VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMPhys.cpp@ 18812

Last change on this file since 18812 was 18812, checked in by vboxsync, 16 years ago

PGMPhys.cpp: spaces

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 113.1 KB
Line 
1/* $Id: PGMPhys.cpp 18812 2009-04-07 12:21:47Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_PGM_PHYS
27#include <VBox/pgm.h>
28#include <VBox/cpum.h>
29#include <VBox/iom.h>
30#include <VBox/sup.h>
31#include <VBox/mm.h>
32#include <VBox/stam.h>
33#include <VBox/rem.h>
34#include <VBox/csam.h>
35#include "PGMInternal.h"
36#include <VBox/vm.h>
37#include <VBox/dbg.h>
38#include <VBox/param.h>
39#include <VBox/err.h>
40#include <iprt/assert.h>
41#include <iprt/alloc.h>
42#include <iprt/asm.h>
43#include <VBox/log.h>
44#include <iprt/thread.h>
45#include <iprt/string.h>
46
47
48/*******************************************************************************
49* Defined Constants And Macros *
50*******************************************************************************/
51/** The number of pages to free in one batch. */
52#define PGMPHYS_FREE_PAGE_BATCH_SIZE 128
53
54
55/*******************************************************************************
56* Internal Functions *
57*******************************************************************************/
58static DECLCALLBACK(int) pgmR3PhysRomWriteHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
59static int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys);
60
61
62/*
63 * PGMR3PhysReadU8-64
64 * PGMR3PhysWriteU8-64
65 */
66#define PGMPHYSFN_READNAME PGMR3PhysReadU8
67#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8
68#define PGMPHYS_DATASIZE 1
69#define PGMPHYS_DATATYPE uint8_t
70#include "PGMPhysRWTmpl.h"
71
72#define PGMPHYSFN_READNAME PGMR3PhysReadU16
73#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16
74#define PGMPHYS_DATASIZE 2
75#define PGMPHYS_DATATYPE uint16_t
76#include "PGMPhysRWTmpl.h"
77
78#define PGMPHYSFN_READNAME PGMR3PhysReadU32
79#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32
80#define PGMPHYS_DATASIZE 4
81#define PGMPHYS_DATATYPE uint32_t
82#include "PGMPhysRWTmpl.h"
83
84#define PGMPHYSFN_READNAME PGMR3PhysReadU64
85#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64
86#define PGMPHYS_DATASIZE 8
87#define PGMPHYS_DATATYPE uint64_t
88#include "PGMPhysRWTmpl.h"
89
90
91/**
92 * EMT worker for PGMR3PhysReadExternal.
93 */
94static DECLCALLBACK(int) pgmR3PhysReadExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, void *pvBuf, size_t cbRead)
95{
96 PGMPhysRead(pVM, *pGCPhys, pvBuf, cbRead);
97 return VINF_SUCCESS;
98}
99
100
101/**
102 * Write to physical memory, external users.
103 *
104 * @returns VBox status code.
105 * @retval VINF_SUCCESS.
106 *
107 * @param pVM VM Handle.
108 * @param GCPhys Physical address to write to.
109 * @param pvBuf What to write.
110 * @param cbWrite How many bytes to write.
111 *
112 * @thread Any but EMTs.
113 */
114VMMR3DECL(int) PGMR3PhysReadExternal(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead)
115{
116 VM_ASSERT_OTHER_THREAD(pVM);
117
118 AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
119 LogFlow(("PGMR3PhysReadExternal: %RGp %d\n", GCPhys, cbRead));
120
121 pgmLock(pVM);
122
123 /*
124 * Copy loop on ram ranges.
125 */
126 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
127 for (;;)
128 {
129 /* Find range. */
130 while (pRam && GCPhys > pRam->GCPhysLast)
131 pRam = pRam->CTX_SUFF(pNext);
132 /* Inside range or not? */
133 if (pRam && GCPhys >= pRam->GCPhys)
134 {
135 /*
136 * Must work our way thru this page by page.
137 */
138 RTGCPHYS off = GCPhys - pRam->GCPhys;
139 while (off < pRam->cb)
140 {
141 unsigned iPage = off >> PAGE_SHIFT;
142 PPGMPAGE pPage = &pRam->aPages[iPage];
143
144 /*
145 * If the page has an ALL access handler, we'll have to
146 * delegate the job to EMT.
147 */
148 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
149 {
150 pgmUnlock(pVM);
151
152 PVMREQ pReq = NULL;
153 int rc = VMR3ReqCall(pVM, VMREQDEST_ANY, &pReq, RT_INDEFINITE_WAIT,
154 (PFNRT)pgmR3PhysReadExternalEMT, 4, pVM, &GCPhys, pvBuf, cbRead);
155 if (RT_SUCCESS(rc))
156 {
157 rc = pReq->iStatus;
158 VMR3ReqFree(pReq);
159 }
160 return rc;
161 }
162 Assert(!PGM_PAGE_IS_MMIO(pPage));
163
164 /*
165 * Simple stuff, go ahead.
166 */
167 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
168 if (cb > cbRead)
169 cb = cbRead;
170 const void *pvSrc;
171 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc);
172 if (RT_SUCCESS(rc))
173 memcpy(pvBuf, pvSrc, cb);
174 else
175 {
176 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
177 pRam->GCPhys + off, pPage, rc));
178 memset(pvBuf, 0xff, cb);
179 }
180
181 /* next page */
182 if (cb >= cbRead)
183 {
184 pgmUnlock(pVM);
185 return VINF_SUCCESS;
186 }
187 cbRead -= cb;
188 off += cb;
189 GCPhys += cb;
190 pvBuf = (char *)pvBuf + cb;
191 } /* walk pages in ram range. */
192 }
193 else
194 {
195 LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
196
197 /*
198 * Unassigned address space.
199 */
200 if (!pRam)
201 break;
202 size_t cb = pRam->GCPhys - GCPhys;
203 if (cb >= cbRead)
204 {
205 memset(pvBuf, 0xff, cbRead);
206 break;
207 }
208 memset(pvBuf, 0xff, cb);
209
210 cbRead -= cb;
211 pvBuf = (char *)pvBuf + cb;
212 GCPhys += cb;
213 }
214 } /* Ram range walk */
215
216 pgmUnlock(pVM);
217
218 return VINF_SUCCESS;
219}
220
221
222/**
223 * EMT worker for PGMR3PhysWriteExternal.
224 */
225static DECLCALLBACK(int) pgmR3PhysWriteExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, const void *pvBuf, size_t cbWrite)
226{
227 /** @todo VERR_EM_NO_MEMORY */
228 PGMPhysWrite(pVM, *pGCPhys, pvBuf, cbWrite);
229 return VINF_SUCCESS;
230}
231
232
233/**
234 * Write to physical memory, external users.
235 *
236 * @returns VBox status code.
237 * @retval VINF_SUCCESS.
238 * @retval VERR_EM_NO_MEMORY.
239 *
240 * @param pVM VM Handle.
241 * @param GCPhys Physical address to write to.
242 * @param pvBuf What to write.
243 * @param cbWrite How many bytes to write.
244 *
245 * @thread Any but EMTs.
246 */
247VMMDECL(int) PGMR3PhysWriteExternal(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite)
248{
249 VM_ASSERT_OTHER_THREAD(pVM);
250
251 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites, ("Calling PGMR3PhysWriteExternal after pgmR3Save()!\n"));
252 AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
253 LogFlow(("PGMR3PhysWriteExternal: %RGp %d\n", GCPhys, cbWrite));
254
255 pgmLock(pVM);
256
257 /*
258 * Copy loop on ram ranges, stop when we hit something difficult.
259 */
260 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
261 for (;;)
262 {
263 /* Find range. */
264 while (pRam && GCPhys > pRam->GCPhysLast)
265 pRam = pRam->CTX_SUFF(pNext);
266 /* Inside range or not? */
267 if (pRam && GCPhys >= pRam->GCPhys)
268 {
269 /*
270 * Must work our way thru this page by page.
271 */
272 RTGCPTR off = GCPhys - pRam->GCPhys;
273 while (off < pRam->cb)
274 {
275 RTGCPTR iPage = off >> PAGE_SHIFT;
276 PPGMPAGE pPage = &pRam->aPages[iPage];
277
278 /*
279 * It the page is in any way problematic, we have to
280 * do the work on the EMT. Anything that needs to be made
281 * writable or involves access handlers is problematic.
282 */
283 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
284 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
285 {
286 pgmUnlock(pVM);
287
288 PVMREQ pReq = NULL;
289 int rc = VMR3ReqCall(pVM, VMREQDEST_ANY, &pReq, RT_INDEFINITE_WAIT,
290 (PFNRT)pgmR3PhysWriteExternalEMT, 4, pVM, &GCPhys, pvBuf, cbWrite);
291 if (RT_SUCCESS(rc))
292 {
293 rc = pReq->iStatus;
294 VMR3ReqFree(pReq);
295 }
296 return rc;
297 }
298 Assert(!PGM_PAGE_IS_MMIO(pPage));
299
300 /*
301 * Simple stuff, go ahead.
302 */
303 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
304 if (cb > cbWrite)
305 cb = cbWrite;
306 void *pvDst;
307 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst);
308 if (RT_SUCCESS(rc))
309 memcpy(pvDst, pvBuf, cb);
310 else
311 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
312 pRam->GCPhys + off, pPage, rc));
313
314 /* next page */
315 if (cb >= cbWrite)
316 {
317 pgmUnlock(pVM);
318 return VINF_SUCCESS;
319 }
320
321 cbWrite -= cb;
322 off += cb;
323 GCPhys += cb;
324 pvBuf = (const char *)pvBuf + cb;
325 } /* walk pages in ram range */
326 }
327 else
328 {
329 /*
330 * Unassigned address space, skip it.
331 */
332 if (!pRam)
333 break;
334 size_t cb = pRam->GCPhys - GCPhys;
335 if (cb >= cbWrite)
336 break;
337 cbWrite -= cb;
338 pvBuf = (const char *)pvBuf + cb;
339 GCPhys += cb;
340 }
341 } /* Ram range walk */
342
343 pgmUnlock(pVM);
344 return VINF_SUCCESS;
345}
346
347
348/**
349 * VMR3ReqCall worker for PGMR3PhysGCPhys2CCPtrExternal to make pages writable.
350 *
351 * @returns see PGMR3PhysGCPhys2CCPtrExternal
352 * @param pVM The VM handle.
353 * @param pGCPhys Pointer to the guest physical address.
354 * @param ppv Where to store the mapping address.
355 * @param pLock Where to store the lock.
356 */
357static DECLCALLBACK(int) pgmR3PhysGCPhys2CCPtrDelegated(PVM pVM, PRTGCPHYS pGCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
358{
359 /*
360 * Just hand it to PGMPhysGCPhys2CCPtr and check that it's not a page with
361 * an access handler after it succeeds.
362 */
363 int rc = pgmLock(pVM);
364 AssertRCReturn(rc, rc);
365
366 rc = PGMPhysGCPhys2CCPtr(pVM, *pGCPhys, ppv, pLock);
367 if (RT_SUCCESS(rc))
368 {
369 PPGMPAGEMAPTLBE pTlbe;
370 int rc2 = pgmPhysPageQueryTlbe(&pVM->pgm.s, *pGCPhys, &pTlbe);
371 AssertFatalRC(rc2);
372 PPGMPAGE pPage = pTlbe->pPage;
373#if 1
374 if (PGM_PAGE_IS_MMIO(pPage))
375#else
376 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
377#endif
378 {
379 PGMPhysReleasePageMappingLock(pVM, pLock);
380 rc = VERR_PGM_PHYS_PAGE_RESERVED;
381 }
382 }
383
384 pgmUnlock(pVM);
385 return rc;
386}
387
388
389/**
390 * Requests the mapping of a guest page into ring-3, external threads.
391 *
392 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
393 * release it.
394 *
395 * This API will assume your intention is to write to the page, and will
396 * therefore replace shared and zero pages. If you do not intend to modify the
397 * page, use the PGMR3PhysGCPhys2CCPtrReadOnlyExternal() API.
398 *
399 * @returns VBox status code.
400 * @retval VINF_SUCCESS on success.
401 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
402 * backing or if the page has any active access handlers. The caller
403 * must fall back on using PGMR3PhysWriteExternal.
404 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
405 *
406 * @param pVM The VM handle.
407 * @param GCPhys The guest physical address of the page that should be mapped.
408 * @param ppv Where to store the address corresponding to GCPhys.
409 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
410 *
411 * @remark Avoid calling this API from within critical sections (other than the
412 * PGM one) because of the deadlock risk when we have to delegating the
413 * task to an EMT.
414 * @thread Any.
415 */
416VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrExternal(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
417{
418 AssertPtr(ppv);
419 AssertPtr(pLock);
420
421 int rc = pgmLock(pVM);
422 AssertRCReturn(rc, rc);
423
424 /*
425 * Query the Physical TLB entry for the page (may fail).
426 */
427 PPGMPAGEMAPTLBE pTlbe;
428 rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
429 if (RT_SUCCESS(rc))
430 {
431 PPGMPAGE pPage = pTlbe->pPage;
432#if 1
433 if (PGM_PAGE_IS_MMIO(pPage))
434 rc = VERR_PGM_PHYS_PAGE_RESERVED;
435#else
436 if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
437 rc = VERR_PGM_PHYS_PAGE_RESERVED;
438#endif
439 else
440 {
441 /*
442 * If the page is shared, the zero page, or being write monitored
443 * it must be converted to an page that's writable if possible.
444 * This has to be done on an EMT.
445 */
446 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED))
447 {
448 pgmUnlock(pVM);
449
450 PVMREQ pReq = NULL;
451 rc = VMR3ReqCall(pVM, VMREQDEST_ANY, &pReq, RT_INDEFINITE_WAIT,
452 (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4, pVM, &GCPhys, ppv, pLock);
453 if (RT_SUCCESS(rc))
454 {
455 rc = pReq->iStatus;
456 VMR3ReqFree(pReq);
457 }
458 return rc;
459 }
460
461 /*
462 * Now, just perform the locking and calculate the return address.
463 */
464 PPGMPAGEMAP pMap = pTlbe->pMap;
465 pMap->cRefs++;
466#if 0 /** @todo implement locking properly */
467 if (RT_LIKELY(pPage->cLocks != PGM_PAGE_MAX_LOCKS))
468 if (RT_UNLIKELY(++pPage->cLocks == PGM_PAGE_MAX_LOCKS))
469 {
470 AssertMsgFailed(("%RGp is entering permanent locked state!\n", GCPhys));
471 pMap->cRefs++; /* Extra ref to prevent it from going away. */
472 }
473#endif
474 *ppv = (void *)((uintptr_t)pTlbe->pv | (GCPhys & PAGE_OFFSET_MASK));
475 pLock->pvPage = pPage;
476 pLock->pvMap = pMap;
477 }
478 }
479
480 pgmUnlock(pVM);
481 return rc;
482}
483
484
485/**
486 * Requests the mapping of a guest page into ring-3, external threads.
487 *
488 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
489 * release it.
490 *
491 * @returns VBox status code.
492 * @retval VINF_SUCCESS on success.
493 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
494 * backing or if the page as an active ALL access handler. The caller
495 * must fall back on using PGMPhysRead.
496 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
497 *
498 * @param pVM The VM handle.
499 * @param GCPhys The guest physical address of the page that should be mapped.
500 * @param ppv Where to store the address corresponding to GCPhys.
501 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
502 *
503 * @remark Avoid calling this API from within critical sections (other than
504 * the PGM one) because of the deadlock risk.
505 * @thread Any.
506 */
507VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrReadOnlyExternal(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
508{
509 int rc = pgmLock(pVM);
510 AssertRCReturn(rc, rc);
511
512 /*
513 * Query the Physical TLB entry for the page (may fail).
514 */
515 PPGMPAGEMAPTLBE pTlbe;
516 rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
517 if (RT_SUCCESS(rc))
518 {
519 PPGMPAGE pPage = pTlbe->pPage;
520#if 1
521 /* MMIO pages doesn't have any readable backing. */
522 if (PGM_PAGE_IS_MMIO(pPage))
523 rc = VERR_PGM_PHYS_PAGE_RESERVED;
524#else
525 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
526 rc = VERR_PGM_PHYS_PAGE_RESERVED;
527#endif
528 else
529 {
530 /*
531 * Now, just perform the locking and calculate the return address.
532 */
533 PPGMPAGEMAP pMap = pTlbe->pMap;
534 pMap->cRefs++;
535#if 0 /** @todo implement locking properly */
536 if (RT_LIKELY(pPage->cLocks != PGM_PAGE_MAX_LOCKS))
537 if (RT_UNLIKELY(++pPage->cLocks == PGM_PAGE_MAX_LOCKS))
538 {
539 AssertMsgFailed(("%RGp is entering permanent locked state!\n", GCPhys));
540 pMap->cRefs++; /* Extra ref to prevent it from going away. */
541 }
542#endif
543 *ppv = (void *)((uintptr_t)pTlbe->pv | (GCPhys & PAGE_OFFSET_MASK));
544 pLock->pvPage = pPage;
545 pLock->pvMap = pMap;
546 }
547 }
548
549 pgmUnlock(pVM);
550 return rc;
551}
552
553
554/**
555 * Relinks the RAM ranges using the pSelfRC and pSelfR0 pointers.
556 *
557 * Called when anything was relocated.
558 *
559 * @param pVM Pointer to the shared VM structure.
560 */
561void pgmR3PhysRelinkRamRanges(PVM pVM)
562{
563 PPGMRAMRANGE pCur;
564
565#ifdef VBOX_STRICT
566 for (pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
567 {
568 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfR0 == MMHyperCCToR0(pVM, pCur));
569 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfRC == MMHyperCCToRC(pVM, pCur));
570 Assert((pCur->GCPhys & PAGE_OFFSET_MASK) == 0);
571 Assert((pCur->GCPhysLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
572 Assert((pCur->cb & PAGE_OFFSET_MASK) == 0);
573 Assert(pCur->cb == pCur->GCPhysLast - pCur->GCPhys + 1);
574 for (PPGMRAMRANGE pCur2 = pVM->pgm.s.pRamRangesR3; pCur2; pCur2 = pCur2->pNextR3)
575 Assert( pCur2 == pCur
576 || strcmp(pCur2->pszDesc, pCur->pszDesc)); /** @todo fix MMIO ranges!! */
577 }
578#endif
579
580 pCur = pVM->pgm.s.pRamRangesR3;
581 if (pCur)
582 {
583 pVM->pgm.s.pRamRangesR0 = pCur->pSelfR0;
584 pVM->pgm.s.pRamRangesRC = pCur->pSelfRC;
585
586 for (; pCur->pNextR3; pCur = pCur->pNextR3)
587 {
588 pCur->pNextR0 = pCur->pNextR3->pSelfR0;
589 pCur->pNextRC = pCur->pNextR3->pSelfRC;
590 }
591
592 Assert(pCur->pNextR0 == NIL_RTR0PTR);
593 Assert(pCur->pNextRC == NIL_RTRCPTR);
594 }
595 else
596 {
597 Assert(pVM->pgm.s.pRamRangesR0 == NIL_RTR0PTR);
598 Assert(pVM->pgm.s.pRamRangesRC == NIL_RTRCPTR);
599 }
600}
601
602
603/**
604 * Links a new RAM range into the list.
605 *
606 * @param pVM Pointer to the shared VM structure.
607 * @param pNew Pointer to the new list entry.
608 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
609 */
610static void pgmR3PhysLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, PPGMRAMRANGE pPrev)
611{
612 AssertMsg(pNew->pszDesc, ("%RGp-%RGp\n", pNew->GCPhys, pNew->GCPhysLast));
613 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfR0 == MMHyperCCToR0(pVM, pNew));
614 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfRC == MMHyperCCToRC(pVM, pNew));
615
616 pgmLock(pVM);
617
618 PPGMRAMRANGE pRam = pPrev ? pPrev->pNextR3 : pVM->pgm.s.pRamRangesR3;
619 pNew->pNextR3 = pRam;
620 pNew->pNextR0 = pRam ? pRam->pSelfR0 : NIL_RTR0PTR;
621 pNew->pNextRC = pRam ? pRam->pSelfRC : NIL_RTRCPTR;
622
623 if (pPrev)
624 {
625 pPrev->pNextR3 = pNew;
626 pPrev->pNextR0 = pNew->pSelfR0;
627 pPrev->pNextRC = pNew->pSelfRC;
628 }
629 else
630 {
631 pVM->pgm.s.pRamRangesR3 = pNew;
632 pVM->pgm.s.pRamRangesR0 = pNew->pSelfR0;
633 pVM->pgm.s.pRamRangesRC = pNew->pSelfRC;
634 }
635
636 pgmUnlock(pVM);
637}
638
639
640/**
641 * Unlink an existing RAM range from the list.
642 *
643 * @param pVM Pointer to the shared VM structure.
644 * @param pRam Pointer to the new list entry.
645 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
646 */
647static void pgmR3PhysUnlinkRamRange2(PVM pVM, PPGMRAMRANGE pRam, PPGMRAMRANGE pPrev)
648{
649 Assert(pPrev ? pPrev->pNextR3 == pRam : pVM->pgm.s.pRamRangesR3 == pRam);
650 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfR0 == MMHyperCCToR0(pVM, pRam));
651 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfRC == MMHyperCCToRC(pVM, pRam));
652
653 pgmLock(pVM);
654
655 PPGMRAMRANGE pNext = pRam->pNextR3;
656 if (pPrev)
657 {
658 pPrev->pNextR3 = pNext;
659 pPrev->pNextR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
660 pPrev->pNextRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
661 }
662 else
663 {
664 Assert(pVM->pgm.s.pRamRangesR3 == pRam);
665 pVM->pgm.s.pRamRangesR3 = pNext;
666 pVM->pgm.s.pRamRangesR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
667 pVM->pgm.s.pRamRangesRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
668 }
669
670 pgmUnlock(pVM);
671}
672
673
674/**
675 * Unlink an existing RAM range from the list.
676 *
677 * @param pVM Pointer to the shared VM structure.
678 * @param pRam Pointer to the new list entry.
679 */
680static void pgmR3PhysUnlinkRamRange(PVM pVM, PPGMRAMRANGE pRam)
681{
682 pgmLock(pVM);
683
684 /* find prev. */
685 PPGMRAMRANGE pPrev = NULL;
686 PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3;
687 while (pCur != pRam)
688 {
689 pPrev = pCur;
690 pCur = pCur->pNextR3;
691 }
692 AssertFatal(pCur);
693
694 pgmR3PhysUnlinkRamRange2(pVM, pRam, pPrev);
695
696 pgmUnlock(pVM);
697}
698
699
700/**
701 * Frees a range of pages, replacing them with ZERO pages of the specified type.
702 *
703 * @returns VBox status code.
704 * @param pVM The VM handle.
705 * @param pRam The RAM range in which the pages resides.
706 * @param GCPhys The address of the first page.
707 * @param GCPhysLast The address of the last page.
708 * @param uType The page type to replace then with.
709 */
710static int pgmR3PhysFreePageRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, uint8_t uType)
711{
712 uint32_t cPendingPages = 0;
713 PGMMFREEPAGESREQ pReq;
714 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
715 AssertLogRelRCReturn(rc, rc);
716
717 /* Itegerate the pages. */
718 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
719 uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1;
720 while (cPagesLeft-- > 0)
721 {
722 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
723 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
724
725 PGM_PAGE_SET_TYPE(pPageDst, uType);
726
727 GCPhys += PAGE_SIZE;
728 pPageDst++;
729 }
730
731 if (cPendingPages)
732 {
733 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
734 AssertLogRelRCReturn(rc, rc);
735 }
736 GMMR3FreePagesCleanup(pReq);
737
738 return rc;
739}
740
741
742/**
743 * PGMR3PhysRegisterRam worker that initializes and links a RAM range.
744 *
745 * @param pVM The VM handle.
746 * @param pNew The new RAM range.
747 * @param GCPhys The address of the RAM range.
748 * @param GCPhysLast The last address of the RAM range.
749 * @param RCPtrNew The RC address if the range is floating. NIL_RTRCPTR
750 * if in HMA.
751 * @param R0PtrNew Ditto for R0.
752 * @param pszDesc The description.
753 * @param pPrev The previous RAM range (for linking).
754 */
755static void pgmR3PhysInitAndLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
756 RTRCPTR RCPtrNew, RTR0PTR R0PtrNew, const char *pszDesc, PPGMRAMRANGE pPrev)
757{
758 /*
759 * Initialize the range.
760 */
761 pNew->pSelfR0 = R0PtrNew != NIL_RTR0PTR ? R0PtrNew : MMHyperCCToR0(pVM, pNew);
762 pNew->pSelfRC = RCPtrNew != NIL_RTRCPTR ? RCPtrNew : MMHyperCCToRC(pVM, pNew);
763 pNew->GCPhys = GCPhys;
764 pNew->GCPhysLast = GCPhysLast;
765 pNew->cb = GCPhysLast - GCPhys + 1;
766 pNew->pszDesc = pszDesc;
767 pNew->fFlags = RCPtrNew != NIL_RTR0PTR ? PGM_RAM_RANGE_FLAGS_FLOATING : 0;
768 pNew->pvR3 = NULL;
769
770 uint32_t const cPages = pNew->cb >> PAGE_SHIFT;
771 RTGCPHYS iPage = cPages;
772 while (iPage-- > 0)
773 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM);
774
775 /* Update the page count stats. */
776 pVM->pgm.s.cZeroPages += cPages;
777 pVM->pgm.s.cAllPages += cPages;
778
779 /*
780 * Link it.
781 */
782 pgmR3PhysLinkRamRange(pVM, pNew, pPrev);
783}
784
785
786/**
787 * Relocate a floating RAM range.
788 *
789 * @copydoc FNPGMRELOCATE.
790 */
791static DECLCALLBACK(bool) pgmR3PhysRamRangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew, PGMRELOCATECALL enmMode, void *pvUser)
792{
793 PPGMRAMRANGE pRam = (PPGMRAMRANGE)pvUser;
794 Assert(pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING);
795 Assert(pRam->pSelfRC == GCPtrOld + PAGE_SIZE);
796
797 switch (enmMode)
798 {
799 case PGMRELOCATECALL_SUGGEST:
800 return true;
801 case PGMRELOCATECALL_RELOCATE:
802 {
803 /* Update myself and then relink all the ranges. */
804 pgmLock(pVM);
805 pRam->pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE);
806 pgmR3PhysRelinkRamRanges(pVM);
807 pgmUnlock(pVM);
808 return true;
809 }
810
811 default:
812 AssertFailedReturn(false);
813 }
814}
815
816
817/**
818 * PGMR3PhysRegisterRam worker that registers a high chunk.
819 *
820 * @returns VBox status code.
821 * @param pVM The VM handle.
822 * @param GCPhys The address of the RAM.
823 * @param cRamPages The number of RAM pages to register.
824 * @param cbChunk The size of the PGMRAMRANGE guest mapping.
825 * @param iChunk The chunk number.
826 * @param pszDesc The RAM range description.
827 * @param ppPrev Previous RAM range pointer. In/Out.
828 */
829static int pgmR3PhysRegisterHighRamChunk(PVM pVM, RTGCPHYS GCPhys, uint32_t cRamPages,
830 uint32_t cbChunk, uint32_t iChunk, const char *pszDesc,
831 PPGMRAMRANGE *ppPrev)
832{
833 const char *pszDescChunk = iChunk == 0
834 ? pszDesc
835 : MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s (#%u)", pszDesc, iChunk + 1);
836 AssertReturn(pszDescChunk, VERR_NO_MEMORY);
837
838 /*
839 * Allocate memory for the new chunk.
840 */
841 size_t const cChunkPages = RT_ALIGN_Z(RT_UOFFSETOF(PGMRAMRANGE, aPages[cRamPages]), PAGE_SIZE) >> PAGE_SHIFT;
842 PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
843 AssertReturn(paChunkPages, VERR_NO_TMP_MEMORY);
844 RTR0PTR R0PtrChunk = NIL_RTR0PTR;
845 void *pvChunk = NULL;
846 int rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk,
847#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
848 VMMIsHwVirtExtForced(pVM) ? &R0PtrChunk : NULL,
849#else
850 NULL,
851#endif
852 paChunkPages);
853 if (RT_SUCCESS(rc))
854 {
855#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
856 if (!VMMIsHwVirtExtForced(pVM))
857 R0PtrChunk = NIL_RTR0PTR;
858#else
859 R0PtrChunk = (uintptr_t)pvChunk;
860#endif
861 memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
862
863 PPGMRAMRANGE pNew = (PPGMRAMRANGE)pvChunk;
864
865 /*
866 * Create a mapping and map the pages into it.
867 * We push these in below the HMA.
868 */
869 RTGCPTR GCPtrChunkMap = pVM->pgm.s.GCPtrPrevRamRangeMapping - cbChunk;
870 rc = PGMR3MapPT(pVM, GCPtrChunkMap, cbChunk, 0 /*fFlags*/, pgmR3PhysRamRangeRelocate, pNew, pszDescChunk);
871 if (RT_SUCCESS(rc))
872 {
873 pVM->pgm.s.GCPtrPrevRamRangeMapping = GCPtrChunkMap;
874
875 RTGCPTR const GCPtrChunk = GCPtrChunkMap + PAGE_SIZE;
876 RTGCPTR GCPtrPage = GCPtrChunk;
877 for (uint32_t iPage = 0; iPage < cChunkPages && RT_SUCCESS(rc); iPage++, GCPtrPage += PAGE_SIZE)
878 rc = PGMMap(pVM, GCPtrPage, paChunkPages[iPage].Phys, PAGE_SIZE, 0);
879 if (RT_SUCCESS(rc))
880 {
881 /*
882 * Ok, init and link the range.
883 */
884 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhys + ((RTGCPHYS)cRamPages << PAGE_SHIFT) - 1,
885 (RTRCPTR)GCPtrChunk, R0PtrChunk, pszDescChunk, *ppPrev);
886 *ppPrev = pNew;
887 }
888 }
889
890 if (RT_FAILURE(rc))
891 SUPR3PageFreeEx(pvChunk, cChunkPages);
892 }
893
894 RTMemTmpFree(paChunkPages);
895 return rc;
896}
897
898
899/**
900 * Sets up a range RAM.
901 *
902 * This will check for conflicting registrations, make a resource
903 * reservation for the memory (with GMM), and setup the per-page
904 * tracking structures (PGMPAGE).
905 *
906 * @returns VBox stutus code.
907 * @param pVM Pointer to the shared VM structure.
908 * @param GCPhys The physical address of the RAM.
909 * @param cb The size of the RAM.
910 * @param pszDesc The description - not copied, so, don't free or change it.
911 */
912VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc)
913{
914 /*
915 * Validate input.
916 */
917 Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc));
918 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
919 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
920 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
921 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
922 AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER);
923 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
924 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
925
926 /*
927 * Find range location and check for conflicts.
928 * (We don't lock here because the locking by EMT is only required on update.)
929 */
930 PPGMRAMRANGE pPrev = NULL;
931 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
932 while (pRam && GCPhysLast >= pRam->GCPhys)
933 {
934 if ( GCPhysLast >= pRam->GCPhys
935 && GCPhys <= pRam->GCPhysLast)
936 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
937 GCPhys, GCPhysLast, pszDesc,
938 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
939 VERR_PGM_RAM_CONFLICT);
940
941 /* next */
942 pPrev = pRam;
943 pRam = pRam->pNextR3;
944 }
945
946 /*
947 * Register it with GMM (the API bitches).
948 */
949 const RTGCPHYS cPages = cb >> PAGE_SHIFT;
950 int rc = MMR3IncreaseBaseReservation(pVM, cPages);
951 if (RT_FAILURE(rc))
952 return rc;
953
954 if ( GCPhys >= _4G
955 && cPages > 256)
956 {
957 /*
958 * The PGMRAMRANGE structures for the high memory can get very big.
959 * In order to avoid SUPR3PageAllocEx allocation failures due to the
960 * allocation size limit there and also to avoid being unable to find
961 * guest mapping space for them, we split this memory up into 4MB in
962 * (potential) raw-mode configs and 16MB chunks in forced AMD-V/VT-x
963 * mode.
964 *
965 * The first and last page of each mapping are guard pages and marked
966 * not-present. So, we've got 4186112 and 16769024 bytes available for
967 * the PGMRAMRANGE structure.
968 *
969 * Note! The sizes used here will influence the saved state.
970 */
971 uint32_t cbChunk;
972 uint32_t cPagesPerChunk;
973 if (VMMIsHwVirtExtForced(pVM))
974 {
975 cbChunk = 16U*_1M;
976 cPagesPerChunk = 1048048; /* max ~1048059 */
977 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2);
978 }
979 else
980 {
981 cbChunk = 4U*_1M;
982 cPagesPerChunk = 261616; /* max ~261627 */
983 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 261616 < 4U*_1M - PAGE_SIZE * 2);
984 }
985 AssertRelease(RT_UOFFSETOF(PGMRAMRANGE, aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
986
987 RTGCPHYS cPagesLeft = cPages;
988 RTGCPHYS GCPhysChunk = GCPhys;
989 uint32_t iChunk = 0;
990 while (cPagesLeft > 0)
991 {
992 uint32_t cPagesInChunk = cPagesLeft;
993 if (cPagesInChunk > cPagesPerChunk)
994 cPagesInChunk = cPagesPerChunk;
995
996 rc = pgmR3PhysRegisterHighRamChunk(pVM, GCPhysChunk, cPagesInChunk, cbChunk, iChunk, pszDesc, &pPrev);
997 AssertRCReturn(rc, rc);
998
999 /* advance */
1000 GCPhysChunk += (RTGCPHYS)cPagesInChunk << PAGE_SHIFT;
1001 cPagesLeft -= cPagesInChunk;
1002 iChunk++;
1003 }
1004 }
1005 else
1006 {
1007 /*
1008 * Allocate, initialize and link the new RAM range.
1009 */
1010 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
1011 PPGMRAMRANGE pNew;
1012 rc = MMR3HyperAllocOnceNoRel(pVM, cbRamRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1013 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
1014
1015 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhysLast, NIL_RTRCPTR, NIL_RTR0PTR, pszDesc, pPrev);
1016 }
1017
1018 /*
1019 * Notify REM.
1020 */
1021 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_RAM);
1022
1023 return VINF_SUCCESS;
1024}
1025
1026
1027/**
1028 * Resets (zeros) the RAM.
1029 *
1030 * ASSUMES that the caller owns the PGM lock.
1031 *
1032 * @returns VBox status code.
1033 * @param pVM Pointer to the shared VM structure.
1034 */
1035int pgmR3PhysRamReset(PVM pVM)
1036{
1037 /*
1038 * We batch up pages before freeing them.
1039 */
1040 uint32_t cPendingPages = 0;
1041 PGMMFREEPAGESREQ pReq;
1042 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1043 AssertLogRelRCReturn(rc, rc);
1044
1045 /*
1046 * Walk the ram ranges.
1047 */
1048 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
1049 {
1050 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
1051 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
1052
1053 if (!pVM->pgm.s.fRamPreAlloc)
1054 {
1055 /* Replace all RAM pages by ZERO pages. */
1056 while (iPage-- > 0)
1057 {
1058 PPGMPAGE pPage = &pRam->aPages[iPage];
1059 switch (PGM_PAGE_GET_TYPE(pPage))
1060 {
1061 case PGMPAGETYPE_RAM:
1062 if (!PGM_PAGE_IS_ZERO(pPage))
1063 {
1064 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1065 AssertLogRelRCReturn(rc, rc);
1066 }
1067 break;
1068
1069 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1070 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1071 break;
1072
1073 case PGMPAGETYPE_MMIO2:
1074 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
1075 case PGMPAGETYPE_ROM:
1076 case PGMPAGETYPE_MMIO:
1077 break;
1078 default:
1079 AssertFailed();
1080 }
1081 } /* for each page */
1082 }
1083 else
1084 {
1085 /* Zero the memory. */
1086 while (iPage-- > 0)
1087 {
1088 PPGMPAGE pPage = &pRam->aPages[iPage];
1089 switch (PGM_PAGE_GET_TYPE(pPage))
1090 {
1091 case PGMPAGETYPE_RAM:
1092 switch (PGM_PAGE_GET_STATE(pPage))
1093 {
1094 case PGM_PAGE_STATE_ZERO:
1095 break;
1096 case PGM_PAGE_STATE_SHARED:
1097 case PGM_PAGE_STATE_WRITE_MONITORED:
1098 rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1099 AssertLogRelRCReturn(rc, rc);
1100 case PGM_PAGE_STATE_ALLOCATED:
1101 {
1102 void *pvPage;
1103 PPGMPAGEMAP pMapIgnored;
1104 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pMapIgnored, &pvPage);
1105 AssertLogRelRCReturn(rc, rc);
1106 ASMMemZeroPage(pvPage);
1107 break;
1108 }
1109 }
1110 break;
1111
1112 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1113 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1114 break;
1115
1116 case PGMPAGETYPE_MMIO2:
1117 case PGMPAGETYPE_ROM_SHADOW:
1118 case PGMPAGETYPE_ROM:
1119 case PGMPAGETYPE_MMIO:
1120 break;
1121 default:
1122 AssertFailed();
1123
1124 }
1125 } /* for each page */
1126 }
1127
1128 }
1129
1130 /*
1131 * Finish off any pages pending freeing.
1132 */
1133 if (cPendingPages)
1134 {
1135 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
1136 AssertLogRelRCReturn(rc, rc);
1137 }
1138 GMMR3FreePagesCleanup(pReq);
1139
1140 return VINF_SUCCESS;
1141}
1142
1143
1144/**
1145 * This is the interface IOM is using to register an MMIO region.
1146 *
1147 * It will check for conflicts and ensure that a RAM range structure
1148 * is present before calling the PGMR3HandlerPhysicalRegister API to
1149 * register the callbacks.
1150 *
1151 * @returns VBox status code.
1152 *
1153 * @param pVM Pointer to the shared VM structure.
1154 * @param GCPhys The start of the MMIO region.
1155 * @param cb The size of the MMIO region.
1156 * @param pfnHandlerR3 The address of the ring-3 handler. (IOMR3MMIOHandler)
1157 * @param pvUserR3 The user argument for R3.
1158 * @param pfnHandlerR0 The address of the ring-0 handler. (IOMMMIOHandler)
1159 * @param pvUserR0 The user argument for R0.
1160 * @param pfnHandlerRC The address of the RC handler. (IOMMMIOHandler)
1161 * @param pvUserRC The user argument for RC.
1162 * @param pszDesc The description of the MMIO region.
1163 */
1164VMMR3DECL(int) PGMR3PhysMMIORegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb,
1165 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3, RTR3PTR pvUserR3,
1166 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0, RTR0PTR pvUserR0,
1167 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnHandlerRC, RTRCPTR pvUserRC,
1168 R3PTRTYPE(const char *) pszDesc)
1169{
1170 /*
1171 * Assert on some assumption.
1172 */
1173 VM_ASSERT_EMT(pVM);
1174 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1175 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1176 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1177 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
1178
1179 /*
1180 * Make sure there's a RAM range structure for the region.
1181 */
1182 int rc;
1183 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1184 bool fRamExists = false;
1185 PPGMRAMRANGE pRamPrev = NULL;
1186 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1187 while (pRam && GCPhysLast >= pRam->GCPhys)
1188 {
1189 if ( GCPhysLast >= pRam->GCPhys
1190 && GCPhys <= pRam->GCPhysLast)
1191 {
1192 /* Simplification: all within the same range. */
1193 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
1194 && GCPhysLast <= pRam->GCPhysLast,
1195 ("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n",
1196 GCPhys, GCPhysLast, pszDesc,
1197 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1198 VERR_PGM_RAM_CONFLICT);
1199
1200 /* Check that it's all RAM or MMIO pages. */
1201 PCPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1202 uint32_t cLeft = cb >> PAGE_SHIFT;
1203 while (cLeft-- > 0)
1204 {
1205 AssertLogRelMsgReturn( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1206 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO,
1207 ("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n",
1208 GCPhys, GCPhysLast, pszDesc, PGM_PAGE_GET_TYPE(pPage), pRam->pszDesc),
1209 VERR_PGM_RAM_CONFLICT);
1210 pPage++;
1211 }
1212
1213 /* Looks good. */
1214 fRamExists = true;
1215 break;
1216 }
1217
1218 /* next */
1219 pRamPrev = pRam;
1220 pRam = pRam->pNextR3;
1221 }
1222 PPGMRAMRANGE pNew;
1223 if (fRamExists)
1224 {
1225 pNew = NULL;
1226
1227 /*
1228 * Make all the pages in the range MMIO/ZERO pages, freeing any
1229 * RAM pages currently mapped here. This might not be 100% correct
1230 * for PCI memory, but we're doing the same thing for MMIO2 pages.
1231 */
1232 rc = pgmLock(pVM);
1233 if (RT_SUCCESS(rc))
1234 {
1235 rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO);
1236 pgmUnlock(pVM);
1237 }
1238 AssertRCReturn(rc, rc);
1239 }
1240 else
1241 {
1242 /*
1243 * No RAM range, insert an ad-hoc one.
1244 *
1245 * Note that we don't have to tell REM about this range because
1246 * PGMHandlerPhysicalRegisterEx will do that for us.
1247 */
1248 Log(("PGMR3PhysMMIORegister: Adding ad-hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc));
1249
1250 const uint32_t cPages = cb >> PAGE_SHIFT;
1251 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
1252 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), 16, MM_TAG_PGM_PHYS, (void **)&pNew);
1253 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
1254
1255 /* Initialize the range. */
1256 pNew->pSelfR0 = MMHyperCCToR0(pVM, pNew);
1257 pNew->pSelfRC = MMHyperCCToRC(pVM, pNew);
1258 pNew->GCPhys = GCPhys;
1259 pNew->GCPhysLast = GCPhysLast;
1260 pNew->cb = cb;
1261 pNew->pszDesc = pszDesc;
1262 pNew->fFlags = 0; /** @todo add some kind of ad-hoc flag? */
1263
1264 pNew->pvR3 = NULL;
1265
1266 uint32_t iPage = cPages;
1267 while (iPage-- > 0)
1268 PGM_PAGE_INIT_ZERO_REAL(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO);
1269 Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO);
1270
1271 /* update the page count stats. */
1272 pVM->pgm.s.cZeroPages += cPages;
1273 pVM->pgm.s.cAllPages += cPages;
1274
1275 /* link it */
1276 pgmR3PhysLinkRamRange(pVM, pNew, pRamPrev);
1277 }
1278
1279 /*
1280 * Register the access handler.
1281 */
1282 rc = PGMHandlerPhysicalRegisterEx(pVM, PGMPHYSHANDLERTYPE_MMIO, GCPhys, GCPhysLast,
1283 pfnHandlerR3, pvUserR3,
1284 pfnHandlerR0, pvUserR0,
1285 pfnHandlerRC, pvUserRC, pszDesc);
1286 if ( RT_FAILURE(rc)
1287 && !fRamExists)
1288 {
1289 pVM->pgm.s.cZeroPages -= cb >> PAGE_SHIFT;
1290 pVM->pgm.s.cAllPages -= cb >> PAGE_SHIFT;
1291
1292 /* remove the ad-hoc range. */
1293 pgmR3PhysUnlinkRamRange2(pVM, pNew, pRamPrev);
1294 pNew->cb = pNew->GCPhys = pNew->GCPhysLast = NIL_RTGCPHYS;
1295 MMHyperFree(pVM, pRam);
1296 }
1297
1298 return rc;
1299}
1300
1301
1302/**
1303 * This is the interface IOM is using to register an MMIO region.
1304 *
1305 * It will take care of calling PGMHandlerPhysicalDeregister and clean up
1306 * any ad-hoc PGMRAMRANGE left behind.
1307 *
1308 * @returns VBox status code.
1309 * @param pVM Pointer to the shared VM structure.
1310 * @param GCPhys The start of the MMIO region.
1311 * @param cb The size of the MMIO region.
1312 */
1313VMMR3DECL(int) PGMR3PhysMMIODeregister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
1314{
1315 VM_ASSERT_EMT(pVM);
1316
1317 /*
1318 * First deregister the handler, then check if we should remove the ram range.
1319 */
1320 int rc = PGMHandlerPhysicalDeregister(pVM, GCPhys);
1321 if (RT_SUCCESS(rc))
1322 {
1323 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1324 PPGMRAMRANGE pRamPrev = NULL;
1325 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1326 while (pRam && GCPhysLast >= pRam->GCPhys)
1327 {
1328 /** @todo We're being a bit too careful here. rewrite. */
1329 if ( GCPhysLast == pRam->GCPhysLast
1330 && GCPhys == pRam->GCPhys)
1331 {
1332 Assert(pRam->cb == cb);
1333
1334 /*
1335 * See if all the pages are dead MMIO pages.
1336 */
1337 uint32_t const cPages = cb >> PAGE_SHIFT;
1338 bool fAllMMIO = true;
1339 uint32_t iPage = 0;
1340 uint32_t cLeft = cPages;
1341 while (cLeft-- > 0)
1342 {
1343 PPGMPAGE pPage = &pRam->aPages[iPage];
1344 if ( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO
1345 /*|| not-out-of-action later */)
1346 {
1347 fAllMMIO = false;
1348 Assert(PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO2_ALIAS_MMIO);
1349 AssertMsgFailed(("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1350 break;
1351 }
1352 Assert(PGM_PAGE_IS_ZERO(pPage));
1353 pPage++;
1354 }
1355 if (fAllMMIO)
1356 {
1357 /*
1358 * Ad-hoc range, unlink and free it.
1359 */
1360 Log(("PGMR3PhysMMIODeregister: Freeing ad-hoc MMIO range for %RGp-%RGp %s\n",
1361 GCPhys, GCPhysLast, pRam->pszDesc));
1362
1363 pVM->pgm.s.cAllPages -= cPages;
1364 pVM->pgm.s.cZeroPages -= cPages;
1365
1366 pgmR3PhysUnlinkRamRange2(pVM, pRam, pRamPrev);
1367 pRam->cb = pRam->GCPhys = pRam->GCPhysLast = NIL_RTGCPHYS;
1368 MMHyperFree(pVM, pRam);
1369 break;
1370 }
1371 }
1372
1373 /*
1374 * Range match? It will all be within one range (see PGMAllHandler.cpp).
1375 */
1376 if ( GCPhysLast >= pRam->GCPhys
1377 && GCPhys <= pRam->GCPhysLast)
1378 {
1379 Assert(GCPhys >= pRam->GCPhys);
1380 Assert(GCPhysLast <= pRam->GCPhysLast);
1381
1382 /*
1383 * Turn the pages back into RAM pages.
1384 */
1385 uint32_t iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
1386 uint32_t cLeft = cb >> PAGE_SHIFT;
1387 while (cLeft--)
1388 {
1389 PPGMPAGE pPage = &pRam->aPages[iPage];
1390 AssertMsg(PGM_PAGE_IS_MMIO(pPage), ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1391 AssertMsg(PGM_PAGE_IS_ZERO(pPage), ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1392 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO)
1393 PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_RAM);
1394 }
1395 break;
1396 }
1397
1398 /* next */
1399 pRamPrev = pRam;
1400 pRam = pRam->pNextR3;
1401 }
1402 }
1403
1404 return rc;
1405}
1406
1407
1408/**
1409 * Locate a MMIO2 range.
1410 *
1411 * @returns Pointer to the MMIO2 range.
1412 * @param pVM Pointer to the shared VM structure.
1413 * @param pDevIns The device instance owning the region.
1414 * @param iRegion The region.
1415 */
1416DECLINLINE(PPGMMMIO2RANGE) pgmR3PhysMMIO2Find(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
1417{
1418 /*
1419 * Search the list.
1420 */
1421 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
1422 if ( pCur->pDevInsR3 == pDevIns
1423 && pCur->iRegion == iRegion)
1424 return pCur;
1425 return NULL;
1426}
1427
1428
1429/**
1430 * Allocate and register an MMIO2 region.
1431 *
1432 * As mentioned elsewhere, MMIO2 is just RAM spelled differently. It's
1433 * RAM associated with a device. It is also non-shared memory with a
1434 * permanent ring-3 mapping and page backing (presently).
1435 *
1436 * A MMIO2 range may overlap with base memory if a lot of RAM
1437 * is configured for the VM, in which case we'll drop the base
1438 * memory pages. Presently we will make no attempt to preserve
1439 * anything that happens to be present in the base memory that
1440 * is replaced, this is of course incorrectly but it's too much
1441 * effort.
1442 *
1443 * @returns VBox status code.
1444 * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the memory.
1445 * @retval VERR_ALREADY_EXISTS if the region already exists.
1446 *
1447 * @param pVM Pointer to the shared VM structure.
1448 * @param pDevIns The device instance owning the region.
1449 * @param iRegion The region number. If the MMIO2 memory is a PCI I/O region
1450 * this number has to be the number of that region. Otherwise
1451 * it can be any number safe UINT8_MAX.
1452 * @param cb The size of the region. Must be page aligned.
1453 * @param fFlags Reserved for future use, must be zero.
1454 * @param ppv Where to store the pointer to the ring-3 mapping of the memory.
1455 * @param pszDesc The description.
1456 */
1457VMMR3DECL(int) PGMR3PhysMMIO2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS cb, uint32_t fFlags, void **ppv, const char *pszDesc)
1458{
1459 /*
1460 * Validate input.
1461 */
1462 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1463 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1464 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
1465 AssertPtrReturn(ppv, VERR_INVALID_POINTER);
1466 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1467 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
1468 AssertReturn(pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion) == NULL, VERR_ALREADY_EXISTS);
1469 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1470 AssertReturn(cb, VERR_INVALID_PARAMETER);
1471 AssertReturn(!fFlags, VERR_INVALID_PARAMETER);
1472
1473 const uint32_t cPages = cb >> PAGE_SHIFT;
1474 AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cb, VERR_INVALID_PARAMETER);
1475 AssertLogRelReturn(cPages <= INT32_MAX / 2, VERR_NO_MEMORY);
1476
1477 /*
1478 * Try reserve and allocate the backing memory first as this is what is
1479 * most likely to fail.
1480 */
1481 int rc = MMR3AdjustFixedReservation(pVM, cPages, pszDesc);
1482 if (RT_FAILURE(rc))
1483 return rc;
1484
1485 void *pvPages;
1486 PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cPages * sizeof(SUPPAGE));
1487 if (RT_SUCCESS(rc))
1488 rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, NULL /*pR0Ptr*/, paPages);
1489 if (RT_SUCCESS(rc))
1490 {
1491 memset(pvPages, 0, cPages * PAGE_SIZE);
1492
1493 /*
1494 * Create the MMIO2 range record for it.
1495 */
1496 const size_t cbRange = RT_OFFSETOF(PGMMMIO2RANGE, RamRange.aPages[cPages]);
1497 PPGMMMIO2RANGE pNew;
1498 rc = MMR3HyperAllocOnceNoRel(pVM, cbRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1499 AssertLogRelMsgRC(rc, ("cbRamRange=%zu\n", cbRange));
1500 if (RT_SUCCESS(rc))
1501 {
1502 pNew->pDevInsR3 = pDevIns;
1503 pNew->pvR3 = pvPages;
1504 //pNew->pNext = NULL;
1505 //pNew->fMapped = false;
1506 //pNew->fOverlapping = false;
1507 pNew->iRegion = iRegion;
1508 pNew->RamRange.pSelfR0 = MMHyperCCToR0(pVM, &pNew->RamRange);
1509 pNew->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pNew->RamRange);
1510 pNew->RamRange.GCPhys = NIL_RTGCPHYS;
1511 pNew->RamRange.GCPhysLast = NIL_RTGCPHYS;
1512 pNew->RamRange.pszDesc = pszDesc;
1513 pNew->RamRange.cb = cb;
1514 //pNew->RamRange.fFlags = 0; /// @todo MMIO2 flag?
1515
1516 pNew->RamRange.pvR3 = pvPages;
1517
1518 uint32_t iPage = cPages;
1519 while (iPage-- > 0)
1520 {
1521 PGM_PAGE_INIT(&pNew->RamRange.aPages[iPage],
1522 paPages[iPage].Phys & X86_PTE_PAE_PG_MASK, NIL_GMM_PAGEID,
1523 PGMPAGETYPE_MMIO2, PGM_PAGE_STATE_ALLOCATED);
1524 }
1525
1526 /* update page count stats */
1527 pVM->pgm.s.cAllPages += cPages;
1528 pVM->pgm.s.cPrivatePages += cPages;
1529
1530 /*
1531 * Link it into the list.
1532 * Since there is no particular order, just push it.
1533 */
1534 pNew->pNextR3 = pVM->pgm.s.pMmio2RangesR3;
1535 pVM->pgm.s.pMmio2RangesR3 = pNew;
1536
1537 *ppv = pvPages;
1538 RTMemTmpFree(paPages);
1539 return VINF_SUCCESS;
1540 }
1541
1542 SUPR3PageFreeEx(pvPages, cPages);
1543 }
1544 RTMemTmpFree(paPages);
1545 MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pszDesc);
1546 return rc;
1547}
1548
1549
1550/**
1551 * Deregisters and frees an MMIO2 region.
1552 *
1553 * Any physical (and virtual) access handlers registered for the region must
1554 * be deregistered before calling this function.
1555 *
1556 * @returns VBox status code.
1557 * @param pVM Pointer to the shared VM structure.
1558 * @param pDevIns The device instance owning the region.
1559 * @param iRegion The region. If it's UINT32_MAX it'll be a wildcard match.
1560 */
1561VMMR3DECL(int) PGMR3PhysMMIO2Deregister(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
1562{
1563 /*
1564 * Validate input.
1565 */
1566 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1567 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1568 AssertReturn(iRegion <= UINT8_MAX || iRegion == UINT32_MAX, VERR_INVALID_PARAMETER);
1569
1570 int rc = VINF_SUCCESS;
1571 unsigned cFound = 0;
1572 PPGMMMIO2RANGE pPrev = NULL;
1573 PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3;
1574 while (pCur)
1575 {
1576 if ( pCur->pDevInsR3 == pDevIns
1577 && ( iRegion == UINT32_MAX
1578 || pCur->iRegion == iRegion))
1579 {
1580 cFound++;
1581
1582 /*
1583 * Unmap it if it's mapped.
1584 */
1585 if (pCur->fMapped)
1586 {
1587 int rc2 = PGMR3PhysMMIO2Unmap(pVM, pCur->pDevInsR3, pCur->iRegion, pCur->RamRange.GCPhys);
1588 AssertRC(rc2);
1589 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1590 rc = rc2;
1591 }
1592
1593 /*
1594 * Unlink it
1595 */
1596 PPGMMMIO2RANGE pNext = pCur->pNextR3;
1597 if (pPrev)
1598 pPrev->pNextR3 = pNext;
1599 else
1600 pVM->pgm.s.pMmio2RangesR3 = pNext;
1601 pCur->pNextR3 = NULL;
1602
1603 /*
1604 * Free the memory.
1605 */
1606 int rc2 = SUPR3PageFreeEx(pCur->pvR3, pCur->RamRange.cb >> PAGE_SHIFT);
1607 AssertRC(rc2);
1608 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1609 rc = rc2;
1610
1611 uint32_t const cPages = pCur->RamRange.cb >> PAGE_SHIFT;
1612 rc2 = MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pCur->RamRange.pszDesc);
1613 AssertRC(rc2);
1614 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1615 rc = rc2;
1616
1617 /* we're leaking hyper memory here if done at runtime. */
1618 Assert( VMR3GetState(pVM) == VMSTATE_OFF
1619 || VMR3GetState(pVM) == VMSTATE_DESTROYING
1620 || VMR3GetState(pVM) == VMSTATE_TERMINATED
1621 || VMR3GetState(pVM) == VMSTATE_CREATING);
1622 /*rc = MMHyperFree(pVM, pCur);
1623 AssertRCReturn(rc, rc); - not safe, see the alloc call. */
1624
1625
1626 /* update page count stats */
1627 pVM->pgm.s.cAllPages -= cPages;
1628 pVM->pgm.s.cPrivatePages -= cPages;
1629
1630 /* next */
1631 pCur = pNext;
1632 }
1633 else
1634 {
1635 pPrev = pCur;
1636 pCur = pCur->pNextR3;
1637 }
1638 }
1639
1640 return !cFound && iRegion != UINT32_MAX ? VERR_NOT_FOUND : rc;
1641}
1642
1643
1644/**
1645 * Maps a MMIO2 region.
1646 *
1647 * This is done when a guest / the bios / state loading changes the
1648 * PCI config. The replacing of base memory has the same restrictions
1649 * as during registration, of course.
1650 *
1651 * @returns VBox status code.
1652 *
1653 * @param pVM Pointer to the shared VM structure.
1654 * @param pDevIns The
1655 */
1656VMMR3DECL(int) PGMR3PhysMMIO2Map(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
1657{
1658 /*
1659 * Validate input
1660 */
1661 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1662 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1663 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
1664 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
1665 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
1666 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1667
1668 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
1669 AssertReturn(pCur, VERR_NOT_FOUND);
1670 AssertReturn(!pCur->fMapped, VERR_WRONG_ORDER);
1671 Assert(pCur->RamRange.GCPhys == NIL_RTGCPHYS);
1672 Assert(pCur->RamRange.GCPhysLast == NIL_RTGCPHYS);
1673
1674 const RTGCPHYS GCPhysLast = GCPhys + pCur->RamRange.cb - 1;
1675 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
1676
1677 /*
1678 * Find our location in the ram range list, checking for
1679 * restriction we don't bother implementing yet (partially overlapping).
1680 */
1681 bool fRamExists = false;
1682 PPGMRAMRANGE pRamPrev = NULL;
1683 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1684 while (pRam && GCPhysLast >= pRam->GCPhys)
1685 {
1686 if ( GCPhys <= pRam->GCPhysLast
1687 && GCPhysLast >= pRam->GCPhys)
1688 {
1689 /* completely within? */
1690 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
1691 && GCPhysLast <= pRam->GCPhysLast,
1692 ("%RGp-%RGp (MMIO2/%s) falls partly outside %RGp-%RGp (%s)\n",
1693 GCPhys, GCPhysLast, pCur->RamRange.pszDesc,
1694 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1695 VERR_PGM_RAM_CONFLICT);
1696 fRamExists = true;
1697 break;
1698 }
1699
1700 /* next */
1701 pRamPrev = pRam;
1702 pRam = pRam->pNextR3;
1703 }
1704 if (fRamExists)
1705 {
1706 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1707 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
1708 while (cPagesLeft-- > 0)
1709 {
1710 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
1711 ("%RGp isn't a RAM page (%d) - mapping %RGp-%RGp (MMIO2/%s).\n",
1712 GCPhys, PGM_PAGE_GET_TYPE(pPage), GCPhys, GCPhysLast, pCur->RamRange.pszDesc),
1713 VERR_PGM_RAM_CONFLICT);
1714 pPage++;
1715 }
1716 }
1717 Log(("PGMR3PhysMMIO2Map: %RGp-%RGp fRamExists=%RTbool %s\n",
1718 GCPhys, GCPhysLast, fRamExists, pCur->RamRange.pszDesc));
1719
1720 /*
1721 * Make the changes.
1722 */
1723 pgmLock(pVM);
1724
1725 pCur->RamRange.GCPhys = GCPhys;
1726 pCur->RamRange.GCPhysLast = GCPhysLast;
1727 pCur->fMapped = true;
1728 pCur->fOverlapping = fRamExists;
1729
1730 if (fRamExists)
1731 {
1732/** @todo use pgmR3PhysFreePageRange here. */
1733 uint32_t cPendingPages = 0;
1734 PGMMFREEPAGESREQ pReq;
1735 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1736 AssertLogRelRCReturn(rc, rc);
1737
1738 /* replace the pages, freeing all present RAM pages. */
1739 PPGMPAGE pPageSrc = &pCur->RamRange.aPages[0];
1740 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1741 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
1742 while (cPagesLeft-- > 0)
1743 {
1744 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
1745 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
1746
1747 RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc);
1748 PGM_PAGE_SET_HCPHYS(pPageDst, HCPhys);
1749 PGM_PAGE_SET_TYPE(pPageDst, PGMPAGETYPE_MMIO2);
1750 PGM_PAGE_SET_STATE(pPageDst, PGM_PAGE_STATE_ALLOCATED);
1751
1752 pVM->pgm.s.cZeroPages--;
1753 GCPhys += PAGE_SIZE;
1754 pPageSrc++;
1755 pPageDst++;
1756 }
1757
1758 if (cPendingPages)
1759 {
1760 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
1761 AssertLogRelRCReturn(rc, rc);
1762 }
1763 GMMR3FreePagesCleanup(pReq);
1764 }
1765 else
1766 {
1767 /* link in the ram range */
1768 pgmR3PhysLinkRamRange(pVM, &pCur->RamRange, pRamPrev);
1769 REMR3NotifyPhysRamRegister(pVM, GCPhys, pCur->RamRange.cb, REM_NOTIFY_PHYS_RAM_FLAGS_MMIO2);
1770 }
1771
1772 pgmUnlock(pVM);
1773
1774 return VINF_SUCCESS;
1775}
1776
1777
1778/**
1779 * Unmaps a MMIO2 region.
1780 *
1781 * This is done when a guest / the bios / state loading changes the
1782 * PCI config. The replacing of base memory has the same restrictions
1783 * as during registration, of course.
1784 */
1785VMMR3DECL(int) PGMR3PhysMMIO2Unmap(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
1786{
1787 /*
1788 * Validate input
1789 */
1790 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1791 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1792 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
1793 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
1794 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
1795 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1796
1797 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
1798 AssertReturn(pCur, VERR_NOT_FOUND);
1799 AssertReturn(pCur->fMapped, VERR_WRONG_ORDER);
1800 AssertReturn(pCur->RamRange.GCPhys == GCPhys, VERR_INVALID_PARAMETER);
1801 Assert(pCur->RamRange.GCPhysLast != NIL_RTGCPHYS);
1802
1803 Log(("PGMR3PhysMMIO2Unmap: %RGp-%RGp %s\n",
1804 pCur->RamRange.GCPhys, pCur->RamRange.GCPhysLast, pCur->RamRange.pszDesc));
1805
1806 /*
1807 * Unmap it.
1808 */
1809 pgmLock(pVM);
1810
1811 if (pCur->fOverlapping)
1812 {
1813 /* Restore the RAM pages we've replaced. */
1814 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1815 while (pRam->GCPhys > pCur->RamRange.GCPhysLast)
1816 pRam = pRam->pNextR3;
1817
1818 RTHCPHYS const HCPhysZeroPg = pVM->pgm.s.HCPhysZeroPg;
1819 Assert(HCPhysZeroPg != 0 && HCPhysZeroPg != NIL_RTHCPHYS);
1820 PPGMPAGE pPageDst = &pRam->aPages[(pCur->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1821 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
1822 while (cPagesLeft-- > 0)
1823 {
1824 PGM_PAGE_SET_HCPHYS(pPageDst, HCPhysZeroPg);
1825 PGM_PAGE_SET_TYPE(pPageDst, PGMPAGETYPE_RAM);
1826 PGM_PAGE_SET_STATE(pPageDst, PGM_PAGE_STATE_ZERO);
1827 PGM_PAGE_SET_PAGEID(pPageDst, NIL_GMM_PAGEID);
1828
1829 pVM->pgm.s.cZeroPages++;
1830 pPageDst++;
1831 }
1832 }
1833 else
1834 {
1835 REMR3NotifyPhysRamDeregister(pVM, pCur->RamRange.GCPhys, pCur->RamRange.cb);
1836 pgmR3PhysUnlinkRamRange(pVM, &pCur->RamRange);
1837 }
1838
1839 pCur->RamRange.GCPhys = NIL_RTGCPHYS;
1840 pCur->RamRange.GCPhysLast = NIL_RTGCPHYS;
1841 pCur->fOverlapping = false;
1842 pCur->fMapped = false;
1843
1844 pgmUnlock(pVM);
1845
1846 return VINF_SUCCESS;
1847}
1848
1849
1850/**
1851 * Checks if the given address is an MMIO2 base address or not.
1852 *
1853 * @returns true/false accordingly.
1854 * @param pVM Pointer to the shared VM structure.
1855 * @param pDevIns The owner of the memory, optional.
1856 * @param GCPhys The address to check.
1857 */
1858VMMR3DECL(bool) PGMR3PhysMMIO2IsBase(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys)
1859{
1860 /*
1861 * Validate input
1862 */
1863 VM_ASSERT_EMT_RETURN(pVM, false);
1864 AssertPtrReturn(pDevIns, false);
1865 AssertReturn(GCPhys != NIL_RTGCPHYS, false);
1866 AssertReturn(GCPhys != 0, false);
1867 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), false);
1868
1869 /*
1870 * Search the list.
1871 */
1872 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
1873 if (pCur->RamRange.GCPhys == GCPhys)
1874 {
1875 Assert(pCur->fMapped);
1876 return true;
1877 }
1878 return false;
1879}
1880
1881
1882/**
1883 * Gets the HC physical address of a page in the MMIO2 region.
1884 *
1885 * This is API is intended for MMHyper and shouldn't be called
1886 * by anyone else...
1887 *
1888 * @returns VBox status code.
1889 * @param pVM Pointer to the shared VM structure.
1890 * @param pDevIns The owner of the memory, optional.
1891 * @param iRegion The region.
1892 * @param off The page expressed an offset into the MMIO2 region.
1893 * @param pHCPhys Where to store the result.
1894 */
1895VMMR3DECL(int) PGMR3PhysMMIO2GetHCPhys(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, PRTHCPHYS pHCPhys)
1896{
1897 /*
1898 * Validate input
1899 */
1900 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1901 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1902 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
1903
1904 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
1905 AssertReturn(pCur, VERR_NOT_FOUND);
1906 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
1907
1908 PCPGMPAGE pPage = &pCur->RamRange.aPages[off >> PAGE_SHIFT];
1909 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage);
1910 return VINF_SUCCESS;
1911}
1912
1913
1914/**
1915 * Maps a portion of an MMIO2 region into kernel space (host).
1916 *
1917 * The kernel mapping will become invalid when the MMIO2 memory is deregistered
1918 * or the VM is terminated.
1919 *
1920 * @return VBox status code.
1921 *
1922 * @param pVM Pointer to the shared VM structure.
1923 * @param pDevIns The device owning the MMIO2 memory.
1924 * @param iRegion The region.
1925 * @param off The offset into the region. Must be page aligned.
1926 * @param cb The number of bytes to map. Must be page aligned.
1927 * @param pszDesc Mapping description.
1928 * @param pR0Ptr Where to store the R0 address.
1929 */
1930VMMR3DECL(int) PGMR3PhysMMIO2MapKernel(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, RTGCPHYS cb,
1931 const char *pszDesc, PRTR0PTR pR0Ptr)
1932{
1933 /*
1934 * Validate input.
1935 */
1936 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1937 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1938 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
1939
1940 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
1941 AssertReturn(pCur, VERR_NOT_FOUND);
1942 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
1943 AssertReturn(cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
1944 AssertReturn(off + cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
1945
1946 /*
1947 * Pass the request on to the support library/driver.
1948 */
1949 int rc = SUPR3PageMapKernel(pCur->pvR3, off, cb, 0, pR0Ptr);
1950
1951 return rc;
1952}
1953
1954
1955/**
1956 * Registers a ROM image.
1957 *
1958 * Shadowed ROM images requires double the amount of backing memory, so,
1959 * don't use that unless you have to. Shadowing of ROM images is process
1960 * where we can select where the reads go and where the writes go. On real
1961 * hardware the chipset provides means to configure this. We provide
1962 * PGMR3PhysProtectROM() for this purpose.
1963 *
1964 * A read-only copy of the ROM image will always be kept around while we
1965 * will allocate RAM pages for the changes on demand (unless all memory
1966 * is configured to be preallocated).
1967 *
1968 * @returns VBox status.
1969 * @param pVM VM Handle.
1970 * @param pDevIns The device instance owning the ROM.
1971 * @param GCPhys First physical address in the range.
1972 * Must be page aligned!
1973 * @param cbRange The size of the range (in bytes).
1974 * Must be page aligned!
1975 * @param pvBinary Pointer to the binary data backing the ROM image.
1976 * This must be exactly \a cbRange in size.
1977 * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
1978 * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
1979 * @param pszDesc Pointer to description string. This must not be freed.
1980 *
1981 * @remark There is no way to remove the rom, automatically on device cleanup or
1982 * manually from the device yet. This isn't difficult in any way, it's
1983 * just not something we expect to be necessary for a while.
1984 */
1985VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
1986 const void *pvBinary, uint32_t fFlags, const char *pszDesc)
1987{
1988 Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p fFlags=%#x pszDesc=%s\n",
1989 pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, fFlags, pszDesc));
1990
1991 /*
1992 * Validate input.
1993 */
1994 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1995 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
1996 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
1997 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1998 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
1999 AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER);
2000 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
2001 AssertReturn(!(fFlags & ~(PGMPHYS_ROM_FLAGS_SHADOWED | PGMPHYS_ROM_FLAGS_PERMANENT_BINARY)), VERR_INVALID_PARAMETER);
2002 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE);
2003
2004 const uint32_t cPages = cb >> PAGE_SHIFT;
2005
2006 /*
2007 * Find the ROM location in the ROM list first.
2008 */
2009 PPGMROMRANGE pRomPrev = NULL;
2010 PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
2011 while (pRom && GCPhysLast >= pRom->GCPhys)
2012 {
2013 if ( GCPhys <= pRom->GCPhysLast
2014 && GCPhysLast >= pRom->GCPhys)
2015 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
2016 GCPhys, GCPhysLast, pszDesc,
2017 pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc),
2018 VERR_PGM_RAM_CONFLICT);
2019 /* next */
2020 pRomPrev = pRom;
2021 pRom = pRom->pNextR3;
2022 }
2023
2024 /*
2025 * Find the RAM location and check for conflicts.
2026 *
2027 * Conflict detection is a bit different than for RAM
2028 * registration since a ROM can be located within a RAM
2029 * range. So, what we have to check for is other memory
2030 * types (other than RAM that is) and that we don't span
2031 * more than one RAM range (layz).
2032 */
2033 bool fRamExists = false;
2034 PPGMRAMRANGE pRamPrev = NULL;
2035 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
2036 while (pRam && GCPhysLast >= pRam->GCPhys)
2037 {
2038 if ( GCPhys <= pRam->GCPhysLast
2039 && GCPhysLast >= pRam->GCPhys)
2040 {
2041 /* completely within? */
2042 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
2043 && GCPhysLast <= pRam->GCPhysLast,
2044 ("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n",
2045 GCPhys, GCPhysLast, pszDesc,
2046 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2047 VERR_PGM_RAM_CONFLICT);
2048 fRamExists = true;
2049 break;
2050 }
2051
2052 /* next */
2053 pRamPrev = pRam;
2054 pRam = pRam->pNextR3;
2055 }
2056 if (fRamExists)
2057 {
2058 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2059 uint32_t cPagesLeft = cPages;
2060 while (cPagesLeft-- > 0)
2061 {
2062 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
2063 ("%RGp (%R[pgmpage]) isn't a RAM page - registering %RGp-%RGp (%s).\n",
2064 pRam->GCPhys + ((RTGCPHYS)(uintptr_t)(pPage - &pRam->aPages[0]) << PAGE_SHIFT),
2065 pPage, GCPhys, GCPhysLast, pszDesc), VERR_PGM_RAM_CONFLICT);
2066 Assert(PGM_PAGE_IS_ZERO(pPage));
2067 pPage++;
2068 }
2069 }
2070
2071 /*
2072 * Update the base memory reservation if necessary.
2073 */
2074 uint32_t cExtraBaseCost = fRamExists ? cPages : 0;
2075 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2076 cExtraBaseCost += cPages;
2077 if (cExtraBaseCost)
2078 {
2079 int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost);
2080 if (RT_FAILURE(rc))
2081 return rc;
2082 }
2083
2084 /*
2085 * Allocate memory for the virgin copy of the RAM.
2086 */
2087 PGMMALLOCATEPAGESREQ pReq;
2088 int rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cPages, GMMACCOUNT_BASE);
2089 AssertRCReturn(rc, rc);
2090
2091 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2092 {
2093 pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << PAGE_SHIFT);
2094 pReq->aPages[iPage].idPage = NIL_GMM_PAGEID;
2095 pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID;
2096 }
2097
2098 pgmLock(pVM);
2099 rc = GMMR3AllocatePagesPerform(pVM, pReq);
2100 pgmUnlock(pVM);
2101 if (RT_FAILURE(rc))
2102 {
2103 GMMR3AllocatePagesCleanup(pReq);
2104 return rc;
2105 }
2106
2107 /*
2108 * Allocate the new ROM range and RAM range (if necessary).
2109 */
2110 PPGMROMRANGE pRomNew;
2111 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMROMRANGE, aPages[cPages]), 0, MM_TAG_PGM_PHYS, (void **)&pRomNew);
2112 if (RT_SUCCESS(rc))
2113 {
2114 PPGMRAMRANGE pRamNew = NULL;
2115 if (!fRamExists)
2116 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), sizeof(PGMPAGE), MM_TAG_PGM_PHYS, (void **)&pRamNew);
2117 if (RT_SUCCESS(rc))
2118 {
2119 pgmLock(pVM);
2120
2121 /*
2122 * Initialize and insert the RAM range (if required).
2123 */
2124 PPGMROMPAGE pRomPage = &pRomNew->aPages[0];
2125 if (!fRamExists)
2126 {
2127 pRamNew->pSelfR0 = MMHyperCCToR0(pVM, pRamNew);
2128 pRamNew->pSelfRC = MMHyperCCToRC(pVM, pRamNew);
2129 pRamNew->GCPhys = GCPhys;
2130 pRamNew->GCPhysLast = GCPhysLast;
2131 pRamNew->cb = cb;
2132 pRamNew->pszDesc = pszDesc;
2133 pRamNew->fFlags = 0;
2134 pRamNew->pvR3 = NULL;
2135
2136 PPGMPAGE pPage = &pRamNew->aPages[0];
2137 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
2138 {
2139 PGM_PAGE_INIT(pPage,
2140 pReq->aPages[iPage].HCPhysGCPhys,
2141 pReq->aPages[iPage].idPage,
2142 PGMPAGETYPE_ROM,
2143 PGM_PAGE_STATE_ALLOCATED);
2144
2145 pRomPage->Virgin = *pPage;
2146 }
2147
2148 pVM->pgm.s.cAllPages += cPages;
2149 pgmR3PhysLinkRamRange(pVM, pRamNew, pRamPrev);
2150 }
2151 else
2152 {
2153 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2154 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
2155 {
2156 PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_ROM);
2157 PGM_PAGE_SET_HCPHYS(pPage, pReq->aPages[iPage].HCPhysGCPhys);
2158 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
2159 PGM_PAGE_SET_PAGEID(pPage, pReq->aPages[iPage].idPage);
2160
2161 pRomPage->Virgin = *pPage;
2162 }
2163
2164 pRamNew = pRam;
2165
2166 pVM->pgm.s.cZeroPages -= cPages;
2167 }
2168 pVM->pgm.s.cPrivatePages += cPages;
2169
2170 pgmUnlock(pVM);
2171
2172
2173 /*
2174 * !HACK ALERT! REM + (Shadowed) ROM ==> mess.
2175 *
2176 * If it's shadowed we'll register the handler after the ROM notification
2177 * so we get the access handler callbacks that we should. If it isn't
2178 * shadowed we'll do it the other way around to make REM use the built-in
2179 * ROM behavior and not the handler behavior (which is to route all access
2180 * to PGM atm).
2181 */
2182 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2183 {
2184 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, true /* fShadowed */);
2185 rc = PGMR3HandlerPhysicalRegister(pVM,
2186 fFlags & PGMPHYS_ROM_FLAGS_SHADOWED
2187 ? PGMPHYSHANDLERTYPE_PHYSICAL_ALL
2188 : PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
2189 GCPhys, GCPhysLast,
2190 pgmR3PhysRomWriteHandler, pRomNew,
2191 NULL, "pgmPhysRomWriteHandler", MMHyperCCToR0(pVM, pRomNew),
2192 NULL, "pgmPhysRomWriteHandler", MMHyperCCToRC(pVM, pRomNew), pszDesc);
2193 }
2194 else
2195 {
2196 rc = PGMR3HandlerPhysicalRegister(pVM,
2197 fFlags & PGMPHYS_ROM_FLAGS_SHADOWED
2198 ? PGMPHYSHANDLERTYPE_PHYSICAL_ALL
2199 : PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
2200 GCPhys, GCPhysLast,
2201 pgmR3PhysRomWriteHandler, pRomNew,
2202 NULL, "pgmPhysRomWriteHandler", MMHyperCCToR0(pVM, pRomNew),
2203 NULL, "pgmPhysRomWriteHandler", MMHyperCCToRC(pVM, pRomNew), pszDesc);
2204 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, false /* fShadowed */);
2205 }
2206 if (RT_SUCCESS(rc))
2207 {
2208 pgmLock(pVM);
2209
2210 /*
2211 * Copy the image over to the virgin pages.
2212 * This must be done after linking in the RAM range.
2213 */
2214 PPGMPAGE pRamPage = &pRamNew->aPages[(GCPhys - pRamNew->GCPhys) >> PAGE_SHIFT];
2215 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++)
2216 {
2217 void *pvDstPage;
2218 PPGMPAGEMAP pMapIgnored;
2219 rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << PAGE_SHIFT), &pMapIgnored, &pvDstPage);
2220 if (RT_FAILURE(rc))
2221 {
2222 VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys);
2223 break;
2224 }
2225 memcpy(pvDstPage, (const uint8_t *)pvBinary + (iPage << PAGE_SHIFT), PAGE_SIZE);
2226 }
2227 if (RT_SUCCESS(rc))
2228 {
2229 /*
2230 * Initialize the ROM range.
2231 * Note that the Virgin member of the pages has already been initialized above.
2232 */
2233 pRomNew->GCPhys = GCPhys;
2234 pRomNew->GCPhysLast = GCPhysLast;
2235 pRomNew->cb = cb;
2236 pRomNew->fFlags = fFlags;
2237 pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY ? pvBinary : NULL;
2238 pRomNew->pszDesc = pszDesc;
2239
2240 for (unsigned iPage = 0; iPage < cPages; iPage++)
2241 {
2242 PPGMROMPAGE pPage = &pRomNew->aPages[iPage];
2243 pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE;
2244 PGM_PAGE_INIT_ZERO_REAL(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW);
2245 }
2246
2247 /* update the page count stats */
2248 pVM->pgm.s.cZeroPages += cPages;
2249 pVM->pgm.s.cAllPages += cPages;
2250
2251 /*
2252 * Insert the ROM range, tell REM and return successfully.
2253 */
2254 pRomNew->pNextR3 = pRom;
2255 pRomNew->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
2256 pRomNew->pNextRC = pRom ? MMHyperCCToRC(pVM, pRom) : NIL_RTRCPTR;
2257
2258 if (pRomPrev)
2259 {
2260 pRomPrev->pNextR3 = pRomNew;
2261 pRomPrev->pNextR0 = MMHyperCCToR0(pVM, pRomNew);
2262 pRomPrev->pNextRC = MMHyperCCToRC(pVM, pRomNew);
2263 }
2264 else
2265 {
2266 pVM->pgm.s.pRomRangesR3 = pRomNew;
2267 pVM->pgm.s.pRomRangesR0 = MMHyperCCToR0(pVM, pRomNew);
2268 pVM->pgm.s.pRomRangesRC = MMHyperCCToRC(pVM, pRomNew);
2269 }
2270
2271 GMMR3AllocatePagesCleanup(pReq);
2272 pgmUnlock(pVM);
2273 return VINF_SUCCESS;
2274 }
2275
2276 /* bail out */
2277
2278 pgmUnlock(pVM);
2279 int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys);
2280 AssertRC(rc2);
2281 pgmLock(pVM);
2282 }
2283
2284 if (!fRamExists)
2285 {
2286 pgmR3PhysUnlinkRamRange2(pVM, pRamNew, pRamPrev);
2287 MMHyperFree(pVM, pRamNew);
2288 }
2289 }
2290 MMHyperFree(pVM, pRomNew);
2291 }
2292
2293 /** @todo Purge the mapping cache or something... */
2294 GMMR3FreeAllocatedPages(pVM, pReq);
2295 GMMR3AllocatePagesCleanup(pReq);
2296 pgmUnlock(pVM);
2297 return rc;
2298}
2299
2300
2301/**
2302 * \#PF Handler callback for ROM write accesses.
2303 *
2304 * @returns VINF_SUCCESS if the handler have carried out the operation.
2305 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
2306 * @param pVM VM Handle.
2307 * @param GCPhys The physical address the guest is writing to.
2308 * @param pvPhys The HC mapping of that address.
2309 * @param pvBuf What the guest is reading/writing.
2310 * @param cbBuf How much it's reading/writing.
2311 * @param enmAccessType The access type.
2312 * @param pvUser User argument.
2313 */
2314static DECLCALLBACK(int) pgmR3PhysRomWriteHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser)
2315{
2316 PPGMROMRANGE pRom = (PPGMROMRANGE)pvUser;
2317 const uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
2318 Assert(iPage < (pRom->cb >> PAGE_SHIFT));
2319 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
2320 Log5(("pgmR3PhysRomWriteHandler: %d %c %#08RGp %#04zx\n", pRomPage->enmProt, enmAccessType == PGMACCESSTYPE_READ ? 'R' : 'W', GCPhys, cbBuf));
2321
2322 if (enmAccessType == PGMACCESSTYPE_READ)
2323 {
2324 switch (pRomPage->enmProt)
2325 {
2326 /*
2327 * Take the default action.
2328 */
2329 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
2330 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
2331 case PGMROMPROT_READ_ROM_WRITE_RAM:
2332 case PGMROMPROT_READ_RAM_WRITE_RAM:
2333 return VINF_PGM_HANDLER_DO_DEFAULT;
2334
2335 default:
2336 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
2337 pRom->aPages[iPage].enmProt, iPage, GCPhys),
2338 VERR_INTERNAL_ERROR);
2339 }
2340 }
2341 else
2342 {
2343 Assert(enmAccessType == PGMACCESSTYPE_WRITE);
2344 switch (pRomPage->enmProt)
2345 {
2346 /*
2347 * Ignore writes.
2348 */
2349 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
2350 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
2351 return VINF_SUCCESS;
2352
2353 /*
2354 * Write to the ram page.
2355 */
2356 case PGMROMPROT_READ_ROM_WRITE_RAM:
2357 case PGMROMPROT_READ_RAM_WRITE_RAM: /* yes this will get here too, it's *way* simpler that way. */
2358 {
2359 /* This should be impossible now, pvPhys doesn't work cross page anylonger. */
2360 Assert(((GCPhys - pRom->GCPhys + cbBuf - 1) >> PAGE_SHIFT) == iPage);
2361
2362 /*
2363 * Take the lock, do lazy allocation, map the page and copy the data.
2364 *
2365 * Note that we have to bypass the mapping TLB since it works on
2366 * guest physical addresses and entering the shadow page would
2367 * kind of screw things up...
2368 */
2369 int rc = pgmLock(pVM);
2370 AssertRC(rc);
2371 PPGMPAGE pShadowPage = &pRomPage->Shadow;
2372 if (!PGMROMPROT_IS_ROM(pRomPage->enmProt))
2373 {
2374 pShadowPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
2375 AssertLogRelReturn(pShadowPage, VERR_INTERNAL_ERROR);
2376 }
2377
2378 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(pShadowPage) != PGM_PAGE_STATE_ALLOCATED))
2379 {
2380 rc = pgmPhysPageMakeWritable(pVM, pShadowPage, GCPhys);
2381 if (RT_FAILURE(rc))
2382 {
2383 pgmUnlock(pVM);
2384 return rc;
2385 }
2386 AssertMsg(rc == VINF_SUCCESS || rc == VINF_PGM_SYNC_CR3 /* returned */, ("%Rrc\n", rc));
2387 }
2388
2389 void *pvDstPage;
2390 PPGMPAGEMAP pMapIgnored;
2391 int rc2 = pgmPhysPageMap(pVM, pShadowPage, GCPhys & X86_PTE_PG_MASK, &pMapIgnored, &pvDstPage);
2392 if (RT_SUCCESS(rc2))
2393 memcpy((uint8_t *)pvDstPage + (GCPhys & PAGE_OFFSET_MASK), pvBuf, cbBuf);
2394 else
2395 rc = rc2;
2396
2397 pgmUnlock(pVM);
2398 return rc;
2399 }
2400
2401 default:
2402 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
2403 pRom->aPages[iPage].enmProt, iPage, GCPhys),
2404 VERR_INTERNAL_ERROR);
2405 }
2406 }
2407}
2408
2409
2410/**
2411 * Called by PGMR3Reset to reset the shadow, switch to the virgin,
2412 * and verify that the virgin part is untouched.
2413 *
2414 * This is done after the normal memory has been cleared.
2415 *
2416 * ASSUMES that the caller owns the PGM lock.
2417 *
2418 * @param pVM The VM handle.
2419 */
2420int pgmR3PhysRomReset(PVM pVM)
2421{
2422 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
2423 {
2424 const uint32_t cPages = pRom->cb >> PAGE_SHIFT;
2425
2426 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2427 {
2428 /*
2429 * Reset the physical handler.
2430 */
2431 int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE);
2432 AssertRCReturn(rc, rc);
2433
2434 /*
2435 * What we do with the shadow pages depends on the memory
2436 * preallocation option. If not enabled, we'll just throw
2437 * out all the dirty pages and replace them by the zero page.
2438 */
2439 if (!pVM->pgm.s.fRamPreAlloc)
2440 {
2441 /* Free the dirty pages. */
2442 uint32_t cPendingPages = 0;
2443 PGMMFREEPAGESREQ pReq;
2444 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2445 AssertRCReturn(rc, rc);
2446
2447 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2448 if (PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) != PGM_PAGE_STATE_ZERO)
2449 {
2450 Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) == PGM_PAGE_STATE_ALLOCATED);
2451 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, &pRom->aPages[iPage].Shadow, pRom->GCPhys + (iPage << PAGE_SHIFT));
2452 AssertLogRelRCReturn(rc, rc);
2453 }
2454
2455 if (cPendingPages)
2456 {
2457 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2458 AssertLogRelRCReturn(rc, rc);
2459 }
2460 GMMR3FreePagesCleanup(pReq);
2461 }
2462 else
2463 {
2464 /* clear all the shadow pages. */
2465 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2466 {
2467 Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) != PGM_PAGE_STATE_ZERO);
2468
2469 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
2470 rc = pgmPhysPageMakeWritable(pVM, &pRom->aPages[iPage].Shadow, GCPhys);
2471 if (RT_FAILURE(rc))
2472 break;
2473
2474 void *pvDstPage;
2475 PPGMPAGEMAP pMapIgnored;
2476 rc = pgmPhysPageMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pMapIgnored, &pvDstPage);
2477 if (RT_FAILURE(rc))
2478 break;
2479 ASMMemZeroPage(pvDstPage);
2480 }
2481 AssertRCReturn(rc, rc);
2482 }
2483 }
2484
2485#ifdef VBOX_STRICT
2486 /*
2487 * Verify that the virgin page is unchanged if possible.
2488 */
2489 if (pRom->pvOriginal)
2490 {
2491 uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal;
2492 for (uint32_t iPage = 0; iPage < cPages; iPage++, pbSrcPage += PAGE_SIZE)
2493 {
2494 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
2495 PPGMPAGEMAP pMapIgnored;
2496 void *pvDstPage;
2497 int rc = pgmPhysPageMap(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pMapIgnored, &pvDstPage);
2498 if (RT_FAILURE(rc))
2499 break;
2500 if (memcmp(pvDstPage, pbSrcPage, PAGE_SIZE))
2501 LogRel(("pgmR3PhysRomReset: %RGp rom page changed (%s) - loaded saved state?\n",
2502 GCPhys, pRom->pszDesc));
2503 }
2504 }
2505#endif
2506 }
2507
2508 return VINF_SUCCESS;
2509}
2510
2511
2512/**
2513 * Change the shadowing of a range of ROM pages.
2514 *
2515 * This is intended for implementing chipset specific memory registers
2516 * and will not be very strict about the input. It will silently ignore
2517 * any pages that are not the part of a shadowed ROM.
2518 *
2519 * @returns VBox status code.
2520 * @retval VINF_PGM_SYNC_CR3
2521 *
2522 * @param pVM Pointer to the shared VM structure.
2523 * @param GCPhys Where to start. Page aligned.
2524 * @param cb How much to change. Page aligned.
2525 * @param enmProt The new ROM protection.
2526 */
2527VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt)
2528{
2529 /*
2530 * Check input
2531 */
2532 if (!cb)
2533 return VINF_SUCCESS;
2534 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2535 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2536 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2537 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
2538 AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER);
2539
2540 /*
2541 * Process the request.
2542 */
2543 int rc = VINF_SUCCESS;
2544 bool fFlushTLB = false;
2545 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
2546 if ( GCPhys <= pRom->GCPhysLast
2547 && GCPhysLast >= pRom->GCPhys
2548 && (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
2549 {
2550 /*
2551 * Iterate the relevant pages and make necessary the changes.
2552 */
2553 bool fChanges = false;
2554 uint32_t const cPages = pRom->GCPhysLast <= GCPhysLast
2555 ? pRom->cb >> PAGE_SHIFT
2556 : (GCPhysLast - pRom->GCPhys + 1) >> PAGE_SHIFT;
2557 for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
2558 iPage < cPages;
2559 iPage++)
2560 {
2561 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
2562 if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt))
2563 {
2564 fChanges = true;
2565
2566 /* flush references to the page. */
2567 PPGMPAGE pRamPage = pgmPhysGetPage(&pVM->pgm.s, pRom->GCPhys + (iPage << PAGE_SHIFT));
2568 int rc2 = pgmPoolTrackFlushGCPhys(pVM, pRamPage, &fFlushTLB);
2569 if (rc2 != VINF_SUCCESS && (rc == VINF_SUCCESS || RT_FAILURE(rc2)))
2570 rc = rc2;
2571
2572 PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
2573 PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2574
2575 *pOld = *pRamPage;
2576 *pRamPage = *pNew;
2577 /** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */
2578 }
2579 pRomPage->enmProt = enmProt;
2580 }
2581
2582 /*
2583 * Reset the access handler if we made changes, no need
2584 * to optimize this.
2585 */
2586 if (fChanges)
2587 {
2588 int rc = PGMHandlerPhysicalReset(pVM, pRom->GCPhys);
2589 AssertRCReturn(rc, rc);
2590 }
2591
2592 /* Advance - cb isn't updated. */
2593 GCPhys = pRom->GCPhys + (cPages << PAGE_SHIFT);
2594 }
2595
2596 if (fFlushTLB)
2597 PGM_INVL_GUEST_TLBS();
2598 return rc;
2599}
2600
2601
2602/**
2603 * Sets the Address Gate 20 state.
2604 *
2605 * @param pVM VM handle.
2606 * @param fEnable True if the gate should be enabled.
2607 * False if the gate should be disabled.
2608 */
2609VMMDECL(void) PGMR3PhysSetA20(PVM pVM, bool fEnable)
2610{
2611 LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVM->pgm.s.fA20Enabled));
2612 if (pVM->pgm.s.fA20Enabled != fEnable)
2613 {
2614 pVM->pgm.s.fA20Enabled = fEnable;
2615 pVM->pgm.s.GCPhysA20Mask = ~(RTGCPHYS)(!fEnable << 20);
2616 REMR3A20Set(pVM, fEnable);
2617 /** @todo we're not handling this correctly for VT-x / AMD-V. See #2911 */
2618 }
2619}
2620
2621
2622/**
2623 * Tree enumeration callback for dealing with age rollover.
2624 * It will perform a simple compression of the current age.
2625 */
2626static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
2627{
2628 /* Age compression - ASSUMES iNow == 4. */
2629 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
2630 if (pChunk->iAge >= UINT32_C(0xffffff00))
2631 pChunk->iAge = 3;
2632 else if (pChunk->iAge >= UINT32_C(0xfffff000))
2633 pChunk->iAge = 2;
2634 else if (pChunk->iAge)
2635 pChunk->iAge = 1;
2636 else /* iAge = 0 */
2637 pChunk->iAge = 4;
2638
2639 /* reinsert */
2640 PVM pVM = (PVM)pvUser;
2641 RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
2642 pChunk->AgeCore.Key = pChunk->iAge;
2643 RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
2644 return 0;
2645}
2646
2647
2648/**
2649 * Tree enumeration callback that updates the chunks that have
2650 * been used since the last
2651 */
2652static DECLCALLBACK(int) pgmR3PhysChunkAgeingCallback(PAVLU32NODECORE pNode, void *pvUser)
2653{
2654 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
2655 if (!pChunk->iAge)
2656 {
2657 PVM pVM = (PVM)pvUser;
2658 RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
2659 pChunk->AgeCore.Key = pChunk->iAge = pVM->pgm.s.ChunkR3Map.iNow;
2660 RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
2661 }
2662
2663 return 0;
2664}
2665
2666
2667/**
2668 * Performs ageing of the ring-3 chunk mappings.
2669 *
2670 * @param pVM The VM handle.
2671 */
2672VMMR3DECL(void) PGMR3PhysChunkAgeing(PVM pVM)
2673{
2674 pVM->pgm.s.ChunkR3Map.AgeingCountdown = RT_MIN(pVM->pgm.s.ChunkR3Map.cMax / 4, 1024);
2675 pVM->pgm.s.ChunkR3Map.iNow++;
2676 if (pVM->pgm.s.ChunkR3Map.iNow == 0)
2677 {
2678 pVM->pgm.s.ChunkR3Map.iNow = 4;
2679 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, pVM);
2680 }
2681 else
2682 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingCallback, pVM);
2683}
2684
2685
2686/**
2687 * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
2688 */
2689typedef struct PGMR3PHYSCHUNKUNMAPCB
2690{
2691 PVM pVM; /**< The VM handle. */
2692 PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
2693} PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
2694
2695
2696/**
2697 * Callback used to find the mapping that's been unused for
2698 * the longest time.
2699 */
2700static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLLU32NODECORE pNode, void *pvUser)
2701{
2702 do
2703 {
2704 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)((uint8_t *)pNode - RT_OFFSETOF(PGMCHUNKR3MAP, AgeCore));
2705 if ( pChunk->iAge
2706 && !pChunk->cRefs)
2707 {
2708 /*
2709 * Check that it's not in any of the TLBs.
2710 */
2711 PVM pVM = ((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pVM;
2712 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
2713 if (pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk == pChunk)
2714 {
2715 pChunk = NULL;
2716 break;
2717 }
2718 if (pChunk)
2719 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
2720 if (pVM->pgm.s.PhysTlbHC.aEntries[i].pMap == pChunk)
2721 {
2722 pChunk = NULL;
2723 break;
2724 }
2725 if (pChunk)
2726 {
2727 ((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pChunk = pChunk;
2728 return 1; /* done */
2729 }
2730 }
2731
2732 /* next with the same age - this version of the AVL API doesn't enumerate the list, so we have to do it. */
2733 pNode = pNode->pList;
2734 } while (pNode);
2735 return 0;
2736}
2737
2738
2739/**
2740 * Finds a good candidate for unmapping when the ring-3 mapping cache is full.
2741 *
2742 * The candidate will not be part of any TLBs, so no need to flush
2743 * anything afterwards.
2744 *
2745 * @returns Chunk id.
2746 * @param pVM The VM handle.
2747 */
2748static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
2749{
2750 /*
2751 * Do tree ageing first?
2752 */
2753 if (pVM->pgm.s.ChunkR3Map.AgeingCountdown-- == 0)
2754 PGMR3PhysChunkAgeing(pVM);
2755
2756 /*
2757 * Enumerate the age tree starting with the left most node.
2758 */
2759 PGMR3PHYSCHUNKUNMAPCB Args;
2760 Args.pVM = pVM;
2761 Args.pChunk = NULL;
2762 if (RTAvllU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pAgeTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, pVM))
2763 return Args.pChunk->Core.Key;
2764 return INT32_MAX;
2765}
2766
2767
2768/**
2769 * Maps the given chunk into the ring-3 mapping cache.
2770 *
2771 * This will call ring-0.
2772 *
2773 * @returns VBox status code.
2774 * @param pVM The VM handle.
2775 * @param idChunk The chunk in question.
2776 * @param ppChunk Where to store the chunk tracking structure.
2777 *
2778 * @remarks Called from within the PGM critical section.
2779 */
2780int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
2781{
2782 int rc;
2783
2784 /*
2785 * Allocate a new tracking structure first.
2786 */
2787#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2788 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAlloc(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
2789#else
2790 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3UkHeapAlloc(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk), NULL);
2791#endif
2792 AssertReturn(pChunk, VERR_NO_MEMORY);
2793 pChunk->Core.Key = idChunk;
2794 pChunk->AgeCore.Key = pVM->pgm.s.ChunkR3Map.iNow;
2795 pChunk->iAge = 0;
2796 pChunk->cRefs = 0;
2797 pChunk->cPermRefs = 0;
2798 pChunk->pv = NULL;
2799
2800 /*
2801 * Request the ring-0 part to map the chunk in question and if
2802 * necessary unmap another one to make space in the mapping cache.
2803 */
2804 GMMMAPUNMAPCHUNKREQ Req;
2805 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
2806 Req.Hdr.cbReq = sizeof(Req);
2807 Req.pvR3 = NULL;
2808 Req.idChunkMap = idChunk;
2809 Req.idChunkUnmap = NIL_GMM_CHUNKID;
2810 if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
2811 Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
2812 rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
2813 if (RT_SUCCESS(rc))
2814 {
2815 /*
2816 * Update the tree.
2817 */
2818 /* insert the new one. */
2819 AssertPtr(Req.pvR3);
2820 pChunk->pv = Req.pvR3;
2821 bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
2822 AssertRelease(fRc);
2823 pVM->pgm.s.ChunkR3Map.c++;
2824
2825 fRc = RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
2826 AssertRelease(fRc);
2827
2828 /* remove the unmapped one. */
2829 if (Req.idChunkUnmap != NIL_GMM_CHUNKID)
2830 {
2831 PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
2832 AssertRelease(pUnmappedChunk);
2833 pUnmappedChunk->pv = NULL;
2834 pUnmappedChunk->Core.Key = UINT32_MAX;
2835#if 0 /* for later when we've got a separate mapping method for ring-0. */
2836 MMR3HeapFree(pUnmappedChunk);
2837#else
2838 MMHyperFree(pVM, pUnmappedChunk);
2839#endif
2840 pVM->pgm.s.ChunkR3Map.c--;
2841 }
2842 }
2843 else
2844 {
2845 AssertRC(rc);
2846#if 0 /* for later when we've got a separate mapping method for ring-0. */
2847 MMR3HeapFree(pChunk);
2848#else
2849 MMHyperFree(pVM, pChunk);
2850#endif
2851 pChunk = NULL;
2852 }
2853
2854 *ppChunk = pChunk;
2855 return rc;
2856}
2857
2858
2859/**
2860 * For VMMCALLHOST_PGM_MAP_CHUNK, considered internal.
2861 *
2862 * @returns see pgmR3PhysChunkMap.
2863 * @param pVM The VM handle.
2864 * @param idChunk The chunk to map.
2865 */
2866VMMR3DECL(int) PGMR3PhysChunkMap(PVM pVM, uint32_t idChunk)
2867{
2868 PPGMCHUNKR3MAP pChunk;
2869 return pgmR3PhysChunkMap(pVM, idChunk, &pChunk);
2870}
2871
2872
2873/**
2874 * Invalidates the TLB for the ring-3 mapping cache.
2875 *
2876 * @param pVM The VM handle.
2877 */
2878VMMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM)
2879{
2880 pgmLock(pVM);
2881 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
2882 {
2883 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
2884 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
2885 }
2886 pgmUnlock(pVM);
2887}
2888
2889
2890/**
2891 * Response to VM_FF_PGM_NEED_HANDY_PAGES and VMMCALLHOST_PGM_ALLOCATE_HANDY_PAGES.
2892 *
2893 * This function will also work the VM_FF_PGM_NO_MEMORY force action flag, to
2894 * signal and clear the out of memory condition. When contracted, this API is
2895 * used to try clear the condition when the user wants to resume.
2896 *
2897 * @returns The following VBox status codes.
2898 * @retval VINF_SUCCESS on success. FFs cleared.
2899 * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in
2900 * this case and it gets accompanied by VM_FF_PGM_NO_MEMORY.
2901 *
2902 * @param pVM The VM handle.
2903 *
2904 * @remarks The VINF_EM_NO_MEMORY status is for the benefit of the FF processing
2905 * in EM.cpp and shouldn't be propagated outside TRPM, HWACCM, EM and
2906 * pgmPhysEnsureHandyPage. There is one exception to this in the \#PF
2907 * handler.
2908 */
2909VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
2910{
2911 pgmLock(pVM);
2912
2913 /*
2914 * Allocate more pages, noting down the index of the first new page.
2915 */
2916 uint32_t iClear = pVM->pgm.s.cHandyPages;
2917 AssertMsgReturn(iClear <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d", iClear), VERR_INTERNAL_ERROR);
2918 Log(("PGMR3PhysAllocateHandyPages: %d -> %d\n", iClear, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
2919 int rcAlloc = VINF_SUCCESS;
2920 int rcSeed = VINF_SUCCESS;
2921 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
2922 while (rc == VERR_GMM_SEED_ME)
2923 {
2924 void *pvChunk;
2925 rcAlloc = rc = SUPPageAlloc(GMM_CHUNK_SIZE >> PAGE_SHIFT, &pvChunk);
2926 if (RT_SUCCESS(rc))
2927 {
2928 rcSeed = rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_SEED_CHUNK, (uintptr_t)pvChunk, NULL);
2929 if (RT_FAILURE(rc))
2930 SUPPageFree(pvChunk, GMM_CHUNK_SIZE >> PAGE_SHIFT);
2931 }
2932 if (RT_SUCCESS(rc))
2933 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
2934 }
2935
2936 if (RT_SUCCESS(rc))
2937 {
2938 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
2939 Assert(pVM->pgm.s.cHandyPages > 0);
2940 VM_FF_CLEAR(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
2941 VM_FF_CLEAR(pVM, VM_FF_PGM_NO_MEMORY);
2942
2943 /*
2944 * Clear the pages.
2945 */
2946 while (iClear < pVM->pgm.s.cHandyPages)
2947 {
2948 PGMMPAGEDESC pPage = &pVM->pgm.s.aHandyPages[iClear];
2949 void *pv;
2950 rc = pgmPhysPageMapByPageID(pVM, pPage->idPage, pPage->HCPhysGCPhys, &pv);
2951 AssertLogRelMsgBreak(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc", pPage->idPage, pPage->HCPhysGCPhys, rc));
2952 ASMMemZeroPage(pv);
2953 iClear++;
2954 Log3(("PGMR3PhysAllocateHandyPages: idPage=%#x HCPhys=%RGp\n", pPage->idPage, pPage->HCPhysGCPhys));
2955 }
2956 }
2957 else
2958 {
2959 /*
2960 * We should never get here unless there is a genuine shortage of
2961 * memory (or some internal error). Flag the error so the VM can be
2962 * suspended ASAP and the user informed. If we're totally out of
2963 * handy pages we will return failure.
2964 */
2965 /* Report the failure. */
2966 LogRel(("PGM: Failed to procure handy pages; rc=%Rrc rcAlloc=%Rrc rcSeed=%Rrc cHandyPages=%#x\n"
2967 " cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n",
2968 rc, rcSeed, rcAlloc,
2969 pVM->pgm.s.cHandyPages,
2970 pVM->pgm.s.cAllPages,
2971 pVM->pgm.s.cPrivatePages,
2972 pVM->pgm.s.cSharedPages,
2973 pVM->pgm.s.cZeroPages));
2974 if ( rc != VERR_NO_MEMORY
2975 && rc != VERR_LOCK_FAILED)
2976 {
2977 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
2978 {
2979 LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n",
2980 i, pVM->pgm.s.aHandyPages[i].HCPhysGCPhys, pVM->pgm.s.aHandyPages[i].idPage,
2981 pVM->pgm.s.aHandyPages[i].idSharedPage));
2982 uint32_t const idPage = pVM->pgm.s.aHandyPages[i].idPage;
2983 if (idPage != NIL_GMM_PAGEID)
2984 {
2985 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
2986 pRam;
2987 pRam = pRam->pNextR3)
2988 {
2989 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
2990 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2991 if (PGM_PAGE_GET_PAGEID(&pRam->aPages[iPage]) == idPage)
2992 LogRel(("PGM: Used by %RGp %R[pgmpage] (%s)\n",
2993 pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pRam->aPages[iPage], pRam->pszDesc));
2994 }
2995 }
2996 }
2997 }
2998
2999 /* Set the FFs and adjust rc. */
3000 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
3001 VM_FF_SET(pVM, VM_FF_PGM_NO_MEMORY);
3002 if ( rc == VERR_NO_MEMORY
3003 || rc == VERR_LOCK_FAILED)
3004 rc = VINF_EM_NO_MEMORY;
3005 }
3006
3007 pgmUnlock(pVM);
3008 return rc;
3009}
3010
3011
3012/**
3013 * Frees the specified RAM page and replaces it with the ZERO page.
3014 *
3015 * This is used by ballooning, remapping MMIO2 and RAM reset.
3016 *
3017 * @param pVM Pointer to the shared VM structure.
3018 * @param pReq Pointer to the request.
3019 * @param pPage Pointer to the page structure.
3020 * @param GCPhys The guest physical address of the page, if applicable.
3021 *
3022 * @remarks The caller must own the PGM lock.
3023 */
3024static int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys)
3025{
3026 /*
3027 * Assert sanity.
3028 */
3029 Assert(PDMCritSectIsOwner(&pVM->pgm.s.CritSect));
3030 if (RT_UNLIKELY( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
3031 && PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW))
3032 {
3033 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
3034 return VMSetError(pVM, VERR_PGM_PHYS_NOT_RAM, RT_SRC_POS, "GCPhys=%RGp type=%d", GCPhys, PGM_PAGE_GET_TYPE(pPage));
3035 }
3036
3037 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ZERO)
3038 return VINF_SUCCESS;
3039
3040 const uint32_t idPage = PGM_PAGE_GET_PAGEID(pPage);
3041 Log3(("pgmPhysFreePage: idPage=%#x HCPhys=%RGp pPage=%R[pgmpage]\n", idPage, pPage));
3042 if (RT_UNLIKELY( idPage == NIL_GMM_PAGEID
3043 || idPage > GMM_PAGEID_LAST
3044 || PGM_PAGE_GET_CHUNKID(pPage) == NIL_GMM_CHUNKID))
3045 {
3046 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
3047 return VMSetError(pVM, VERR_PGM_PHYS_INVALID_PAGE_ID, RT_SRC_POS, "GCPhys=%RGp idPage=%#x", GCPhys, pPage);
3048 }
3049
3050 /* update page count stats. */
3051 if (PGM_PAGE_IS_SHARED(pPage))
3052 pVM->pgm.s.cSharedPages--;
3053 else
3054 pVM->pgm.s.cPrivatePages--;
3055 pVM->pgm.s.cZeroPages++;
3056
3057 /*
3058 * pPage = ZERO page.
3059 */
3060 PGM_PAGE_SET_HCPHYS(pPage, pVM->pgm.s.HCPhysZeroPg);
3061 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
3062 PGM_PAGE_SET_PAGEID(pPage, NIL_GMM_PAGEID);
3063
3064 /*
3065 * Make sure it's not in the handy page array.
3066 */
3067 for (uint32_t i = pVM->pgm.s.cHandyPages; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
3068 {
3069 if (pVM->pgm.s.aHandyPages[i].idPage == idPage)
3070 {
3071 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
3072 break;
3073 }
3074 if (pVM->pgm.s.aHandyPages[i].idSharedPage == idPage)
3075 {
3076 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
3077 break;
3078 }
3079 }
3080
3081 /*
3082 * Push it onto the page array.
3083 */
3084 uint32_t iPage = *pcPendingPages;
3085 Assert(iPage < PGMPHYS_FREE_PAGE_BATCH_SIZE);
3086 *pcPendingPages += 1;
3087
3088 pReq->aPages[iPage].idPage = idPage;
3089
3090 if (iPage + 1 < PGMPHYS_FREE_PAGE_BATCH_SIZE)
3091 return VINF_SUCCESS;
3092
3093 /*
3094 * Flush the pages.
3095 */
3096 int rc = GMMR3FreePagesPerform(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE);
3097 if (RT_SUCCESS(rc))
3098 {
3099 GMMR3FreePagesRePrep(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
3100 *pcPendingPages = 0;
3101 }
3102 return rc;
3103}
3104
3105
3106/**
3107 * Converts a GC physical address to a HC ring-3 pointer, with some
3108 * additional checks.
3109 *
3110 * @returns VBox status code.
3111 * @retval VINF_SUCCESS on success.
3112 * @retval VINF_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
3113 * access handler of some kind.
3114 * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
3115 * accesses or is odd in any way.
3116 * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
3117 *
3118 * @param pVM The VM handle.
3119 * @param GCPhys The GC physical address to convert.
3120 * @param fWritable Whether write access is required.
3121 * @param ppv Where to store the pointer corresponding to GCPhys on
3122 * success.
3123 */
3124VMMR3DECL(int) PGMR3PhysTlbGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, void **ppv)
3125{
3126 pgmLock(pVM);
3127
3128 PPGMRAMRANGE pRam;
3129 PPGMPAGE pPage;
3130 int rc = pgmPhysGetPageAndRangeEx(&pVM->pgm.s, GCPhys, &pPage, &pRam);
3131 if (RT_SUCCESS(rc))
3132 {
3133 if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage))
3134 rc = VINF_SUCCESS;
3135 else
3136 {
3137 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
3138 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
3139 else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
3140 {
3141 /** @todo Handle TLB loads of virtual handlers so ./test.sh can be made to work
3142 * in -norawr0 mode. */
3143 if (fWritable)
3144 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
3145 }
3146 else
3147 {
3148 /* Temporariliy disabled phycial handler(s), since the recompiler
3149 doesn't get notified when it's reset we'll have to pretend its
3150 operating normally. */
3151 if (pgmHandlerPhysicalIsAll(pVM, GCPhys))
3152 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
3153 else
3154 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
3155 }
3156 }
3157 if (RT_SUCCESS(rc))
3158 {
3159 int rc2;
3160
3161 /* Make sure what we return is writable. */
3162 if (fWritable && rc != VINF_PGM_PHYS_TLB_CATCH_WRITE)
3163 switch (PGM_PAGE_GET_STATE(pPage))
3164 {
3165 case PGM_PAGE_STATE_ALLOCATED:
3166 break;
3167 case PGM_PAGE_STATE_ZERO:
3168 case PGM_PAGE_STATE_SHARED:
3169 case PGM_PAGE_STATE_WRITE_MONITORED:
3170 rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
3171 AssertLogRelRCReturn(rc2, rc2);
3172 break;
3173 }
3174
3175 /* Get a ring-3 mapping of the address. */
3176 PPGMPAGER3MAPTLBE pTlbe;
3177 rc2 = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
3178 AssertLogRelRCReturn(rc2, rc2);
3179 *ppv = (void *)((uintptr_t)pTlbe->pv | (GCPhys & PAGE_OFFSET_MASK));
3180 /** @todo mapping/locking hell; this isn't horribly efficient since
3181 * pgmPhysPageLoadIntoTlb will repeate the lookup we've done here. */
3182
3183 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
3184 }
3185 else
3186 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));
3187
3188 /* else: handler catching all access, no pointer returned. */
3189 }
3190 else
3191 rc = VERR_PGM_PHYS_TLB_UNASSIGNED;
3192
3193 pgmUnlock(pVM);
3194 return rc;
3195}
3196
3197
3198
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette