VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMPhys.cpp@ 27184

Last change on this file since 27184 was 27182, checked in by vboxsync, 15 years ago

Saved the state of ballooned memory and reinflate when loading the saved state.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 128.9 KB
Line 
1/* $Id: PGMPhys.cpp 27182 2010-03-08 17:28:01Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_PGM_PHYS
27#include <VBox/pgm.h>
28#include <VBox/iom.h>
29#include <VBox/mm.h>
30#include <VBox/stam.h>
31#include <VBox/rem.h>
32#include <VBox/pdmdev.h>
33#include "PGMInternal.h"
34#include <VBox/vm.h>
35#include "PGMInline.h"
36#include <VBox/sup.h>
37#include <VBox/param.h>
38#include <VBox/err.h>
39#include <VBox/log.h>
40#include <iprt/assert.h>
41#include <iprt/alloc.h>
42#include <iprt/asm.h>
43#include <iprt/thread.h>
44#include <iprt/string.h>
45
46
47/*******************************************************************************
48* Defined Constants And Macros *
49*******************************************************************************/
50/** The number of pages to free in one batch. */
51#define PGMPHYS_FREE_PAGE_BATCH_SIZE 128
52
53
54/*******************************************************************************
55* Internal Functions *
56*******************************************************************************/
57static DECLCALLBACK(int) pgmR3PhysRomWriteHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
58static int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys);
59
60
61/*
62 * PGMR3PhysReadU8-64
63 * PGMR3PhysWriteU8-64
64 */
65#define PGMPHYSFN_READNAME PGMR3PhysReadU8
66#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8
67#define PGMPHYS_DATASIZE 1
68#define PGMPHYS_DATATYPE uint8_t
69#include "PGMPhysRWTmpl.h"
70
71#define PGMPHYSFN_READNAME PGMR3PhysReadU16
72#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16
73#define PGMPHYS_DATASIZE 2
74#define PGMPHYS_DATATYPE uint16_t
75#include "PGMPhysRWTmpl.h"
76
77#define PGMPHYSFN_READNAME PGMR3PhysReadU32
78#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32
79#define PGMPHYS_DATASIZE 4
80#define PGMPHYS_DATATYPE uint32_t
81#include "PGMPhysRWTmpl.h"
82
83#define PGMPHYSFN_READNAME PGMR3PhysReadU64
84#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64
85#define PGMPHYS_DATASIZE 8
86#define PGMPHYS_DATATYPE uint64_t
87#include "PGMPhysRWTmpl.h"
88
89
90/**
91 * EMT worker for PGMR3PhysReadExternal.
92 */
93static DECLCALLBACK(int) pgmR3PhysReadExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, void *pvBuf, size_t cbRead)
94{
95 PGMPhysRead(pVM, *pGCPhys, pvBuf, cbRead);
96 return VINF_SUCCESS;
97}
98
99
100/**
101 * Write to physical memory, external users.
102 *
103 * @returns VBox status code.
104 * @retval VINF_SUCCESS.
105 *
106 * @param pVM VM Handle.
107 * @param GCPhys Physical address to write to.
108 * @param pvBuf What to write.
109 * @param cbWrite How many bytes to write.
110 *
111 * @thread Any but EMTs.
112 */
113VMMR3DECL(int) PGMR3PhysReadExternal(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead)
114{
115 VM_ASSERT_OTHER_THREAD(pVM);
116
117 AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
118 LogFlow(("PGMR3PhysReadExternal: %RGp %d\n", GCPhys, cbRead));
119
120 pgmLock(pVM);
121
122 /*
123 * Copy loop on ram ranges.
124 */
125 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
126 for (;;)
127 {
128 /* Find range. */
129 while (pRam && GCPhys > pRam->GCPhysLast)
130 pRam = pRam->CTX_SUFF(pNext);
131 /* Inside range or not? */
132 if (pRam && GCPhys >= pRam->GCPhys)
133 {
134 /*
135 * Must work our way thru this page by page.
136 */
137 RTGCPHYS off = GCPhys - pRam->GCPhys;
138 while (off < pRam->cb)
139 {
140 unsigned iPage = off >> PAGE_SHIFT;
141 PPGMPAGE pPage = &pRam->aPages[iPage];
142
143 /*
144 * If the page has an ALL access handler, we'll have to
145 * delegate the job to EMT.
146 */
147 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
148 {
149 pgmUnlock(pVM);
150
151 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysReadExternalEMT, 4,
152 pVM, &GCPhys, pvBuf, cbRead);
153 }
154 Assert(!PGM_PAGE_IS_MMIO(pPage));
155
156 /*
157 * Simple stuff, go ahead.
158 */
159 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
160 if (cb > cbRead)
161 cb = cbRead;
162 const void *pvSrc;
163 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc);
164 if (RT_SUCCESS(rc))
165 memcpy(pvBuf, pvSrc, cb);
166 else
167 {
168 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
169 pRam->GCPhys + off, pPage, rc));
170 memset(pvBuf, 0xff, cb);
171 }
172
173 /* next page */
174 if (cb >= cbRead)
175 {
176 pgmUnlock(pVM);
177 return VINF_SUCCESS;
178 }
179 cbRead -= cb;
180 off += cb;
181 GCPhys += cb;
182 pvBuf = (char *)pvBuf + cb;
183 } /* walk pages in ram range. */
184 }
185 else
186 {
187 LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
188
189 /*
190 * Unassigned address space.
191 */
192 if (!pRam)
193 break;
194 size_t cb = pRam->GCPhys - GCPhys;
195 if (cb >= cbRead)
196 {
197 memset(pvBuf, 0xff, cbRead);
198 break;
199 }
200 memset(pvBuf, 0xff, cb);
201
202 cbRead -= cb;
203 pvBuf = (char *)pvBuf + cb;
204 GCPhys += cb;
205 }
206 } /* Ram range walk */
207
208 pgmUnlock(pVM);
209
210 return VINF_SUCCESS;
211}
212
213
214/**
215 * EMT worker for PGMR3PhysWriteExternal.
216 */
217static DECLCALLBACK(int) pgmR3PhysWriteExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, const void *pvBuf, size_t cbWrite)
218{
219 /** @todo VERR_EM_NO_MEMORY */
220 PGMPhysWrite(pVM, *pGCPhys, pvBuf, cbWrite);
221 return VINF_SUCCESS;
222}
223
224
225/**
226 * Write to physical memory, external users.
227 *
228 * @returns VBox status code.
229 * @retval VINF_SUCCESS.
230 * @retval VERR_EM_NO_MEMORY.
231 *
232 * @param pVM VM Handle.
233 * @param GCPhys Physical address to write to.
234 * @param pvBuf What to write.
235 * @param cbWrite How many bytes to write.
236 * @param pszWho Who is writing. For tracking down who is writing
237 * after we've saved the state.
238 *
239 * @thread Any but EMTs.
240 */
241VMMDECL(int) PGMR3PhysWriteExternal(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, const char *pszWho)
242{
243 VM_ASSERT_OTHER_THREAD(pVM);
244
245 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites,
246 ("Calling PGMR3PhysWriteExternal after pgmR3Save()! GCPhys=%RGp cbWrite=%#x pszWho=%s\n",
247 GCPhys, cbWrite, pszWho));
248 AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
249 LogFlow(("PGMR3PhysWriteExternal: %RGp %d\n", GCPhys, cbWrite));
250
251 pgmLock(pVM);
252
253 /*
254 * Copy loop on ram ranges, stop when we hit something difficult.
255 */
256 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
257 for (;;)
258 {
259 /* Find range. */
260 while (pRam && GCPhys > pRam->GCPhysLast)
261 pRam = pRam->CTX_SUFF(pNext);
262 /* Inside range or not? */
263 if (pRam && GCPhys >= pRam->GCPhys)
264 {
265 /*
266 * Must work our way thru this page by page.
267 */
268 RTGCPTR off = GCPhys - pRam->GCPhys;
269 while (off < pRam->cb)
270 {
271 RTGCPTR iPage = off >> PAGE_SHIFT;
272 PPGMPAGE pPage = &pRam->aPages[iPage];
273
274 /*
275 * Is the page problematic, we have to do the work on the EMT.
276 *
277 * Allocating writable pages and access handlers are
278 * problematic, write monitored pages are simple and can be
279 * dealth with here.
280 */
281 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
282 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
283 {
284 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
285 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
286 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
287 else
288 {
289 pgmUnlock(pVM);
290
291 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysWriteExternalEMT, 4,
292 pVM, &GCPhys, pvBuf, cbWrite);
293 }
294 }
295 Assert(!PGM_PAGE_IS_MMIO(pPage));
296
297 /*
298 * Simple stuff, go ahead.
299 */
300 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
301 if (cb > cbWrite)
302 cb = cbWrite;
303 void *pvDst;
304 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst);
305 if (RT_SUCCESS(rc))
306 memcpy(pvDst, pvBuf, cb);
307 else
308 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
309 pRam->GCPhys + off, pPage, rc));
310
311 /* next page */
312 if (cb >= cbWrite)
313 {
314 pgmUnlock(pVM);
315 return VINF_SUCCESS;
316 }
317
318 cbWrite -= cb;
319 off += cb;
320 GCPhys += cb;
321 pvBuf = (const char *)pvBuf + cb;
322 } /* walk pages in ram range */
323 }
324 else
325 {
326 /*
327 * Unassigned address space, skip it.
328 */
329 if (!pRam)
330 break;
331 size_t cb = pRam->GCPhys - GCPhys;
332 if (cb >= cbWrite)
333 break;
334 cbWrite -= cb;
335 pvBuf = (const char *)pvBuf + cb;
336 GCPhys += cb;
337 }
338 } /* Ram range walk */
339
340 pgmUnlock(pVM);
341 return VINF_SUCCESS;
342}
343
344
345/**
346 * VMR3ReqCall worker for PGMR3PhysGCPhys2CCPtrExternal to make pages writable.
347 *
348 * @returns see PGMR3PhysGCPhys2CCPtrExternal
349 * @param pVM The VM handle.
350 * @param pGCPhys Pointer to the guest physical address.
351 * @param ppv Where to store the mapping address.
352 * @param pLock Where to store the lock.
353 */
354static DECLCALLBACK(int) pgmR3PhysGCPhys2CCPtrDelegated(PVM pVM, PRTGCPHYS pGCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
355{
356 /*
357 * Just hand it to PGMPhysGCPhys2CCPtr and check that it's not a page with
358 * an access handler after it succeeds.
359 */
360 int rc = pgmLock(pVM);
361 AssertRCReturn(rc, rc);
362
363 rc = PGMPhysGCPhys2CCPtr(pVM, *pGCPhys, ppv, pLock);
364 if (RT_SUCCESS(rc))
365 {
366 PPGMPAGEMAPTLBE pTlbe;
367 int rc2 = pgmPhysPageQueryTlbe(&pVM->pgm.s, *pGCPhys, &pTlbe);
368 AssertFatalRC(rc2);
369 PPGMPAGE pPage = pTlbe->pPage;
370 if (PGM_PAGE_IS_MMIO(pPage))
371 {
372 PGMPhysReleasePageMappingLock(pVM, pLock);
373 rc = VERR_PGM_PHYS_PAGE_RESERVED;
374 }
375 else if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
376#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
377 || pgmPoolIsDirtyPage(pVM, *pGCPhys)
378#endif
379 )
380 {
381 /* We *must* flush any corresponding pgm pool page here, otherwise we'll
382 * not be informed about writes and keep bogus gst->shw mappings around.
383 */
384 pgmPoolFlushPageByGCPhys(pVM, *pGCPhys);
385 Assert(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage));
386 /** @todo r=bird: return VERR_PGM_PHYS_PAGE_RESERVED here if it still has
387 * active handlers, see the PGMR3PhysGCPhys2CCPtrExternal docs. */
388 }
389 }
390
391 pgmUnlock(pVM);
392 return rc;
393}
394
395
396/**
397 * Requests the mapping of a guest page into ring-3, external threads.
398 *
399 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
400 * release it.
401 *
402 * This API will assume your intention is to write to the page, and will
403 * therefore replace shared and zero pages. If you do not intend to modify the
404 * page, use the PGMR3PhysGCPhys2CCPtrReadOnlyExternal() API.
405 *
406 * @returns VBox status code.
407 * @retval VINF_SUCCESS on success.
408 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
409 * backing or if the page has any active access handlers. The caller
410 * must fall back on using PGMR3PhysWriteExternal.
411 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
412 *
413 * @param pVM The VM handle.
414 * @param GCPhys The guest physical address of the page that should be mapped.
415 * @param ppv Where to store the address corresponding to GCPhys.
416 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
417 *
418 * @remark Avoid calling this API from within critical sections (other than the
419 * PGM one) because of the deadlock risk when we have to delegating the
420 * task to an EMT.
421 * @thread Any.
422 */
423VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrExternal(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
424{
425 AssertPtr(ppv);
426 AssertPtr(pLock);
427
428 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
429
430 int rc = pgmLock(pVM);
431 AssertRCReturn(rc, rc);
432
433 /*
434 * Query the Physical TLB entry for the page (may fail).
435 */
436 PPGMPAGEMAPTLBE pTlbe;
437 rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
438 if (RT_SUCCESS(rc))
439 {
440 PPGMPAGE pPage = pTlbe->pPage;
441 if (PGM_PAGE_IS_MMIO(pPage))
442 rc = VERR_PGM_PHYS_PAGE_RESERVED;
443 else
444 {
445 /*
446 * If the page is shared, the zero page, or being write monitored
447 * it must be converted to an page that's writable if possible.
448 * We can only deal with write monitored pages here, the rest have
449 * to be on an EMT.
450 */
451 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
452 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
453#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
454 || pgmPoolIsDirtyPage(pVM, GCPhys)
455#endif
456 )
457 {
458 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
459 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
460#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
461 && !pgmPoolIsDirtyPage(pVM, GCPhys)
462#endif
463 )
464 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
465 else
466 {
467 pgmUnlock(pVM);
468
469 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
470 pVM, &GCPhys, ppv, pLock);
471 }
472 }
473
474 /*
475 * Now, just perform the locking and calculate the return address.
476 */
477 PPGMPAGEMAP pMap = pTlbe->pMap;
478 if (pMap)
479 pMap->cRefs++;
480
481 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
482 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
483 {
484 if (cLocks == 0)
485 pVM->pgm.s.cWriteLockedPages++;
486 PGM_PAGE_INC_WRITE_LOCKS(pPage);
487 }
488 else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
489 {
490 PGM_PAGE_INC_WRITE_LOCKS(pPage);
491 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", GCPhys, pPage));
492 if (pMap)
493 pMap->cRefs++; /* Extra ref to prevent it from going away. */
494 }
495
496 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
497 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
498 pLock->pvMap = pMap;
499 }
500 }
501
502 pgmUnlock(pVM);
503 return rc;
504}
505
506
507/**
508 * Requests the mapping of a guest page into ring-3, external threads.
509 *
510 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
511 * release it.
512 *
513 * @returns VBox status code.
514 * @retval VINF_SUCCESS on success.
515 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
516 * backing or if the page as an active ALL access handler. The caller
517 * must fall back on using PGMPhysRead.
518 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
519 *
520 * @param pVM The VM handle.
521 * @param GCPhys The guest physical address of the page that should be mapped.
522 * @param ppv Where to store the address corresponding to GCPhys.
523 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
524 *
525 * @remark Avoid calling this API from within critical sections (other than
526 * the PGM one) because of the deadlock risk.
527 * @thread Any.
528 */
529VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrReadOnlyExternal(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
530{
531 int rc = pgmLock(pVM);
532 AssertRCReturn(rc, rc);
533
534 /*
535 * Query the Physical TLB entry for the page (may fail).
536 */
537 PPGMPAGEMAPTLBE pTlbe;
538 rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
539 if (RT_SUCCESS(rc))
540 {
541 PPGMPAGE pPage = pTlbe->pPage;
542#if 1
543 /* MMIO pages doesn't have any readable backing. */
544 if (PGM_PAGE_IS_MMIO(pPage))
545 rc = VERR_PGM_PHYS_PAGE_RESERVED;
546#else
547 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
548 rc = VERR_PGM_PHYS_PAGE_RESERVED;
549#endif
550 else
551 {
552 /*
553 * Now, just perform the locking and calculate the return address.
554 */
555 PPGMPAGEMAP pMap = pTlbe->pMap;
556 if (pMap)
557 pMap->cRefs++;
558
559 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
560 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
561 {
562 if (cLocks == 0)
563 pVM->pgm.s.cReadLockedPages++;
564 PGM_PAGE_INC_READ_LOCKS(pPage);
565 }
566 else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
567 {
568 PGM_PAGE_INC_READ_LOCKS(pPage);
569 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", GCPhys, pPage));
570 if (pMap)
571 pMap->cRefs++; /* Extra ref to prevent it from going away. */
572 }
573
574 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
575 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
576 pLock->pvMap = pMap;
577 }
578 }
579
580 pgmUnlock(pVM);
581 return rc;
582}
583
584
585/**
586 * Relinks the RAM ranges using the pSelfRC and pSelfR0 pointers.
587 *
588 * Called when anything was relocated.
589 *
590 * @param pVM Pointer to the shared VM structure.
591 */
592void pgmR3PhysRelinkRamRanges(PVM pVM)
593{
594 PPGMRAMRANGE pCur;
595
596#ifdef VBOX_STRICT
597 for (pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
598 {
599 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfR0 == MMHyperCCToR0(pVM, pCur));
600 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfRC == MMHyperCCToRC(pVM, pCur));
601 Assert((pCur->GCPhys & PAGE_OFFSET_MASK) == 0);
602 Assert((pCur->GCPhysLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
603 Assert((pCur->cb & PAGE_OFFSET_MASK) == 0);
604 Assert(pCur->cb == pCur->GCPhysLast - pCur->GCPhys + 1);
605 for (PPGMRAMRANGE pCur2 = pVM->pgm.s.pRamRangesR3; pCur2; pCur2 = pCur2->pNextR3)
606 Assert( pCur2 == pCur
607 || strcmp(pCur2->pszDesc, pCur->pszDesc)); /** @todo fix MMIO ranges!! */
608 }
609#endif
610
611 pCur = pVM->pgm.s.pRamRangesR3;
612 if (pCur)
613 {
614 pVM->pgm.s.pRamRangesR0 = pCur->pSelfR0;
615 pVM->pgm.s.pRamRangesRC = pCur->pSelfRC;
616
617 for (; pCur->pNextR3; pCur = pCur->pNextR3)
618 {
619 pCur->pNextR0 = pCur->pNextR3->pSelfR0;
620 pCur->pNextRC = pCur->pNextR3->pSelfRC;
621 }
622
623 Assert(pCur->pNextR0 == NIL_RTR0PTR);
624 Assert(pCur->pNextRC == NIL_RTRCPTR);
625 }
626 else
627 {
628 Assert(pVM->pgm.s.pRamRangesR0 == NIL_RTR0PTR);
629 Assert(pVM->pgm.s.pRamRangesRC == NIL_RTRCPTR);
630 }
631 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
632}
633
634
635/**
636 * Links a new RAM range into the list.
637 *
638 * @param pVM Pointer to the shared VM structure.
639 * @param pNew Pointer to the new list entry.
640 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
641 */
642static void pgmR3PhysLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, PPGMRAMRANGE pPrev)
643{
644 AssertMsg(pNew->pszDesc, ("%RGp-%RGp\n", pNew->GCPhys, pNew->GCPhysLast));
645 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfR0 == MMHyperCCToR0(pVM, pNew));
646 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfRC == MMHyperCCToRC(pVM, pNew));
647
648 pgmLock(pVM);
649
650 PPGMRAMRANGE pRam = pPrev ? pPrev->pNextR3 : pVM->pgm.s.pRamRangesR3;
651 pNew->pNextR3 = pRam;
652 pNew->pNextR0 = pRam ? pRam->pSelfR0 : NIL_RTR0PTR;
653 pNew->pNextRC = pRam ? pRam->pSelfRC : NIL_RTRCPTR;
654
655 if (pPrev)
656 {
657 pPrev->pNextR3 = pNew;
658 pPrev->pNextR0 = pNew->pSelfR0;
659 pPrev->pNextRC = pNew->pSelfRC;
660 }
661 else
662 {
663 pVM->pgm.s.pRamRangesR3 = pNew;
664 pVM->pgm.s.pRamRangesR0 = pNew->pSelfR0;
665 pVM->pgm.s.pRamRangesRC = pNew->pSelfRC;
666 }
667 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
668 pgmUnlock(pVM);
669}
670
671
672/**
673 * Unlink an existing RAM range from the list.
674 *
675 * @param pVM Pointer to the shared VM structure.
676 * @param pRam Pointer to the new list entry.
677 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
678 */
679static void pgmR3PhysUnlinkRamRange2(PVM pVM, PPGMRAMRANGE pRam, PPGMRAMRANGE pPrev)
680{
681 Assert(pPrev ? pPrev->pNextR3 == pRam : pVM->pgm.s.pRamRangesR3 == pRam);
682 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfR0 == MMHyperCCToR0(pVM, pRam));
683 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfRC == MMHyperCCToRC(pVM, pRam));
684
685 pgmLock(pVM);
686
687 PPGMRAMRANGE pNext = pRam->pNextR3;
688 if (pPrev)
689 {
690 pPrev->pNextR3 = pNext;
691 pPrev->pNextR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
692 pPrev->pNextRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
693 }
694 else
695 {
696 Assert(pVM->pgm.s.pRamRangesR3 == pRam);
697 pVM->pgm.s.pRamRangesR3 = pNext;
698 pVM->pgm.s.pRamRangesR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
699 pVM->pgm.s.pRamRangesRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
700 }
701 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
702 pgmUnlock(pVM);
703}
704
705
706/**
707 * Unlink an existing RAM range from the list.
708 *
709 * @param pVM Pointer to the shared VM structure.
710 * @param pRam Pointer to the new list entry.
711 */
712static void pgmR3PhysUnlinkRamRange(PVM pVM, PPGMRAMRANGE pRam)
713{
714 pgmLock(pVM);
715
716 /* find prev. */
717 PPGMRAMRANGE pPrev = NULL;
718 PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3;
719 while (pCur != pRam)
720 {
721 pPrev = pCur;
722 pCur = pCur->pNextR3;
723 }
724 AssertFatal(pCur);
725
726 pgmR3PhysUnlinkRamRange2(pVM, pRam, pPrev);
727 pgmUnlock(pVM);
728}
729
730
731/**
732 * Frees a range of pages, replacing them with ZERO pages of the specified type.
733 *
734 * @returns VBox status code.
735 * @param pVM The VM handle.
736 * @param pRam The RAM range in which the pages resides.
737 * @param GCPhys The address of the first page.
738 * @param GCPhysLast The address of the last page.
739 * @param uType The page type to replace then with.
740 */
741static int pgmR3PhysFreePageRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, uint8_t uType)
742{
743 Assert(PGMIsLockOwner(pVM));
744 uint32_t cPendingPages = 0;
745 PGMMFREEPAGESREQ pReq;
746 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
747 AssertLogRelRCReturn(rc, rc);
748
749 /* Iterate the pages. */
750 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
751 uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1;
752 while (cPagesLeft-- > 0)
753 {
754 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
755 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
756
757 PGM_PAGE_SET_TYPE(pPageDst, uType);
758
759 GCPhys += PAGE_SIZE;
760 pPageDst++;
761 }
762
763 if (cPendingPages)
764 {
765 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
766 AssertLogRelRCReturn(rc, rc);
767 }
768 GMMR3FreePagesCleanup(pReq);
769
770 return rc;
771}
772
773/**
774 * Rendezvous callback used by PGMR3ChangeMemBalloon that changes the memory balloon size
775 *
776 * This is only called on one of the EMTs while the other ones are waiting for
777 * it to complete this function.
778 *
779 * @returns VINF_SUCCESS (VBox strict status code).
780 * @param pVM The VM handle.
781 * @param pVCpu The VMCPU for the EMT we're being called on. Unused.
782 * @param pvUser User parameter
783 */
784static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysChangeMemBalloonRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
785{
786 uintptr_t *paUser = (uintptr_t *)pvUser;
787 bool fInflate = !!paUser[0];
788 unsigned cPages = paUser[1];
789 RTGCPHYS *paPhysPage = (RTGCPHYS *)paUser[2];
790 uint32_t cPendingPages = 0;
791 PGMMFREEPAGESREQ pReq;
792 int rc;
793
794 pgmLock(pVM);
795
796 if (fInflate)
797 {
798 /* Replace pages with ZERO pages. */
799 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
800 if (RT_FAILURE(rc))
801 {
802 pgmUnlock(pVM);
803 AssertLogRelRC(rc);
804 return rc;
805 }
806
807 /* Iterate the pages. */
808 for (unsigned i = 0; i < cPages; i++)
809 {
810 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, paPhysPage[i]);
811 if ( pPage == NULL
812 || pPage->uTypeY != PGMPAGETYPE_RAM)
813 {
814 Log(("PGMR3PhysFreePageRange: invalid physical page %RGp pPage->u3Type=%d\n", paPhysPage[i], (pPage) ? pPage->uTypeY : 0));
815 break;
816 }
817
818 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, paPhysPage[i]);
819 if (RT_FAILURE(rc))
820 {
821 pgmUnlock(pVM);
822 AssertLogRelRC(rc);
823 return rc;
824 }
825 }
826
827 if (cPendingPages)
828 {
829 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
830 if (RT_FAILURE(rc))
831 {
832 pgmUnlock(pVM);
833 AssertLogRelRC(rc);
834 return rc;
835 }
836 }
837 GMMR3FreePagesCleanup(pReq);
838
839 /* Flush the PGM pool cache as we might have stale references to pages that we just freed. */
840 pgmR3PoolClearAllRendezvous(pVM, pVCpu, NULL);
841 }
842
843 /* Notify GMM about the balloon change. */
844 rc = GMMR3BalloonedPages(pVM, (fInflate) ? GMMBALLOONACTION_INFLATE : GMMBALLOONACTION_DEFLATE, cPages);
845 if (RT_SUCCESS(rc))
846 {
847 if (!fInflate)
848 {
849 Assert(pVM->pgm.s.cBalloonedPages >= cPages);
850 pVM->pgm.s.cBalloonedPages -= cPages;
851 }
852 else
853 pVM->pgm.s.cBalloonedPages += cPages;
854 }
855
856 pgmUnlock(pVM);
857 AssertLogRelRC(rc);
858 return rc;
859}
860
861/**
862 * Frees a range of ram pages, replacing them with ZERO pages; helper for PGMR3PhysFreeRamPages
863 *
864 * @returns VBox status code.
865 * @param pVM The VM handle.
866 * @param fInflate Inflate or deflate memory balloon
867 * @param cPages Number of pages to free
868 * @param paPhysPage Array of guest physical addresses
869 */
870static DECLCALLBACK(void) pgmR3PhysChangeMemBalloonHelper(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
871{
872 uintptr_t paUser[3];
873
874 paUser[0] = fInflate;
875 paUser[1] = cPages;
876 paUser[2] = (uintptr_t)paPhysPage;
877 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
878 AssertRC(rc);
879
880 /* Made a copy in PGMR3PhysFreeRamPages; free it here. */
881 RTMemFree(paPhysPage);
882}
883
884/**
885 * Inflate or deflate a memory balloon
886 *
887 * @returns VBox status code.
888 * @param pVM The VM handle.
889 * @param fInflate Inflate or deflate memory balloon
890 * @param cPages Number of pages to free
891 * @param paPhysPage Array of guest physical addresses
892 */
893VMMR3DECL(int) PGMR3PhysChangeMemBalloon(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
894{
895 int rc;
896
897 /* We own the IOM lock here and could cause a deadlock by waiting for another VCPU that is blocking on the IOM lock.
898 * In the SMP case we post a request packet to postpone the job.
899 */
900 if (pVM->cCpus > 1)
901 {
902 unsigned cbPhysPage = cPages * sizeof(paPhysPage[0]);
903 RTGCPHYS *paPhysPageCopy = (RTGCPHYS *)RTMemAlloc(cbPhysPage);
904 AssertReturn(paPhysPageCopy, VERR_NO_MEMORY);
905
906 memcpy(paPhysPageCopy, paPhysPage, cbPhysPage);
907
908 rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysChangeMemBalloonHelper, 4, pVM, fInflate, cPages, paPhysPageCopy);
909 AssertRC(rc);
910 }
911 else
912 {
913 uintptr_t paUser[3];
914
915 paUser[0] = fInflate;
916 paUser[1] = cPages;
917 paUser[2] = (uintptr_t)paPhysPage;
918 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
919 AssertRC(rc);
920 }
921 return rc;
922}
923
924
925/**
926 * PGMR3PhysRegisterRam worker that initializes and links a RAM range.
927 *
928 * @param pVM The VM handle.
929 * @param pNew The new RAM range.
930 * @param GCPhys The address of the RAM range.
931 * @param GCPhysLast The last address of the RAM range.
932 * @param RCPtrNew The RC address if the range is floating. NIL_RTRCPTR
933 * if in HMA.
934 * @param R0PtrNew Ditto for R0.
935 * @param pszDesc The description.
936 * @param pPrev The previous RAM range (for linking).
937 */
938static void pgmR3PhysInitAndLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
939 RTRCPTR RCPtrNew, RTR0PTR R0PtrNew, const char *pszDesc, PPGMRAMRANGE pPrev)
940{
941 /*
942 * Initialize the range.
943 */
944 pNew->pSelfR0 = R0PtrNew != NIL_RTR0PTR ? R0PtrNew : MMHyperCCToR0(pVM, pNew);
945 pNew->pSelfRC = RCPtrNew != NIL_RTRCPTR ? RCPtrNew : MMHyperCCToRC(pVM, pNew);
946 pNew->GCPhys = GCPhys;
947 pNew->GCPhysLast = GCPhysLast;
948 pNew->cb = GCPhysLast - GCPhys + 1;
949 pNew->pszDesc = pszDesc;
950 pNew->fFlags = RCPtrNew != NIL_RTRCPTR ? PGM_RAM_RANGE_FLAGS_FLOATING : 0;
951 pNew->pvR3 = NULL;
952 pNew->paLSPages = NULL;
953
954 uint32_t const cPages = pNew->cb >> PAGE_SHIFT;
955 RTGCPHYS iPage = cPages;
956 while (iPage-- > 0)
957 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM);
958
959 /* Update the page count stats. */
960 pVM->pgm.s.cZeroPages += cPages;
961 pVM->pgm.s.cAllPages += cPages;
962
963 /*
964 * Link it.
965 */
966 pgmR3PhysLinkRamRange(pVM, pNew, pPrev);
967}
968
969
970/**
971 * Relocate a floating RAM range.
972 *
973 * @copydoc FNPGMRELOCATE.
974 */
975static DECLCALLBACK(bool) pgmR3PhysRamRangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew, PGMRELOCATECALL enmMode, void *pvUser)
976{
977 PPGMRAMRANGE pRam = (PPGMRAMRANGE)pvUser;
978 Assert(pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING);
979 Assert(pRam->pSelfRC == GCPtrOld + PAGE_SIZE);
980
981 switch (enmMode)
982 {
983 case PGMRELOCATECALL_SUGGEST:
984 return true;
985 case PGMRELOCATECALL_RELOCATE:
986 {
987 /* Update myself and then relink all the ranges. */
988 pgmLock(pVM);
989 pRam->pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE);
990 pgmR3PhysRelinkRamRanges(pVM);
991 pgmUnlock(pVM);
992 return true;
993 }
994
995 default:
996 AssertFailedReturn(false);
997 }
998}
999
1000
1001/**
1002 * PGMR3PhysRegisterRam worker that registers a high chunk.
1003 *
1004 * @returns VBox status code.
1005 * @param pVM The VM handle.
1006 * @param GCPhys The address of the RAM.
1007 * @param cRamPages The number of RAM pages to register.
1008 * @param cbChunk The size of the PGMRAMRANGE guest mapping.
1009 * @param iChunk The chunk number.
1010 * @param pszDesc The RAM range description.
1011 * @param ppPrev Previous RAM range pointer. In/Out.
1012 */
1013static int pgmR3PhysRegisterHighRamChunk(PVM pVM, RTGCPHYS GCPhys, uint32_t cRamPages,
1014 uint32_t cbChunk, uint32_t iChunk, const char *pszDesc,
1015 PPGMRAMRANGE *ppPrev)
1016{
1017 const char *pszDescChunk = iChunk == 0
1018 ? pszDesc
1019 : MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s (#%u)", pszDesc, iChunk + 1);
1020 AssertReturn(pszDescChunk, VERR_NO_MEMORY);
1021
1022 /*
1023 * Allocate memory for the new chunk.
1024 */
1025 size_t const cChunkPages = RT_ALIGN_Z(RT_UOFFSETOF(PGMRAMRANGE, aPages[cRamPages]), PAGE_SIZE) >> PAGE_SHIFT;
1026 PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
1027 AssertReturn(paChunkPages, VERR_NO_TMP_MEMORY);
1028 RTR0PTR R0PtrChunk = NIL_RTR0PTR;
1029 void *pvChunk = NULL;
1030 int rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk,
1031#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1032 VMMIsHwVirtExtForced(pVM) ? &R0PtrChunk : NULL,
1033#else
1034 NULL,
1035#endif
1036 paChunkPages);
1037 if (RT_SUCCESS(rc))
1038 {
1039#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1040 if (!VMMIsHwVirtExtForced(pVM))
1041 R0PtrChunk = NIL_RTR0PTR;
1042#else
1043 R0PtrChunk = (uintptr_t)pvChunk;
1044#endif
1045 memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
1046
1047 PPGMRAMRANGE pNew = (PPGMRAMRANGE)pvChunk;
1048
1049 /*
1050 * Create a mapping and map the pages into it.
1051 * We push these in below the HMA.
1052 */
1053 RTGCPTR GCPtrChunkMap = pVM->pgm.s.GCPtrPrevRamRangeMapping - cbChunk;
1054 rc = PGMR3MapPT(pVM, GCPtrChunkMap, cbChunk, 0 /*fFlags*/, pgmR3PhysRamRangeRelocate, pNew, pszDescChunk);
1055 if (RT_SUCCESS(rc))
1056 {
1057 pVM->pgm.s.GCPtrPrevRamRangeMapping = GCPtrChunkMap;
1058
1059 RTGCPTR const GCPtrChunk = GCPtrChunkMap + PAGE_SIZE;
1060 RTGCPTR GCPtrPage = GCPtrChunk;
1061 for (uint32_t iPage = 0; iPage < cChunkPages && RT_SUCCESS(rc); iPage++, GCPtrPage += PAGE_SIZE)
1062 rc = PGMMap(pVM, GCPtrPage, paChunkPages[iPage].Phys, PAGE_SIZE, 0);
1063 if (RT_SUCCESS(rc))
1064 {
1065 /*
1066 * Ok, init and link the range.
1067 */
1068 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhys + ((RTGCPHYS)cRamPages << PAGE_SHIFT) - 1,
1069 (RTRCPTR)GCPtrChunk, R0PtrChunk, pszDescChunk, *ppPrev);
1070 *ppPrev = pNew;
1071 }
1072 }
1073
1074 if (RT_FAILURE(rc))
1075 SUPR3PageFreeEx(pvChunk, cChunkPages);
1076 }
1077
1078 RTMemTmpFree(paChunkPages);
1079 return rc;
1080}
1081
1082
1083/**
1084 * Sets up a range RAM.
1085 *
1086 * This will check for conflicting registrations, make a resource
1087 * reservation for the memory (with GMM), and setup the per-page
1088 * tracking structures (PGMPAGE).
1089 *
1090 * @returns VBox stutus code.
1091 * @param pVM Pointer to the shared VM structure.
1092 * @param GCPhys The physical address of the RAM.
1093 * @param cb The size of the RAM.
1094 * @param pszDesc The description - not copied, so, don't free or change it.
1095 */
1096VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc)
1097{
1098 /*
1099 * Validate input.
1100 */
1101 Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc));
1102 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
1103 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
1104 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
1105 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1106 AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER);
1107 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1108 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1109
1110 pgmLock(pVM);
1111
1112 /*
1113 * Find range location and check for conflicts.
1114 * (We don't lock here because the locking by EMT is only required on update.)
1115 */
1116 PPGMRAMRANGE pPrev = NULL;
1117 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1118 while (pRam && GCPhysLast >= pRam->GCPhys)
1119 {
1120 if ( GCPhysLast >= pRam->GCPhys
1121 && GCPhys <= pRam->GCPhysLast)
1122 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
1123 GCPhys, GCPhysLast, pszDesc,
1124 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1125 VERR_PGM_RAM_CONFLICT);
1126
1127 /* next */
1128 pPrev = pRam;
1129 pRam = pRam->pNextR3;
1130 }
1131
1132 /*
1133 * Register it with GMM (the API bitches).
1134 */
1135 const RTGCPHYS cPages = cb >> PAGE_SHIFT;
1136 int rc = MMR3IncreaseBaseReservation(pVM, cPages);
1137 if (RT_FAILURE(rc))
1138 {
1139 pgmUnlock(pVM);
1140 return rc;
1141 }
1142
1143 if ( GCPhys >= _4G
1144 && cPages > 256)
1145 {
1146 /*
1147 * The PGMRAMRANGE structures for the high memory can get very big.
1148 * In order to avoid SUPR3PageAllocEx allocation failures due to the
1149 * allocation size limit there and also to avoid being unable to find
1150 * guest mapping space for them, we split this memory up into 4MB in
1151 * (potential) raw-mode configs and 16MB chunks in forced AMD-V/VT-x
1152 * mode.
1153 *
1154 * The first and last page of each mapping are guard pages and marked
1155 * not-present. So, we've got 4186112 and 16769024 bytes available for
1156 * the PGMRAMRANGE structure.
1157 *
1158 * Note! The sizes used here will influence the saved state.
1159 */
1160 uint32_t cbChunk;
1161 uint32_t cPagesPerChunk;
1162 if (VMMIsHwVirtExtForced(pVM))
1163 {
1164 cbChunk = 16U*_1M;
1165 cPagesPerChunk = 1048048; /* max ~1048059 */
1166 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2);
1167 }
1168 else
1169 {
1170 cbChunk = 4U*_1M;
1171 cPagesPerChunk = 261616; /* max ~261627 */
1172 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 261616 < 4U*_1M - PAGE_SIZE * 2);
1173 }
1174 AssertRelease(RT_UOFFSETOF(PGMRAMRANGE, aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
1175
1176 RTGCPHYS cPagesLeft = cPages;
1177 RTGCPHYS GCPhysChunk = GCPhys;
1178 uint32_t iChunk = 0;
1179 while (cPagesLeft > 0)
1180 {
1181 uint32_t cPagesInChunk = cPagesLeft;
1182 if (cPagesInChunk > cPagesPerChunk)
1183 cPagesInChunk = cPagesPerChunk;
1184
1185 rc = pgmR3PhysRegisterHighRamChunk(pVM, GCPhysChunk, cPagesInChunk, cbChunk, iChunk, pszDesc, &pPrev);
1186 AssertRCReturn(rc, rc);
1187
1188 /* advance */
1189 GCPhysChunk += (RTGCPHYS)cPagesInChunk << PAGE_SHIFT;
1190 cPagesLeft -= cPagesInChunk;
1191 iChunk++;
1192 }
1193 }
1194 else
1195 {
1196 /*
1197 * Allocate, initialize and link the new RAM range.
1198 */
1199 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
1200 PPGMRAMRANGE pNew;
1201 rc = MMR3HyperAllocOnceNoRel(pVM, cbRamRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1202 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
1203
1204 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhysLast, NIL_RTRCPTR, NIL_RTR0PTR, pszDesc, pPrev);
1205 }
1206 PGMPhysInvalidatePageMapTLB(pVM);
1207 pgmUnlock(pVM);
1208
1209 /*
1210 * Notify REM.
1211 */
1212 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_RAM);
1213
1214 return VINF_SUCCESS;
1215}
1216
1217
1218/**
1219 * Worker called by PGMR3InitFinalize if we're configured to pre-allocate RAM.
1220 *
1221 * We do this late in the init process so that all the ROM and MMIO ranges have
1222 * been registered already and we don't go wasting memory on them.
1223 *
1224 * @returns VBox status code.
1225 *
1226 * @param pVM Pointer to the shared VM structure.
1227 */
1228int pgmR3PhysRamPreAllocate(PVM pVM)
1229{
1230 Assert(pVM->pgm.s.fRamPreAlloc);
1231 Log(("pgmR3PhysRamPreAllocate: enter\n"));
1232
1233 /*
1234 * Walk the RAM ranges and allocate all RAM pages, halt at
1235 * the first allocation error.
1236 */
1237 uint64_t cPages = 0;
1238 uint64_t NanoTS = RTTimeNanoTS();
1239 pgmLock(pVM);
1240 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
1241 {
1242 PPGMPAGE pPage = &pRam->aPages[0];
1243 RTGCPHYS GCPhys = pRam->GCPhys;
1244 uint32_t cLeft = pRam->cb >> PAGE_SHIFT;
1245 while (cLeft-- > 0)
1246 {
1247 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
1248 {
1249 switch (PGM_PAGE_GET_STATE(pPage))
1250 {
1251 case PGM_PAGE_STATE_ZERO:
1252 {
1253 int rc = pgmPhysAllocPage(pVM, pPage, GCPhys);
1254 if (RT_FAILURE(rc))
1255 {
1256 LogRel(("PGM: RAM Pre-allocation failed at %RGp (in %s) with rc=%Rrc\n", GCPhys, pRam->pszDesc, rc));
1257 pgmUnlock(pVM);
1258 return rc;
1259 }
1260 cPages++;
1261 break;
1262 }
1263
1264 case PGM_PAGE_STATE_ALLOCATED:
1265 case PGM_PAGE_STATE_WRITE_MONITORED:
1266 case PGM_PAGE_STATE_SHARED:
1267 /* nothing to do here. */
1268 break;
1269 }
1270 }
1271
1272 /* next */
1273 pPage++;
1274 GCPhys += PAGE_SIZE;
1275 }
1276 }
1277 pgmUnlock(pVM);
1278 NanoTS = RTTimeNanoTS() - NanoTS;
1279
1280 LogRel(("PGM: Pre-allocated %llu pages in %llu ms\n", cPages, NanoTS / 1000000));
1281 Log(("pgmR3PhysRamPreAllocate: returns VINF_SUCCESS\n"));
1282 return VINF_SUCCESS;
1283}
1284
1285
1286/**
1287 * Resets (zeros) the RAM.
1288 *
1289 * ASSUMES that the caller owns the PGM lock.
1290 *
1291 * @returns VBox status code.
1292 * @param pVM Pointer to the shared VM structure.
1293 */
1294int pgmR3PhysRamReset(PVM pVM)
1295{
1296 Assert(PGMIsLockOwner(pVM));
1297
1298 /* Reset the memory balloon. */
1299 int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
1300 AssertRC(rc);
1301
1302 /*
1303 * We batch up pages that should be freed instead of calling GMM for
1304 * each and every one of them.
1305 */
1306 uint32_t cPendingPages = 0;
1307 PGMMFREEPAGESREQ pReq;
1308 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1309 AssertLogRelRCReturn(rc, rc);
1310
1311 /*
1312 * Walk the ram ranges.
1313 */
1314 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
1315 {
1316 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
1317 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
1318
1319 if (!pVM->pgm.s.fRamPreAlloc)
1320 {
1321 /* Replace all RAM pages by ZERO pages. */
1322 while (iPage-- > 0)
1323 {
1324 PPGMPAGE pPage = &pRam->aPages[iPage];
1325 switch (PGM_PAGE_GET_TYPE(pPage))
1326 {
1327 case PGMPAGETYPE_RAM:
1328 /* Do not replace pages part of a 2 MB continuous range with zero pages, but zero them instead. */
1329 if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE)
1330 {
1331 void *pvPage;
1332 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
1333 AssertLogRelRCReturn(rc, rc);
1334 ASMMemZeroPage(pvPage);
1335 }
1336 else
1337 if (!PGM_PAGE_IS_ZERO(pPage))
1338 {
1339 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1340 AssertLogRelRCReturn(rc, rc);
1341 }
1342 break;
1343
1344 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1345 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1346 break;
1347
1348 case PGMPAGETYPE_MMIO2:
1349 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
1350 case PGMPAGETYPE_ROM:
1351 case PGMPAGETYPE_MMIO:
1352 break;
1353 default:
1354 AssertFailed();
1355 }
1356 } /* for each page */
1357 }
1358 else
1359 {
1360 /* Zero the memory. */
1361 while (iPage-- > 0)
1362 {
1363 PPGMPAGE pPage = &pRam->aPages[iPage];
1364 switch (PGM_PAGE_GET_TYPE(pPage))
1365 {
1366 case PGMPAGETYPE_RAM:
1367 switch (PGM_PAGE_GET_STATE(pPage))
1368 {
1369 case PGM_PAGE_STATE_ZERO:
1370 break;
1371 case PGM_PAGE_STATE_SHARED:
1372 case PGM_PAGE_STATE_WRITE_MONITORED:
1373 rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1374 AssertLogRelRCReturn(rc, rc);
1375 case PGM_PAGE_STATE_ALLOCATED:
1376 {
1377 void *pvPage;
1378 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
1379 AssertLogRelRCReturn(rc, rc);
1380 ASMMemZeroPage(pvPage);
1381 break;
1382 }
1383 }
1384 break;
1385
1386 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1387 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1388 break;
1389
1390 case PGMPAGETYPE_MMIO2:
1391 case PGMPAGETYPE_ROM_SHADOW:
1392 case PGMPAGETYPE_ROM:
1393 case PGMPAGETYPE_MMIO:
1394 break;
1395 default:
1396 AssertFailed();
1397
1398 }
1399 } /* for each page */
1400 }
1401
1402 }
1403
1404 /*
1405 * Finish off any pages pending freeing.
1406 */
1407 if (cPendingPages)
1408 {
1409 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
1410 AssertLogRelRCReturn(rc, rc);
1411 }
1412 GMMR3FreePagesCleanup(pReq);
1413
1414 return VINF_SUCCESS;
1415}
1416
1417
1418/**
1419 * This is the interface IOM is using to register an MMIO region.
1420 *
1421 * It will check for conflicts and ensure that a RAM range structure
1422 * is present before calling the PGMR3HandlerPhysicalRegister API to
1423 * register the callbacks.
1424 *
1425 * @returns VBox status code.
1426 *
1427 * @param pVM Pointer to the shared VM structure.
1428 * @param GCPhys The start of the MMIO region.
1429 * @param cb The size of the MMIO region.
1430 * @param pfnHandlerR3 The address of the ring-3 handler. (IOMR3MMIOHandler)
1431 * @param pvUserR3 The user argument for R3.
1432 * @param pfnHandlerR0 The address of the ring-0 handler. (IOMMMIOHandler)
1433 * @param pvUserR0 The user argument for R0.
1434 * @param pfnHandlerRC The address of the RC handler. (IOMMMIOHandler)
1435 * @param pvUserRC The user argument for RC.
1436 * @param pszDesc The description of the MMIO region.
1437 */
1438VMMR3DECL(int) PGMR3PhysMMIORegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb,
1439 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3, RTR3PTR pvUserR3,
1440 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0, RTR0PTR pvUserR0,
1441 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnHandlerRC, RTRCPTR pvUserRC,
1442 R3PTRTYPE(const char *) pszDesc)
1443{
1444 /*
1445 * Assert on some assumption.
1446 */
1447 VM_ASSERT_EMT(pVM);
1448 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1449 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1450 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1451 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
1452
1453 /*
1454 * Make sure there's a RAM range structure for the region.
1455 */
1456 int rc;
1457 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1458 bool fRamExists = false;
1459 PPGMRAMRANGE pRamPrev = NULL;
1460 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1461 while (pRam && GCPhysLast >= pRam->GCPhys)
1462 {
1463 if ( GCPhysLast >= pRam->GCPhys
1464 && GCPhys <= pRam->GCPhysLast)
1465 {
1466 /* Simplification: all within the same range. */
1467 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
1468 && GCPhysLast <= pRam->GCPhysLast,
1469 ("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n",
1470 GCPhys, GCPhysLast, pszDesc,
1471 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1472 VERR_PGM_RAM_CONFLICT);
1473
1474 /* Check that it's all RAM or MMIO pages. */
1475 PCPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1476 uint32_t cLeft = cb >> PAGE_SHIFT;
1477 while (cLeft-- > 0)
1478 {
1479 AssertLogRelMsgReturn( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1480 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO,
1481 ("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n",
1482 GCPhys, GCPhysLast, pszDesc, PGM_PAGE_GET_TYPE(pPage), pRam->pszDesc),
1483 VERR_PGM_RAM_CONFLICT);
1484 pPage++;
1485 }
1486
1487 /* Looks good. */
1488 fRamExists = true;
1489 break;
1490 }
1491
1492 /* next */
1493 pRamPrev = pRam;
1494 pRam = pRam->pNextR3;
1495 }
1496 PPGMRAMRANGE pNew;
1497 if (fRamExists)
1498 {
1499 pNew = NULL;
1500
1501 /*
1502 * Make all the pages in the range MMIO/ZERO pages, freeing any
1503 * RAM pages currently mapped here. This might not be 100% correct
1504 * for PCI memory, but we're doing the same thing for MMIO2 pages.
1505 */
1506 rc = pgmLock(pVM);
1507 if (RT_SUCCESS(rc))
1508 {
1509 rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO);
1510 pgmUnlock(pVM);
1511 }
1512 AssertRCReturn(rc, rc);
1513 }
1514 else
1515 {
1516 pgmLock(pVM);
1517
1518 /*
1519 * No RAM range, insert an ad hoc one.
1520 *
1521 * Note that we don't have to tell REM about this range because
1522 * PGMHandlerPhysicalRegisterEx will do that for us.
1523 */
1524 Log(("PGMR3PhysMMIORegister: Adding ad hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc));
1525
1526 const uint32_t cPages = cb >> PAGE_SHIFT;
1527 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
1528 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), 16, MM_TAG_PGM_PHYS, (void **)&pNew);
1529 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
1530
1531 /* Initialize the range. */
1532 pNew->pSelfR0 = MMHyperCCToR0(pVM, pNew);
1533 pNew->pSelfRC = MMHyperCCToRC(pVM, pNew);
1534 pNew->GCPhys = GCPhys;
1535 pNew->GCPhysLast = GCPhysLast;
1536 pNew->cb = cb;
1537 pNew->pszDesc = pszDesc;
1538 pNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO;
1539 pNew->pvR3 = NULL;
1540 pNew->paLSPages = NULL;
1541
1542 uint32_t iPage = cPages;
1543 while (iPage-- > 0)
1544 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO);
1545 Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO);
1546
1547 /* update the page count stats. */
1548 pVM->pgm.s.cPureMmioPages += cPages;
1549 pVM->pgm.s.cAllPages += cPages;
1550
1551 /* link it */
1552 pgmR3PhysLinkRamRange(pVM, pNew, pRamPrev);
1553
1554 pgmUnlock(pVM);
1555 }
1556
1557 /*
1558 * Register the access handler.
1559 */
1560 rc = PGMHandlerPhysicalRegisterEx(pVM, PGMPHYSHANDLERTYPE_MMIO, GCPhys, GCPhysLast,
1561 pfnHandlerR3, pvUserR3,
1562 pfnHandlerR0, pvUserR0,
1563 pfnHandlerRC, pvUserRC, pszDesc);
1564 if ( RT_FAILURE(rc)
1565 && !fRamExists)
1566 {
1567 pVM->pgm.s.cPureMmioPages -= cb >> PAGE_SHIFT;
1568 pVM->pgm.s.cAllPages -= cb >> PAGE_SHIFT;
1569
1570 /* remove the ad hoc range. */
1571 pgmR3PhysUnlinkRamRange2(pVM, pNew, pRamPrev);
1572 pNew->cb = pNew->GCPhys = pNew->GCPhysLast = NIL_RTGCPHYS;
1573 MMHyperFree(pVM, pRam);
1574 }
1575 PGMPhysInvalidatePageMapTLB(pVM);
1576
1577 return rc;
1578}
1579
1580
1581/**
1582 * This is the interface IOM is using to register an MMIO region.
1583 *
1584 * It will take care of calling PGMHandlerPhysicalDeregister and clean up
1585 * any ad hoc PGMRAMRANGE left behind.
1586 *
1587 * @returns VBox status code.
1588 * @param pVM Pointer to the shared VM structure.
1589 * @param GCPhys The start of the MMIO region.
1590 * @param cb The size of the MMIO region.
1591 */
1592VMMR3DECL(int) PGMR3PhysMMIODeregister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
1593{
1594 VM_ASSERT_EMT(pVM);
1595
1596 /*
1597 * First deregister the handler, then check if we should remove the ram range.
1598 */
1599 int rc = PGMHandlerPhysicalDeregister(pVM, GCPhys);
1600 if (RT_SUCCESS(rc))
1601 {
1602 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1603 PPGMRAMRANGE pRamPrev = NULL;
1604 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1605 while (pRam && GCPhysLast >= pRam->GCPhys)
1606 {
1607 /** @todo We're being a bit too careful here. rewrite. */
1608 if ( GCPhysLast == pRam->GCPhysLast
1609 && GCPhys == pRam->GCPhys)
1610 {
1611 Assert(pRam->cb == cb);
1612
1613 /*
1614 * See if all the pages are dead MMIO pages.
1615 */
1616 uint32_t const cPages = cb >> PAGE_SHIFT;
1617 bool fAllMMIO = true;
1618 uint32_t iPage = 0;
1619 uint32_t cLeft = cPages;
1620 while (cLeft-- > 0)
1621 {
1622 PPGMPAGE pPage = &pRam->aPages[iPage];
1623 if ( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO
1624 /*|| not-out-of-action later */)
1625 {
1626 fAllMMIO = false;
1627 Assert(PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO2_ALIAS_MMIO);
1628 AssertMsgFailed(("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1629 break;
1630 }
1631 Assert(PGM_PAGE_IS_ZERO(pPage));
1632 pPage++;
1633 }
1634 if (fAllMMIO)
1635 {
1636 /*
1637 * Ad-hoc range, unlink and free it.
1638 */
1639 Log(("PGMR3PhysMMIODeregister: Freeing ad hoc MMIO range for %RGp-%RGp %s\n",
1640 GCPhys, GCPhysLast, pRam->pszDesc));
1641
1642 pVM->pgm.s.cAllPages -= cPages;
1643 pVM->pgm.s.cPureMmioPages -= cPages;
1644
1645 pgmR3PhysUnlinkRamRange2(pVM, pRam, pRamPrev);
1646 pRam->cb = pRam->GCPhys = pRam->GCPhysLast = NIL_RTGCPHYS;
1647 MMHyperFree(pVM, pRam);
1648 break;
1649 }
1650 }
1651
1652 /*
1653 * Range match? It will all be within one range (see PGMAllHandler.cpp).
1654 */
1655 if ( GCPhysLast >= pRam->GCPhys
1656 && GCPhys <= pRam->GCPhysLast)
1657 {
1658 Assert(GCPhys >= pRam->GCPhys);
1659 Assert(GCPhysLast <= pRam->GCPhysLast);
1660
1661 /*
1662 * Turn the pages back into RAM pages.
1663 */
1664 uint32_t iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
1665 uint32_t cLeft = cb >> PAGE_SHIFT;
1666 while (cLeft--)
1667 {
1668 PPGMPAGE pPage = &pRam->aPages[iPage];
1669 AssertMsg(PGM_PAGE_IS_MMIO(pPage), ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1670 AssertMsg(PGM_PAGE_IS_ZERO(pPage), ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1671 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO)
1672 PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_RAM);
1673 }
1674 break;
1675 }
1676
1677 /* next */
1678 pRamPrev = pRam;
1679 pRam = pRam->pNextR3;
1680 }
1681 }
1682
1683 PGMPhysInvalidatePageMapTLB(pVM);
1684 return rc;
1685}
1686
1687
1688/**
1689 * Locate a MMIO2 range.
1690 *
1691 * @returns Pointer to the MMIO2 range.
1692 * @param pVM Pointer to the shared VM structure.
1693 * @param pDevIns The device instance owning the region.
1694 * @param iRegion The region.
1695 */
1696DECLINLINE(PPGMMMIO2RANGE) pgmR3PhysMMIO2Find(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
1697{
1698 /*
1699 * Search the list.
1700 */
1701 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
1702 if ( pCur->pDevInsR3 == pDevIns
1703 && pCur->iRegion == iRegion)
1704 return pCur;
1705 return NULL;
1706}
1707
1708
1709/**
1710 * Allocate and register an MMIO2 region.
1711 *
1712 * As mentioned elsewhere, MMIO2 is just RAM spelled differently. It's
1713 * RAM associated with a device. It is also non-shared memory with a
1714 * permanent ring-3 mapping and page backing (presently).
1715 *
1716 * A MMIO2 range may overlap with base memory if a lot of RAM
1717 * is configured for the VM, in which case we'll drop the base
1718 * memory pages. Presently we will make no attempt to preserve
1719 * anything that happens to be present in the base memory that
1720 * is replaced, this is of course incorrectly but it's too much
1721 * effort.
1722 *
1723 * @returns VBox status code.
1724 * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the memory.
1725 * @retval VERR_ALREADY_EXISTS if the region already exists.
1726 *
1727 * @param pVM Pointer to the shared VM structure.
1728 * @param pDevIns The device instance owning the region.
1729 * @param iRegion The region number. If the MMIO2 memory is a PCI I/O region
1730 * this number has to be the number of that region. Otherwise
1731 * it can be any number safe UINT8_MAX.
1732 * @param cb The size of the region. Must be page aligned.
1733 * @param fFlags Reserved for future use, must be zero.
1734 * @param ppv Where to store the pointer to the ring-3 mapping of the memory.
1735 * @param pszDesc The description.
1736 */
1737VMMR3DECL(int) PGMR3PhysMMIO2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS cb, uint32_t fFlags, void **ppv, const char *pszDesc)
1738{
1739 /*
1740 * Validate input.
1741 */
1742 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1743 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1744 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
1745 AssertPtrReturn(ppv, VERR_INVALID_POINTER);
1746 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1747 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
1748 AssertReturn(pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion) == NULL, VERR_ALREADY_EXISTS);
1749 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1750 AssertReturn(cb, VERR_INVALID_PARAMETER);
1751 AssertReturn(!fFlags, VERR_INVALID_PARAMETER);
1752
1753 const uint32_t cPages = cb >> PAGE_SHIFT;
1754 AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cb, VERR_INVALID_PARAMETER);
1755 AssertLogRelReturn(cPages <= INT32_MAX / 2, VERR_NO_MEMORY);
1756
1757 /*
1758 * For the 2nd+ instance, mangle the description string so it's unique.
1759 */
1760 if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */
1761 {
1762 pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance);
1763 if (!pszDesc)
1764 return VERR_NO_MEMORY;
1765 }
1766
1767 /*
1768 * Try reserve and allocate the backing memory first as this is what is
1769 * most likely to fail.
1770 */
1771 int rc = MMR3AdjustFixedReservation(pVM, cPages, pszDesc);
1772 if (RT_SUCCESS(rc))
1773 {
1774 void *pvPages;
1775 PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cPages * sizeof(SUPPAGE));
1776 if (RT_SUCCESS(rc))
1777 rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, NULL /*pR0Ptr*/, paPages);
1778 if (RT_SUCCESS(rc))
1779 {
1780 memset(pvPages, 0, cPages * PAGE_SIZE);
1781
1782 /*
1783 * Create the MMIO2 range record for it.
1784 */
1785 const size_t cbRange = RT_OFFSETOF(PGMMMIO2RANGE, RamRange.aPages[cPages]);
1786 PPGMMMIO2RANGE pNew;
1787 rc = MMR3HyperAllocOnceNoRel(pVM, cbRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1788 AssertLogRelMsgRC(rc, ("cbRamRange=%zu\n", cbRange));
1789 if (RT_SUCCESS(rc))
1790 {
1791 pNew->pDevInsR3 = pDevIns;
1792 pNew->pvR3 = pvPages;
1793 //pNew->pNext = NULL;
1794 //pNew->fMapped = false;
1795 //pNew->fOverlapping = false;
1796 pNew->iRegion = iRegion;
1797 pNew->idSavedState = UINT8_MAX;
1798 pNew->RamRange.pSelfR0 = MMHyperCCToR0(pVM, &pNew->RamRange);
1799 pNew->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pNew->RamRange);
1800 pNew->RamRange.GCPhys = NIL_RTGCPHYS;
1801 pNew->RamRange.GCPhysLast = NIL_RTGCPHYS;
1802 pNew->RamRange.pszDesc = pszDesc;
1803 pNew->RamRange.cb = cb;
1804 pNew->RamRange.fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO2;
1805 pNew->RamRange.pvR3 = pvPages;
1806 //pNew->RamRange.paLSPages = NULL;
1807
1808 uint32_t iPage = cPages;
1809 while (iPage-- > 0)
1810 {
1811 PGM_PAGE_INIT(&pNew->RamRange.aPages[iPage],
1812 paPages[iPage].Phys, NIL_GMM_PAGEID,
1813 PGMPAGETYPE_MMIO2, PGM_PAGE_STATE_ALLOCATED);
1814 }
1815
1816 /* update page count stats */
1817 pVM->pgm.s.cAllPages += cPages;
1818 pVM->pgm.s.cPrivatePages += cPages;
1819
1820 /*
1821 * Link it into the list.
1822 * Since there is no particular order, just push it.
1823 */
1824 pgmLock(pVM);
1825 pNew->pNextR3 = pVM->pgm.s.pMmio2RangesR3;
1826 pVM->pgm.s.pMmio2RangesR3 = pNew;
1827 pgmUnlock(pVM);
1828
1829 *ppv = pvPages;
1830 RTMemTmpFree(paPages);
1831 PGMPhysInvalidatePageMapTLB(pVM);
1832 return VINF_SUCCESS;
1833 }
1834
1835 SUPR3PageFreeEx(pvPages, cPages);
1836 }
1837 RTMemTmpFree(paPages);
1838 MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pszDesc);
1839 }
1840 if (pDevIns->iInstance > 0)
1841 MMR3HeapFree((void *)pszDesc);
1842 return rc;
1843}
1844
1845
1846/**
1847 * Deregisters and frees an MMIO2 region.
1848 *
1849 * Any physical (and virtual) access handlers registered for the region must
1850 * be deregistered before calling this function.
1851 *
1852 * @returns VBox status code.
1853 * @param pVM Pointer to the shared VM structure.
1854 * @param pDevIns The device instance owning the region.
1855 * @param iRegion The region. If it's UINT32_MAX it'll be a wildcard match.
1856 */
1857VMMR3DECL(int) PGMR3PhysMMIO2Deregister(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
1858{
1859 /*
1860 * Validate input.
1861 */
1862 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1863 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1864 AssertReturn(iRegion <= UINT8_MAX || iRegion == UINT32_MAX, VERR_INVALID_PARAMETER);
1865
1866 pgmLock(pVM);
1867 int rc = VINF_SUCCESS;
1868 unsigned cFound = 0;
1869 PPGMMMIO2RANGE pPrev = NULL;
1870 PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3;
1871 while (pCur)
1872 {
1873 if ( pCur->pDevInsR3 == pDevIns
1874 && ( iRegion == UINT32_MAX
1875 || pCur->iRegion == iRegion))
1876 {
1877 cFound++;
1878
1879 /*
1880 * Unmap it if it's mapped.
1881 */
1882 if (pCur->fMapped)
1883 {
1884 int rc2 = PGMR3PhysMMIO2Unmap(pVM, pCur->pDevInsR3, pCur->iRegion, pCur->RamRange.GCPhys);
1885 AssertRC(rc2);
1886 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1887 rc = rc2;
1888 }
1889
1890 /*
1891 * Unlink it
1892 */
1893 PPGMMMIO2RANGE pNext = pCur->pNextR3;
1894 if (pPrev)
1895 pPrev->pNextR3 = pNext;
1896 else
1897 pVM->pgm.s.pMmio2RangesR3 = pNext;
1898 pCur->pNextR3 = NULL;
1899
1900 /*
1901 * Free the memory.
1902 */
1903 int rc2 = SUPR3PageFreeEx(pCur->pvR3, pCur->RamRange.cb >> PAGE_SHIFT);
1904 AssertRC(rc2);
1905 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1906 rc = rc2;
1907
1908 uint32_t const cPages = pCur->RamRange.cb >> PAGE_SHIFT;
1909 rc2 = MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pCur->RamRange.pszDesc);
1910 AssertRC(rc2);
1911 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1912 rc = rc2;
1913
1914 /* we're leaking hyper memory here if done at runtime. */
1915#ifdef VBOX_STRICT
1916 VMSTATE const enmState = VMR3GetState(pVM);
1917 AssertMsg( enmState == VMSTATE_POWERING_OFF
1918 || enmState == VMSTATE_POWERING_OFF_LS
1919 || enmState == VMSTATE_OFF
1920 || enmState == VMSTATE_OFF_LS
1921 || enmState == VMSTATE_DESTROYING
1922 || enmState == VMSTATE_TERMINATED
1923 || enmState == VMSTATE_CREATING
1924 , ("%s\n", VMR3GetStateName(enmState)));
1925#endif
1926 /*rc = MMHyperFree(pVM, pCur);
1927 AssertRCReturn(rc, rc); - not safe, see the alloc call. */
1928
1929
1930 /* update page count stats */
1931 pVM->pgm.s.cAllPages -= cPages;
1932 pVM->pgm.s.cPrivatePages -= cPages;
1933
1934 /* next */
1935 pCur = pNext;
1936 }
1937 else
1938 {
1939 pPrev = pCur;
1940 pCur = pCur->pNextR3;
1941 }
1942 }
1943 PGMPhysInvalidatePageMapTLB(pVM);
1944 pgmUnlock(pVM);
1945 return !cFound && iRegion != UINT32_MAX ? VERR_NOT_FOUND : rc;
1946}
1947
1948
1949/**
1950 * Maps a MMIO2 region.
1951 *
1952 * This is done when a guest / the bios / state loading changes the
1953 * PCI config. The replacing of base memory has the same restrictions
1954 * as during registration, of course.
1955 *
1956 * @returns VBox status code.
1957 *
1958 * @param pVM Pointer to the shared VM structure.
1959 * @param pDevIns The
1960 */
1961VMMR3DECL(int) PGMR3PhysMMIO2Map(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
1962{
1963 /*
1964 * Validate input
1965 */
1966 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1967 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1968 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
1969 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
1970 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
1971 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1972
1973 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
1974 AssertReturn(pCur, VERR_NOT_FOUND);
1975 AssertReturn(!pCur->fMapped, VERR_WRONG_ORDER);
1976 Assert(pCur->RamRange.GCPhys == NIL_RTGCPHYS);
1977 Assert(pCur->RamRange.GCPhysLast == NIL_RTGCPHYS);
1978
1979 const RTGCPHYS GCPhysLast = GCPhys + pCur->RamRange.cb - 1;
1980 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
1981
1982 /*
1983 * Find our location in the ram range list, checking for
1984 * restriction we don't bother implementing yet (partially overlapping).
1985 */
1986 bool fRamExists = false;
1987 PPGMRAMRANGE pRamPrev = NULL;
1988 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1989 while (pRam && GCPhysLast >= pRam->GCPhys)
1990 {
1991 if ( GCPhys <= pRam->GCPhysLast
1992 && GCPhysLast >= pRam->GCPhys)
1993 {
1994 /* completely within? */
1995 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
1996 && GCPhysLast <= pRam->GCPhysLast,
1997 ("%RGp-%RGp (MMIO2/%s) falls partly outside %RGp-%RGp (%s)\n",
1998 GCPhys, GCPhysLast, pCur->RamRange.pszDesc,
1999 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2000 VERR_PGM_RAM_CONFLICT);
2001 fRamExists = true;
2002 break;
2003 }
2004
2005 /* next */
2006 pRamPrev = pRam;
2007 pRam = pRam->pNextR3;
2008 }
2009 if (fRamExists)
2010 {
2011 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2012 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2013 while (cPagesLeft-- > 0)
2014 {
2015 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
2016 ("%RGp isn't a RAM page (%d) - mapping %RGp-%RGp (MMIO2/%s).\n",
2017 GCPhys, PGM_PAGE_GET_TYPE(pPage), GCPhys, GCPhysLast, pCur->RamRange.pszDesc),
2018 VERR_PGM_RAM_CONFLICT);
2019 pPage++;
2020 }
2021 }
2022 Log(("PGMR3PhysMMIO2Map: %RGp-%RGp fRamExists=%RTbool %s\n",
2023 GCPhys, GCPhysLast, fRamExists, pCur->RamRange.pszDesc));
2024
2025 /*
2026 * Make the changes.
2027 */
2028 pgmLock(pVM);
2029
2030 pCur->RamRange.GCPhys = GCPhys;
2031 pCur->RamRange.GCPhysLast = GCPhysLast;
2032 pCur->fMapped = true;
2033 pCur->fOverlapping = fRamExists;
2034
2035 if (fRamExists)
2036 {
2037/** @todo use pgmR3PhysFreePageRange here. */
2038 uint32_t cPendingPages = 0;
2039 PGMMFREEPAGESREQ pReq;
2040 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2041 AssertLogRelRCReturn(rc, rc);
2042
2043 /* replace the pages, freeing all present RAM pages. */
2044 PPGMPAGE pPageSrc = &pCur->RamRange.aPages[0];
2045 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2046 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2047 while (cPagesLeft-- > 0)
2048 {
2049 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
2050 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
2051
2052 RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc);
2053 PGM_PAGE_SET_HCPHYS(pPageDst, HCPhys);
2054 PGM_PAGE_SET_TYPE(pPageDst, PGMPAGETYPE_MMIO2);
2055 PGM_PAGE_SET_STATE(pPageDst, PGM_PAGE_STATE_ALLOCATED);
2056
2057 pVM->pgm.s.cZeroPages--;
2058 GCPhys += PAGE_SIZE;
2059 pPageSrc++;
2060 pPageDst++;
2061 }
2062
2063 /* Flush physical page map TLB. */
2064 PGMPhysInvalidatePageMapTLB(pVM);
2065
2066 if (cPendingPages)
2067 {
2068 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2069 AssertLogRelRCReturn(rc, rc);
2070 }
2071 GMMR3FreePagesCleanup(pReq);
2072 pgmUnlock(pVM);
2073 }
2074 else
2075 {
2076 RTGCPHYS cb = pCur->RamRange.cb;
2077
2078 /* link in the ram range */
2079 pgmR3PhysLinkRamRange(pVM, &pCur->RamRange, pRamPrev);
2080 pgmUnlock(pVM);
2081
2082 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_MMIO2);
2083 }
2084
2085 PGMPhysInvalidatePageMapTLB(pVM);
2086 return VINF_SUCCESS;
2087}
2088
2089
2090/**
2091 * Unmaps a MMIO2 region.
2092 *
2093 * This is done when a guest / the bios / state loading changes the
2094 * PCI config. The replacing of base memory has the same restrictions
2095 * as during registration, of course.
2096 */
2097VMMR3DECL(int) PGMR3PhysMMIO2Unmap(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
2098{
2099 /*
2100 * Validate input
2101 */
2102 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2103 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2104 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2105 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
2106 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
2107 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2108
2109 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2110 AssertReturn(pCur, VERR_NOT_FOUND);
2111 AssertReturn(pCur->fMapped, VERR_WRONG_ORDER);
2112 AssertReturn(pCur->RamRange.GCPhys == GCPhys, VERR_INVALID_PARAMETER);
2113 Assert(pCur->RamRange.GCPhysLast != NIL_RTGCPHYS);
2114
2115 Log(("PGMR3PhysMMIO2Unmap: %RGp-%RGp %s\n",
2116 pCur->RamRange.GCPhys, pCur->RamRange.GCPhysLast, pCur->RamRange.pszDesc));
2117
2118 /*
2119 * Unmap it.
2120 */
2121 pgmLock(pVM);
2122
2123 RTGCPHYS GCPhysRangeREM;
2124 RTGCPHYS cbRangeREM;
2125 bool fInformREM;
2126 if (pCur->fOverlapping)
2127 {
2128 /* Restore the RAM pages we've replaced. */
2129 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
2130 while (pRam->GCPhys > pCur->RamRange.GCPhysLast)
2131 pRam = pRam->pNextR3;
2132
2133 RTHCPHYS const HCPhysZeroPg = pVM->pgm.s.HCPhysZeroPg;
2134 Assert(HCPhysZeroPg != 0 && HCPhysZeroPg != NIL_RTHCPHYS);
2135 PPGMPAGE pPageDst = &pRam->aPages[(pCur->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2136 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2137 while (cPagesLeft-- > 0)
2138 {
2139 PGM_PAGE_SET_HCPHYS(pPageDst, HCPhysZeroPg);
2140 PGM_PAGE_SET_TYPE(pPageDst, PGMPAGETYPE_RAM);
2141 PGM_PAGE_SET_STATE(pPageDst, PGM_PAGE_STATE_ZERO);
2142 PGM_PAGE_SET_PAGEID(pPageDst, NIL_GMM_PAGEID);
2143 PGM_PAGE_SET_PDE_TYPE(pPageDst, PGM_PAGE_PDE_TYPE_DONTCARE);
2144
2145 pVM->pgm.s.cZeroPages++;
2146 pPageDst++;
2147 }
2148
2149 /* Flush physical page map TLB. */
2150 PGMPhysInvalidatePageMapTLB(pVM);
2151
2152 GCPhysRangeREM = NIL_RTGCPHYS; /* shuts up gcc */
2153 cbRangeREM = RTGCPHYS_MAX; /* ditto */
2154 fInformREM = false;
2155 }
2156 else
2157 {
2158 GCPhysRangeREM = pCur->RamRange.GCPhys;
2159 cbRangeREM = pCur->RamRange.cb;
2160 fInformREM = true;
2161
2162 pgmR3PhysUnlinkRamRange(pVM, &pCur->RamRange);
2163 }
2164
2165 pCur->RamRange.GCPhys = NIL_RTGCPHYS;
2166 pCur->RamRange.GCPhysLast = NIL_RTGCPHYS;
2167 pCur->fOverlapping = false;
2168 pCur->fMapped = false;
2169
2170 PGMPhysInvalidatePageMapTLB(pVM);
2171 pgmUnlock(pVM);
2172
2173 if (fInformREM)
2174 REMR3NotifyPhysRamDeregister(pVM, GCPhysRangeREM, cbRangeREM);
2175
2176 return VINF_SUCCESS;
2177}
2178
2179
2180/**
2181 * Checks if the given address is an MMIO2 base address or not.
2182 *
2183 * @returns true/false accordingly.
2184 * @param pVM Pointer to the shared VM structure.
2185 * @param pDevIns The owner of the memory, optional.
2186 * @param GCPhys The address to check.
2187 */
2188VMMR3DECL(bool) PGMR3PhysMMIO2IsBase(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys)
2189{
2190 /*
2191 * Validate input
2192 */
2193 VM_ASSERT_EMT_RETURN(pVM, false);
2194 AssertPtrReturn(pDevIns, false);
2195 AssertReturn(GCPhys != NIL_RTGCPHYS, false);
2196 AssertReturn(GCPhys != 0, false);
2197 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), false);
2198
2199 /*
2200 * Search the list.
2201 */
2202 pgmLock(pVM);
2203 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2204 if (pCur->RamRange.GCPhys == GCPhys)
2205 {
2206 Assert(pCur->fMapped);
2207 pgmUnlock(pVM);
2208 return true;
2209 }
2210 pgmUnlock(pVM);
2211 return false;
2212}
2213
2214
2215/**
2216 * Gets the HC physical address of a page in the MMIO2 region.
2217 *
2218 * This is API is intended for MMHyper and shouldn't be called
2219 * by anyone else...
2220 *
2221 * @returns VBox status code.
2222 * @param pVM Pointer to the shared VM structure.
2223 * @param pDevIns The owner of the memory, optional.
2224 * @param iRegion The region.
2225 * @param off The page expressed an offset into the MMIO2 region.
2226 * @param pHCPhys Where to store the result.
2227 */
2228VMMR3DECL(int) PGMR3PhysMMIO2GetHCPhys(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, PRTHCPHYS pHCPhys)
2229{
2230 /*
2231 * Validate input
2232 */
2233 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2234 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2235 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2236
2237 pgmLock(pVM);
2238 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2239 AssertReturn(pCur, VERR_NOT_FOUND);
2240 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2241
2242 PCPGMPAGE pPage = &pCur->RamRange.aPages[off >> PAGE_SHIFT];
2243 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage);
2244 pgmUnlock(pVM);
2245 return VINF_SUCCESS;
2246}
2247
2248
2249/**
2250 * Maps a portion of an MMIO2 region into kernel space (host).
2251 *
2252 * The kernel mapping will become invalid when the MMIO2 memory is deregistered
2253 * or the VM is terminated.
2254 *
2255 * @return VBox status code.
2256 *
2257 * @param pVM Pointer to the shared VM structure.
2258 * @param pDevIns The device owning the MMIO2 memory.
2259 * @param iRegion The region.
2260 * @param off The offset into the region. Must be page aligned.
2261 * @param cb The number of bytes to map. Must be page aligned.
2262 * @param pszDesc Mapping description.
2263 * @param pR0Ptr Where to store the R0 address.
2264 */
2265VMMR3DECL(int) PGMR3PhysMMIO2MapKernel(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, RTGCPHYS cb,
2266 const char *pszDesc, PRTR0PTR pR0Ptr)
2267{
2268 /*
2269 * Validate input.
2270 */
2271 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2272 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2273 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2274
2275 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2276 AssertReturn(pCur, VERR_NOT_FOUND);
2277 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2278 AssertReturn(cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2279 AssertReturn(off + cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2280
2281 /*
2282 * Pass the request on to the support library/driver.
2283 */
2284 int rc = SUPR3PageMapKernel(pCur->pvR3, off, cb, 0, pR0Ptr);
2285
2286 return rc;
2287}
2288
2289
2290/**
2291 * Registers a ROM image.
2292 *
2293 * Shadowed ROM images requires double the amount of backing memory, so,
2294 * don't use that unless you have to. Shadowing of ROM images is process
2295 * where we can select where the reads go and where the writes go. On real
2296 * hardware the chipset provides means to configure this. We provide
2297 * PGMR3PhysProtectROM() for this purpose.
2298 *
2299 * A read-only copy of the ROM image will always be kept around while we
2300 * will allocate RAM pages for the changes on demand (unless all memory
2301 * is configured to be preallocated).
2302 *
2303 * @returns VBox status.
2304 * @param pVM VM Handle.
2305 * @param pDevIns The device instance owning the ROM.
2306 * @param GCPhys First physical address in the range.
2307 * Must be page aligned!
2308 * @param cbRange The size of the range (in bytes).
2309 * Must be page aligned!
2310 * @param pvBinary Pointer to the binary data backing the ROM image.
2311 * This must be exactly \a cbRange in size.
2312 * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
2313 * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
2314 * @param pszDesc Pointer to description string. This must not be freed.
2315 *
2316 * @remark There is no way to remove the rom, automatically on device cleanup or
2317 * manually from the device yet. This isn't difficult in any way, it's
2318 * just not something we expect to be necessary for a while.
2319 */
2320VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
2321 const void *pvBinary, uint32_t fFlags, const char *pszDesc)
2322{
2323 Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p fFlags=%#x pszDesc=%s\n",
2324 pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, fFlags, pszDesc));
2325
2326 /*
2327 * Validate input.
2328 */
2329 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2330 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
2331 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
2332 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2333 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
2334 AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER);
2335 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
2336 AssertReturn(!(fFlags & ~(PGMPHYS_ROM_FLAGS_SHADOWED | PGMPHYS_ROM_FLAGS_PERMANENT_BINARY)), VERR_INVALID_PARAMETER);
2337 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE);
2338
2339 const uint32_t cPages = cb >> PAGE_SHIFT;
2340
2341 /*
2342 * Find the ROM location in the ROM list first.
2343 */
2344 PPGMROMRANGE pRomPrev = NULL;
2345 PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
2346 while (pRom && GCPhysLast >= pRom->GCPhys)
2347 {
2348 if ( GCPhys <= pRom->GCPhysLast
2349 && GCPhysLast >= pRom->GCPhys)
2350 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
2351 GCPhys, GCPhysLast, pszDesc,
2352 pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc),
2353 VERR_PGM_RAM_CONFLICT);
2354 /* next */
2355 pRomPrev = pRom;
2356 pRom = pRom->pNextR3;
2357 }
2358
2359 /*
2360 * Find the RAM location and check for conflicts.
2361 *
2362 * Conflict detection is a bit different than for RAM
2363 * registration since a ROM can be located within a RAM
2364 * range. So, what we have to check for is other memory
2365 * types (other than RAM that is) and that we don't span
2366 * more than one RAM range (layz).
2367 */
2368 bool fRamExists = false;
2369 PPGMRAMRANGE pRamPrev = NULL;
2370 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
2371 while (pRam && GCPhysLast >= pRam->GCPhys)
2372 {
2373 if ( GCPhys <= pRam->GCPhysLast
2374 && GCPhysLast >= pRam->GCPhys)
2375 {
2376 /* completely within? */
2377 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
2378 && GCPhysLast <= pRam->GCPhysLast,
2379 ("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n",
2380 GCPhys, GCPhysLast, pszDesc,
2381 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2382 VERR_PGM_RAM_CONFLICT);
2383 fRamExists = true;
2384 break;
2385 }
2386
2387 /* next */
2388 pRamPrev = pRam;
2389 pRam = pRam->pNextR3;
2390 }
2391 if (fRamExists)
2392 {
2393 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2394 uint32_t cPagesLeft = cPages;
2395 while (cPagesLeft-- > 0)
2396 {
2397 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
2398 ("%RGp (%R[pgmpage]) isn't a RAM page - registering %RGp-%RGp (%s).\n",
2399 pRam->GCPhys + ((RTGCPHYS)(uintptr_t)(pPage - &pRam->aPages[0]) << PAGE_SHIFT),
2400 pPage, GCPhys, GCPhysLast, pszDesc), VERR_PGM_RAM_CONFLICT);
2401 Assert(PGM_PAGE_IS_ZERO(pPage));
2402 pPage++;
2403 }
2404 }
2405
2406 /*
2407 * Update the base memory reservation if necessary.
2408 */
2409 uint32_t cExtraBaseCost = fRamExists ? 0 : cPages;
2410 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2411 cExtraBaseCost += cPages;
2412 if (cExtraBaseCost)
2413 {
2414 int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost);
2415 if (RT_FAILURE(rc))
2416 return rc;
2417 }
2418
2419 /*
2420 * Allocate memory for the virgin copy of the RAM.
2421 */
2422 PGMMALLOCATEPAGESREQ pReq;
2423 int rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cPages, GMMACCOUNT_BASE);
2424 AssertRCReturn(rc, rc);
2425
2426 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2427 {
2428 pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << PAGE_SHIFT);
2429 pReq->aPages[iPage].idPage = NIL_GMM_PAGEID;
2430 pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID;
2431 }
2432
2433 pgmLock(pVM);
2434 rc = GMMR3AllocatePagesPerform(pVM, pReq);
2435 pgmUnlock(pVM);
2436 if (RT_FAILURE(rc))
2437 {
2438 GMMR3AllocatePagesCleanup(pReq);
2439 return rc;
2440 }
2441
2442 /*
2443 * Allocate the new ROM range and RAM range (if necessary).
2444 */
2445 PPGMROMRANGE pRomNew;
2446 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMROMRANGE, aPages[cPages]), 0, MM_TAG_PGM_PHYS, (void **)&pRomNew);
2447 if (RT_SUCCESS(rc))
2448 {
2449 PPGMRAMRANGE pRamNew = NULL;
2450 if (!fRamExists)
2451 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), sizeof(PGMPAGE), MM_TAG_PGM_PHYS, (void **)&pRamNew);
2452 if (RT_SUCCESS(rc))
2453 {
2454 pgmLock(pVM);
2455
2456 /*
2457 * Initialize and insert the RAM range (if required).
2458 */
2459 PPGMROMPAGE pRomPage = &pRomNew->aPages[0];
2460 if (!fRamExists)
2461 {
2462 pRamNew->pSelfR0 = MMHyperCCToR0(pVM, pRamNew);
2463 pRamNew->pSelfRC = MMHyperCCToRC(pVM, pRamNew);
2464 pRamNew->GCPhys = GCPhys;
2465 pRamNew->GCPhysLast = GCPhysLast;
2466 pRamNew->cb = cb;
2467 pRamNew->pszDesc = pszDesc;
2468 pRamNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_ROM;
2469 pRamNew->pvR3 = NULL;
2470 pRamNew->paLSPages = NULL;
2471
2472 PPGMPAGE pPage = &pRamNew->aPages[0];
2473 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
2474 {
2475 PGM_PAGE_INIT(pPage,
2476 pReq->aPages[iPage].HCPhysGCPhys,
2477 pReq->aPages[iPage].idPage,
2478 PGMPAGETYPE_ROM,
2479 PGM_PAGE_STATE_ALLOCATED);
2480
2481 pRomPage->Virgin = *pPage;
2482 }
2483
2484 pVM->pgm.s.cAllPages += cPages;
2485 pgmR3PhysLinkRamRange(pVM, pRamNew, pRamPrev);
2486 }
2487 else
2488 {
2489 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2490 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
2491 {
2492 PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_ROM);
2493 PGM_PAGE_SET_HCPHYS(pPage, pReq->aPages[iPage].HCPhysGCPhys);
2494 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
2495 PGM_PAGE_SET_PAGEID(pPage, pReq->aPages[iPage].idPage);
2496
2497 pRomPage->Virgin = *pPage;
2498 }
2499
2500 pRamNew = pRam;
2501
2502 pVM->pgm.s.cZeroPages -= cPages;
2503 }
2504 pVM->pgm.s.cPrivatePages += cPages;
2505
2506 /* Flush physical page map TLB. */
2507 PGMPhysInvalidatePageMapTLB(pVM);
2508
2509 pgmUnlock(pVM);
2510
2511
2512 /*
2513 * !HACK ALERT! REM + (Shadowed) ROM ==> mess.
2514 *
2515 * If it's shadowed we'll register the handler after the ROM notification
2516 * so we get the access handler callbacks that we should. If it isn't
2517 * shadowed we'll do it the other way around to make REM use the built-in
2518 * ROM behavior and not the handler behavior (which is to route all access
2519 * to PGM atm).
2520 */
2521 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2522 {
2523 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, true /* fShadowed */);
2524 rc = PGMR3HandlerPhysicalRegister(pVM,
2525 fFlags & PGMPHYS_ROM_FLAGS_SHADOWED
2526 ? PGMPHYSHANDLERTYPE_PHYSICAL_ALL
2527 : PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
2528 GCPhys, GCPhysLast,
2529 pgmR3PhysRomWriteHandler, pRomNew,
2530 NULL, "pgmPhysRomWriteHandler", MMHyperCCToR0(pVM, pRomNew),
2531 NULL, "pgmPhysRomWriteHandler", MMHyperCCToRC(pVM, pRomNew), pszDesc);
2532 }
2533 else
2534 {
2535 rc = PGMR3HandlerPhysicalRegister(pVM,
2536 fFlags & PGMPHYS_ROM_FLAGS_SHADOWED
2537 ? PGMPHYSHANDLERTYPE_PHYSICAL_ALL
2538 : PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
2539 GCPhys, GCPhysLast,
2540 pgmR3PhysRomWriteHandler, pRomNew,
2541 NULL, "pgmPhysRomWriteHandler", MMHyperCCToR0(pVM, pRomNew),
2542 NULL, "pgmPhysRomWriteHandler", MMHyperCCToRC(pVM, pRomNew), pszDesc);
2543 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, false /* fShadowed */);
2544 }
2545 if (RT_SUCCESS(rc))
2546 {
2547 pgmLock(pVM);
2548
2549 /*
2550 * Copy the image over to the virgin pages.
2551 * This must be done after linking in the RAM range.
2552 */
2553 PPGMPAGE pRamPage = &pRamNew->aPages[(GCPhys - pRamNew->GCPhys) >> PAGE_SHIFT];
2554 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++)
2555 {
2556 void *pvDstPage;
2557 rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << PAGE_SHIFT), &pvDstPage);
2558 if (RT_FAILURE(rc))
2559 {
2560 VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys);
2561 break;
2562 }
2563 memcpy(pvDstPage, (const uint8_t *)pvBinary + (iPage << PAGE_SHIFT), PAGE_SIZE);
2564 }
2565 if (RT_SUCCESS(rc))
2566 {
2567 /*
2568 * Initialize the ROM range.
2569 * Note that the Virgin member of the pages has already been initialized above.
2570 */
2571 pRomNew->GCPhys = GCPhys;
2572 pRomNew->GCPhysLast = GCPhysLast;
2573 pRomNew->cb = cb;
2574 pRomNew->fFlags = fFlags;
2575 pRomNew->idSavedState = UINT8_MAX;
2576 pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY ? pvBinary : NULL;
2577 pRomNew->pszDesc = pszDesc;
2578
2579 for (unsigned iPage = 0; iPage < cPages; iPage++)
2580 {
2581 PPGMROMPAGE pPage = &pRomNew->aPages[iPage];
2582 pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE;
2583 PGM_PAGE_INIT_ZERO(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW);
2584 }
2585
2586 /* update the page count stats for the shadow pages. */
2587 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2588 {
2589 pVM->pgm.s.cZeroPages += cPages;
2590 pVM->pgm.s.cAllPages += cPages;
2591 }
2592
2593 /*
2594 * Insert the ROM range, tell REM and return successfully.
2595 */
2596 pRomNew->pNextR3 = pRom;
2597 pRomNew->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
2598 pRomNew->pNextRC = pRom ? MMHyperCCToRC(pVM, pRom) : NIL_RTRCPTR;
2599
2600 if (pRomPrev)
2601 {
2602 pRomPrev->pNextR3 = pRomNew;
2603 pRomPrev->pNextR0 = MMHyperCCToR0(pVM, pRomNew);
2604 pRomPrev->pNextRC = MMHyperCCToRC(pVM, pRomNew);
2605 }
2606 else
2607 {
2608 pVM->pgm.s.pRomRangesR3 = pRomNew;
2609 pVM->pgm.s.pRomRangesR0 = MMHyperCCToR0(pVM, pRomNew);
2610 pVM->pgm.s.pRomRangesRC = MMHyperCCToRC(pVM, pRomNew);
2611 }
2612
2613 PGMPhysInvalidatePageMapTLB(pVM);
2614 GMMR3AllocatePagesCleanup(pReq);
2615 pgmUnlock(pVM);
2616 return VINF_SUCCESS;
2617 }
2618
2619 /* bail out */
2620
2621 pgmUnlock(pVM);
2622 int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys);
2623 AssertRC(rc2);
2624 pgmLock(pVM);
2625 }
2626
2627 if (!fRamExists)
2628 {
2629 pgmR3PhysUnlinkRamRange2(pVM, pRamNew, pRamPrev);
2630 MMHyperFree(pVM, pRamNew);
2631 }
2632 }
2633 MMHyperFree(pVM, pRomNew);
2634 }
2635
2636 /** @todo Purge the mapping cache or something... */
2637 GMMR3FreeAllocatedPages(pVM, pReq);
2638 GMMR3AllocatePagesCleanup(pReq);
2639 pgmUnlock(pVM);
2640 return rc;
2641}
2642
2643
2644/**
2645 * \#PF Handler callback for ROM write accesses.
2646 *
2647 * @returns VINF_SUCCESS if the handler have carried out the operation.
2648 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
2649 * @param pVM VM Handle.
2650 * @param GCPhys The physical address the guest is writing to.
2651 * @param pvPhys The HC mapping of that address.
2652 * @param pvBuf What the guest is reading/writing.
2653 * @param cbBuf How much it's reading/writing.
2654 * @param enmAccessType The access type.
2655 * @param pvUser User argument.
2656 */
2657static DECLCALLBACK(int) pgmR3PhysRomWriteHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser)
2658{
2659 PPGMROMRANGE pRom = (PPGMROMRANGE)pvUser;
2660 const uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
2661 Assert(iPage < (pRom->cb >> PAGE_SHIFT));
2662 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
2663 Log5(("pgmR3PhysRomWriteHandler: %d %c %#08RGp %#04zx\n", pRomPage->enmProt, enmAccessType == PGMACCESSTYPE_READ ? 'R' : 'W', GCPhys, cbBuf));
2664
2665 if (enmAccessType == PGMACCESSTYPE_READ)
2666 {
2667 switch (pRomPage->enmProt)
2668 {
2669 /*
2670 * Take the default action.
2671 */
2672 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
2673 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
2674 case PGMROMPROT_READ_ROM_WRITE_RAM:
2675 case PGMROMPROT_READ_RAM_WRITE_RAM:
2676 return VINF_PGM_HANDLER_DO_DEFAULT;
2677
2678 default:
2679 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
2680 pRom->aPages[iPage].enmProt, iPage, GCPhys),
2681 VERR_INTERNAL_ERROR);
2682 }
2683 }
2684 else
2685 {
2686 Assert(enmAccessType == PGMACCESSTYPE_WRITE);
2687 switch (pRomPage->enmProt)
2688 {
2689 /*
2690 * Ignore writes.
2691 */
2692 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
2693 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
2694 return VINF_SUCCESS;
2695
2696 /*
2697 * Write to the ram page.
2698 */
2699 case PGMROMPROT_READ_ROM_WRITE_RAM:
2700 case PGMROMPROT_READ_RAM_WRITE_RAM: /* yes this will get here too, it's *way* simpler that way. */
2701 {
2702 /* This should be impossible now, pvPhys doesn't work cross page anylonger. */
2703 Assert(((GCPhys - pRom->GCPhys + cbBuf - 1) >> PAGE_SHIFT) == iPage);
2704
2705 /*
2706 * Take the lock, do lazy allocation, map the page and copy the data.
2707 *
2708 * Note that we have to bypass the mapping TLB since it works on
2709 * guest physical addresses and entering the shadow page would
2710 * kind of screw things up...
2711 */
2712 int rc = pgmLock(pVM);
2713 AssertRC(rc);
2714
2715 PPGMPAGE pShadowPage = &pRomPage->Shadow;
2716 if (!PGMROMPROT_IS_ROM(pRomPage->enmProt))
2717 {
2718 pShadowPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
2719 AssertLogRelReturn(pShadowPage, VERR_INTERNAL_ERROR);
2720 }
2721
2722 void *pvDstPage;
2723 rc = pgmPhysPageMakeWritableAndMap(pVM, pShadowPage, GCPhys & X86_PTE_PG_MASK, &pvDstPage);
2724 if (RT_SUCCESS(rc))
2725 {
2726 memcpy((uint8_t *)pvDstPage + (GCPhys & PAGE_OFFSET_MASK), pvBuf, cbBuf);
2727 pRomPage->LiveSave.fWrittenTo = true;
2728 }
2729
2730 pgmUnlock(pVM);
2731 return rc;
2732 }
2733
2734 default:
2735 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
2736 pRom->aPages[iPage].enmProt, iPage, GCPhys),
2737 VERR_INTERNAL_ERROR);
2738 }
2739 }
2740}
2741
2742
2743/**
2744 * Called by PGMR3Reset to reset the shadow, switch to the virgin,
2745 * and verify that the virgin part is untouched.
2746 *
2747 * This is done after the normal memory has been cleared.
2748 *
2749 * ASSUMES that the caller owns the PGM lock.
2750 *
2751 * @param pVM The VM handle.
2752 */
2753int pgmR3PhysRomReset(PVM pVM)
2754{
2755 Assert(PGMIsLockOwner(pVM));
2756 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
2757 {
2758 const uint32_t cPages = pRom->cb >> PAGE_SHIFT;
2759
2760 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2761 {
2762 /*
2763 * Reset the physical handler.
2764 */
2765 int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE);
2766 AssertRCReturn(rc, rc);
2767
2768 /*
2769 * What we do with the shadow pages depends on the memory
2770 * preallocation option. If not enabled, we'll just throw
2771 * out all the dirty pages and replace them by the zero page.
2772 */
2773 if (!pVM->pgm.s.fRamPreAlloc)
2774 {
2775 /* Free the dirty pages. */
2776 uint32_t cPendingPages = 0;
2777 PGMMFREEPAGESREQ pReq;
2778 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2779 AssertRCReturn(rc, rc);
2780
2781 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2782 if (PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) != PGM_PAGE_STATE_ZERO)
2783 {
2784 Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) == PGM_PAGE_STATE_ALLOCATED);
2785 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, &pRom->aPages[iPage].Shadow, pRom->GCPhys + (iPage << PAGE_SHIFT));
2786 AssertLogRelRCReturn(rc, rc);
2787 }
2788
2789 if (cPendingPages)
2790 {
2791 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2792 AssertLogRelRCReturn(rc, rc);
2793 }
2794 GMMR3FreePagesCleanup(pReq);
2795 }
2796 else
2797 {
2798 /* clear all the shadow pages. */
2799 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2800 {
2801 Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) != PGM_PAGE_STATE_ZERO);
2802 void *pvDstPage;
2803 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
2804 rc = pgmPhysPageMakeWritableAndMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pvDstPage);
2805 if (RT_FAILURE(rc))
2806 break;
2807 ASMMemZeroPage(pvDstPage);
2808 }
2809 AssertRCReturn(rc, rc);
2810 }
2811 }
2812
2813#ifdef VBOX_STRICT
2814 /*
2815 * Verify that the virgin page is unchanged if possible.
2816 */
2817 if (pRom->pvOriginal)
2818 {
2819 uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal;
2820 for (uint32_t iPage = 0; iPage < cPages; iPage++, pbSrcPage += PAGE_SIZE)
2821 {
2822 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
2823 void const *pvDstPage;
2824 int rc = pgmPhysPageMapReadOnly(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPage);
2825 if (RT_FAILURE(rc))
2826 break;
2827 if (memcmp(pvDstPage, pbSrcPage, PAGE_SIZE))
2828 LogRel(("pgmR3PhysRomReset: %RGp rom page changed (%s) - loaded saved state?\n",
2829 GCPhys, pRom->pszDesc));
2830 }
2831 }
2832#endif
2833 }
2834
2835 return VINF_SUCCESS;
2836}
2837
2838
2839/**
2840 * Change the shadowing of a range of ROM pages.
2841 *
2842 * This is intended for implementing chipset specific memory registers
2843 * and will not be very strict about the input. It will silently ignore
2844 * any pages that are not the part of a shadowed ROM.
2845 *
2846 * @returns VBox status code.
2847 * @retval VINF_PGM_SYNC_CR3
2848 *
2849 * @param pVM Pointer to the shared VM structure.
2850 * @param GCPhys Where to start. Page aligned.
2851 * @param cb How much to change. Page aligned.
2852 * @param enmProt The new ROM protection.
2853 */
2854VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt)
2855{
2856 /*
2857 * Check input
2858 */
2859 if (!cb)
2860 return VINF_SUCCESS;
2861 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2862 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2863 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2864 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
2865 AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER);
2866
2867 /*
2868 * Process the request.
2869 */
2870 pgmLock(pVM);
2871 int rc = VINF_SUCCESS;
2872 bool fFlushTLB = false;
2873 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
2874 {
2875 if ( GCPhys <= pRom->GCPhysLast
2876 && GCPhysLast >= pRom->GCPhys
2877 && (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
2878 {
2879 /*
2880 * Iterate the relevant pages and make necessary the changes.
2881 */
2882 bool fChanges = false;
2883 uint32_t const cPages = pRom->GCPhysLast <= GCPhysLast
2884 ? pRom->cb >> PAGE_SHIFT
2885 : (GCPhysLast - pRom->GCPhys + 1) >> PAGE_SHIFT;
2886 for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
2887 iPage < cPages;
2888 iPage++)
2889 {
2890 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
2891 if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt))
2892 {
2893 fChanges = true;
2894
2895 /* flush references to the page. */
2896 PPGMPAGE pRamPage = pgmPhysGetPage(&pVM->pgm.s, pRom->GCPhys + (iPage << PAGE_SHIFT));
2897 int rc2 = pgmPoolTrackFlushGCPhys(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT), pRamPage, &fFlushTLB);
2898 if (rc2 != VINF_SUCCESS && (rc == VINF_SUCCESS || RT_FAILURE(rc2)))
2899 rc = rc2;
2900
2901 PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
2902 PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2903
2904 *pOld = *pRamPage;
2905 *pRamPage = *pNew;
2906 /** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */
2907 }
2908 pRomPage->enmProt = enmProt;
2909 }
2910
2911 /*
2912 * Reset the access handler if we made changes, no need
2913 * to optimize this.
2914 */
2915 if (fChanges)
2916 {
2917 int rc2 = PGMHandlerPhysicalReset(pVM, pRom->GCPhys);
2918 if (RT_FAILURE(rc2))
2919 {
2920 pgmUnlock(pVM);
2921 AssertRC(rc);
2922 return rc2;
2923 }
2924 }
2925
2926 /* Advance - cb isn't updated. */
2927 GCPhys = pRom->GCPhys + (cPages << PAGE_SHIFT);
2928 }
2929 }
2930 pgmUnlock(pVM);
2931 if (fFlushTLB)
2932 PGM_INVL_ALL_VCPU_TLBS(pVM);
2933
2934 return rc;
2935}
2936
2937
2938/**
2939 * Sets the Address Gate 20 state.
2940 *
2941 * @param pVCpu The VCPU to operate on.
2942 * @param fEnable True if the gate should be enabled.
2943 * False if the gate should be disabled.
2944 */
2945VMMDECL(void) PGMR3PhysSetA20(PVMCPU pVCpu, bool fEnable)
2946{
2947 LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVCpu->pgm.s.fA20Enabled));
2948 if (pVCpu->pgm.s.fA20Enabled != fEnable)
2949 {
2950 pVCpu->pgm.s.fA20Enabled = fEnable;
2951 pVCpu->pgm.s.GCPhysA20Mask = ~(RTGCPHYS)(!fEnable << 20);
2952 REMR3A20Set(pVCpu->pVMR3, pVCpu, fEnable);
2953 /** @todo we're not handling this correctly for VT-x / AMD-V. See #2911 */
2954 }
2955}
2956
2957
2958/**
2959 * Tree enumeration callback for dealing with age rollover.
2960 * It will perform a simple compression of the current age.
2961 */
2962static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
2963{
2964 Assert(PGMIsLockOwner((PVM)pvUser));
2965 /* Age compression - ASSUMES iNow == 4. */
2966 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
2967 if (pChunk->iAge >= UINT32_C(0xffffff00))
2968 pChunk->iAge = 3;
2969 else if (pChunk->iAge >= UINT32_C(0xfffff000))
2970 pChunk->iAge = 2;
2971 else if (pChunk->iAge)
2972 pChunk->iAge = 1;
2973 else /* iAge = 0 */
2974 pChunk->iAge = 4;
2975
2976 /* reinsert */
2977 PVM pVM = (PVM)pvUser;
2978 RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
2979 pChunk->AgeCore.Key = pChunk->iAge;
2980 RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
2981 return 0;
2982}
2983
2984
2985/**
2986 * Tree enumeration callback that updates the chunks that have
2987 * been used since the last
2988 */
2989static DECLCALLBACK(int) pgmR3PhysChunkAgeingCallback(PAVLU32NODECORE pNode, void *pvUser)
2990{
2991 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
2992 if (!pChunk->iAge)
2993 {
2994 PVM pVM = (PVM)pvUser;
2995 RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
2996 pChunk->AgeCore.Key = pChunk->iAge = pVM->pgm.s.ChunkR3Map.iNow;
2997 RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
2998 }
2999
3000 return 0;
3001}
3002
3003
3004/**
3005 * Performs ageing of the ring-3 chunk mappings.
3006 *
3007 * @param pVM The VM handle.
3008 */
3009VMMR3DECL(void) PGMR3PhysChunkAgeing(PVM pVM)
3010{
3011 pgmLock(pVM);
3012 pVM->pgm.s.ChunkR3Map.AgeingCountdown = RT_MIN(pVM->pgm.s.ChunkR3Map.cMax / 4, 1024);
3013 pVM->pgm.s.ChunkR3Map.iNow++;
3014 if (pVM->pgm.s.ChunkR3Map.iNow == 0)
3015 {
3016 pVM->pgm.s.ChunkR3Map.iNow = 4;
3017 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, pVM);
3018 }
3019 else
3020 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingCallback, pVM);
3021 pgmUnlock(pVM);
3022}
3023
3024
3025/**
3026 * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
3027 */
3028typedef struct PGMR3PHYSCHUNKUNMAPCB
3029{
3030 PVM pVM; /**< The VM handle. */
3031 PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
3032} PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
3033
3034
3035/**
3036 * Callback used to find the mapping that's been unused for
3037 * the longest time.
3038 */
3039static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLLU32NODECORE pNode, void *pvUser)
3040{
3041 do
3042 {
3043 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)((uint8_t *)pNode - RT_OFFSETOF(PGMCHUNKR3MAP, AgeCore));
3044 if ( pChunk->iAge
3045 && !pChunk->cRefs)
3046 {
3047 /*
3048 * Check that it's not in any of the TLBs.
3049 */
3050 PVM pVM = ((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pVM;
3051 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
3052 if (pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk == pChunk)
3053 {
3054 pChunk = NULL;
3055 break;
3056 }
3057 if (pChunk)
3058 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
3059 if (pVM->pgm.s.PhysTlbHC.aEntries[i].pMap == pChunk)
3060 {
3061 pChunk = NULL;
3062 break;
3063 }
3064 if (pChunk)
3065 {
3066 ((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pChunk = pChunk;
3067 return 1; /* done */
3068 }
3069 }
3070
3071 /* next with the same age - this version of the AVL API doesn't enumerate the list, so we have to do it. */
3072 pNode = pNode->pList;
3073 } while (pNode);
3074 return 0;
3075}
3076
3077
3078/**
3079 * Finds a good candidate for unmapping when the ring-3 mapping cache is full.
3080 *
3081 * The candidate will not be part of any TLBs, so no need to flush
3082 * anything afterwards.
3083 *
3084 * @returns Chunk id.
3085 * @param pVM The VM handle.
3086 */
3087static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
3088{
3089 Assert(PGMIsLockOwner(pVM));
3090
3091 /*
3092 * Do tree ageing first?
3093 */
3094 if (pVM->pgm.s.ChunkR3Map.AgeingCountdown-- == 0)
3095 PGMR3PhysChunkAgeing(pVM);
3096
3097 /*
3098 * Enumerate the age tree starting with the left most node.
3099 */
3100 PGMR3PHYSCHUNKUNMAPCB Args;
3101 Args.pVM = pVM;
3102 Args.pChunk = NULL;
3103 if (RTAvllU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pAgeTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, pVM))
3104 return Args.pChunk->Core.Key;
3105 return INT32_MAX;
3106}
3107
3108
3109/**
3110 * Maps the given chunk into the ring-3 mapping cache.
3111 *
3112 * This will call ring-0.
3113 *
3114 * @returns VBox status code.
3115 * @param pVM The VM handle.
3116 * @param idChunk The chunk in question.
3117 * @param ppChunk Where to store the chunk tracking structure.
3118 *
3119 * @remarks Called from within the PGM critical section.
3120 */
3121int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
3122{
3123 int rc;
3124
3125 Assert(PGMIsLockOwner(pVM));
3126 /*
3127 * Allocate a new tracking structure first.
3128 */
3129#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
3130 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAlloc(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
3131#else
3132 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3UkHeapAlloc(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk), NULL);
3133#endif
3134 AssertReturn(pChunk, VERR_NO_MEMORY);
3135 pChunk->Core.Key = idChunk;
3136 pChunk->AgeCore.Key = pVM->pgm.s.ChunkR3Map.iNow;
3137 pChunk->iAge = 0;
3138 pChunk->cRefs = 0;
3139 pChunk->cPermRefs = 0;
3140 pChunk->pv = NULL;
3141
3142 /*
3143 * Request the ring-0 part to map the chunk in question and if
3144 * necessary unmap another one to make space in the mapping cache.
3145 */
3146 GMMMAPUNMAPCHUNKREQ Req;
3147 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
3148 Req.Hdr.cbReq = sizeof(Req);
3149 Req.pvR3 = NULL;
3150 Req.idChunkMap = idChunk;
3151 Req.idChunkUnmap = NIL_GMM_CHUNKID;
3152 if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
3153 Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
3154/** @todo This is wrong. Any thread in the VM process should be able to do this,
3155 * there are depenenecies on this. What currently saves the day is that
3156 * we don't unmap anything and that all non-zero memory will therefore
3157 * be present when non-EMTs tries to access it. */
3158 rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
3159 if (RT_SUCCESS(rc))
3160 {
3161 /*
3162 * Update the tree.
3163 */
3164 /* insert the new one. */
3165 AssertPtr(Req.pvR3);
3166 pChunk->pv = Req.pvR3;
3167 bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
3168 AssertRelease(fRc);
3169 pVM->pgm.s.ChunkR3Map.c++;
3170
3171 fRc = RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
3172 AssertRelease(fRc);
3173
3174 /* remove the unmapped one. */
3175 if (Req.idChunkUnmap != NIL_GMM_CHUNKID)
3176 {
3177 PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
3178 AssertRelease(pUnmappedChunk);
3179 pUnmappedChunk->pv = NULL;
3180 pUnmappedChunk->Core.Key = UINT32_MAX;
3181#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
3182 MMR3HeapFree(pUnmappedChunk);
3183#else
3184 MMR3UkHeapFree(pVM, pUnmappedChunk, MM_TAG_PGM_CHUNK_MAPPING);
3185#endif
3186 pVM->pgm.s.ChunkR3Map.c--;
3187
3188 /* Chunk removed, so clear the page map TBL as well (might still be referenced). */
3189 PGMPhysInvalidatePageMapTLB(pVM);
3190 }
3191 }
3192 else
3193 {
3194 AssertRC(rc);
3195#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
3196 MMR3HeapFree(pChunk);
3197#else
3198 MMR3UkHeapFree(pVM, pChunk, MM_TAG_PGM_CHUNK_MAPPING);
3199#endif
3200 pChunk = NULL;
3201 }
3202
3203 *ppChunk = pChunk;
3204 return rc;
3205}
3206
3207
3208/**
3209 * For VMMCALLRING3_PGM_MAP_CHUNK, considered internal.
3210 *
3211 * @returns see pgmR3PhysChunkMap.
3212 * @param pVM The VM handle.
3213 * @param idChunk The chunk to map.
3214 */
3215VMMR3DECL(int) PGMR3PhysChunkMap(PVM pVM, uint32_t idChunk)
3216{
3217 PPGMCHUNKR3MAP pChunk;
3218 int rc;
3219
3220 pgmLock(pVM);
3221 rc = pgmR3PhysChunkMap(pVM, idChunk, &pChunk);
3222 pgmUnlock(pVM);
3223 return rc;
3224}
3225
3226
3227/**
3228 * Invalidates the TLB for the ring-3 mapping cache.
3229 *
3230 * @param pVM The VM handle.
3231 */
3232VMMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM)
3233{
3234 pgmLock(pVM);
3235 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
3236 {
3237 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
3238 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
3239 }
3240 /* The page map TLB references chunks, so invalidate that one too. */
3241 PGMPhysInvalidatePageMapTLB(pVM);
3242 pgmUnlock(pVM);
3243}
3244
3245
3246/**
3247 * Response to VMMCALLRING3_PGM_ALLOCATE_LARGE_PAGE to allocate a large (2MB) page
3248 * for use with a nested paging PDE.
3249 *
3250 * @returns The following VBox status codes.
3251 * @retval VINF_SUCCESS on success.
3252 * @retval VINF_EM_NO_MEMORY if we're out of memory.
3253 *
3254 * @param pVM The VM handle.
3255 * @param GCPhys GC physical start address of the 2 MB range
3256 */
3257VMMR3DECL(int) PGMR3PhysAllocateLargeHandyPage(PVM pVM, RTGCPHYS GCPhys)
3258{
3259 pgmLock(pVM);
3260
3261 STAM_PROFILE_START(&pVM->pgm.s.StatAllocLargePage, a);
3262 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_LARGE_HANDY_PAGE, 0, NULL);
3263 STAM_PROFILE_STOP(&pVM->pgm.s.StatAllocLargePage, a);
3264 if (RT_SUCCESS(rc))
3265 {
3266 Assert(pVM->pgm.s.cLargeHandyPages == 1);
3267
3268 uint32_t idPage = pVM->pgm.s.aLargeHandyPage[0].idPage;
3269 RTHCPHYS HCPhys = pVM->pgm.s.aLargeHandyPage[0].HCPhysGCPhys;
3270
3271 void *pv;
3272
3273 /* Map the large page into our address space.
3274 *
3275 * Note: assuming that within the 2 MB range:
3276 * - GCPhys + PAGE_SIZE = HCPhys + PAGE_SIZE (whole point of this exercise)
3277 * - user space mapping is continuous as well
3278 * - page id (GCPhys) + 1 = page id (GCPhys + PAGE_SIZE)
3279 */
3280 rc = pgmPhysPageMapByPageID(pVM, idPage, HCPhys, &pv);
3281 AssertLogRelMsg(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc", idPage, HCPhys, rc));
3282
3283 if (RT_SUCCESS(rc))
3284 {
3285 /*
3286 * Clear the pages.
3287 */
3288 STAM_PROFILE_START(&pVM->pgm.s.StatClearLargePage, b);
3289 for (unsigned i = 0; i < _2M/PAGE_SIZE; i++)
3290 {
3291 ASMMemZeroPage(pv);
3292
3293 PPGMPAGE pPage;
3294 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
3295 AssertRC(rc);
3296
3297 Assert(PGM_PAGE_IS_ZERO(pPage));
3298 STAM_COUNTER_INC(&pVM->pgm.s.StatRZPageReplaceZero);
3299 pVM->pgm.s.cZeroPages--;
3300
3301 /*
3302 * Do the PGMPAGE modifications.
3303 */
3304 pVM->pgm.s.cPrivatePages++;
3305 PGM_PAGE_SET_HCPHYS(pPage, HCPhys);
3306 PGM_PAGE_SET_PAGEID(pPage, idPage);
3307 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
3308 PGM_PAGE_SET_PDE_TYPE(pPage, PGM_PAGE_PDE_TYPE_PDE);
3309
3310 /* Somewhat dirty assumption that page ids are increasing. */
3311 idPage++;
3312
3313 HCPhys += PAGE_SIZE;
3314 GCPhys += PAGE_SIZE;
3315
3316 pv = (void *)((uintptr_t)pv + PAGE_SIZE);
3317
3318 Log3(("PGMR3PhysAllocateLargePage: idPage=%#x HCPhys=%RGp\n", idPage, HCPhys));
3319 }
3320 STAM_PROFILE_STOP(&pVM->pgm.s.StatClearLargePage, b);
3321
3322 /* Flush all TLBs. */
3323 PGM_INVL_ALL_VCPU_TLBS(pVM);
3324 PGMPhysInvalidatePageMapTLB(pVM);
3325 }
3326 pVM->pgm.s.cLargeHandyPages = 0;
3327 }
3328
3329 pgmUnlock(pVM);
3330 return rc;
3331}
3332
3333
3334/**
3335 * Response to VM_FF_PGM_NEED_HANDY_PAGES and VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES.
3336 *
3337 * This function will also work the VM_FF_PGM_NO_MEMORY force action flag, to
3338 * signal and clear the out of memory condition. When contracted, this API is
3339 * used to try clear the condition when the user wants to resume.
3340 *
3341 * @returns The following VBox status codes.
3342 * @retval VINF_SUCCESS on success. FFs cleared.
3343 * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in
3344 * this case and it gets accompanied by VM_FF_PGM_NO_MEMORY.
3345 *
3346 * @param pVM The VM handle.
3347 *
3348 * @remarks The VINF_EM_NO_MEMORY status is for the benefit of the FF processing
3349 * in EM.cpp and shouldn't be propagated outside TRPM, HWACCM, EM and
3350 * pgmPhysEnsureHandyPage. There is one exception to this in the \#PF
3351 * handler.
3352 */
3353VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
3354{
3355 pgmLock(pVM);
3356
3357 /*
3358 * Allocate more pages, noting down the index of the first new page.
3359 */
3360 uint32_t iClear = pVM->pgm.s.cHandyPages;
3361 AssertMsgReturn(iClear <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d", iClear), VERR_INTERNAL_ERROR);
3362 Log(("PGMR3PhysAllocateHandyPages: %d -> %d\n", iClear, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
3363 int rcAlloc = VINF_SUCCESS;
3364 int rcSeed = VINF_SUCCESS;
3365 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
3366 while (rc == VERR_GMM_SEED_ME)
3367 {
3368 void *pvChunk;
3369 rcAlloc = rc = SUPR3PageAlloc(GMM_CHUNK_SIZE >> PAGE_SHIFT, &pvChunk);
3370 if (RT_SUCCESS(rc))
3371 {
3372 rcSeed = rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_SEED_CHUNK, (uintptr_t)pvChunk, NULL);
3373 if (RT_FAILURE(rc))
3374 SUPR3PageFree(pvChunk, GMM_CHUNK_SIZE >> PAGE_SHIFT);
3375 }
3376 if (RT_SUCCESS(rc))
3377 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
3378 }
3379
3380 if (RT_SUCCESS(rc))
3381 {
3382 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
3383 Assert(pVM->pgm.s.cHandyPages > 0);
3384 VM_FF_CLEAR(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
3385 VM_FF_CLEAR(pVM, VM_FF_PGM_NO_MEMORY);
3386
3387 /*
3388 * Clear the pages.
3389 */
3390 while (iClear < pVM->pgm.s.cHandyPages)
3391 {
3392 PGMMPAGEDESC pPage = &pVM->pgm.s.aHandyPages[iClear];
3393 void *pv;
3394 rc = pgmPhysPageMapByPageID(pVM, pPage->idPage, pPage->HCPhysGCPhys, &pv);
3395 AssertLogRelMsgBreak(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc", pPage->idPage, pPage->HCPhysGCPhys, rc));
3396 ASMMemZeroPage(pv);
3397 iClear++;
3398 Log3(("PGMR3PhysAllocateHandyPages: idPage=%#x HCPhys=%RGp\n", pPage->idPage, pPage->HCPhysGCPhys));
3399 }
3400 }
3401 else
3402 {
3403 /*
3404 * We should never get here unless there is a genuine shortage of
3405 * memory (or some internal error). Flag the error so the VM can be
3406 * suspended ASAP and the user informed. If we're totally out of
3407 * handy pages we will return failure.
3408 */
3409 /* Report the failure. */
3410 LogRel(("PGM: Failed to procure handy pages; rc=%Rrc rcAlloc=%Rrc rcSeed=%Rrc cHandyPages=%#x\n"
3411 " cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n",
3412 rc, rcAlloc, rcSeed,
3413 pVM->pgm.s.cHandyPages,
3414 pVM->pgm.s.cAllPages,
3415 pVM->pgm.s.cPrivatePages,
3416 pVM->pgm.s.cSharedPages,
3417 pVM->pgm.s.cZeroPages));
3418 if ( rc != VERR_NO_MEMORY
3419 && rc != VERR_LOCK_FAILED)
3420 {
3421 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
3422 {
3423 LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n",
3424 i, pVM->pgm.s.aHandyPages[i].HCPhysGCPhys, pVM->pgm.s.aHandyPages[i].idPage,
3425 pVM->pgm.s.aHandyPages[i].idSharedPage));
3426 uint32_t const idPage = pVM->pgm.s.aHandyPages[i].idPage;
3427 if (idPage != NIL_GMM_PAGEID)
3428 {
3429 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
3430 pRam;
3431 pRam = pRam->pNextR3)
3432 {
3433 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
3434 for (uint32_t iPage = 0; iPage < cPages; iPage++)
3435 if (PGM_PAGE_GET_PAGEID(&pRam->aPages[iPage]) == idPage)
3436 LogRel(("PGM: Used by %RGp %R[pgmpage] (%s)\n",
3437 pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pRam->aPages[iPage], pRam->pszDesc));
3438 }
3439 }
3440 }
3441 }
3442
3443 /* Set the FFs and adjust rc. */
3444 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
3445 VM_FF_SET(pVM, VM_FF_PGM_NO_MEMORY);
3446 if ( rc == VERR_NO_MEMORY
3447 || rc == VERR_LOCK_FAILED)
3448 rc = VINF_EM_NO_MEMORY;
3449 }
3450
3451 pgmUnlock(pVM);
3452 return rc;
3453}
3454
3455
3456/**
3457 * Frees the specified RAM page and replaces it with the ZERO page.
3458 *
3459 * This is used by ballooning, remapping MMIO2 and RAM reset.
3460 *
3461 * @param pVM Pointer to the shared VM structure.
3462 * @param pReq Pointer to the request.
3463 * @param pPage Pointer to the page structure.
3464 * @param GCPhys The guest physical address of the page, if applicable.
3465 *
3466 * @remarks The caller must own the PGM lock.
3467 */
3468static int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys)
3469{
3470 /*
3471 * Assert sanity.
3472 */
3473 Assert(PGMIsLockOwner(pVM));
3474 if (RT_UNLIKELY( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
3475 && PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW))
3476 {
3477 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
3478 return VMSetError(pVM, VERR_PGM_PHYS_NOT_RAM, RT_SRC_POS, "GCPhys=%RGp type=%d", GCPhys, PGM_PAGE_GET_TYPE(pPage));
3479 }
3480
3481 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ZERO)
3482 return VINF_SUCCESS;
3483
3484 const uint32_t idPage = PGM_PAGE_GET_PAGEID(pPage);
3485 Log3(("pgmPhysFreePage: idPage=%#x HCPhys=%RGp pPage=%R[pgmpage]\n", idPage, pPage));
3486 if (RT_UNLIKELY( idPage == NIL_GMM_PAGEID
3487 || idPage > GMM_PAGEID_LAST
3488 || PGM_PAGE_GET_CHUNKID(pPage) == NIL_GMM_CHUNKID))
3489 {
3490 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
3491 return VMSetError(pVM, VERR_PGM_PHYS_INVALID_PAGE_ID, RT_SRC_POS, "GCPhys=%RGp idPage=%#x", GCPhys, pPage);
3492 }
3493
3494 /* update page count stats. */
3495 if (PGM_PAGE_IS_SHARED(pPage))
3496 pVM->pgm.s.cSharedPages--;
3497 else
3498 pVM->pgm.s.cPrivatePages--;
3499 pVM->pgm.s.cZeroPages++;
3500
3501 /* Deal with write monitored pages. */
3502 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
3503 {
3504 PGM_PAGE_SET_WRITTEN_TO(pPage);
3505 pVM->pgm.s.cWrittenToPages++;
3506 }
3507
3508 /*
3509 * pPage = ZERO page.
3510 */
3511 PGM_PAGE_SET_HCPHYS(pPage, pVM->pgm.s.HCPhysZeroPg);
3512 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
3513 PGM_PAGE_SET_PAGEID(pPage, NIL_GMM_PAGEID);
3514 PGM_PAGE_SET_PDE_TYPE(pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
3515
3516 /* Flush physical page map TLB entry. */
3517 PGMPhysInvalidatePageMapTLBEntry(pVM, GCPhys);
3518
3519 /*
3520 * Make sure it's not in the handy page array.
3521 */
3522 for (uint32_t i = pVM->pgm.s.cHandyPages; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
3523 {
3524 if (pVM->pgm.s.aHandyPages[i].idPage == idPage)
3525 {
3526 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
3527 break;
3528 }
3529 if (pVM->pgm.s.aHandyPages[i].idSharedPage == idPage)
3530 {
3531 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
3532 break;
3533 }
3534 }
3535
3536 /*
3537 * Push it onto the page array.
3538 */
3539 uint32_t iPage = *pcPendingPages;
3540 Assert(iPage < PGMPHYS_FREE_PAGE_BATCH_SIZE);
3541 *pcPendingPages += 1;
3542
3543 pReq->aPages[iPage].idPage = idPage;
3544
3545 if (iPage + 1 < PGMPHYS_FREE_PAGE_BATCH_SIZE)
3546 return VINF_SUCCESS;
3547
3548 /*
3549 * Flush the pages.
3550 */
3551 int rc = GMMR3FreePagesPerform(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE);
3552 if (RT_SUCCESS(rc))
3553 {
3554 GMMR3FreePagesRePrep(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
3555 *pcPendingPages = 0;
3556 }
3557 return rc;
3558}
3559
3560
3561/**
3562 * Converts a GC physical address to a HC ring-3 pointer, with some
3563 * additional checks.
3564 *
3565 * @returns VBox status code.
3566 * @retval VINF_SUCCESS on success.
3567 * @retval VINF_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
3568 * access handler of some kind.
3569 * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
3570 * accesses or is odd in any way.
3571 * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
3572 *
3573 * @param pVM The VM handle.
3574 * @param GCPhys The GC physical address to convert.
3575 * @param fWritable Whether write access is required.
3576 * @param ppv Where to store the pointer corresponding to GCPhys on
3577 * success.
3578 */
3579VMMR3DECL(int) PGMR3PhysTlbGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, void **ppv)
3580{
3581 pgmLock(pVM);
3582
3583 PPGMRAMRANGE pRam;
3584 PPGMPAGE pPage;
3585 int rc = pgmPhysGetPageAndRangeEx(&pVM->pgm.s, GCPhys, &pPage, &pRam);
3586 if (RT_SUCCESS(rc))
3587 {
3588 if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage))
3589 rc = VINF_SUCCESS;
3590 else
3591 {
3592 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
3593 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
3594 else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
3595 {
3596 /** @todo Handle TLB loads of virtual handlers so ./test.sh can be made to work
3597 * in -norawr0 mode. */
3598 if (fWritable)
3599 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
3600 }
3601 else
3602 {
3603 /* Temporarily disabled physical handler(s), since the recompiler
3604 doesn't get notified when it's reset we'll have to pretend it's
3605 operating normally. */
3606 if (pgmHandlerPhysicalIsAll(pVM, GCPhys))
3607 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
3608 else
3609 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
3610 }
3611 }
3612 if (RT_SUCCESS(rc))
3613 {
3614 int rc2;
3615
3616 /* Make sure what we return is writable. */
3617 if (fWritable && rc != VINF_PGM_PHYS_TLB_CATCH_WRITE)
3618 switch (PGM_PAGE_GET_STATE(pPage))
3619 {
3620 case PGM_PAGE_STATE_ALLOCATED:
3621 break;
3622 case PGM_PAGE_STATE_ZERO:
3623 case PGM_PAGE_STATE_SHARED:
3624 case PGM_PAGE_STATE_WRITE_MONITORED:
3625 rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
3626 AssertLogRelRCReturn(rc2, rc2);
3627 break;
3628 }
3629
3630 /* Get a ring-3 mapping of the address. */
3631 PPGMPAGER3MAPTLBE pTlbe;
3632 rc2 = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
3633 AssertLogRelRCReturn(rc2, rc2);
3634 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
3635 /** @todo mapping/locking hell; this isn't horribly efficient since
3636 * pgmPhysPageLoadIntoTlb will repeat the lookup we've done here. */
3637
3638 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
3639 }
3640 else
3641 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));
3642
3643 /* else: handler catching all access, no pointer returned. */
3644 }
3645 else
3646 rc = VERR_PGM_PHYS_TLB_UNASSIGNED;
3647
3648 pgmUnlock(pVM);
3649 return rc;
3650}
3651
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette