VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMPhys.cpp@ 26947

Last change on this file since 26947 was 26947, checked in by vboxsync, 15 years ago

Avoid deadlocks in PGMR3PhysFreeRamPages

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 127.1 KB
Line 
1/* $Id: PGMPhys.cpp 26947 2010-03-02 14:11:43Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_PGM_PHYS
27#include <VBox/pgm.h>
28#include <VBox/iom.h>
29#include <VBox/mm.h>
30#include <VBox/stam.h>
31#include <VBox/rem.h>
32#include <VBox/pdmdev.h>
33#include "PGMInternal.h"
34#include <VBox/vm.h>
35#include "PGMInline.h"
36#include <VBox/sup.h>
37#include <VBox/param.h>
38#include <VBox/err.h>
39#include <VBox/log.h>
40#include <iprt/assert.h>
41#include <iprt/alloc.h>
42#include <iprt/asm.h>
43#include <iprt/thread.h>
44#include <iprt/string.h>
45
46
47/*******************************************************************************
48* Defined Constants And Macros *
49*******************************************************************************/
50/** The number of pages to free in one batch. */
51#define PGMPHYS_FREE_PAGE_BATCH_SIZE 128
52
53
54/*******************************************************************************
55* Internal Functions *
56*******************************************************************************/
57static DECLCALLBACK(int) pgmR3PhysRomWriteHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
58static int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys);
59
60
61/*
62 * PGMR3PhysReadU8-64
63 * PGMR3PhysWriteU8-64
64 */
65#define PGMPHYSFN_READNAME PGMR3PhysReadU8
66#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8
67#define PGMPHYS_DATASIZE 1
68#define PGMPHYS_DATATYPE uint8_t
69#include "PGMPhysRWTmpl.h"
70
71#define PGMPHYSFN_READNAME PGMR3PhysReadU16
72#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16
73#define PGMPHYS_DATASIZE 2
74#define PGMPHYS_DATATYPE uint16_t
75#include "PGMPhysRWTmpl.h"
76
77#define PGMPHYSFN_READNAME PGMR3PhysReadU32
78#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32
79#define PGMPHYS_DATASIZE 4
80#define PGMPHYS_DATATYPE uint32_t
81#include "PGMPhysRWTmpl.h"
82
83#define PGMPHYSFN_READNAME PGMR3PhysReadU64
84#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64
85#define PGMPHYS_DATASIZE 8
86#define PGMPHYS_DATATYPE uint64_t
87#include "PGMPhysRWTmpl.h"
88
89
90/**
91 * EMT worker for PGMR3PhysReadExternal.
92 */
93static DECLCALLBACK(int) pgmR3PhysReadExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, void *pvBuf, size_t cbRead)
94{
95 PGMPhysRead(pVM, *pGCPhys, pvBuf, cbRead);
96 return VINF_SUCCESS;
97}
98
99
100/**
101 * Write to physical memory, external users.
102 *
103 * @returns VBox status code.
104 * @retval VINF_SUCCESS.
105 *
106 * @param pVM VM Handle.
107 * @param GCPhys Physical address to write to.
108 * @param pvBuf What to write.
109 * @param cbWrite How many bytes to write.
110 *
111 * @thread Any but EMTs.
112 */
113VMMR3DECL(int) PGMR3PhysReadExternal(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead)
114{
115 VM_ASSERT_OTHER_THREAD(pVM);
116
117 AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
118 LogFlow(("PGMR3PhysReadExternal: %RGp %d\n", GCPhys, cbRead));
119
120 pgmLock(pVM);
121
122 /*
123 * Copy loop on ram ranges.
124 */
125 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
126 for (;;)
127 {
128 /* Find range. */
129 while (pRam && GCPhys > pRam->GCPhysLast)
130 pRam = pRam->CTX_SUFF(pNext);
131 /* Inside range or not? */
132 if (pRam && GCPhys >= pRam->GCPhys)
133 {
134 /*
135 * Must work our way thru this page by page.
136 */
137 RTGCPHYS off = GCPhys - pRam->GCPhys;
138 while (off < pRam->cb)
139 {
140 unsigned iPage = off >> PAGE_SHIFT;
141 PPGMPAGE pPage = &pRam->aPages[iPage];
142
143 /*
144 * If the page has an ALL access handler, we'll have to
145 * delegate the job to EMT.
146 */
147 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
148 {
149 pgmUnlock(pVM);
150
151 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysReadExternalEMT, 4,
152 pVM, &GCPhys, pvBuf, cbRead);
153 }
154 Assert(!PGM_PAGE_IS_MMIO(pPage));
155
156 /*
157 * Simple stuff, go ahead.
158 */
159 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
160 if (cb > cbRead)
161 cb = cbRead;
162 const void *pvSrc;
163 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc);
164 if (RT_SUCCESS(rc))
165 memcpy(pvBuf, pvSrc, cb);
166 else
167 {
168 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
169 pRam->GCPhys + off, pPage, rc));
170 memset(pvBuf, 0xff, cb);
171 }
172
173 /* next page */
174 if (cb >= cbRead)
175 {
176 pgmUnlock(pVM);
177 return VINF_SUCCESS;
178 }
179 cbRead -= cb;
180 off += cb;
181 GCPhys += cb;
182 pvBuf = (char *)pvBuf + cb;
183 } /* walk pages in ram range. */
184 }
185 else
186 {
187 LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
188
189 /*
190 * Unassigned address space.
191 */
192 if (!pRam)
193 break;
194 size_t cb = pRam->GCPhys - GCPhys;
195 if (cb >= cbRead)
196 {
197 memset(pvBuf, 0xff, cbRead);
198 break;
199 }
200 memset(pvBuf, 0xff, cb);
201
202 cbRead -= cb;
203 pvBuf = (char *)pvBuf + cb;
204 GCPhys += cb;
205 }
206 } /* Ram range walk */
207
208 pgmUnlock(pVM);
209
210 return VINF_SUCCESS;
211}
212
213
214/**
215 * EMT worker for PGMR3PhysWriteExternal.
216 */
217static DECLCALLBACK(int) pgmR3PhysWriteExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, const void *pvBuf, size_t cbWrite)
218{
219 /** @todo VERR_EM_NO_MEMORY */
220 PGMPhysWrite(pVM, *pGCPhys, pvBuf, cbWrite);
221 return VINF_SUCCESS;
222}
223
224
225/**
226 * Write to physical memory, external users.
227 *
228 * @returns VBox status code.
229 * @retval VINF_SUCCESS.
230 * @retval VERR_EM_NO_MEMORY.
231 *
232 * @param pVM VM Handle.
233 * @param GCPhys Physical address to write to.
234 * @param pvBuf What to write.
235 * @param cbWrite How many bytes to write.
236 * @param pszWho Who is writing. For tracking down who is writing
237 * after we've saved the state.
238 *
239 * @thread Any but EMTs.
240 */
241VMMDECL(int) PGMR3PhysWriteExternal(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, const char *pszWho)
242{
243 VM_ASSERT_OTHER_THREAD(pVM);
244
245 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites,
246 ("Calling PGMR3PhysWriteExternal after pgmR3Save()! GCPhys=%RGp cbWrite=%#x pszWho=%s\n",
247 GCPhys, cbWrite, pszWho));
248 AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
249 LogFlow(("PGMR3PhysWriteExternal: %RGp %d\n", GCPhys, cbWrite));
250
251 pgmLock(pVM);
252
253 /*
254 * Copy loop on ram ranges, stop when we hit something difficult.
255 */
256 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
257 for (;;)
258 {
259 /* Find range. */
260 while (pRam && GCPhys > pRam->GCPhysLast)
261 pRam = pRam->CTX_SUFF(pNext);
262 /* Inside range or not? */
263 if (pRam && GCPhys >= pRam->GCPhys)
264 {
265 /*
266 * Must work our way thru this page by page.
267 */
268 RTGCPTR off = GCPhys - pRam->GCPhys;
269 while (off < pRam->cb)
270 {
271 RTGCPTR iPage = off >> PAGE_SHIFT;
272 PPGMPAGE pPage = &pRam->aPages[iPage];
273
274 /*
275 * Is the page problematic, we have to do the work on the EMT.
276 *
277 * Allocating writable pages and access handlers are
278 * problematic, write monitored pages are simple and can be
279 * dealth with here.
280 */
281 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
282 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
283 {
284 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
285 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
286 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
287 else
288 {
289 pgmUnlock(pVM);
290
291 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysWriteExternalEMT, 4,
292 pVM, &GCPhys, pvBuf, cbWrite);
293 }
294 }
295 Assert(!PGM_PAGE_IS_MMIO(pPage));
296
297 /*
298 * Simple stuff, go ahead.
299 */
300 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
301 if (cb > cbWrite)
302 cb = cbWrite;
303 void *pvDst;
304 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst);
305 if (RT_SUCCESS(rc))
306 memcpy(pvDst, pvBuf, cb);
307 else
308 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
309 pRam->GCPhys + off, pPage, rc));
310
311 /* next page */
312 if (cb >= cbWrite)
313 {
314 pgmUnlock(pVM);
315 return VINF_SUCCESS;
316 }
317
318 cbWrite -= cb;
319 off += cb;
320 GCPhys += cb;
321 pvBuf = (const char *)pvBuf + cb;
322 } /* walk pages in ram range */
323 }
324 else
325 {
326 /*
327 * Unassigned address space, skip it.
328 */
329 if (!pRam)
330 break;
331 size_t cb = pRam->GCPhys - GCPhys;
332 if (cb >= cbWrite)
333 break;
334 cbWrite -= cb;
335 pvBuf = (const char *)pvBuf + cb;
336 GCPhys += cb;
337 }
338 } /* Ram range walk */
339
340 pgmUnlock(pVM);
341 return VINF_SUCCESS;
342}
343
344
345/**
346 * VMR3ReqCall worker for PGMR3PhysGCPhys2CCPtrExternal to make pages writable.
347 *
348 * @returns see PGMR3PhysGCPhys2CCPtrExternal
349 * @param pVM The VM handle.
350 * @param pGCPhys Pointer to the guest physical address.
351 * @param ppv Where to store the mapping address.
352 * @param pLock Where to store the lock.
353 */
354static DECLCALLBACK(int) pgmR3PhysGCPhys2CCPtrDelegated(PVM pVM, PRTGCPHYS pGCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
355{
356 /*
357 * Just hand it to PGMPhysGCPhys2CCPtr and check that it's not a page with
358 * an access handler after it succeeds.
359 */
360 int rc = pgmLock(pVM);
361 AssertRCReturn(rc, rc);
362
363 rc = PGMPhysGCPhys2CCPtr(pVM, *pGCPhys, ppv, pLock);
364 if (RT_SUCCESS(rc))
365 {
366 PPGMPAGEMAPTLBE pTlbe;
367 int rc2 = pgmPhysPageQueryTlbe(&pVM->pgm.s, *pGCPhys, &pTlbe);
368 AssertFatalRC(rc2);
369 PPGMPAGE pPage = pTlbe->pPage;
370 if (PGM_PAGE_IS_MMIO(pPage))
371 {
372 PGMPhysReleasePageMappingLock(pVM, pLock);
373 rc = VERR_PGM_PHYS_PAGE_RESERVED;
374 }
375 else if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
376#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
377 || pgmPoolIsDirtyPage(pVM, *pGCPhys)
378#endif
379 )
380 {
381 /* We *must* flush any corresponding pgm pool page here, otherwise we'll
382 * not be informed about writes and keep bogus gst->shw mappings around.
383 */
384 pgmPoolFlushPageByGCPhys(pVM, *pGCPhys);
385 Assert(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage));
386 /** @todo r=bird: return VERR_PGM_PHYS_PAGE_RESERVED here if it still has
387 * active handlers, see the PGMR3PhysGCPhys2CCPtrExternal docs. */
388 }
389 }
390
391 pgmUnlock(pVM);
392 return rc;
393}
394
395
396/**
397 * Requests the mapping of a guest page into ring-3, external threads.
398 *
399 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
400 * release it.
401 *
402 * This API will assume your intention is to write to the page, and will
403 * therefore replace shared and zero pages. If you do not intend to modify the
404 * page, use the PGMR3PhysGCPhys2CCPtrReadOnlyExternal() API.
405 *
406 * @returns VBox status code.
407 * @retval VINF_SUCCESS on success.
408 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
409 * backing or if the page has any active access handlers. The caller
410 * must fall back on using PGMR3PhysWriteExternal.
411 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
412 *
413 * @param pVM The VM handle.
414 * @param GCPhys The guest physical address of the page that should be mapped.
415 * @param ppv Where to store the address corresponding to GCPhys.
416 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
417 *
418 * @remark Avoid calling this API from within critical sections (other than the
419 * PGM one) because of the deadlock risk when we have to delegating the
420 * task to an EMT.
421 * @thread Any.
422 */
423VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrExternal(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
424{
425 AssertPtr(ppv);
426 AssertPtr(pLock);
427
428 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
429
430 int rc = pgmLock(pVM);
431 AssertRCReturn(rc, rc);
432
433 /*
434 * Query the Physical TLB entry for the page (may fail).
435 */
436 PPGMPAGEMAPTLBE pTlbe;
437 rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
438 if (RT_SUCCESS(rc))
439 {
440 PPGMPAGE pPage = pTlbe->pPage;
441 if (PGM_PAGE_IS_MMIO(pPage))
442 rc = VERR_PGM_PHYS_PAGE_RESERVED;
443 else
444 {
445 /*
446 * If the page is shared, the zero page, or being write monitored
447 * it must be converted to an page that's writable if possible.
448 * We can only deal with write monitored pages here, the rest have
449 * to be on an EMT.
450 */
451 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
452 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
453#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
454 || pgmPoolIsDirtyPage(pVM, GCPhys)
455#endif
456 )
457 {
458 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
459 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
460#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
461 && !pgmPoolIsDirtyPage(pVM, GCPhys)
462#endif
463 )
464 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
465 else
466 {
467 pgmUnlock(pVM);
468
469 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
470 pVM, &GCPhys, ppv, pLock);
471 }
472 }
473
474 /*
475 * Now, just perform the locking and calculate the return address.
476 */
477 PPGMPAGEMAP pMap = pTlbe->pMap;
478 if (pMap)
479 pMap->cRefs++;
480
481 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
482 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
483 {
484 if (cLocks == 0)
485 pVM->pgm.s.cWriteLockedPages++;
486 PGM_PAGE_INC_WRITE_LOCKS(pPage);
487 }
488 else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
489 {
490 PGM_PAGE_INC_WRITE_LOCKS(pPage);
491 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", GCPhys, pPage));
492 if (pMap)
493 pMap->cRefs++; /* Extra ref to prevent it from going away. */
494 }
495
496 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
497 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
498 pLock->pvMap = pMap;
499 }
500 }
501
502 pgmUnlock(pVM);
503 return rc;
504}
505
506
507/**
508 * Requests the mapping of a guest page into ring-3, external threads.
509 *
510 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
511 * release it.
512 *
513 * @returns VBox status code.
514 * @retval VINF_SUCCESS on success.
515 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
516 * backing or if the page as an active ALL access handler. The caller
517 * must fall back on using PGMPhysRead.
518 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
519 *
520 * @param pVM The VM handle.
521 * @param GCPhys The guest physical address of the page that should be mapped.
522 * @param ppv Where to store the address corresponding to GCPhys.
523 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
524 *
525 * @remark Avoid calling this API from within critical sections (other than
526 * the PGM one) because of the deadlock risk.
527 * @thread Any.
528 */
529VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrReadOnlyExternal(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
530{
531 int rc = pgmLock(pVM);
532 AssertRCReturn(rc, rc);
533
534 /*
535 * Query the Physical TLB entry for the page (may fail).
536 */
537 PPGMPAGEMAPTLBE pTlbe;
538 rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
539 if (RT_SUCCESS(rc))
540 {
541 PPGMPAGE pPage = pTlbe->pPage;
542#if 1
543 /* MMIO pages doesn't have any readable backing. */
544 if (PGM_PAGE_IS_MMIO(pPage))
545 rc = VERR_PGM_PHYS_PAGE_RESERVED;
546#else
547 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
548 rc = VERR_PGM_PHYS_PAGE_RESERVED;
549#endif
550 else
551 {
552 /*
553 * Now, just perform the locking and calculate the return address.
554 */
555 PPGMPAGEMAP pMap = pTlbe->pMap;
556 if (pMap)
557 pMap->cRefs++;
558
559 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
560 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
561 {
562 if (cLocks == 0)
563 pVM->pgm.s.cReadLockedPages++;
564 PGM_PAGE_INC_READ_LOCKS(pPage);
565 }
566 else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
567 {
568 PGM_PAGE_INC_READ_LOCKS(pPage);
569 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", GCPhys, pPage));
570 if (pMap)
571 pMap->cRefs++; /* Extra ref to prevent it from going away. */
572 }
573
574 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
575 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
576 pLock->pvMap = pMap;
577 }
578 }
579
580 pgmUnlock(pVM);
581 return rc;
582}
583
584
585/**
586 * Relinks the RAM ranges using the pSelfRC and pSelfR0 pointers.
587 *
588 * Called when anything was relocated.
589 *
590 * @param pVM Pointer to the shared VM structure.
591 */
592void pgmR3PhysRelinkRamRanges(PVM pVM)
593{
594 PPGMRAMRANGE pCur;
595
596#ifdef VBOX_STRICT
597 for (pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
598 {
599 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfR0 == MMHyperCCToR0(pVM, pCur));
600 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfRC == MMHyperCCToRC(pVM, pCur));
601 Assert((pCur->GCPhys & PAGE_OFFSET_MASK) == 0);
602 Assert((pCur->GCPhysLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
603 Assert((pCur->cb & PAGE_OFFSET_MASK) == 0);
604 Assert(pCur->cb == pCur->GCPhysLast - pCur->GCPhys + 1);
605 for (PPGMRAMRANGE pCur2 = pVM->pgm.s.pRamRangesR3; pCur2; pCur2 = pCur2->pNextR3)
606 Assert( pCur2 == pCur
607 || strcmp(pCur2->pszDesc, pCur->pszDesc)); /** @todo fix MMIO ranges!! */
608 }
609#endif
610
611 pCur = pVM->pgm.s.pRamRangesR3;
612 if (pCur)
613 {
614 pVM->pgm.s.pRamRangesR0 = pCur->pSelfR0;
615 pVM->pgm.s.pRamRangesRC = pCur->pSelfRC;
616
617 for (; pCur->pNextR3; pCur = pCur->pNextR3)
618 {
619 pCur->pNextR0 = pCur->pNextR3->pSelfR0;
620 pCur->pNextRC = pCur->pNextR3->pSelfRC;
621 }
622
623 Assert(pCur->pNextR0 == NIL_RTR0PTR);
624 Assert(pCur->pNextRC == NIL_RTRCPTR);
625 }
626 else
627 {
628 Assert(pVM->pgm.s.pRamRangesR0 == NIL_RTR0PTR);
629 Assert(pVM->pgm.s.pRamRangesRC == NIL_RTRCPTR);
630 }
631 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
632}
633
634
635/**
636 * Links a new RAM range into the list.
637 *
638 * @param pVM Pointer to the shared VM structure.
639 * @param pNew Pointer to the new list entry.
640 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
641 */
642static void pgmR3PhysLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, PPGMRAMRANGE pPrev)
643{
644 AssertMsg(pNew->pszDesc, ("%RGp-%RGp\n", pNew->GCPhys, pNew->GCPhysLast));
645 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfR0 == MMHyperCCToR0(pVM, pNew));
646 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfRC == MMHyperCCToRC(pVM, pNew));
647
648 pgmLock(pVM);
649
650 PPGMRAMRANGE pRam = pPrev ? pPrev->pNextR3 : pVM->pgm.s.pRamRangesR3;
651 pNew->pNextR3 = pRam;
652 pNew->pNextR0 = pRam ? pRam->pSelfR0 : NIL_RTR0PTR;
653 pNew->pNextRC = pRam ? pRam->pSelfRC : NIL_RTRCPTR;
654
655 if (pPrev)
656 {
657 pPrev->pNextR3 = pNew;
658 pPrev->pNextR0 = pNew->pSelfR0;
659 pPrev->pNextRC = pNew->pSelfRC;
660 }
661 else
662 {
663 pVM->pgm.s.pRamRangesR3 = pNew;
664 pVM->pgm.s.pRamRangesR0 = pNew->pSelfR0;
665 pVM->pgm.s.pRamRangesRC = pNew->pSelfRC;
666 }
667 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
668 pgmUnlock(pVM);
669}
670
671
672/**
673 * Unlink an existing RAM range from the list.
674 *
675 * @param pVM Pointer to the shared VM structure.
676 * @param pRam Pointer to the new list entry.
677 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
678 */
679static void pgmR3PhysUnlinkRamRange2(PVM pVM, PPGMRAMRANGE pRam, PPGMRAMRANGE pPrev)
680{
681 Assert(pPrev ? pPrev->pNextR3 == pRam : pVM->pgm.s.pRamRangesR3 == pRam);
682 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfR0 == MMHyperCCToR0(pVM, pRam));
683 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfRC == MMHyperCCToRC(pVM, pRam));
684
685 pgmLock(pVM);
686
687 PPGMRAMRANGE pNext = pRam->pNextR3;
688 if (pPrev)
689 {
690 pPrev->pNextR3 = pNext;
691 pPrev->pNextR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
692 pPrev->pNextRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
693 }
694 else
695 {
696 Assert(pVM->pgm.s.pRamRangesR3 == pRam);
697 pVM->pgm.s.pRamRangesR3 = pNext;
698 pVM->pgm.s.pRamRangesR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
699 pVM->pgm.s.pRamRangesRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
700 }
701 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
702 pgmUnlock(pVM);
703}
704
705
706/**
707 * Unlink an existing RAM range from the list.
708 *
709 * @param pVM Pointer to the shared VM structure.
710 * @param pRam Pointer to the new list entry.
711 */
712static void pgmR3PhysUnlinkRamRange(PVM pVM, PPGMRAMRANGE pRam)
713{
714 pgmLock(pVM);
715
716 /* find prev. */
717 PPGMRAMRANGE pPrev = NULL;
718 PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3;
719 while (pCur != pRam)
720 {
721 pPrev = pCur;
722 pCur = pCur->pNextR3;
723 }
724 AssertFatal(pCur);
725
726 pgmR3PhysUnlinkRamRange2(pVM, pRam, pPrev);
727 pgmUnlock(pVM);
728}
729
730
731/**
732 * Frees a range of pages, replacing them with ZERO pages of the specified type.
733 *
734 * @returns VBox status code.
735 * @param pVM The VM handle.
736 * @param pRam The RAM range in which the pages resides.
737 * @param GCPhys The address of the first page.
738 * @param GCPhysLast The address of the last page.
739 * @param uType The page type to replace then with.
740 */
741static int pgmR3PhysFreePageRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, uint8_t uType)
742{
743 Assert(PGMIsLockOwner(pVM));
744 uint32_t cPendingPages = 0;
745 PGMMFREEPAGESREQ pReq;
746 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
747 AssertLogRelRCReturn(rc, rc);
748
749 /* Iterate the pages. */
750 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
751 uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1;
752 while (cPagesLeft-- > 0)
753 {
754 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
755 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
756
757 PGM_PAGE_SET_TYPE(pPageDst, uType);
758
759 GCPhys += PAGE_SIZE;
760 pPageDst++;
761 }
762
763 if (cPendingPages)
764 {
765 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
766 AssertLogRelRCReturn(rc, rc);
767 }
768 GMMR3FreePagesCleanup(pReq);
769
770 return rc;
771}
772
773/**
774 * Rendezvous callback used by PGMR3PhysFreeRamPages that frees a range of guest physical pages
775 *
776 * This is only called on one of the EMTs while the other ones are waiting for
777 * it to complete this function.
778 *
779 * @returns VINF_SUCCESS (VBox strict status code).
780 * @param pVM The VM handle.
781 * @param pVCpu The VMCPU for the EMT we're being called on. Unused.
782 * @param pvUser User parameter
783 */
784static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysFreeRamPagesRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
785{
786 uintptr_t *paUser = (uintptr_t *)pvUser;
787 unsigned cPages = paUser[0];
788 RTGCPHYS *paPhysPage = (RTGCPHYS *)paUser[1];
789 uint32_t cPendingPages = 0;
790 PGMMFREEPAGESREQ pReq;
791
792 pgmLock(pVM);
793 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
794 if (RT_FAILURE(rc))
795 {
796 pgmUnlock(pVM);
797 AssertLogRelRC(rc);
798 return rc;
799 }
800
801 /* Iterate the pages. */
802 for (unsigned i = 0; i < cPages; i++)
803 {
804 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, paPhysPage[i]);
805 if ( pPage == NULL
806 || pPage->uTypeY != PGMPAGETYPE_RAM)
807 {
808 Log(("PGMR3PhysFreePageRange: invalid physical page %RGp pPage->u3Type=%d\n", paPhysPage[i], (pPage) ? pPage->uTypeY : 0));
809 break;
810 }
811
812 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, paPhysPage[i]);
813 if (RT_FAILURE(rc))
814 {
815 pgmUnlock(pVM);
816 AssertLogRelRC(rc);
817 return rc;
818 }
819 }
820
821 if (cPendingPages)
822 {
823 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
824 if (RT_FAILURE(rc))
825 {
826 pgmUnlock(pVM);
827 AssertLogRelRC(rc);
828 return rc;
829 }
830 }
831 GMMR3FreePagesCleanup(pReq);
832
833 /* Flush the PGM pool cache as we might have stale references to pages that we just freed. */
834 pgmR3PoolClearAllRendezvous(pVM, pVCpu, NULL);
835
836 pgmUnlock(pVM);
837 return rc;
838}
839
840/**
841 * Frees a range of ram pages, replacing them with ZERO pages; helper for PGMR3PhysFreeRamPages
842 *
843 * @returns VBox status code.
844 * @param pVM The VM handle.
845 * @param cPages Number of pages to free
846 * @param paPhysPage Array of guest physical addresses
847 */
848static DECLCALLBACK(void) pgmR3PhysFreeRamPagesHelper(PVM pVM, unsigned cPages, RTGCPHYS *paPhysPage)
849{
850 uintptr_t paUser[2];
851
852 paUser[0] = cPages;
853 paUser[1] = (uintptr_t)paPhysPage;
854 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysFreeRamPagesRendezvous, (void *)paUser);
855 AssertRC(rc);
856
857 /* Made a copy in PGMR3PhysFreeRamPages; free it here. */
858 RTMemFree(paPhysPage);
859}
860
861/**
862 * Frees a range of ram pages, replacing them with ZERO pages
863 *
864 * @returns VBox status code.
865 * @param pVM The VM handle.
866 * @param cPages Number of pages to free
867 * @param paPhysPage Array of guest physical addresses
868 */
869VMMR3DECL(int) PGMR3PhysFreeRamPages(PVM pVM, unsigned cPages, RTGCPHYS *paPhysPage)
870{
871 int rc;
872
873 /* Currently only used by the VMM device in responds to a balloon request. */
874 if (pVM->cCpus > 1)
875 {
876 unsigned cbPhysPage = cPages * sizeof(paPhysPage[0]);
877 RTGCPHYS *paPhysPageCopy = (RTGCPHYS *)RTMemAlloc(cbPhysPage);
878 AssertReturn(paPhysPageCopy, VERR_NO_MEMORY);
879
880 memcpy(paPhysPageCopy, paPhysPage, cbPhysPage);
881
882 /* We own the IOM lock here and could cause a deadlock by waiting for another VCPU that is blocking on the IOM lock. */
883 rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysFreeRamPagesHelper, 3, pVM, cPages, paPhysPageCopy);
884 AssertRC(rc);
885 }
886 else
887 {
888 uintptr_t paUser[2];
889
890 paUser[0] = cPages;
891 paUser[1] = (uintptr_t)paPhysPage;
892 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysFreeRamPagesRendezvous, (void *)paUser);
893 AssertRC(rc);
894 }
895 return rc;
896}
897
898
899/**
900 * PGMR3PhysRegisterRam worker that initializes and links a RAM range.
901 *
902 * @param pVM The VM handle.
903 * @param pNew The new RAM range.
904 * @param GCPhys The address of the RAM range.
905 * @param GCPhysLast The last address of the RAM range.
906 * @param RCPtrNew The RC address if the range is floating. NIL_RTRCPTR
907 * if in HMA.
908 * @param R0PtrNew Ditto for R0.
909 * @param pszDesc The description.
910 * @param pPrev The previous RAM range (for linking).
911 */
912static void pgmR3PhysInitAndLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
913 RTRCPTR RCPtrNew, RTR0PTR R0PtrNew, const char *pszDesc, PPGMRAMRANGE pPrev)
914{
915 /*
916 * Initialize the range.
917 */
918 pNew->pSelfR0 = R0PtrNew != NIL_RTR0PTR ? R0PtrNew : MMHyperCCToR0(pVM, pNew);
919 pNew->pSelfRC = RCPtrNew != NIL_RTRCPTR ? RCPtrNew : MMHyperCCToRC(pVM, pNew);
920 pNew->GCPhys = GCPhys;
921 pNew->GCPhysLast = GCPhysLast;
922 pNew->cb = GCPhysLast - GCPhys + 1;
923 pNew->pszDesc = pszDesc;
924 pNew->fFlags = RCPtrNew != NIL_RTRCPTR ? PGM_RAM_RANGE_FLAGS_FLOATING : 0;
925 pNew->pvR3 = NULL;
926 pNew->paLSPages = NULL;
927
928 uint32_t const cPages = pNew->cb >> PAGE_SHIFT;
929 RTGCPHYS iPage = cPages;
930 while (iPage-- > 0)
931 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM);
932
933 /* Update the page count stats. */
934 pVM->pgm.s.cZeroPages += cPages;
935 pVM->pgm.s.cAllPages += cPages;
936
937 /*
938 * Link it.
939 */
940 pgmR3PhysLinkRamRange(pVM, pNew, pPrev);
941}
942
943
944/**
945 * Relocate a floating RAM range.
946 *
947 * @copydoc FNPGMRELOCATE.
948 */
949static DECLCALLBACK(bool) pgmR3PhysRamRangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew, PGMRELOCATECALL enmMode, void *pvUser)
950{
951 PPGMRAMRANGE pRam = (PPGMRAMRANGE)pvUser;
952 Assert(pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING);
953 Assert(pRam->pSelfRC == GCPtrOld + PAGE_SIZE);
954
955 switch (enmMode)
956 {
957 case PGMRELOCATECALL_SUGGEST:
958 return true;
959 case PGMRELOCATECALL_RELOCATE:
960 {
961 /* Update myself and then relink all the ranges. */
962 pgmLock(pVM);
963 pRam->pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE);
964 pgmR3PhysRelinkRamRanges(pVM);
965 pgmUnlock(pVM);
966 return true;
967 }
968
969 default:
970 AssertFailedReturn(false);
971 }
972}
973
974
975/**
976 * PGMR3PhysRegisterRam worker that registers a high chunk.
977 *
978 * @returns VBox status code.
979 * @param pVM The VM handle.
980 * @param GCPhys The address of the RAM.
981 * @param cRamPages The number of RAM pages to register.
982 * @param cbChunk The size of the PGMRAMRANGE guest mapping.
983 * @param iChunk The chunk number.
984 * @param pszDesc The RAM range description.
985 * @param ppPrev Previous RAM range pointer. In/Out.
986 */
987static int pgmR3PhysRegisterHighRamChunk(PVM pVM, RTGCPHYS GCPhys, uint32_t cRamPages,
988 uint32_t cbChunk, uint32_t iChunk, const char *pszDesc,
989 PPGMRAMRANGE *ppPrev)
990{
991 const char *pszDescChunk = iChunk == 0
992 ? pszDesc
993 : MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s (#%u)", pszDesc, iChunk + 1);
994 AssertReturn(pszDescChunk, VERR_NO_MEMORY);
995
996 /*
997 * Allocate memory for the new chunk.
998 */
999 size_t const cChunkPages = RT_ALIGN_Z(RT_UOFFSETOF(PGMRAMRANGE, aPages[cRamPages]), PAGE_SIZE) >> PAGE_SHIFT;
1000 PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
1001 AssertReturn(paChunkPages, VERR_NO_TMP_MEMORY);
1002 RTR0PTR R0PtrChunk = NIL_RTR0PTR;
1003 void *pvChunk = NULL;
1004 int rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk,
1005#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1006 VMMIsHwVirtExtForced(pVM) ? &R0PtrChunk : NULL,
1007#else
1008 NULL,
1009#endif
1010 paChunkPages);
1011 if (RT_SUCCESS(rc))
1012 {
1013#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1014 if (!VMMIsHwVirtExtForced(pVM))
1015 R0PtrChunk = NIL_RTR0PTR;
1016#else
1017 R0PtrChunk = (uintptr_t)pvChunk;
1018#endif
1019 memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
1020
1021 PPGMRAMRANGE pNew = (PPGMRAMRANGE)pvChunk;
1022
1023 /*
1024 * Create a mapping and map the pages into it.
1025 * We push these in below the HMA.
1026 */
1027 RTGCPTR GCPtrChunkMap = pVM->pgm.s.GCPtrPrevRamRangeMapping - cbChunk;
1028 rc = PGMR3MapPT(pVM, GCPtrChunkMap, cbChunk, 0 /*fFlags*/, pgmR3PhysRamRangeRelocate, pNew, pszDescChunk);
1029 if (RT_SUCCESS(rc))
1030 {
1031 pVM->pgm.s.GCPtrPrevRamRangeMapping = GCPtrChunkMap;
1032
1033 RTGCPTR const GCPtrChunk = GCPtrChunkMap + PAGE_SIZE;
1034 RTGCPTR GCPtrPage = GCPtrChunk;
1035 for (uint32_t iPage = 0; iPage < cChunkPages && RT_SUCCESS(rc); iPage++, GCPtrPage += PAGE_SIZE)
1036 rc = PGMMap(pVM, GCPtrPage, paChunkPages[iPage].Phys, PAGE_SIZE, 0);
1037 if (RT_SUCCESS(rc))
1038 {
1039 /*
1040 * Ok, init and link the range.
1041 */
1042 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhys + ((RTGCPHYS)cRamPages << PAGE_SHIFT) - 1,
1043 (RTRCPTR)GCPtrChunk, R0PtrChunk, pszDescChunk, *ppPrev);
1044 *ppPrev = pNew;
1045 }
1046 }
1047
1048 if (RT_FAILURE(rc))
1049 SUPR3PageFreeEx(pvChunk, cChunkPages);
1050 }
1051
1052 RTMemTmpFree(paChunkPages);
1053 return rc;
1054}
1055
1056
1057/**
1058 * Sets up a range RAM.
1059 *
1060 * This will check for conflicting registrations, make a resource
1061 * reservation for the memory (with GMM), and setup the per-page
1062 * tracking structures (PGMPAGE).
1063 *
1064 * @returns VBox stutus code.
1065 * @param pVM Pointer to the shared VM structure.
1066 * @param GCPhys The physical address of the RAM.
1067 * @param cb The size of the RAM.
1068 * @param pszDesc The description - not copied, so, don't free or change it.
1069 */
1070VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc)
1071{
1072 /*
1073 * Validate input.
1074 */
1075 Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc));
1076 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
1077 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
1078 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
1079 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1080 AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER);
1081 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1082 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1083
1084 pgmLock(pVM);
1085
1086 /*
1087 * Find range location and check for conflicts.
1088 * (We don't lock here because the locking by EMT is only required on update.)
1089 */
1090 PPGMRAMRANGE pPrev = NULL;
1091 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1092 while (pRam && GCPhysLast >= pRam->GCPhys)
1093 {
1094 if ( GCPhysLast >= pRam->GCPhys
1095 && GCPhys <= pRam->GCPhysLast)
1096 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
1097 GCPhys, GCPhysLast, pszDesc,
1098 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1099 VERR_PGM_RAM_CONFLICT);
1100
1101 /* next */
1102 pPrev = pRam;
1103 pRam = pRam->pNextR3;
1104 }
1105
1106 /*
1107 * Register it with GMM (the API bitches).
1108 */
1109 const RTGCPHYS cPages = cb >> PAGE_SHIFT;
1110 int rc = MMR3IncreaseBaseReservation(pVM, cPages);
1111 if (RT_FAILURE(rc))
1112 {
1113 pgmUnlock(pVM);
1114 return rc;
1115 }
1116
1117 if ( GCPhys >= _4G
1118 && cPages > 256)
1119 {
1120 /*
1121 * The PGMRAMRANGE structures for the high memory can get very big.
1122 * In order to avoid SUPR3PageAllocEx allocation failures due to the
1123 * allocation size limit there and also to avoid being unable to find
1124 * guest mapping space for them, we split this memory up into 4MB in
1125 * (potential) raw-mode configs and 16MB chunks in forced AMD-V/VT-x
1126 * mode.
1127 *
1128 * The first and last page of each mapping are guard pages and marked
1129 * not-present. So, we've got 4186112 and 16769024 bytes available for
1130 * the PGMRAMRANGE structure.
1131 *
1132 * Note! The sizes used here will influence the saved state.
1133 */
1134 uint32_t cbChunk;
1135 uint32_t cPagesPerChunk;
1136 if (VMMIsHwVirtExtForced(pVM))
1137 {
1138 cbChunk = 16U*_1M;
1139 cPagesPerChunk = 1048048; /* max ~1048059 */
1140 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2);
1141 }
1142 else
1143 {
1144 cbChunk = 4U*_1M;
1145 cPagesPerChunk = 261616; /* max ~261627 */
1146 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 261616 < 4U*_1M - PAGE_SIZE * 2);
1147 }
1148 AssertRelease(RT_UOFFSETOF(PGMRAMRANGE, aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
1149
1150 RTGCPHYS cPagesLeft = cPages;
1151 RTGCPHYS GCPhysChunk = GCPhys;
1152 uint32_t iChunk = 0;
1153 while (cPagesLeft > 0)
1154 {
1155 uint32_t cPagesInChunk = cPagesLeft;
1156 if (cPagesInChunk > cPagesPerChunk)
1157 cPagesInChunk = cPagesPerChunk;
1158
1159 rc = pgmR3PhysRegisterHighRamChunk(pVM, GCPhysChunk, cPagesInChunk, cbChunk, iChunk, pszDesc, &pPrev);
1160 AssertRCReturn(rc, rc);
1161
1162 /* advance */
1163 GCPhysChunk += (RTGCPHYS)cPagesInChunk << PAGE_SHIFT;
1164 cPagesLeft -= cPagesInChunk;
1165 iChunk++;
1166 }
1167 }
1168 else
1169 {
1170 /*
1171 * Allocate, initialize and link the new RAM range.
1172 */
1173 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
1174 PPGMRAMRANGE pNew;
1175 rc = MMR3HyperAllocOnceNoRel(pVM, cbRamRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1176 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
1177
1178 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhysLast, NIL_RTRCPTR, NIL_RTR0PTR, pszDesc, pPrev);
1179 }
1180 PGMPhysInvalidatePageMapTLB(pVM);
1181 pgmUnlock(pVM);
1182
1183 /*
1184 * Notify REM.
1185 */
1186 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_RAM);
1187
1188 return VINF_SUCCESS;
1189}
1190
1191
1192/**
1193 * Worker called by PGMR3InitFinalize if we're configured to pre-allocate RAM.
1194 *
1195 * We do this late in the init process so that all the ROM and MMIO ranges have
1196 * been registered already and we don't go wasting memory on them.
1197 *
1198 * @returns VBox status code.
1199 *
1200 * @param pVM Pointer to the shared VM structure.
1201 */
1202int pgmR3PhysRamPreAllocate(PVM pVM)
1203{
1204 Assert(pVM->pgm.s.fRamPreAlloc);
1205 Log(("pgmR3PhysRamPreAllocate: enter\n"));
1206
1207 /*
1208 * Walk the RAM ranges and allocate all RAM pages, halt at
1209 * the first allocation error.
1210 */
1211 uint64_t cPages = 0;
1212 uint64_t NanoTS = RTTimeNanoTS();
1213 pgmLock(pVM);
1214 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
1215 {
1216 PPGMPAGE pPage = &pRam->aPages[0];
1217 RTGCPHYS GCPhys = pRam->GCPhys;
1218 uint32_t cLeft = pRam->cb >> PAGE_SHIFT;
1219 while (cLeft-- > 0)
1220 {
1221 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
1222 {
1223 switch (PGM_PAGE_GET_STATE(pPage))
1224 {
1225 case PGM_PAGE_STATE_ZERO:
1226 {
1227 int rc = pgmPhysAllocPage(pVM, pPage, GCPhys);
1228 if (RT_FAILURE(rc))
1229 {
1230 LogRel(("PGM: RAM Pre-allocation failed at %RGp (in %s) with rc=%Rrc\n", GCPhys, pRam->pszDesc, rc));
1231 pgmUnlock(pVM);
1232 return rc;
1233 }
1234 cPages++;
1235 break;
1236 }
1237
1238 case PGM_PAGE_STATE_ALLOCATED:
1239 case PGM_PAGE_STATE_WRITE_MONITORED:
1240 case PGM_PAGE_STATE_SHARED:
1241 /* nothing to do here. */
1242 break;
1243 }
1244 }
1245
1246 /* next */
1247 pPage++;
1248 GCPhys += PAGE_SIZE;
1249 }
1250 }
1251 pgmUnlock(pVM);
1252 NanoTS = RTTimeNanoTS() - NanoTS;
1253
1254 LogRel(("PGM: Pre-allocated %llu pages in %llu ms\n", cPages, NanoTS / 1000000));
1255 Log(("pgmR3PhysRamPreAllocate: returns VINF_SUCCESS\n"));
1256 return VINF_SUCCESS;
1257}
1258
1259
1260/**
1261 * Resets (zeros) the RAM.
1262 *
1263 * ASSUMES that the caller owns the PGM lock.
1264 *
1265 * @returns VBox status code.
1266 * @param pVM Pointer to the shared VM structure.
1267 */
1268int pgmR3PhysRamReset(PVM pVM)
1269{
1270 Assert(PGMIsLockOwner(pVM));
1271
1272 /*
1273 * We batch up pages that should be freed instead of calling GMM for
1274 * each and every one of them.
1275 */
1276 uint32_t cPendingPages = 0;
1277 PGMMFREEPAGESREQ pReq;
1278 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1279 AssertLogRelRCReturn(rc, rc);
1280
1281 /*
1282 * Walk the ram ranges.
1283 */
1284 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
1285 {
1286 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
1287 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
1288
1289 if (!pVM->pgm.s.fRamPreAlloc)
1290 {
1291 /* Replace all RAM pages by ZERO pages. */
1292 while (iPage-- > 0)
1293 {
1294 PPGMPAGE pPage = &pRam->aPages[iPage];
1295 switch (PGM_PAGE_GET_TYPE(pPage))
1296 {
1297 case PGMPAGETYPE_RAM:
1298 /* @todo deal with large pages. */
1299 Assert(PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE);
1300
1301 if (!PGM_PAGE_IS_ZERO(pPage))
1302 {
1303 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1304 AssertLogRelRCReturn(rc, rc);
1305 }
1306 break;
1307
1308 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1309 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1310 break;
1311
1312 case PGMPAGETYPE_MMIO2:
1313 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
1314 case PGMPAGETYPE_ROM:
1315 case PGMPAGETYPE_MMIO:
1316 break;
1317 default:
1318 AssertFailed();
1319 }
1320 } /* for each page */
1321 }
1322 else
1323 {
1324 /* Zero the memory. */
1325 while (iPage-- > 0)
1326 {
1327 PPGMPAGE pPage = &pRam->aPages[iPage];
1328 switch (PGM_PAGE_GET_TYPE(pPage))
1329 {
1330 case PGMPAGETYPE_RAM:
1331 switch (PGM_PAGE_GET_STATE(pPage))
1332 {
1333 case PGM_PAGE_STATE_ZERO:
1334 break;
1335 case PGM_PAGE_STATE_SHARED:
1336 case PGM_PAGE_STATE_WRITE_MONITORED:
1337 rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1338 AssertLogRelRCReturn(rc, rc);
1339 case PGM_PAGE_STATE_ALLOCATED:
1340 {
1341 void *pvPage;
1342 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
1343 AssertLogRelRCReturn(rc, rc);
1344 ASMMemZeroPage(pvPage);
1345 break;
1346 }
1347 }
1348 break;
1349
1350 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1351 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1352 break;
1353
1354 case PGMPAGETYPE_MMIO2:
1355 case PGMPAGETYPE_ROM_SHADOW:
1356 case PGMPAGETYPE_ROM:
1357 case PGMPAGETYPE_MMIO:
1358 break;
1359 default:
1360 AssertFailed();
1361
1362 }
1363 } /* for each page */
1364 }
1365
1366 }
1367
1368 /*
1369 * Finish off any pages pending freeing.
1370 */
1371 if (cPendingPages)
1372 {
1373 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
1374 AssertLogRelRCReturn(rc, rc);
1375 }
1376 GMMR3FreePagesCleanup(pReq);
1377
1378 return VINF_SUCCESS;
1379}
1380
1381
1382/**
1383 * This is the interface IOM is using to register an MMIO region.
1384 *
1385 * It will check for conflicts and ensure that a RAM range structure
1386 * is present before calling the PGMR3HandlerPhysicalRegister API to
1387 * register the callbacks.
1388 *
1389 * @returns VBox status code.
1390 *
1391 * @param pVM Pointer to the shared VM structure.
1392 * @param GCPhys The start of the MMIO region.
1393 * @param cb The size of the MMIO region.
1394 * @param pfnHandlerR3 The address of the ring-3 handler. (IOMR3MMIOHandler)
1395 * @param pvUserR3 The user argument for R3.
1396 * @param pfnHandlerR0 The address of the ring-0 handler. (IOMMMIOHandler)
1397 * @param pvUserR0 The user argument for R0.
1398 * @param pfnHandlerRC The address of the RC handler. (IOMMMIOHandler)
1399 * @param pvUserRC The user argument for RC.
1400 * @param pszDesc The description of the MMIO region.
1401 */
1402VMMR3DECL(int) PGMR3PhysMMIORegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb,
1403 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3, RTR3PTR pvUserR3,
1404 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0, RTR0PTR pvUserR0,
1405 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnHandlerRC, RTRCPTR pvUserRC,
1406 R3PTRTYPE(const char *) pszDesc)
1407{
1408 /*
1409 * Assert on some assumption.
1410 */
1411 VM_ASSERT_EMT(pVM);
1412 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1413 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1414 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1415 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
1416
1417 /*
1418 * Make sure there's a RAM range structure for the region.
1419 */
1420 int rc;
1421 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1422 bool fRamExists = false;
1423 PPGMRAMRANGE pRamPrev = NULL;
1424 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1425 while (pRam && GCPhysLast >= pRam->GCPhys)
1426 {
1427 if ( GCPhysLast >= pRam->GCPhys
1428 && GCPhys <= pRam->GCPhysLast)
1429 {
1430 /* Simplification: all within the same range. */
1431 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
1432 && GCPhysLast <= pRam->GCPhysLast,
1433 ("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n",
1434 GCPhys, GCPhysLast, pszDesc,
1435 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1436 VERR_PGM_RAM_CONFLICT);
1437
1438 /* Check that it's all RAM or MMIO pages. */
1439 PCPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1440 uint32_t cLeft = cb >> PAGE_SHIFT;
1441 while (cLeft-- > 0)
1442 {
1443 AssertLogRelMsgReturn( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1444 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO,
1445 ("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n",
1446 GCPhys, GCPhysLast, pszDesc, PGM_PAGE_GET_TYPE(pPage), pRam->pszDesc),
1447 VERR_PGM_RAM_CONFLICT);
1448 pPage++;
1449 }
1450
1451 /* Looks good. */
1452 fRamExists = true;
1453 break;
1454 }
1455
1456 /* next */
1457 pRamPrev = pRam;
1458 pRam = pRam->pNextR3;
1459 }
1460 PPGMRAMRANGE pNew;
1461 if (fRamExists)
1462 {
1463 pNew = NULL;
1464
1465 /*
1466 * Make all the pages in the range MMIO/ZERO pages, freeing any
1467 * RAM pages currently mapped here. This might not be 100% correct
1468 * for PCI memory, but we're doing the same thing for MMIO2 pages.
1469 */
1470 rc = pgmLock(pVM);
1471 if (RT_SUCCESS(rc))
1472 {
1473 rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO);
1474 pgmUnlock(pVM);
1475 }
1476 AssertRCReturn(rc, rc);
1477 }
1478 else
1479 {
1480 pgmLock(pVM);
1481
1482 /*
1483 * No RAM range, insert an ad hoc one.
1484 *
1485 * Note that we don't have to tell REM about this range because
1486 * PGMHandlerPhysicalRegisterEx will do that for us.
1487 */
1488 Log(("PGMR3PhysMMIORegister: Adding ad hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc));
1489
1490 const uint32_t cPages = cb >> PAGE_SHIFT;
1491 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
1492 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), 16, MM_TAG_PGM_PHYS, (void **)&pNew);
1493 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
1494
1495 /* Initialize the range. */
1496 pNew->pSelfR0 = MMHyperCCToR0(pVM, pNew);
1497 pNew->pSelfRC = MMHyperCCToRC(pVM, pNew);
1498 pNew->GCPhys = GCPhys;
1499 pNew->GCPhysLast = GCPhysLast;
1500 pNew->cb = cb;
1501 pNew->pszDesc = pszDesc;
1502 pNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO;
1503 pNew->pvR3 = NULL;
1504 pNew->paLSPages = NULL;
1505
1506 uint32_t iPage = cPages;
1507 while (iPage-- > 0)
1508 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO);
1509 Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO);
1510
1511 /* update the page count stats. */
1512 pVM->pgm.s.cPureMmioPages += cPages;
1513 pVM->pgm.s.cAllPages += cPages;
1514
1515 /* link it */
1516 pgmR3PhysLinkRamRange(pVM, pNew, pRamPrev);
1517
1518 pgmUnlock(pVM);
1519 }
1520
1521 /*
1522 * Register the access handler.
1523 */
1524 rc = PGMHandlerPhysicalRegisterEx(pVM, PGMPHYSHANDLERTYPE_MMIO, GCPhys, GCPhysLast,
1525 pfnHandlerR3, pvUserR3,
1526 pfnHandlerR0, pvUserR0,
1527 pfnHandlerRC, pvUserRC, pszDesc);
1528 if ( RT_FAILURE(rc)
1529 && !fRamExists)
1530 {
1531 pVM->pgm.s.cPureMmioPages -= cb >> PAGE_SHIFT;
1532 pVM->pgm.s.cAllPages -= cb >> PAGE_SHIFT;
1533
1534 /* remove the ad hoc range. */
1535 pgmR3PhysUnlinkRamRange2(pVM, pNew, pRamPrev);
1536 pNew->cb = pNew->GCPhys = pNew->GCPhysLast = NIL_RTGCPHYS;
1537 MMHyperFree(pVM, pRam);
1538 }
1539 PGMPhysInvalidatePageMapTLB(pVM);
1540
1541 return rc;
1542}
1543
1544
1545/**
1546 * This is the interface IOM is using to register an MMIO region.
1547 *
1548 * It will take care of calling PGMHandlerPhysicalDeregister and clean up
1549 * any ad hoc PGMRAMRANGE left behind.
1550 *
1551 * @returns VBox status code.
1552 * @param pVM Pointer to the shared VM structure.
1553 * @param GCPhys The start of the MMIO region.
1554 * @param cb The size of the MMIO region.
1555 */
1556VMMR3DECL(int) PGMR3PhysMMIODeregister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
1557{
1558 VM_ASSERT_EMT(pVM);
1559
1560 /*
1561 * First deregister the handler, then check if we should remove the ram range.
1562 */
1563 int rc = PGMHandlerPhysicalDeregister(pVM, GCPhys);
1564 if (RT_SUCCESS(rc))
1565 {
1566 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1567 PPGMRAMRANGE pRamPrev = NULL;
1568 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1569 while (pRam && GCPhysLast >= pRam->GCPhys)
1570 {
1571 /** @todo We're being a bit too careful here. rewrite. */
1572 if ( GCPhysLast == pRam->GCPhysLast
1573 && GCPhys == pRam->GCPhys)
1574 {
1575 Assert(pRam->cb == cb);
1576
1577 /*
1578 * See if all the pages are dead MMIO pages.
1579 */
1580 uint32_t const cPages = cb >> PAGE_SHIFT;
1581 bool fAllMMIO = true;
1582 uint32_t iPage = 0;
1583 uint32_t cLeft = cPages;
1584 while (cLeft-- > 0)
1585 {
1586 PPGMPAGE pPage = &pRam->aPages[iPage];
1587 if ( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO
1588 /*|| not-out-of-action later */)
1589 {
1590 fAllMMIO = false;
1591 Assert(PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO2_ALIAS_MMIO);
1592 AssertMsgFailed(("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1593 break;
1594 }
1595 Assert(PGM_PAGE_IS_ZERO(pPage));
1596 pPage++;
1597 }
1598 if (fAllMMIO)
1599 {
1600 /*
1601 * Ad-hoc range, unlink and free it.
1602 */
1603 Log(("PGMR3PhysMMIODeregister: Freeing ad hoc MMIO range for %RGp-%RGp %s\n",
1604 GCPhys, GCPhysLast, pRam->pszDesc));
1605
1606 pVM->pgm.s.cAllPages -= cPages;
1607 pVM->pgm.s.cPureMmioPages -= cPages;
1608
1609 pgmR3PhysUnlinkRamRange2(pVM, pRam, pRamPrev);
1610 pRam->cb = pRam->GCPhys = pRam->GCPhysLast = NIL_RTGCPHYS;
1611 MMHyperFree(pVM, pRam);
1612 break;
1613 }
1614 }
1615
1616 /*
1617 * Range match? It will all be within one range (see PGMAllHandler.cpp).
1618 */
1619 if ( GCPhysLast >= pRam->GCPhys
1620 && GCPhys <= pRam->GCPhysLast)
1621 {
1622 Assert(GCPhys >= pRam->GCPhys);
1623 Assert(GCPhysLast <= pRam->GCPhysLast);
1624
1625 /*
1626 * Turn the pages back into RAM pages.
1627 */
1628 uint32_t iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
1629 uint32_t cLeft = cb >> PAGE_SHIFT;
1630 while (cLeft--)
1631 {
1632 PPGMPAGE pPage = &pRam->aPages[iPage];
1633 AssertMsg(PGM_PAGE_IS_MMIO(pPage), ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1634 AssertMsg(PGM_PAGE_IS_ZERO(pPage), ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1635 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO)
1636 PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_RAM);
1637 }
1638 break;
1639 }
1640
1641 /* next */
1642 pRamPrev = pRam;
1643 pRam = pRam->pNextR3;
1644 }
1645 }
1646
1647 PGMPhysInvalidatePageMapTLB(pVM);
1648 return rc;
1649}
1650
1651
1652/**
1653 * Locate a MMIO2 range.
1654 *
1655 * @returns Pointer to the MMIO2 range.
1656 * @param pVM Pointer to the shared VM structure.
1657 * @param pDevIns The device instance owning the region.
1658 * @param iRegion The region.
1659 */
1660DECLINLINE(PPGMMMIO2RANGE) pgmR3PhysMMIO2Find(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
1661{
1662 /*
1663 * Search the list.
1664 */
1665 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
1666 if ( pCur->pDevInsR3 == pDevIns
1667 && pCur->iRegion == iRegion)
1668 return pCur;
1669 return NULL;
1670}
1671
1672
1673/**
1674 * Allocate and register an MMIO2 region.
1675 *
1676 * As mentioned elsewhere, MMIO2 is just RAM spelled differently. It's
1677 * RAM associated with a device. It is also non-shared memory with a
1678 * permanent ring-3 mapping and page backing (presently).
1679 *
1680 * A MMIO2 range may overlap with base memory if a lot of RAM
1681 * is configured for the VM, in which case we'll drop the base
1682 * memory pages. Presently we will make no attempt to preserve
1683 * anything that happens to be present in the base memory that
1684 * is replaced, this is of course incorrectly but it's too much
1685 * effort.
1686 *
1687 * @returns VBox status code.
1688 * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the memory.
1689 * @retval VERR_ALREADY_EXISTS if the region already exists.
1690 *
1691 * @param pVM Pointer to the shared VM structure.
1692 * @param pDevIns The device instance owning the region.
1693 * @param iRegion The region number. If the MMIO2 memory is a PCI I/O region
1694 * this number has to be the number of that region. Otherwise
1695 * it can be any number safe UINT8_MAX.
1696 * @param cb The size of the region. Must be page aligned.
1697 * @param fFlags Reserved for future use, must be zero.
1698 * @param ppv Where to store the pointer to the ring-3 mapping of the memory.
1699 * @param pszDesc The description.
1700 */
1701VMMR3DECL(int) PGMR3PhysMMIO2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS cb, uint32_t fFlags, void **ppv, const char *pszDesc)
1702{
1703 /*
1704 * Validate input.
1705 */
1706 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1707 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1708 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
1709 AssertPtrReturn(ppv, VERR_INVALID_POINTER);
1710 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1711 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
1712 AssertReturn(pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion) == NULL, VERR_ALREADY_EXISTS);
1713 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1714 AssertReturn(cb, VERR_INVALID_PARAMETER);
1715 AssertReturn(!fFlags, VERR_INVALID_PARAMETER);
1716
1717 const uint32_t cPages = cb >> PAGE_SHIFT;
1718 AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cb, VERR_INVALID_PARAMETER);
1719 AssertLogRelReturn(cPages <= INT32_MAX / 2, VERR_NO_MEMORY);
1720
1721 /*
1722 * For the 2nd+ instance, mangle the description string so it's unique.
1723 */
1724 if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */
1725 {
1726 pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance);
1727 if (!pszDesc)
1728 return VERR_NO_MEMORY;
1729 }
1730
1731 /*
1732 * Try reserve and allocate the backing memory first as this is what is
1733 * most likely to fail.
1734 */
1735 int rc = MMR3AdjustFixedReservation(pVM, cPages, pszDesc);
1736 if (RT_SUCCESS(rc))
1737 {
1738 void *pvPages;
1739 PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cPages * sizeof(SUPPAGE));
1740 if (RT_SUCCESS(rc))
1741 rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, NULL /*pR0Ptr*/, paPages);
1742 if (RT_SUCCESS(rc))
1743 {
1744 memset(pvPages, 0, cPages * PAGE_SIZE);
1745
1746 /*
1747 * Create the MMIO2 range record for it.
1748 */
1749 const size_t cbRange = RT_OFFSETOF(PGMMMIO2RANGE, RamRange.aPages[cPages]);
1750 PPGMMMIO2RANGE pNew;
1751 rc = MMR3HyperAllocOnceNoRel(pVM, cbRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1752 AssertLogRelMsgRC(rc, ("cbRamRange=%zu\n", cbRange));
1753 if (RT_SUCCESS(rc))
1754 {
1755 pNew->pDevInsR3 = pDevIns;
1756 pNew->pvR3 = pvPages;
1757 //pNew->pNext = NULL;
1758 //pNew->fMapped = false;
1759 //pNew->fOverlapping = false;
1760 pNew->iRegion = iRegion;
1761 pNew->idSavedState = UINT8_MAX;
1762 pNew->RamRange.pSelfR0 = MMHyperCCToR0(pVM, &pNew->RamRange);
1763 pNew->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pNew->RamRange);
1764 pNew->RamRange.GCPhys = NIL_RTGCPHYS;
1765 pNew->RamRange.GCPhysLast = NIL_RTGCPHYS;
1766 pNew->RamRange.pszDesc = pszDesc;
1767 pNew->RamRange.cb = cb;
1768 pNew->RamRange.fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO2;
1769 pNew->RamRange.pvR3 = pvPages;
1770 //pNew->RamRange.paLSPages = NULL;
1771
1772 uint32_t iPage = cPages;
1773 while (iPage-- > 0)
1774 {
1775 PGM_PAGE_INIT(&pNew->RamRange.aPages[iPage],
1776 paPages[iPage].Phys, NIL_GMM_PAGEID,
1777 PGMPAGETYPE_MMIO2, PGM_PAGE_STATE_ALLOCATED);
1778 }
1779
1780 /* update page count stats */
1781 pVM->pgm.s.cAllPages += cPages;
1782 pVM->pgm.s.cPrivatePages += cPages;
1783
1784 /*
1785 * Link it into the list.
1786 * Since there is no particular order, just push it.
1787 */
1788 pgmLock(pVM);
1789 pNew->pNextR3 = pVM->pgm.s.pMmio2RangesR3;
1790 pVM->pgm.s.pMmio2RangesR3 = pNew;
1791 pgmUnlock(pVM);
1792
1793 *ppv = pvPages;
1794 RTMemTmpFree(paPages);
1795 PGMPhysInvalidatePageMapTLB(pVM);
1796 return VINF_SUCCESS;
1797 }
1798
1799 SUPR3PageFreeEx(pvPages, cPages);
1800 }
1801 RTMemTmpFree(paPages);
1802 MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pszDesc);
1803 }
1804 if (pDevIns->iInstance > 0)
1805 MMR3HeapFree((void *)pszDesc);
1806 return rc;
1807}
1808
1809
1810/**
1811 * Deregisters and frees an MMIO2 region.
1812 *
1813 * Any physical (and virtual) access handlers registered for the region must
1814 * be deregistered before calling this function.
1815 *
1816 * @returns VBox status code.
1817 * @param pVM Pointer to the shared VM structure.
1818 * @param pDevIns The device instance owning the region.
1819 * @param iRegion The region. If it's UINT32_MAX it'll be a wildcard match.
1820 */
1821VMMR3DECL(int) PGMR3PhysMMIO2Deregister(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
1822{
1823 /*
1824 * Validate input.
1825 */
1826 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1827 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1828 AssertReturn(iRegion <= UINT8_MAX || iRegion == UINT32_MAX, VERR_INVALID_PARAMETER);
1829
1830 pgmLock(pVM);
1831 int rc = VINF_SUCCESS;
1832 unsigned cFound = 0;
1833 PPGMMMIO2RANGE pPrev = NULL;
1834 PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3;
1835 while (pCur)
1836 {
1837 if ( pCur->pDevInsR3 == pDevIns
1838 && ( iRegion == UINT32_MAX
1839 || pCur->iRegion == iRegion))
1840 {
1841 cFound++;
1842
1843 /*
1844 * Unmap it if it's mapped.
1845 */
1846 if (pCur->fMapped)
1847 {
1848 int rc2 = PGMR3PhysMMIO2Unmap(pVM, pCur->pDevInsR3, pCur->iRegion, pCur->RamRange.GCPhys);
1849 AssertRC(rc2);
1850 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1851 rc = rc2;
1852 }
1853
1854 /*
1855 * Unlink it
1856 */
1857 PPGMMMIO2RANGE pNext = pCur->pNextR3;
1858 if (pPrev)
1859 pPrev->pNextR3 = pNext;
1860 else
1861 pVM->pgm.s.pMmio2RangesR3 = pNext;
1862 pCur->pNextR3 = NULL;
1863
1864 /*
1865 * Free the memory.
1866 */
1867 int rc2 = SUPR3PageFreeEx(pCur->pvR3, pCur->RamRange.cb >> PAGE_SHIFT);
1868 AssertRC(rc2);
1869 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1870 rc = rc2;
1871
1872 uint32_t const cPages = pCur->RamRange.cb >> PAGE_SHIFT;
1873 rc2 = MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pCur->RamRange.pszDesc);
1874 AssertRC(rc2);
1875 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1876 rc = rc2;
1877
1878 /* we're leaking hyper memory here if done at runtime. */
1879#ifdef VBOX_STRICT
1880 VMSTATE const enmState = VMR3GetState(pVM);
1881 AssertMsg( enmState == VMSTATE_POWERING_OFF
1882 || enmState == VMSTATE_POWERING_OFF_LS
1883 || enmState == VMSTATE_OFF
1884 || enmState == VMSTATE_OFF_LS
1885 || enmState == VMSTATE_DESTROYING
1886 || enmState == VMSTATE_TERMINATED
1887 || enmState == VMSTATE_CREATING
1888 , ("%s\n", VMR3GetStateName(enmState)));
1889#endif
1890 /*rc = MMHyperFree(pVM, pCur);
1891 AssertRCReturn(rc, rc); - not safe, see the alloc call. */
1892
1893
1894 /* update page count stats */
1895 pVM->pgm.s.cAllPages -= cPages;
1896 pVM->pgm.s.cPrivatePages -= cPages;
1897
1898 /* next */
1899 pCur = pNext;
1900 }
1901 else
1902 {
1903 pPrev = pCur;
1904 pCur = pCur->pNextR3;
1905 }
1906 }
1907 PGMPhysInvalidatePageMapTLB(pVM);
1908 pgmUnlock(pVM);
1909 return !cFound && iRegion != UINT32_MAX ? VERR_NOT_FOUND : rc;
1910}
1911
1912
1913/**
1914 * Maps a MMIO2 region.
1915 *
1916 * This is done when a guest / the bios / state loading changes the
1917 * PCI config. The replacing of base memory has the same restrictions
1918 * as during registration, of course.
1919 *
1920 * @returns VBox status code.
1921 *
1922 * @param pVM Pointer to the shared VM structure.
1923 * @param pDevIns The
1924 */
1925VMMR3DECL(int) PGMR3PhysMMIO2Map(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
1926{
1927 /*
1928 * Validate input
1929 */
1930 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1931 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1932 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
1933 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
1934 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
1935 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1936
1937 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
1938 AssertReturn(pCur, VERR_NOT_FOUND);
1939 AssertReturn(!pCur->fMapped, VERR_WRONG_ORDER);
1940 Assert(pCur->RamRange.GCPhys == NIL_RTGCPHYS);
1941 Assert(pCur->RamRange.GCPhysLast == NIL_RTGCPHYS);
1942
1943 const RTGCPHYS GCPhysLast = GCPhys + pCur->RamRange.cb - 1;
1944 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
1945
1946 /*
1947 * Find our location in the ram range list, checking for
1948 * restriction we don't bother implementing yet (partially overlapping).
1949 */
1950 bool fRamExists = false;
1951 PPGMRAMRANGE pRamPrev = NULL;
1952 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1953 while (pRam && GCPhysLast >= pRam->GCPhys)
1954 {
1955 if ( GCPhys <= pRam->GCPhysLast
1956 && GCPhysLast >= pRam->GCPhys)
1957 {
1958 /* completely within? */
1959 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
1960 && GCPhysLast <= pRam->GCPhysLast,
1961 ("%RGp-%RGp (MMIO2/%s) falls partly outside %RGp-%RGp (%s)\n",
1962 GCPhys, GCPhysLast, pCur->RamRange.pszDesc,
1963 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1964 VERR_PGM_RAM_CONFLICT);
1965 fRamExists = true;
1966 break;
1967 }
1968
1969 /* next */
1970 pRamPrev = pRam;
1971 pRam = pRam->pNextR3;
1972 }
1973 if (fRamExists)
1974 {
1975 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1976 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
1977 while (cPagesLeft-- > 0)
1978 {
1979 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
1980 ("%RGp isn't a RAM page (%d) - mapping %RGp-%RGp (MMIO2/%s).\n",
1981 GCPhys, PGM_PAGE_GET_TYPE(pPage), GCPhys, GCPhysLast, pCur->RamRange.pszDesc),
1982 VERR_PGM_RAM_CONFLICT);
1983 pPage++;
1984 }
1985 }
1986 Log(("PGMR3PhysMMIO2Map: %RGp-%RGp fRamExists=%RTbool %s\n",
1987 GCPhys, GCPhysLast, fRamExists, pCur->RamRange.pszDesc));
1988
1989 /*
1990 * Make the changes.
1991 */
1992 pgmLock(pVM);
1993
1994 pCur->RamRange.GCPhys = GCPhys;
1995 pCur->RamRange.GCPhysLast = GCPhysLast;
1996 pCur->fMapped = true;
1997 pCur->fOverlapping = fRamExists;
1998
1999 if (fRamExists)
2000 {
2001/** @todo use pgmR3PhysFreePageRange here. */
2002 uint32_t cPendingPages = 0;
2003 PGMMFREEPAGESREQ pReq;
2004 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2005 AssertLogRelRCReturn(rc, rc);
2006
2007 /* replace the pages, freeing all present RAM pages. */
2008 PPGMPAGE pPageSrc = &pCur->RamRange.aPages[0];
2009 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2010 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2011 while (cPagesLeft-- > 0)
2012 {
2013 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
2014 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
2015
2016 RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc);
2017 PGM_PAGE_SET_HCPHYS(pPageDst, HCPhys);
2018 PGM_PAGE_SET_TYPE(pPageDst, PGMPAGETYPE_MMIO2);
2019 PGM_PAGE_SET_STATE(pPageDst, PGM_PAGE_STATE_ALLOCATED);
2020
2021 pVM->pgm.s.cZeroPages--;
2022 GCPhys += PAGE_SIZE;
2023 pPageSrc++;
2024 pPageDst++;
2025 }
2026
2027 /* Flush physical page map TLB. */
2028 PGMPhysInvalidatePageMapTLB(pVM);
2029
2030 if (cPendingPages)
2031 {
2032 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2033 AssertLogRelRCReturn(rc, rc);
2034 }
2035 GMMR3FreePagesCleanup(pReq);
2036 pgmUnlock(pVM);
2037 }
2038 else
2039 {
2040 RTGCPHYS cb = pCur->RamRange.cb;
2041
2042 /* link in the ram range */
2043 pgmR3PhysLinkRamRange(pVM, &pCur->RamRange, pRamPrev);
2044 pgmUnlock(pVM);
2045
2046 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_MMIO2);
2047 }
2048
2049 PGMPhysInvalidatePageMapTLB(pVM);
2050 return VINF_SUCCESS;
2051}
2052
2053
2054/**
2055 * Unmaps a MMIO2 region.
2056 *
2057 * This is done when a guest / the bios / state loading changes the
2058 * PCI config. The replacing of base memory has the same restrictions
2059 * as during registration, of course.
2060 */
2061VMMR3DECL(int) PGMR3PhysMMIO2Unmap(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
2062{
2063 /*
2064 * Validate input
2065 */
2066 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2067 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2068 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2069 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
2070 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
2071 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2072
2073 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2074 AssertReturn(pCur, VERR_NOT_FOUND);
2075 AssertReturn(pCur->fMapped, VERR_WRONG_ORDER);
2076 AssertReturn(pCur->RamRange.GCPhys == GCPhys, VERR_INVALID_PARAMETER);
2077 Assert(pCur->RamRange.GCPhysLast != NIL_RTGCPHYS);
2078
2079 Log(("PGMR3PhysMMIO2Unmap: %RGp-%RGp %s\n",
2080 pCur->RamRange.GCPhys, pCur->RamRange.GCPhysLast, pCur->RamRange.pszDesc));
2081
2082 /*
2083 * Unmap it.
2084 */
2085 pgmLock(pVM);
2086
2087 RTGCPHYS GCPhysRangeREM;
2088 RTGCPHYS cbRangeREM;
2089 bool fInformREM;
2090 if (pCur->fOverlapping)
2091 {
2092 /* Restore the RAM pages we've replaced. */
2093 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
2094 while (pRam->GCPhys > pCur->RamRange.GCPhysLast)
2095 pRam = pRam->pNextR3;
2096
2097 RTHCPHYS const HCPhysZeroPg = pVM->pgm.s.HCPhysZeroPg;
2098 Assert(HCPhysZeroPg != 0 && HCPhysZeroPg != NIL_RTHCPHYS);
2099 PPGMPAGE pPageDst = &pRam->aPages[(pCur->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2100 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2101 while (cPagesLeft-- > 0)
2102 {
2103 PGM_PAGE_SET_HCPHYS(pPageDst, HCPhysZeroPg);
2104 PGM_PAGE_SET_TYPE(pPageDst, PGMPAGETYPE_RAM);
2105 PGM_PAGE_SET_STATE(pPageDst, PGM_PAGE_STATE_ZERO);
2106 PGM_PAGE_SET_PAGEID(pPageDst, NIL_GMM_PAGEID);
2107 PGM_PAGE_SET_PDE_TYPE(pPageDst, PGM_PAGE_PDE_TYPE_DONTCARE);
2108
2109 pVM->pgm.s.cZeroPages++;
2110 pPageDst++;
2111 }
2112
2113 /* Flush physical page map TLB. */
2114 PGMPhysInvalidatePageMapTLB(pVM);
2115
2116 GCPhysRangeREM = NIL_RTGCPHYS; /* shuts up gcc */
2117 cbRangeREM = RTGCPHYS_MAX; /* ditto */
2118 fInformREM = false;
2119 }
2120 else
2121 {
2122 GCPhysRangeREM = pCur->RamRange.GCPhys;
2123 cbRangeREM = pCur->RamRange.cb;
2124 fInformREM = true;
2125
2126 pgmR3PhysUnlinkRamRange(pVM, &pCur->RamRange);
2127 }
2128
2129 pCur->RamRange.GCPhys = NIL_RTGCPHYS;
2130 pCur->RamRange.GCPhysLast = NIL_RTGCPHYS;
2131 pCur->fOverlapping = false;
2132 pCur->fMapped = false;
2133
2134 PGMPhysInvalidatePageMapTLB(pVM);
2135 pgmUnlock(pVM);
2136
2137 if (fInformREM)
2138 REMR3NotifyPhysRamDeregister(pVM, GCPhysRangeREM, cbRangeREM);
2139
2140 return VINF_SUCCESS;
2141}
2142
2143
2144/**
2145 * Checks if the given address is an MMIO2 base address or not.
2146 *
2147 * @returns true/false accordingly.
2148 * @param pVM Pointer to the shared VM structure.
2149 * @param pDevIns The owner of the memory, optional.
2150 * @param GCPhys The address to check.
2151 */
2152VMMR3DECL(bool) PGMR3PhysMMIO2IsBase(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys)
2153{
2154 /*
2155 * Validate input
2156 */
2157 VM_ASSERT_EMT_RETURN(pVM, false);
2158 AssertPtrReturn(pDevIns, false);
2159 AssertReturn(GCPhys != NIL_RTGCPHYS, false);
2160 AssertReturn(GCPhys != 0, false);
2161 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), false);
2162
2163 /*
2164 * Search the list.
2165 */
2166 pgmLock(pVM);
2167 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2168 if (pCur->RamRange.GCPhys == GCPhys)
2169 {
2170 Assert(pCur->fMapped);
2171 pgmUnlock(pVM);
2172 return true;
2173 }
2174 pgmUnlock(pVM);
2175 return false;
2176}
2177
2178
2179/**
2180 * Gets the HC physical address of a page in the MMIO2 region.
2181 *
2182 * This is API is intended for MMHyper and shouldn't be called
2183 * by anyone else...
2184 *
2185 * @returns VBox status code.
2186 * @param pVM Pointer to the shared VM structure.
2187 * @param pDevIns The owner of the memory, optional.
2188 * @param iRegion The region.
2189 * @param off The page expressed an offset into the MMIO2 region.
2190 * @param pHCPhys Where to store the result.
2191 */
2192VMMR3DECL(int) PGMR3PhysMMIO2GetHCPhys(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, PRTHCPHYS pHCPhys)
2193{
2194 /*
2195 * Validate input
2196 */
2197 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2198 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2199 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2200
2201 pgmLock(pVM);
2202 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2203 AssertReturn(pCur, VERR_NOT_FOUND);
2204 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2205
2206 PCPGMPAGE pPage = &pCur->RamRange.aPages[off >> PAGE_SHIFT];
2207 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage);
2208 pgmUnlock(pVM);
2209 return VINF_SUCCESS;
2210}
2211
2212
2213/**
2214 * Maps a portion of an MMIO2 region into kernel space (host).
2215 *
2216 * The kernel mapping will become invalid when the MMIO2 memory is deregistered
2217 * or the VM is terminated.
2218 *
2219 * @return VBox status code.
2220 *
2221 * @param pVM Pointer to the shared VM structure.
2222 * @param pDevIns The device owning the MMIO2 memory.
2223 * @param iRegion The region.
2224 * @param off The offset into the region. Must be page aligned.
2225 * @param cb The number of bytes to map. Must be page aligned.
2226 * @param pszDesc Mapping description.
2227 * @param pR0Ptr Where to store the R0 address.
2228 */
2229VMMR3DECL(int) PGMR3PhysMMIO2MapKernel(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, RTGCPHYS cb,
2230 const char *pszDesc, PRTR0PTR pR0Ptr)
2231{
2232 /*
2233 * Validate input.
2234 */
2235 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2236 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2237 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2238
2239 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2240 AssertReturn(pCur, VERR_NOT_FOUND);
2241 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2242 AssertReturn(cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2243 AssertReturn(off + cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2244
2245 /*
2246 * Pass the request on to the support library/driver.
2247 */
2248 int rc = SUPR3PageMapKernel(pCur->pvR3, off, cb, 0, pR0Ptr);
2249
2250 return rc;
2251}
2252
2253
2254/**
2255 * Registers a ROM image.
2256 *
2257 * Shadowed ROM images requires double the amount of backing memory, so,
2258 * don't use that unless you have to. Shadowing of ROM images is process
2259 * where we can select where the reads go and where the writes go. On real
2260 * hardware the chipset provides means to configure this. We provide
2261 * PGMR3PhysProtectROM() for this purpose.
2262 *
2263 * A read-only copy of the ROM image will always be kept around while we
2264 * will allocate RAM pages for the changes on demand (unless all memory
2265 * is configured to be preallocated).
2266 *
2267 * @returns VBox status.
2268 * @param pVM VM Handle.
2269 * @param pDevIns The device instance owning the ROM.
2270 * @param GCPhys First physical address in the range.
2271 * Must be page aligned!
2272 * @param cbRange The size of the range (in bytes).
2273 * Must be page aligned!
2274 * @param pvBinary Pointer to the binary data backing the ROM image.
2275 * This must be exactly \a cbRange in size.
2276 * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
2277 * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
2278 * @param pszDesc Pointer to description string. This must not be freed.
2279 *
2280 * @remark There is no way to remove the rom, automatically on device cleanup or
2281 * manually from the device yet. This isn't difficult in any way, it's
2282 * just not something we expect to be necessary for a while.
2283 */
2284VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
2285 const void *pvBinary, uint32_t fFlags, const char *pszDesc)
2286{
2287 Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p fFlags=%#x pszDesc=%s\n",
2288 pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, fFlags, pszDesc));
2289
2290 /*
2291 * Validate input.
2292 */
2293 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2294 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
2295 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
2296 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2297 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
2298 AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER);
2299 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
2300 AssertReturn(!(fFlags & ~(PGMPHYS_ROM_FLAGS_SHADOWED | PGMPHYS_ROM_FLAGS_PERMANENT_BINARY)), VERR_INVALID_PARAMETER);
2301 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE);
2302
2303 const uint32_t cPages = cb >> PAGE_SHIFT;
2304
2305 /*
2306 * Find the ROM location in the ROM list first.
2307 */
2308 PPGMROMRANGE pRomPrev = NULL;
2309 PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
2310 while (pRom && GCPhysLast >= pRom->GCPhys)
2311 {
2312 if ( GCPhys <= pRom->GCPhysLast
2313 && GCPhysLast >= pRom->GCPhys)
2314 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
2315 GCPhys, GCPhysLast, pszDesc,
2316 pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc),
2317 VERR_PGM_RAM_CONFLICT);
2318 /* next */
2319 pRomPrev = pRom;
2320 pRom = pRom->pNextR3;
2321 }
2322
2323 /*
2324 * Find the RAM location and check for conflicts.
2325 *
2326 * Conflict detection is a bit different than for RAM
2327 * registration since a ROM can be located within a RAM
2328 * range. So, what we have to check for is other memory
2329 * types (other than RAM that is) and that we don't span
2330 * more than one RAM range (layz).
2331 */
2332 bool fRamExists = false;
2333 PPGMRAMRANGE pRamPrev = NULL;
2334 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
2335 while (pRam && GCPhysLast >= pRam->GCPhys)
2336 {
2337 if ( GCPhys <= pRam->GCPhysLast
2338 && GCPhysLast >= pRam->GCPhys)
2339 {
2340 /* completely within? */
2341 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
2342 && GCPhysLast <= pRam->GCPhysLast,
2343 ("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n",
2344 GCPhys, GCPhysLast, pszDesc,
2345 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2346 VERR_PGM_RAM_CONFLICT);
2347 fRamExists = true;
2348 break;
2349 }
2350
2351 /* next */
2352 pRamPrev = pRam;
2353 pRam = pRam->pNextR3;
2354 }
2355 if (fRamExists)
2356 {
2357 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2358 uint32_t cPagesLeft = cPages;
2359 while (cPagesLeft-- > 0)
2360 {
2361 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
2362 ("%RGp (%R[pgmpage]) isn't a RAM page - registering %RGp-%RGp (%s).\n",
2363 pRam->GCPhys + ((RTGCPHYS)(uintptr_t)(pPage - &pRam->aPages[0]) << PAGE_SHIFT),
2364 pPage, GCPhys, GCPhysLast, pszDesc), VERR_PGM_RAM_CONFLICT);
2365 Assert(PGM_PAGE_IS_ZERO(pPage));
2366 pPage++;
2367 }
2368 }
2369
2370 /*
2371 * Update the base memory reservation if necessary.
2372 */
2373 uint32_t cExtraBaseCost = fRamExists ? 0 : cPages;
2374 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2375 cExtraBaseCost += cPages;
2376 if (cExtraBaseCost)
2377 {
2378 int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost);
2379 if (RT_FAILURE(rc))
2380 return rc;
2381 }
2382
2383 /*
2384 * Allocate memory for the virgin copy of the RAM.
2385 */
2386 PGMMALLOCATEPAGESREQ pReq;
2387 int rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cPages, GMMACCOUNT_BASE);
2388 AssertRCReturn(rc, rc);
2389
2390 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2391 {
2392 pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << PAGE_SHIFT);
2393 pReq->aPages[iPage].idPage = NIL_GMM_PAGEID;
2394 pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID;
2395 }
2396
2397 pgmLock(pVM);
2398 rc = GMMR3AllocatePagesPerform(pVM, pReq);
2399 pgmUnlock(pVM);
2400 if (RT_FAILURE(rc))
2401 {
2402 GMMR3AllocatePagesCleanup(pReq);
2403 return rc;
2404 }
2405
2406 /*
2407 * Allocate the new ROM range and RAM range (if necessary).
2408 */
2409 PPGMROMRANGE pRomNew;
2410 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMROMRANGE, aPages[cPages]), 0, MM_TAG_PGM_PHYS, (void **)&pRomNew);
2411 if (RT_SUCCESS(rc))
2412 {
2413 PPGMRAMRANGE pRamNew = NULL;
2414 if (!fRamExists)
2415 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), sizeof(PGMPAGE), MM_TAG_PGM_PHYS, (void **)&pRamNew);
2416 if (RT_SUCCESS(rc))
2417 {
2418 pgmLock(pVM);
2419
2420 /*
2421 * Initialize and insert the RAM range (if required).
2422 */
2423 PPGMROMPAGE pRomPage = &pRomNew->aPages[0];
2424 if (!fRamExists)
2425 {
2426 pRamNew->pSelfR0 = MMHyperCCToR0(pVM, pRamNew);
2427 pRamNew->pSelfRC = MMHyperCCToRC(pVM, pRamNew);
2428 pRamNew->GCPhys = GCPhys;
2429 pRamNew->GCPhysLast = GCPhysLast;
2430 pRamNew->cb = cb;
2431 pRamNew->pszDesc = pszDesc;
2432 pRamNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_ROM;
2433 pRamNew->pvR3 = NULL;
2434 pRamNew->paLSPages = NULL;
2435
2436 PPGMPAGE pPage = &pRamNew->aPages[0];
2437 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
2438 {
2439 PGM_PAGE_INIT(pPage,
2440 pReq->aPages[iPage].HCPhysGCPhys,
2441 pReq->aPages[iPage].idPage,
2442 PGMPAGETYPE_ROM,
2443 PGM_PAGE_STATE_ALLOCATED);
2444
2445 pRomPage->Virgin = *pPage;
2446 }
2447
2448 pVM->pgm.s.cAllPages += cPages;
2449 pgmR3PhysLinkRamRange(pVM, pRamNew, pRamPrev);
2450 }
2451 else
2452 {
2453 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2454 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
2455 {
2456 PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_ROM);
2457 PGM_PAGE_SET_HCPHYS(pPage, pReq->aPages[iPage].HCPhysGCPhys);
2458 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
2459 PGM_PAGE_SET_PAGEID(pPage, pReq->aPages[iPage].idPage);
2460
2461 pRomPage->Virgin = *pPage;
2462 }
2463
2464 pRamNew = pRam;
2465
2466 pVM->pgm.s.cZeroPages -= cPages;
2467 }
2468 pVM->pgm.s.cPrivatePages += cPages;
2469
2470 /* Flush physical page map TLB. */
2471 PGMPhysInvalidatePageMapTLB(pVM);
2472
2473 pgmUnlock(pVM);
2474
2475
2476 /*
2477 * !HACK ALERT! REM + (Shadowed) ROM ==> mess.
2478 *
2479 * If it's shadowed we'll register the handler after the ROM notification
2480 * so we get the access handler callbacks that we should. If it isn't
2481 * shadowed we'll do it the other way around to make REM use the built-in
2482 * ROM behavior and not the handler behavior (which is to route all access
2483 * to PGM atm).
2484 */
2485 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2486 {
2487 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, true /* fShadowed */);
2488 rc = PGMR3HandlerPhysicalRegister(pVM,
2489 fFlags & PGMPHYS_ROM_FLAGS_SHADOWED
2490 ? PGMPHYSHANDLERTYPE_PHYSICAL_ALL
2491 : PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
2492 GCPhys, GCPhysLast,
2493 pgmR3PhysRomWriteHandler, pRomNew,
2494 NULL, "pgmPhysRomWriteHandler", MMHyperCCToR0(pVM, pRomNew),
2495 NULL, "pgmPhysRomWriteHandler", MMHyperCCToRC(pVM, pRomNew), pszDesc);
2496 }
2497 else
2498 {
2499 rc = PGMR3HandlerPhysicalRegister(pVM,
2500 fFlags & PGMPHYS_ROM_FLAGS_SHADOWED
2501 ? PGMPHYSHANDLERTYPE_PHYSICAL_ALL
2502 : PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
2503 GCPhys, GCPhysLast,
2504 pgmR3PhysRomWriteHandler, pRomNew,
2505 NULL, "pgmPhysRomWriteHandler", MMHyperCCToR0(pVM, pRomNew),
2506 NULL, "pgmPhysRomWriteHandler", MMHyperCCToRC(pVM, pRomNew), pszDesc);
2507 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, false /* fShadowed */);
2508 }
2509 if (RT_SUCCESS(rc))
2510 {
2511 pgmLock(pVM);
2512
2513 /*
2514 * Copy the image over to the virgin pages.
2515 * This must be done after linking in the RAM range.
2516 */
2517 PPGMPAGE pRamPage = &pRamNew->aPages[(GCPhys - pRamNew->GCPhys) >> PAGE_SHIFT];
2518 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++)
2519 {
2520 void *pvDstPage;
2521 rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << PAGE_SHIFT), &pvDstPage);
2522 if (RT_FAILURE(rc))
2523 {
2524 VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys);
2525 break;
2526 }
2527 memcpy(pvDstPage, (const uint8_t *)pvBinary + (iPage << PAGE_SHIFT), PAGE_SIZE);
2528 }
2529 if (RT_SUCCESS(rc))
2530 {
2531 /*
2532 * Initialize the ROM range.
2533 * Note that the Virgin member of the pages has already been initialized above.
2534 */
2535 pRomNew->GCPhys = GCPhys;
2536 pRomNew->GCPhysLast = GCPhysLast;
2537 pRomNew->cb = cb;
2538 pRomNew->fFlags = fFlags;
2539 pRomNew->idSavedState = UINT8_MAX;
2540 pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY ? pvBinary : NULL;
2541 pRomNew->pszDesc = pszDesc;
2542
2543 for (unsigned iPage = 0; iPage < cPages; iPage++)
2544 {
2545 PPGMROMPAGE pPage = &pRomNew->aPages[iPage];
2546 pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE;
2547 PGM_PAGE_INIT_ZERO(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW);
2548 }
2549
2550 /* update the page count stats for the shadow pages. */
2551 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2552 {
2553 pVM->pgm.s.cZeroPages += cPages;
2554 pVM->pgm.s.cAllPages += cPages;
2555 }
2556
2557 /*
2558 * Insert the ROM range, tell REM and return successfully.
2559 */
2560 pRomNew->pNextR3 = pRom;
2561 pRomNew->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
2562 pRomNew->pNextRC = pRom ? MMHyperCCToRC(pVM, pRom) : NIL_RTRCPTR;
2563
2564 if (pRomPrev)
2565 {
2566 pRomPrev->pNextR3 = pRomNew;
2567 pRomPrev->pNextR0 = MMHyperCCToR0(pVM, pRomNew);
2568 pRomPrev->pNextRC = MMHyperCCToRC(pVM, pRomNew);
2569 }
2570 else
2571 {
2572 pVM->pgm.s.pRomRangesR3 = pRomNew;
2573 pVM->pgm.s.pRomRangesR0 = MMHyperCCToR0(pVM, pRomNew);
2574 pVM->pgm.s.pRomRangesRC = MMHyperCCToRC(pVM, pRomNew);
2575 }
2576
2577 PGMPhysInvalidatePageMapTLB(pVM);
2578 GMMR3AllocatePagesCleanup(pReq);
2579 pgmUnlock(pVM);
2580 return VINF_SUCCESS;
2581 }
2582
2583 /* bail out */
2584
2585 pgmUnlock(pVM);
2586 int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys);
2587 AssertRC(rc2);
2588 pgmLock(pVM);
2589 }
2590
2591 if (!fRamExists)
2592 {
2593 pgmR3PhysUnlinkRamRange2(pVM, pRamNew, pRamPrev);
2594 MMHyperFree(pVM, pRamNew);
2595 }
2596 }
2597 MMHyperFree(pVM, pRomNew);
2598 }
2599
2600 /** @todo Purge the mapping cache or something... */
2601 GMMR3FreeAllocatedPages(pVM, pReq);
2602 GMMR3AllocatePagesCleanup(pReq);
2603 pgmUnlock(pVM);
2604 return rc;
2605}
2606
2607
2608/**
2609 * \#PF Handler callback for ROM write accesses.
2610 *
2611 * @returns VINF_SUCCESS if the handler have carried out the operation.
2612 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
2613 * @param pVM VM Handle.
2614 * @param GCPhys The physical address the guest is writing to.
2615 * @param pvPhys The HC mapping of that address.
2616 * @param pvBuf What the guest is reading/writing.
2617 * @param cbBuf How much it's reading/writing.
2618 * @param enmAccessType The access type.
2619 * @param pvUser User argument.
2620 */
2621static DECLCALLBACK(int) pgmR3PhysRomWriteHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser)
2622{
2623 PPGMROMRANGE pRom = (PPGMROMRANGE)pvUser;
2624 const uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
2625 Assert(iPage < (pRom->cb >> PAGE_SHIFT));
2626 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
2627 Log5(("pgmR3PhysRomWriteHandler: %d %c %#08RGp %#04zx\n", pRomPage->enmProt, enmAccessType == PGMACCESSTYPE_READ ? 'R' : 'W', GCPhys, cbBuf));
2628
2629 if (enmAccessType == PGMACCESSTYPE_READ)
2630 {
2631 switch (pRomPage->enmProt)
2632 {
2633 /*
2634 * Take the default action.
2635 */
2636 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
2637 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
2638 case PGMROMPROT_READ_ROM_WRITE_RAM:
2639 case PGMROMPROT_READ_RAM_WRITE_RAM:
2640 return VINF_PGM_HANDLER_DO_DEFAULT;
2641
2642 default:
2643 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
2644 pRom->aPages[iPage].enmProt, iPage, GCPhys),
2645 VERR_INTERNAL_ERROR);
2646 }
2647 }
2648 else
2649 {
2650 Assert(enmAccessType == PGMACCESSTYPE_WRITE);
2651 switch (pRomPage->enmProt)
2652 {
2653 /*
2654 * Ignore writes.
2655 */
2656 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
2657 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
2658 return VINF_SUCCESS;
2659
2660 /*
2661 * Write to the ram page.
2662 */
2663 case PGMROMPROT_READ_ROM_WRITE_RAM:
2664 case PGMROMPROT_READ_RAM_WRITE_RAM: /* yes this will get here too, it's *way* simpler that way. */
2665 {
2666 /* This should be impossible now, pvPhys doesn't work cross page anylonger. */
2667 Assert(((GCPhys - pRom->GCPhys + cbBuf - 1) >> PAGE_SHIFT) == iPage);
2668
2669 /*
2670 * Take the lock, do lazy allocation, map the page and copy the data.
2671 *
2672 * Note that we have to bypass the mapping TLB since it works on
2673 * guest physical addresses and entering the shadow page would
2674 * kind of screw things up...
2675 */
2676 int rc = pgmLock(pVM);
2677 AssertRC(rc);
2678
2679 PPGMPAGE pShadowPage = &pRomPage->Shadow;
2680 if (!PGMROMPROT_IS_ROM(pRomPage->enmProt))
2681 {
2682 pShadowPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
2683 AssertLogRelReturn(pShadowPage, VERR_INTERNAL_ERROR);
2684 }
2685
2686 void *pvDstPage;
2687 rc = pgmPhysPageMakeWritableAndMap(pVM, pShadowPage, GCPhys & X86_PTE_PG_MASK, &pvDstPage);
2688 if (RT_SUCCESS(rc))
2689 {
2690 memcpy((uint8_t *)pvDstPage + (GCPhys & PAGE_OFFSET_MASK), pvBuf, cbBuf);
2691 pRomPage->LiveSave.fWrittenTo = true;
2692 }
2693
2694 pgmUnlock(pVM);
2695 return rc;
2696 }
2697
2698 default:
2699 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
2700 pRom->aPages[iPage].enmProt, iPage, GCPhys),
2701 VERR_INTERNAL_ERROR);
2702 }
2703 }
2704}
2705
2706
2707/**
2708 * Called by PGMR3Reset to reset the shadow, switch to the virgin,
2709 * and verify that the virgin part is untouched.
2710 *
2711 * This is done after the normal memory has been cleared.
2712 *
2713 * ASSUMES that the caller owns the PGM lock.
2714 *
2715 * @param pVM The VM handle.
2716 */
2717int pgmR3PhysRomReset(PVM pVM)
2718{
2719 Assert(PGMIsLockOwner(pVM));
2720 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
2721 {
2722 const uint32_t cPages = pRom->cb >> PAGE_SHIFT;
2723
2724 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2725 {
2726 /*
2727 * Reset the physical handler.
2728 */
2729 int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE);
2730 AssertRCReturn(rc, rc);
2731
2732 /*
2733 * What we do with the shadow pages depends on the memory
2734 * preallocation option. If not enabled, we'll just throw
2735 * out all the dirty pages and replace them by the zero page.
2736 */
2737 if (!pVM->pgm.s.fRamPreAlloc)
2738 {
2739 /* Free the dirty pages. */
2740 uint32_t cPendingPages = 0;
2741 PGMMFREEPAGESREQ pReq;
2742 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2743 AssertRCReturn(rc, rc);
2744
2745 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2746 if (PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) != PGM_PAGE_STATE_ZERO)
2747 {
2748 Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) == PGM_PAGE_STATE_ALLOCATED);
2749 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, &pRom->aPages[iPage].Shadow, pRom->GCPhys + (iPage << PAGE_SHIFT));
2750 AssertLogRelRCReturn(rc, rc);
2751 }
2752
2753 if (cPendingPages)
2754 {
2755 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2756 AssertLogRelRCReturn(rc, rc);
2757 }
2758 GMMR3FreePagesCleanup(pReq);
2759 }
2760 else
2761 {
2762 /* clear all the shadow pages. */
2763 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2764 {
2765 Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) != PGM_PAGE_STATE_ZERO);
2766 void *pvDstPage;
2767 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
2768 rc = pgmPhysPageMakeWritableAndMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pvDstPage);
2769 if (RT_FAILURE(rc))
2770 break;
2771 ASMMemZeroPage(pvDstPage);
2772 }
2773 AssertRCReturn(rc, rc);
2774 }
2775 }
2776
2777#ifdef VBOX_STRICT
2778 /*
2779 * Verify that the virgin page is unchanged if possible.
2780 */
2781 if (pRom->pvOriginal)
2782 {
2783 uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal;
2784 for (uint32_t iPage = 0; iPage < cPages; iPage++, pbSrcPage += PAGE_SIZE)
2785 {
2786 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
2787 void const *pvDstPage;
2788 int rc = pgmPhysPageMapReadOnly(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPage);
2789 if (RT_FAILURE(rc))
2790 break;
2791 if (memcmp(pvDstPage, pbSrcPage, PAGE_SIZE))
2792 LogRel(("pgmR3PhysRomReset: %RGp rom page changed (%s) - loaded saved state?\n",
2793 GCPhys, pRom->pszDesc));
2794 }
2795 }
2796#endif
2797 }
2798
2799 return VINF_SUCCESS;
2800}
2801
2802
2803/**
2804 * Change the shadowing of a range of ROM pages.
2805 *
2806 * This is intended for implementing chipset specific memory registers
2807 * and will not be very strict about the input. It will silently ignore
2808 * any pages that are not the part of a shadowed ROM.
2809 *
2810 * @returns VBox status code.
2811 * @retval VINF_PGM_SYNC_CR3
2812 *
2813 * @param pVM Pointer to the shared VM structure.
2814 * @param GCPhys Where to start. Page aligned.
2815 * @param cb How much to change. Page aligned.
2816 * @param enmProt The new ROM protection.
2817 */
2818VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt)
2819{
2820 /*
2821 * Check input
2822 */
2823 if (!cb)
2824 return VINF_SUCCESS;
2825 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2826 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2827 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2828 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
2829 AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER);
2830
2831 /*
2832 * Process the request.
2833 */
2834 pgmLock(pVM);
2835 int rc = VINF_SUCCESS;
2836 bool fFlushTLB = false;
2837 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
2838 {
2839 if ( GCPhys <= pRom->GCPhysLast
2840 && GCPhysLast >= pRom->GCPhys
2841 && (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
2842 {
2843 /*
2844 * Iterate the relevant pages and make necessary the changes.
2845 */
2846 bool fChanges = false;
2847 uint32_t const cPages = pRom->GCPhysLast <= GCPhysLast
2848 ? pRom->cb >> PAGE_SHIFT
2849 : (GCPhysLast - pRom->GCPhys + 1) >> PAGE_SHIFT;
2850 for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
2851 iPage < cPages;
2852 iPage++)
2853 {
2854 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
2855 if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt))
2856 {
2857 fChanges = true;
2858
2859 /* flush references to the page. */
2860 PPGMPAGE pRamPage = pgmPhysGetPage(&pVM->pgm.s, pRom->GCPhys + (iPage << PAGE_SHIFT));
2861 int rc2 = pgmPoolTrackFlushGCPhys(pVM, pRamPage, &fFlushTLB);
2862 if (rc2 != VINF_SUCCESS && (rc == VINF_SUCCESS || RT_FAILURE(rc2)))
2863 rc = rc2;
2864
2865 PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
2866 PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2867
2868 *pOld = *pRamPage;
2869 *pRamPage = *pNew;
2870 /** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */
2871 }
2872 pRomPage->enmProt = enmProt;
2873 }
2874
2875 /*
2876 * Reset the access handler if we made changes, no need
2877 * to optimize this.
2878 */
2879 if (fChanges)
2880 {
2881 int rc2 = PGMHandlerPhysicalReset(pVM, pRom->GCPhys);
2882 if (RT_FAILURE(rc2))
2883 {
2884 pgmUnlock(pVM);
2885 AssertRC(rc);
2886 return rc2;
2887 }
2888 }
2889
2890 /* Advance - cb isn't updated. */
2891 GCPhys = pRom->GCPhys + (cPages << PAGE_SHIFT);
2892 }
2893 }
2894 pgmUnlock(pVM);
2895 if (fFlushTLB)
2896 PGM_INVL_ALL_VCPU_TLBS(pVM);
2897
2898 return rc;
2899}
2900
2901
2902/**
2903 * Sets the Address Gate 20 state.
2904 *
2905 * @param pVCpu The VCPU to operate on.
2906 * @param fEnable True if the gate should be enabled.
2907 * False if the gate should be disabled.
2908 */
2909VMMDECL(void) PGMR3PhysSetA20(PVMCPU pVCpu, bool fEnable)
2910{
2911 LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVCpu->pgm.s.fA20Enabled));
2912 if (pVCpu->pgm.s.fA20Enabled != fEnable)
2913 {
2914 pVCpu->pgm.s.fA20Enabled = fEnable;
2915 pVCpu->pgm.s.GCPhysA20Mask = ~(RTGCPHYS)(!fEnable << 20);
2916 REMR3A20Set(pVCpu->pVMR3, pVCpu, fEnable);
2917 /** @todo we're not handling this correctly for VT-x / AMD-V. See #2911 */
2918 }
2919}
2920
2921
2922/**
2923 * Tree enumeration callback for dealing with age rollover.
2924 * It will perform a simple compression of the current age.
2925 */
2926static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
2927{
2928 Assert(PGMIsLockOwner((PVM)pvUser));
2929 /* Age compression - ASSUMES iNow == 4. */
2930 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
2931 if (pChunk->iAge >= UINT32_C(0xffffff00))
2932 pChunk->iAge = 3;
2933 else if (pChunk->iAge >= UINT32_C(0xfffff000))
2934 pChunk->iAge = 2;
2935 else if (pChunk->iAge)
2936 pChunk->iAge = 1;
2937 else /* iAge = 0 */
2938 pChunk->iAge = 4;
2939
2940 /* reinsert */
2941 PVM pVM = (PVM)pvUser;
2942 RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
2943 pChunk->AgeCore.Key = pChunk->iAge;
2944 RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
2945 return 0;
2946}
2947
2948
2949/**
2950 * Tree enumeration callback that updates the chunks that have
2951 * been used since the last
2952 */
2953static DECLCALLBACK(int) pgmR3PhysChunkAgeingCallback(PAVLU32NODECORE pNode, void *pvUser)
2954{
2955 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
2956 if (!pChunk->iAge)
2957 {
2958 PVM pVM = (PVM)pvUser;
2959 RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
2960 pChunk->AgeCore.Key = pChunk->iAge = pVM->pgm.s.ChunkR3Map.iNow;
2961 RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
2962 }
2963
2964 return 0;
2965}
2966
2967
2968/**
2969 * Performs ageing of the ring-3 chunk mappings.
2970 *
2971 * @param pVM The VM handle.
2972 */
2973VMMR3DECL(void) PGMR3PhysChunkAgeing(PVM pVM)
2974{
2975 pgmLock(pVM);
2976 pVM->pgm.s.ChunkR3Map.AgeingCountdown = RT_MIN(pVM->pgm.s.ChunkR3Map.cMax / 4, 1024);
2977 pVM->pgm.s.ChunkR3Map.iNow++;
2978 if (pVM->pgm.s.ChunkR3Map.iNow == 0)
2979 {
2980 pVM->pgm.s.ChunkR3Map.iNow = 4;
2981 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, pVM);
2982 }
2983 else
2984 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingCallback, pVM);
2985 pgmUnlock(pVM);
2986}
2987
2988
2989/**
2990 * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
2991 */
2992typedef struct PGMR3PHYSCHUNKUNMAPCB
2993{
2994 PVM pVM; /**< The VM handle. */
2995 PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
2996} PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
2997
2998
2999/**
3000 * Callback used to find the mapping that's been unused for
3001 * the longest time.
3002 */
3003static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLLU32NODECORE pNode, void *pvUser)
3004{
3005 do
3006 {
3007 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)((uint8_t *)pNode - RT_OFFSETOF(PGMCHUNKR3MAP, AgeCore));
3008 if ( pChunk->iAge
3009 && !pChunk->cRefs)
3010 {
3011 /*
3012 * Check that it's not in any of the TLBs.
3013 */
3014 PVM pVM = ((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pVM;
3015 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
3016 if (pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk == pChunk)
3017 {
3018 pChunk = NULL;
3019 break;
3020 }
3021 if (pChunk)
3022 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
3023 if (pVM->pgm.s.PhysTlbHC.aEntries[i].pMap == pChunk)
3024 {
3025 pChunk = NULL;
3026 break;
3027 }
3028 if (pChunk)
3029 {
3030 ((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pChunk = pChunk;
3031 return 1; /* done */
3032 }
3033 }
3034
3035 /* next with the same age - this version of the AVL API doesn't enumerate the list, so we have to do it. */
3036 pNode = pNode->pList;
3037 } while (pNode);
3038 return 0;
3039}
3040
3041
3042/**
3043 * Finds a good candidate for unmapping when the ring-3 mapping cache is full.
3044 *
3045 * The candidate will not be part of any TLBs, so no need to flush
3046 * anything afterwards.
3047 *
3048 * @returns Chunk id.
3049 * @param pVM The VM handle.
3050 */
3051static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
3052{
3053 Assert(PGMIsLockOwner(pVM));
3054
3055 /*
3056 * Do tree ageing first?
3057 */
3058 if (pVM->pgm.s.ChunkR3Map.AgeingCountdown-- == 0)
3059 PGMR3PhysChunkAgeing(pVM);
3060
3061 /*
3062 * Enumerate the age tree starting with the left most node.
3063 */
3064 PGMR3PHYSCHUNKUNMAPCB Args;
3065 Args.pVM = pVM;
3066 Args.pChunk = NULL;
3067 if (RTAvllU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pAgeTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, pVM))
3068 return Args.pChunk->Core.Key;
3069 return INT32_MAX;
3070}
3071
3072
3073/**
3074 * Maps the given chunk into the ring-3 mapping cache.
3075 *
3076 * This will call ring-0.
3077 *
3078 * @returns VBox status code.
3079 * @param pVM The VM handle.
3080 * @param idChunk The chunk in question.
3081 * @param ppChunk Where to store the chunk tracking structure.
3082 *
3083 * @remarks Called from within the PGM critical section.
3084 */
3085int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
3086{
3087 int rc;
3088
3089 Assert(PGMIsLockOwner(pVM));
3090 /*
3091 * Allocate a new tracking structure first.
3092 */
3093#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
3094 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAlloc(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
3095#else
3096 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3UkHeapAlloc(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk), NULL);
3097#endif
3098 AssertReturn(pChunk, VERR_NO_MEMORY);
3099 pChunk->Core.Key = idChunk;
3100 pChunk->AgeCore.Key = pVM->pgm.s.ChunkR3Map.iNow;
3101 pChunk->iAge = 0;
3102 pChunk->cRefs = 0;
3103 pChunk->cPermRefs = 0;
3104 pChunk->pv = NULL;
3105
3106 /*
3107 * Request the ring-0 part to map the chunk in question and if
3108 * necessary unmap another one to make space in the mapping cache.
3109 */
3110 GMMMAPUNMAPCHUNKREQ Req;
3111 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
3112 Req.Hdr.cbReq = sizeof(Req);
3113 Req.pvR3 = NULL;
3114 Req.idChunkMap = idChunk;
3115 Req.idChunkUnmap = NIL_GMM_CHUNKID;
3116 if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
3117 Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
3118/** @todo This is wrong. Any thread in the VM process should be able to do this,
3119 * there are depenenecies on this. What currently saves the day is that
3120 * we don't unmap anything and that all non-zero memory will therefore
3121 * be present when non-EMTs tries to access it. */
3122 rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
3123 if (RT_SUCCESS(rc))
3124 {
3125 /*
3126 * Update the tree.
3127 */
3128 /* insert the new one. */
3129 AssertPtr(Req.pvR3);
3130 pChunk->pv = Req.pvR3;
3131 bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
3132 AssertRelease(fRc);
3133 pVM->pgm.s.ChunkR3Map.c++;
3134
3135 fRc = RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
3136 AssertRelease(fRc);
3137
3138 /* remove the unmapped one. */
3139 if (Req.idChunkUnmap != NIL_GMM_CHUNKID)
3140 {
3141 PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
3142 AssertRelease(pUnmappedChunk);
3143 pUnmappedChunk->pv = NULL;
3144 pUnmappedChunk->Core.Key = UINT32_MAX;
3145#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
3146 MMR3HeapFree(pUnmappedChunk);
3147#else
3148 MMR3UkHeapFree(pVM, pUnmappedChunk, MM_TAG_PGM_CHUNK_MAPPING);
3149#endif
3150 pVM->pgm.s.ChunkR3Map.c--;
3151
3152 /* Chunk removed, so clear the page map TBL as well (might still be referenced). */
3153 PGMPhysInvalidatePageMapTLB(pVM);
3154 }
3155 }
3156 else
3157 {
3158 AssertRC(rc);
3159#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
3160 MMR3HeapFree(pChunk);
3161#else
3162 MMR3UkHeapFree(pVM, pChunk, MM_TAG_PGM_CHUNK_MAPPING);
3163#endif
3164 pChunk = NULL;
3165 }
3166
3167 *ppChunk = pChunk;
3168 return rc;
3169}
3170
3171
3172/**
3173 * For VMMCALLRING3_PGM_MAP_CHUNK, considered internal.
3174 *
3175 * @returns see pgmR3PhysChunkMap.
3176 * @param pVM The VM handle.
3177 * @param idChunk The chunk to map.
3178 */
3179VMMR3DECL(int) PGMR3PhysChunkMap(PVM pVM, uint32_t idChunk)
3180{
3181 PPGMCHUNKR3MAP pChunk;
3182 int rc;
3183
3184 pgmLock(pVM);
3185 rc = pgmR3PhysChunkMap(pVM, idChunk, &pChunk);
3186 pgmUnlock(pVM);
3187 return rc;
3188}
3189
3190
3191/**
3192 * Invalidates the TLB for the ring-3 mapping cache.
3193 *
3194 * @param pVM The VM handle.
3195 */
3196VMMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM)
3197{
3198 pgmLock(pVM);
3199 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
3200 {
3201 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
3202 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
3203 }
3204 /* The page map TLB references chunks, so invalidate that one too. */
3205 PGMPhysInvalidatePageMapTLB(pVM);
3206 pgmUnlock(pVM);
3207}
3208
3209
3210/**
3211 * Response to VMMCALLRING3_PGM_ALLOCATE_LARGE_PAGE to allocate a large (2MB) page
3212 * for use with a nested paging PDE.
3213 *
3214 * @returns The following VBox status codes.
3215 * @retval VINF_SUCCESS on success.
3216 * @retval VINF_EM_NO_MEMORY if we're out of memory.
3217 *
3218 * @param pVM The VM handle.
3219 * @param GCPhys GC physical start address of the 2 MB range
3220 */
3221VMMR3DECL(int) PGMR3PhysAllocateLargeHandyPage(PVM pVM, RTGCPHYS GCPhys)
3222{
3223 pgmLock(pVM);
3224
3225 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_LARGE_HANDY_PAGE, 0, NULL);
3226 if (RT_SUCCESS(rc))
3227 {
3228 Assert(pVM->pgm.s.cLargeHandyPages == 1);
3229
3230 uint32_t idPage = pVM->pgm.s.aLargeHandyPage[0].idPage;
3231 RTHCPHYS HCPhys = pVM->pgm.s.aLargeHandyPage[0].HCPhysGCPhys;
3232
3233 void *pv;
3234
3235 /* Map the large page into our address space.
3236 *
3237 * Note: assuming that within the 2 MB range:
3238 * - GCPhys + PAGE_SIZE = HCPhys + PAGE_SIZE (whole point of this exercise)
3239 * - user space mapping is continuous as well
3240 * - page id (GCPhys) + 1 = page id (GCPhys + PAGE_SIZE)
3241 */
3242 rc = pgmPhysPageMapByPageID(pVM, idPage, HCPhys, &pv);
3243 AssertLogRelMsg(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc", idPage, HCPhys, rc));
3244
3245 if (RT_SUCCESS(rc))
3246 {
3247 /*
3248 * Clear the pages.
3249 */
3250 for (unsigned i = 0; i < _2M/PAGE_SIZE; i++)
3251 {
3252 ASMMemZeroPage(pv);
3253
3254 PPGMPAGE pPage;
3255 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
3256 AssertRC(rc);
3257
3258 Assert(PGM_PAGE_IS_ZERO(pPage));
3259 STAM_COUNTER_INC(&pVM->pgm.s.StatRZPageReplaceZero);
3260 pVM->pgm.s.cZeroPages--;
3261
3262 /*
3263 * Do the PGMPAGE modifications.
3264 */
3265 pVM->pgm.s.cPrivatePages++;
3266 PGM_PAGE_SET_HCPHYS(pPage, HCPhys);
3267 PGM_PAGE_SET_PAGEID(pPage, idPage);
3268 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
3269 PGM_PAGE_SET_PDE_TYPE(pPage, PGM_PAGE_PDE_TYPE_PDE);
3270
3271 /* Somewhat dirty assumption that page ids are increasing. */
3272 idPage++;
3273
3274 HCPhys += PAGE_SIZE;
3275 GCPhys += PAGE_SIZE;
3276
3277 pv = (void *)((uintptr_t)pv + PAGE_SIZE);
3278
3279 Log3(("PGMR3PhysAllocateLargePage: idPage=%#x HCPhys=%RGp\n", idPage, HCPhys));
3280 }
3281 /* Flush all TLBs. */
3282 PGM_INVL_ALL_VCPU_TLBS(pVM);
3283 PGMPhysInvalidatePageMapTLB(pVM);
3284 }
3285 pVM->pgm.s.cLargeHandyPages = 0;
3286 }
3287
3288 pgmUnlock(pVM);
3289 return rc;
3290}
3291
3292
3293/**
3294 * Response to VM_FF_PGM_NEED_HANDY_PAGES and VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES.
3295 *
3296 * This function will also work the VM_FF_PGM_NO_MEMORY force action flag, to
3297 * signal and clear the out of memory condition. When contracted, this API is
3298 * used to try clear the condition when the user wants to resume.
3299 *
3300 * @returns The following VBox status codes.
3301 * @retval VINF_SUCCESS on success. FFs cleared.
3302 * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in
3303 * this case and it gets accompanied by VM_FF_PGM_NO_MEMORY.
3304 *
3305 * @param pVM The VM handle.
3306 *
3307 * @remarks The VINF_EM_NO_MEMORY status is for the benefit of the FF processing
3308 * in EM.cpp and shouldn't be propagated outside TRPM, HWACCM, EM and
3309 * pgmPhysEnsureHandyPage. There is one exception to this in the \#PF
3310 * handler.
3311 */
3312VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
3313{
3314 pgmLock(pVM);
3315
3316 /*
3317 * Allocate more pages, noting down the index of the first new page.
3318 */
3319 uint32_t iClear = pVM->pgm.s.cHandyPages;
3320 AssertMsgReturn(iClear <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d", iClear), VERR_INTERNAL_ERROR);
3321 Log(("PGMR3PhysAllocateHandyPages: %d -> %d\n", iClear, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
3322 int rcAlloc = VINF_SUCCESS;
3323 int rcSeed = VINF_SUCCESS;
3324 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
3325 while (rc == VERR_GMM_SEED_ME)
3326 {
3327 void *pvChunk;
3328 rcAlloc = rc = SUPR3PageAlloc(GMM_CHUNK_SIZE >> PAGE_SHIFT, &pvChunk);
3329 if (RT_SUCCESS(rc))
3330 {
3331 rcSeed = rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_SEED_CHUNK, (uintptr_t)pvChunk, NULL);
3332 if (RT_FAILURE(rc))
3333 SUPR3PageFree(pvChunk, GMM_CHUNK_SIZE >> PAGE_SHIFT);
3334 }
3335 if (RT_SUCCESS(rc))
3336 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
3337 }
3338
3339 if (RT_SUCCESS(rc))
3340 {
3341 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
3342 Assert(pVM->pgm.s.cHandyPages > 0);
3343 VM_FF_CLEAR(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
3344 VM_FF_CLEAR(pVM, VM_FF_PGM_NO_MEMORY);
3345
3346 /*
3347 * Clear the pages.
3348 */
3349 while (iClear < pVM->pgm.s.cHandyPages)
3350 {
3351 PGMMPAGEDESC pPage = &pVM->pgm.s.aHandyPages[iClear];
3352 void *pv;
3353 rc = pgmPhysPageMapByPageID(pVM, pPage->idPage, pPage->HCPhysGCPhys, &pv);
3354 AssertLogRelMsgBreak(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc", pPage->idPage, pPage->HCPhysGCPhys, rc));
3355 ASMMemZeroPage(pv);
3356 iClear++;
3357 Log3(("PGMR3PhysAllocateHandyPages: idPage=%#x HCPhys=%RGp\n", pPage->idPage, pPage->HCPhysGCPhys));
3358 }
3359 }
3360 else
3361 {
3362 /*
3363 * We should never get here unless there is a genuine shortage of
3364 * memory (or some internal error). Flag the error so the VM can be
3365 * suspended ASAP and the user informed. If we're totally out of
3366 * handy pages we will return failure.
3367 */
3368 /* Report the failure. */
3369 LogRel(("PGM: Failed to procure handy pages; rc=%Rrc rcAlloc=%Rrc rcSeed=%Rrc cHandyPages=%#x\n"
3370 " cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n",
3371 rc, rcAlloc, rcSeed,
3372 pVM->pgm.s.cHandyPages,
3373 pVM->pgm.s.cAllPages,
3374 pVM->pgm.s.cPrivatePages,
3375 pVM->pgm.s.cSharedPages,
3376 pVM->pgm.s.cZeroPages));
3377 if ( rc != VERR_NO_MEMORY
3378 && rc != VERR_LOCK_FAILED)
3379 {
3380 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
3381 {
3382 LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n",
3383 i, pVM->pgm.s.aHandyPages[i].HCPhysGCPhys, pVM->pgm.s.aHandyPages[i].idPage,
3384 pVM->pgm.s.aHandyPages[i].idSharedPage));
3385 uint32_t const idPage = pVM->pgm.s.aHandyPages[i].idPage;
3386 if (idPage != NIL_GMM_PAGEID)
3387 {
3388 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
3389 pRam;
3390 pRam = pRam->pNextR3)
3391 {
3392 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
3393 for (uint32_t iPage = 0; iPage < cPages; iPage++)
3394 if (PGM_PAGE_GET_PAGEID(&pRam->aPages[iPage]) == idPage)
3395 LogRel(("PGM: Used by %RGp %R[pgmpage] (%s)\n",
3396 pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pRam->aPages[iPage], pRam->pszDesc));
3397 }
3398 }
3399 }
3400 }
3401
3402 /* Set the FFs and adjust rc. */
3403 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
3404 VM_FF_SET(pVM, VM_FF_PGM_NO_MEMORY);
3405 if ( rc == VERR_NO_MEMORY
3406 || rc == VERR_LOCK_FAILED)
3407 rc = VINF_EM_NO_MEMORY;
3408 }
3409
3410 pgmUnlock(pVM);
3411 return rc;
3412}
3413
3414
3415/**
3416 * Frees the specified RAM page and replaces it with the ZERO page.
3417 *
3418 * This is used by ballooning, remapping MMIO2 and RAM reset.
3419 *
3420 * @param pVM Pointer to the shared VM structure.
3421 * @param pReq Pointer to the request.
3422 * @param pPage Pointer to the page structure.
3423 * @param GCPhys The guest physical address of the page, if applicable.
3424 *
3425 * @remarks The caller must own the PGM lock.
3426 */
3427static int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys)
3428{
3429 /*
3430 * Assert sanity.
3431 */
3432 Assert(PGMIsLockOwner(pVM));
3433 if (RT_UNLIKELY( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
3434 && PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW))
3435 {
3436 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
3437 return VMSetError(pVM, VERR_PGM_PHYS_NOT_RAM, RT_SRC_POS, "GCPhys=%RGp type=%d", GCPhys, PGM_PAGE_GET_TYPE(pPage));
3438 }
3439
3440 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ZERO)
3441 return VINF_SUCCESS;
3442
3443 const uint32_t idPage = PGM_PAGE_GET_PAGEID(pPage);
3444 Log3(("pgmPhysFreePage: idPage=%#x HCPhys=%RGp pPage=%R[pgmpage]\n", idPage, pPage));
3445 if (RT_UNLIKELY( idPage == NIL_GMM_PAGEID
3446 || idPage > GMM_PAGEID_LAST
3447 || PGM_PAGE_GET_CHUNKID(pPage) == NIL_GMM_CHUNKID))
3448 {
3449 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
3450 return VMSetError(pVM, VERR_PGM_PHYS_INVALID_PAGE_ID, RT_SRC_POS, "GCPhys=%RGp idPage=%#x", GCPhys, pPage);
3451 }
3452
3453 /* update page count stats. */
3454 if (PGM_PAGE_IS_SHARED(pPage))
3455 pVM->pgm.s.cSharedPages--;
3456 else
3457 pVM->pgm.s.cPrivatePages--;
3458 pVM->pgm.s.cZeroPages++;
3459
3460 /* Deal with write monitored pages. */
3461 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
3462 {
3463 PGM_PAGE_SET_WRITTEN_TO(pPage);
3464 pVM->pgm.s.cWrittenToPages++;
3465 }
3466
3467 /*
3468 * pPage = ZERO page.
3469 */
3470 PGM_PAGE_SET_HCPHYS(pPage, pVM->pgm.s.HCPhysZeroPg);
3471 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
3472 PGM_PAGE_SET_PAGEID(pPage, NIL_GMM_PAGEID);
3473 PGM_PAGE_SET_PDE_TYPE(pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
3474
3475 /* Flush physical page map TLB entry. */
3476 PGMPhysInvalidatePageMapTLBEntry(pVM, GCPhys);
3477
3478 /*
3479 * Make sure it's not in the handy page array.
3480 */
3481 for (uint32_t i = pVM->pgm.s.cHandyPages; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
3482 {
3483 if (pVM->pgm.s.aHandyPages[i].idPage == idPage)
3484 {
3485 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
3486 break;
3487 }
3488 if (pVM->pgm.s.aHandyPages[i].idSharedPage == idPage)
3489 {
3490 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
3491 break;
3492 }
3493 }
3494
3495 /*
3496 * Push it onto the page array.
3497 */
3498 uint32_t iPage = *pcPendingPages;
3499 Assert(iPage < PGMPHYS_FREE_PAGE_BATCH_SIZE);
3500 *pcPendingPages += 1;
3501
3502 pReq->aPages[iPage].idPage = idPage;
3503
3504 if (iPage + 1 < PGMPHYS_FREE_PAGE_BATCH_SIZE)
3505 return VINF_SUCCESS;
3506
3507 /*
3508 * Flush the pages.
3509 */
3510 int rc = GMMR3FreePagesPerform(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE);
3511 if (RT_SUCCESS(rc))
3512 {
3513 GMMR3FreePagesRePrep(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
3514 *pcPendingPages = 0;
3515 }
3516 return rc;
3517}
3518
3519
3520/**
3521 * Converts a GC physical address to a HC ring-3 pointer, with some
3522 * additional checks.
3523 *
3524 * @returns VBox status code.
3525 * @retval VINF_SUCCESS on success.
3526 * @retval VINF_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
3527 * access handler of some kind.
3528 * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
3529 * accesses or is odd in any way.
3530 * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
3531 *
3532 * @param pVM The VM handle.
3533 * @param GCPhys The GC physical address to convert.
3534 * @param fWritable Whether write access is required.
3535 * @param ppv Where to store the pointer corresponding to GCPhys on
3536 * success.
3537 */
3538VMMR3DECL(int) PGMR3PhysTlbGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, void **ppv)
3539{
3540 pgmLock(pVM);
3541
3542 PPGMRAMRANGE pRam;
3543 PPGMPAGE pPage;
3544 int rc = pgmPhysGetPageAndRangeEx(&pVM->pgm.s, GCPhys, &pPage, &pRam);
3545 if (RT_SUCCESS(rc))
3546 {
3547 if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage))
3548 rc = VINF_SUCCESS;
3549 else
3550 {
3551 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
3552 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
3553 else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
3554 {
3555 /** @todo Handle TLB loads of virtual handlers so ./test.sh can be made to work
3556 * in -norawr0 mode. */
3557 if (fWritable)
3558 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
3559 }
3560 else
3561 {
3562 /* Temporarily disabled physical handler(s), since the recompiler
3563 doesn't get notified when it's reset we'll have to pretend it's
3564 operating normally. */
3565 if (pgmHandlerPhysicalIsAll(pVM, GCPhys))
3566 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
3567 else
3568 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
3569 }
3570 }
3571 if (RT_SUCCESS(rc))
3572 {
3573 int rc2;
3574
3575 /* Make sure what we return is writable. */
3576 if (fWritable && rc != VINF_PGM_PHYS_TLB_CATCH_WRITE)
3577 switch (PGM_PAGE_GET_STATE(pPage))
3578 {
3579 case PGM_PAGE_STATE_ALLOCATED:
3580 break;
3581 case PGM_PAGE_STATE_ZERO:
3582 case PGM_PAGE_STATE_SHARED:
3583 case PGM_PAGE_STATE_WRITE_MONITORED:
3584 rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
3585 AssertLogRelRCReturn(rc2, rc2);
3586 break;
3587 }
3588
3589 /* Get a ring-3 mapping of the address. */
3590 PPGMPAGER3MAPTLBE pTlbe;
3591 rc2 = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
3592 AssertLogRelRCReturn(rc2, rc2);
3593 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
3594 /** @todo mapping/locking hell; this isn't horribly efficient since
3595 * pgmPhysPageLoadIntoTlb will repeat the lookup we've done here. */
3596
3597 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
3598 }
3599 else
3600 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));
3601
3602 /* else: handler catching all access, no pointer returned. */
3603 }
3604 else
3605 rc = VERR_PGM_PHYS_TLB_UNASSIGNED;
3606
3607 pgmUnlock(pVM);
3608 return rc;
3609}
3610
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette