VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMPhys.cpp@ 24646

Last change on this file since 24646 was 24349, checked in by vboxsync, 15 years ago

PGMR3PhysWriteExternal: Instrumented it to track down who is writing after PGM has saved it's state.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 118.0 KB
Line 
1/* $Id: PGMPhys.cpp 24349 2009-11-04 17:37:15Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_PGM_PHYS
27#include <VBox/pgm.h>
28#include <VBox/iom.h>
29#include <VBox/mm.h>
30#include <VBox/stam.h>
31#include <VBox/rem.h>
32#include <VBox/pdmdev.h>
33#include "PGMInternal.h"
34#include <VBox/vm.h>
35#include <VBox/sup.h>
36#include <VBox/param.h>
37#include <VBox/err.h>
38#include <VBox/log.h>
39#include <iprt/assert.h>
40#include <iprt/alloc.h>
41#include <iprt/asm.h>
42#include <iprt/thread.h>
43#include <iprt/string.h>
44
45
46/*******************************************************************************
47* Defined Constants And Macros *
48*******************************************************************************/
49/** The number of pages to free in one batch. */
50#define PGMPHYS_FREE_PAGE_BATCH_SIZE 128
51
52
53/*******************************************************************************
54* Internal Functions *
55*******************************************************************************/
56static DECLCALLBACK(int) pgmR3PhysRomWriteHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
57static int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys);
58
59
60/*
61 * PGMR3PhysReadU8-64
62 * PGMR3PhysWriteU8-64
63 */
64#define PGMPHYSFN_READNAME PGMR3PhysReadU8
65#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8
66#define PGMPHYS_DATASIZE 1
67#define PGMPHYS_DATATYPE uint8_t
68#include "PGMPhysRWTmpl.h"
69
70#define PGMPHYSFN_READNAME PGMR3PhysReadU16
71#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16
72#define PGMPHYS_DATASIZE 2
73#define PGMPHYS_DATATYPE uint16_t
74#include "PGMPhysRWTmpl.h"
75
76#define PGMPHYSFN_READNAME PGMR3PhysReadU32
77#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32
78#define PGMPHYS_DATASIZE 4
79#define PGMPHYS_DATATYPE uint32_t
80#include "PGMPhysRWTmpl.h"
81
82#define PGMPHYSFN_READNAME PGMR3PhysReadU64
83#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64
84#define PGMPHYS_DATASIZE 8
85#define PGMPHYS_DATATYPE uint64_t
86#include "PGMPhysRWTmpl.h"
87
88
89/**
90 * EMT worker for PGMR3PhysReadExternal.
91 */
92static DECLCALLBACK(int) pgmR3PhysReadExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, void *pvBuf, size_t cbRead)
93{
94 PGMPhysRead(pVM, *pGCPhys, pvBuf, cbRead);
95 return VINF_SUCCESS;
96}
97
98
99/**
100 * Write to physical memory, external users.
101 *
102 * @returns VBox status code.
103 * @retval VINF_SUCCESS.
104 *
105 * @param pVM VM Handle.
106 * @param GCPhys Physical address to write to.
107 * @param pvBuf What to write.
108 * @param cbWrite How many bytes to write.
109 *
110 * @thread Any but EMTs.
111 */
112VMMR3DECL(int) PGMR3PhysReadExternal(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead)
113{
114 VM_ASSERT_OTHER_THREAD(pVM);
115
116 AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
117 LogFlow(("PGMR3PhysReadExternal: %RGp %d\n", GCPhys, cbRead));
118
119 pgmLock(pVM);
120
121 /*
122 * Copy loop on ram ranges.
123 */
124 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
125 for (;;)
126 {
127 /* Find range. */
128 while (pRam && GCPhys > pRam->GCPhysLast)
129 pRam = pRam->CTX_SUFF(pNext);
130 /* Inside range or not? */
131 if (pRam && GCPhys >= pRam->GCPhys)
132 {
133 /*
134 * Must work our way thru this page by page.
135 */
136 RTGCPHYS off = GCPhys - pRam->GCPhys;
137 while (off < pRam->cb)
138 {
139 unsigned iPage = off >> PAGE_SHIFT;
140 PPGMPAGE pPage = &pRam->aPages[iPage];
141
142 /*
143 * If the page has an ALL access handler, we'll have to
144 * delegate the job to EMT.
145 */
146 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
147 {
148 pgmUnlock(pVM);
149
150 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysReadExternalEMT, 4,
151 pVM, &GCPhys, pvBuf, cbRead);
152 }
153 Assert(!PGM_PAGE_IS_MMIO(pPage));
154
155 /*
156 * Simple stuff, go ahead.
157 */
158 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
159 if (cb > cbRead)
160 cb = cbRead;
161 const void *pvSrc;
162 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc);
163 if (RT_SUCCESS(rc))
164 memcpy(pvBuf, pvSrc, cb);
165 else
166 {
167 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
168 pRam->GCPhys + off, pPage, rc));
169 memset(pvBuf, 0xff, cb);
170 }
171
172 /* next page */
173 if (cb >= cbRead)
174 {
175 pgmUnlock(pVM);
176 return VINF_SUCCESS;
177 }
178 cbRead -= cb;
179 off += cb;
180 GCPhys += cb;
181 pvBuf = (char *)pvBuf + cb;
182 } /* walk pages in ram range. */
183 }
184 else
185 {
186 LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
187
188 /*
189 * Unassigned address space.
190 */
191 if (!pRam)
192 break;
193 size_t cb = pRam->GCPhys - GCPhys;
194 if (cb >= cbRead)
195 {
196 memset(pvBuf, 0xff, cbRead);
197 break;
198 }
199 memset(pvBuf, 0xff, cb);
200
201 cbRead -= cb;
202 pvBuf = (char *)pvBuf + cb;
203 GCPhys += cb;
204 }
205 } /* Ram range walk */
206
207 pgmUnlock(pVM);
208
209 return VINF_SUCCESS;
210}
211
212
213/**
214 * EMT worker for PGMR3PhysWriteExternal.
215 */
216static DECLCALLBACK(int) pgmR3PhysWriteExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, const void *pvBuf, size_t cbWrite)
217{
218 /** @todo VERR_EM_NO_MEMORY */
219 PGMPhysWrite(pVM, *pGCPhys, pvBuf, cbWrite);
220 return VINF_SUCCESS;
221}
222
223
224/**
225 * Write to physical memory, external users.
226 *
227 * @returns VBox status code.
228 * @retval VINF_SUCCESS.
229 * @retval VERR_EM_NO_MEMORY.
230 *
231 * @param pVM VM Handle.
232 * @param GCPhys Physical address to write to.
233 * @param pvBuf What to write.
234 * @param cbWrite How many bytes to write.
235 * @param pszWho Who is writing. For tracking down who is writing
236 * after we've saved the state.
237 *
238 * @thread Any but EMTs.
239 */
240VMMDECL(int) PGMR3PhysWriteExternal(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, const char *pszWho)
241{
242 VM_ASSERT_OTHER_THREAD(pVM);
243
244 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites,
245 ("Calling PGMR3PhysWriteExternal after pgmR3Save()! GCPhys=%RGp cbWrite=%#x pszWho=%s\n",
246 GCPhys, cbWrite, pszWho));
247 AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
248 LogFlow(("PGMR3PhysWriteExternal: %RGp %d\n", GCPhys, cbWrite));
249
250 pgmLock(pVM);
251
252 /*
253 * Copy loop on ram ranges, stop when we hit something difficult.
254 */
255 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
256 for (;;)
257 {
258 /* Find range. */
259 while (pRam && GCPhys > pRam->GCPhysLast)
260 pRam = pRam->CTX_SUFF(pNext);
261 /* Inside range or not? */
262 if (pRam && GCPhys >= pRam->GCPhys)
263 {
264 /*
265 * Must work our way thru this page by page.
266 */
267 RTGCPTR off = GCPhys - pRam->GCPhys;
268 while (off < pRam->cb)
269 {
270 RTGCPTR iPage = off >> PAGE_SHIFT;
271 PPGMPAGE pPage = &pRam->aPages[iPage];
272
273 /*
274 * It the page is in any way problematic, we have to
275 * do the work on the EMT. Anything that needs to be made
276 * writable or involves access handlers is problematic.
277 */
278 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
279 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
280 {
281 pgmUnlock(pVM);
282
283 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysWriteExternalEMT, 4,
284 pVM, &GCPhys, pvBuf, cbWrite);
285 }
286 Assert(!PGM_PAGE_IS_MMIO(pPage));
287
288 /*
289 * Simple stuff, go ahead.
290 */
291 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
292 if (cb > cbWrite)
293 cb = cbWrite;
294 void *pvDst;
295 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst);
296 if (RT_SUCCESS(rc))
297 memcpy(pvDst, pvBuf, cb);
298 else
299 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
300 pRam->GCPhys + off, pPage, rc));
301
302 /* next page */
303 if (cb >= cbWrite)
304 {
305 pgmUnlock(pVM);
306 return VINF_SUCCESS;
307 }
308
309 cbWrite -= cb;
310 off += cb;
311 GCPhys += cb;
312 pvBuf = (const char *)pvBuf + cb;
313 } /* walk pages in ram range */
314 }
315 else
316 {
317 /*
318 * Unassigned address space, skip it.
319 */
320 if (!pRam)
321 break;
322 size_t cb = pRam->GCPhys - GCPhys;
323 if (cb >= cbWrite)
324 break;
325 cbWrite -= cb;
326 pvBuf = (const char *)pvBuf + cb;
327 GCPhys += cb;
328 }
329 } /* Ram range walk */
330
331 pgmUnlock(pVM);
332 return VINF_SUCCESS;
333}
334
335
336/**
337 * VMR3ReqCall worker for PGMR3PhysGCPhys2CCPtrExternal to make pages writable.
338 *
339 * @returns see PGMR3PhysGCPhys2CCPtrExternal
340 * @param pVM The VM handle.
341 * @param pGCPhys Pointer to the guest physical address.
342 * @param ppv Where to store the mapping address.
343 * @param pLock Where to store the lock.
344 */
345static DECLCALLBACK(int) pgmR3PhysGCPhys2CCPtrDelegated(PVM pVM, PRTGCPHYS pGCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
346{
347 /*
348 * Just hand it to PGMPhysGCPhys2CCPtr and check that it's not a page with
349 * an access handler after it succeeds.
350 */
351 int rc = pgmLock(pVM);
352 AssertRCReturn(rc, rc);
353
354 rc = PGMPhysGCPhys2CCPtr(pVM, *pGCPhys, ppv, pLock);
355 if (RT_SUCCESS(rc))
356 {
357 PPGMPAGEMAPTLBE pTlbe;
358 int rc2 = pgmPhysPageQueryTlbe(&pVM->pgm.s, *pGCPhys, &pTlbe);
359 AssertFatalRC(rc2);
360 PPGMPAGE pPage = pTlbe->pPage;
361 if (PGM_PAGE_IS_MMIO(pPage))
362 {
363 PGMPhysReleasePageMappingLock(pVM, pLock);
364 rc = VERR_PGM_PHYS_PAGE_RESERVED;
365 }
366 else if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
367#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
368 || pgmPoolIsDirtyPage(pVM, *pGCPhys)
369#endif
370 )
371 {
372 /* We *must* flush any corresponding pgm pool page here, otherwise we'll
373 * not be informed about writes and keep bogus gst->shw mappings around.
374 */
375 pgmPoolFlushPageByGCPhys(pVM, *pGCPhys);
376 Assert(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage));
377 /** @todo r=bird: return VERR_PGM_PHYS_PAGE_RESERVED here if it still has
378 * active handlers, see the PGMR3PhysGCPhys2CCPtrExternal docs. */
379 }
380 }
381
382 pgmUnlock(pVM);
383 return rc;
384}
385
386
387/**
388 * Requests the mapping of a guest page into ring-3, external threads.
389 *
390 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
391 * release it.
392 *
393 * This API will assume your intention is to write to the page, and will
394 * therefore replace shared and zero pages. If you do not intend to modify the
395 * page, use the PGMR3PhysGCPhys2CCPtrReadOnlyExternal() API.
396 *
397 * @returns VBox status code.
398 * @retval VINF_SUCCESS on success.
399 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
400 * backing or if the page has any active access handlers. The caller
401 * must fall back on using PGMR3PhysWriteExternal.
402 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
403 *
404 * @param pVM The VM handle.
405 * @param GCPhys The guest physical address of the page that should be mapped.
406 * @param ppv Where to store the address corresponding to GCPhys.
407 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
408 *
409 * @remark Avoid calling this API from within critical sections (other than the
410 * PGM one) because of the deadlock risk when we have to delegating the
411 * task to an EMT.
412 * @thread Any.
413 */
414VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrExternal(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
415{
416 AssertPtr(ppv);
417 AssertPtr(pLock);
418
419 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
420
421 int rc = pgmLock(pVM);
422 AssertRCReturn(rc, rc);
423
424 /*
425 * Query the Physical TLB entry for the page (may fail).
426 */
427 PPGMPAGEMAPTLBE pTlbe;
428 rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
429 if (RT_SUCCESS(rc))
430 {
431 PPGMPAGE pPage = pTlbe->pPage;
432 if (PGM_PAGE_IS_MMIO(pPage))
433 rc = VERR_PGM_PHYS_PAGE_RESERVED;
434 else
435 {
436 /*
437 * If the page is shared, the zero page, or being write monitored
438 * it must be converted to an page that's writable if possible.
439 * This has to be done on an EMT.
440 */
441 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
442#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
443 || pgmPoolIsDirtyPage(pVM, GCPhys)
444#endif
445 || RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED))
446 {
447 pgmUnlock(pVM);
448
449 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
450 pVM, &GCPhys, ppv, pLock);
451 }
452
453 /*
454 * Now, just perform the locking and calculate the return address.
455 */
456 PPGMPAGEMAP pMap = pTlbe->pMap;
457 if (pMap)
458 pMap->cRefs++;
459
460 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
461 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
462 {
463 if (cLocks == 0)
464 pVM->pgm.s.cWriteLockedPages++;
465 PGM_PAGE_INC_WRITE_LOCKS(pPage);
466 }
467 else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
468 {
469 PGM_PAGE_INC_WRITE_LOCKS(pPage);
470 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", GCPhys, pPage));
471 if (pMap)
472 pMap->cRefs++; /* Extra ref to prevent it from going away. */
473 }
474
475 *ppv = (void *)((uintptr_t)pTlbe->pv | (GCPhys & PAGE_OFFSET_MASK));
476 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
477 pLock->pvMap = pMap;
478 }
479 }
480
481 pgmUnlock(pVM);
482 return rc;
483}
484
485
486/**
487 * Requests the mapping of a guest page into ring-3, external threads.
488 *
489 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
490 * release it.
491 *
492 * @returns VBox status code.
493 * @retval VINF_SUCCESS on success.
494 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
495 * backing or if the page as an active ALL access handler. The caller
496 * must fall back on using PGMPhysRead.
497 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
498 *
499 * @param pVM The VM handle.
500 * @param GCPhys The guest physical address of the page that should be mapped.
501 * @param ppv Where to store the address corresponding to GCPhys.
502 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
503 *
504 * @remark Avoid calling this API from within critical sections (other than
505 * the PGM one) because of the deadlock risk.
506 * @thread Any.
507 */
508VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrReadOnlyExternal(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
509{
510 int rc = pgmLock(pVM);
511 AssertRCReturn(rc, rc);
512
513 /*
514 * Query the Physical TLB entry for the page (may fail).
515 */
516 PPGMPAGEMAPTLBE pTlbe;
517 rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
518 if (RT_SUCCESS(rc))
519 {
520 PPGMPAGE pPage = pTlbe->pPage;
521#if 1
522 /* MMIO pages doesn't have any readable backing. */
523 if (PGM_PAGE_IS_MMIO(pPage))
524 rc = VERR_PGM_PHYS_PAGE_RESERVED;
525#else
526 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
527 rc = VERR_PGM_PHYS_PAGE_RESERVED;
528#endif
529 else
530 {
531 /*
532 * Now, just perform the locking and calculate the return address.
533 */
534 PPGMPAGEMAP pMap = pTlbe->pMap;
535 if (pMap)
536 pMap->cRefs++;
537
538 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
539 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
540 {
541 if (cLocks == 0)
542 pVM->pgm.s.cReadLockedPages++;
543 PGM_PAGE_INC_READ_LOCKS(pPage);
544 }
545 else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
546 {
547 PGM_PAGE_INC_READ_LOCKS(pPage);
548 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", GCPhys, pPage));
549 if (pMap)
550 pMap->cRefs++; /* Extra ref to prevent it from going away. */
551 }
552
553 *ppv = (void *)((uintptr_t)pTlbe->pv | (GCPhys & PAGE_OFFSET_MASK));
554 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
555 pLock->pvMap = pMap;
556 }
557 }
558
559 pgmUnlock(pVM);
560 return rc;
561}
562
563
564/**
565 * Relinks the RAM ranges using the pSelfRC and pSelfR0 pointers.
566 *
567 * Called when anything was relocated.
568 *
569 * @param pVM Pointer to the shared VM structure.
570 */
571void pgmR3PhysRelinkRamRanges(PVM pVM)
572{
573 PPGMRAMRANGE pCur;
574
575#ifdef VBOX_STRICT
576 for (pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
577 {
578 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfR0 == MMHyperCCToR0(pVM, pCur));
579 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfRC == MMHyperCCToRC(pVM, pCur));
580 Assert((pCur->GCPhys & PAGE_OFFSET_MASK) == 0);
581 Assert((pCur->GCPhysLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
582 Assert((pCur->cb & PAGE_OFFSET_MASK) == 0);
583 Assert(pCur->cb == pCur->GCPhysLast - pCur->GCPhys + 1);
584 for (PPGMRAMRANGE pCur2 = pVM->pgm.s.pRamRangesR3; pCur2; pCur2 = pCur2->pNextR3)
585 Assert( pCur2 == pCur
586 || strcmp(pCur2->pszDesc, pCur->pszDesc)); /** @todo fix MMIO ranges!! */
587 }
588#endif
589
590 pCur = pVM->pgm.s.pRamRangesR3;
591 if (pCur)
592 {
593 pVM->pgm.s.pRamRangesR0 = pCur->pSelfR0;
594 pVM->pgm.s.pRamRangesRC = pCur->pSelfRC;
595
596 for (; pCur->pNextR3; pCur = pCur->pNextR3)
597 {
598 pCur->pNextR0 = pCur->pNextR3->pSelfR0;
599 pCur->pNextRC = pCur->pNextR3->pSelfRC;
600 }
601
602 Assert(pCur->pNextR0 == NIL_RTR0PTR);
603 Assert(pCur->pNextRC == NIL_RTRCPTR);
604 }
605 else
606 {
607 Assert(pVM->pgm.s.pRamRangesR0 == NIL_RTR0PTR);
608 Assert(pVM->pgm.s.pRamRangesRC == NIL_RTRCPTR);
609 }
610 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
611}
612
613
614/**
615 * Links a new RAM range into the list.
616 *
617 * @param pVM Pointer to the shared VM structure.
618 * @param pNew Pointer to the new list entry.
619 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
620 */
621static void pgmR3PhysLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, PPGMRAMRANGE pPrev)
622{
623 AssertMsg(pNew->pszDesc, ("%RGp-%RGp\n", pNew->GCPhys, pNew->GCPhysLast));
624 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfR0 == MMHyperCCToR0(pVM, pNew));
625 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfRC == MMHyperCCToRC(pVM, pNew));
626
627 pgmLock(pVM);
628
629 PPGMRAMRANGE pRam = pPrev ? pPrev->pNextR3 : pVM->pgm.s.pRamRangesR3;
630 pNew->pNextR3 = pRam;
631 pNew->pNextR0 = pRam ? pRam->pSelfR0 : NIL_RTR0PTR;
632 pNew->pNextRC = pRam ? pRam->pSelfRC : NIL_RTRCPTR;
633
634 if (pPrev)
635 {
636 pPrev->pNextR3 = pNew;
637 pPrev->pNextR0 = pNew->pSelfR0;
638 pPrev->pNextRC = pNew->pSelfRC;
639 }
640 else
641 {
642 pVM->pgm.s.pRamRangesR3 = pNew;
643 pVM->pgm.s.pRamRangesR0 = pNew->pSelfR0;
644 pVM->pgm.s.pRamRangesRC = pNew->pSelfRC;
645 }
646 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
647
648 pgmUnlock(pVM);
649}
650
651
652/**
653 * Unlink an existing RAM range from the list.
654 *
655 * @param pVM Pointer to the shared VM structure.
656 * @param pRam Pointer to the new list entry.
657 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
658 */
659static void pgmR3PhysUnlinkRamRange2(PVM pVM, PPGMRAMRANGE pRam, PPGMRAMRANGE pPrev)
660{
661 Assert(pPrev ? pPrev->pNextR3 == pRam : pVM->pgm.s.pRamRangesR3 == pRam);
662 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfR0 == MMHyperCCToR0(pVM, pRam));
663 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfRC == MMHyperCCToRC(pVM, pRam));
664
665 pgmLock(pVM);
666
667 PPGMRAMRANGE pNext = pRam->pNextR3;
668 if (pPrev)
669 {
670 pPrev->pNextR3 = pNext;
671 pPrev->pNextR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
672 pPrev->pNextRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
673 }
674 else
675 {
676 Assert(pVM->pgm.s.pRamRangesR3 == pRam);
677 pVM->pgm.s.pRamRangesR3 = pNext;
678 pVM->pgm.s.pRamRangesR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
679 pVM->pgm.s.pRamRangesRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
680 }
681 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
682
683 pgmUnlock(pVM);
684}
685
686
687/**
688 * Unlink an existing RAM range from the list.
689 *
690 * @param pVM Pointer to the shared VM structure.
691 * @param pRam Pointer to the new list entry.
692 */
693static void pgmR3PhysUnlinkRamRange(PVM pVM, PPGMRAMRANGE pRam)
694{
695 pgmLock(pVM);
696
697 /* find prev. */
698 PPGMRAMRANGE pPrev = NULL;
699 PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3;
700 while (pCur != pRam)
701 {
702 pPrev = pCur;
703 pCur = pCur->pNextR3;
704 }
705 AssertFatal(pCur);
706
707 pgmR3PhysUnlinkRamRange2(pVM, pRam, pPrev);
708
709 pgmUnlock(pVM);
710}
711
712
713/**
714 * Frees a range of pages, replacing them with ZERO pages of the specified type.
715 *
716 * @returns VBox status code.
717 * @param pVM The VM handle.
718 * @param pRam The RAM range in which the pages resides.
719 * @param GCPhys The address of the first page.
720 * @param GCPhysLast The address of the last page.
721 * @param uType The page type to replace then with.
722 */
723static int pgmR3PhysFreePageRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, uint8_t uType)
724{
725 uint32_t cPendingPages = 0;
726 PGMMFREEPAGESREQ pReq;
727 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
728 AssertLogRelRCReturn(rc, rc);
729
730 /* Itegerate the pages. */
731 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
732 uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1;
733 while (cPagesLeft-- > 0)
734 {
735 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
736 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
737
738 PGM_PAGE_SET_TYPE(pPageDst, uType);
739
740 GCPhys += PAGE_SIZE;
741 pPageDst++;
742 }
743
744 if (cPendingPages)
745 {
746 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
747 AssertLogRelRCReturn(rc, rc);
748 }
749 GMMR3FreePagesCleanup(pReq);
750
751 return rc;
752}
753
754
755/**
756 * PGMR3PhysRegisterRam worker that initializes and links a RAM range.
757 *
758 * @param pVM The VM handle.
759 * @param pNew The new RAM range.
760 * @param GCPhys The address of the RAM range.
761 * @param GCPhysLast The last address of the RAM range.
762 * @param RCPtrNew The RC address if the range is floating. NIL_RTRCPTR
763 * if in HMA.
764 * @param R0PtrNew Ditto for R0.
765 * @param pszDesc The description.
766 * @param pPrev The previous RAM range (for linking).
767 */
768static void pgmR3PhysInitAndLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
769 RTRCPTR RCPtrNew, RTR0PTR R0PtrNew, const char *pszDesc, PPGMRAMRANGE pPrev)
770{
771 /*
772 * Initialize the range.
773 */
774 pNew->pSelfR0 = R0PtrNew != NIL_RTR0PTR ? R0PtrNew : MMHyperCCToR0(pVM, pNew);
775 pNew->pSelfRC = RCPtrNew != NIL_RTRCPTR ? RCPtrNew : MMHyperCCToRC(pVM, pNew);
776 pNew->GCPhys = GCPhys;
777 pNew->GCPhysLast = GCPhysLast;
778 pNew->cb = GCPhysLast - GCPhys + 1;
779 pNew->pszDesc = pszDesc;
780 pNew->fFlags = RCPtrNew != NIL_RTRCPTR ? PGM_RAM_RANGE_FLAGS_FLOATING : 0;
781 pNew->pvR3 = NULL;
782 pNew->paLSPages = NULL;
783
784 uint32_t const cPages = pNew->cb >> PAGE_SHIFT;
785 RTGCPHYS iPage = cPages;
786 while (iPage-- > 0)
787 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM);
788
789 /* Update the page count stats. */
790 pVM->pgm.s.cZeroPages += cPages;
791 pVM->pgm.s.cAllPages += cPages;
792
793 /*
794 * Link it.
795 */
796 pgmR3PhysLinkRamRange(pVM, pNew, pPrev);
797}
798
799
800/**
801 * Relocate a floating RAM range.
802 *
803 * @copydoc FNPGMRELOCATE.
804 */
805static DECLCALLBACK(bool) pgmR3PhysRamRangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew, PGMRELOCATECALL enmMode, void *pvUser)
806{
807 PPGMRAMRANGE pRam = (PPGMRAMRANGE)pvUser;
808 Assert(pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING);
809 Assert(pRam->pSelfRC == GCPtrOld + PAGE_SIZE);
810
811 switch (enmMode)
812 {
813 case PGMRELOCATECALL_SUGGEST:
814 return true;
815 case PGMRELOCATECALL_RELOCATE:
816 {
817 /* Update myself and then relink all the ranges. */
818 pgmLock(pVM);
819 pRam->pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE);
820 pgmR3PhysRelinkRamRanges(pVM);
821 pgmUnlock(pVM);
822 return true;
823 }
824
825 default:
826 AssertFailedReturn(false);
827 }
828}
829
830
831/**
832 * PGMR3PhysRegisterRam worker that registers a high chunk.
833 *
834 * @returns VBox status code.
835 * @param pVM The VM handle.
836 * @param GCPhys The address of the RAM.
837 * @param cRamPages The number of RAM pages to register.
838 * @param cbChunk The size of the PGMRAMRANGE guest mapping.
839 * @param iChunk The chunk number.
840 * @param pszDesc The RAM range description.
841 * @param ppPrev Previous RAM range pointer. In/Out.
842 */
843static int pgmR3PhysRegisterHighRamChunk(PVM pVM, RTGCPHYS GCPhys, uint32_t cRamPages,
844 uint32_t cbChunk, uint32_t iChunk, const char *pszDesc,
845 PPGMRAMRANGE *ppPrev)
846{
847 const char *pszDescChunk = iChunk == 0
848 ? pszDesc
849 : MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s (#%u)", pszDesc, iChunk + 1);
850 AssertReturn(pszDescChunk, VERR_NO_MEMORY);
851
852 /*
853 * Allocate memory for the new chunk.
854 */
855 size_t const cChunkPages = RT_ALIGN_Z(RT_UOFFSETOF(PGMRAMRANGE, aPages[cRamPages]), PAGE_SIZE) >> PAGE_SHIFT;
856 PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
857 AssertReturn(paChunkPages, VERR_NO_TMP_MEMORY);
858 RTR0PTR R0PtrChunk = NIL_RTR0PTR;
859 void *pvChunk = NULL;
860 int rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk,
861#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
862 VMMIsHwVirtExtForced(pVM) ? &R0PtrChunk : NULL,
863#else
864 NULL,
865#endif
866 paChunkPages);
867 if (RT_SUCCESS(rc))
868 {
869#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
870 if (!VMMIsHwVirtExtForced(pVM))
871 R0PtrChunk = NIL_RTR0PTR;
872#else
873 R0PtrChunk = (uintptr_t)pvChunk;
874#endif
875 memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
876
877 PPGMRAMRANGE pNew = (PPGMRAMRANGE)pvChunk;
878
879 /*
880 * Create a mapping and map the pages into it.
881 * We push these in below the HMA.
882 */
883 RTGCPTR GCPtrChunkMap = pVM->pgm.s.GCPtrPrevRamRangeMapping - cbChunk;
884 rc = PGMR3MapPT(pVM, GCPtrChunkMap, cbChunk, 0 /*fFlags*/, pgmR3PhysRamRangeRelocate, pNew, pszDescChunk);
885 if (RT_SUCCESS(rc))
886 {
887 pVM->pgm.s.GCPtrPrevRamRangeMapping = GCPtrChunkMap;
888
889 RTGCPTR const GCPtrChunk = GCPtrChunkMap + PAGE_SIZE;
890 RTGCPTR GCPtrPage = GCPtrChunk;
891 for (uint32_t iPage = 0; iPage < cChunkPages && RT_SUCCESS(rc); iPage++, GCPtrPage += PAGE_SIZE)
892 rc = PGMMap(pVM, GCPtrPage, paChunkPages[iPage].Phys, PAGE_SIZE, 0);
893 if (RT_SUCCESS(rc))
894 {
895 /*
896 * Ok, init and link the range.
897 */
898 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhys + ((RTGCPHYS)cRamPages << PAGE_SHIFT) - 1,
899 (RTRCPTR)GCPtrChunk, R0PtrChunk, pszDescChunk, *ppPrev);
900 *ppPrev = pNew;
901 }
902 }
903
904 if (RT_FAILURE(rc))
905 SUPR3PageFreeEx(pvChunk, cChunkPages);
906 }
907
908 RTMemTmpFree(paChunkPages);
909 return rc;
910}
911
912
913/**
914 * Sets up a range RAM.
915 *
916 * This will check for conflicting registrations, make a resource
917 * reservation for the memory (with GMM), and setup the per-page
918 * tracking structures (PGMPAGE).
919 *
920 * @returns VBox stutus code.
921 * @param pVM Pointer to the shared VM structure.
922 * @param GCPhys The physical address of the RAM.
923 * @param cb The size of the RAM.
924 * @param pszDesc The description - not copied, so, don't free or change it.
925 */
926VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc)
927{
928 /*
929 * Validate input.
930 */
931 Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc));
932 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
933 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
934 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
935 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
936 AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER);
937 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
938 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
939
940 pgmLock(pVM);
941
942 /*
943 * Find range location and check for conflicts.
944 * (We don't lock here because the locking by EMT is only required on update.)
945 */
946 PPGMRAMRANGE pPrev = NULL;
947 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
948 while (pRam && GCPhysLast >= pRam->GCPhys)
949 {
950 if ( GCPhysLast >= pRam->GCPhys
951 && GCPhys <= pRam->GCPhysLast)
952 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
953 GCPhys, GCPhysLast, pszDesc,
954 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
955 VERR_PGM_RAM_CONFLICT);
956
957 /* next */
958 pPrev = pRam;
959 pRam = pRam->pNextR3;
960 }
961
962 /*
963 * Register it with GMM (the API bitches).
964 */
965 const RTGCPHYS cPages = cb >> PAGE_SHIFT;
966 int rc = MMR3IncreaseBaseReservation(pVM, cPages);
967 if (RT_FAILURE(rc))
968 {
969 pgmUnlock(pVM);
970 return rc;
971 }
972
973 if ( GCPhys >= _4G
974 && cPages > 256)
975 {
976 /*
977 * The PGMRAMRANGE structures for the high memory can get very big.
978 * In order to avoid SUPR3PageAllocEx allocation failures due to the
979 * allocation size limit there and also to avoid being unable to find
980 * guest mapping space for them, we split this memory up into 4MB in
981 * (potential) raw-mode configs and 16MB chunks in forced AMD-V/VT-x
982 * mode.
983 *
984 * The first and last page of each mapping are guard pages and marked
985 * not-present. So, we've got 4186112 and 16769024 bytes available for
986 * the PGMRAMRANGE structure.
987 *
988 * Note! The sizes used here will influence the saved state.
989 */
990 uint32_t cbChunk;
991 uint32_t cPagesPerChunk;
992 if (VMMIsHwVirtExtForced(pVM))
993 {
994 cbChunk = 16U*_1M;
995 cPagesPerChunk = 1048048; /* max ~1048059 */
996 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2);
997 }
998 else
999 {
1000 cbChunk = 4U*_1M;
1001 cPagesPerChunk = 261616; /* max ~261627 */
1002 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 261616 < 4U*_1M - PAGE_SIZE * 2);
1003 }
1004 AssertRelease(RT_UOFFSETOF(PGMRAMRANGE, aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
1005
1006 RTGCPHYS cPagesLeft = cPages;
1007 RTGCPHYS GCPhysChunk = GCPhys;
1008 uint32_t iChunk = 0;
1009 while (cPagesLeft > 0)
1010 {
1011 uint32_t cPagesInChunk = cPagesLeft;
1012 if (cPagesInChunk > cPagesPerChunk)
1013 cPagesInChunk = cPagesPerChunk;
1014
1015 rc = pgmR3PhysRegisterHighRamChunk(pVM, GCPhysChunk, cPagesInChunk, cbChunk, iChunk, pszDesc, &pPrev);
1016 AssertRCReturn(rc, rc);
1017
1018 /* advance */
1019 GCPhysChunk += (RTGCPHYS)cPagesInChunk << PAGE_SHIFT;
1020 cPagesLeft -= cPagesInChunk;
1021 iChunk++;
1022 }
1023 }
1024 else
1025 {
1026 /*
1027 * Allocate, initialize and link the new RAM range.
1028 */
1029 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
1030 PPGMRAMRANGE pNew;
1031 rc = MMR3HyperAllocOnceNoRel(pVM, cbRamRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1032 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
1033
1034 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhysLast, NIL_RTRCPTR, NIL_RTR0PTR, pszDesc, pPrev);
1035 }
1036 pgmUnlock(pVM);
1037
1038 /*
1039 * Notify REM.
1040 */
1041 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_RAM);
1042
1043 return VINF_SUCCESS;
1044}
1045
1046
1047/**
1048 * Worker called by PGMR3InitFinalize if we're configured to pre-allocate RAM.
1049 *
1050 * We do this late in the init process so that all the ROM and MMIO ranges have
1051 * been registered already and we don't go wasting memory on them.
1052 *
1053 * @returns VBox status code.
1054 *
1055 * @param pVM Pointer to the shared VM structure.
1056 */
1057int pgmR3PhysRamPreAllocate(PVM pVM)
1058{
1059 Assert(pVM->pgm.s.fRamPreAlloc);
1060 Log(("pgmR3PhysRamPreAllocate: enter\n"));
1061
1062 /*
1063 * Walk the RAM ranges and allocate all RAM pages, halt at
1064 * the first allocation error.
1065 */
1066 uint64_t cPages = 0;
1067 uint64_t NanoTS = RTTimeNanoTS();
1068 pgmLock(pVM);
1069 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
1070 {
1071 PPGMPAGE pPage = &pRam->aPages[0];
1072 RTGCPHYS GCPhys = pRam->GCPhys;
1073 uint32_t cLeft = pRam->cb >> PAGE_SHIFT;
1074 while (cLeft-- > 0)
1075 {
1076 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
1077 {
1078 switch (PGM_PAGE_GET_STATE(pPage))
1079 {
1080 case PGM_PAGE_STATE_ZERO:
1081 {
1082 int rc = pgmPhysAllocPage(pVM, pPage, GCPhys);
1083 if (RT_FAILURE(rc))
1084 {
1085 LogRel(("PGM: RAM Pre-allocation failed at %RGp (in %s) with rc=%Rrc\n", GCPhys, pRam->pszDesc, rc));
1086 pgmUnlock(pVM);
1087 return rc;
1088 }
1089 cPages++;
1090 break;
1091 }
1092
1093 case PGM_PAGE_STATE_ALLOCATED:
1094 case PGM_PAGE_STATE_WRITE_MONITORED:
1095 case PGM_PAGE_STATE_SHARED:
1096 /* nothing to do here. */
1097 break;
1098 }
1099 }
1100
1101 /* next */
1102 pPage++;
1103 GCPhys += PAGE_SIZE;
1104 }
1105 }
1106 pgmUnlock(pVM);
1107 NanoTS = RTTimeNanoTS() - NanoTS;
1108
1109 LogRel(("PGM: Pre-allocated %llu pages in %llu ms\n", cPages, NanoTS / 1000000));
1110 Log(("pgmR3PhysRamPreAllocate: returns VINF_SUCCESS\n"));
1111 return VINF_SUCCESS;
1112}
1113
1114
1115/**
1116 * Resets (zeros) the RAM.
1117 *
1118 * ASSUMES that the caller owns the PGM lock.
1119 *
1120 * @returns VBox status code.
1121 * @param pVM Pointer to the shared VM structure.
1122 */
1123int pgmR3PhysRamReset(PVM pVM)
1124{
1125 Assert(PGMIsLockOwner(pVM));
1126 /*
1127 * We batch up pages before freeing them.
1128 */
1129 uint32_t cPendingPages = 0;
1130 PGMMFREEPAGESREQ pReq;
1131 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1132 AssertLogRelRCReturn(rc, rc);
1133
1134 /*
1135 * Walk the ram ranges.
1136 */
1137 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
1138 {
1139 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
1140 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
1141
1142 if (!pVM->pgm.s.fRamPreAlloc)
1143 {
1144 /* Replace all RAM pages by ZERO pages. */
1145 while (iPage-- > 0)
1146 {
1147 PPGMPAGE pPage = &pRam->aPages[iPage];
1148 switch (PGM_PAGE_GET_TYPE(pPage))
1149 {
1150 case PGMPAGETYPE_RAM:
1151 if (!PGM_PAGE_IS_ZERO(pPage))
1152 {
1153 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1154 AssertLogRelRCReturn(rc, rc);
1155 }
1156 break;
1157
1158 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1159 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1160 break;
1161
1162 case PGMPAGETYPE_MMIO2:
1163 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
1164 case PGMPAGETYPE_ROM:
1165 case PGMPAGETYPE_MMIO:
1166 break;
1167 default:
1168 AssertFailed();
1169 }
1170 } /* for each page */
1171 }
1172 else
1173 {
1174 /* Zero the memory. */
1175 while (iPage-- > 0)
1176 {
1177 PPGMPAGE pPage = &pRam->aPages[iPage];
1178 switch (PGM_PAGE_GET_TYPE(pPage))
1179 {
1180 case PGMPAGETYPE_RAM:
1181 switch (PGM_PAGE_GET_STATE(pPage))
1182 {
1183 case PGM_PAGE_STATE_ZERO:
1184 break;
1185 case PGM_PAGE_STATE_SHARED:
1186 case PGM_PAGE_STATE_WRITE_MONITORED:
1187 rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1188 AssertLogRelRCReturn(rc, rc);
1189 case PGM_PAGE_STATE_ALLOCATED:
1190 {
1191 void *pvPage;
1192 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
1193 AssertLogRelRCReturn(rc, rc);
1194 ASMMemZeroPage(pvPage);
1195 break;
1196 }
1197 }
1198 break;
1199
1200 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1201 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1202 break;
1203
1204 case PGMPAGETYPE_MMIO2:
1205 case PGMPAGETYPE_ROM_SHADOW:
1206 case PGMPAGETYPE_ROM:
1207 case PGMPAGETYPE_MMIO:
1208 break;
1209 default:
1210 AssertFailed();
1211
1212 }
1213 } /* for each page */
1214 }
1215
1216 }
1217
1218 /*
1219 * Finish off any pages pending freeing.
1220 */
1221 if (cPendingPages)
1222 {
1223 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
1224 AssertLogRelRCReturn(rc, rc);
1225 }
1226 GMMR3FreePagesCleanup(pReq);
1227
1228 return VINF_SUCCESS;
1229}
1230
1231
1232/**
1233 * This is the interface IOM is using to register an MMIO region.
1234 *
1235 * It will check for conflicts and ensure that a RAM range structure
1236 * is present before calling the PGMR3HandlerPhysicalRegister API to
1237 * register the callbacks.
1238 *
1239 * @returns VBox status code.
1240 *
1241 * @param pVM Pointer to the shared VM structure.
1242 * @param GCPhys The start of the MMIO region.
1243 * @param cb The size of the MMIO region.
1244 * @param pfnHandlerR3 The address of the ring-3 handler. (IOMR3MMIOHandler)
1245 * @param pvUserR3 The user argument for R3.
1246 * @param pfnHandlerR0 The address of the ring-0 handler. (IOMMMIOHandler)
1247 * @param pvUserR0 The user argument for R0.
1248 * @param pfnHandlerRC The address of the RC handler. (IOMMMIOHandler)
1249 * @param pvUserRC The user argument for RC.
1250 * @param pszDesc The description of the MMIO region.
1251 */
1252VMMR3DECL(int) PGMR3PhysMMIORegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb,
1253 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3, RTR3PTR pvUserR3,
1254 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0, RTR0PTR pvUserR0,
1255 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnHandlerRC, RTRCPTR pvUserRC,
1256 R3PTRTYPE(const char *) pszDesc)
1257{
1258 /*
1259 * Assert on some assumption.
1260 */
1261 VM_ASSERT_EMT(pVM);
1262 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1263 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1264 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1265 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
1266
1267 /*
1268 * Make sure there's a RAM range structure for the region.
1269 */
1270 int rc;
1271 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1272 bool fRamExists = false;
1273 PPGMRAMRANGE pRamPrev = NULL;
1274 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1275 while (pRam && GCPhysLast >= pRam->GCPhys)
1276 {
1277 if ( GCPhysLast >= pRam->GCPhys
1278 && GCPhys <= pRam->GCPhysLast)
1279 {
1280 /* Simplification: all within the same range. */
1281 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
1282 && GCPhysLast <= pRam->GCPhysLast,
1283 ("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n",
1284 GCPhys, GCPhysLast, pszDesc,
1285 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1286 VERR_PGM_RAM_CONFLICT);
1287
1288 /* Check that it's all RAM or MMIO pages. */
1289 PCPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1290 uint32_t cLeft = cb >> PAGE_SHIFT;
1291 while (cLeft-- > 0)
1292 {
1293 AssertLogRelMsgReturn( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1294 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO,
1295 ("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n",
1296 GCPhys, GCPhysLast, pszDesc, PGM_PAGE_GET_TYPE(pPage), pRam->pszDesc),
1297 VERR_PGM_RAM_CONFLICT);
1298 pPage++;
1299 }
1300
1301 /* Looks good. */
1302 fRamExists = true;
1303 break;
1304 }
1305
1306 /* next */
1307 pRamPrev = pRam;
1308 pRam = pRam->pNextR3;
1309 }
1310 PPGMRAMRANGE pNew;
1311 if (fRamExists)
1312 {
1313 pNew = NULL;
1314
1315 /*
1316 * Make all the pages in the range MMIO/ZERO pages, freeing any
1317 * RAM pages currently mapped here. This might not be 100% correct
1318 * for PCI memory, but we're doing the same thing for MMIO2 pages.
1319 */
1320 rc = pgmLock(pVM);
1321 if (RT_SUCCESS(rc))
1322 {
1323 rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO);
1324 pgmUnlock(pVM);
1325 }
1326 AssertRCReturn(rc, rc);
1327 }
1328 else
1329 {
1330 pgmLock(pVM);
1331
1332 /*
1333 * No RAM range, insert an ad hoc one.
1334 *
1335 * Note that we don't have to tell REM about this range because
1336 * PGMHandlerPhysicalRegisterEx will do that for us.
1337 */
1338 Log(("PGMR3PhysMMIORegister: Adding ad hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc));
1339
1340 const uint32_t cPages = cb >> PAGE_SHIFT;
1341 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
1342 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), 16, MM_TAG_PGM_PHYS, (void **)&pNew);
1343 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
1344
1345 /* Initialize the range. */
1346 pNew->pSelfR0 = MMHyperCCToR0(pVM, pNew);
1347 pNew->pSelfRC = MMHyperCCToRC(pVM, pNew);
1348 pNew->GCPhys = GCPhys;
1349 pNew->GCPhysLast = GCPhysLast;
1350 pNew->cb = cb;
1351 pNew->pszDesc = pszDesc;
1352 pNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO;
1353 pNew->pvR3 = NULL;
1354 pNew->paLSPages = NULL;
1355
1356 uint32_t iPage = cPages;
1357 while (iPage-- > 0)
1358 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO);
1359 Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO);
1360
1361 /* update the page count stats. */
1362 pVM->pgm.s.cZeroPages += cPages;
1363 pVM->pgm.s.cAllPages += cPages;
1364
1365 /* link it */
1366 pgmR3PhysLinkRamRange(pVM, pNew, pRamPrev);
1367
1368 pgmUnlock(pVM);
1369 }
1370
1371 /*
1372 * Register the access handler.
1373 */
1374 rc = PGMHandlerPhysicalRegisterEx(pVM, PGMPHYSHANDLERTYPE_MMIO, GCPhys, GCPhysLast,
1375 pfnHandlerR3, pvUserR3,
1376 pfnHandlerR0, pvUserR0,
1377 pfnHandlerRC, pvUserRC, pszDesc);
1378 if ( RT_FAILURE(rc)
1379 && !fRamExists)
1380 {
1381 pVM->pgm.s.cZeroPages -= cb >> PAGE_SHIFT;
1382 pVM->pgm.s.cAllPages -= cb >> PAGE_SHIFT;
1383
1384 /* remove the ad hoc range. */
1385 pgmR3PhysUnlinkRamRange2(pVM, pNew, pRamPrev);
1386 pNew->cb = pNew->GCPhys = pNew->GCPhysLast = NIL_RTGCPHYS;
1387 MMHyperFree(pVM, pRam);
1388 }
1389
1390 return rc;
1391}
1392
1393
1394/**
1395 * This is the interface IOM is using to register an MMIO region.
1396 *
1397 * It will take care of calling PGMHandlerPhysicalDeregister and clean up
1398 * any ad hoc PGMRAMRANGE left behind.
1399 *
1400 * @returns VBox status code.
1401 * @param pVM Pointer to the shared VM structure.
1402 * @param GCPhys The start of the MMIO region.
1403 * @param cb The size of the MMIO region.
1404 */
1405VMMR3DECL(int) PGMR3PhysMMIODeregister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
1406{
1407 VM_ASSERT_EMT(pVM);
1408
1409 /*
1410 * First deregister the handler, then check if we should remove the ram range.
1411 */
1412 int rc = PGMHandlerPhysicalDeregister(pVM, GCPhys);
1413 if (RT_SUCCESS(rc))
1414 {
1415 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1416 PPGMRAMRANGE pRamPrev = NULL;
1417 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1418 while (pRam && GCPhysLast >= pRam->GCPhys)
1419 {
1420 /** @todo We're being a bit too careful here. rewrite. */
1421 if ( GCPhysLast == pRam->GCPhysLast
1422 && GCPhys == pRam->GCPhys)
1423 {
1424 Assert(pRam->cb == cb);
1425
1426 /*
1427 * See if all the pages are dead MMIO pages.
1428 */
1429 uint32_t const cPages = cb >> PAGE_SHIFT;
1430 bool fAllMMIO = true;
1431 uint32_t iPage = 0;
1432 uint32_t cLeft = cPages;
1433 while (cLeft-- > 0)
1434 {
1435 PPGMPAGE pPage = &pRam->aPages[iPage];
1436 if ( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO
1437 /*|| not-out-of-action later */)
1438 {
1439 fAllMMIO = false;
1440 Assert(PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO2_ALIAS_MMIO);
1441 AssertMsgFailed(("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1442 break;
1443 }
1444 Assert(PGM_PAGE_IS_ZERO(pPage));
1445 pPage++;
1446 }
1447 if (fAllMMIO)
1448 {
1449 /*
1450 * Ad-hoc range, unlink and free it.
1451 */
1452 Log(("PGMR3PhysMMIODeregister: Freeing ad hoc MMIO range for %RGp-%RGp %s\n",
1453 GCPhys, GCPhysLast, pRam->pszDesc));
1454
1455 pVM->pgm.s.cAllPages -= cPages;
1456 pVM->pgm.s.cZeroPages -= cPages;
1457
1458 pgmR3PhysUnlinkRamRange2(pVM, pRam, pRamPrev);
1459 pRam->cb = pRam->GCPhys = pRam->GCPhysLast = NIL_RTGCPHYS;
1460 MMHyperFree(pVM, pRam);
1461 break;
1462 }
1463 }
1464
1465 /*
1466 * Range match? It will all be within one range (see PGMAllHandler.cpp).
1467 */
1468 if ( GCPhysLast >= pRam->GCPhys
1469 && GCPhys <= pRam->GCPhysLast)
1470 {
1471 Assert(GCPhys >= pRam->GCPhys);
1472 Assert(GCPhysLast <= pRam->GCPhysLast);
1473
1474 /*
1475 * Turn the pages back into RAM pages.
1476 */
1477 uint32_t iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
1478 uint32_t cLeft = cb >> PAGE_SHIFT;
1479 while (cLeft--)
1480 {
1481 PPGMPAGE pPage = &pRam->aPages[iPage];
1482 AssertMsg(PGM_PAGE_IS_MMIO(pPage), ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1483 AssertMsg(PGM_PAGE_IS_ZERO(pPage), ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1484 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO)
1485 PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_RAM);
1486 }
1487 break;
1488 }
1489
1490 /* next */
1491 pRamPrev = pRam;
1492 pRam = pRam->pNextR3;
1493 }
1494 }
1495
1496 return rc;
1497}
1498
1499
1500/**
1501 * Locate a MMIO2 range.
1502 *
1503 * @returns Pointer to the MMIO2 range.
1504 * @param pVM Pointer to the shared VM structure.
1505 * @param pDevIns The device instance owning the region.
1506 * @param iRegion The region.
1507 */
1508DECLINLINE(PPGMMMIO2RANGE) pgmR3PhysMMIO2Find(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
1509{
1510 /*
1511 * Search the list.
1512 */
1513 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
1514 if ( pCur->pDevInsR3 == pDevIns
1515 && pCur->iRegion == iRegion)
1516 return pCur;
1517 return NULL;
1518}
1519
1520
1521/**
1522 * Allocate and register an MMIO2 region.
1523 *
1524 * As mentioned elsewhere, MMIO2 is just RAM spelled differently. It's
1525 * RAM associated with a device. It is also non-shared memory with a
1526 * permanent ring-3 mapping and page backing (presently).
1527 *
1528 * A MMIO2 range may overlap with base memory if a lot of RAM
1529 * is configured for the VM, in which case we'll drop the base
1530 * memory pages. Presently we will make no attempt to preserve
1531 * anything that happens to be present in the base memory that
1532 * is replaced, this is of course incorrectly but it's too much
1533 * effort.
1534 *
1535 * @returns VBox status code.
1536 * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the memory.
1537 * @retval VERR_ALREADY_EXISTS if the region already exists.
1538 *
1539 * @param pVM Pointer to the shared VM structure.
1540 * @param pDevIns The device instance owning the region.
1541 * @param iRegion The region number. If the MMIO2 memory is a PCI I/O region
1542 * this number has to be the number of that region. Otherwise
1543 * it can be any number safe UINT8_MAX.
1544 * @param cb The size of the region. Must be page aligned.
1545 * @param fFlags Reserved for future use, must be zero.
1546 * @param ppv Where to store the pointer to the ring-3 mapping of the memory.
1547 * @param pszDesc The description.
1548 */
1549VMMR3DECL(int) PGMR3PhysMMIO2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS cb, uint32_t fFlags, void **ppv, const char *pszDesc)
1550{
1551 /*
1552 * Validate input.
1553 */
1554 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1555 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1556 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
1557 AssertPtrReturn(ppv, VERR_INVALID_POINTER);
1558 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1559 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
1560 AssertReturn(pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion) == NULL, VERR_ALREADY_EXISTS);
1561 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1562 AssertReturn(cb, VERR_INVALID_PARAMETER);
1563 AssertReturn(!fFlags, VERR_INVALID_PARAMETER);
1564
1565 const uint32_t cPages = cb >> PAGE_SHIFT;
1566 AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cb, VERR_INVALID_PARAMETER);
1567 AssertLogRelReturn(cPages <= INT32_MAX / 2, VERR_NO_MEMORY);
1568
1569 /*
1570 * For the 2nd+ instance, mangle the description string so it's unique.
1571 */
1572 if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */
1573 {
1574 pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance);
1575 if (!pszDesc)
1576 return VERR_NO_MEMORY;
1577 }
1578
1579 /*
1580 * Try reserve and allocate the backing memory first as this is what is
1581 * most likely to fail.
1582 */
1583 int rc = MMR3AdjustFixedReservation(pVM, cPages, pszDesc);
1584 if (RT_SUCCESS(rc))
1585 {
1586 void *pvPages;
1587 PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cPages * sizeof(SUPPAGE));
1588 if (RT_SUCCESS(rc))
1589 rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, NULL /*pR0Ptr*/, paPages);
1590 if (RT_SUCCESS(rc))
1591 {
1592 memset(pvPages, 0, cPages * PAGE_SIZE);
1593
1594 /*
1595 * Create the MMIO2 range record for it.
1596 */
1597 const size_t cbRange = RT_OFFSETOF(PGMMMIO2RANGE, RamRange.aPages[cPages]);
1598 PPGMMMIO2RANGE pNew;
1599 rc = MMR3HyperAllocOnceNoRel(pVM, cbRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1600 AssertLogRelMsgRC(rc, ("cbRamRange=%zu\n", cbRange));
1601 if (RT_SUCCESS(rc))
1602 {
1603 pNew->pDevInsR3 = pDevIns;
1604 pNew->pvR3 = pvPages;
1605 //pNew->pNext = NULL;
1606 //pNew->fMapped = false;
1607 //pNew->fOverlapping = false;
1608 pNew->iRegion = iRegion;
1609 pNew->idSavedState = UINT8_MAX;
1610 pNew->RamRange.pSelfR0 = MMHyperCCToR0(pVM, &pNew->RamRange);
1611 pNew->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pNew->RamRange);
1612 pNew->RamRange.GCPhys = NIL_RTGCPHYS;
1613 pNew->RamRange.GCPhysLast = NIL_RTGCPHYS;
1614 pNew->RamRange.pszDesc = pszDesc;
1615 pNew->RamRange.cb = cb;
1616 pNew->RamRange.fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO2;
1617 pNew->RamRange.pvR3 = pvPages;
1618 //pNew->RamRange.paLSPages = NULL;
1619
1620 uint32_t iPage = cPages;
1621 while (iPage-- > 0)
1622 {
1623 PGM_PAGE_INIT(&pNew->RamRange.aPages[iPage],
1624 paPages[iPage].Phys, NIL_GMM_PAGEID,
1625 PGMPAGETYPE_MMIO2, PGM_PAGE_STATE_ALLOCATED);
1626 }
1627
1628 /* update page count stats */
1629 pVM->pgm.s.cAllPages += cPages;
1630 pVM->pgm.s.cPrivatePages += cPages;
1631
1632 /*
1633 * Link it into the list.
1634 * Since there is no particular order, just push it.
1635 */
1636 pgmLock(pVM);
1637 pNew->pNextR3 = pVM->pgm.s.pMmio2RangesR3;
1638 pVM->pgm.s.pMmio2RangesR3 = pNew;
1639 pgmUnlock(pVM);
1640
1641 *ppv = pvPages;
1642 RTMemTmpFree(paPages);
1643 return VINF_SUCCESS;
1644 }
1645
1646 SUPR3PageFreeEx(pvPages, cPages);
1647 }
1648 RTMemTmpFree(paPages);
1649 MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pszDesc);
1650 }
1651 if (pDevIns->iInstance > 0)
1652 MMR3HeapFree((void *)pszDesc);
1653 return rc;
1654}
1655
1656
1657/**
1658 * Deregisters and frees an MMIO2 region.
1659 *
1660 * Any physical (and virtual) access handlers registered for the region must
1661 * be deregistered before calling this function.
1662 *
1663 * @returns VBox status code.
1664 * @param pVM Pointer to the shared VM structure.
1665 * @param pDevIns The device instance owning the region.
1666 * @param iRegion The region. If it's UINT32_MAX it'll be a wildcard match.
1667 */
1668VMMR3DECL(int) PGMR3PhysMMIO2Deregister(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
1669{
1670 /*
1671 * Validate input.
1672 */
1673 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1674 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1675 AssertReturn(iRegion <= UINT8_MAX || iRegion == UINT32_MAX, VERR_INVALID_PARAMETER);
1676
1677 pgmLock(pVM);
1678 int rc = VINF_SUCCESS;
1679 unsigned cFound = 0;
1680 PPGMMMIO2RANGE pPrev = NULL;
1681 PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3;
1682 while (pCur)
1683 {
1684 if ( pCur->pDevInsR3 == pDevIns
1685 && ( iRegion == UINT32_MAX
1686 || pCur->iRegion == iRegion))
1687 {
1688 cFound++;
1689
1690 /*
1691 * Unmap it if it's mapped.
1692 */
1693 if (pCur->fMapped)
1694 {
1695 int rc2 = PGMR3PhysMMIO2Unmap(pVM, pCur->pDevInsR3, pCur->iRegion, pCur->RamRange.GCPhys);
1696 AssertRC(rc2);
1697 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1698 rc = rc2;
1699 }
1700
1701 /*
1702 * Unlink it
1703 */
1704 PPGMMMIO2RANGE pNext = pCur->pNextR3;
1705 if (pPrev)
1706 pPrev->pNextR3 = pNext;
1707 else
1708 pVM->pgm.s.pMmio2RangesR3 = pNext;
1709 pCur->pNextR3 = NULL;
1710
1711 /*
1712 * Free the memory.
1713 */
1714 int rc2 = SUPR3PageFreeEx(pCur->pvR3, pCur->RamRange.cb >> PAGE_SHIFT);
1715 AssertRC(rc2);
1716 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1717 rc = rc2;
1718
1719 uint32_t const cPages = pCur->RamRange.cb >> PAGE_SHIFT;
1720 rc2 = MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pCur->RamRange.pszDesc);
1721 AssertRC(rc2);
1722 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1723 rc = rc2;
1724
1725 /* we're leaking hyper memory here if done at runtime. */
1726#ifdef VBOX_STRICT
1727 VMSTATE const enmState = VMR3GetState(pVM);
1728 AssertMsg( enmState == VMSTATE_POWERING_OFF
1729 || enmState == VMSTATE_POWERING_OFF_LS
1730 || enmState == VMSTATE_OFF
1731 || enmState == VMSTATE_OFF_LS
1732 || enmState == VMSTATE_DESTROYING
1733 || enmState == VMSTATE_TERMINATED
1734 || enmState == VMSTATE_CREATING
1735 , ("%s\n", VMR3GetStateName(enmState)));
1736#endif
1737 /*rc = MMHyperFree(pVM, pCur);
1738 AssertRCReturn(rc, rc); - not safe, see the alloc call. */
1739
1740
1741 /* update page count stats */
1742 pVM->pgm.s.cAllPages -= cPages;
1743 pVM->pgm.s.cPrivatePages -= cPages;
1744
1745 /* next */
1746 pCur = pNext;
1747 }
1748 else
1749 {
1750 pPrev = pCur;
1751 pCur = pCur->pNextR3;
1752 }
1753 }
1754 pgmUnlock(pVM);
1755 return !cFound && iRegion != UINT32_MAX ? VERR_NOT_FOUND : rc;
1756}
1757
1758
1759/**
1760 * Maps a MMIO2 region.
1761 *
1762 * This is done when a guest / the bios / state loading changes the
1763 * PCI config. The replacing of base memory has the same restrictions
1764 * as during registration, of course.
1765 *
1766 * @returns VBox status code.
1767 *
1768 * @param pVM Pointer to the shared VM structure.
1769 * @param pDevIns The
1770 */
1771VMMR3DECL(int) PGMR3PhysMMIO2Map(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
1772{
1773 /*
1774 * Validate input
1775 */
1776 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1777 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1778 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
1779 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
1780 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
1781 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1782
1783 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
1784 AssertReturn(pCur, VERR_NOT_FOUND);
1785 AssertReturn(!pCur->fMapped, VERR_WRONG_ORDER);
1786 Assert(pCur->RamRange.GCPhys == NIL_RTGCPHYS);
1787 Assert(pCur->RamRange.GCPhysLast == NIL_RTGCPHYS);
1788
1789 const RTGCPHYS GCPhysLast = GCPhys + pCur->RamRange.cb - 1;
1790 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
1791
1792 /*
1793 * Find our location in the ram range list, checking for
1794 * restriction we don't bother implementing yet (partially overlapping).
1795 */
1796 bool fRamExists = false;
1797 PPGMRAMRANGE pRamPrev = NULL;
1798 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1799 while (pRam && GCPhysLast >= pRam->GCPhys)
1800 {
1801 if ( GCPhys <= pRam->GCPhysLast
1802 && GCPhysLast >= pRam->GCPhys)
1803 {
1804 /* completely within? */
1805 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
1806 && GCPhysLast <= pRam->GCPhysLast,
1807 ("%RGp-%RGp (MMIO2/%s) falls partly outside %RGp-%RGp (%s)\n",
1808 GCPhys, GCPhysLast, pCur->RamRange.pszDesc,
1809 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1810 VERR_PGM_RAM_CONFLICT);
1811 fRamExists = true;
1812 break;
1813 }
1814
1815 /* next */
1816 pRamPrev = pRam;
1817 pRam = pRam->pNextR3;
1818 }
1819 if (fRamExists)
1820 {
1821 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1822 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
1823 while (cPagesLeft-- > 0)
1824 {
1825 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
1826 ("%RGp isn't a RAM page (%d) - mapping %RGp-%RGp (MMIO2/%s).\n",
1827 GCPhys, PGM_PAGE_GET_TYPE(pPage), GCPhys, GCPhysLast, pCur->RamRange.pszDesc),
1828 VERR_PGM_RAM_CONFLICT);
1829 pPage++;
1830 }
1831 }
1832 Log(("PGMR3PhysMMIO2Map: %RGp-%RGp fRamExists=%RTbool %s\n",
1833 GCPhys, GCPhysLast, fRamExists, pCur->RamRange.pszDesc));
1834
1835 /*
1836 * Make the changes.
1837 */
1838 pgmLock(pVM);
1839
1840 pCur->RamRange.GCPhys = GCPhys;
1841 pCur->RamRange.GCPhysLast = GCPhysLast;
1842 pCur->fMapped = true;
1843 pCur->fOverlapping = fRamExists;
1844
1845 if (fRamExists)
1846 {
1847/** @todo use pgmR3PhysFreePageRange here. */
1848 uint32_t cPendingPages = 0;
1849 PGMMFREEPAGESREQ pReq;
1850 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1851 AssertLogRelRCReturn(rc, rc);
1852
1853 /* replace the pages, freeing all present RAM pages. */
1854 PPGMPAGE pPageSrc = &pCur->RamRange.aPages[0];
1855 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1856 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
1857 while (cPagesLeft-- > 0)
1858 {
1859 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
1860 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
1861
1862 RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc);
1863 PGM_PAGE_SET_HCPHYS(pPageDst, HCPhys);
1864 PGM_PAGE_SET_TYPE(pPageDst, PGMPAGETYPE_MMIO2);
1865 PGM_PAGE_SET_STATE(pPageDst, PGM_PAGE_STATE_ALLOCATED);
1866
1867 pVM->pgm.s.cZeroPages--;
1868 GCPhys += PAGE_SIZE;
1869 pPageSrc++;
1870 pPageDst++;
1871 }
1872
1873 if (cPendingPages)
1874 {
1875 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
1876 AssertLogRelRCReturn(rc, rc);
1877 }
1878 GMMR3FreePagesCleanup(pReq);
1879 pgmUnlock(pVM);
1880 }
1881 else
1882 {
1883 RTGCPHYS cb = pCur->RamRange.cb;
1884
1885 /* link in the ram range */
1886 pgmR3PhysLinkRamRange(pVM, &pCur->RamRange, pRamPrev);
1887 pgmUnlock(pVM);
1888
1889 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_MMIO2);
1890 }
1891
1892 return VINF_SUCCESS;
1893}
1894
1895
1896/**
1897 * Unmaps a MMIO2 region.
1898 *
1899 * This is done when a guest / the bios / state loading changes the
1900 * PCI config. The replacing of base memory has the same restrictions
1901 * as during registration, of course.
1902 */
1903VMMR3DECL(int) PGMR3PhysMMIO2Unmap(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
1904{
1905 /*
1906 * Validate input
1907 */
1908 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1909 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1910 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
1911 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
1912 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
1913 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1914
1915 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
1916 AssertReturn(pCur, VERR_NOT_FOUND);
1917 AssertReturn(pCur->fMapped, VERR_WRONG_ORDER);
1918 AssertReturn(pCur->RamRange.GCPhys == GCPhys, VERR_INVALID_PARAMETER);
1919 Assert(pCur->RamRange.GCPhysLast != NIL_RTGCPHYS);
1920
1921 Log(("PGMR3PhysMMIO2Unmap: %RGp-%RGp %s\n",
1922 pCur->RamRange.GCPhys, pCur->RamRange.GCPhysLast, pCur->RamRange.pszDesc));
1923
1924 /*
1925 * Unmap it.
1926 */
1927 pgmLock(pVM);
1928
1929 RTGCPHYS GCPhysRangeREM;
1930 RTGCPHYS cbRangeREM;
1931 bool fInformREM;
1932 if (pCur->fOverlapping)
1933 {
1934 /* Restore the RAM pages we've replaced. */
1935 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1936 while (pRam->GCPhys > pCur->RamRange.GCPhysLast)
1937 pRam = pRam->pNextR3;
1938
1939 RTHCPHYS const HCPhysZeroPg = pVM->pgm.s.HCPhysZeroPg;
1940 Assert(HCPhysZeroPg != 0 && HCPhysZeroPg != NIL_RTHCPHYS);
1941 PPGMPAGE pPageDst = &pRam->aPages[(pCur->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1942 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
1943 while (cPagesLeft-- > 0)
1944 {
1945 PGM_PAGE_SET_HCPHYS(pPageDst, HCPhysZeroPg);
1946 PGM_PAGE_SET_TYPE(pPageDst, PGMPAGETYPE_RAM);
1947 PGM_PAGE_SET_STATE(pPageDst, PGM_PAGE_STATE_ZERO);
1948 PGM_PAGE_SET_PAGEID(pPageDst, NIL_GMM_PAGEID);
1949
1950 pVM->pgm.s.cZeroPages++;
1951 pPageDst++;
1952 }
1953
1954 GCPhysRangeREM = NIL_RTGCPHYS; /* shuts up gcc */
1955 cbRangeREM = RTGCPHYS_MAX; /* ditto */
1956 fInformREM = false;
1957 }
1958 else
1959 {
1960 GCPhysRangeREM = pCur->RamRange.GCPhys;
1961 cbRangeREM = pCur->RamRange.cb;
1962 fInformREM = true;
1963
1964 pgmR3PhysUnlinkRamRange(pVM, &pCur->RamRange);
1965 }
1966
1967 pCur->RamRange.GCPhys = NIL_RTGCPHYS;
1968 pCur->RamRange.GCPhysLast = NIL_RTGCPHYS;
1969 pCur->fOverlapping = false;
1970 pCur->fMapped = false;
1971
1972 pgmUnlock(pVM);
1973
1974 if (fInformREM)
1975 REMR3NotifyPhysRamDeregister(pVM, GCPhysRangeREM, cbRangeREM);
1976
1977 return VINF_SUCCESS;
1978}
1979
1980
1981/**
1982 * Checks if the given address is an MMIO2 base address or not.
1983 *
1984 * @returns true/false accordingly.
1985 * @param pVM Pointer to the shared VM structure.
1986 * @param pDevIns The owner of the memory, optional.
1987 * @param GCPhys The address to check.
1988 */
1989VMMR3DECL(bool) PGMR3PhysMMIO2IsBase(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys)
1990{
1991 /*
1992 * Validate input
1993 */
1994 VM_ASSERT_EMT_RETURN(pVM, false);
1995 AssertPtrReturn(pDevIns, false);
1996 AssertReturn(GCPhys != NIL_RTGCPHYS, false);
1997 AssertReturn(GCPhys != 0, false);
1998 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), false);
1999
2000 /*
2001 * Search the list.
2002 */
2003 pgmLock(pVM);
2004 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2005 if (pCur->RamRange.GCPhys == GCPhys)
2006 {
2007 Assert(pCur->fMapped);
2008 pgmUnlock(pVM);
2009 return true;
2010 }
2011 pgmUnlock(pVM);
2012 return false;
2013}
2014
2015
2016/**
2017 * Gets the HC physical address of a page in the MMIO2 region.
2018 *
2019 * This is API is intended for MMHyper and shouldn't be called
2020 * by anyone else...
2021 *
2022 * @returns VBox status code.
2023 * @param pVM Pointer to the shared VM structure.
2024 * @param pDevIns The owner of the memory, optional.
2025 * @param iRegion The region.
2026 * @param off The page expressed an offset into the MMIO2 region.
2027 * @param pHCPhys Where to store the result.
2028 */
2029VMMR3DECL(int) PGMR3PhysMMIO2GetHCPhys(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, PRTHCPHYS pHCPhys)
2030{
2031 /*
2032 * Validate input
2033 */
2034 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2035 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2036 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2037
2038 pgmLock(pVM);
2039 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2040 AssertReturn(pCur, VERR_NOT_FOUND);
2041 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2042
2043 PCPGMPAGE pPage = &pCur->RamRange.aPages[off >> PAGE_SHIFT];
2044 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage);
2045 pgmUnlock(pVM);
2046 return VINF_SUCCESS;
2047}
2048
2049
2050/**
2051 * Maps a portion of an MMIO2 region into kernel space (host).
2052 *
2053 * The kernel mapping will become invalid when the MMIO2 memory is deregistered
2054 * or the VM is terminated.
2055 *
2056 * @return VBox status code.
2057 *
2058 * @param pVM Pointer to the shared VM structure.
2059 * @param pDevIns The device owning the MMIO2 memory.
2060 * @param iRegion The region.
2061 * @param off The offset into the region. Must be page aligned.
2062 * @param cb The number of bytes to map. Must be page aligned.
2063 * @param pszDesc Mapping description.
2064 * @param pR0Ptr Where to store the R0 address.
2065 */
2066VMMR3DECL(int) PGMR3PhysMMIO2MapKernel(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, RTGCPHYS cb,
2067 const char *pszDesc, PRTR0PTR pR0Ptr)
2068{
2069 /*
2070 * Validate input.
2071 */
2072 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2073 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2074 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2075
2076 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2077 AssertReturn(pCur, VERR_NOT_FOUND);
2078 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2079 AssertReturn(cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2080 AssertReturn(off + cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2081
2082 /*
2083 * Pass the request on to the support library/driver.
2084 */
2085 int rc = SUPR3PageMapKernel(pCur->pvR3, off, cb, 0, pR0Ptr);
2086
2087 return rc;
2088}
2089
2090
2091/**
2092 * Registers a ROM image.
2093 *
2094 * Shadowed ROM images requires double the amount of backing memory, so,
2095 * don't use that unless you have to. Shadowing of ROM images is process
2096 * where we can select where the reads go and where the writes go. On real
2097 * hardware the chipset provides means to configure this. We provide
2098 * PGMR3PhysProtectROM() for this purpose.
2099 *
2100 * A read-only copy of the ROM image will always be kept around while we
2101 * will allocate RAM pages for the changes on demand (unless all memory
2102 * is configured to be preallocated).
2103 *
2104 * @returns VBox status.
2105 * @param pVM VM Handle.
2106 * @param pDevIns The device instance owning the ROM.
2107 * @param GCPhys First physical address in the range.
2108 * Must be page aligned!
2109 * @param cbRange The size of the range (in bytes).
2110 * Must be page aligned!
2111 * @param pvBinary Pointer to the binary data backing the ROM image.
2112 * This must be exactly \a cbRange in size.
2113 * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
2114 * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
2115 * @param pszDesc Pointer to description string. This must not be freed.
2116 *
2117 * @remark There is no way to remove the rom, automatically on device cleanup or
2118 * manually from the device yet. This isn't difficult in any way, it's
2119 * just not something we expect to be necessary for a while.
2120 */
2121VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
2122 const void *pvBinary, uint32_t fFlags, const char *pszDesc)
2123{
2124 Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p fFlags=%#x pszDesc=%s\n",
2125 pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, fFlags, pszDesc));
2126
2127 /*
2128 * Validate input.
2129 */
2130 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2131 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
2132 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
2133 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2134 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
2135 AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER);
2136 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
2137 AssertReturn(!(fFlags & ~(PGMPHYS_ROM_FLAGS_SHADOWED | PGMPHYS_ROM_FLAGS_PERMANENT_BINARY)), VERR_INVALID_PARAMETER);
2138 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE);
2139
2140 const uint32_t cPages = cb >> PAGE_SHIFT;
2141
2142 /*
2143 * Find the ROM location in the ROM list first.
2144 */
2145 PPGMROMRANGE pRomPrev = NULL;
2146 PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
2147 while (pRom && GCPhysLast >= pRom->GCPhys)
2148 {
2149 if ( GCPhys <= pRom->GCPhysLast
2150 && GCPhysLast >= pRom->GCPhys)
2151 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
2152 GCPhys, GCPhysLast, pszDesc,
2153 pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc),
2154 VERR_PGM_RAM_CONFLICT);
2155 /* next */
2156 pRomPrev = pRom;
2157 pRom = pRom->pNextR3;
2158 }
2159
2160 /*
2161 * Find the RAM location and check for conflicts.
2162 *
2163 * Conflict detection is a bit different than for RAM
2164 * registration since a ROM can be located within a RAM
2165 * range. So, what we have to check for is other memory
2166 * types (other than RAM that is) and that we don't span
2167 * more than one RAM range (layz).
2168 */
2169 bool fRamExists = false;
2170 PPGMRAMRANGE pRamPrev = NULL;
2171 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
2172 while (pRam && GCPhysLast >= pRam->GCPhys)
2173 {
2174 if ( GCPhys <= pRam->GCPhysLast
2175 && GCPhysLast >= pRam->GCPhys)
2176 {
2177 /* completely within? */
2178 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
2179 && GCPhysLast <= pRam->GCPhysLast,
2180 ("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n",
2181 GCPhys, GCPhysLast, pszDesc,
2182 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2183 VERR_PGM_RAM_CONFLICT);
2184 fRamExists = true;
2185 break;
2186 }
2187
2188 /* next */
2189 pRamPrev = pRam;
2190 pRam = pRam->pNextR3;
2191 }
2192 if (fRamExists)
2193 {
2194 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2195 uint32_t cPagesLeft = cPages;
2196 while (cPagesLeft-- > 0)
2197 {
2198 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
2199 ("%RGp (%R[pgmpage]) isn't a RAM page - registering %RGp-%RGp (%s).\n",
2200 pRam->GCPhys + ((RTGCPHYS)(uintptr_t)(pPage - &pRam->aPages[0]) << PAGE_SHIFT),
2201 pPage, GCPhys, GCPhysLast, pszDesc), VERR_PGM_RAM_CONFLICT);
2202 Assert(PGM_PAGE_IS_ZERO(pPage));
2203 pPage++;
2204 }
2205 }
2206
2207 /*
2208 * Update the base memory reservation if necessary.
2209 */
2210 uint32_t cExtraBaseCost = fRamExists ? cPages : 0;
2211 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2212 cExtraBaseCost += cPages;
2213 if (cExtraBaseCost)
2214 {
2215 int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost);
2216 if (RT_FAILURE(rc))
2217 return rc;
2218 }
2219
2220 /*
2221 * Allocate memory for the virgin copy of the RAM.
2222 */
2223 PGMMALLOCATEPAGESREQ pReq;
2224 int rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cPages, GMMACCOUNT_BASE);
2225 AssertRCReturn(rc, rc);
2226
2227 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2228 {
2229 pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << PAGE_SHIFT);
2230 pReq->aPages[iPage].idPage = NIL_GMM_PAGEID;
2231 pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID;
2232 }
2233
2234 pgmLock(pVM);
2235 rc = GMMR3AllocatePagesPerform(pVM, pReq);
2236 pgmUnlock(pVM);
2237 if (RT_FAILURE(rc))
2238 {
2239 GMMR3AllocatePagesCleanup(pReq);
2240 return rc;
2241 }
2242
2243 /*
2244 * Allocate the new ROM range and RAM range (if necessary).
2245 */
2246 PPGMROMRANGE pRomNew;
2247 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMROMRANGE, aPages[cPages]), 0, MM_TAG_PGM_PHYS, (void **)&pRomNew);
2248 if (RT_SUCCESS(rc))
2249 {
2250 PPGMRAMRANGE pRamNew = NULL;
2251 if (!fRamExists)
2252 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), sizeof(PGMPAGE), MM_TAG_PGM_PHYS, (void **)&pRamNew);
2253 if (RT_SUCCESS(rc))
2254 {
2255 pgmLock(pVM);
2256
2257 /*
2258 * Initialize and insert the RAM range (if required).
2259 */
2260 PPGMROMPAGE pRomPage = &pRomNew->aPages[0];
2261 if (!fRamExists)
2262 {
2263 pRamNew->pSelfR0 = MMHyperCCToR0(pVM, pRamNew);
2264 pRamNew->pSelfRC = MMHyperCCToRC(pVM, pRamNew);
2265 pRamNew->GCPhys = GCPhys;
2266 pRamNew->GCPhysLast = GCPhysLast;
2267 pRamNew->cb = cb;
2268 pRamNew->pszDesc = pszDesc;
2269 pRamNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_ROM;
2270 pRamNew->pvR3 = NULL;
2271 pRamNew->paLSPages = NULL;
2272
2273 PPGMPAGE pPage = &pRamNew->aPages[0];
2274 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
2275 {
2276 PGM_PAGE_INIT(pPage,
2277 pReq->aPages[iPage].HCPhysGCPhys,
2278 pReq->aPages[iPage].idPage,
2279 PGMPAGETYPE_ROM,
2280 PGM_PAGE_STATE_ALLOCATED);
2281
2282 pRomPage->Virgin = *pPage;
2283 }
2284
2285 pVM->pgm.s.cAllPages += cPages;
2286 pgmR3PhysLinkRamRange(pVM, pRamNew, pRamPrev);
2287 }
2288 else
2289 {
2290 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2291 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
2292 {
2293 PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_ROM);
2294 PGM_PAGE_SET_HCPHYS(pPage, pReq->aPages[iPage].HCPhysGCPhys);
2295 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
2296 PGM_PAGE_SET_PAGEID(pPage, pReq->aPages[iPage].idPage);
2297
2298 pRomPage->Virgin = *pPage;
2299 }
2300
2301 pRamNew = pRam;
2302
2303 pVM->pgm.s.cZeroPages -= cPages;
2304 }
2305 pVM->pgm.s.cPrivatePages += cPages;
2306
2307 pgmUnlock(pVM);
2308
2309
2310 /*
2311 * !HACK ALERT! REM + (Shadowed) ROM ==> mess.
2312 *
2313 * If it's shadowed we'll register the handler after the ROM notification
2314 * so we get the access handler callbacks that we should. If it isn't
2315 * shadowed we'll do it the other way around to make REM use the built-in
2316 * ROM behavior and not the handler behavior (which is to route all access
2317 * to PGM atm).
2318 */
2319 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2320 {
2321 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, true /* fShadowed */);
2322 rc = PGMR3HandlerPhysicalRegister(pVM,
2323 fFlags & PGMPHYS_ROM_FLAGS_SHADOWED
2324 ? PGMPHYSHANDLERTYPE_PHYSICAL_ALL
2325 : PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
2326 GCPhys, GCPhysLast,
2327 pgmR3PhysRomWriteHandler, pRomNew,
2328 NULL, "pgmPhysRomWriteHandler", MMHyperCCToR0(pVM, pRomNew),
2329 NULL, "pgmPhysRomWriteHandler", MMHyperCCToRC(pVM, pRomNew), pszDesc);
2330 }
2331 else
2332 {
2333 rc = PGMR3HandlerPhysicalRegister(pVM,
2334 fFlags & PGMPHYS_ROM_FLAGS_SHADOWED
2335 ? PGMPHYSHANDLERTYPE_PHYSICAL_ALL
2336 : PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
2337 GCPhys, GCPhysLast,
2338 pgmR3PhysRomWriteHandler, pRomNew,
2339 NULL, "pgmPhysRomWriteHandler", MMHyperCCToR0(pVM, pRomNew),
2340 NULL, "pgmPhysRomWriteHandler", MMHyperCCToRC(pVM, pRomNew), pszDesc);
2341 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, false /* fShadowed */);
2342 }
2343 if (RT_SUCCESS(rc))
2344 {
2345 pgmLock(pVM);
2346
2347 /*
2348 * Copy the image over to the virgin pages.
2349 * This must be done after linking in the RAM range.
2350 */
2351 PPGMPAGE pRamPage = &pRamNew->aPages[(GCPhys - pRamNew->GCPhys) >> PAGE_SHIFT];
2352 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++)
2353 {
2354 void *pvDstPage;
2355 rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << PAGE_SHIFT), &pvDstPage);
2356 if (RT_FAILURE(rc))
2357 {
2358 VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys);
2359 break;
2360 }
2361 memcpy(pvDstPage, (const uint8_t *)pvBinary + (iPage << PAGE_SHIFT), PAGE_SIZE);
2362 }
2363 if (RT_SUCCESS(rc))
2364 {
2365 /*
2366 * Initialize the ROM range.
2367 * Note that the Virgin member of the pages has already been initialized above.
2368 */
2369 pRomNew->GCPhys = GCPhys;
2370 pRomNew->GCPhysLast = GCPhysLast;
2371 pRomNew->cb = cb;
2372 pRomNew->fFlags = fFlags;
2373 pRomNew->idSavedState = UINT8_MAX;
2374 pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY ? pvBinary : NULL;
2375 pRomNew->pszDesc = pszDesc;
2376
2377 for (unsigned iPage = 0; iPage < cPages; iPage++)
2378 {
2379 PPGMROMPAGE pPage = &pRomNew->aPages[iPage];
2380 pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE;
2381 PGM_PAGE_INIT_ZERO(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW);
2382 }
2383
2384 /* update the page count stats */
2385 pVM->pgm.s.cZeroPages += cPages;
2386 pVM->pgm.s.cAllPages += cPages;
2387
2388 /*
2389 * Insert the ROM range, tell REM and return successfully.
2390 */
2391 pRomNew->pNextR3 = pRom;
2392 pRomNew->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
2393 pRomNew->pNextRC = pRom ? MMHyperCCToRC(pVM, pRom) : NIL_RTRCPTR;
2394
2395 if (pRomPrev)
2396 {
2397 pRomPrev->pNextR3 = pRomNew;
2398 pRomPrev->pNextR0 = MMHyperCCToR0(pVM, pRomNew);
2399 pRomPrev->pNextRC = MMHyperCCToRC(pVM, pRomNew);
2400 }
2401 else
2402 {
2403 pVM->pgm.s.pRomRangesR3 = pRomNew;
2404 pVM->pgm.s.pRomRangesR0 = MMHyperCCToR0(pVM, pRomNew);
2405 pVM->pgm.s.pRomRangesRC = MMHyperCCToRC(pVM, pRomNew);
2406 }
2407
2408 GMMR3AllocatePagesCleanup(pReq);
2409 pgmUnlock(pVM);
2410 return VINF_SUCCESS;
2411 }
2412
2413 /* bail out */
2414
2415 pgmUnlock(pVM);
2416 int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys);
2417 AssertRC(rc2);
2418 pgmLock(pVM);
2419 }
2420
2421 if (!fRamExists)
2422 {
2423 pgmR3PhysUnlinkRamRange2(pVM, pRamNew, pRamPrev);
2424 MMHyperFree(pVM, pRamNew);
2425 }
2426 }
2427 MMHyperFree(pVM, pRomNew);
2428 }
2429
2430 /** @todo Purge the mapping cache or something... */
2431 GMMR3FreeAllocatedPages(pVM, pReq);
2432 GMMR3AllocatePagesCleanup(pReq);
2433 pgmUnlock(pVM);
2434 return rc;
2435}
2436
2437
2438/**
2439 * \#PF Handler callback for ROM write accesses.
2440 *
2441 * @returns VINF_SUCCESS if the handler have carried out the operation.
2442 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
2443 * @param pVM VM Handle.
2444 * @param GCPhys The physical address the guest is writing to.
2445 * @param pvPhys The HC mapping of that address.
2446 * @param pvBuf What the guest is reading/writing.
2447 * @param cbBuf How much it's reading/writing.
2448 * @param enmAccessType The access type.
2449 * @param pvUser User argument.
2450 */
2451static DECLCALLBACK(int) pgmR3PhysRomWriteHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser)
2452{
2453 PPGMROMRANGE pRom = (PPGMROMRANGE)pvUser;
2454 const uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
2455 Assert(iPage < (pRom->cb >> PAGE_SHIFT));
2456 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
2457 Log5(("pgmR3PhysRomWriteHandler: %d %c %#08RGp %#04zx\n", pRomPage->enmProt, enmAccessType == PGMACCESSTYPE_READ ? 'R' : 'W', GCPhys, cbBuf));
2458
2459 if (enmAccessType == PGMACCESSTYPE_READ)
2460 {
2461 switch (pRomPage->enmProt)
2462 {
2463 /*
2464 * Take the default action.
2465 */
2466 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
2467 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
2468 case PGMROMPROT_READ_ROM_WRITE_RAM:
2469 case PGMROMPROT_READ_RAM_WRITE_RAM:
2470 return VINF_PGM_HANDLER_DO_DEFAULT;
2471
2472 default:
2473 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
2474 pRom->aPages[iPage].enmProt, iPage, GCPhys),
2475 VERR_INTERNAL_ERROR);
2476 }
2477 }
2478 else
2479 {
2480 Assert(enmAccessType == PGMACCESSTYPE_WRITE);
2481 switch (pRomPage->enmProt)
2482 {
2483 /*
2484 * Ignore writes.
2485 */
2486 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
2487 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
2488 return VINF_SUCCESS;
2489
2490 /*
2491 * Write to the ram page.
2492 */
2493 case PGMROMPROT_READ_ROM_WRITE_RAM:
2494 case PGMROMPROT_READ_RAM_WRITE_RAM: /* yes this will get here too, it's *way* simpler that way. */
2495 {
2496 /* This should be impossible now, pvPhys doesn't work cross page anylonger. */
2497 Assert(((GCPhys - pRom->GCPhys + cbBuf - 1) >> PAGE_SHIFT) == iPage);
2498
2499 /*
2500 * Take the lock, do lazy allocation, map the page and copy the data.
2501 *
2502 * Note that we have to bypass the mapping TLB since it works on
2503 * guest physical addresses and entering the shadow page would
2504 * kind of screw things up...
2505 */
2506 int rc = pgmLock(pVM);
2507 AssertRC(rc);
2508
2509 PPGMPAGE pShadowPage = &pRomPage->Shadow;
2510 if (!PGMROMPROT_IS_ROM(pRomPage->enmProt))
2511 {
2512 pShadowPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
2513 AssertLogRelReturn(pShadowPage, VERR_INTERNAL_ERROR);
2514 }
2515
2516 void *pvDstPage;
2517 rc = pgmPhysPageMakeWritableAndMap(pVM, pShadowPage, GCPhys & X86_PTE_PG_MASK, &pvDstPage);
2518 if (RT_SUCCESS(rc))
2519 {
2520 memcpy((uint8_t *)pvDstPage + (GCPhys & PAGE_OFFSET_MASK), pvBuf, cbBuf);
2521 pRomPage->LiveSave.fWrittenTo = true;
2522 }
2523
2524 pgmUnlock(pVM);
2525 return rc;
2526 }
2527
2528 default:
2529 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
2530 pRom->aPages[iPage].enmProt, iPage, GCPhys),
2531 VERR_INTERNAL_ERROR);
2532 }
2533 }
2534}
2535
2536
2537/**
2538 * Called by PGMR3Reset to reset the shadow, switch to the virgin,
2539 * and verify that the virgin part is untouched.
2540 *
2541 * This is done after the normal memory has been cleared.
2542 *
2543 * ASSUMES that the caller owns the PGM lock.
2544 *
2545 * @param pVM The VM handle.
2546 */
2547int pgmR3PhysRomReset(PVM pVM)
2548{
2549 Assert(PGMIsLockOwner(pVM));
2550 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
2551 {
2552 const uint32_t cPages = pRom->cb >> PAGE_SHIFT;
2553
2554 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2555 {
2556 /*
2557 * Reset the physical handler.
2558 */
2559 int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE);
2560 AssertRCReturn(rc, rc);
2561
2562 /*
2563 * What we do with the shadow pages depends on the memory
2564 * preallocation option. If not enabled, we'll just throw
2565 * out all the dirty pages and replace them by the zero page.
2566 */
2567 if (!pVM->pgm.s.fRamPreAlloc)
2568 {
2569 /* Free the dirty pages. */
2570 uint32_t cPendingPages = 0;
2571 PGMMFREEPAGESREQ pReq;
2572 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2573 AssertRCReturn(rc, rc);
2574
2575 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2576 if (PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) != PGM_PAGE_STATE_ZERO)
2577 {
2578 Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) == PGM_PAGE_STATE_ALLOCATED);
2579 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, &pRom->aPages[iPage].Shadow, pRom->GCPhys + (iPage << PAGE_SHIFT));
2580 AssertLogRelRCReturn(rc, rc);
2581 }
2582
2583 if (cPendingPages)
2584 {
2585 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2586 AssertLogRelRCReturn(rc, rc);
2587 }
2588 GMMR3FreePagesCleanup(pReq);
2589 }
2590 else
2591 {
2592 /* clear all the shadow pages. */
2593 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2594 {
2595 Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) != PGM_PAGE_STATE_ZERO);
2596 void *pvDstPage;
2597 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
2598 rc = pgmPhysPageMakeWritableAndMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pvDstPage);
2599 if (RT_FAILURE(rc))
2600 break;
2601 ASMMemZeroPage(pvDstPage);
2602 }
2603 AssertRCReturn(rc, rc);
2604 }
2605 }
2606
2607#ifdef VBOX_STRICT
2608 /*
2609 * Verify that the virgin page is unchanged if possible.
2610 */
2611 if (pRom->pvOriginal)
2612 {
2613 uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal;
2614 for (uint32_t iPage = 0; iPage < cPages; iPage++, pbSrcPage += PAGE_SIZE)
2615 {
2616 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
2617 void const *pvDstPage;
2618 int rc = pgmPhysPageMapReadOnly(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPage);
2619 if (RT_FAILURE(rc))
2620 break;
2621 if (memcmp(pvDstPage, pbSrcPage, PAGE_SIZE))
2622 LogRel(("pgmR3PhysRomReset: %RGp rom page changed (%s) - loaded saved state?\n",
2623 GCPhys, pRom->pszDesc));
2624 }
2625 }
2626#endif
2627 }
2628
2629 return VINF_SUCCESS;
2630}
2631
2632
2633/**
2634 * Change the shadowing of a range of ROM pages.
2635 *
2636 * This is intended for implementing chipset specific memory registers
2637 * and will not be very strict about the input. It will silently ignore
2638 * any pages that are not the part of a shadowed ROM.
2639 *
2640 * @returns VBox status code.
2641 * @retval VINF_PGM_SYNC_CR3
2642 *
2643 * @param pVM Pointer to the shared VM structure.
2644 * @param GCPhys Where to start. Page aligned.
2645 * @param cb How much to change. Page aligned.
2646 * @param enmProt The new ROM protection.
2647 */
2648VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt)
2649{
2650 /*
2651 * Check input
2652 */
2653 if (!cb)
2654 return VINF_SUCCESS;
2655 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2656 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2657 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2658 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
2659 AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER);
2660
2661 /*
2662 * Process the request.
2663 */
2664 pgmLock(pVM);
2665 int rc = VINF_SUCCESS;
2666 bool fFlushTLB = false;
2667 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
2668 {
2669 if ( GCPhys <= pRom->GCPhysLast
2670 && GCPhysLast >= pRom->GCPhys
2671 && (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
2672 {
2673 /*
2674 * Iterate the relevant pages and make necessary the changes.
2675 */
2676 bool fChanges = false;
2677 uint32_t const cPages = pRom->GCPhysLast <= GCPhysLast
2678 ? pRom->cb >> PAGE_SHIFT
2679 : (GCPhysLast - pRom->GCPhys + 1) >> PAGE_SHIFT;
2680 for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
2681 iPage < cPages;
2682 iPage++)
2683 {
2684 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
2685 if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt))
2686 {
2687 fChanges = true;
2688
2689 /* flush references to the page. */
2690 PPGMPAGE pRamPage = pgmPhysGetPage(&pVM->pgm.s, pRom->GCPhys + (iPage << PAGE_SHIFT));
2691 int rc2 = pgmPoolTrackFlushGCPhys(pVM, pRamPage, &fFlushTLB);
2692 if (rc2 != VINF_SUCCESS && (rc == VINF_SUCCESS || RT_FAILURE(rc2)))
2693 rc = rc2;
2694
2695 PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
2696 PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2697
2698 *pOld = *pRamPage;
2699 *pRamPage = *pNew;
2700 /** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */
2701 }
2702 pRomPage->enmProt = enmProt;
2703 }
2704
2705 /*
2706 * Reset the access handler if we made changes, no need
2707 * to optimize this.
2708 */
2709 if (fChanges)
2710 {
2711 int rc = PGMHandlerPhysicalReset(pVM, pRom->GCPhys);
2712 if (RT_FAILURE(rc))
2713 {
2714 pgmUnlock(pVM);
2715 AssertRC(rc);
2716 return rc;
2717 }
2718 }
2719
2720 /* Advance - cb isn't updated. */
2721 GCPhys = pRom->GCPhys + (cPages << PAGE_SHIFT);
2722 }
2723 }
2724 pgmUnlock(pVM);
2725 if (fFlushTLB)
2726 PGM_INVL_ALL_VCPU_TLBS(pVM);
2727
2728 return rc;
2729}
2730
2731
2732/**
2733 * Sets the Address Gate 20 state.
2734 *
2735 * @param pVCpu The VCPU to operate on.
2736 * @param fEnable True if the gate should be enabled.
2737 * False if the gate should be disabled.
2738 */
2739VMMDECL(void) PGMR3PhysSetA20(PVMCPU pVCpu, bool fEnable)
2740{
2741 LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVCpu->pgm.s.fA20Enabled));
2742 if (pVCpu->pgm.s.fA20Enabled != fEnable)
2743 {
2744 pVCpu->pgm.s.fA20Enabled = fEnable;
2745 pVCpu->pgm.s.GCPhysA20Mask = ~(RTGCPHYS)(!fEnable << 20);
2746 REMR3A20Set(pVCpu->pVMR3, pVCpu, fEnable);
2747 /** @todo we're not handling this correctly for VT-x / AMD-V. See #2911 */
2748 }
2749}
2750
2751
2752/**
2753 * Tree enumeration callback for dealing with age rollover.
2754 * It will perform a simple compression of the current age.
2755 */
2756static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
2757{
2758 Assert(PGMIsLockOwner((PVM)pvUser));
2759 /* Age compression - ASSUMES iNow == 4. */
2760 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
2761 if (pChunk->iAge >= UINT32_C(0xffffff00))
2762 pChunk->iAge = 3;
2763 else if (pChunk->iAge >= UINT32_C(0xfffff000))
2764 pChunk->iAge = 2;
2765 else if (pChunk->iAge)
2766 pChunk->iAge = 1;
2767 else /* iAge = 0 */
2768 pChunk->iAge = 4;
2769
2770 /* reinsert */
2771 PVM pVM = (PVM)pvUser;
2772 RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
2773 pChunk->AgeCore.Key = pChunk->iAge;
2774 RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
2775 return 0;
2776}
2777
2778
2779/**
2780 * Tree enumeration callback that updates the chunks that have
2781 * been used since the last
2782 */
2783static DECLCALLBACK(int) pgmR3PhysChunkAgeingCallback(PAVLU32NODECORE pNode, void *pvUser)
2784{
2785 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
2786 if (!pChunk->iAge)
2787 {
2788 PVM pVM = (PVM)pvUser;
2789 RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
2790 pChunk->AgeCore.Key = pChunk->iAge = pVM->pgm.s.ChunkR3Map.iNow;
2791 RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
2792 }
2793
2794 return 0;
2795}
2796
2797
2798/**
2799 * Performs ageing of the ring-3 chunk mappings.
2800 *
2801 * @param pVM The VM handle.
2802 */
2803VMMR3DECL(void) PGMR3PhysChunkAgeing(PVM pVM)
2804{
2805 pgmLock(pVM);
2806 pVM->pgm.s.ChunkR3Map.AgeingCountdown = RT_MIN(pVM->pgm.s.ChunkR3Map.cMax / 4, 1024);
2807 pVM->pgm.s.ChunkR3Map.iNow++;
2808 if (pVM->pgm.s.ChunkR3Map.iNow == 0)
2809 {
2810 pVM->pgm.s.ChunkR3Map.iNow = 4;
2811 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, pVM);
2812 }
2813 else
2814 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingCallback, pVM);
2815 pgmUnlock(pVM);
2816}
2817
2818
2819/**
2820 * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
2821 */
2822typedef struct PGMR3PHYSCHUNKUNMAPCB
2823{
2824 PVM pVM; /**< The VM handle. */
2825 PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
2826} PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
2827
2828
2829/**
2830 * Callback used to find the mapping that's been unused for
2831 * the longest time.
2832 */
2833static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLLU32NODECORE pNode, void *pvUser)
2834{
2835 do
2836 {
2837 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)((uint8_t *)pNode - RT_OFFSETOF(PGMCHUNKR3MAP, AgeCore));
2838 if ( pChunk->iAge
2839 && !pChunk->cRefs)
2840 {
2841 /*
2842 * Check that it's not in any of the TLBs.
2843 */
2844 PVM pVM = ((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pVM;
2845 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
2846 if (pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk == pChunk)
2847 {
2848 pChunk = NULL;
2849 break;
2850 }
2851 if (pChunk)
2852 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
2853 if (pVM->pgm.s.PhysTlbHC.aEntries[i].pMap == pChunk)
2854 {
2855 pChunk = NULL;
2856 break;
2857 }
2858 if (pChunk)
2859 {
2860 ((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pChunk = pChunk;
2861 return 1; /* done */
2862 }
2863 }
2864
2865 /* next with the same age - this version of the AVL API doesn't enumerate the list, so we have to do it. */
2866 pNode = pNode->pList;
2867 } while (pNode);
2868 return 0;
2869}
2870
2871
2872/**
2873 * Finds a good candidate for unmapping when the ring-3 mapping cache is full.
2874 *
2875 * The candidate will not be part of any TLBs, so no need to flush
2876 * anything afterwards.
2877 *
2878 * @returns Chunk id.
2879 * @param pVM The VM handle.
2880 */
2881static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
2882{
2883 Assert(PGMIsLockOwner(pVM));
2884
2885 /*
2886 * Do tree ageing first?
2887 */
2888 if (pVM->pgm.s.ChunkR3Map.AgeingCountdown-- == 0)
2889 PGMR3PhysChunkAgeing(pVM);
2890
2891 /*
2892 * Enumerate the age tree starting with the left most node.
2893 */
2894 PGMR3PHYSCHUNKUNMAPCB Args;
2895 Args.pVM = pVM;
2896 Args.pChunk = NULL;
2897 if (RTAvllU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pAgeTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, pVM))
2898 return Args.pChunk->Core.Key;
2899 return INT32_MAX;
2900}
2901
2902
2903/**
2904 * Maps the given chunk into the ring-3 mapping cache.
2905 *
2906 * This will call ring-0.
2907 *
2908 * @returns VBox status code.
2909 * @param pVM The VM handle.
2910 * @param idChunk The chunk in question.
2911 * @param ppChunk Where to store the chunk tracking structure.
2912 *
2913 * @remarks Called from within the PGM critical section.
2914 */
2915int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
2916{
2917 int rc;
2918
2919 Assert(PGMIsLockOwner(pVM));
2920 /*
2921 * Allocate a new tracking structure first.
2922 */
2923#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2924 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAlloc(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
2925#else
2926 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3UkHeapAlloc(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk), NULL);
2927#endif
2928 AssertReturn(pChunk, VERR_NO_MEMORY);
2929 pChunk->Core.Key = idChunk;
2930 pChunk->AgeCore.Key = pVM->pgm.s.ChunkR3Map.iNow;
2931 pChunk->iAge = 0;
2932 pChunk->cRefs = 0;
2933 pChunk->cPermRefs = 0;
2934 pChunk->pv = NULL;
2935
2936 /*
2937 * Request the ring-0 part to map the chunk in question and if
2938 * necessary unmap another one to make space in the mapping cache.
2939 */
2940 GMMMAPUNMAPCHUNKREQ Req;
2941 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
2942 Req.Hdr.cbReq = sizeof(Req);
2943 Req.pvR3 = NULL;
2944 Req.idChunkMap = idChunk;
2945 Req.idChunkUnmap = NIL_GMM_CHUNKID;
2946 if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
2947 Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
2948/** @todo This is wrong. Any thread in the VM process should be able to do this,
2949 * there are depenenecies on this. What currently saves the day is that
2950 * we don't unmap anything and that all non-zero memory will therefore
2951 * be present when non-EMTs tries to access it. */
2952 rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
2953 if (RT_SUCCESS(rc))
2954 {
2955 /*
2956 * Update the tree.
2957 */
2958 /* insert the new one. */
2959 AssertPtr(Req.pvR3);
2960 pChunk->pv = Req.pvR3;
2961 bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
2962 AssertRelease(fRc);
2963 pVM->pgm.s.ChunkR3Map.c++;
2964
2965 fRc = RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
2966 AssertRelease(fRc);
2967
2968 /* remove the unmapped one. */
2969 if (Req.idChunkUnmap != NIL_GMM_CHUNKID)
2970 {
2971 PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
2972 AssertRelease(pUnmappedChunk);
2973 pUnmappedChunk->pv = NULL;
2974 pUnmappedChunk->Core.Key = UINT32_MAX;
2975#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2976 MMR3HeapFree(pUnmappedChunk);
2977#else
2978 MMR3UkHeapFree(pVM, pUnmappedChunk, MM_TAG_PGM_CHUNK_MAPPING);
2979#endif
2980 pVM->pgm.s.ChunkR3Map.c--;
2981 }
2982 }
2983 else
2984 {
2985 AssertRC(rc);
2986#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2987 MMR3HeapFree(pChunk);
2988#else
2989 MMR3UkHeapFree(pVM, pChunk, MM_TAG_PGM_CHUNK_MAPPING);
2990#endif
2991 pChunk = NULL;
2992 }
2993
2994 *ppChunk = pChunk;
2995 return rc;
2996}
2997
2998
2999/**
3000 * For VMMCALLRING3_PGM_MAP_CHUNK, considered internal.
3001 *
3002 * @returns see pgmR3PhysChunkMap.
3003 * @param pVM The VM handle.
3004 * @param idChunk The chunk to map.
3005 */
3006VMMR3DECL(int) PGMR3PhysChunkMap(PVM pVM, uint32_t idChunk)
3007{
3008 PPGMCHUNKR3MAP pChunk;
3009 int rc;
3010
3011 pgmLock(pVM);
3012 rc = pgmR3PhysChunkMap(pVM, idChunk, &pChunk);
3013 pgmUnlock(pVM);
3014 return rc;
3015}
3016
3017
3018/**
3019 * Invalidates the TLB for the ring-3 mapping cache.
3020 *
3021 * @param pVM The VM handle.
3022 */
3023VMMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM)
3024{
3025 pgmLock(pVM);
3026 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
3027 {
3028 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
3029 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
3030 }
3031 pgmUnlock(pVM);
3032}
3033
3034
3035/**
3036 * Response to VM_FF_PGM_NEED_HANDY_PAGES and VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES.
3037 *
3038 * This function will also work the VM_FF_PGM_NO_MEMORY force action flag, to
3039 * signal and clear the out of memory condition. When contracted, this API is
3040 * used to try clear the condition when the user wants to resume.
3041 *
3042 * @returns The following VBox status codes.
3043 * @retval VINF_SUCCESS on success. FFs cleared.
3044 * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in
3045 * this case and it gets accompanied by VM_FF_PGM_NO_MEMORY.
3046 *
3047 * @param pVM The VM handle.
3048 *
3049 * @remarks The VINF_EM_NO_MEMORY status is for the benefit of the FF processing
3050 * in EM.cpp and shouldn't be propagated outside TRPM, HWACCM, EM and
3051 * pgmPhysEnsureHandyPage. There is one exception to this in the \#PF
3052 * handler.
3053 */
3054VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
3055{
3056 pgmLock(pVM);
3057
3058 /*
3059 * Allocate more pages, noting down the index of the first new page.
3060 */
3061 uint32_t iClear = pVM->pgm.s.cHandyPages;
3062 AssertMsgReturn(iClear <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d", iClear), VERR_INTERNAL_ERROR);
3063 Log(("PGMR3PhysAllocateHandyPages: %d -> %d\n", iClear, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
3064 int rcAlloc = VINF_SUCCESS;
3065 int rcSeed = VINF_SUCCESS;
3066 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
3067 while (rc == VERR_GMM_SEED_ME)
3068 {
3069 void *pvChunk;
3070 rcAlloc = rc = SUPR3PageAlloc(GMM_CHUNK_SIZE >> PAGE_SHIFT, &pvChunk);
3071 if (RT_SUCCESS(rc))
3072 {
3073 rcSeed = rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_SEED_CHUNK, (uintptr_t)pvChunk, NULL);
3074 if (RT_FAILURE(rc))
3075 SUPR3PageFree(pvChunk, GMM_CHUNK_SIZE >> PAGE_SHIFT);
3076 }
3077 if (RT_SUCCESS(rc))
3078 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
3079 }
3080
3081 if (RT_SUCCESS(rc))
3082 {
3083 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
3084 Assert(pVM->pgm.s.cHandyPages > 0);
3085 VM_FF_CLEAR(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
3086 VM_FF_CLEAR(pVM, VM_FF_PGM_NO_MEMORY);
3087
3088 /*
3089 * Clear the pages.
3090 */
3091 while (iClear < pVM->pgm.s.cHandyPages)
3092 {
3093 PGMMPAGEDESC pPage = &pVM->pgm.s.aHandyPages[iClear];
3094 void *pv;
3095 rc = pgmPhysPageMapByPageID(pVM, pPage->idPage, pPage->HCPhysGCPhys, &pv);
3096 AssertLogRelMsgBreak(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc", pPage->idPage, pPage->HCPhysGCPhys, rc));
3097 ASMMemZeroPage(pv);
3098 iClear++;
3099 Log3(("PGMR3PhysAllocateHandyPages: idPage=%#x HCPhys=%RGp\n", pPage->idPage, pPage->HCPhysGCPhys));
3100 }
3101 }
3102 else
3103 {
3104 /*
3105 * We should never get here unless there is a genuine shortage of
3106 * memory (or some internal error). Flag the error so the VM can be
3107 * suspended ASAP and the user informed. If we're totally out of
3108 * handy pages we will return failure.
3109 */
3110 /* Report the failure. */
3111 LogRel(("PGM: Failed to procure handy pages; rc=%Rrc rcAlloc=%Rrc rcSeed=%Rrc cHandyPages=%#x\n"
3112 " cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n",
3113 rc, rcAlloc, rcSeed,
3114 pVM->pgm.s.cHandyPages,
3115 pVM->pgm.s.cAllPages,
3116 pVM->pgm.s.cPrivatePages,
3117 pVM->pgm.s.cSharedPages,
3118 pVM->pgm.s.cZeroPages));
3119 if ( rc != VERR_NO_MEMORY
3120 && rc != VERR_LOCK_FAILED)
3121 {
3122 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
3123 {
3124 LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n",
3125 i, pVM->pgm.s.aHandyPages[i].HCPhysGCPhys, pVM->pgm.s.aHandyPages[i].idPage,
3126 pVM->pgm.s.aHandyPages[i].idSharedPage));
3127 uint32_t const idPage = pVM->pgm.s.aHandyPages[i].idPage;
3128 if (idPage != NIL_GMM_PAGEID)
3129 {
3130 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
3131 pRam;
3132 pRam = pRam->pNextR3)
3133 {
3134 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
3135 for (uint32_t iPage = 0; iPage < cPages; iPage++)
3136 if (PGM_PAGE_GET_PAGEID(&pRam->aPages[iPage]) == idPage)
3137 LogRel(("PGM: Used by %RGp %R[pgmpage] (%s)\n",
3138 pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pRam->aPages[iPage], pRam->pszDesc));
3139 }
3140 }
3141 }
3142 }
3143
3144 /* Set the FFs and adjust rc. */
3145 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
3146 VM_FF_SET(pVM, VM_FF_PGM_NO_MEMORY);
3147 if ( rc == VERR_NO_MEMORY
3148 || rc == VERR_LOCK_FAILED)
3149 rc = VINF_EM_NO_MEMORY;
3150 }
3151
3152 pgmUnlock(pVM);
3153 return rc;
3154}
3155
3156
3157/**
3158 * Frees the specified RAM page and replaces it with the ZERO page.
3159 *
3160 * This is used by ballooning, remapping MMIO2 and RAM reset.
3161 *
3162 * @param pVM Pointer to the shared VM structure.
3163 * @param pReq Pointer to the request.
3164 * @param pPage Pointer to the page structure.
3165 * @param GCPhys The guest physical address of the page, if applicable.
3166 *
3167 * @remarks The caller must own the PGM lock.
3168 */
3169static int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys)
3170{
3171 /*
3172 * Assert sanity.
3173 */
3174 Assert(PGMIsLockOwner(pVM));
3175 if (RT_UNLIKELY( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
3176 && PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW))
3177 {
3178 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
3179 return VMSetError(pVM, VERR_PGM_PHYS_NOT_RAM, RT_SRC_POS, "GCPhys=%RGp type=%d", GCPhys, PGM_PAGE_GET_TYPE(pPage));
3180 }
3181
3182 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ZERO)
3183 return VINF_SUCCESS;
3184
3185 const uint32_t idPage = PGM_PAGE_GET_PAGEID(pPage);
3186 Log3(("pgmPhysFreePage: idPage=%#x HCPhys=%RGp pPage=%R[pgmpage]\n", idPage, pPage));
3187 if (RT_UNLIKELY( idPage == NIL_GMM_PAGEID
3188 || idPage > GMM_PAGEID_LAST
3189 || PGM_PAGE_GET_CHUNKID(pPage) == NIL_GMM_CHUNKID))
3190 {
3191 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
3192 return VMSetError(pVM, VERR_PGM_PHYS_INVALID_PAGE_ID, RT_SRC_POS, "GCPhys=%RGp idPage=%#x", GCPhys, pPage);
3193 }
3194
3195 /* update page count stats. */
3196 if (PGM_PAGE_IS_SHARED(pPage))
3197 pVM->pgm.s.cSharedPages--;
3198 else
3199 pVM->pgm.s.cPrivatePages--;
3200 pVM->pgm.s.cZeroPages++;
3201
3202 /*
3203 * pPage = ZERO page.
3204 */
3205 PGM_PAGE_SET_HCPHYS(pPage, pVM->pgm.s.HCPhysZeroPg);
3206 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
3207 PGM_PAGE_SET_PAGEID(pPage, NIL_GMM_PAGEID);
3208
3209 /*
3210 * Make sure it's not in the handy page array.
3211 */
3212 for (uint32_t i = pVM->pgm.s.cHandyPages; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
3213 {
3214 if (pVM->pgm.s.aHandyPages[i].idPage == idPage)
3215 {
3216 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
3217 break;
3218 }
3219 if (pVM->pgm.s.aHandyPages[i].idSharedPage == idPage)
3220 {
3221 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
3222 break;
3223 }
3224 }
3225
3226 /*
3227 * Push it onto the page array.
3228 */
3229 uint32_t iPage = *pcPendingPages;
3230 Assert(iPage < PGMPHYS_FREE_PAGE_BATCH_SIZE);
3231 *pcPendingPages += 1;
3232
3233 pReq->aPages[iPage].idPage = idPage;
3234
3235 if (iPage + 1 < PGMPHYS_FREE_PAGE_BATCH_SIZE)
3236 return VINF_SUCCESS;
3237
3238 /*
3239 * Flush the pages.
3240 */
3241 int rc = GMMR3FreePagesPerform(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE);
3242 if (RT_SUCCESS(rc))
3243 {
3244 GMMR3FreePagesRePrep(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
3245 *pcPendingPages = 0;
3246 }
3247 return rc;
3248}
3249
3250
3251/**
3252 * Converts a GC physical address to a HC ring-3 pointer, with some
3253 * additional checks.
3254 *
3255 * @returns VBox status code.
3256 * @retval VINF_SUCCESS on success.
3257 * @retval VINF_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
3258 * access handler of some kind.
3259 * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
3260 * accesses or is odd in any way.
3261 * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
3262 *
3263 * @param pVM The VM handle.
3264 * @param GCPhys The GC physical address to convert.
3265 * @param fWritable Whether write access is required.
3266 * @param ppv Where to store the pointer corresponding to GCPhys on
3267 * success.
3268 */
3269VMMR3DECL(int) PGMR3PhysTlbGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, void **ppv)
3270{
3271 pgmLock(pVM);
3272
3273 PPGMRAMRANGE pRam;
3274 PPGMPAGE pPage;
3275 int rc = pgmPhysGetPageAndRangeEx(&pVM->pgm.s, GCPhys, &pPage, &pRam);
3276 if (RT_SUCCESS(rc))
3277 {
3278 if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage))
3279 rc = VINF_SUCCESS;
3280 else
3281 {
3282 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
3283 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
3284 else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
3285 {
3286 /** @todo Handle TLB loads of virtual handlers so ./test.sh can be made to work
3287 * in -norawr0 mode. */
3288 if (fWritable)
3289 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
3290 }
3291 else
3292 {
3293 /* Temporarily disabled physical handler(s), since the recompiler
3294 doesn't get notified when it's reset we'll have to pretend it's
3295 operating normally. */
3296 if (pgmHandlerPhysicalIsAll(pVM, GCPhys))
3297 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
3298 else
3299 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
3300 }
3301 }
3302 if (RT_SUCCESS(rc))
3303 {
3304 int rc2;
3305
3306 /* Make sure what we return is writable. */
3307 if (fWritable && rc != VINF_PGM_PHYS_TLB_CATCH_WRITE)
3308 switch (PGM_PAGE_GET_STATE(pPage))
3309 {
3310 case PGM_PAGE_STATE_ALLOCATED:
3311 break;
3312 case PGM_PAGE_STATE_ZERO:
3313 case PGM_PAGE_STATE_SHARED:
3314 case PGM_PAGE_STATE_WRITE_MONITORED:
3315 rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
3316 AssertLogRelRCReturn(rc2, rc2);
3317 break;
3318 }
3319
3320 /* Get a ring-3 mapping of the address. */
3321 PPGMPAGER3MAPTLBE pTlbe;
3322 rc2 = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
3323 AssertLogRelRCReturn(rc2, rc2);
3324 *ppv = (void *)((uintptr_t)pTlbe->pv | (GCPhys & PAGE_OFFSET_MASK));
3325 /** @todo mapping/locking hell; this isn't horribly efficient since
3326 * pgmPhysPageLoadIntoTlb will repeat the lookup we've done here. */
3327
3328 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
3329 }
3330 else
3331 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));
3332
3333 /* else: handler catching all access, no pointer returned. */
3334 }
3335 else
3336 rc = VERR_PGM_PHYS_TLB_UNASSIGNED;
3337
3338 pgmUnlock(pVM);
3339 return rc;
3340}
3341
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette