pVM->pgm.s, pCur, iPDOld);
389 pgmR3MapSetPDEs(pVM, pCur, iPDNew);
390
391 /*
392 * Update the entry.
393 */
394 pCur->GCPtr = GCPtrCur;
395 pCur->GCPtrLast = GCPtrCur + pCur->cb - 1;
396
397 /*
398 * Callback to execute the relocation.
399 */
400 pCur->pfnRelocate(pVM, iPDOld << X86_PD_SHIFT, iPDNew << X86_PD_SHIFT, PGMRELOCATECALL_RELOCATE, pCur->pvUser);
401
402 /*
403 * Advance.
404 */
405 GCPtrCur += pCur->cb;
406 pCur = pCur->pNextR3;
407 }
408
409 /*
410 * Turn off CR3 updating monitoring.
411 */
412 int rc2 = PGM_GST_PFN(UnmonitorCR3, pVM)(pVM);
413 AssertRC(rc2);
414
415 /*
416 * Mark the mappings as fixed and return.
417 */
418 pVM->pgm.s.fMappingsFixed = true;
419 pVM->pgm.s.GCPtrMappingFixed = GCPtrBase;
420 pVM->pgm.s.cbMappingFixed = cb;
421 pVM->pgm.s.fSyncFlags &= ~PGM_SYNC_MONITOR_CR3;
422 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
423 return VINF_SUCCESS;
424}
425
426
427/**
428 * Unfixes the mappings.
429 * After calling this function mapping conflict detection will be enabled.
430 *
431 * @returns VBox status code.
432 * @param pVM The VM.
433 */
434PGMR3DECL(int) PGMR3MappingsUnfix(PVM pVM)
435{
436 Log(("PGMR3MappingsUnfix: fMappingsFixed=%d\n", pVM->pgm.s.fMappingsFixed));
437 pVM->pgm.s.fMappingsFixed = false;
438 pVM->pgm.s.GCPtrMappingFixed = 0;
439 pVM->pgm.s.cbMappingFixed = 0;
440 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
441
442 /*
443 * Re-enable the CR3 monitoring.
444 *
445 * Paranoia: We flush the page pool before doing that because Windows
446 * is using the CR3 page both as a PD and a PT, e.g. the pool may
447 * be monitoring it.
448 */
449#ifdef PGMPOOL_WITH_MONITORING
450 pgmPoolFlushAll(pVM);
451#endif
452 int rc = PGM_GST_PFN(MonitorCR3, pVM)(pVM, pVM->pgm.s.GCPhysCR3);
453 AssertRC(rc);
454
455 return VINF_SUCCESS;
456}
457
458
459/**
460 * Map pages into the intermediate context (switcher code).
461 * These pages are mapped at both the give virtual address and at
462 * the physical address (for identity mapping).
463 *
464 * @returns VBox status code.
465 * @param pVM The virtual machine.
466 * @param Addr Intermediate context address of the mapping.
467 * @param HCPhys Start of the range of physical pages. This must be entriely below 4GB!
468 * @param cbPages Number of bytes to map.
469 *
470 * @remark This API shall not be used to anything but mapping the switcher code.
471 */
472PGMR3DECL(int) PGMR3MapIntermediate(PVM pVM, RTUINTPTR Addr, RTHCPHYS HCPhys, unsigned cbPages)
473{
474 LogFlow(("PGMR3MapIntermediate: Addr=%RTptr HCPhys=%VHp cbPages=%#x\n", Addr, HCPhys, cbPages));
475
476 /*
477 * Adjust input.
478 */
479 cbPages += (uint32_t)HCPhys & PAGE_OFFSET_MASK;
480 cbPages = RT_ALIGN(cbPages, PAGE_SIZE);
481 HCPhys &= X86_PTE_PAE_PG_MASK;
482 Addr &= PAGE_BASE_MASK;
483 /* We only care about the first 4GB, because on AMD64 we'll be repeating them all over the address space. */
484 uint32_t uAddress = (uint32_t)Addr;
485
486 /*
487 * Assert input and state.
488 */
489 AssertMsg(pVM->pgm.s.offVM, ("Bad init order\n"));
490 AssertMsg(pVM->pgm.s.pInterPD, ("Bad init order, paging.\n"));
491 AssertMsg(cbPages <= (512 << PAGE_SHIFT), ("The mapping is too big %d bytes\n", cbPages));
492 AssertMsg(HCPhys < _4G && HCPhys + cbPages < _4G, ("Addr=%RTptr HCPhys=%VHp cbPages=%d\n", Addr, HCPhys, cbPages));
493
494 /*
495 * Check for internal conflicts between the virtual address and the physical address.
496 */
497 if ( uAddress != HCPhys
498 && ( uAddress < HCPhys
499 ? HCPhys - uAddress < cbPages
500 : uAddress - HCPhys < cbPages
501 )
502 )
503 AssertLogRelMsgFailedReturn(("Addr=%RTptr HCPhys=%VHp cbPages=%d\n", Addr, HCPhys, cbPages),
504 VERR_PGM_INTERMEDIATE_PAGING_CONFLICT);
505
506 /* The intermediate mapping must not conflict with our default hypervisor address. */
507 size_t cbHyper;
508 RTGCPTR pvHyperGC = MMHyperGetArea(pVM, &cbHyper);
509 if (uAddress < pvHyperGC
510 ? uAddress + cbPages > pvHyperGC
511 : pvHyperGC + cbHyper > uAddress
512 )
513 AssertLogRelMsgFailedReturn(("Addr=%RTptr HyperGC=%VGv cbPages=%zu\n", Addr, pvHyperGC, cbPages),
514 VERR_PGM_INTERMEDIATE_PAGING_CONFLICT);
515
516 const unsigned cPages = cbPages >> PAGE_SHIFT;
517 int rc = pgmR3MapIntermediateCheckOne(pVM, uAddress, cPages, pVM->pgm.s.apInterPTs[0], pVM->pgm.s.apInterPaePTs[0]);
518 if (VBOX_FAILURE(rc))
519 return rc;
520 rc = pgmR3MapIntermediateCheckOne(pVM, (uintptr_t)HCPhys, cPages, pVM->pgm.s.apInterPTs[1], pVM->pgm.s.apInterPaePTs[1]);
521 if (VBOX_FAILURE(rc))
522 return rc;
523
524 /*
525 * Everythings fine, do the mapping.
526 */
527 pgmR3MapIntermediateDoOne(pVM, uAddress, HCPhys, cPages, pVM->pgm.s.apInterPTs[0], pVM->pgm.s.apInterPaePTs[0]);
528 pgmR3MapIntermediateDoOne(pVM, (uintptr_t)HCPhys, HCPhys, cPages, pVM->pgm.s.apInterPTs[1], pVM->pgm.s.apInterPaePTs[1]);
529
530 return VINF_SUCCESS;
531}
532
533
534/**
535 * Validates that there are no conflicts for this mapping into the intermediate context.
536 *
537 * @returns VBox status code.
538 * @param pVM VM handle.
539 * @param uAddress Address of the mapping.
540 * @param cPages Number of pages.
541 * @param pPTDefault Pointer to the default page table for this mapping.
542 * @param pPTPaeDefault Pointer to the default page table for this mapping.
543 */
544static int pgmR3MapIntermediateCheckOne(PVM pVM, uintptr_t uAddress, unsigned cPages, PX86PT pPTDefault, PX86PTPAE pPTPaeDefault)
545{
546 AssertMsg((uAddress >> X86_PD_SHIFT) + cPages <= 1024, ("64-bit fixme\n"));
547
548 /*
549 * Check that the ranges are available.
550 * (This codes doesn't have to be fast.)
551 */
552 while (cPages > 0)
553 {
554 /*
555 * 32-Bit.
556 */
557 unsigned iPDE = (uAddress >> X86_PD_SHIFT) & X86_PD_MASK;
558 unsigned iPTE = (uAddress >> X86_PT_SHIFT) & X86_PT_MASK;
559 PX86PT pPT = pPTDefault;
560 if (pVM->pgm.s.pInterPD->a[iPDE].u)
561 {
562 RTHCPHYS HCPhysPT = pVM->pgm.s.pInterPD->a[iPDE].u & X86_PDE_PG_MASK;
563 if (HCPhysPT == MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]))
564 pPT = pVM->pgm.s.apInterPTs[0];
565 else if (HCPhysPT == MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]))
566 pPT = pVM->pgm.s.apInterPTs[1];
567 else
568 {
569 /** @todo this must be handled with a relocation of the conflicting mapping!
570 * Which of course cannot be done because we're in the middle of the initialization. bad design! */
571 AssertLogRelMsgFailedReturn(("Conflict between core code and PGMR3Mapping(). uAddress=%VHv\n", uAddress),
572 VERR_PGM_INTERMEDIATE_PAGING_CONFLICT);
573 }
574 }
575 if (pPT->a[iPTE].u)
576 AssertLogRelMsgFailedReturn(("Conflict iPTE=%#x iPDE=%#x uAddress=%VHv pPT->a[iPTE].u=%RX32\n", iPTE, iPDE, uAddress, pPT->a[iPTE].u),
577 VERR_PGM_INTERMEDIATE_PAGING_CONFLICT);
578
579 /*
580 * PAE.
581 */
582 const unsigned iPDPE= (uAddress >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
583 iPDE = (uAddress >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
584 iPTE = (uAddress >> X86_PT_PAE_SHIFT) & X86_PT_PAE_MASK;
585 Assert(iPDPE < 4);
586 Assert(pVM->pgm.s.apInterPaePDs[iPDPE]);
587 PX86PTPAE pPTPae = pPTPaeDefault;
588 if (pVM->pgm.s.apInterPaePDs[iPDPE]->a[iPDE].u)
589 {
590 RTHCPHYS HCPhysPT = pVM->pgm.s.apInterPaePDs[iPDPE]->a[iPDE].u & X86_PDE_PAE_PG_MASK;
591 if (HCPhysPT == MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]))
592 pPTPae = pVM->pgm.s.apInterPaePTs[0];
593 else if (HCPhysPT == MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]))
594 pPTPae = pVM->pgm.s.apInterPaePTs[1];
595 else
596 {
597 /** @todo this must be handled with a relocation of the conflicting mapping!
598 * Which of course cannot be done because we're in the middle of the initialization. bad design! */
599 AssertLogRelMsgFailedReturn(("Conflict between core code and PGMR3Mapping(). uAddress=%VHv\n", uAddress),
600 VERR_PGM_INTERMEDIATE_PAGING_CONFLICT);
601 }
602 }
603 if (pPTPae->a[iPTE].u)
604 AssertLogRelMsgFailedReturn(("Conflict iPTE=%#x iPDE=%#x uAddress=%VHv pPTPae->a[iPTE].u=%#RX64\n", iPTE, iPDE, uAddress, pPTPae->a[iPTE].u),
605 VERR_PGM_INTERMEDIATE_PAGING_CONFLICT);
606
607 /* next */
608 uAddress += PAGE_SIZE;
609 cPages--;
610 }
611
612 return VINF_SUCCESS;
613}
614
615
616
617/**
618 * Sets up the intermediate page tables for a verified mapping.
619 *
620 * @param pVM VM handle.
621 * @param uAddress Address of the mapping.
622 * @param HCPhys The physical address of the page range.
623 * @param cPages Number of pages.
624 * @param pPTDefault Pointer to the default page table for this mapping.
625 * @param pPTPaeDefault Pointer to the default page table for this mapping.
626 */
627static void pgmR3MapIntermediateDoOne(PVM pVM, uintptr_t uAddress, RTHCPHYS HCPhys, unsigned cPages, PX86PT pPTDefault, PX86PTPAE pPTPaeDefault)
628{
629 while (cPages > 0)
630 {
631 /*
632 * 32-Bit.
633 */
634 unsigned iPDE = (uAddress >> X86_PD_SHIFT) & X86_PD_MASK;
635 unsigned iPTE = (uAddress >> X86_PT_SHIFT) & X86_PT_MASK;
636 PX86PT pPT;
637 if (pVM->pgm.s.pInterPD->a[iPDE].u)
638 pPT = (PX86PT)MMPagePhys2Page(pVM, pVM->pgm.s.pInterPD->a[iPDE].u & X86_PDE_PG_MASK);
639 else
640 {
641 pVM->pgm.s.pInterPD->a[iPDE].u = X86_PDE_P | X86_PDE_A | X86_PDE_RW
642 | (uint32_t)MMPage2Phys(pVM, pPTDefault);
643 pPT = pPTDefault;
644 }
645 pPT->a[iPTE].u = X86_PTE_P | X86_PTE_RW | X86_PTE_A | X86_PTE_D | (uint32_t)HCPhys;
646
647 /*
648 * PAE
649 */
650 const unsigned iPDPE= (uAddress >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
651 iPDE = (uAddress >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
652 iPTE = (uAddress >> X86_PT_PAE_SHIFT) & X86_PT_PAE_MASK;
653 Assert(iPDPE < 4);
654 Assert(pVM->pgm.s.apInterPaePDs[iPDPE]);
655 PX86PTPAE pPTPae;
656 if (pVM->pgm.s.apInterPaePDs[iPDPE]->a[iPDE].u)
657 pPTPae = (PX86PTPAE)MMPagePhys2Page(pVM, pVM->pgm.s.apInterPaePDs[iPDPE]->a[iPDE].u & X86_PDE_PAE_PG_MASK);
658 else
659 {
660 pPTPae = pPTPaeDefault;
661 pVM->pgm.s.apInterPaePDs[iPDPE]->a[iPDE].u = X86_PDE_P | X86_PDE_A | X86_PDE_RW
662 | MMPage2Phys(pVM, pPTPaeDefault);
663 }
664 pPTPae->a[iPTE].u = X86_PTE_P | X86_PTE_RW | X86_PTE_A | X86_PTE_D | HCPhys;
665
666 /* next */
667 cPages--;
668 HCPhys += PAGE_SIZE;
669 uAddress += PAGE_SIZE;
670 }
671}
672
673
674/**
675 * Clears all PDEs involved with the mapping.
676 *
677 * @param pPGM Pointer to the PGM instance data.
678 * @param pMap Pointer to the mapping in question.
679 * @param iOldPDE The index of the 32-bit PDE corresponding to the base of the mapping.
680 */
681static void pgmR3MapClearPDEs(PPGM pPGM, PPGMMAPPING pMap, unsigned iOldPDE)
682{
683 unsigned i = pMap->cPTs;
684 iOldPDE += i;
685 while (i-- > 0)
686 {
687 iOldPDE--;
688
689 /*
690 * 32-bit.
691 */
692 pPGM->pInterPD->a[iOldPDE].u = 0;
693 pPGM->pHC32BitPD->a[iOldPDE].u = 0;
694
695 /*
696 * PAE.
697 */
698 const unsigned iPD = iOldPDE / 256;
699 unsigned iPDE = iOldPDE * 2 % 512;
700 pPGM->apInterPaePDs[iPD]->a[iPDE].u = 0;
701 pPGM->apHCPaePDs[iPD]->a[iPDE].u = 0;
702 iPDE++;
703 pPGM->apInterPaePDs[iPD]->a[iPDE].u = 0;
704 pPGM->apHCPaePDs[iPD]->a[iPDE].u = 0;
705
706 /* Clear the PGM_PDFLAGS_MAPPING flag for the page directory pointer entry. (legacy PAE guest mode) */
707 pPGM->pHCPaePDPT->a[iPD].u &= ~PGM_PLXFLAGS_MAPPING;
708 }
709}
710
711
712/**
713 * Sets all PDEs involved with the mapping.
714 *
715 * @param pVM The VM handle.
716 * @param pMap Pointer to the mapping in question.
717 * @param iNewPDE The index of the 32-bit PDE corresponding to the base of the mapping.
718 */
719static void pgmR3MapSetPDEs(PVM pVM, PPGMMAPPING pMap, unsigned iNewPDE)
720{
721 PPGM pPGM = &pVM->pgm.s;
722
723 /* If mappings are not supposed to be put in the shadow page table, then this function is a nop. */
724 if (!pgmMapAreMappingsEnabled(&pVM->pgm.s))
725 return;
726
727 Assert(PGMGetGuestMode(pVM) <= PGMMODE_PAE);
728
729 /*
730 * Init the page tables and insert them into the page directories.
731 */
732 unsigned i = pMap->cPTs;
733 iNewPDE += i;
734 while (i-- > 0)
735 {
736 iNewPDE--;
737
738 /*
739 * 32-bit.
740 */
741 if (pPGM->pHC32BitPD->a[iNewPDE].n.u1Present)
742 pgmPoolFree(pVM, pPGM->pHC32BitPD->a[iNewPDE].u & X86_PDE_PG_MASK, PGMPOOL_IDX_PD, iNewPDE);
743 X86PDE Pde;
744 /* Default mapping page directory flags are read/write and supervisor; individual page attributes determine the final flags */
745 Pde.u = PGM_PDFLAGS_MAPPING | X86_PDE_P | X86_PDE_A | X86_PDE_RW | X86_PDE_US | (uint32_t)pMap->aPTs[i].HCPhysPT;
746 pPGM->pInterPD->a[iNewPDE] = Pde;
747 pPGM->pHC32BitPD->a[iNewPDE] = Pde;
748
749 /*
750 * PAE.
751 */
752 const unsigned iPD = iNewPDE / 256;
753 unsigned iPDE = iNewPDE * 2 % 512;
754 if (pPGM->apHCPaePDs[iPD]->a[iPDE].n.u1Present)
755 pgmPoolFree(pVM, pPGM->apHCPaePDs[iPD]->a[iPDE].u & X86_PDE_PAE_PG_MASK, PGMPOOL_IDX_PAE_PD, iNewPDE * 2);
756 X86PDEPAE PdePae0;
757 PdePae0.u = PGM_PDFLAGS_MAPPING | X86_PDE_P | X86_PDE_A | X86_PDE_RW | X86_PDE_US | pMap->aPTs[i].HCPhysPaePT0;
758 pPGM->apInterPaePDs[iPD]->a[iPDE] = PdePae0;
759 pPGM->apHCPaePDs[iPD]->a[iPDE] = PdePae0;
760
761 iPDE++;
762 if (pPGM->apHCPaePDs[iPD]->a[iPDE].n.u1Present)
763 pgmPoolFree(pVM, pPGM->apHCPaePDs[iPD]->a[iPDE].u & X86_PDE_PAE_PG_MASK, PGMPOOL_IDX_PAE_PD, iNewPDE * 2 + 1);
764 X86PDEPAE PdePae1;
765 PdePae1.u = PGM_PDFLAGS_MAPPING | X86_PDE_P | X86_PDE_A | X86_PDE_RW | X86_PDE_US | pMap->aPTs[i].HCPhysPaePT1;
766 pPGM->apInterPaePDs[iPD]->a[iPDE] = PdePae1;
767 pPGM->apHCPaePDs[iPD]->a[iPDE] = PdePae1;
768
769 /* Set the PGM_PDFLAGS_MAPPING flag in the page directory pointer entry. (legacy PAE guest mode) */
770 pPGM->pHCPaePDPT->a[iPD].u |= PGM_PLXFLAGS_MAPPING;
771 }
772}
773
774/**
775 * Relocates a mapping to a new address.
776 *
777 * @param pVM VM handle.
778 * @param pMapping The mapping to relocate.
779 * @param GCPtrOldMapping The address of the start of the old mapping.
780 * @param GCPtrNewMapping The address of the start of the new mapping.
781 */
782void pgmR3MapRelocate(PVM pVM, PPGMMAPPING pMapping, RTGCPTR GCPtrOldMapping, RTGCPTR GCPtrNewMapping)
783{
784 unsigned iPDOld = GCPtrOldMapping >> X86_PD_SHIFT;
785 unsigned iPDNew = GCPtrNewMapping >> X86_PD_SHIFT;
786
787 Log(("PGM: Relocating %s from %VGv to %VGv\n", pMapping->pszDesc, GCPtrOldMapping, GCPtrNewMapping));
788 Assert(((unsigned)iPDOld << X86_PD_SHIFT) == pMapping->GCPtr);
789
790 /*
791 * Relocate the page table(s).
792 */
793 pgmR3MapClearPDEs(&pVM->pgm.s, pMapping, iPDOld);
794 pgmR3MapSetPDEs(pVM, pMapping, iPDNew);
795
796 /*
797 * Update and resort the mapping list.
798 */
799
800 /* Find previous mapping for pMapping, put result into pPrevMap. */
801 PPGMMAPPING pPrevMap = NULL;
802 PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3;
803 while (pCur && pCur != pMapping)
804 {
805 /* next */
806 pPrevMap = pCur;
807 pCur = pCur->pNextR3;
808 }
809 Assert(pCur);
810
811 /* Find mapping which >= than pMapping. */
812 RTGCPTR GCPtrNew = iPDNew << X86_PD_SHIFT;
813 PPGMMAPPING pPrev = NULL;
814 pCur = pVM->pgm.s.pMappingsR3;
815 while (pCur && pCur->GCPtr < GCPtrNew)
816 {
817 /* next */
818 pPrev = pCur;
819 pCur = pCur->pNextR3;
820 }
821
822 if (pCur != pMapping && pPrev != pMapping)
823 {
824 /*
825 * Unlink.
826 */
827 if (pPrevMap)
828 {
829 pPrevMap->pNextR3 = pMapping->pNextR3;
830 pPrevMap->pNextGC = pMapping->pNextGC;
831 pPrevMap->pNextR0 = pMapping->pNextR0;
832 }
833 else
834 {
835 pVM->pgm.s.pMappingsR3 = pMapping->pNextR3;
836 pVM->pgm.s.pMappingsGC = pMapping->pNextGC;
837 pVM->pgm.s.pMappingsR0 = pMapping->pNextR0;
838 }
839
840 /*
841 * Link
842 */
843 pMapping->pNextR3 = pCur;
844 if (pPrev)
845 {
846 pMapping->pNextGC = pPrev->pNextGC;
847 pMapping->pNextR0 = pPrev->pNextR0;
848 pPrev->pNextR3 = pMapping;
849 pPrev->pNextGC = MMHyperR3ToGC(pVM, pMapping);
850 pPrev->pNextR0 = MMHyperR3ToR0(pVM, pMapping);
851 }
852 else
853 {
854 pMapping->pNextGC = pVM->pgm.s.pMappingsGC;
855 pMapping->pNextR0 = pVM->pgm.s.pMappingsR0;
856 pVM->pgm.s.pMappingsR3 = pMapping;
857 pVM->pgm.s.pMappingsGC = MMHyperR3ToGC(pVM, pMapping);
858 pVM->pgm.s.pMappingsR0 = MMHyperR3ToR0(pVM, pMapping);
859 }
860 }
861
862 /*
863 * Update the entry.
864 */
865 pMapping->GCPtr = GCPtrNew;
866 pMapping->GCPtrLast = GCPtrNew + pMapping->cb - 1;
867
868 /*
869 * Callback to execute the relocation.
870 */
871 pMapping->pfnRelocate(pVM, iPDOld << X86_PD_SHIFT, iPDNew << X86_PD_SHIFT, PGMRELOCATECALL_RELOCATE, pMapping->pvUser);
872}
873
874
875/**
876 * Resolves a conflict between a page table based GC mapping and
877 * the Guest OS page tables. (32 bits version)
878 *
879 * @returns VBox status code.
880 * @param pVM VM Handle.
881 * @param pMapping The mapping which conflicts.
882 * @param pPDSrc The page directory of the guest OS.
883 * @param GCPtrOldMapping The address of the start of the current mapping.
884 */
885int pgmR3SyncPTResolveConflict(PVM pVM, PPGMMAPPING pMapping, PX86PD pPDSrc, RTGCPTR GCPtrOldMapping)
886{
887 STAM_PROFILE_START(&pVM->pgm.s.StatHCResolveConflict, a);
888
889 /*
890 * Scan for free page directory entries.
891 *
892 * Note that we do not support mappings at the very end of the
893 * address space since that will break our GCPtrEnd assumptions.
894 */
895 const unsigned cPTs = pMapping->cPTs;
896 unsigned iPDNew = ELEMENTS(pPDSrc->a) - cPTs; /* (+ 1 - 1) */
897 while (iPDNew-- > 0)
898 {
899 if (pPDSrc->a[iPDNew].n.u1Present)
900 continue;
901 if (cPTs > 1)
902 {
903 bool fOk = true;
904 for (unsigned i = 1; fOk && i < cPTs; i++)
905 if (pPDSrc->a[iPDNew + i].n.u1Present)
906 fOk = false;
907 if (!fOk)
908 continue;
909 }
910
911 /*
912 * Check that it's not conflicting with an intermediate page table mapping.
913 */
914 bool fOk = true;
915 unsigned i = cPTs;
916 while (fOk && i-- > 0)
917 fOk = !pVM->pgm.s.pInterPD->a[iPDNew + i].n.u1Present;
918 if (!fOk)
919 continue;
920 /** @todo AMD64 should check the PAE directories and skip the 32bit stuff. */
921
922 /*
923 * Ask for the mapping.
924 */
925 RTGCPTR GCPtrNewMapping = iPDNew << X86_PD_SHIFT;
926
927 if (pMapping->pfnRelocate(pVM, GCPtrOldMapping, GCPtrNewMapping, PGMRELOCATECALL_SUGGEST, pMapping->pvUser))
928 {
929 pgmR3MapRelocate(pVM, pMapping, GCPtrOldMapping, GCPtrNewMapping);
930 STAM_PROFILE_STOP(&pVM->pgm.s.StatHCResolveConflict, a);
931 return VINF_SUCCESS;
932 }
933 }
934
935 STAM_PROFILE_STOP(&pVM->pgm.s.StatHCResolveConflict, a);
936 AssertMsgFailed(("Failed to relocate page table mapping '%s' from %#x! (cPTs=%d)\n", pMapping->pszDesc, GCPtrOldMapping, cPTs));
937 return VERR_PGM_NO_HYPERVISOR_ADDRESS;
938}
939
940/**
941 * Resolves a conflict between a page table based GC mapping and
942 * the Guest OS page tables. (PAE bits version)
943 *
944 * @returns VBox status code.
945 * @param pVM VM Handle.
946 * @param pMapping The mapping which conflicts.
947 * @param GCPtrOldMapping The address of the start of the current mapping.
948 */
949int pgmR3SyncPTResolveConflictPAE(PVM pVM, PPGMMAPPING pMapping, RTGCPTR GCPtrOldMapping)
950{
951 STAM_PROFILE_START(&pVM->pgm.s.StatHCResolveConflict, a);
952
953 for (unsigned iPDPTE = X86_PG_PAE_PDPE_ENTRIES - 1; iPDPTE >= 0; iPDPTE--)
954 {
955 unsigned iPDSrc;
956 PX86PDPAE pPDSrc = pgmGstGetPaePDPtr(&pVM->pgm.s, iPDPTE << X86_PDPT_SHIFT, &iPDSrc);
957
958 /*
959 * Scan for free page directory entries.
960 *
961 * Note that we do not support mappings at the very end of the
962 * address space since that will break our GCPtrEnd assumptions.
963 */
964 const unsigned cPTs = pMapping->cb >> X86_PD_PAE_SHIFT;
965 unsigned iPDNew = ELEMENTS(pPDSrc->a) - cPTs; /* (+ 1 - 1) */
966
967 while (iPDNew-- > 0)
968 {
969 /* Ugly assumption that mappings start on a 4 MB boundary. */
970 if (iPDNew & 1)
971 continue;
972
973 if (pPDSrc)
974 {
975 if (pPDSrc->a[iPDNew].n.u1Present)
976 continue;
977 if (cPTs > 1)
978 {
979 bool fOk = true;
980 for (unsigned i = 1; fOk && i < cPTs; i++)
981 if (pPDSrc->a[iPDNew + i].n.u1Present)
982 fOk = false;
983 if (!fOk)
984 continue;
985 }
986 }
987 /*
988 * Check that it's not conflicting with an intermediate page table mapping.
989 */
990 bool fOk = true;
991 unsigned i = cPTs;
992 while (fOk && i-- > 0)
993 fOk = !pVM->pgm.s.apInterPaePDs[iPDPTE]->a[iPDNew + i].n.u1Present;
994 if (!fOk)
995 continue;
996
997 /*
998 * Ask for the mapping.
999 */
1000 RTGCPTR GCPtrNewMapping = (iPDPTE << X86_PDPT_SHIFT) + (iPDNew << X86_PD_PAE_SHIFT);
1001
1002 if (pMapping->pfnRelocate(pVM, GCPtrOldMapping, GCPtrNewMapping, PGMRELOCATECALL_SUGGEST, pMapping->pvUser))
1003 {
1004 pgmR3MapRelocate(pVM, pMapping, GCPtrOldMapping, GCPtrNewMapping);
1005 STAM_PROFILE_STOP(&pVM->pgm.s.StatHCResolveConflict, a);
1006 return VINF_SUCCESS;
1007 }
1008 }
1009 }
1010 STAM_PROFILE_STOP(&pVM->pgm.s.StatHCResolveConflict, a);
1011 AssertMsgFailed(("Failed to relocate page table mapping '%s' from %#x! (cPTs=%d)\n", pMapping->pszDesc, GCPtrOldMapping, pMapping->cb >> X86_PD_PAE_SHIFT));
1012 return VERR_PGM_NO_HYPERVISOR_ADDRESS;
1013}
1014
1015/**
1016 * Checks guest PD for conflicts with VMM GC mappings.
1017 *
1018 * @returns true if conflict detected.
1019 * @returns false if not.
1020 * @param pVM The virtual machine.
1021 * @param cr3 Guest context CR3 register.
1022 * @param fRawR0 Whether RawR0 is enabled or not.
1023 */
1024PGMR3DECL(bool) PGMR3MapHasConflicts(PVM pVM, uint64_t cr3, bool fRawR0) /** @todo how many HasConflict constructs do we really need? */
1025{
1026 /*
1027 * Can skip this if mappings are safely fixed.
1028 */
1029 if (pVM->pgm.s.fMappingsFixed)
1030 return false;
1031
1032 Assert(PGMGetGuestMode(pVM) <= PGMMODE_PAE);
1033
1034 /*
1035 * Iterate mappings.
1036 */
1037 if (PGMGetGuestMode(pVM) == PGMMODE_32_BIT)
1038 {
1039 /*
1040 * Resolve the page directory.
1041 */
1042 PX86PD pPD = pVM->pgm.s.pGuestPDHC;
1043 Assert(pPD);
1044 Assert(pPD == (PX86PD)MMPhysGCPhys2HCVirt(pVM, cr3 & X86_CR3_PAGE_MASK, sizeof(*pPD)));
1045
1046 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
1047 {
1048 unsigned iPDE = pCur->GCPtr >> X86_PD_SHIFT;
1049 unsigned iPT = pCur->cPTs;
1050 while (iPT-- > 0)
1051 if ( pPD->a[iPDE + iPT].n.u1Present /** @todo PGMGstGetPDE. */
1052 && (fRawR0 || pPD->a[iPDE + iPT].n.u1User))
1053 {
1054 STAM_COUNTER_INC(&pVM->pgm.s.StatHCDetectedConflicts);
1055 Log(("PGMR3HasMappingConflicts: Conflict was detected at %VGv for mapping %s (32 bits)\n"
1056 " iPDE=%#x iPT=%#x PDE=%VGp.\n",
1057 (iPT + iPDE) << X86_PD_SHIFT, pCur->pszDesc,
1058 iPDE, iPT, pPD->a[iPDE + iPT].au32[0]));
1059 return true;
1060 }
1061 }
1062 }
1063 else
1064 if (PGMGetGuestMode(pVM) == PGMMODE_PAE)
1065 {
1066 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
1067 {
1068 X86PDEPAE Pde;
1069 RTGCPTR GCPtr = pCur->GCPtr;
1070
1071 unsigned iPT = pCur->cb >> X86_PD_PAE_SHIFT;
1072 while (iPT-- > 0)
1073 {
1074 Pde.u = pgmGstGetPaePDE(&pVM->pgm.s, GCPtr);
1075
1076 if ( Pde.n.u1Present
1077 && (fRawR0 || Pde.n.u1User))
1078 {
1079 STAM_COUNTER_INC(&pVM->pgm.s.StatHCDetectedConflicts);
1080 Log(("PGMR3HasMappingConflicts: Conflict was detected at %VGv for mapping %s (PAE)\n"
1081 " PDE=%VGp.\n",
1082 GCPtr, pCur->pszDesc, Pde.u));
1083 return true;
1084 }
1085 GCPtr += (1 << X86_PD_PAE_SHIFT);
1086 }
1087 }
1088 }
1089 else
1090 AssertFailed();
1091
1092 return false;
1093}
1094
1095
1096/**
1097 * Read memory from the guest mappings.
1098 *
1099 * This will use the page tables associated with the mappings to
1100 * read the memory. This means that not all kind of memory is readable
1101 * since we don't necessarily know how to convert that physical address
1102 * to a HC virtual one.
1103 *
1104 * @returns VBox status.
1105 * @param pVM VM handle.
1106 * @param pvDst The destination address (HC of course).
1107 * @param GCPtrSrc The source address (GC virtual address).
1108 * @param cb Number of bytes to read.
1109 */
1110PGMR3DECL(int) PGMR3MapRead(PVM pVM, void *pvDst, RTGCPTR GCPtrSrc, size_t cb)
1111{
1112/** @todo remove this simplicity hack */
1113 /*
1114 * Simplicity over speed... Chop the request up into chunks
1115 * which don't cross pages.
1116 */
1117 if (cb + (GCPtrSrc & PAGE_OFFSET_MASK) > PAGE_SIZE)
1118 {
1119 for (;;)
1120 {
1121 unsigned cbRead = RT_MIN(cb, PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK));
1122 int rc = PGMR3MapRead(pVM, pvDst, GCPtrSrc, cbRead);
1123 if (VBOX_FAILURE(rc))
1124 return rc;
1125 cb -= cbRead;
1126 if (!cb)
1127 break;
1128 pvDst = (char *)pvDst + cbRead;
1129 GCPtrSrc += cbRead;
1130 }
1131 return VINF_SUCCESS;
1132 }
1133
1134 /*
1135 * Find the mapping.
1136 */
1137 PPGMMAPPING pCur = CTXALLSUFF(pVM->pgm.s.pMappings);
1138 while (pCur)
1139 {
1140 RTGCUINTPTR off = (RTGCUINTPTR)GCPtrSrc - (RTGCUINTPTR)pCur->GCPtr;
1141 if (off < pCur->cb)
1142 {
1143 if (off + cb > pCur->cb)
1144 {
1145 AssertMsgFailed(("Invalid page range %VGv LB%#x. mapping '%s' %VGv to %VGv\n",
1146 GCPtrSrc, cb, pCur->pszDesc, pCur->GCPtr, pCur->GCPtrLast));
1147 return VERR_INVALID_PARAMETER;
1148 }
1149
1150 unsigned iPT = off >> X86_PD_SHIFT;
1151 unsigned iPTE = (off >> PAGE_SHIFT) & X86_PT_MASK;
1152 while (cb > 0 && iPTE < ELEMENTS(CTXALLSUFF(pCur->aPTs[iPT].pPT)->a))
1153 {
1154 if (!CTXALLSUFF(pCur->aPTs[iPT].paPaePTs)[iPTE / 512].a[iPTE % 512].n.u1Present)
1155 return VERR_PAGE_NOT_PRESENT;
1156 RTHCPHYS HCPhys = CTXALLSUFF(pCur->aPTs[iPT].paPaePTs)[iPTE / 512].a[iPTE % 512].u & X86_PTE_PAE_PG_MASK;
1157
1158 /*
1159 * Get the virtual page from the physical one.
1160 */
1161 void *pvPage;
1162 int rc = MMR3HCPhys2HCVirt(pVM, HCPhys, &pvPage);
1163 if (VBOX_FAILURE(rc))
1164 return rc;
1165
1166 memcpy(pvDst, (char *)pvPage + (GCPtrSrc & PAGE_OFFSET_MASK), cb);
1167 return VINF_SUCCESS;
1168 }
1169 }
1170
1171 /* next */
1172 pCur = CTXALLSUFF(pCur->pNext);
1173 }
1174
1175 return VERR_INVALID_POINTER;
1176}
1177
1178
1179/**
1180 * Info callback for 'pgmhandlers'.
1181 *
1182 * @param pHlp The output helpers.
1183 * @param pszArgs The arguments. phys or virt.
1184 */
1185DECLCALLBACK(void) pgmR3MapInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1186{
1187 pHlp->pfnPrintf(pHlp, pVM->pgm.s.fMappingsFixed
1188 ? "\nThe mappings are FIXED.\n"
1189 : "\nThe mappings are FLOATING.\n");
1190 PPGMMAPPING pCur;
1191 for (pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
1192 pHlp->pfnPrintf(pHlp, "%VGv - %VGv %s\n", pCur->GCPtr, pCur->GCPtrLast, pCur->pszDesc);
1193}
1194
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette