VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMPhys.cpp@ 27549

Last change on this file since 27549 was 27543, checked in by vboxsync, 15 years ago

Balloon updates; make ballooned pages as such

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 129.8 KB
Line 
1/* $Id: PGMPhys.cpp 27543 2010-03-19 15:47:14Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_PGM_PHYS
27#include <VBox/pgm.h>
28#include <VBox/iom.h>
29#include <VBox/mm.h>
30#include <VBox/stam.h>
31#include <VBox/rem.h>
32#include <VBox/pdmdev.h>
33#include "PGMInternal.h"
34#include <VBox/vm.h>
35#include "PGMInline.h"
36#include <VBox/sup.h>
37#include <VBox/param.h>
38#include <VBox/err.h>
39#include <VBox/log.h>
40#include <iprt/assert.h>
41#include <iprt/alloc.h>
42#include <iprt/asm.h>
43#include <iprt/thread.h>
44#include <iprt/string.h>
45
46
47/*******************************************************************************
48* Defined Constants And Macros *
49*******************************************************************************/
50/** The number of pages to free in one batch. */
51#define PGMPHYS_FREE_PAGE_BATCH_SIZE 128
52
53
54/*******************************************************************************
55* Internal Functions *
56*******************************************************************************/
57static DECLCALLBACK(int) pgmR3PhysRomWriteHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
58static int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys);
59
60
61/*
62 * PGMR3PhysReadU8-64
63 * PGMR3PhysWriteU8-64
64 */
65#define PGMPHYSFN_READNAME PGMR3PhysReadU8
66#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8
67#define PGMPHYS_DATASIZE 1
68#define PGMPHYS_DATATYPE uint8_t
69#include "PGMPhysRWTmpl.h"
70
71#define PGMPHYSFN_READNAME PGMR3PhysReadU16
72#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16
73#define PGMPHYS_DATASIZE 2
74#define PGMPHYS_DATATYPE uint16_t
75#include "PGMPhysRWTmpl.h"
76
77#define PGMPHYSFN_READNAME PGMR3PhysReadU32
78#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32
79#define PGMPHYS_DATASIZE 4
80#define PGMPHYS_DATATYPE uint32_t
81#include "PGMPhysRWTmpl.h"
82
83#define PGMPHYSFN_READNAME PGMR3PhysReadU64
84#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64
85#define PGMPHYS_DATASIZE 8
86#define PGMPHYS_DATATYPE uint64_t
87#include "PGMPhysRWTmpl.h"
88
89
90/**
91 * EMT worker for PGMR3PhysReadExternal.
92 */
93static DECLCALLBACK(int) pgmR3PhysReadExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, void *pvBuf, size_t cbRead)
94{
95 PGMPhysRead(pVM, *pGCPhys, pvBuf, cbRead);
96 return VINF_SUCCESS;
97}
98
99
100/**
101 * Write to physical memory, external users.
102 *
103 * @returns VBox status code.
104 * @retval VINF_SUCCESS.
105 *
106 * @param pVM VM Handle.
107 * @param GCPhys Physical address to write to.
108 * @param pvBuf What to write.
109 * @param cbWrite How many bytes to write.
110 *
111 * @thread Any but EMTs.
112 */
113VMMR3DECL(int) PGMR3PhysReadExternal(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead)
114{
115 VM_ASSERT_OTHER_THREAD(pVM);
116
117 AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
118 LogFlow(("PGMR3PhysReadExternal: %RGp %d\n", GCPhys, cbRead));
119
120 pgmLock(pVM);
121
122 /*
123 * Copy loop on ram ranges.
124 */
125 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
126 for (;;)
127 {
128 /* Find range. */
129 while (pRam && GCPhys > pRam->GCPhysLast)
130 pRam = pRam->CTX_SUFF(pNext);
131 /* Inside range or not? */
132 if (pRam && GCPhys >= pRam->GCPhys)
133 {
134 /*
135 * Must work our way thru this page by page.
136 */
137 RTGCPHYS off = GCPhys - pRam->GCPhys;
138 while (off < pRam->cb)
139 {
140 unsigned iPage = off >> PAGE_SHIFT;
141 PPGMPAGE pPage = &pRam->aPages[iPage];
142
143 /*
144 * If the page has an ALL access handler, we'll have to
145 * delegate the job to EMT.
146 */
147 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
148 {
149 pgmUnlock(pVM);
150
151 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysReadExternalEMT, 4,
152 pVM, &GCPhys, pvBuf, cbRead);
153 }
154 Assert(!PGM_PAGE_IS_MMIO(pPage));
155
156 /*
157 * Simple stuff, go ahead.
158 */
159 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
160 if (cb > cbRead)
161 cb = cbRead;
162 const void *pvSrc;
163 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc);
164 if (RT_SUCCESS(rc))
165 memcpy(pvBuf, pvSrc, cb);
166 else
167 {
168 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
169 pRam->GCPhys + off, pPage, rc));
170 memset(pvBuf, 0xff, cb);
171 }
172
173 /* next page */
174 if (cb >= cbRead)
175 {
176 pgmUnlock(pVM);
177 return VINF_SUCCESS;
178 }
179 cbRead -= cb;
180 off += cb;
181 GCPhys += cb;
182 pvBuf = (char *)pvBuf + cb;
183 } /* walk pages in ram range. */
184 }
185 else
186 {
187 LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
188
189 /*
190 * Unassigned address space.
191 */
192 if (!pRam)
193 break;
194 size_t cb = pRam->GCPhys - GCPhys;
195 if (cb >= cbRead)
196 {
197 memset(pvBuf, 0xff, cbRead);
198 break;
199 }
200 memset(pvBuf, 0xff, cb);
201
202 cbRead -= cb;
203 pvBuf = (char *)pvBuf + cb;
204 GCPhys += cb;
205 }
206 } /* Ram range walk */
207
208 pgmUnlock(pVM);
209
210 return VINF_SUCCESS;
211}
212
213
214/**
215 * EMT worker for PGMR3PhysWriteExternal.
216 */
217static DECLCALLBACK(int) pgmR3PhysWriteExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, const void *pvBuf, size_t cbWrite)
218{
219 /** @todo VERR_EM_NO_MEMORY */
220 PGMPhysWrite(pVM, *pGCPhys, pvBuf, cbWrite);
221 return VINF_SUCCESS;
222}
223
224
225/**
226 * Write to physical memory, external users.
227 *
228 * @returns VBox status code.
229 * @retval VINF_SUCCESS.
230 * @retval VERR_EM_NO_MEMORY.
231 *
232 * @param pVM VM Handle.
233 * @param GCPhys Physical address to write to.
234 * @param pvBuf What to write.
235 * @param cbWrite How many bytes to write.
236 * @param pszWho Who is writing. For tracking down who is writing
237 * after we've saved the state.
238 *
239 * @thread Any but EMTs.
240 */
241VMMDECL(int) PGMR3PhysWriteExternal(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, const char *pszWho)
242{
243 VM_ASSERT_OTHER_THREAD(pVM);
244
245 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites,
246 ("Calling PGMR3PhysWriteExternal after pgmR3Save()! GCPhys=%RGp cbWrite=%#x pszWho=%s\n",
247 GCPhys, cbWrite, pszWho));
248 AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
249 LogFlow(("PGMR3PhysWriteExternal: %RGp %d\n", GCPhys, cbWrite));
250
251 pgmLock(pVM);
252
253 /*
254 * Copy loop on ram ranges, stop when we hit something difficult.
255 */
256 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
257 for (;;)
258 {
259 /* Find range. */
260 while (pRam && GCPhys > pRam->GCPhysLast)
261 pRam = pRam->CTX_SUFF(pNext);
262 /* Inside range or not? */
263 if (pRam && GCPhys >= pRam->GCPhys)
264 {
265 /*
266 * Must work our way thru this page by page.
267 */
268 RTGCPTR off = GCPhys - pRam->GCPhys;
269 while (off < pRam->cb)
270 {
271 RTGCPTR iPage = off >> PAGE_SHIFT;
272 PPGMPAGE pPage = &pRam->aPages[iPage];
273
274 /*
275 * Is the page problematic, we have to do the work on the EMT.
276 *
277 * Allocating writable pages and access handlers are
278 * problematic, write monitored pages are simple and can be
279 * dealth with here.
280 */
281 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
282 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
283 {
284 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
285 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
286 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
287 else
288 {
289 pgmUnlock(pVM);
290
291 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysWriteExternalEMT, 4,
292 pVM, &GCPhys, pvBuf, cbWrite);
293 }
294 }
295 Assert(!PGM_PAGE_IS_MMIO(pPage));
296
297 /*
298 * Simple stuff, go ahead.
299 */
300 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
301 if (cb > cbWrite)
302 cb = cbWrite;
303 void *pvDst;
304 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst);
305 if (RT_SUCCESS(rc))
306 memcpy(pvDst, pvBuf, cb);
307 else
308 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
309 pRam->GCPhys + off, pPage, rc));
310
311 /* next page */
312 if (cb >= cbWrite)
313 {
314 pgmUnlock(pVM);
315 return VINF_SUCCESS;
316 }
317
318 cbWrite -= cb;
319 off += cb;
320 GCPhys += cb;
321 pvBuf = (const char *)pvBuf + cb;
322 } /* walk pages in ram range */
323 }
324 else
325 {
326 /*
327 * Unassigned address space, skip it.
328 */
329 if (!pRam)
330 break;
331 size_t cb = pRam->GCPhys - GCPhys;
332 if (cb >= cbWrite)
333 break;
334 cbWrite -= cb;
335 pvBuf = (const char *)pvBuf + cb;
336 GCPhys += cb;
337 }
338 } /* Ram range walk */
339
340 pgmUnlock(pVM);
341 return VINF_SUCCESS;
342}
343
344
345/**
346 * VMR3ReqCall worker for PGMR3PhysGCPhys2CCPtrExternal to make pages writable.
347 *
348 * @returns see PGMR3PhysGCPhys2CCPtrExternal
349 * @param pVM The VM handle.
350 * @param pGCPhys Pointer to the guest physical address.
351 * @param ppv Where to store the mapping address.
352 * @param pLock Where to store the lock.
353 */
354static DECLCALLBACK(int) pgmR3PhysGCPhys2CCPtrDelegated(PVM pVM, PRTGCPHYS pGCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
355{
356 /*
357 * Just hand it to PGMPhysGCPhys2CCPtr and check that it's not a page with
358 * an access handler after it succeeds.
359 */
360 int rc = pgmLock(pVM);
361 AssertRCReturn(rc, rc);
362
363 rc = PGMPhysGCPhys2CCPtr(pVM, *pGCPhys, ppv, pLock);
364 if (RT_SUCCESS(rc))
365 {
366 PPGMPAGEMAPTLBE pTlbe;
367 int rc2 = pgmPhysPageQueryTlbe(&pVM->pgm.s, *pGCPhys, &pTlbe);
368 AssertFatalRC(rc2);
369 PPGMPAGE pPage = pTlbe->pPage;
370 if (PGM_PAGE_IS_MMIO(pPage))
371 {
372 PGMPhysReleasePageMappingLock(pVM, pLock);
373 rc = VERR_PGM_PHYS_PAGE_RESERVED;
374 }
375 else if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
376#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
377 || pgmPoolIsDirtyPage(pVM, *pGCPhys)
378#endif
379 )
380 {
381 /* We *must* flush any corresponding pgm pool page here, otherwise we'll
382 * not be informed about writes and keep bogus gst->shw mappings around.
383 */
384 pgmPoolFlushPageByGCPhys(pVM, *pGCPhys);
385 Assert(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage));
386 /** @todo r=bird: return VERR_PGM_PHYS_PAGE_RESERVED here if it still has
387 * active handlers, see the PGMR3PhysGCPhys2CCPtrExternal docs. */
388 }
389 }
390
391 pgmUnlock(pVM);
392 return rc;
393}
394
395
396/**
397 * Requests the mapping of a guest page into ring-3, external threads.
398 *
399 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
400 * release it.
401 *
402 * This API will assume your intention is to write to the page, and will
403 * therefore replace shared and zero pages. If you do not intend to modify the
404 * page, use the PGMR3PhysGCPhys2CCPtrReadOnlyExternal() API.
405 *
406 * @returns VBox status code.
407 * @retval VINF_SUCCESS on success.
408 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
409 * backing or if the page has any active access handlers. The caller
410 * must fall back on using PGMR3PhysWriteExternal.
411 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
412 *
413 * @param pVM The VM handle.
414 * @param GCPhys The guest physical address of the page that should be mapped.
415 * @param ppv Where to store the address corresponding to GCPhys.
416 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
417 *
418 * @remark Avoid calling this API from within critical sections (other than the
419 * PGM one) because of the deadlock risk when we have to delegating the
420 * task to an EMT.
421 * @thread Any.
422 */
423VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrExternal(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
424{
425 AssertPtr(ppv);
426 AssertPtr(pLock);
427
428 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
429
430 int rc = pgmLock(pVM);
431 AssertRCReturn(rc, rc);
432
433 /*
434 * Query the Physical TLB entry for the page (may fail).
435 */
436 PPGMPAGEMAPTLBE pTlbe;
437 rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
438 if (RT_SUCCESS(rc))
439 {
440 PPGMPAGE pPage = pTlbe->pPage;
441 if (PGM_PAGE_IS_MMIO(pPage))
442 rc = VERR_PGM_PHYS_PAGE_RESERVED;
443 else
444 {
445 /*
446 * If the page is shared, the zero page, or being write monitored
447 * it must be converted to an page that's writable if possible.
448 * We can only deal with write monitored pages here, the rest have
449 * to be on an EMT.
450 */
451 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
452 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
453#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
454 || pgmPoolIsDirtyPage(pVM, GCPhys)
455#endif
456 )
457 {
458 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
459 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
460#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
461 && !pgmPoolIsDirtyPage(pVM, GCPhys)
462#endif
463 )
464 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
465 else
466 {
467 pgmUnlock(pVM);
468
469 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
470 pVM, &GCPhys, ppv, pLock);
471 }
472 }
473
474 /*
475 * Now, just perform the locking and calculate the return address.
476 */
477 PPGMPAGEMAP pMap = pTlbe->pMap;
478 if (pMap)
479 pMap->cRefs++;
480
481 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
482 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
483 {
484 if (cLocks == 0)
485 pVM->pgm.s.cWriteLockedPages++;
486 PGM_PAGE_INC_WRITE_LOCKS(pPage);
487 }
488 else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
489 {
490 PGM_PAGE_INC_WRITE_LOCKS(pPage);
491 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", GCPhys, pPage));
492 if (pMap)
493 pMap->cRefs++; /* Extra ref to prevent it from going away. */
494 }
495
496 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
497 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
498 pLock->pvMap = pMap;
499 }
500 }
501
502 pgmUnlock(pVM);
503 return rc;
504}
505
506
507/**
508 * Requests the mapping of a guest page into ring-3, external threads.
509 *
510 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
511 * release it.
512 *
513 * @returns VBox status code.
514 * @retval VINF_SUCCESS on success.
515 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
516 * backing or if the page as an active ALL access handler. The caller
517 * must fall back on using PGMPhysRead.
518 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
519 *
520 * @param pVM The VM handle.
521 * @param GCPhys The guest physical address of the page that should be mapped.
522 * @param ppv Where to store the address corresponding to GCPhys.
523 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
524 *
525 * @remark Avoid calling this API from within critical sections (other than
526 * the PGM one) because of the deadlock risk.
527 * @thread Any.
528 */
529VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrReadOnlyExternal(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
530{
531 int rc = pgmLock(pVM);
532 AssertRCReturn(rc, rc);
533
534 /*
535 * Query the Physical TLB entry for the page (may fail).
536 */
537 PPGMPAGEMAPTLBE pTlbe;
538 rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
539 if (RT_SUCCESS(rc))
540 {
541 PPGMPAGE pPage = pTlbe->pPage;
542#if 1
543 /* MMIO pages doesn't have any readable backing. */
544 if (PGM_PAGE_IS_MMIO(pPage))
545 rc = VERR_PGM_PHYS_PAGE_RESERVED;
546#else
547 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
548 rc = VERR_PGM_PHYS_PAGE_RESERVED;
549#endif
550 else
551 {
552 /*
553 * Now, just perform the locking and calculate the return address.
554 */
555 PPGMPAGEMAP pMap = pTlbe->pMap;
556 if (pMap)
557 pMap->cRefs++;
558
559 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
560 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
561 {
562 if (cLocks == 0)
563 pVM->pgm.s.cReadLockedPages++;
564 PGM_PAGE_INC_READ_LOCKS(pPage);
565 }
566 else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
567 {
568 PGM_PAGE_INC_READ_LOCKS(pPage);
569 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", GCPhys, pPage));
570 if (pMap)
571 pMap->cRefs++; /* Extra ref to prevent it from going away. */
572 }
573
574 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
575 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
576 pLock->pvMap = pMap;
577 }
578 }
579
580 pgmUnlock(pVM);
581 return rc;
582}
583
584
585/**
586 * Relinks the RAM ranges using the pSelfRC and pSelfR0 pointers.
587 *
588 * Called when anything was relocated.
589 *
590 * @param pVM Pointer to the shared VM structure.
591 */
592void pgmR3PhysRelinkRamRanges(PVM pVM)
593{
594 PPGMRAMRANGE pCur;
595
596#ifdef VBOX_STRICT
597 for (pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
598 {
599 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfR0 == MMHyperCCToR0(pVM, pCur));
600 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfRC == MMHyperCCToRC(pVM, pCur));
601 Assert((pCur->GCPhys & PAGE_OFFSET_MASK) == 0);
602 Assert((pCur->GCPhysLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
603 Assert((pCur->cb & PAGE_OFFSET_MASK) == 0);
604 Assert(pCur->cb == pCur->GCPhysLast - pCur->GCPhys + 1);
605 for (PPGMRAMRANGE pCur2 = pVM->pgm.s.pRamRangesR3; pCur2; pCur2 = pCur2->pNextR3)
606 Assert( pCur2 == pCur
607 || strcmp(pCur2->pszDesc, pCur->pszDesc)); /** @todo fix MMIO ranges!! */
608 }
609#endif
610
611 pCur = pVM->pgm.s.pRamRangesR3;
612 if (pCur)
613 {
614 pVM->pgm.s.pRamRangesR0 = pCur->pSelfR0;
615 pVM->pgm.s.pRamRangesRC = pCur->pSelfRC;
616
617 for (; pCur->pNextR3; pCur = pCur->pNextR3)
618 {
619 pCur->pNextR0 = pCur->pNextR3->pSelfR0;
620 pCur->pNextRC = pCur->pNextR3->pSelfRC;
621 }
622
623 Assert(pCur->pNextR0 == NIL_RTR0PTR);
624 Assert(pCur->pNextRC == NIL_RTRCPTR);
625 }
626 else
627 {
628 Assert(pVM->pgm.s.pRamRangesR0 == NIL_RTR0PTR);
629 Assert(pVM->pgm.s.pRamRangesRC == NIL_RTRCPTR);
630 }
631 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
632}
633
634
635/**
636 * Links a new RAM range into the list.
637 *
638 * @param pVM Pointer to the shared VM structure.
639 * @param pNew Pointer to the new list entry.
640 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
641 */
642static void pgmR3PhysLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, PPGMRAMRANGE pPrev)
643{
644 AssertMsg(pNew->pszDesc, ("%RGp-%RGp\n", pNew->GCPhys, pNew->GCPhysLast));
645 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfR0 == MMHyperCCToR0(pVM, pNew));
646 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfRC == MMHyperCCToRC(pVM, pNew));
647
648 pgmLock(pVM);
649
650 PPGMRAMRANGE pRam = pPrev ? pPrev->pNextR3 : pVM->pgm.s.pRamRangesR3;
651 pNew->pNextR3 = pRam;
652 pNew->pNextR0 = pRam ? pRam->pSelfR0 : NIL_RTR0PTR;
653 pNew->pNextRC = pRam ? pRam->pSelfRC : NIL_RTRCPTR;
654
655 if (pPrev)
656 {
657 pPrev->pNextR3 = pNew;
658 pPrev->pNextR0 = pNew->pSelfR0;
659 pPrev->pNextRC = pNew->pSelfRC;
660 }
661 else
662 {
663 pVM->pgm.s.pRamRangesR3 = pNew;
664 pVM->pgm.s.pRamRangesR0 = pNew->pSelfR0;
665 pVM->pgm.s.pRamRangesRC = pNew->pSelfRC;
666 }
667 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
668 pgmUnlock(pVM);
669}
670
671
672/**
673 * Unlink an existing RAM range from the list.
674 *
675 * @param pVM Pointer to the shared VM structure.
676 * @param pRam Pointer to the new list entry.
677 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
678 */
679static void pgmR3PhysUnlinkRamRange2(PVM pVM, PPGMRAMRANGE pRam, PPGMRAMRANGE pPrev)
680{
681 Assert(pPrev ? pPrev->pNextR3 == pRam : pVM->pgm.s.pRamRangesR3 == pRam);
682 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfR0 == MMHyperCCToR0(pVM, pRam));
683 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfRC == MMHyperCCToRC(pVM, pRam));
684
685 pgmLock(pVM);
686
687 PPGMRAMRANGE pNext = pRam->pNextR3;
688 if (pPrev)
689 {
690 pPrev->pNextR3 = pNext;
691 pPrev->pNextR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
692 pPrev->pNextRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
693 }
694 else
695 {
696 Assert(pVM->pgm.s.pRamRangesR3 == pRam);
697 pVM->pgm.s.pRamRangesR3 = pNext;
698 pVM->pgm.s.pRamRangesR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
699 pVM->pgm.s.pRamRangesRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
700 }
701 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
702 pgmUnlock(pVM);
703}
704
705
706/**
707 * Unlink an existing RAM range from the list.
708 *
709 * @param pVM Pointer to the shared VM structure.
710 * @param pRam Pointer to the new list entry.
711 */
712static void pgmR3PhysUnlinkRamRange(PVM pVM, PPGMRAMRANGE pRam)
713{
714 pgmLock(pVM);
715
716 /* find prev. */
717 PPGMRAMRANGE pPrev = NULL;
718 PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3;
719 while (pCur != pRam)
720 {
721 pPrev = pCur;
722 pCur = pCur->pNextR3;
723 }
724 AssertFatal(pCur);
725
726 pgmR3PhysUnlinkRamRange2(pVM, pRam, pPrev);
727 pgmUnlock(pVM);
728}
729
730
731/**
732 * Frees a range of pages, replacing them with ZERO pages of the specified type.
733 *
734 * @returns VBox status code.
735 * @param pVM The VM handle.
736 * @param pRam The RAM range in which the pages resides.
737 * @param GCPhys The address of the first page.
738 * @param GCPhysLast The address of the last page.
739 * @param uType The page type to replace then with.
740 */
741static int pgmR3PhysFreePageRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, uint8_t uType)
742{
743 Assert(PGMIsLockOwner(pVM));
744 uint32_t cPendingPages = 0;
745 PGMMFREEPAGESREQ pReq;
746 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
747 AssertLogRelRCReturn(rc, rc);
748
749 /* Iterate the pages. */
750 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
751 uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1;
752 while (cPagesLeft-- > 0)
753 {
754 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
755 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
756
757 PGM_PAGE_SET_TYPE(pPageDst, uType);
758
759 GCPhys += PAGE_SIZE;
760 pPageDst++;
761 }
762
763 if (cPendingPages)
764 {
765 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
766 AssertLogRelRCReturn(rc, rc);
767 }
768 GMMR3FreePagesCleanup(pReq);
769
770 return rc;
771}
772
773/**
774 * Rendezvous callback used by PGMR3ChangeMemBalloon that changes the memory balloon size
775 *
776 * This is only called on one of the EMTs while the other ones are waiting for
777 * it to complete this function.
778 *
779 * @returns VINF_SUCCESS (VBox strict status code).
780 * @param pVM The VM handle.
781 * @param pVCpu The VMCPU for the EMT we're being called on. Unused.
782 * @param pvUser User parameter
783 */
784static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysChangeMemBalloonRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
785{
786 uintptr_t *paUser = (uintptr_t *)pvUser;
787 bool fInflate = !!paUser[0];
788 unsigned cPages = paUser[1];
789 RTGCPHYS *paPhysPage = (RTGCPHYS *)paUser[2];
790 uint32_t cPendingPages = 0;
791 PGMMFREEPAGESREQ pReq;
792 int rc;
793
794 Log(("pgmR3PhysChangeMemBalloonRendezvous: %s %x pages\n", (fInflate) ? "inflate" : "deflate", cPages));
795 pgmLock(pVM);
796
797 if (fInflate)
798 {
799 /* Replace pages with ZERO pages. */
800 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
801 if (RT_FAILURE(rc))
802 {
803 pgmUnlock(pVM);
804 AssertLogRelRC(rc);
805 return rc;
806 }
807
808 /* Iterate the pages. */
809 for (unsigned i = 0; i < cPages; i++)
810 {
811 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, paPhysPage[i]);
812 if ( pPage == NULL
813 || pPage->uTypeY != PGMPAGETYPE_RAM)
814 {
815 Log(("pgmR3PhysChangeMemBalloonRendezvous: invalid physical page %RGp pPage->u3Type=%d\n", paPhysPage[i], (pPage) ? pPage->uTypeY : 0));
816 break;
817 }
818
819 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, paPhysPage[i]);
820 if (RT_FAILURE(rc))
821 {
822 pgmUnlock(pVM);
823 AssertLogRelRC(rc);
824 return rc;
825 }
826 Assert(PGM_PAGE_IS_ZERO(pPage));
827 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_BALLOONED);
828 }
829
830 if (cPendingPages)
831 {
832 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
833 if (RT_FAILURE(rc))
834 {
835 pgmUnlock(pVM);
836 AssertLogRelRC(rc);
837 return rc;
838 }
839 }
840 GMMR3FreePagesCleanup(pReq);
841
842 /* Flush the PGM pool cache as we might have stale references to pages that we just freed. */
843 pgmR3PoolClearAllRendezvous(pVM, pVCpu, NULL);
844 }
845
846 /* Notify GMM about the balloon change. */
847 rc = GMMR3BalloonedPages(pVM, (fInflate) ? GMMBALLOONACTION_INFLATE : GMMBALLOONACTION_DEFLATE, cPages);
848 if (RT_SUCCESS(rc))
849 {
850 if (!fInflate)
851 {
852 Assert(pVM->pgm.s.cBalloonedPages >= cPages);
853 pVM->pgm.s.cBalloonedPages -= cPages;
854 }
855 else
856 pVM->pgm.s.cBalloonedPages += cPages;
857 }
858
859 pgmUnlock(pVM);
860 AssertLogRelRC(rc);
861 return rc;
862}
863
864/**
865 * Frees a range of ram pages, replacing them with ZERO pages; helper for PGMR3PhysFreeRamPages
866 *
867 * @returns VBox status code.
868 * @param pVM The VM handle.
869 * @param fInflate Inflate or deflate memory balloon
870 * @param cPages Number of pages to free
871 * @param paPhysPage Array of guest physical addresses
872 */
873static DECLCALLBACK(void) pgmR3PhysChangeMemBalloonHelper(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
874{
875 uintptr_t paUser[3];
876
877 paUser[0] = fInflate;
878 paUser[1] = cPages;
879 paUser[2] = (uintptr_t)paPhysPage;
880 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
881 AssertRC(rc);
882
883 /* Made a copy in PGMR3PhysFreeRamPages; free it here. */
884 RTMemFree(paPhysPage);
885}
886
887/**
888 * Inflate or deflate a memory balloon
889 *
890 * @returns VBox status code.
891 * @param pVM The VM handle.
892 * @param fInflate Inflate or deflate memory balloon
893 * @param cPages Number of pages to free
894 * @param paPhysPage Array of guest physical addresses
895 */
896VMMR3DECL(int) PGMR3PhysChangeMemBalloon(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
897{
898 int rc;
899
900 /* We own the IOM lock here and could cause a deadlock by waiting for another VCPU that is blocking on the IOM lock.
901 * In the SMP case we post a request packet to postpone the job.
902 */
903 if (pVM->cCpus > 1)
904 {
905 unsigned cbPhysPage = cPages * sizeof(paPhysPage[0]);
906 RTGCPHYS *paPhysPageCopy = (RTGCPHYS *)RTMemAlloc(cbPhysPage);
907 AssertReturn(paPhysPageCopy, VERR_NO_MEMORY);
908
909 memcpy(paPhysPageCopy, paPhysPage, cbPhysPage);
910
911 rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysChangeMemBalloonHelper, 4, pVM, fInflate, cPages, paPhysPageCopy);
912 AssertRC(rc);
913 }
914 else
915 {
916 uintptr_t paUser[3];
917
918 paUser[0] = fInflate;
919 paUser[1] = cPages;
920 paUser[2] = (uintptr_t)paPhysPage;
921 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
922 AssertRC(rc);
923 }
924 return rc;
925}
926
927
928/**
929 * PGMR3PhysRegisterRam worker that initializes and links a RAM range.
930 *
931 * @param pVM The VM handle.
932 * @param pNew The new RAM range.
933 * @param GCPhys The address of the RAM range.
934 * @param GCPhysLast The last address of the RAM range.
935 * @param RCPtrNew The RC address if the range is floating. NIL_RTRCPTR
936 * if in HMA.
937 * @param R0PtrNew Ditto for R0.
938 * @param pszDesc The description.
939 * @param pPrev The previous RAM range (for linking).
940 */
941static void pgmR3PhysInitAndLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
942 RTRCPTR RCPtrNew, RTR0PTR R0PtrNew, const char *pszDesc, PPGMRAMRANGE pPrev)
943{
944 /*
945 * Initialize the range.
946 */
947 pNew->pSelfR0 = R0PtrNew != NIL_RTR0PTR ? R0PtrNew : MMHyperCCToR0(pVM, pNew);
948 pNew->pSelfRC = RCPtrNew != NIL_RTRCPTR ? RCPtrNew : MMHyperCCToRC(pVM, pNew);
949 pNew->GCPhys = GCPhys;
950 pNew->GCPhysLast = GCPhysLast;
951 pNew->cb = GCPhysLast - GCPhys + 1;
952 pNew->pszDesc = pszDesc;
953 pNew->fFlags = RCPtrNew != NIL_RTRCPTR ? PGM_RAM_RANGE_FLAGS_FLOATING : 0;
954 pNew->pvR3 = NULL;
955 pNew->paLSPages = NULL;
956
957 uint32_t const cPages = pNew->cb >> PAGE_SHIFT;
958 RTGCPHYS iPage = cPages;
959 while (iPage-- > 0)
960 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM);
961
962 /* Update the page count stats. */
963 pVM->pgm.s.cZeroPages += cPages;
964 pVM->pgm.s.cAllPages += cPages;
965
966 /*
967 * Link it.
968 */
969 pgmR3PhysLinkRamRange(pVM, pNew, pPrev);
970}
971
972
973/**
974 * Relocate a floating RAM range.
975 *
976 * @copydoc FNPGMRELOCATE.
977 */
978static DECLCALLBACK(bool) pgmR3PhysRamRangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew, PGMRELOCATECALL enmMode, void *pvUser)
979{
980 PPGMRAMRANGE pRam = (PPGMRAMRANGE)pvUser;
981 Assert(pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING);
982 Assert(pRam->pSelfRC == GCPtrOld + PAGE_SIZE);
983
984 switch (enmMode)
985 {
986 case PGMRELOCATECALL_SUGGEST:
987 return true;
988 case PGMRELOCATECALL_RELOCATE:
989 {
990 /* Update myself and then relink all the ranges. */
991 pgmLock(pVM);
992 pRam->pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE);
993 pgmR3PhysRelinkRamRanges(pVM);
994 pgmUnlock(pVM);
995 return true;
996 }
997
998 default:
999 AssertFailedReturn(false);
1000 }
1001}
1002
1003
1004/**
1005 * PGMR3PhysRegisterRam worker that registers a high chunk.
1006 *
1007 * @returns VBox status code.
1008 * @param pVM The VM handle.
1009 * @param GCPhys The address of the RAM.
1010 * @param cRamPages The number of RAM pages to register.
1011 * @param cbChunk The size of the PGMRAMRANGE guest mapping.
1012 * @param iChunk The chunk number.
1013 * @param pszDesc The RAM range description.
1014 * @param ppPrev Previous RAM range pointer. In/Out.
1015 */
1016static int pgmR3PhysRegisterHighRamChunk(PVM pVM, RTGCPHYS GCPhys, uint32_t cRamPages,
1017 uint32_t cbChunk, uint32_t iChunk, const char *pszDesc,
1018 PPGMRAMRANGE *ppPrev)
1019{
1020 const char *pszDescChunk = iChunk == 0
1021 ? pszDesc
1022 : MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s (#%u)", pszDesc, iChunk + 1);
1023 AssertReturn(pszDescChunk, VERR_NO_MEMORY);
1024
1025 /*
1026 * Allocate memory for the new chunk.
1027 */
1028 size_t const cChunkPages = RT_ALIGN_Z(RT_UOFFSETOF(PGMRAMRANGE, aPages[cRamPages]), PAGE_SIZE) >> PAGE_SHIFT;
1029 PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
1030 AssertReturn(paChunkPages, VERR_NO_TMP_MEMORY);
1031 RTR0PTR R0PtrChunk = NIL_RTR0PTR;
1032 void *pvChunk = NULL;
1033 int rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk,
1034#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1035 VMMIsHwVirtExtForced(pVM) ? &R0PtrChunk : NULL,
1036#else
1037 NULL,
1038#endif
1039 paChunkPages);
1040 if (RT_SUCCESS(rc))
1041 {
1042#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1043 if (!VMMIsHwVirtExtForced(pVM))
1044 R0PtrChunk = NIL_RTR0PTR;
1045#else
1046 R0PtrChunk = (uintptr_t)pvChunk;
1047#endif
1048 memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
1049
1050 PPGMRAMRANGE pNew = (PPGMRAMRANGE)pvChunk;
1051
1052 /*
1053 * Create a mapping and map the pages into it.
1054 * We push these in below the HMA.
1055 */
1056 RTGCPTR GCPtrChunkMap = pVM->pgm.s.GCPtrPrevRamRangeMapping - cbChunk;
1057 rc = PGMR3MapPT(pVM, GCPtrChunkMap, cbChunk, 0 /*fFlags*/, pgmR3PhysRamRangeRelocate, pNew, pszDescChunk);
1058 if (RT_SUCCESS(rc))
1059 {
1060 pVM->pgm.s.GCPtrPrevRamRangeMapping = GCPtrChunkMap;
1061
1062 RTGCPTR const GCPtrChunk = GCPtrChunkMap + PAGE_SIZE;
1063 RTGCPTR GCPtrPage = GCPtrChunk;
1064 for (uint32_t iPage = 0; iPage < cChunkPages && RT_SUCCESS(rc); iPage++, GCPtrPage += PAGE_SIZE)
1065 rc = PGMMap(pVM, GCPtrPage, paChunkPages[iPage].Phys, PAGE_SIZE, 0);
1066 if (RT_SUCCESS(rc))
1067 {
1068 /*
1069 * Ok, init and link the range.
1070 */
1071 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhys + ((RTGCPHYS)cRamPages << PAGE_SHIFT) - 1,
1072 (RTRCPTR)GCPtrChunk, R0PtrChunk, pszDescChunk, *ppPrev);
1073 *ppPrev = pNew;
1074 }
1075 }
1076
1077 if (RT_FAILURE(rc))
1078 SUPR3PageFreeEx(pvChunk, cChunkPages);
1079 }
1080
1081 RTMemTmpFree(paChunkPages);
1082 return rc;
1083}
1084
1085
1086/**
1087 * Sets up a range RAM.
1088 *
1089 * This will check for conflicting registrations, make a resource
1090 * reservation for the memory (with GMM), and setup the per-page
1091 * tracking structures (PGMPAGE).
1092 *
1093 * @returns VBox stutus code.
1094 * @param pVM Pointer to the shared VM structure.
1095 * @param GCPhys The physical address of the RAM.
1096 * @param cb The size of the RAM.
1097 * @param pszDesc The description - not copied, so, don't free or change it.
1098 */
1099VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc)
1100{
1101 /*
1102 * Validate input.
1103 */
1104 Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc));
1105 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
1106 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
1107 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
1108 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1109 AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER);
1110 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1111 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1112
1113 pgmLock(pVM);
1114
1115 /*
1116 * Find range location and check for conflicts.
1117 * (We don't lock here because the locking by EMT is only required on update.)
1118 */
1119 PPGMRAMRANGE pPrev = NULL;
1120 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1121 while (pRam && GCPhysLast >= pRam->GCPhys)
1122 {
1123 if ( GCPhysLast >= pRam->GCPhys
1124 && GCPhys <= pRam->GCPhysLast)
1125 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
1126 GCPhys, GCPhysLast, pszDesc,
1127 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1128 VERR_PGM_RAM_CONFLICT);
1129
1130 /* next */
1131 pPrev = pRam;
1132 pRam = pRam->pNextR3;
1133 }
1134
1135 /*
1136 * Register it with GMM (the API bitches).
1137 */
1138 const RTGCPHYS cPages = cb >> PAGE_SHIFT;
1139 int rc = MMR3IncreaseBaseReservation(pVM, cPages);
1140 if (RT_FAILURE(rc))
1141 {
1142 pgmUnlock(pVM);
1143 return rc;
1144 }
1145
1146 if ( GCPhys >= _4G
1147 && cPages > 256)
1148 {
1149 /*
1150 * The PGMRAMRANGE structures for the high memory can get very big.
1151 * In order to avoid SUPR3PageAllocEx allocation failures due to the
1152 * allocation size limit there and also to avoid being unable to find
1153 * guest mapping space for them, we split this memory up into 4MB in
1154 * (potential) raw-mode configs and 16MB chunks in forced AMD-V/VT-x
1155 * mode.
1156 *
1157 * The first and last page of each mapping are guard pages and marked
1158 * not-present. So, we've got 4186112 and 16769024 bytes available for
1159 * the PGMRAMRANGE structure.
1160 *
1161 * Note! The sizes used here will influence the saved state.
1162 */
1163 uint32_t cbChunk;
1164 uint32_t cPagesPerChunk;
1165 if (VMMIsHwVirtExtForced(pVM))
1166 {
1167 cbChunk = 16U*_1M;
1168 cPagesPerChunk = 1048048; /* max ~1048059 */
1169 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2);
1170 }
1171 else
1172 {
1173 cbChunk = 4U*_1M;
1174 cPagesPerChunk = 261616; /* max ~261627 */
1175 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 261616 < 4U*_1M - PAGE_SIZE * 2);
1176 }
1177 AssertRelease(RT_UOFFSETOF(PGMRAMRANGE, aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
1178
1179 RTGCPHYS cPagesLeft = cPages;
1180 RTGCPHYS GCPhysChunk = GCPhys;
1181 uint32_t iChunk = 0;
1182 while (cPagesLeft > 0)
1183 {
1184 uint32_t cPagesInChunk = cPagesLeft;
1185 if (cPagesInChunk > cPagesPerChunk)
1186 cPagesInChunk = cPagesPerChunk;
1187
1188 rc = pgmR3PhysRegisterHighRamChunk(pVM, GCPhysChunk, cPagesInChunk, cbChunk, iChunk, pszDesc, &pPrev);
1189 AssertRCReturn(rc, rc);
1190
1191 /* advance */
1192 GCPhysChunk += (RTGCPHYS)cPagesInChunk << PAGE_SHIFT;
1193 cPagesLeft -= cPagesInChunk;
1194 iChunk++;
1195 }
1196 }
1197 else
1198 {
1199 /*
1200 * Allocate, initialize and link the new RAM range.
1201 */
1202 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
1203 PPGMRAMRANGE pNew;
1204 rc = MMR3HyperAllocOnceNoRel(pVM, cbRamRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1205 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
1206
1207 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhysLast, NIL_RTRCPTR, NIL_RTR0PTR, pszDesc, pPrev);
1208 }
1209 PGMPhysInvalidatePageMapTLB(pVM);
1210 pgmUnlock(pVM);
1211
1212 /*
1213 * Notify REM.
1214 */
1215 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_RAM);
1216
1217 return VINF_SUCCESS;
1218}
1219
1220
1221/**
1222 * Worker called by PGMR3InitFinalize if we're configured to pre-allocate RAM.
1223 *
1224 * We do this late in the init process so that all the ROM and MMIO ranges have
1225 * been registered already and we don't go wasting memory on them.
1226 *
1227 * @returns VBox status code.
1228 *
1229 * @param pVM Pointer to the shared VM structure.
1230 */
1231int pgmR3PhysRamPreAllocate(PVM pVM)
1232{
1233 Assert(pVM->pgm.s.fRamPreAlloc);
1234 Log(("pgmR3PhysRamPreAllocate: enter\n"));
1235
1236 /*
1237 * Walk the RAM ranges and allocate all RAM pages, halt at
1238 * the first allocation error.
1239 */
1240 uint64_t cPages = 0;
1241 uint64_t NanoTS = RTTimeNanoTS();
1242 pgmLock(pVM);
1243 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
1244 {
1245 PPGMPAGE pPage = &pRam->aPages[0];
1246 RTGCPHYS GCPhys = pRam->GCPhys;
1247 uint32_t cLeft = pRam->cb >> PAGE_SHIFT;
1248 while (cLeft-- > 0)
1249 {
1250 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
1251 {
1252 switch (PGM_PAGE_GET_STATE(pPage))
1253 {
1254 case PGM_PAGE_STATE_ZERO:
1255 {
1256 int rc = pgmPhysAllocPage(pVM, pPage, GCPhys);
1257 if (RT_FAILURE(rc))
1258 {
1259 LogRel(("PGM: RAM Pre-allocation failed at %RGp (in %s) with rc=%Rrc\n", GCPhys, pRam->pszDesc, rc));
1260 pgmUnlock(pVM);
1261 return rc;
1262 }
1263 cPages++;
1264 break;
1265 }
1266
1267 case PGM_PAGE_STATE_BALLOONED:
1268 case PGM_PAGE_STATE_ALLOCATED:
1269 case PGM_PAGE_STATE_WRITE_MONITORED:
1270 case PGM_PAGE_STATE_SHARED:
1271 /* nothing to do here. */
1272 break;
1273 }
1274 }
1275
1276 /* next */
1277 pPage++;
1278 GCPhys += PAGE_SIZE;
1279 }
1280 }
1281 pgmUnlock(pVM);
1282 NanoTS = RTTimeNanoTS() - NanoTS;
1283
1284 LogRel(("PGM: Pre-allocated %llu pages in %llu ms\n", cPages, NanoTS / 1000000));
1285 Log(("pgmR3PhysRamPreAllocate: returns VINF_SUCCESS\n"));
1286 return VINF_SUCCESS;
1287}
1288
1289
1290/**
1291 * Resets (zeros) the RAM.
1292 *
1293 * ASSUMES that the caller owns the PGM lock.
1294 *
1295 * @returns VBox status code.
1296 * @param pVM Pointer to the shared VM structure.
1297 */
1298int pgmR3PhysRamReset(PVM pVM)
1299{
1300 Assert(PGMIsLockOwner(pVM));
1301
1302 /* Reset the memory balloon. */
1303 int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
1304 AssertRC(rc);
1305
1306 /*
1307 * We batch up pages that should be freed instead of calling GMM for
1308 * each and every one of them.
1309 */
1310 uint32_t cPendingPages = 0;
1311 PGMMFREEPAGESREQ pReq;
1312 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1313 AssertLogRelRCReturn(rc, rc);
1314
1315 /*
1316 * Walk the ram ranges.
1317 */
1318 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
1319 {
1320 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
1321 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
1322
1323 if (!pVM->pgm.s.fRamPreAlloc)
1324 {
1325 /* Replace all RAM pages by ZERO pages. */
1326 while (iPage-- > 0)
1327 {
1328 PPGMPAGE pPage = &pRam->aPages[iPage];
1329 switch (PGM_PAGE_GET_TYPE(pPage))
1330 {
1331 case PGMPAGETYPE_RAM:
1332 /* Do not replace pages part of a 2 MB continuous range with zero pages, but zero them instead. */
1333 if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE)
1334 {
1335 void *pvPage;
1336 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
1337 AssertLogRelRCReturn(rc, rc);
1338 ASMMemZeroPage(pvPage);
1339 }
1340 else
1341 if ( !PGM_PAGE_IS_ZERO(pPage)
1342 && !PGM_PAGE_IS_BALLOONED(pPage))
1343 {
1344 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1345 AssertLogRelRCReturn(rc, rc);
1346 }
1347 break;
1348
1349 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1350 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1351 break;
1352
1353 case PGMPAGETYPE_MMIO2:
1354 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
1355 case PGMPAGETYPE_ROM:
1356 case PGMPAGETYPE_MMIO:
1357 break;
1358 default:
1359 AssertFailed();
1360 }
1361 } /* for each page */
1362 }
1363 else
1364 {
1365 /* Zero the memory. */
1366 while (iPage-- > 0)
1367 {
1368 PPGMPAGE pPage = &pRam->aPages[iPage];
1369 switch (PGM_PAGE_GET_TYPE(pPage))
1370 {
1371 case PGMPAGETYPE_RAM:
1372 switch (PGM_PAGE_GET_STATE(pPage))
1373 {
1374 case PGM_PAGE_STATE_ZERO:
1375 break;
1376
1377 case PGM_PAGE_STATE_BALLOONED:
1378 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
1379 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
1380 break;
1381
1382 case PGM_PAGE_STATE_SHARED:
1383 case PGM_PAGE_STATE_WRITE_MONITORED:
1384 rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1385 AssertLogRelRCReturn(rc, rc);
1386 /* no break */
1387
1388 case PGM_PAGE_STATE_ALLOCATED:
1389 {
1390 void *pvPage;
1391 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
1392 AssertLogRelRCReturn(rc, rc);
1393 ASMMemZeroPage(pvPage);
1394 break;
1395 }
1396 }
1397 break;
1398
1399 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1400 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1401 break;
1402
1403 case PGMPAGETYPE_MMIO2:
1404 case PGMPAGETYPE_ROM_SHADOW:
1405 case PGMPAGETYPE_ROM:
1406 case PGMPAGETYPE_MMIO:
1407 break;
1408 default:
1409 AssertFailed();
1410
1411 }
1412 } /* for each page */
1413 }
1414
1415 }
1416
1417 /*
1418 * Finish off any pages pending freeing.
1419 */
1420 if (cPendingPages)
1421 {
1422 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
1423 AssertLogRelRCReturn(rc, rc);
1424 }
1425 GMMR3FreePagesCleanup(pReq);
1426
1427 return VINF_SUCCESS;
1428}
1429
1430
1431/**
1432 * This is the interface IOM is using to register an MMIO region.
1433 *
1434 * It will check for conflicts and ensure that a RAM range structure
1435 * is present before calling the PGMR3HandlerPhysicalRegister API to
1436 * register the callbacks.
1437 *
1438 * @returns VBox status code.
1439 *
1440 * @param pVM Pointer to the shared VM structure.
1441 * @param GCPhys The start of the MMIO region.
1442 * @param cb The size of the MMIO region.
1443 * @param pfnHandlerR3 The address of the ring-3 handler. (IOMR3MMIOHandler)
1444 * @param pvUserR3 The user argument for R3.
1445 * @param pfnHandlerR0 The address of the ring-0 handler. (IOMMMIOHandler)
1446 * @param pvUserR0 The user argument for R0.
1447 * @param pfnHandlerRC The address of the RC handler. (IOMMMIOHandler)
1448 * @param pvUserRC The user argument for RC.
1449 * @param pszDesc The description of the MMIO region.
1450 */
1451VMMR3DECL(int) PGMR3PhysMMIORegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb,
1452 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3, RTR3PTR pvUserR3,
1453 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0, RTR0PTR pvUserR0,
1454 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnHandlerRC, RTRCPTR pvUserRC,
1455 R3PTRTYPE(const char *) pszDesc)
1456{
1457 /*
1458 * Assert on some assumption.
1459 */
1460 VM_ASSERT_EMT(pVM);
1461 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1462 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1463 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1464 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
1465
1466 /*
1467 * Make sure there's a RAM range structure for the region.
1468 */
1469 int rc;
1470 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1471 bool fRamExists = false;
1472 PPGMRAMRANGE pRamPrev = NULL;
1473 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1474 while (pRam && GCPhysLast >= pRam->GCPhys)
1475 {
1476 if ( GCPhysLast >= pRam->GCPhys
1477 && GCPhys <= pRam->GCPhysLast)
1478 {
1479 /* Simplification: all within the same range. */
1480 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
1481 && GCPhysLast <= pRam->GCPhysLast,
1482 ("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n",
1483 GCPhys, GCPhysLast, pszDesc,
1484 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1485 VERR_PGM_RAM_CONFLICT);
1486
1487 /* Check that it's all RAM or MMIO pages. */
1488 PCPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1489 uint32_t cLeft = cb >> PAGE_SHIFT;
1490 while (cLeft-- > 0)
1491 {
1492 AssertLogRelMsgReturn( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1493 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO,
1494 ("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n",
1495 GCPhys, GCPhysLast, pszDesc, PGM_PAGE_GET_TYPE(pPage), pRam->pszDesc),
1496 VERR_PGM_RAM_CONFLICT);
1497 pPage++;
1498 }
1499
1500 /* Looks good. */
1501 fRamExists = true;
1502 break;
1503 }
1504
1505 /* next */
1506 pRamPrev = pRam;
1507 pRam = pRam->pNextR3;
1508 }
1509 PPGMRAMRANGE pNew;
1510 if (fRamExists)
1511 {
1512 pNew = NULL;
1513
1514 /*
1515 * Make all the pages in the range MMIO/ZERO pages, freeing any
1516 * RAM pages currently mapped here. This might not be 100% correct
1517 * for PCI memory, but we're doing the same thing for MMIO2 pages.
1518 */
1519 rc = pgmLock(pVM);
1520 if (RT_SUCCESS(rc))
1521 {
1522 rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO);
1523 pgmUnlock(pVM);
1524 }
1525 AssertRCReturn(rc, rc);
1526 }
1527 else
1528 {
1529 pgmLock(pVM);
1530
1531 /*
1532 * No RAM range, insert an ad hoc one.
1533 *
1534 * Note that we don't have to tell REM about this range because
1535 * PGMHandlerPhysicalRegisterEx will do that for us.
1536 */
1537 Log(("PGMR3PhysMMIORegister: Adding ad hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc));
1538
1539 const uint32_t cPages = cb >> PAGE_SHIFT;
1540 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
1541 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), 16, MM_TAG_PGM_PHYS, (void **)&pNew);
1542 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
1543
1544 /* Initialize the range. */
1545 pNew->pSelfR0 = MMHyperCCToR0(pVM, pNew);
1546 pNew->pSelfRC = MMHyperCCToRC(pVM, pNew);
1547 pNew->GCPhys = GCPhys;
1548 pNew->GCPhysLast = GCPhysLast;
1549 pNew->cb = cb;
1550 pNew->pszDesc = pszDesc;
1551 pNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO;
1552 pNew->pvR3 = NULL;
1553 pNew->paLSPages = NULL;
1554
1555 uint32_t iPage = cPages;
1556 while (iPage-- > 0)
1557 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO);
1558 Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO);
1559
1560 /* update the page count stats. */
1561 pVM->pgm.s.cPureMmioPages += cPages;
1562 pVM->pgm.s.cAllPages += cPages;
1563
1564 /* link it */
1565 pgmR3PhysLinkRamRange(pVM, pNew, pRamPrev);
1566
1567 pgmUnlock(pVM);
1568 }
1569
1570 /*
1571 * Register the access handler.
1572 */
1573 rc = PGMHandlerPhysicalRegisterEx(pVM, PGMPHYSHANDLERTYPE_MMIO, GCPhys, GCPhysLast,
1574 pfnHandlerR3, pvUserR3,
1575 pfnHandlerR0, pvUserR0,
1576 pfnHandlerRC, pvUserRC, pszDesc);
1577 if ( RT_FAILURE(rc)
1578 && !fRamExists)
1579 {
1580 pVM->pgm.s.cPureMmioPages -= cb >> PAGE_SHIFT;
1581 pVM->pgm.s.cAllPages -= cb >> PAGE_SHIFT;
1582
1583 /* remove the ad hoc range. */
1584 pgmR3PhysUnlinkRamRange2(pVM, pNew, pRamPrev);
1585 pNew->cb = pNew->GCPhys = pNew->GCPhysLast = NIL_RTGCPHYS;
1586 MMHyperFree(pVM, pRam);
1587 }
1588 PGMPhysInvalidatePageMapTLB(pVM);
1589
1590 return rc;
1591}
1592
1593
1594/**
1595 * This is the interface IOM is using to register an MMIO region.
1596 *
1597 * It will take care of calling PGMHandlerPhysicalDeregister and clean up
1598 * any ad hoc PGMRAMRANGE left behind.
1599 *
1600 * @returns VBox status code.
1601 * @param pVM Pointer to the shared VM structure.
1602 * @param GCPhys The start of the MMIO region.
1603 * @param cb The size of the MMIO region.
1604 */
1605VMMR3DECL(int) PGMR3PhysMMIODeregister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
1606{
1607 VM_ASSERT_EMT(pVM);
1608
1609 /*
1610 * First deregister the handler, then check if we should remove the ram range.
1611 */
1612 int rc = PGMHandlerPhysicalDeregister(pVM, GCPhys);
1613 if (RT_SUCCESS(rc))
1614 {
1615 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1616 PPGMRAMRANGE pRamPrev = NULL;
1617 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1618 while (pRam && GCPhysLast >= pRam->GCPhys)
1619 {
1620 /** @todo We're being a bit too careful here. rewrite. */
1621 if ( GCPhysLast == pRam->GCPhysLast
1622 && GCPhys == pRam->GCPhys)
1623 {
1624 Assert(pRam->cb == cb);
1625
1626 /*
1627 * See if all the pages are dead MMIO pages.
1628 */
1629 uint32_t const cPages = cb >> PAGE_SHIFT;
1630 bool fAllMMIO = true;
1631 uint32_t iPage = 0;
1632 uint32_t cLeft = cPages;
1633 while (cLeft-- > 0)
1634 {
1635 PPGMPAGE pPage = &pRam->aPages[iPage];
1636 if ( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO
1637 /*|| not-out-of-action later */)
1638 {
1639 fAllMMIO = false;
1640 Assert(PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO2_ALIAS_MMIO);
1641 AssertMsgFailed(("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1642 break;
1643 }
1644 Assert(PGM_PAGE_IS_ZERO(pPage));
1645 pPage++;
1646 }
1647 if (fAllMMIO)
1648 {
1649 /*
1650 * Ad-hoc range, unlink and free it.
1651 */
1652 Log(("PGMR3PhysMMIODeregister: Freeing ad hoc MMIO range for %RGp-%RGp %s\n",
1653 GCPhys, GCPhysLast, pRam->pszDesc));
1654
1655 pVM->pgm.s.cAllPages -= cPages;
1656 pVM->pgm.s.cPureMmioPages -= cPages;
1657
1658 pgmR3PhysUnlinkRamRange2(pVM, pRam, pRamPrev);
1659 pRam->cb = pRam->GCPhys = pRam->GCPhysLast = NIL_RTGCPHYS;
1660 MMHyperFree(pVM, pRam);
1661 break;
1662 }
1663 }
1664
1665 /*
1666 * Range match? It will all be within one range (see PGMAllHandler.cpp).
1667 */
1668 if ( GCPhysLast >= pRam->GCPhys
1669 && GCPhys <= pRam->GCPhysLast)
1670 {
1671 Assert(GCPhys >= pRam->GCPhys);
1672 Assert(GCPhysLast <= pRam->GCPhysLast);
1673
1674 /*
1675 * Turn the pages back into RAM pages.
1676 */
1677 uint32_t iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
1678 uint32_t cLeft = cb >> PAGE_SHIFT;
1679 while (cLeft--)
1680 {
1681 PPGMPAGE pPage = &pRam->aPages[iPage];
1682 AssertMsg(PGM_PAGE_IS_MMIO(pPage), ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1683 AssertMsg(PGM_PAGE_IS_ZERO(pPage), ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1684 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO)
1685 PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_RAM);
1686 }
1687 break;
1688 }
1689
1690 /* next */
1691 pRamPrev = pRam;
1692 pRam = pRam->pNextR3;
1693 }
1694 }
1695
1696 PGMPhysInvalidatePageMapTLB(pVM);
1697 return rc;
1698}
1699
1700
1701/**
1702 * Locate a MMIO2 range.
1703 *
1704 * @returns Pointer to the MMIO2 range.
1705 * @param pVM Pointer to the shared VM structure.
1706 * @param pDevIns The device instance owning the region.
1707 * @param iRegion The region.
1708 */
1709DECLINLINE(PPGMMMIO2RANGE) pgmR3PhysMMIO2Find(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
1710{
1711 /*
1712 * Search the list.
1713 */
1714 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
1715 if ( pCur->pDevInsR3 == pDevIns
1716 && pCur->iRegion == iRegion)
1717 return pCur;
1718 return NULL;
1719}
1720
1721
1722/**
1723 * Allocate and register an MMIO2 region.
1724 *
1725 * As mentioned elsewhere, MMIO2 is just RAM spelled differently. It's
1726 * RAM associated with a device. It is also non-shared memory with a
1727 * permanent ring-3 mapping and page backing (presently).
1728 *
1729 * A MMIO2 range may overlap with base memory if a lot of RAM
1730 * is configured for the VM, in which case we'll drop the base
1731 * memory pages. Presently we will make no attempt to preserve
1732 * anything that happens to be present in the base memory that
1733 * is replaced, this is of course incorrectly but it's too much
1734 * effort.
1735 *
1736 * @returns VBox status code.
1737 * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the memory.
1738 * @retval VERR_ALREADY_EXISTS if the region already exists.
1739 *
1740 * @param pVM Pointer to the shared VM structure.
1741 * @param pDevIns The device instance owning the region.
1742 * @param iRegion The region number. If the MMIO2 memory is a PCI I/O region
1743 * this number has to be the number of that region. Otherwise
1744 * it can be any number safe UINT8_MAX.
1745 * @param cb The size of the region. Must be page aligned.
1746 * @param fFlags Reserved for future use, must be zero.
1747 * @param ppv Where to store the pointer to the ring-3 mapping of the memory.
1748 * @param pszDesc The description.
1749 */
1750VMMR3DECL(int) PGMR3PhysMMIO2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS cb, uint32_t fFlags, void **ppv, const char *pszDesc)
1751{
1752 /*
1753 * Validate input.
1754 */
1755 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1756 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1757 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
1758 AssertPtrReturn(ppv, VERR_INVALID_POINTER);
1759 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1760 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
1761 AssertReturn(pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion) == NULL, VERR_ALREADY_EXISTS);
1762 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1763 AssertReturn(cb, VERR_INVALID_PARAMETER);
1764 AssertReturn(!fFlags, VERR_INVALID_PARAMETER);
1765
1766 const uint32_t cPages = cb >> PAGE_SHIFT;
1767 AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cb, VERR_INVALID_PARAMETER);
1768 AssertLogRelReturn(cPages <= INT32_MAX / 2, VERR_NO_MEMORY);
1769
1770 /*
1771 * For the 2nd+ instance, mangle the description string so it's unique.
1772 */
1773 if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */
1774 {
1775 pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance);
1776 if (!pszDesc)
1777 return VERR_NO_MEMORY;
1778 }
1779
1780 /*
1781 * Try reserve and allocate the backing memory first as this is what is
1782 * most likely to fail.
1783 */
1784 int rc = MMR3AdjustFixedReservation(pVM, cPages, pszDesc);
1785 if (RT_SUCCESS(rc))
1786 {
1787 void *pvPages;
1788 PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cPages * sizeof(SUPPAGE));
1789 if (RT_SUCCESS(rc))
1790 rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, NULL /*pR0Ptr*/, paPages);
1791 if (RT_SUCCESS(rc))
1792 {
1793 memset(pvPages, 0, cPages * PAGE_SIZE);
1794
1795 /*
1796 * Create the MMIO2 range record for it.
1797 */
1798 const size_t cbRange = RT_OFFSETOF(PGMMMIO2RANGE, RamRange.aPages[cPages]);
1799 PPGMMMIO2RANGE pNew;
1800 rc = MMR3HyperAllocOnceNoRel(pVM, cbRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1801 AssertLogRelMsgRC(rc, ("cbRamRange=%zu\n", cbRange));
1802 if (RT_SUCCESS(rc))
1803 {
1804 pNew->pDevInsR3 = pDevIns;
1805 pNew->pvR3 = pvPages;
1806 //pNew->pNext = NULL;
1807 //pNew->fMapped = false;
1808 //pNew->fOverlapping = false;
1809 pNew->iRegion = iRegion;
1810 pNew->idSavedState = UINT8_MAX;
1811 pNew->RamRange.pSelfR0 = MMHyperCCToR0(pVM, &pNew->RamRange);
1812 pNew->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pNew->RamRange);
1813 pNew->RamRange.GCPhys = NIL_RTGCPHYS;
1814 pNew->RamRange.GCPhysLast = NIL_RTGCPHYS;
1815 pNew->RamRange.pszDesc = pszDesc;
1816 pNew->RamRange.cb = cb;
1817 pNew->RamRange.fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO2;
1818 pNew->RamRange.pvR3 = pvPages;
1819 //pNew->RamRange.paLSPages = NULL;
1820
1821 uint32_t iPage = cPages;
1822 while (iPage-- > 0)
1823 {
1824 PGM_PAGE_INIT(&pNew->RamRange.aPages[iPage],
1825 paPages[iPage].Phys, NIL_GMM_PAGEID,
1826 PGMPAGETYPE_MMIO2, PGM_PAGE_STATE_ALLOCATED);
1827 }
1828
1829 /* update page count stats */
1830 pVM->pgm.s.cAllPages += cPages;
1831 pVM->pgm.s.cPrivatePages += cPages;
1832
1833 /*
1834 * Link it into the list.
1835 * Since there is no particular order, just push it.
1836 */
1837 pgmLock(pVM);
1838 pNew->pNextR3 = pVM->pgm.s.pMmio2RangesR3;
1839 pVM->pgm.s.pMmio2RangesR3 = pNew;
1840 pgmUnlock(pVM);
1841
1842 *ppv = pvPages;
1843 RTMemTmpFree(paPages);
1844 PGMPhysInvalidatePageMapTLB(pVM);
1845 return VINF_SUCCESS;
1846 }
1847
1848 SUPR3PageFreeEx(pvPages, cPages);
1849 }
1850 RTMemTmpFree(paPages);
1851 MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pszDesc);
1852 }
1853 if (pDevIns->iInstance > 0)
1854 MMR3HeapFree((void *)pszDesc);
1855 return rc;
1856}
1857
1858
1859/**
1860 * Deregisters and frees an MMIO2 region.
1861 *
1862 * Any physical (and virtual) access handlers registered for the region must
1863 * be deregistered before calling this function.
1864 *
1865 * @returns VBox status code.
1866 * @param pVM Pointer to the shared VM structure.
1867 * @param pDevIns The device instance owning the region.
1868 * @param iRegion The region. If it's UINT32_MAX it'll be a wildcard match.
1869 */
1870VMMR3DECL(int) PGMR3PhysMMIO2Deregister(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
1871{
1872 /*
1873 * Validate input.
1874 */
1875 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1876 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1877 AssertReturn(iRegion <= UINT8_MAX || iRegion == UINT32_MAX, VERR_INVALID_PARAMETER);
1878
1879 pgmLock(pVM);
1880 int rc = VINF_SUCCESS;
1881 unsigned cFound = 0;
1882 PPGMMMIO2RANGE pPrev = NULL;
1883 PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3;
1884 while (pCur)
1885 {
1886 if ( pCur->pDevInsR3 == pDevIns
1887 && ( iRegion == UINT32_MAX
1888 || pCur->iRegion == iRegion))
1889 {
1890 cFound++;
1891
1892 /*
1893 * Unmap it if it's mapped.
1894 */
1895 if (pCur->fMapped)
1896 {
1897 int rc2 = PGMR3PhysMMIO2Unmap(pVM, pCur->pDevInsR3, pCur->iRegion, pCur->RamRange.GCPhys);
1898 AssertRC(rc2);
1899 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1900 rc = rc2;
1901 }
1902
1903 /*
1904 * Unlink it
1905 */
1906 PPGMMMIO2RANGE pNext = pCur->pNextR3;
1907 if (pPrev)
1908 pPrev->pNextR3 = pNext;
1909 else
1910 pVM->pgm.s.pMmio2RangesR3 = pNext;
1911 pCur->pNextR3 = NULL;
1912
1913 /*
1914 * Free the memory.
1915 */
1916 int rc2 = SUPR3PageFreeEx(pCur->pvR3, pCur->RamRange.cb >> PAGE_SHIFT);
1917 AssertRC(rc2);
1918 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1919 rc = rc2;
1920
1921 uint32_t const cPages = pCur->RamRange.cb >> PAGE_SHIFT;
1922 rc2 = MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pCur->RamRange.pszDesc);
1923 AssertRC(rc2);
1924 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1925 rc = rc2;
1926
1927 /* we're leaking hyper memory here if done at runtime. */
1928#ifdef VBOX_STRICT
1929 VMSTATE const enmState = VMR3GetState(pVM);
1930 AssertMsg( enmState == VMSTATE_POWERING_OFF
1931 || enmState == VMSTATE_POWERING_OFF_LS
1932 || enmState == VMSTATE_OFF
1933 || enmState == VMSTATE_OFF_LS
1934 || enmState == VMSTATE_DESTROYING
1935 || enmState == VMSTATE_TERMINATED
1936 || enmState == VMSTATE_CREATING
1937 , ("%s\n", VMR3GetStateName(enmState)));
1938#endif
1939 /*rc = MMHyperFree(pVM, pCur);
1940 AssertRCReturn(rc, rc); - not safe, see the alloc call. */
1941
1942
1943 /* update page count stats */
1944 pVM->pgm.s.cAllPages -= cPages;
1945 pVM->pgm.s.cPrivatePages -= cPages;
1946
1947 /* next */
1948 pCur = pNext;
1949 }
1950 else
1951 {
1952 pPrev = pCur;
1953 pCur = pCur->pNextR3;
1954 }
1955 }
1956 PGMPhysInvalidatePageMapTLB(pVM);
1957 pgmUnlock(pVM);
1958 return !cFound && iRegion != UINT32_MAX ? VERR_NOT_FOUND : rc;
1959}
1960
1961
1962/**
1963 * Maps a MMIO2 region.
1964 *
1965 * This is done when a guest / the bios / state loading changes the
1966 * PCI config. The replacing of base memory has the same restrictions
1967 * as during registration, of course.
1968 *
1969 * @returns VBox status code.
1970 *
1971 * @param pVM Pointer to the shared VM structure.
1972 * @param pDevIns The
1973 */
1974VMMR3DECL(int) PGMR3PhysMMIO2Map(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
1975{
1976 /*
1977 * Validate input
1978 */
1979 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1980 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1981 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
1982 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
1983 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
1984 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1985
1986 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
1987 AssertReturn(pCur, VERR_NOT_FOUND);
1988 AssertReturn(!pCur->fMapped, VERR_WRONG_ORDER);
1989 Assert(pCur->RamRange.GCPhys == NIL_RTGCPHYS);
1990 Assert(pCur->RamRange.GCPhysLast == NIL_RTGCPHYS);
1991
1992 const RTGCPHYS GCPhysLast = GCPhys + pCur->RamRange.cb - 1;
1993 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
1994
1995 /*
1996 * Find our location in the ram range list, checking for
1997 * restriction we don't bother implementing yet (partially overlapping).
1998 */
1999 bool fRamExists = false;
2000 PPGMRAMRANGE pRamPrev = NULL;
2001 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
2002 while (pRam && GCPhysLast >= pRam->GCPhys)
2003 {
2004 if ( GCPhys <= pRam->GCPhysLast
2005 && GCPhysLast >= pRam->GCPhys)
2006 {
2007 /* completely within? */
2008 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
2009 && GCPhysLast <= pRam->GCPhysLast,
2010 ("%RGp-%RGp (MMIO2/%s) falls partly outside %RGp-%RGp (%s)\n",
2011 GCPhys, GCPhysLast, pCur->RamRange.pszDesc,
2012 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2013 VERR_PGM_RAM_CONFLICT);
2014 fRamExists = true;
2015 break;
2016 }
2017
2018 /* next */
2019 pRamPrev = pRam;
2020 pRam = pRam->pNextR3;
2021 }
2022 if (fRamExists)
2023 {
2024 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2025 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2026 while (cPagesLeft-- > 0)
2027 {
2028 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
2029 ("%RGp isn't a RAM page (%d) - mapping %RGp-%RGp (MMIO2/%s).\n",
2030 GCPhys, PGM_PAGE_GET_TYPE(pPage), GCPhys, GCPhysLast, pCur->RamRange.pszDesc),
2031 VERR_PGM_RAM_CONFLICT);
2032 pPage++;
2033 }
2034 }
2035 Log(("PGMR3PhysMMIO2Map: %RGp-%RGp fRamExists=%RTbool %s\n",
2036 GCPhys, GCPhysLast, fRamExists, pCur->RamRange.pszDesc));
2037
2038 /*
2039 * Make the changes.
2040 */
2041 pgmLock(pVM);
2042
2043 pCur->RamRange.GCPhys = GCPhys;
2044 pCur->RamRange.GCPhysLast = GCPhysLast;
2045 pCur->fMapped = true;
2046 pCur->fOverlapping = fRamExists;
2047
2048 if (fRamExists)
2049 {
2050/** @todo use pgmR3PhysFreePageRange here. */
2051 uint32_t cPendingPages = 0;
2052 PGMMFREEPAGESREQ pReq;
2053 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2054 AssertLogRelRCReturn(rc, rc);
2055
2056 /* replace the pages, freeing all present RAM pages. */
2057 PPGMPAGE pPageSrc = &pCur->RamRange.aPages[0];
2058 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2059 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2060 while (cPagesLeft-- > 0)
2061 {
2062 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
2063 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
2064
2065 RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc);
2066 PGM_PAGE_SET_HCPHYS(pPageDst, HCPhys);
2067 PGM_PAGE_SET_TYPE(pPageDst, PGMPAGETYPE_MMIO2);
2068 PGM_PAGE_SET_STATE(pPageDst, PGM_PAGE_STATE_ALLOCATED);
2069
2070 pVM->pgm.s.cZeroPages--;
2071 GCPhys += PAGE_SIZE;
2072 pPageSrc++;
2073 pPageDst++;
2074 }
2075
2076 /* Flush physical page map TLB. */
2077 PGMPhysInvalidatePageMapTLB(pVM);
2078
2079 if (cPendingPages)
2080 {
2081 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2082 AssertLogRelRCReturn(rc, rc);
2083 }
2084 GMMR3FreePagesCleanup(pReq);
2085 pgmUnlock(pVM);
2086 }
2087 else
2088 {
2089 RTGCPHYS cb = pCur->RamRange.cb;
2090
2091 /* link in the ram range */
2092 pgmR3PhysLinkRamRange(pVM, &pCur->RamRange, pRamPrev);
2093 pgmUnlock(pVM);
2094
2095 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_MMIO2);
2096 }
2097
2098 PGMPhysInvalidatePageMapTLB(pVM);
2099 return VINF_SUCCESS;
2100}
2101
2102
2103/**
2104 * Unmaps a MMIO2 region.
2105 *
2106 * This is done when a guest / the bios / state loading changes the
2107 * PCI config. The replacing of base memory has the same restrictions
2108 * as during registration, of course.
2109 */
2110VMMR3DECL(int) PGMR3PhysMMIO2Unmap(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
2111{
2112 /*
2113 * Validate input
2114 */
2115 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2116 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2117 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2118 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
2119 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
2120 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2121
2122 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2123 AssertReturn(pCur, VERR_NOT_FOUND);
2124 AssertReturn(pCur->fMapped, VERR_WRONG_ORDER);
2125 AssertReturn(pCur->RamRange.GCPhys == GCPhys, VERR_INVALID_PARAMETER);
2126 Assert(pCur->RamRange.GCPhysLast != NIL_RTGCPHYS);
2127
2128 Log(("PGMR3PhysMMIO2Unmap: %RGp-%RGp %s\n",
2129 pCur->RamRange.GCPhys, pCur->RamRange.GCPhysLast, pCur->RamRange.pszDesc));
2130
2131 /*
2132 * Unmap it.
2133 */
2134 pgmLock(pVM);
2135
2136 RTGCPHYS GCPhysRangeREM;
2137 RTGCPHYS cbRangeREM;
2138 bool fInformREM;
2139 if (pCur->fOverlapping)
2140 {
2141 /* Restore the RAM pages we've replaced. */
2142 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
2143 while (pRam->GCPhys > pCur->RamRange.GCPhysLast)
2144 pRam = pRam->pNextR3;
2145
2146 RTHCPHYS const HCPhysZeroPg = pVM->pgm.s.HCPhysZeroPg;
2147 Assert(HCPhysZeroPg != 0 && HCPhysZeroPg != NIL_RTHCPHYS);
2148 PPGMPAGE pPageDst = &pRam->aPages[(pCur->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2149 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2150 while (cPagesLeft-- > 0)
2151 {
2152 PGM_PAGE_SET_HCPHYS(pPageDst, HCPhysZeroPg);
2153 PGM_PAGE_SET_TYPE(pPageDst, PGMPAGETYPE_RAM);
2154 PGM_PAGE_SET_STATE(pPageDst, PGM_PAGE_STATE_ZERO);
2155 PGM_PAGE_SET_PAGEID(pPageDst, NIL_GMM_PAGEID);
2156 PGM_PAGE_SET_PDE_TYPE(pPageDst, PGM_PAGE_PDE_TYPE_DONTCARE);
2157
2158 pVM->pgm.s.cZeroPages++;
2159 pPageDst++;
2160 }
2161
2162 /* Flush physical page map TLB. */
2163 PGMPhysInvalidatePageMapTLB(pVM);
2164
2165 GCPhysRangeREM = NIL_RTGCPHYS; /* shuts up gcc */
2166 cbRangeREM = RTGCPHYS_MAX; /* ditto */
2167 fInformREM = false;
2168 }
2169 else
2170 {
2171 GCPhysRangeREM = pCur->RamRange.GCPhys;
2172 cbRangeREM = pCur->RamRange.cb;
2173 fInformREM = true;
2174
2175 pgmR3PhysUnlinkRamRange(pVM, &pCur->RamRange);
2176 }
2177
2178 pCur->RamRange.GCPhys = NIL_RTGCPHYS;
2179 pCur->RamRange.GCPhysLast = NIL_RTGCPHYS;
2180 pCur->fOverlapping = false;
2181 pCur->fMapped = false;
2182
2183 PGMPhysInvalidatePageMapTLB(pVM);
2184 pgmUnlock(pVM);
2185
2186 if (fInformREM)
2187 REMR3NotifyPhysRamDeregister(pVM, GCPhysRangeREM, cbRangeREM);
2188
2189 return VINF_SUCCESS;
2190}
2191
2192
2193/**
2194 * Checks if the given address is an MMIO2 base address or not.
2195 *
2196 * @returns true/false accordingly.
2197 * @param pVM Pointer to the shared VM structure.
2198 * @param pDevIns The owner of the memory, optional.
2199 * @param GCPhys The address to check.
2200 */
2201VMMR3DECL(bool) PGMR3PhysMMIO2IsBase(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys)
2202{
2203 /*
2204 * Validate input
2205 */
2206 VM_ASSERT_EMT_RETURN(pVM, false);
2207 AssertPtrReturn(pDevIns, false);
2208 AssertReturn(GCPhys != NIL_RTGCPHYS, false);
2209 AssertReturn(GCPhys != 0, false);
2210 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), false);
2211
2212 /*
2213 * Search the list.
2214 */
2215 pgmLock(pVM);
2216 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2217 if (pCur->RamRange.GCPhys == GCPhys)
2218 {
2219 Assert(pCur->fMapped);
2220 pgmUnlock(pVM);
2221 return true;
2222 }
2223 pgmUnlock(pVM);
2224 return false;
2225}
2226
2227
2228/**
2229 * Gets the HC physical address of a page in the MMIO2 region.
2230 *
2231 * This is API is intended for MMHyper and shouldn't be called
2232 * by anyone else...
2233 *
2234 * @returns VBox status code.
2235 * @param pVM Pointer to the shared VM structure.
2236 * @param pDevIns The owner of the memory, optional.
2237 * @param iRegion The region.
2238 * @param off The page expressed an offset into the MMIO2 region.
2239 * @param pHCPhys Where to store the result.
2240 */
2241VMMR3DECL(int) PGMR3PhysMMIO2GetHCPhys(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, PRTHCPHYS pHCPhys)
2242{
2243 /*
2244 * Validate input
2245 */
2246 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2247 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2248 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2249
2250 pgmLock(pVM);
2251 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2252 AssertReturn(pCur, VERR_NOT_FOUND);
2253 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2254
2255 PCPGMPAGE pPage = &pCur->RamRange.aPages[off >> PAGE_SHIFT];
2256 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage);
2257 pgmUnlock(pVM);
2258 return VINF_SUCCESS;
2259}
2260
2261
2262/**
2263 * Maps a portion of an MMIO2 region into kernel space (host).
2264 *
2265 * The kernel mapping will become invalid when the MMIO2 memory is deregistered
2266 * or the VM is terminated.
2267 *
2268 * @return VBox status code.
2269 *
2270 * @param pVM Pointer to the shared VM structure.
2271 * @param pDevIns The device owning the MMIO2 memory.
2272 * @param iRegion The region.
2273 * @param off The offset into the region. Must be page aligned.
2274 * @param cb The number of bytes to map. Must be page aligned.
2275 * @param pszDesc Mapping description.
2276 * @param pR0Ptr Where to store the R0 address.
2277 */
2278VMMR3DECL(int) PGMR3PhysMMIO2MapKernel(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, RTGCPHYS cb,
2279 const char *pszDesc, PRTR0PTR pR0Ptr)
2280{
2281 /*
2282 * Validate input.
2283 */
2284 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2285 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2286 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2287
2288 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2289 AssertReturn(pCur, VERR_NOT_FOUND);
2290 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2291 AssertReturn(cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2292 AssertReturn(off + cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2293
2294 /*
2295 * Pass the request on to the support library/driver.
2296 */
2297 int rc = SUPR3PageMapKernel(pCur->pvR3, off, cb, 0, pR0Ptr);
2298
2299 return rc;
2300}
2301
2302
2303/**
2304 * Registers a ROM image.
2305 *
2306 * Shadowed ROM images requires double the amount of backing memory, so,
2307 * don't use that unless you have to. Shadowing of ROM images is process
2308 * where we can select where the reads go and where the writes go. On real
2309 * hardware the chipset provides means to configure this. We provide
2310 * PGMR3PhysProtectROM() for this purpose.
2311 *
2312 * A read-only copy of the ROM image will always be kept around while we
2313 * will allocate RAM pages for the changes on demand (unless all memory
2314 * is configured to be preallocated).
2315 *
2316 * @returns VBox status.
2317 * @param pVM VM Handle.
2318 * @param pDevIns The device instance owning the ROM.
2319 * @param GCPhys First physical address in the range.
2320 * Must be page aligned!
2321 * @param cbRange The size of the range (in bytes).
2322 * Must be page aligned!
2323 * @param pvBinary Pointer to the binary data backing the ROM image.
2324 * This must be exactly \a cbRange in size.
2325 * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
2326 * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
2327 * @param pszDesc Pointer to description string. This must not be freed.
2328 *
2329 * @remark There is no way to remove the rom, automatically on device cleanup or
2330 * manually from the device yet. This isn't difficult in any way, it's
2331 * just not something we expect to be necessary for a while.
2332 */
2333VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
2334 const void *pvBinary, uint32_t fFlags, const char *pszDesc)
2335{
2336 Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p fFlags=%#x pszDesc=%s\n",
2337 pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, fFlags, pszDesc));
2338
2339 /*
2340 * Validate input.
2341 */
2342 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2343 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
2344 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
2345 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2346 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
2347 AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER);
2348 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
2349 AssertReturn(!(fFlags & ~(PGMPHYS_ROM_FLAGS_SHADOWED | PGMPHYS_ROM_FLAGS_PERMANENT_BINARY)), VERR_INVALID_PARAMETER);
2350 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE);
2351
2352 const uint32_t cPages = cb >> PAGE_SHIFT;
2353
2354 /*
2355 * Find the ROM location in the ROM list first.
2356 */
2357 PPGMROMRANGE pRomPrev = NULL;
2358 PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
2359 while (pRom && GCPhysLast >= pRom->GCPhys)
2360 {
2361 if ( GCPhys <= pRom->GCPhysLast
2362 && GCPhysLast >= pRom->GCPhys)
2363 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
2364 GCPhys, GCPhysLast, pszDesc,
2365 pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc),
2366 VERR_PGM_RAM_CONFLICT);
2367 /* next */
2368 pRomPrev = pRom;
2369 pRom = pRom->pNextR3;
2370 }
2371
2372 /*
2373 * Find the RAM location and check for conflicts.
2374 *
2375 * Conflict detection is a bit different than for RAM
2376 * registration since a ROM can be located within a RAM
2377 * range. So, what we have to check for is other memory
2378 * types (other than RAM that is) and that we don't span
2379 * more than one RAM range (layz).
2380 */
2381 bool fRamExists = false;
2382 PPGMRAMRANGE pRamPrev = NULL;
2383 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
2384 while (pRam && GCPhysLast >= pRam->GCPhys)
2385 {
2386 if ( GCPhys <= pRam->GCPhysLast
2387 && GCPhysLast >= pRam->GCPhys)
2388 {
2389 /* completely within? */
2390 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
2391 && GCPhysLast <= pRam->GCPhysLast,
2392 ("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n",
2393 GCPhys, GCPhysLast, pszDesc,
2394 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2395 VERR_PGM_RAM_CONFLICT);
2396 fRamExists = true;
2397 break;
2398 }
2399
2400 /* next */
2401 pRamPrev = pRam;
2402 pRam = pRam->pNextR3;
2403 }
2404 if (fRamExists)
2405 {
2406 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2407 uint32_t cPagesLeft = cPages;
2408 while (cPagesLeft-- > 0)
2409 {
2410 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
2411 ("%RGp (%R[pgmpage]) isn't a RAM page - registering %RGp-%RGp (%s).\n",
2412 pRam->GCPhys + ((RTGCPHYS)(uintptr_t)(pPage - &pRam->aPages[0]) << PAGE_SHIFT),
2413 pPage, GCPhys, GCPhysLast, pszDesc), VERR_PGM_RAM_CONFLICT);
2414 Assert(PGM_PAGE_IS_ZERO(pPage));
2415 pPage++;
2416 }
2417 }
2418
2419 /*
2420 * Update the base memory reservation if necessary.
2421 */
2422 uint32_t cExtraBaseCost = fRamExists ? 0 : cPages;
2423 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2424 cExtraBaseCost += cPages;
2425 if (cExtraBaseCost)
2426 {
2427 int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost);
2428 if (RT_FAILURE(rc))
2429 return rc;
2430 }
2431
2432 /*
2433 * Allocate memory for the virgin copy of the RAM.
2434 */
2435 PGMMALLOCATEPAGESREQ pReq;
2436 int rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cPages, GMMACCOUNT_BASE);
2437 AssertRCReturn(rc, rc);
2438
2439 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2440 {
2441 pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << PAGE_SHIFT);
2442 pReq->aPages[iPage].idPage = NIL_GMM_PAGEID;
2443 pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID;
2444 }
2445
2446 pgmLock(pVM);
2447 rc = GMMR3AllocatePagesPerform(pVM, pReq);
2448 pgmUnlock(pVM);
2449 if (RT_FAILURE(rc))
2450 {
2451 GMMR3AllocatePagesCleanup(pReq);
2452 return rc;
2453 }
2454
2455 /*
2456 * Allocate the new ROM range and RAM range (if necessary).
2457 */
2458 PPGMROMRANGE pRomNew;
2459 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMROMRANGE, aPages[cPages]), 0, MM_TAG_PGM_PHYS, (void **)&pRomNew);
2460 if (RT_SUCCESS(rc))
2461 {
2462 PPGMRAMRANGE pRamNew = NULL;
2463 if (!fRamExists)
2464 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), sizeof(PGMPAGE), MM_TAG_PGM_PHYS, (void **)&pRamNew);
2465 if (RT_SUCCESS(rc))
2466 {
2467 pgmLock(pVM);
2468
2469 /*
2470 * Initialize and insert the RAM range (if required).
2471 */
2472 PPGMROMPAGE pRomPage = &pRomNew->aPages[0];
2473 if (!fRamExists)
2474 {
2475 pRamNew->pSelfR0 = MMHyperCCToR0(pVM, pRamNew);
2476 pRamNew->pSelfRC = MMHyperCCToRC(pVM, pRamNew);
2477 pRamNew->GCPhys = GCPhys;
2478 pRamNew->GCPhysLast = GCPhysLast;
2479 pRamNew->cb = cb;
2480 pRamNew->pszDesc = pszDesc;
2481 pRamNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_ROM;
2482 pRamNew->pvR3 = NULL;
2483 pRamNew->paLSPages = NULL;
2484
2485 PPGMPAGE pPage = &pRamNew->aPages[0];
2486 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
2487 {
2488 PGM_PAGE_INIT(pPage,
2489 pReq->aPages[iPage].HCPhysGCPhys,
2490 pReq->aPages[iPage].idPage,
2491 PGMPAGETYPE_ROM,
2492 PGM_PAGE_STATE_ALLOCATED);
2493
2494 pRomPage->Virgin = *pPage;
2495 }
2496
2497 pVM->pgm.s.cAllPages += cPages;
2498 pgmR3PhysLinkRamRange(pVM, pRamNew, pRamPrev);
2499 }
2500 else
2501 {
2502 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2503 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
2504 {
2505 PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_ROM);
2506 PGM_PAGE_SET_HCPHYS(pPage, pReq->aPages[iPage].HCPhysGCPhys);
2507 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
2508 PGM_PAGE_SET_PAGEID(pPage, pReq->aPages[iPage].idPage);
2509
2510 pRomPage->Virgin = *pPage;
2511 }
2512
2513 pRamNew = pRam;
2514
2515 pVM->pgm.s.cZeroPages -= cPages;
2516 }
2517 pVM->pgm.s.cPrivatePages += cPages;
2518
2519 /* Flush physical page map TLB. */
2520 PGMPhysInvalidatePageMapTLB(pVM);
2521
2522 pgmUnlock(pVM);
2523
2524
2525 /*
2526 * !HACK ALERT! REM + (Shadowed) ROM ==> mess.
2527 *
2528 * If it's shadowed we'll register the handler after the ROM notification
2529 * so we get the access handler callbacks that we should. If it isn't
2530 * shadowed we'll do it the other way around to make REM use the built-in
2531 * ROM behavior and not the handler behavior (which is to route all access
2532 * to PGM atm).
2533 */
2534 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2535 {
2536 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, true /* fShadowed */);
2537 rc = PGMR3HandlerPhysicalRegister(pVM,
2538 fFlags & PGMPHYS_ROM_FLAGS_SHADOWED
2539 ? PGMPHYSHANDLERTYPE_PHYSICAL_ALL
2540 : PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
2541 GCPhys, GCPhysLast,
2542 pgmR3PhysRomWriteHandler, pRomNew,
2543 NULL, "pgmPhysRomWriteHandler", MMHyperCCToR0(pVM, pRomNew),
2544 NULL, "pgmPhysRomWriteHandler", MMHyperCCToRC(pVM, pRomNew), pszDesc);
2545 }
2546 else
2547 {
2548 rc = PGMR3HandlerPhysicalRegister(pVM,
2549 fFlags & PGMPHYS_ROM_FLAGS_SHADOWED
2550 ? PGMPHYSHANDLERTYPE_PHYSICAL_ALL
2551 : PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
2552 GCPhys, GCPhysLast,
2553 pgmR3PhysRomWriteHandler, pRomNew,
2554 NULL, "pgmPhysRomWriteHandler", MMHyperCCToR0(pVM, pRomNew),
2555 NULL, "pgmPhysRomWriteHandler", MMHyperCCToRC(pVM, pRomNew), pszDesc);
2556 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, false /* fShadowed */);
2557 }
2558 if (RT_SUCCESS(rc))
2559 {
2560 pgmLock(pVM);
2561
2562 /*
2563 * Copy the image over to the virgin pages.
2564 * This must be done after linking in the RAM range.
2565 */
2566 PPGMPAGE pRamPage = &pRamNew->aPages[(GCPhys - pRamNew->GCPhys) >> PAGE_SHIFT];
2567 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++)
2568 {
2569 void *pvDstPage;
2570 rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << PAGE_SHIFT), &pvDstPage);
2571 if (RT_FAILURE(rc))
2572 {
2573 VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys);
2574 break;
2575 }
2576 memcpy(pvDstPage, (const uint8_t *)pvBinary + (iPage << PAGE_SHIFT), PAGE_SIZE);
2577 }
2578 if (RT_SUCCESS(rc))
2579 {
2580 /*
2581 * Initialize the ROM range.
2582 * Note that the Virgin member of the pages has already been initialized above.
2583 */
2584 pRomNew->GCPhys = GCPhys;
2585 pRomNew->GCPhysLast = GCPhysLast;
2586 pRomNew->cb = cb;
2587 pRomNew->fFlags = fFlags;
2588 pRomNew->idSavedState = UINT8_MAX;
2589 pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY ? pvBinary : NULL;
2590 pRomNew->pszDesc = pszDesc;
2591
2592 for (unsigned iPage = 0; iPage < cPages; iPage++)
2593 {
2594 PPGMROMPAGE pPage = &pRomNew->aPages[iPage];
2595 pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE;
2596 PGM_PAGE_INIT_ZERO(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW);
2597 }
2598
2599 /* update the page count stats for the shadow pages. */
2600 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2601 {
2602 pVM->pgm.s.cZeroPages += cPages;
2603 pVM->pgm.s.cAllPages += cPages;
2604 }
2605
2606 /*
2607 * Insert the ROM range, tell REM and return successfully.
2608 */
2609 pRomNew->pNextR3 = pRom;
2610 pRomNew->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
2611 pRomNew->pNextRC = pRom ? MMHyperCCToRC(pVM, pRom) : NIL_RTRCPTR;
2612
2613 if (pRomPrev)
2614 {
2615 pRomPrev->pNextR3 = pRomNew;
2616 pRomPrev->pNextR0 = MMHyperCCToR0(pVM, pRomNew);
2617 pRomPrev->pNextRC = MMHyperCCToRC(pVM, pRomNew);
2618 }
2619 else
2620 {
2621 pVM->pgm.s.pRomRangesR3 = pRomNew;
2622 pVM->pgm.s.pRomRangesR0 = MMHyperCCToR0(pVM, pRomNew);
2623 pVM->pgm.s.pRomRangesRC = MMHyperCCToRC(pVM, pRomNew);
2624 }
2625
2626 PGMPhysInvalidatePageMapTLB(pVM);
2627 GMMR3AllocatePagesCleanup(pReq);
2628 pgmUnlock(pVM);
2629 return VINF_SUCCESS;
2630 }
2631
2632 /* bail out */
2633
2634 pgmUnlock(pVM);
2635 int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys);
2636 AssertRC(rc2);
2637 pgmLock(pVM);
2638 }
2639
2640 if (!fRamExists)
2641 {
2642 pgmR3PhysUnlinkRamRange2(pVM, pRamNew, pRamPrev);
2643 MMHyperFree(pVM, pRamNew);
2644 }
2645 }
2646 MMHyperFree(pVM, pRomNew);
2647 }
2648
2649 /** @todo Purge the mapping cache or something... */
2650 GMMR3FreeAllocatedPages(pVM, pReq);
2651 GMMR3AllocatePagesCleanup(pReq);
2652 pgmUnlock(pVM);
2653 return rc;
2654}
2655
2656
2657/**
2658 * \#PF Handler callback for ROM write accesses.
2659 *
2660 * @returns VINF_SUCCESS if the handler have carried out the operation.
2661 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
2662 * @param pVM VM Handle.
2663 * @param GCPhys The physical address the guest is writing to.
2664 * @param pvPhys The HC mapping of that address.
2665 * @param pvBuf What the guest is reading/writing.
2666 * @param cbBuf How much it's reading/writing.
2667 * @param enmAccessType The access type.
2668 * @param pvUser User argument.
2669 */
2670static DECLCALLBACK(int) pgmR3PhysRomWriteHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser)
2671{
2672 PPGMROMRANGE pRom = (PPGMROMRANGE)pvUser;
2673 const uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
2674 Assert(iPage < (pRom->cb >> PAGE_SHIFT));
2675 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
2676 Log5(("pgmR3PhysRomWriteHandler: %d %c %#08RGp %#04zx\n", pRomPage->enmProt, enmAccessType == PGMACCESSTYPE_READ ? 'R' : 'W', GCPhys, cbBuf));
2677
2678 if (enmAccessType == PGMACCESSTYPE_READ)
2679 {
2680 switch (pRomPage->enmProt)
2681 {
2682 /*
2683 * Take the default action.
2684 */
2685 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
2686 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
2687 case PGMROMPROT_READ_ROM_WRITE_RAM:
2688 case PGMROMPROT_READ_RAM_WRITE_RAM:
2689 return VINF_PGM_HANDLER_DO_DEFAULT;
2690
2691 default:
2692 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
2693 pRom->aPages[iPage].enmProt, iPage, GCPhys),
2694 VERR_INTERNAL_ERROR);
2695 }
2696 }
2697 else
2698 {
2699 Assert(enmAccessType == PGMACCESSTYPE_WRITE);
2700 switch (pRomPage->enmProt)
2701 {
2702 /*
2703 * Ignore writes.
2704 */
2705 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
2706 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
2707 return VINF_SUCCESS;
2708
2709 /*
2710 * Write to the ram page.
2711 */
2712 case PGMROMPROT_READ_ROM_WRITE_RAM:
2713 case PGMROMPROT_READ_RAM_WRITE_RAM: /* yes this will get here too, it's *way* simpler that way. */
2714 {
2715 /* This should be impossible now, pvPhys doesn't work cross page anylonger. */
2716 Assert(((GCPhys - pRom->GCPhys + cbBuf - 1) >> PAGE_SHIFT) == iPage);
2717
2718 /*
2719 * Take the lock, do lazy allocation, map the page and copy the data.
2720 *
2721 * Note that we have to bypass the mapping TLB since it works on
2722 * guest physical addresses and entering the shadow page would
2723 * kind of screw things up...
2724 */
2725 int rc = pgmLock(pVM);
2726 AssertRC(rc);
2727
2728 PPGMPAGE pShadowPage = &pRomPage->Shadow;
2729 if (!PGMROMPROT_IS_ROM(pRomPage->enmProt))
2730 {
2731 pShadowPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
2732 AssertLogRelReturn(pShadowPage, VERR_INTERNAL_ERROR);
2733 }
2734
2735 void *pvDstPage;
2736 rc = pgmPhysPageMakeWritableAndMap(pVM, pShadowPage, GCPhys & X86_PTE_PG_MASK, &pvDstPage);
2737 if (RT_SUCCESS(rc))
2738 {
2739 memcpy((uint8_t *)pvDstPage + (GCPhys & PAGE_OFFSET_MASK), pvBuf, cbBuf);
2740 pRomPage->LiveSave.fWrittenTo = true;
2741 }
2742
2743 pgmUnlock(pVM);
2744 return rc;
2745 }
2746
2747 default:
2748 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
2749 pRom->aPages[iPage].enmProt, iPage, GCPhys),
2750 VERR_INTERNAL_ERROR);
2751 }
2752 }
2753}
2754
2755
2756/**
2757 * Called by PGMR3Reset to reset the shadow, switch to the virgin,
2758 * and verify that the virgin part is untouched.
2759 *
2760 * This is done after the normal memory has been cleared.
2761 *
2762 * ASSUMES that the caller owns the PGM lock.
2763 *
2764 * @param pVM The VM handle.
2765 */
2766int pgmR3PhysRomReset(PVM pVM)
2767{
2768 Assert(PGMIsLockOwner(pVM));
2769 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
2770 {
2771 const uint32_t cPages = pRom->cb >> PAGE_SHIFT;
2772
2773 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2774 {
2775 /*
2776 * Reset the physical handler.
2777 */
2778 int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE);
2779 AssertRCReturn(rc, rc);
2780
2781 /*
2782 * What we do with the shadow pages depends on the memory
2783 * preallocation option. If not enabled, we'll just throw
2784 * out all the dirty pages and replace them by the zero page.
2785 */
2786 if (!pVM->pgm.s.fRamPreAlloc)
2787 {
2788 /* Free the dirty pages. */
2789 uint32_t cPendingPages = 0;
2790 PGMMFREEPAGESREQ pReq;
2791 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2792 AssertRCReturn(rc, rc);
2793
2794 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2795 if ( !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow)
2796 && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow))
2797 {
2798 Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) == PGM_PAGE_STATE_ALLOCATED);
2799 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, &pRom->aPages[iPage].Shadow, pRom->GCPhys + (iPage << PAGE_SHIFT));
2800 AssertLogRelRCReturn(rc, rc);
2801 }
2802
2803 if (cPendingPages)
2804 {
2805 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2806 AssertLogRelRCReturn(rc, rc);
2807 }
2808 GMMR3FreePagesCleanup(pReq);
2809 }
2810 else
2811 {
2812 /* clear all the shadow pages. */
2813 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2814 {
2815 Assert(!PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow) && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow));
2816 void *pvDstPage;
2817 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
2818 rc = pgmPhysPageMakeWritableAndMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pvDstPage);
2819 if (RT_FAILURE(rc))
2820 break;
2821 ASMMemZeroPage(pvDstPage);
2822 }
2823 AssertRCReturn(rc, rc);
2824 }
2825 }
2826
2827#ifdef VBOX_STRICT
2828 /*
2829 * Verify that the virgin page is unchanged if possible.
2830 */
2831 if (pRom->pvOriginal)
2832 {
2833 uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal;
2834 for (uint32_t iPage = 0; iPage < cPages; iPage++, pbSrcPage += PAGE_SIZE)
2835 {
2836 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
2837 void const *pvDstPage;
2838 int rc = pgmPhysPageMapReadOnly(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPage);
2839 if (RT_FAILURE(rc))
2840 break;
2841 if (memcmp(pvDstPage, pbSrcPage, PAGE_SIZE))
2842 LogRel(("pgmR3PhysRomReset: %RGp rom page changed (%s) - loaded saved state?\n",
2843 GCPhys, pRom->pszDesc));
2844 }
2845 }
2846#endif
2847 }
2848
2849 return VINF_SUCCESS;
2850}
2851
2852
2853/**
2854 * Change the shadowing of a range of ROM pages.
2855 *
2856 * This is intended for implementing chipset specific memory registers
2857 * and will not be very strict about the input. It will silently ignore
2858 * any pages that are not the part of a shadowed ROM.
2859 *
2860 * @returns VBox status code.
2861 * @retval VINF_PGM_SYNC_CR3
2862 *
2863 * @param pVM Pointer to the shared VM structure.
2864 * @param GCPhys Where to start. Page aligned.
2865 * @param cb How much to change. Page aligned.
2866 * @param enmProt The new ROM protection.
2867 */
2868VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt)
2869{
2870 /*
2871 * Check input
2872 */
2873 if (!cb)
2874 return VINF_SUCCESS;
2875 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2876 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2877 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2878 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
2879 AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER);
2880
2881 /*
2882 * Process the request.
2883 */
2884 pgmLock(pVM);
2885 int rc = VINF_SUCCESS;
2886 bool fFlushTLB = false;
2887 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
2888 {
2889 if ( GCPhys <= pRom->GCPhysLast
2890 && GCPhysLast >= pRom->GCPhys
2891 && (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
2892 {
2893 /*
2894 * Iterate the relevant pages and make necessary the changes.
2895 */
2896 bool fChanges = false;
2897 uint32_t const cPages = pRom->GCPhysLast <= GCPhysLast
2898 ? pRom->cb >> PAGE_SHIFT
2899 : (GCPhysLast - pRom->GCPhys + 1) >> PAGE_SHIFT;
2900 for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
2901 iPage < cPages;
2902 iPage++)
2903 {
2904 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
2905 if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt))
2906 {
2907 fChanges = true;
2908
2909 /* flush references to the page. */
2910 PPGMPAGE pRamPage = pgmPhysGetPage(&pVM->pgm.s, pRom->GCPhys + (iPage << PAGE_SHIFT));
2911 int rc2 = pgmPoolTrackFlushGCPhys(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT), pRamPage, &fFlushTLB);
2912 if (rc2 != VINF_SUCCESS && (rc == VINF_SUCCESS || RT_FAILURE(rc2)))
2913 rc = rc2;
2914
2915 PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
2916 PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2917
2918 *pOld = *pRamPage;
2919 *pRamPage = *pNew;
2920 /** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */
2921 }
2922 pRomPage->enmProt = enmProt;
2923 }
2924
2925 /*
2926 * Reset the access handler if we made changes, no need
2927 * to optimize this.
2928 */
2929 if (fChanges)
2930 {
2931 int rc2 = PGMHandlerPhysicalReset(pVM, pRom->GCPhys);
2932 if (RT_FAILURE(rc2))
2933 {
2934 pgmUnlock(pVM);
2935 AssertRC(rc);
2936 return rc2;
2937 }
2938 }
2939
2940 /* Advance - cb isn't updated. */
2941 GCPhys = pRom->GCPhys + (cPages << PAGE_SHIFT);
2942 }
2943 }
2944 pgmUnlock(pVM);
2945 if (fFlushTLB)
2946 PGM_INVL_ALL_VCPU_TLBS(pVM);
2947
2948 return rc;
2949}
2950
2951
2952/**
2953 * Sets the Address Gate 20 state.
2954 *
2955 * @param pVCpu The VCPU to operate on.
2956 * @param fEnable True if the gate should be enabled.
2957 * False if the gate should be disabled.
2958 */
2959VMMDECL(void) PGMR3PhysSetA20(PVMCPU pVCpu, bool fEnable)
2960{
2961 LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVCpu->pgm.s.fA20Enabled));
2962 if (pVCpu->pgm.s.fA20Enabled != fEnable)
2963 {
2964 pVCpu->pgm.s.fA20Enabled = fEnable;
2965 pVCpu->pgm.s.GCPhysA20Mask = ~(RTGCPHYS)(!fEnable << 20);
2966 REMR3A20Set(pVCpu->pVMR3, pVCpu, fEnable);
2967 /** @todo we're not handling this correctly for VT-x / AMD-V. See #2911 */
2968 }
2969}
2970
2971
2972/**
2973 * Tree enumeration callback for dealing with age rollover.
2974 * It will perform a simple compression of the current age.
2975 */
2976static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
2977{
2978 Assert(PGMIsLockOwner((PVM)pvUser));
2979 /* Age compression - ASSUMES iNow == 4. */
2980 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
2981 if (pChunk->iAge >= UINT32_C(0xffffff00))
2982 pChunk->iAge = 3;
2983 else if (pChunk->iAge >= UINT32_C(0xfffff000))
2984 pChunk->iAge = 2;
2985 else if (pChunk->iAge)
2986 pChunk->iAge = 1;
2987 else /* iAge = 0 */
2988 pChunk->iAge = 4;
2989
2990 /* reinsert */
2991 PVM pVM = (PVM)pvUser;
2992 RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
2993 pChunk->AgeCore.Key = pChunk->iAge;
2994 RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
2995 return 0;
2996}
2997
2998
2999/**
3000 * Tree enumeration callback that updates the chunks that have
3001 * been used since the last
3002 */
3003static DECLCALLBACK(int) pgmR3PhysChunkAgeingCallback(PAVLU32NODECORE pNode, void *pvUser)
3004{
3005 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
3006 if (!pChunk->iAge)
3007 {
3008 PVM pVM = (PVM)pvUser;
3009 RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
3010 pChunk->AgeCore.Key = pChunk->iAge = pVM->pgm.s.ChunkR3Map.iNow;
3011 RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
3012 }
3013
3014 return 0;
3015}
3016
3017
3018/**
3019 * Performs ageing of the ring-3 chunk mappings.
3020 *
3021 * @param pVM The VM handle.
3022 */
3023VMMR3DECL(void) PGMR3PhysChunkAgeing(PVM pVM)
3024{
3025 pgmLock(pVM);
3026 pVM->pgm.s.ChunkR3Map.AgeingCountdown = RT_MIN(pVM->pgm.s.ChunkR3Map.cMax / 4, 1024);
3027 pVM->pgm.s.ChunkR3Map.iNow++;
3028 if (pVM->pgm.s.ChunkR3Map.iNow == 0)
3029 {
3030 pVM->pgm.s.ChunkR3Map.iNow = 4;
3031 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, pVM);
3032 }
3033 else
3034 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingCallback, pVM);
3035 pgmUnlock(pVM);
3036}
3037
3038
3039/**
3040 * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
3041 */
3042typedef struct PGMR3PHYSCHUNKUNMAPCB
3043{
3044 PVM pVM; /**< The VM handle. */
3045 PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
3046} PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
3047
3048
3049/**
3050 * Callback used to find the mapping that's been unused for
3051 * the longest time.
3052 */
3053static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLLU32NODECORE pNode, void *pvUser)
3054{
3055 do
3056 {
3057 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)((uint8_t *)pNode - RT_OFFSETOF(PGMCHUNKR3MAP, AgeCore));
3058 if ( pChunk->iAge
3059 && !pChunk->cRefs)
3060 {
3061 /*
3062 * Check that it's not in any of the TLBs.
3063 */
3064 PVM pVM = ((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pVM;
3065 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
3066 if (pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk == pChunk)
3067 {
3068 pChunk = NULL;
3069 break;
3070 }
3071 if (pChunk)
3072 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
3073 if (pVM->pgm.s.PhysTlbHC.aEntries[i].pMap == pChunk)
3074 {
3075 pChunk = NULL;
3076 break;
3077 }
3078 if (pChunk)
3079 {
3080 ((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pChunk = pChunk;
3081 return 1; /* done */
3082 }
3083 }
3084
3085 /* next with the same age - this version of the AVL API doesn't enumerate the list, so we have to do it. */
3086 pNode = pNode->pList;
3087 } while (pNode);
3088 return 0;
3089}
3090
3091
3092/**
3093 * Finds a good candidate for unmapping when the ring-3 mapping cache is full.
3094 *
3095 * The candidate will not be part of any TLBs, so no need to flush
3096 * anything afterwards.
3097 *
3098 * @returns Chunk id.
3099 * @param pVM The VM handle.
3100 */
3101static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
3102{
3103 Assert(PGMIsLockOwner(pVM));
3104
3105 /*
3106 * Do tree ageing first?
3107 */
3108 if (pVM->pgm.s.ChunkR3Map.AgeingCountdown-- == 0)
3109 PGMR3PhysChunkAgeing(pVM);
3110
3111 /*
3112 * Enumerate the age tree starting with the left most node.
3113 */
3114 PGMR3PHYSCHUNKUNMAPCB Args;
3115 Args.pVM = pVM;
3116 Args.pChunk = NULL;
3117 if (RTAvllU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pAgeTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, pVM))
3118 return Args.pChunk->Core.Key;
3119 return INT32_MAX;
3120}
3121
3122
3123/**
3124 * Maps the given chunk into the ring-3 mapping cache.
3125 *
3126 * This will call ring-0.
3127 *
3128 * @returns VBox status code.
3129 * @param pVM The VM handle.
3130 * @param idChunk The chunk in question.
3131 * @param ppChunk Where to store the chunk tracking structure.
3132 *
3133 * @remarks Called from within the PGM critical section.
3134 */
3135int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
3136{
3137 int rc;
3138
3139 Assert(PGMIsLockOwner(pVM));
3140 /*
3141 * Allocate a new tracking structure first.
3142 */
3143#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
3144 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAlloc(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
3145#else
3146 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3UkHeapAlloc(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk), NULL);
3147#endif
3148 AssertReturn(pChunk, VERR_NO_MEMORY);
3149 pChunk->Core.Key = idChunk;
3150 pChunk->AgeCore.Key = pVM->pgm.s.ChunkR3Map.iNow;
3151 pChunk->iAge = 0;
3152 pChunk->cRefs = 0;
3153 pChunk->cPermRefs = 0;
3154 pChunk->pv = NULL;
3155
3156 /*
3157 * Request the ring-0 part to map the chunk in question and if
3158 * necessary unmap another one to make space in the mapping cache.
3159 */
3160 GMMMAPUNMAPCHUNKREQ Req;
3161 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
3162 Req.Hdr.cbReq = sizeof(Req);
3163 Req.pvR3 = NULL;
3164 Req.idChunkMap = idChunk;
3165 Req.idChunkUnmap = NIL_GMM_CHUNKID;
3166 if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
3167 Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
3168/** @todo This is wrong. Any thread in the VM process should be able to do this,
3169 * there are depenenecies on this. What currently saves the day is that
3170 * we don't unmap anything and that all non-zero memory will therefore
3171 * be present when non-EMTs tries to access it. */
3172 rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
3173 if (RT_SUCCESS(rc))
3174 {
3175 /*
3176 * Update the tree.
3177 */
3178 /* insert the new one. */
3179 AssertPtr(Req.pvR3);
3180 pChunk->pv = Req.pvR3;
3181 bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
3182 AssertRelease(fRc);
3183 pVM->pgm.s.ChunkR3Map.c++;
3184
3185 fRc = RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
3186 AssertRelease(fRc);
3187
3188 /* remove the unmapped one. */
3189 if (Req.idChunkUnmap != NIL_GMM_CHUNKID)
3190 {
3191 PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
3192 AssertRelease(pUnmappedChunk);
3193 pUnmappedChunk->pv = NULL;
3194 pUnmappedChunk->Core.Key = UINT32_MAX;
3195#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
3196 MMR3HeapFree(pUnmappedChunk);
3197#else
3198 MMR3UkHeapFree(pVM, pUnmappedChunk, MM_TAG_PGM_CHUNK_MAPPING);
3199#endif
3200 pVM->pgm.s.ChunkR3Map.c--;
3201
3202 /* Chunk removed, so clear the page map TBL as well (might still be referenced). */
3203 PGMPhysInvalidatePageMapTLB(pVM);
3204 }
3205 }
3206 else
3207 {
3208 AssertRC(rc);
3209#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
3210 MMR3HeapFree(pChunk);
3211#else
3212 MMR3UkHeapFree(pVM, pChunk, MM_TAG_PGM_CHUNK_MAPPING);
3213#endif
3214 pChunk = NULL;
3215 }
3216
3217 *ppChunk = pChunk;
3218 return rc;
3219}
3220
3221
3222/**
3223 * For VMMCALLRING3_PGM_MAP_CHUNK, considered internal.
3224 *
3225 * @returns see pgmR3PhysChunkMap.
3226 * @param pVM The VM handle.
3227 * @param idChunk The chunk to map.
3228 */
3229VMMR3DECL(int) PGMR3PhysChunkMap(PVM pVM, uint32_t idChunk)
3230{
3231 PPGMCHUNKR3MAP pChunk;
3232 int rc;
3233
3234 pgmLock(pVM);
3235 rc = pgmR3PhysChunkMap(pVM, idChunk, &pChunk);
3236 pgmUnlock(pVM);
3237 return rc;
3238}
3239
3240
3241/**
3242 * Invalidates the TLB for the ring-3 mapping cache.
3243 *
3244 * @param pVM The VM handle.
3245 */
3246VMMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM)
3247{
3248 pgmLock(pVM);
3249 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
3250 {
3251 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
3252 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
3253 }
3254 /* The page map TLB references chunks, so invalidate that one too. */
3255 PGMPhysInvalidatePageMapTLB(pVM);
3256 pgmUnlock(pVM);
3257}
3258
3259
3260/**
3261 * Response to VMMCALLRING3_PGM_ALLOCATE_LARGE_PAGE to allocate a large (2MB) page
3262 * for use with a nested paging PDE.
3263 *
3264 * @returns The following VBox status codes.
3265 * @retval VINF_SUCCESS on success.
3266 * @retval VINF_EM_NO_MEMORY if we're out of memory.
3267 *
3268 * @param pVM The VM handle.
3269 * @param GCPhys GC physical start address of the 2 MB range
3270 */
3271VMMR3DECL(int) PGMR3PhysAllocateLargeHandyPage(PVM pVM, RTGCPHYS GCPhys)
3272{
3273 pgmLock(pVM);
3274
3275 STAM_PROFILE_START(&pVM->pgm.s.StatAllocLargePage, a);
3276 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_LARGE_HANDY_PAGE, 0, NULL);
3277 STAM_PROFILE_STOP(&pVM->pgm.s.StatAllocLargePage, a);
3278 if (RT_SUCCESS(rc))
3279 {
3280 Assert(pVM->pgm.s.cLargeHandyPages == 1);
3281
3282 uint32_t idPage = pVM->pgm.s.aLargeHandyPage[0].idPage;
3283 RTHCPHYS HCPhys = pVM->pgm.s.aLargeHandyPage[0].HCPhysGCPhys;
3284
3285 void *pv;
3286
3287 /* Map the large page into our address space.
3288 *
3289 * Note: assuming that within the 2 MB range:
3290 * - GCPhys + PAGE_SIZE = HCPhys + PAGE_SIZE (whole point of this exercise)
3291 * - user space mapping is continuous as well
3292 * - page id (GCPhys) + 1 = page id (GCPhys + PAGE_SIZE)
3293 */
3294 rc = pgmPhysPageMapByPageID(pVM, idPage, HCPhys, &pv);
3295 AssertLogRelMsg(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc", idPage, HCPhys, rc));
3296
3297 if (RT_SUCCESS(rc))
3298 {
3299 /*
3300 * Clear the pages.
3301 */
3302 STAM_PROFILE_START(&pVM->pgm.s.StatClearLargePage, b);
3303 for (unsigned i = 0; i < _2M/PAGE_SIZE; i++)
3304 {
3305 ASMMemZeroPage(pv);
3306
3307 PPGMPAGE pPage;
3308 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
3309 AssertRC(rc);
3310
3311 Assert(PGM_PAGE_IS_ZERO(pPage));
3312 STAM_COUNTER_INC(&pVM->pgm.s.StatRZPageReplaceZero);
3313 pVM->pgm.s.cZeroPages--;
3314
3315 /*
3316 * Do the PGMPAGE modifications.
3317 */
3318 pVM->pgm.s.cPrivatePages++;
3319 PGM_PAGE_SET_HCPHYS(pPage, HCPhys);
3320 PGM_PAGE_SET_PAGEID(pPage, idPage);
3321 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
3322 PGM_PAGE_SET_PDE_TYPE(pPage, PGM_PAGE_PDE_TYPE_PDE);
3323
3324 /* Somewhat dirty assumption that page ids are increasing. */
3325 idPage++;
3326
3327 HCPhys += PAGE_SIZE;
3328 GCPhys += PAGE_SIZE;
3329
3330 pv = (void *)((uintptr_t)pv + PAGE_SIZE);
3331
3332 Log3(("PGMR3PhysAllocateLargePage: idPage=%#x HCPhys=%RGp\n", idPage, HCPhys));
3333 }
3334 STAM_PROFILE_STOP(&pVM->pgm.s.StatClearLargePage, b);
3335
3336 /* Flush all TLBs. */
3337 PGM_INVL_ALL_VCPU_TLBS(pVM);
3338 PGMPhysInvalidatePageMapTLB(pVM);
3339 }
3340 pVM->pgm.s.cLargeHandyPages = 0;
3341 }
3342
3343 pgmUnlock(pVM);
3344 return rc;
3345}
3346
3347
3348/**
3349 * Response to VM_FF_PGM_NEED_HANDY_PAGES and VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES.
3350 *
3351 * This function will also work the VM_FF_PGM_NO_MEMORY force action flag, to
3352 * signal and clear the out of memory condition. When contracted, this API is
3353 * used to try clear the condition when the user wants to resume.
3354 *
3355 * @returns The following VBox status codes.
3356 * @retval VINF_SUCCESS on success. FFs cleared.
3357 * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in
3358 * this case and it gets accompanied by VM_FF_PGM_NO_MEMORY.
3359 *
3360 * @param pVM The VM handle.
3361 *
3362 * @remarks The VINF_EM_NO_MEMORY status is for the benefit of the FF processing
3363 * in EM.cpp and shouldn't be propagated outside TRPM, HWACCM, EM and
3364 * pgmPhysEnsureHandyPage. There is one exception to this in the \#PF
3365 * handler.
3366 */
3367VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
3368{
3369 pgmLock(pVM);
3370
3371 /*
3372 * Allocate more pages, noting down the index of the first new page.
3373 */
3374 uint32_t iClear = pVM->pgm.s.cHandyPages;
3375 AssertMsgReturn(iClear <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d", iClear), VERR_INTERNAL_ERROR);
3376 Log(("PGMR3PhysAllocateHandyPages: %d -> %d\n", iClear, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
3377 int rcAlloc = VINF_SUCCESS;
3378 int rcSeed = VINF_SUCCESS;
3379 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
3380 while (rc == VERR_GMM_SEED_ME)
3381 {
3382 void *pvChunk;
3383 rcAlloc = rc = SUPR3PageAlloc(GMM_CHUNK_SIZE >> PAGE_SHIFT, &pvChunk);
3384 if (RT_SUCCESS(rc))
3385 {
3386 rcSeed = rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_SEED_CHUNK, (uintptr_t)pvChunk, NULL);
3387 if (RT_FAILURE(rc))
3388 SUPR3PageFree(pvChunk, GMM_CHUNK_SIZE >> PAGE_SHIFT);
3389 }
3390 if (RT_SUCCESS(rc))
3391 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
3392 }
3393
3394 if (RT_SUCCESS(rc))
3395 {
3396 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
3397 Assert(pVM->pgm.s.cHandyPages > 0);
3398 VM_FF_CLEAR(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
3399 VM_FF_CLEAR(pVM, VM_FF_PGM_NO_MEMORY);
3400
3401 /*
3402 * Clear the pages.
3403 */
3404 while (iClear < pVM->pgm.s.cHandyPages)
3405 {
3406 PGMMPAGEDESC pPage = &pVM->pgm.s.aHandyPages[iClear];
3407 void *pv;
3408 rc = pgmPhysPageMapByPageID(pVM, pPage->idPage, pPage->HCPhysGCPhys, &pv);
3409 AssertLogRelMsgBreak(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc", pPage->idPage, pPage->HCPhysGCPhys, rc));
3410 ASMMemZeroPage(pv);
3411 iClear++;
3412 Log3(("PGMR3PhysAllocateHandyPages: idPage=%#x HCPhys=%RGp\n", pPage->idPage, pPage->HCPhysGCPhys));
3413 }
3414 }
3415 else
3416 {
3417 /*
3418 * We should never get here unless there is a genuine shortage of
3419 * memory (or some internal error). Flag the error so the VM can be
3420 * suspended ASAP and the user informed. If we're totally out of
3421 * handy pages we will return failure.
3422 */
3423 /* Report the failure. */
3424 LogRel(("PGM: Failed to procure handy pages; rc=%Rrc rcAlloc=%Rrc rcSeed=%Rrc cHandyPages=%#x\n"
3425 " cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n",
3426 rc, rcAlloc, rcSeed,
3427 pVM->pgm.s.cHandyPages,
3428 pVM->pgm.s.cAllPages,
3429 pVM->pgm.s.cPrivatePages,
3430 pVM->pgm.s.cSharedPages,
3431 pVM->pgm.s.cZeroPages));
3432 if ( rc != VERR_NO_MEMORY
3433 && rc != VERR_LOCK_FAILED)
3434 {
3435 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
3436 {
3437 LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n",
3438 i, pVM->pgm.s.aHandyPages[i].HCPhysGCPhys, pVM->pgm.s.aHandyPages[i].idPage,
3439 pVM->pgm.s.aHandyPages[i].idSharedPage));
3440 uint32_t const idPage = pVM->pgm.s.aHandyPages[i].idPage;
3441 if (idPage != NIL_GMM_PAGEID)
3442 {
3443 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
3444 pRam;
3445 pRam = pRam->pNextR3)
3446 {
3447 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
3448 for (uint32_t iPage = 0; iPage < cPages; iPage++)
3449 if (PGM_PAGE_GET_PAGEID(&pRam->aPages[iPage]) == idPage)
3450 LogRel(("PGM: Used by %RGp %R[pgmpage] (%s)\n",
3451 pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pRam->aPages[iPage], pRam->pszDesc));
3452 }
3453 }
3454 }
3455 }
3456
3457 /* Set the FFs and adjust rc. */
3458 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
3459 VM_FF_SET(pVM, VM_FF_PGM_NO_MEMORY);
3460 if ( rc == VERR_NO_MEMORY
3461 || rc == VERR_LOCK_FAILED)
3462 rc = VINF_EM_NO_MEMORY;
3463 }
3464
3465 pgmUnlock(pVM);
3466 return rc;
3467}
3468
3469
3470/**
3471 * Frees the specified RAM page and replaces it with the ZERO page.
3472 *
3473 * This is used by ballooning, remapping MMIO2 and RAM reset.
3474 *
3475 * @param pVM Pointer to the shared VM structure.
3476 * @param pReq Pointer to the request.
3477 * @param pPage Pointer to the page structure.
3478 * @param GCPhys The guest physical address of the page, if applicable.
3479 *
3480 * @remarks The caller must own the PGM lock.
3481 */
3482static int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys)
3483{
3484 /*
3485 * Assert sanity.
3486 */
3487 Assert(PGMIsLockOwner(pVM));
3488 if (RT_UNLIKELY( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
3489 && PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW))
3490 {
3491 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
3492 return VMSetError(pVM, VERR_PGM_PHYS_NOT_RAM, RT_SRC_POS, "GCPhys=%RGp type=%d", GCPhys, PGM_PAGE_GET_TYPE(pPage));
3493 }
3494
3495 if ( PGM_PAGE_IS_ZERO(pPage)
3496 || PGM_PAGE_IS_BALLOONED(pPage))
3497 return VINF_SUCCESS;
3498
3499 const uint32_t idPage = PGM_PAGE_GET_PAGEID(pPage);
3500 Log3(("pgmPhysFreePage: idPage=%#x HCPhys=%RGp pPage=%R[pgmpage]\n", idPage, pPage));
3501 if (RT_UNLIKELY( idPage == NIL_GMM_PAGEID
3502 || idPage > GMM_PAGEID_LAST
3503 || PGM_PAGE_GET_CHUNKID(pPage) == NIL_GMM_CHUNKID))
3504 {
3505 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
3506 return VMSetError(pVM, VERR_PGM_PHYS_INVALID_PAGE_ID, RT_SRC_POS, "GCPhys=%RGp idPage=%#x", GCPhys, pPage);
3507 }
3508
3509 /* update page count stats. */
3510 if (PGM_PAGE_IS_SHARED(pPage))
3511 pVM->pgm.s.cSharedPages--;
3512 else
3513 pVM->pgm.s.cPrivatePages--;
3514 pVM->pgm.s.cZeroPages++;
3515
3516 /* Deal with write monitored pages. */
3517 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
3518 {
3519 PGM_PAGE_SET_WRITTEN_TO(pPage);
3520 pVM->pgm.s.cWrittenToPages++;
3521 }
3522
3523 /*
3524 * pPage = ZERO page.
3525 */
3526 PGM_PAGE_SET_HCPHYS(pPage, pVM->pgm.s.HCPhysZeroPg);
3527 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
3528 PGM_PAGE_SET_PAGEID(pPage, NIL_GMM_PAGEID);
3529 PGM_PAGE_SET_PDE_TYPE(pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
3530
3531 /* Flush physical page map TLB entry. */
3532 PGMPhysInvalidatePageMapTLBEntry(pVM, GCPhys);
3533
3534 /*
3535 * Make sure it's not in the handy page array.
3536 */
3537 for (uint32_t i = pVM->pgm.s.cHandyPages; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
3538 {
3539 if (pVM->pgm.s.aHandyPages[i].idPage == idPage)
3540 {
3541 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
3542 break;
3543 }
3544 if (pVM->pgm.s.aHandyPages[i].idSharedPage == idPage)
3545 {
3546 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
3547 break;
3548 }
3549 }
3550
3551 /*
3552 * Push it onto the page array.
3553 */
3554 uint32_t iPage = *pcPendingPages;
3555 Assert(iPage < PGMPHYS_FREE_PAGE_BATCH_SIZE);
3556 *pcPendingPages += 1;
3557
3558 pReq->aPages[iPage].idPage = idPage;
3559
3560 if (iPage + 1 < PGMPHYS_FREE_PAGE_BATCH_SIZE)
3561 return VINF_SUCCESS;
3562
3563 /*
3564 * Flush the pages.
3565 */
3566 int rc = GMMR3FreePagesPerform(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE);
3567 if (RT_SUCCESS(rc))
3568 {
3569 GMMR3FreePagesRePrep(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
3570 *pcPendingPages = 0;
3571 }
3572 return rc;
3573}
3574
3575
3576/**
3577 * Converts a GC physical address to a HC ring-3 pointer, with some
3578 * additional checks.
3579 *
3580 * @returns VBox status code.
3581 * @retval VINF_SUCCESS on success.
3582 * @retval VINF_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
3583 * access handler of some kind.
3584 * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
3585 * accesses or is odd in any way.
3586 * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
3587 *
3588 * @param pVM The VM handle.
3589 * @param GCPhys The GC physical address to convert.
3590 * @param fWritable Whether write access is required.
3591 * @param ppv Where to store the pointer corresponding to GCPhys on
3592 * success.
3593 */
3594VMMR3DECL(int) PGMR3PhysTlbGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, void **ppv)
3595{
3596 pgmLock(pVM);
3597
3598 PPGMRAMRANGE pRam;
3599 PPGMPAGE pPage;
3600 int rc = pgmPhysGetPageAndRangeEx(&pVM->pgm.s, GCPhys, &pPage, &pRam);
3601 if (RT_SUCCESS(rc))
3602 {
3603 if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage))
3604 rc = VINF_SUCCESS;
3605 else
3606 {
3607 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
3608 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
3609 else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
3610 {
3611 /** @todo Handle TLB loads of virtual handlers so ./test.sh can be made to work
3612 * in -norawr0 mode. */
3613 if (fWritable)
3614 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
3615 }
3616 else
3617 {
3618 /* Temporarily disabled physical handler(s), since the recompiler
3619 doesn't get notified when it's reset we'll have to pretend it's
3620 operating normally. */
3621 if (pgmHandlerPhysicalIsAll(pVM, GCPhys))
3622 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
3623 else
3624 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
3625 }
3626 }
3627 if (RT_SUCCESS(rc))
3628 {
3629 int rc2;
3630
3631 /* Make sure what we return is writable. */
3632 if (fWritable && rc != VINF_PGM_PHYS_TLB_CATCH_WRITE)
3633 switch (PGM_PAGE_GET_STATE(pPage))
3634 {
3635 case PGM_PAGE_STATE_ALLOCATED:
3636 break;
3637 case PGM_PAGE_STATE_BALLOONED:
3638 AssertFailed();
3639 break;
3640 case PGM_PAGE_STATE_ZERO:
3641 case PGM_PAGE_STATE_SHARED:
3642 case PGM_PAGE_STATE_WRITE_MONITORED:
3643 rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
3644 AssertLogRelRCReturn(rc2, rc2);
3645 break;
3646 }
3647
3648 /* Get a ring-3 mapping of the address. */
3649 PPGMPAGER3MAPTLBE pTlbe;
3650 rc2 = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
3651 AssertLogRelRCReturn(rc2, rc2);
3652 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
3653 /** @todo mapping/locking hell; this isn't horribly efficient since
3654 * pgmPhysPageLoadIntoTlb will repeat the lookup we've done here. */
3655
3656 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
3657 }
3658 else
3659 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));
3660
3661 /* else: handler catching all access, no pointer returned. */
3662 }
3663 else
3664 rc = VERR_PGM_PHYS_TLB_UNASSIGNED;
3665
3666 pgmUnlock(pVM);
3667 return rc;
3668}
3669
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette