VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMPhys.cpp@ 27088

Last change on this file since 27088 was 27084, checked in by vboxsync, 15 years ago

Take the balloon size into account when applying account limits for the VM.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 128.2 KB
Line 
1/* $Id: PGMPhys.cpp 27084 2010-03-05 13:08:58Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_PGM_PHYS
27#include <VBox/pgm.h>
28#include <VBox/iom.h>
29#include <VBox/mm.h>
30#include <VBox/stam.h>
31#include <VBox/rem.h>
32#include <VBox/pdmdev.h>
33#include "PGMInternal.h"
34#include <VBox/vm.h>
35#include "PGMInline.h"
36#include <VBox/sup.h>
37#include <VBox/param.h>
38#include <VBox/err.h>
39#include <VBox/log.h>
40#include <iprt/assert.h>
41#include <iprt/alloc.h>
42#include <iprt/asm.h>
43#include <iprt/thread.h>
44#include <iprt/string.h>
45
46
47/*******************************************************************************
48* Defined Constants And Macros *
49*******************************************************************************/
50/** The number of pages to free in one batch. */
51#define PGMPHYS_FREE_PAGE_BATCH_SIZE 128
52
53
54/*******************************************************************************
55* Internal Functions *
56*******************************************************************************/
57static DECLCALLBACK(int) pgmR3PhysRomWriteHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
58static int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys);
59
60
61/*
62 * PGMR3PhysReadU8-64
63 * PGMR3PhysWriteU8-64
64 */
65#define PGMPHYSFN_READNAME PGMR3PhysReadU8
66#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8
67#define PGMPHYS_DATASIZE 1
68#define PGMPHYS_DATATYPE uint8_t
69#include "PGMPhysRWTmpl.h"
70
71#define PGMPHYSFN_READNAME PGMR3PhysReadU16
72#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16
73#define PGMPHYS_DATASIZE 2
74#define PGMPHYS_DATATYPE uint16_t
75#include "PGMPhysRWTmpl.h"
76
77#define PGMPHYSFN_READNAME PGMR3PhysReadU32
78#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32
79#define PGMPHYS_DATASIZE 4
80#define PGMPHYS_DATATYPE uint32_t
81#include "PGMPhysRWTmpl.h"
82
83#define PGMPHYSFN_READNAME PGMR3PhysReadU64
84#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64
85#define PGMPHYS_DATASIZE 8
86#define PGMPHYS_DATATYPE uint64_t
87#include "PGMPhysRWTmpl.h"
88
89
90/**
91 * EMT worker for PGMR3PhysReadExternal.
92 */
93static DECLCALLBACK(int) pgmR3PhysReadExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, void *pvBuf, size_t cbRead)
94{
95 PGMPhysRead(pVM, *pGCPhys, pvBuf, cbRead);
96 return VINF_SUCCESS;
97}
98
99
100/**
101 * Write to physical memory, external users.
102 *
103 * @returns VBox status code.
104 * @retval VINF_SUCCESS.
105 *
106 * @param pVM VM Handle.
107 * @param GCPhys Physical address to write to.
108 * @param pvBuf What to write.
109 * @param cbWrite How many bytes to write.
110 *
111 * @thread Any but EMTs.
112 */
113VMMR3DECL(int) PGMR3PhysReadExternal(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead)
114{
115 VM_ASSERT_OTHER_THREAD(pVM);
116
117 AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
118 LogFlow(("PGMR3PhysReadExternal: %RGp %d\n", GCPhys, cbRead));
119
120 pgmLock(pVM);
121
122 /*
123 * Copy loop on ram ranges.
124 */
125 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
126 for (;;)
127 {
128 /* Find range. */
129 while (pRam && GCPhys > pRam->GCPhysLast)
130 pRam = pRam->CTX_SUFF(pNext);
131 /* Inside range or not? */
132 if (pRam && GCPhys >= pRam->GCPhys)
133 {
134 /*
135 * Must work our way thru this page by page.
136 */
137 RTGCPHYS off = GCPhys - pRam->GCPhys;
138 while (off < pRam->cb)
139 {
140 unsigned iPage = off >> PAGE_SHIFT;
141 PPGMPAGE pPage = &pRam->aPages[iPage];
142
143 /*
144 * If the page has an ALL access handler, we'll have to
145 * delegate the job to EMT.
146 */
147 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
148 {
149 pgmUnlock(pVM);
150
151 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysReadExternalEMT, 4,
152 pVM, &GCPhys, pvBuf, cbRead);
153 }
154 Assert(!PGM_PAGE_IS_MMIO(pPage));
155
156 /*
157 * Simple stuff, go ahead.
158 */
159 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
160 if (cb > cbRead)
161 cb = cbRead;
162 const void *pvSrc;
163 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc);
164 if (RT_SUCCESS(rc))
165 memcpy(pvBuf, pvSrc, cb);
166 else
167 {
168 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
169 pRam->GCPhys + off, pPage, rc));
170 memset(pvBuf, 0xff, cb);
171 }
172
173 /* next page */
174 if (cb >= cbRead)
175 {
176 pgmUnlock(pVM);
177 return VINF_SUCCESS;
178 }
179 cbRead -= cb;
180 off += cb;
181 GCPhys += cb;
182 pvBuf = (char *)pvBuf + cb;
183 } /* walk pages in ram range. */
184 }
185 else
186 {
187 LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
188
189 /*
190 * Unassigned address space.
191 */
192 if (!pRam)
193 break;
194 size_t cb = pRam->GCPhys - GCPhys;
195 if (cb >= cbRead)
196 {
197 memset(pvBuf, 0xff, cbRead);
198 break;
199 }
200 memset(pvBuf, 0xff, cb);
201
202 cbRead -= cb;
203 pvBuf = (char *)pvBuf + cb;
204 GCPhys += cb;
205 }
206 } /* Ram range walk */
207
208 pgmUnlock(pVM);
209
210 return VINF_SUCCESS;
211}
212
213
214/**
215 * EMT worker for PGMR3PhysWriteExternal.
216 */
217static DECLCALLBACK(int) pgmR3PhysWriteExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, const void *pvBuf, size_t cbWrite)
218{
219 /** @todo VERR_EM_NO_MEMORY */
220 PGMPhysWrite(pVM, *pGCPhys, pvBuf, cbWrite);
221 return VINF_SUCCESS;
222}
223
224
225/**
226 * Write to physical memory, external users.
227 *
228 * @returns VBox status code.
229 * @retval VINF_SUCCESS.
230 * @retval VERR_EM_NO_MEMORY.
231 *
232 * @param pVM VM Handle.
233 * @param GCPhys Physical address to write to.
234 * @param pvBuf What to write.
235 * @param cbWrite How many bytes to write.
236 * @param pszWho Who is writing. For tracking down who is writing
237 * after we've saved the state.
238 *
239 * @thread Any but EMTs.
240 */
241VMMDECL(int) PGMR3PhysWriteExternal(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, const char *pszWho)
242{
243 VM_ASSERT_OTHER_THREAD(pVM);
244
245 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites,
246 ("Calling PGMR3PhysWriteExternal after pgmR3Save()! GCPhys=%RGp cbWrite=%#x pszWho=%s\n",
247 GCPhys, cbWrite, pszWho));
248 AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
249 LogFlow(("PGMR3PhysWriteExternal: %RGp %d\n", GCPhys, cbWrite));
250
251 pgmLock(pVM);
252
253 /*
254 * Copy loop on ram ranges, stop when we hit something difficult.
255 */
256 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
257 for (;;)
258 {
259 /* Find range. */
260 while (pRam && GCPhys > pRam->GCPhysLast)
261 pRam = pRam->CTX_SUFF(pNext);
262 /* Inside range or not? */
263 if (pRam && GCPhys >= pRam->GCPhys)
264 {
265 /*
266 * Must work our way thru this page by page.
267 */
268 RTGCPTR off = GCPhys - pRam->GCPhys;
269 while (off < pRam->cb)
270 {
271 RTGCPTR iPage = off >> PAGE_SHIFT;
272 PPGMPAGE pPage = &pRam->aPages[iPage];
273
274 /*
275 * Is the page problematic, we have to do the work on the EMT.
276 *
277 * Allocating writable pages and access handlers are
278 * problematic, write monitored pages are simple and can be
279 * dealth with here.
280 */
281 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
282 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
283 {
284 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
285 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
286 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
287 else
288 {
289 pgmUnlock(pVM);
290
291 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysWriteExternalEMT, 4,
292 pVM, &GCPhys, pvBuf, cbWrite);
293 }
294 }
295 Assert(!PGM_PAGE_IS_MMIO(pPage));
296
297 /*
298 * Simple stuff, go ahead.
299 */
300 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
301 if (cb > cbWrite)
302 cb = cbWrite;
303 void *pvDst;
304 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst);
305 if (RT_SUCCESS(rc))
306 memcpy(pvDst, pvBuf, cb);
307 else
308 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
309 pRam->GCPhys + off, pPage, rc));
310
311 /* next page */
312 if (cb >= cbWrite)
313 {
314 pgmUnlock(pVM);
315 return VINF_SUCCESS;
316 }
317
318 cbWrite -= cb;
319 off += cb;
320 GCPhys += cb;
321 pvBuf = (const char *)pvBuf + cb;
322 } /* walk pages in ram range */
323 }
324 else
325 {
326 /*
327 * Unassigned address space, skip it.
328 */
329 if (!pRam)
330 break;
331 size_t cb = pRam->GCPhys - GCPhys;
332 if (cb >= cbWrite)
333 break;
334 cbWrite -= cb;
335 pvBuf = (const char *)pvBuf + cb;
336 GCPhys += cb;
337 }
338 } /* Ram range walk */
339
340 pgmUnlock(pVM);
341 return VINF_SUCCESS;
342}
343
344
345/**
346 * VMR3ReqCall worker for PGMR3PhysGCPhys2CCPtrExternal to make pages writable.
347 *
348 * @returns see PGMR3PhysGCPhys2CCPtrExternal
349 * @param pVM The VM handle.
350 * @param pGCPhys Pointer to the guest physical address.
351 * @param ppv Where to store the mapping address.
352 * @param pLock Where to store the lock.
353 */
354static DECLCALLBACK(int) pgmR3PhysGCPhys2CCPtrDelegated(PVM pVM, PRTGCPHYS pGCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
355{
356 /*
357 * Just hand it to PGMPhysGCPhys2CCPtr and check that it's not a page with
358 * an access handler after it succeeds.
359 */
360 int rc = pgmLock(pVM);
361 AssertRCReturn(rc, rc);
362
363 rc = PGMPhysGCPhys2CCPtr(pVM, *pGCPhys, ppv, pLock);
364 if (RT_SUCCESS(rc))
365 {
366 PPGMPAGEMAPTLBE pTlbe;
367 int rc2 = pgmPhysPageQueryTlbe(&pVM->pgm.s, *pGCPhys, &pTlbe);
368 AssertFatalRC(rc2);
369 PPGMPAGE pPage = pTlbe->pPage;
370 if (PGM_PAGE_IS_MMIO(pPage))
371 {
372 PGMPhysReleasePageMappingLock(pVM, pLock);
373 rc = VERR_PGM_PHYS_PAGE_RESERVED;
374 }
375 else if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
376#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
377 || pgmPoolIsDirtyPage(pVM, *pGCPhys)
378#endif
379 )
380 {
381 /* We *must* flush any corresponding pgm pool page here, otherwise we'll
382 * not be informed about writes and keep bogus gst->shw mappings around.
383 */
384 pgmPoolFlushPageByGCPhys(pVM, *pGCPhys);
385 Assert(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage));
386 /** @todo r=bird: return VERR_PGM_PHYS_PAGE_RESERVED here if it still has
387 * active handlers, see the PGMR3PhysGCPhys2CCPtrExternal docs. */
388 }
389 }
390
391 pgmUnlock(pVM);
392 return rc;
393}
394
395
396/**
397 * Requests the mapping of a guest page into ring-3, external threads.
398 *
399 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
400 * release it.
401 *
402 * This API will assume your intention is to write to the page, and will
403 * therefore replace shared and zero pages. If you do not intend to modify the
404 * page, use the PGMR3PhysGCPhys2CCPtrReadOnlyExternal() API.
405 *
406 * @returns VBox status code.
407 * @retval VINF_SUCCESS on success.
408 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
409 * backing or if the page has any active access handlers. The caller
410 * must fall back on using PGMR3PhysWriteExternal.
411 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
412 *
413 * @param pVM The VM handle.
414 * @param GCPhys The guest physical address of the page that should be mapped.
415 * @param ppv Where to store the address corresponding to GCPhys.
416 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
417 *
418 * @remark Avoid calling this API from within critical sections (other than the
419 * PGM one) because of the deadlock risk when we have to delegating the
420 * task to an EMT.
421 * @thread Any.
422 */
423VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrExternal(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
424{
425 AssertPtr(ppv);
426 AssertPtr(pLock);
427
428 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
429
430 int rc = pgmLock(pVM);
431 AssertRCReturn(rc, rc);
432
433 /*
434 * Query the Physical TLB entry for the page (may fail).
435 */
436 PPGMPAGEMAPTLBE pTlbe;
437 rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
438 if (RT_SUCCESS(rc))
439 {
440 PPGMPAGE pPage = pTlbe->pPage;
441 if (PGM_PAGE_IS_MMIO(pPage))
442 rc = VERR_PGM_PHYS_PAGE_RESERVED;
443 else
444 {
445 /*
446 * If the page is shared, the zero page, or being write monitored
447 * it must be converted to an page that's writable if possible.
448 * We can only deal with write monitored pages here, the rest have
449 * to be on an EMT.
450 */
451 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
452 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
453#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
454 || pgmPoolIsDirtyPage(pVM, GCPhys)
455#endif
456 )
457 {
458 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
459 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
460#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
461 && !pgmPoolIsDirtyPage(pVM, GCPhys)
462#endif
463 )
464 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
465 else
466 {
467 pgmUnlock(pVM);
468
469 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
470 pVM, &GCPhys, ppv, pLock);
471 }
472 }
473
474 /*
475 * Now, just perform the locking and calculate the return address.
476 */
477 PPGMPAGEMAP pMap = pTlbe->pMap;
478 if (pMap)
479 pMap->cRefs++;
480
481 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
482 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
483 {
484 if (cLocks == 0)
485 pVM->pgm.s.cWriteLockedPages++;
486 PGM_PAGE_INC_WRITE_LOCKS(pPage);
487 }
488 else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
489 {
490 PGM_PAGE_INC_WRITE_LOCKS(pPage);
491 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", GCPhys, pPage));
492 if (pMap)
493 pMap->cRefs++; /* Extra ref to prevent it from going away. */
494 }
495
496 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
497 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
498 pLock->pvMap = pMap;
499 }
500 }
501
502 pgmUnlock(pVM);
503 return rc;
504}
505
506
507/**
508 * Requests the mapping of a guest page into ring-3, external threads.
509 *
510 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
511 * release it.
512 *
513 * @returns VBox status code.
514 * @retval VINF_SUCCESS on success.
515 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
516 * backing or if the page as an active ALL access handler. The caller
517 * must fall back on using PGMPhysRead.
518 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
519 *
520 * @param pVM The VM handle.
521 * @param GCPhys The guest physical address of the page that should be mapped.
522 * @param ppv Where to store the address corresponding to GCPhys.
523 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
524 *
525 * @remark Avoid calling this API from within critical sections (other than
526 * the PGM one) because of the deadlock risk.
527 * @thread Any.
528 */
529VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrReadOnlyExternal(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
530{
531 int rc = pgmLock(pVM);
532 AssertRCReturn(rc, rc);
533
534 /*
535 * Query the Physical TLB entry for the page (may fail).
536 */
537 PPGMPAGEMAPTLBE pTlbe;
538 rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
539 if (RT_SUCCESS(rc))
540 {
541 PPGMPAGE pPage = pTlbe->pPage;
542#if 1
543 /* MMIO pages doesn't have any readable backing. */
544 if (PGM_PAGE_IS_MMIO(pPage))
545 rc = VERR_PGM_PHYS_PAGE_RESERVED;
546#else
547 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
548 rc = VERR_PGM_PHYS_PAGE_RESERVED;
549#endif
550 else
551 {
552 /*
553 * Now, just perform the locking and calculate the return address.
554 */
555 PPGMPAGEMAP pMap = pTlbe->pMap;
556 if (pMap)
557 pMap->cRefs++;
558
559 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
560 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
561 {
562 if (cLocks == 0)
563 pVM->pgm.s.cReadLockedPages++;
564 PGM_PAGE_INC_READ_LOCKS(pPage);
565 }
566 else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
567 {
568 PGM_PAGE_INC_READ_LOCKS(pPage);
569 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", GCPhys, pPage));
570 if (pMap)
571 pMap->cRefs++; /* Extra ref to prevent it from going away. */
572 }
573
574 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
575 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
576 pLock->pvMap = pMap;
577 }
578 }
579
580 pgmUnlock(pVM);
581 return rc;
582}
583
584
585/**
586 * Relinks the RAM ranges using the pSelfRC and pSelfR0 pointers.
587 *
588 * Called when anything was relocated.
589 *
590 * @param pVM Pointer to the shared VM structure.
591 */
592void pgmR3PhysRelinkRamRanges(PVM pVM)
593{
594 PPGMRAMRANGE pCur;
595
596#ifdef VBOX_STRICT
597 for (pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
598 {
599 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfR0 == MMHyperCCToR0(pVM, pCur));
600 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfRC == MMHyperCCToRC(pVM, pCur));
601 Assert((pCur->GCPhys & PAGE_OFFSET_MASK) == 0);
602 Assert((pCur->GCPhysLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
603 Assert((pCur->cb & PAGE_OFFSET_MASK) == 0);
604 Assert(pCur->cb == pCur->GCPhysLast - pCur->GCPhys + 1);
605 for (PPGMRAMRANGE pCur2 = pVM->pgm.s.pRamRangesR3; pCur2; pCur2 = pCur2->pNextR3)
606 Assert( pCur2 == pCur
607 || strcmp(pCur2->pszDesc, pCur->pszDesc)); /** @todo fix MMIO ranges!! */
608 }
609#endif
610
611 pCur = pVM->pgm.s.pRamRangesR3;
612 if (pCur)
613 {
614 pVM->pgm.s.pRamRangesR0 = pCur->pSelfR0;
615 pVM->pgm.s.pRamRangesRC = pCur->pSelfRC;
616
617 for (; pCur->pNextR3; pCur = pCur->pNextR3)
618 {
619 pCur->pNextR0 = pCur->pNextR3->pSelfR0;
620 pCur->pNextRC = pCur->pNextR3->pSelfRC;
621 }
622
623 Assert(pCur->pNextR0 == NIL_RTR0PTR);
624 Assert(pCur->pNextRC == NIL_RTRCPTR);
625 }
626 else
627 {
628 Assert(pVM->pgm.s.pRamRangesR0 == NIL_RTR0PTR);
629 Assert(pVM->pgm.s.pRamRangesRC == NIL_RTRCPTR);
630 }
631 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
632}
633
634
635/**
636 * Links a new RAM range into the list.
637 *
638 * @param pVM Pointer to the shared VM structure.
639 * @param pNew Pointer to the new list entry.
640 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
641 */
642static void pgmR3PhysLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, PPGMRAMRANGE pPrev)
643{
644 AssertMsg(pNew->pszDesc, ("%RGp-%RGp\n", pNew->GCPhys, pNew->GCPhysLast));
645 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfR0 == MMHyperCCToR0(pVM, pNew));
646 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfRC == MMHyperCCToRC(pVM, pNew));
647
648 pgmLock(pVM);
649
650 PPGMRAMRANGE pRam = pPrev ? pPrev->pNextR3 : pVM->pgm.s.pRamRangesR3;
651 pNew->pNextR3 = pRam;
652 pNew->pNextR0 = pRam ? pRam->pSelfR0 : NIL_RTR0PTR;
653 pNew->pNextRC = pRam ? pRam->pSelfRC : NIL_RTRCPTR;
654
655 if (pPrev)
656 {
657 pPrev->pNextR3 = pNew;
658 pPrev->pNextR0 = pNew->pSelfR0;
659 pPrev->pNextRC = pNew->pSelfRC;
660 }
661 else
662 {
663 pVM->pgm.s.pRamRangesR3 = pNew;
664 pVM->pgm.s.pRamRangesR0 = pNew->pSelfR0;
665 pVM->pgm.s.pRamRangesRC = pNew->pSelfRC;
666 }
667 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
668 pgmUnlock(pVM);
669}
670
671
672/**
673 * Unlink an existing RAM range from the list.
674 *
675 * @param pVM Pointer to the shared VM structure.
676 * @param pRam Pointer to the new list entry.
677 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
678 */
679static void pgmR3PhysUnlinkRamRange2(PVM pVM, PPGMRAMRANGE pRam, PPGMRAMRANGE pPrev)
680{
681 Assert(pPrev ? pPrev->pNextR3 == pRam : pVM->pgm.s.pRamRangesR3 == pRam);
682 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfR0 == MMHyperCCToR0(pVM, pRam));
683 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfRC == MMHyperCCToRC(pVM, pRam));
684
685 pgmLock(pVM);
686
687 PPGMRAMRANGE pNext = pRam->pNextR3;
688 if (pPrev)
689 {
690 pPrev->pNextR3 = pNext;
691 pPrev->pNextR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
692 pPrev->pNextRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
693 }
694 else
695 {
696 Assert(pVM->pgm.s.pRamRangesR3 == pRam);
697 pVM->pgm.s.pRamRangesR3 = pNext;
698 pVM->pgm.s.pRamRangesR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
699 pVM->pgm.s.pRamRangesRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
700 }
701 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
702 pgmUnlock(pVM);
703}
704
705
706/**
707 * Unlink an existing RAM range from the list.
708 *
709 * @param pVM Pointer to the shared VM structure.
710 * @param pRam Pointer to the new list entry.
711 */
712static void pgmR3PhysUnlinkRamRange(PVM pVM, PPGMRAMRANGE pRam)
713{
714 pgmLock(pVM);
715
716 /* find prev. */
717 PPGMRAMRANGE pPrev = NULL;
718 PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3;
719 while (pCur != pRam)
720 {
721 pPrev = pCur;
722 pCur = pCur->pNextR3;
723 }
724 AssertFatal(pCur);
725
726 pgmR3PhysUnlinkRamRange2(pVM, pRam, pPrev);
727 pgmUnlock(pVM);
728}
729
730
731/**
732 * Frees a range of pages, replacing them with ZERO pages of the specified type.
733 *
734 * @returns VBox status code.
735 * @param pVM The VM handle.
736 * @param pRam The RAM range in which the pages resides.
737 * @param GCPhys The address of the first page.
738 * @param GCPhysLast The address of the last page.
739 * @param uType The page type to replace then with.
740 */
741static int pgmR3PhysFreePageRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, uint8_t uType)
742{
743 Assert(PGMIsLockOwner(pVM));
744 uint32_t cPendingPages = 0;
745 PGMMFREEPAGESREQ pReq;
746 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
747 AssertLogRelRCReturn(rc, rc);
748
749 /* Iterate the pages. */
750 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
751 uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1;
752 while (cPagesLeft-- > 0)
753 {
754 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
755 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
756
757 PGM_PAGE_SET_TYPE(pPageDst, uType);
758
759 GCPhys += PAGE_SIZE;
760 pPageDst++;
761 }
762
763 if (cPendingPages)
764 {
765 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
766 AssertLogRelRCReturn(rc, rc);
767 }
768 GMMR3FreePagesCleanup(pReq);
769
770 return rc;
771}
772
773/**
774 * Rendezvous callback used by PGMR3ChangeMemBalloon that changes the memory balloon size
775 *
776 * This is only called on one of the EMTs while the other ones are waiting for
777 * it to complete this function.
778 *
779 * @returns VINF_SUCCESS (VBox strict status code).
780 * @param pVM The VM handle.
781 * @param pVCpu The VMCPU for the EMT we're being called on. Unused.
782 * @param pvUser User parameter
783 */
784static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysChangeMemBalloonRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
785{
786 uintptr_t *paUser = (uintptr_t *)pvUser;
787 bool fInflate = !!paUser[0];
788 unsigned cPages = paUser[1];
789 RTGCPHYS *paPhysPage = (RTGCPHYS *)paUser[2];
790 uint32_t cPendingPages = 0;
791 PGMMFREEPAGESREQ pReq;
792 int rc;
793
794 pgmLock(pVM);
795
796 if (fInflate)
797 {
798 /* Replace pages with ZERO pages. */
799 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
800 if (RT_FAILURE(rc))
801 {
802 pgmUnlock(pVM);
803 AssertLogRelRC(rc);
804 return rc;
805 }
806
807 /* Iterate the pages. */
808 for (unsigned i = 0; i < cPages; i++)
809 {
810 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, paPhysPage[i]);
811 if ( pPage == NULL
812 || pPage->uTypeY != PGMPAGETYPE_RAM)
813 {
814 Log(("PGMR3PhysFreePageRange: invalid physical page %RGp pPage->u3Type=%d\n", paPhysPage[i], (pPage) ? pPage->uTypeY : 0));
815 break;
816 }
817
818 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, paPhysPage[i]);
819 if (RT_FAILURE(rc))
820 {
821 pgmUnlock(pVM);
822 AssertLogRelRC(rc);
823 return rc;
824 }
825 }
826
827 if (cPendingPages)
828 {
829 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
830 if (RT_FAILURE(rc))
831 {
832 pgmUnlock(pVM);
833 AssertLogRelRC(rc);
834 return rc;
835 }
836 }
837 GMMR3FreePagesCleanup(pReq);
838
839 /* Flush the PGM pool cache as we might have stale references to pages that we just freed. */
840 pgmR3PoolClearAllRendezvous(pVM, pVCpu, NULL);
841 }
842
843 /* Notify GMM about the balloon change. */
844 rc = GMMR3BalloonedPages(pVM, fInflate, cPages);
845 pgmUnlock(pVM);
846 AssertLogRelRC(rc);
847 return rc;
848}
849
850/**
851 * Frees a range of ram pages, replacing them with ZERO pages; helper for PGMR3PhysFreeRamPages
852 *
853 * @returns VBox status code.
854 * @param pVM The VM handle.
855 * @param fInflate Inflate or deflate memory balloon
856 * @param cPages Number of pages to free
857 * @param paPhysPage Array of guest physical addresses
858 */
859static DECLCALLBACK(void) pgmR3PhysChangeMemBalloonHelper(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
860{
861 uintptr_t paUser[3];
862
863 paUser[0] = fInflate;
864 paUser[1] = cPages;
865 paUser[2] = (uintptr_t)paPhysPage;
866 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
867 AssertRC(rc);
868
869 /* Made a copy in PGMR3PhysFreeRamPages; free it here. */
870 RTMemFree(paPhysPage);
871}
872
873/**
874 * Inflate or deflate a memory balloon
875 *
876 * @returns VBox status code.
877 * @param pVM The VM handle.
878 * @param fInflate Inflate or deflate memory balloon
879 * @param cPages Number of pages to free
880 * @param paPhysPage Array of guest physical addresses
881 */
882VMMR3DECL(int) PGMR3PhysChangeMemBalloon(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
883{
884 int rc;
885
886 /* We own the IOM lock here and could cause a deadlock by waiting for another VCPU that is blocking on the IOM lock.
887 * In the SMP case we post a request packet to postpone the job.
888 */
889 if (pVM->cCpus > 1)
890 {
891 unsigned cbPhysPage = cPages * sizeof(paPhysPage[0]);
892 RTGCPHYS *paPhysPageCopy = (RTGCPHYS *)RTMemAlloc(cbPhysPage);
893 AssertReturn(paPhysPageCopy, VERR_NO_MEMORY);
894
895 memcpy(paPhysPageCopy, paPhysPage, cbPhysPage);
896
897 rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysChangeMemBalloonHelper, 4, pVM, fInflate, cPages, paPhysPageCopy);
898 AssertRC(rc);
899 }
900 else
901 {
902 uintptr_t paUser[3];
903
904 paUser[0] = fInflate;
905 paUser[1] = cPages;
906 paUser[2] = (uintptr_t)paPhysPage;
907 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
908 AssertRC(rc);
909 }
910 return rc;
911}
912
913
914/**
915 * PGMR3PhysRegisterRam worker that initializes and links a RAM range.
916 *
917 * @param pVM The VM handle.
918 * @param pNew The new RAM range.
919 * @param GCPhys The address of the RAM range.
920 * @param GCPhysLast The last address of the RAM range.
921 * @param RCPtrNew The RC address if the range is floating. NIL_RTRCPTR
922 * if in HMA.
923 * @param R0PtrNew Ditto for R0.
924 * @param pszDesc The description.
925 * @param pPrev The previous RAM range (for linking).
926 */
927static void pgmR3PhysInitAndLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
928 RTRCPTR RCPtrNew, RTR0PTR R0PtrNew, const char *pszDesc, PPGMRAMRANGE pPrev)
929{
930 /*
931 * Initialize the range.
932 */
933 pNew->pSelfR0 = R0PtrNew != NIL_RTR0PTR ? R0PtrNew : MMHyperCCToR0(pVM, pNew);
934 pNew->pSelfRC = RCPtrNew != NIL_RTRCPTR ? RCPtrNew : MMHyperCCToRC(pVM, pNew);
935 pNew->GCPhys = GCPhys;
936 pNew->GCPhysLast = GCPhysLast;
937 pNew->cb = GCPhysLast - GCPhys + 1;
938 pNew->pszDesc = pszDesc;
939 pNew->fFlags = RCPtrNew != NIL_RTRCPTR ? PGM_RAM_RANGE_FLAGS_FLOATING : 0;
940 pNew->pvR3 = NULL;
941 pNew->paLSPages = NULL;
942
943 uint32_t const cPages = pNew->cb >> PAGE_SHIFT;
944 RTGCPHYS iPage = cPages;
945 while (iPage-- > 0)
946 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM);
947
948 /* Update the page count stats. */
949 pVM->pgm.s.cZeroPages += cPages;
950 pVM->pgm.s.cAllPages += cPages;
951
952 /*
953 * Link it.
954 */
955 pgmR3PhysLinkRamRange(pVM, pNew, pPrev);
956}
957
958
959/**
960 * Relocate a floating RAM range.
961 *
962 * @copydoc FNPGMRELOCATE.
963 */
964static DECLCALLBACK(bool) pgmR3PhysRamRangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew, PGMRELOCATECALL enmMode, void *pvUser)
965{
966 PPGMRAMRANGE pRam = (PPGMRAMRANGE)pvUser;
967 Assert(pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING);
968 Assert(pRam->pSelfRC == GCPtrOld + PAGE_SIZE);
969
970 switch (enmMode)
971 {
972 case PGMRELOCATECALL_SUGGEST:
973 return true;
974 case PGMRELOCATECALL_RELOCATE:
975 {
976 /* Update myself and then relink all the ranges. */
977 pgmLock(pVM);
978 pRam->pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE);
979 pgmR3PhysRelinkRamRanges(pVM);
980 pgmUnlock(pVM);
981 return true;
982 }
983
984 default:
985 AssertFailedReturn(false);
986 }
987}
988
989
990/**
991 * PGMR3PhysRegisterRam worker that registers a high chunk.
992 *
993 * @returns VBox status code.
994 * @param pVM The VM handle.
995 * @param GCPhys The address of the RAM.
996 * @param cRamPages The number of RAM pages to register.
997 * @param cbChunk The size of the PGMRAMRANGE guest mapping.
998 * @param iChunk The chunk number.
999 * @param pszDesc The RAM range description.
1000 * @param ppPrev Previous RAM range pointer. In/Out.
1001 */
1002static int pgmR3PhysRegisterHighRamChunk(PVM pVM, RTGCPHYS GCPhys, uint32_t cRamPages,
1003 uint32_t cbChunk, uint32_t iChunk, const char *pszDesc,
1004 PPGMRAMRANGE *ppPrev)
1005{
1006 const char *pszDescChunk = iChunk == 0
1007 ? pszDesc
1008 : MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s (#%u)", pszDesc, iChunk + 1);
1009 AssertReturn(pszDescChunk, VERR_NO_MEMORY);
1010
1011 /*
1012 * Allocate memory for the new chunk.
1013 */
1014 size_t const cChunkPages = RT_ALIGN_Z(RT_UOFFSETOF(PGMRAMRANGE, aPages[cRamPages]), PAGE_SIZE) >> PAGE_SHIFT;
1015 PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
1016 AssertReturn(paChunkPages, VERR_NO_TMP_MEMORY);
1017 RTR0PTR R0PtrChunk = NIL_RTR0PTR;
1018 void *pvChunk = NULL;
1019 int rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk,
1020#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1021 VMMIsHwVirtExtForced(pVM) ? &R0PtrChunk : NULL,
1022#else
1023 NULL,
1024#endif
1025 paChunkPages);
1026 if (RT_SUCCESS(rc))
1027 {
1028#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1029 if (!VMMIsHwVirtExtForced(pVM))
1030 R0PtrChunk = NIL_RTR0PTR;
1031#else
1032 R0PtrChunk = (uintptr_t)pvChunk;
1033#endif
1034 memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
1035
1036 PPGMRAMRANGE pNew = (PPGMRAMRANGE)pvChunk;
1037
1038 /*
1039 * Create a mapping and map the pages into it.
1040 * We push these in below the HMA.
1041 */
1042 RTGCPTR GCPtrChunkMap = pVM->pgm.s.GCPtrPrevRamRangeMapping - cbChunk;
1043 rc = PGMR3MapPT(pVM, GCPtrChunkMap, cbChunk, 0 /*fFlags*/, pgmR3PhysRamRangeRelocate, pNew, pszDescChunk);
1044 if (RT_SUCCESS(rc))
1045 {
1046 pVM->pgm.s.GCPtrPrevRamRangeMapping = GCPtrChunkMap;
1047
1048 RTGCPTR const GCPtrChunk = GCPtrChunkMap + PAGE_SIZE;
1049 RTGCPTR GCPtrPage = GCPtrChunk;
1050 for (uint32_t iPage = 0; iPage < cChunkPages && RT_SUCCESS(rc); iPage++, GCPtrPage += PAGE_SIZE)
1051 rc = PGMMap(pVM, GCPtrPage, paChunkPages[iPage].Phys, PAGE_SIZE, 0);
1052 if (RT_SUCCESS(rc))
1053 {
1054 /*
1055 * Ok, init and link the range.
1056 */
1057 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhys + ((RTGCPHYS)cRamPages << PAGE_SHIFT) - 1,
1058 (RTRCPTR)GCPtrChunk, R0PtrChunk, pszDescChunk, *ppPrev);
1059 *ppPrev = pNew;
1060 }
1061 }
1062
1063 if (RT_FAILURE(rc))
1064 SUPR3PageFreeEx(pvChunk, cChunkPages);
1065 }
1066
1067 RTMemTmpFree(paChunkPages);
1068 return rc;
1069}
1070
1071
1072/**
1073 * Sets up a range RAM.
1074 *
1075 * This will check for conflicting registrations, make a resource
1076 * reservation for the memory (with GMM), and setup the per-page
1077 * tracking structures (PGMPAGE).
1078 *
1079 * @returns VBox stutus code.
1080 * @param pVM Pointer to the shared VM structure.
1081 * @param GCPhys The physical address of the RAM.
1082 * @param cb The size of the RAM.
1083 * @param pszDesc The description - not copied, so, don't free or change it.
1084 */
1085VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc)
1086{
1087 /*
1088 * Validate input.
1089 */
1090 Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc));
1091 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
1092 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
1093 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
1094 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1095 AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER);
1096 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1097 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1098
1099 pgmLock(pVM);
1100
1101 /*
1102 * Find range location and check for conflicts.
1103 * (We don't lock here because the locking by EMT is only required on update.)
1104 */
1105 PPGMRAMRANGE pPrev = NULL;
1106 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1107 while (pRam && GCPhysLast >= pRam->GCPhys)
1108 {
1109 if ( GCPhysLast >= pRam->GCPhys
1110 && GCPhys <= pRam->GCPhysLast)
1111 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
1112 GCPhys, GCPhysLast, pszDesc,
1113 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1114 VERR_PGM_RAM_CONFLICT);
1115
1116 /* next */
1117 pPrev = pRam;
1118 pRam = pRam->pNextR3;
1119 }
1120
1121 /*
1122 * Register it with GMM (the API bitches).
1123 */
1124 const RTGCPHYS cPages = cb >> PAGE_SHIFT;
1125 int rc = MMR3IncreaseBaseReservation(pVM, cPages);
1126 if (RT_FAILURE(rc))
1127 {
1128 pgmUnlock(pVM);
1129 return rc;
1130 }
1131
1132 if ( GCPhys >= _4G
1133 && cPages > 256)
1134 {
1135 /*
1136 * The PGMRAMRANGE structures for the high memory can get very big.
1137 * In order to avoid SUPR3PageAllocEx allocation failures due to the
1138 * allocation size limit there and also to avoid being unable to find
1139 * guest mapping space for them, we split this memory up into 4MB in
1140 * (potential) raw-mode configs and 16MB chunks in forced AMD-V/VT-x
1141 * mode.
1142 *
1143 * The first and last page of each mapping are guard pages and marked
1144 * not-present. So, we've got 4186112 and 16769024 bytes available for
1145 * the PGMRAMRANGE structure.
1146 *
1147 * Note! The sizes used here will influence the saved state.
1148 */
1149 uint32_t cbChunk;
1150 uint32_t cPagesPerChunk;
1151 if (VMMIsHwVirtExtForced(pVM))
1152 {
1153 cbChunk = 16U*_1M;
1154 cPagesPerChunk = 1048048; /* max ~1048059 */
1155 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2);
1156 }
1157 else
1158 {
1159 cbChunk = 4U*_1M;
1160 cPagesPerChunk = 261616; /* max ~261627 */
1161 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 261616 < 4U*_1M - PAGE_SIZE * 2);
1162 }
1163 AssertRelease(RT_UOFFSETOF(PGMRAMRANGE, aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
1164
1165 RTGCPHYS cPagesLeft = cPages;
1166 RTGCPHYS GCPhysChunk = GCPhys;
1167 uint32_t iChunk = 0;
1168 while (cPagesLeft > 0)
1169 {
1170 uint32_t cPagesInChunk = cPagesLeft;
1171 if (cPagesInChunk > cPagesPerChunk)
1172 cPagesInChunk = cPagesPerChunk;
1173
1174 rc = pgmR3PhysRegisterHighRamChunk(pVM, GCPhysChunk, cPagesInChunk, cbChunk, iChunk, pszDesc, &pPrev);
1175 AssertRCReturn(rc, rc);
1176
1177 /* advance */
1178 GCPhysChunk += (RTGCPHYS)cPagesInChunk << PAGE_SHIFT;
1179 cPagesLeft -= cPagesInChunk;
1180 iChunk++;
1181 }
1182 }
1183 else
1184 {
1185 /*
1186 * Allocate, initialize and link the new RAM range.
1187 */
1188 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
1189 PPGMRAMRANGE pNew;
1190 rc = MMR3HyperAllocOnceNoRel(pVM, cbRamRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1191 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
1192
1193 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhysLast, NIL_RTRCPTR, NIL_RTR0PTR, pszDesc, pPrev);
1194 }
1195 PGMPhysInvalidatePageMapTLB(pVM);
1196 pgmUnlock(pVM);
1197
1198 /*
1199 * Notify REM.
1200 */
1201 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_RAM);
1202
1203 return VINF_SUCCESS;
1204}
1205
1206
1207/**
1208 * Worker called by PGMR3InitFinalize if we're configured to pre-allocate RAM.
1209 *
1210 * We do this late in the init process so that all the ROM and MMIO ranges have
1211 * been registered already and we don't go wasting memory on them.
1212 *
1213 * @returns VBox status code.
1214 *
1215 * @param pVM Pointer to the shared VM structure.
1216 */
1217int pgmR3PhysRamPreAllocate(PVM pVM)
1218{
1219 Assert(pVM->pgm.s.fRamPreAlloc);
1220 Log(("pgmR3PhysRamPreAllocate: enter\n"));
1221
1222 /*
1223 * Walk the RAM ranges and allocate all RAM pages, halt at
1224 * the first allocation error.
1225 */
1226 uint64_t cPages = 0;
1227 uint64_t NanoTS = RTTimeNanoTS();
1228 pgmLock(pVM);
1229 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
1230 {
1231 PPGMPAGE pPage = &pRam->aPages[0];
1232 RTGCPHYS GCPhys = pRam->GCPhys;
1233 uint32_t cLeft = pRam->cb >> PAGE_SHIFT;
1234 while (cLeft-- > 0)
1235 {
1236 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
1237 {
1238 switch (PGM_PAGE_GET_STATE(pPage))
1239 {
1240 case PGM_PAGE_STATE_ZERO:
1241 {
1242 int rc = pgmPhysAllocPage(pVM, pPage, GCPhys);
1243 if (RT_FAILURE(rc))
1244 {
1245 LogRel(("PGM: RAM Pre-allocation failed at %RGp (in %s) with rc=%Rrc\n", GCPhys, pRam->pszDesc, rc));
1246 pgmUnlock(pVM);
1247 return rc;
1248 }
1249 cPages++;
1250 break;
1251 }
1252
1253 case PGM_PAGE_STATE_ALLOCATED:
1254 case PGM_PAGE_STATE_WRITE_MONITORED:
1255 case PGM_PAGE_STATE_SHARED:
1256 /* nothing to do here. */
1257 break;
1258 }
1259 }
1260
1261 /* next */
1262 pPage++;
1263 GCPhys += PAGE_SIZE;
1264 }
1265 }
1266 pgmUnlock(pVM);
1267 NanoTS = RTTimeNanoTS() - NanoTS;
1268
1269 LogRel(("PGM: Pre-allocated %llu pages in %llu ms\n", cPages, NanoTS / 1000000));
1270 Log(("pgmR3PhysRamPreAllocate: returns VINF_SUCCESS\n"));
1271 return VINF_SUCCESS;
1272}
1273
1274
1275/**
1276 * Resets (zeros) the RAM.
1277 *
1278 * ASSUMES that the caller owns the PGM lock.
1279 *
1280 * @returns VBox status code.
1281 * @param pVM Pointer to the shared VM structure.
1282 */
1283int pgmR3PhysRamReset(PVM pVM)
1284{
1285 Assert(PGMIsLockOwner(pVM));
1286
1287 /*
1288 * We batch up pages that should be freed instead of calling GMM for
1289 * each and every one of them.
1290 */
1291 uint32_t cPendingPages = 0;
1292 PGMMFREEPAGESREQ pReq;
1293 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1294 AssertLogRelRCReturn(rc, rc);
1295
1296 /*
1297 * Walk the ram ranges.
1298 */
1299 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
1300 {
1301 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
1302 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
1303
1304 if (!pVM->pgm.s.fRamPreAlloc)
1305 {
1306 /* Replace all RAM pages by ZERO pages. */
1307 while (iPage-- > 0)
1308 {
1309 PPGMPAGE pPage = &pRam->aPages[iPage];
1310 switch (PGM_PAGE_GET_TYPE(pPage))
1311 {
1312 case PGMPAGETYPE_RAM:
1313 /* Do not replace pages part of a 2 MB continuous range with zero pages, but zero them instead. */
1314 if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE)
1315 {
1316 void *pvPage;
1317 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
1318 AssertLogRelRCReturn(rc, rc);
1319 ASMMemZeroPage(pvPage);
1320 }
1321 else
1322 if (!PGM_PAGE_IS_ZERO(pPage))
1323 {
1324 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1325 AssertLogRelRCReturn(rc, rc);
1326 }
1327 break;
1328
1329 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1330 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1331 break;
1332
1333 case PGMPAGETYPE_MMIO2:
1334 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
1335 case PGMPAGETYPE_ROM:
1336 case PGMPAGETYPE_MMIO:
1337 break;
1338 default:
1339 AssertFailed();
1340 }
1341 } /* for each page */
1342 }
1343 else
1344 {
1345 /* Zero the memory. */
1346 while (iPage-- > 0)
1347 {
1348 PPGMPAGE pPage = &pRam->aPages[iPage];
1349 switch (PGM_PAGE_GET_TYPE(pPage))
1350 {
1351 case PGMPAGETYPE_RAM:
1352 switch (PGM_PAGE_GET_STATE(pPage))
1353 {
1354 case PGM_PAGE_STATE_ZERO:
1355 break;
1356 case PGM_PAGE_STATE_SHARED:
1357 case PGM_PAGE_STATE_WRITE_MONITORED:
1358 rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1359 AssertLogRelRCReturn(rc, rc);
1360 case PGM_PAGE_STATE_ALLOCATED:
1361 {
1362 void *pvPage;
1363 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
1364 AssertLogRelRCReturn(rc, rc);
1365 ASMMemZeroPage(pvPage);
1366 break;
1367 }
1368 }
1369 break;
1370
1371 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1372 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1373 break;
1374
1375 case PGMPAGETYPE_MMIO2:
1376 case PGMPAGETYPE_ROM_SHADOW:
1377 case PGMPAGETYPE_ROM:
1378 case PGMPAGETYPE_MMIO:
1379 break;
1380 default:
1381 AssertFailed();
1382
1383 }
1384 } /* for each page */
1385 }
1386
1387 }
1388
1389 /*
1390 * Finish off any pages pending freeing.
1391 */
1392 if (cPendingPages)
1393 {
1394 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
1395 AssertLogRelRCReturn(rc, rc);
1396 }
1397 GMMR3FreePagesCleanup(pReq);
1398
1399 return VINF_SUCCESS;
1400}
1401
1402
1403/**
1404 * This is the interface IOM is using to register an MMIO region.
1405 *
1406 * It will check for conflicts and ensure that a RAM range structure
1407 * is present before calling the PGMR3HandlerPhysicalRegister API to
1408 * register the callbacks.
1409 *
1410 * @returns VBox status code.
1411 *
1412 * @param pVM Pointer to the shared VM structure.
1413 * @param GCPhys The start of the MMIO region.
1414 * @param cb The size of the MMIO region.
1415 * @param pfnHandlerR3 The address of the ring-3 handler. (IOMR3MMIOHandler)
1416 * @param pvUserR3 The user argument for R3.
1417 * @param pfnHandlerR0 The address of the ring-0 handler. (IOMMMIOHandler)
1418 * @param pvUserR0 The user argument for R0.
1419 * @param pfnHandlerRC The address of the RC handler. (IOMMMIOHandler)
1420 * @param pvUserRC The user argument for RC.
1421 * @param pszDesc The description of the MMIO region.
1422 */
1423VMMR3DECL(int) PGMR3PhysMMIORegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb,
1424 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3, RTR3PTR pvUserR3,
1425 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0, RTR0PTR pvUserR0,
1426 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnHandlerRC, RTRCPTR pvUserRC,
1427 R3PTRTYPE(const char *) pszDesc)
1428{
1429 /*
1430 * Assert on some assumption.
1431 */
1432 VM_ASSERT_EMT(pVM);
1433 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1434 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1435 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1436 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
1437
1438 /*
1439 * Make sure there's a RAM range structure for the region.
1440 */
1441 int rc;
1442 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1443 bool fRamExists = false;
1444 PPGMRAMRANGE pRamPrev = NULL;
1445 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1446 while (pRam && GCPhysLast >= pRam->GCPhys)
1447 {
1448 if ( GCPhysLast >= pRam->GCPhys
1449 && GCPhys <= pRam->GCPhysLast)
1450 {
1451 /* Simplification: all within the same range. */
1452 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
1453 && GCPhysLast <= pRam->GCPhysLast,
1454 ("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n",
1455 GCPhys, GCPhysLast, pszDesc,
1456 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1457 VERR_PGM_RAM_CONFLICT);
1458
1459 /* Check that it's all RAM or MMIO pages. */
1460 PCPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1461 uint32_t cLeft = cb >> PAGE_SHIFT;
1462 while (cLeft-- > 0)
1463 {
1464 AssertLogRelMsgReturn( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1465 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO,
1466 ("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n",
1467 GCPhys, GCPhysLast, pszDesc, PGM_PAGE_GET_TYPE(pPage), pRam->pszDesc),
1468 VERR_PGM_RAM_CONFLICT);
1469 pPage++;
1470 }
1471
1472 /* Looks good. */
1473 fRamExists = true;
1474 break;
1475 }
1476
1477 /* next */
1478 pRamPrev = pRam;
1479 pRam = pRam->pNextR3;
1480 }
1481 PPGMRAMRANGE pNew;
1482 if (fRamExists)
1483 {
1484 pNew = NULL;
1485
1486 /*
1487 * Make all the pages in the range MMIO/ZERO pages, freeing any
1488 * RAM pages currently mapped here. This might not be 100% correct
1489 * for PCI memory, but we're doing the same thing for MMIO2 pages.
1490 */
1491 rc = pgmLock(pVM);
1492 if (RT_SUCCESS(rc))
1493 {
1494 rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO);
1495 pgmUnlock(pVM);
1496 }
1497 AssertRCReturn(rc, rc);
1498 }
1499 else
1500 {
1501 pgmLock(pVM);
1502
1503 /*
1504 * No RAM range, insert an ad hoc one.
1505 *
1506 * Note that we don't have to tell REM about this range because
1507 * PGMHandlerPhysicalRegisterEx will do that for us.
1508 */
1509 Log(("PGMR3PhysMMIORegister: Adding ad hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc));
1510
1511 const uint32_t cPages = cb >> PAGE_SHIFT;
1512 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
1513 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), 16, MM_TAG_PGM_PHYS, (void **)&pNew);
1514 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
1515
1516 /* Initialize the range. */
1517 pNew->pSelfR0 = MMHyperCCToR0(pVM, pNew);
1518 pNew->pSelfRC = MMHyperCCToRC(pVM, pNew);
1519 pNew->GCPhys = GCPhys;
1520 pNew->GCPhysLast = GCPhysLast;
1521 pNew->cb = cb;
1522 pNew->pszDesc = pszDesc;
1523 pNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO;
1524 pNew->pvR3 = NULL;
1525 pNew->paLSPages = NULL;
1526
1527 uint32_t iPage = cPages;
1528 while (iPage-- > 0)
1529 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO);
1530 Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO);
1531
1532 /* update the page count stats. */
1533 pVM->pgm.s.cPureMmioPages += cPages;
1534 pVM->pgm.s.cAllPages += cPages;
1535
1536 /* link it */
1537 pgmR3PhysLinkRamRange(pVM, pNew, pRamPrev);
1538
1539 pgmUnlock(pVM);
1540 }
1541
1542 /*
1543 * Register the access handler.
1544 */
1545 rc = PGMHandlerPhysicalRegisterEx(pVM, PGMPHYSHANDLERTYPE_MMIO, GCPhys, GCPhysLast,
1546 pfnHandlerR3, pvUserR3,
1547 pfnHandlerR0, pvUserR0,
1548 pfnHandlerRC, pvUserRC, pszDesc);
1549 if ( RT_FAILURE(rc)
1550 && !fRamExists)
1551 {
1552 pVM->pgm.s.cPureMmioPages -= cb >> PAGE_SHIFT;
1553 pVM->pgm.s.cAllPages -= cb >> PAGE_SHIFT;
1554
1555 /* remove the ad hoc range. */
1556 pgmR3PhysUnlinkRamRange2(pVM, pNew, pRamPrev);
1557 pNew->cb = pNew->GCPhys = pNew->GCPhysLast = NIL_RTGCPHYS;
1558 MMHyperFree(pVM, pRam);
1559 }
1560 PGMPhysInvalidatePageMapTLB(pVM);
1561
1562 return rc;
1563}
1564
1565
1566/**
1567 * This is the interface IOM is using to register an MMIO region.
1568 *
1569 * It will take care of calling PGMHandlerPhysicalDeregister and clean up
1570 * any ad hoc PGMRAMRANGE left behind.
1571 *
1572 * @returns VBox status code.
1573 * @param pVM Pointer to the shared VM structure.
1574 * @param GCPhys The start of the MMIO region.
1575 * @param cb The size of the MMIO region.
1576 */
1577VMMR3DECL(int) PGMR3PhysMMIODeregister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
1578{
1579 VM_ASSERT_EMT(pVM);
1580
1581 /*
1582 * First deregister the handler, then check if we should remove the ram range.
1583 */
1584 int rc = PGMHandlerPhysicalDeregister(pVM, GCPhys);
1585 if (RT_SUCCESS(rc))
1586 {
1587 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1588 PPGMRAMRANGE pRamPrev = NULL;
1589 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1590 while (pRam && GCPhysLast >= pRam->GCPhys)
1591 {
1592 /** @todo We're being a bit too careful here. rewrite. */
1593 if ( GCPhysLast == pRam->GCPhysLast
1594 && GCPhys == pRam->GCPhys)
1595 {
1596 Assert(pRam->cb == cb);
1597
1598 /*
1599 * See if all the pages are dead MMIO pages.
1600 */
1601 uint32_t const cPages = cb >> PAGE_SHIFT;
1602 bool fAllMMIO = true;
1603 uint32_t iPage = 0;
1604 uint32_t cLeft = cPages;
1605 while (cLeft-- > 0)
1606 {
1607 PPGMPAGE pPage = &pRam->aPages[iPage];
1608 if ( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO
1609 /*|| not-out-of-action later */)
1610 {
1611 fAllMMIO = false;
1612 Assert(PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO2_ALIAS_MMIO);
1613 AssertMsgFailed(("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1614 break;
1615 }
1616 Assert(PGM_PAGE_IS_ZERO(pPage));
1617 pPage++;
1618 }
1619 if (fAllMMIO)
1620 {
1621 /*
1622 * Ad-hoc range, unlink and free it.
1623 */
1624 Log(("PGMR3PhysMMIODeregister: Freeing ad hoc MMIO range for %RGp-%RGp %s\n",
1625 GCPhys, GCPhysLast, pRam->pszDesc));
1626
1627 pVM->pgm.s.cAllPages -= cPages;
1628 pVM->pgm.s.cPureMmioPages -= cPages;
1629
1630 pgmR3PhysUnlinkRamRange2(pVM, pRam, pRamPrev);
1631 pRam->cb = pRam->GCPhys = pRam->GCPhysLast = NIL_RTGCPHYS;
1632 MMHyperFree(pVM, pRam);
1633 break;
1634 }
1635 }
1636
1637 /*
1638 * Range match? It will all be within one range (see PGMAllHandler.cpp).
1639 */
1640 if ( GCPhysLast >= pRam->GCPhys
1641 && GCPhys <= pRam->GCPhysLast)
1642 {
1643 Assert(GCPhys >= pRam->GCPhys);
1644 Assert(GCPhysLast <= pRam->GCPhysLast);
1645
1646 /*
1647 * Turn the pages back into RAM pages.
1648 */
1649 uint32_t iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
1650 uint32_t cLeft = cb >> PAGE_SHIFT;
1651 while (cLeft--)
1652 {
1653 PPGMPAGE pPage = &pRam->aPages[iPage];
1654 AssertMsg(PGM_PAGE_IS_MMIO(pPage), ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1655 AssertMsg(PGM_PAGE_IS_ZERO(pPage), ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1656 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO)
1657 PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_RAM);
1658 }
1659 break;
1660 }
1661
1662 /* next */
1663 pRamPrev = pRam;
1664 pRam = pRam->pNextR3;
1665 }
1666 }
1667
1668 PGMPhysInvalidatePageMapTLB(pVM);
1669 return rc;
1670}
1671
1672
1673/**
1674 * Locate a MMIO2 range.
1675 *
1676 * @returns Pointer to the MMIO2 range.
1677 * @param pVM Pointer to the shared VM structure.
1678 * @param pDevIns The device instance owning the region.
1679 * @param iRegion The region.
1680 */
1681DECLINLINE(PPGMMMIO2RANGE) pgmR3PhysMMIO2Find(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
1682{
1683 /*
1684 * Search the list.
1685 */
1686 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
1687 if ( pCur->pDevInsR3 == pDevIns
1688 && pCur->iRegion == iRegion)
1689 return pCur;
1690 return NULL;
1691}
1692
1693
1694/**
1695 * Allocate and register an MMIO2 region.
1696 *
1697 * As mentioned elsewhere, MMIO2 is just RAM spelled differently. It's
1698 * RAM associated with a device. It is also non-shared memory with a
1699 * permanent ring-3 mapping and page backing (presently).
1700 *
1701 * A MMIO2 range may overlap with base memory if a lot of RAM
1702 * is configured for the VM, in which case we'll drop the base
1703 * memory pages. Presently we will make no attempt to preserve
1704 * anything that happens to be present in the base memory that
1705 * is replaced, this is of course incorrectly but it's too much
1706 * effort.
1707 *
1708 * @returns VBox status code.
1709 * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the memory.
1710 * @retval VERR_ALREADY_EXISTS if the region already exists.
1711 *
1712 * @param pVM Pointer to the shared VM structure.
1713 * @param pDevIns The device instance owning the region.
1714 * @param iRegion The region number. If the MMIO2 memory is a PCI I/O region
1715 * this number has to be the number of that region. Otherwise
1716 * it can be any number safe UINT8_MAX.
1717 * @param cb The size of the region. Must be page aligned.
1718 * @param fFlags Reserved for future use, must be zero.
1719 * @param ppv Where to store the pointer to the ring-3 mapping of the memory.
1720 * @param pszDesc The description.
1721 */
1722VMMR3DECL(int) PGMR3PhysMMIO2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS cb, uint32_t fFlags, void **ppv, const char *pszDesc)
1723{
1724 /*
1725 * Validate input.
1726 */
1727 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1728 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1729 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
1730 AssertPtrReturn(ppv, VERR_INVALID_POINTER);
1731 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1732 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
1733 AssertReturn(pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion) == NULL, VERR_ALREADY_EXISTS);
1734 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1735 AssertReturn(cb, VERR_INVALID_PARAMETER);
1736 AssertReturn(!fFlags, VERR_INVALID_PARAMETER);
1737
1738 const uint32_t cPages = cb >> PAGE_SHIFT;
1739 AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cb, VERR_INVALID_PARAMETER);
1740 AssertLogRelReturn(cPages <= INT32_MAX / 2, VERR_NO_MEMORY);
1741
1742 /*
1743 * For the 2nd+ instance, mangle the description string so it's unique.
1744 */
1745 if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */
1746 {
1747 pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance);
1748 if (!pszDesc)
1749 return VERR_NO_MEMORY;
1750 }
1751
1752 /*
1753 * Try reserve and allocate the backing memory first as this is what is
1754 * most likely to fail.
1755 */
1756 int rc = MMR3AdjustFixedReservation(pVM, cPages, pszDesc);
1757 if (RT_SUCCESS(rc))
1758 {
1759 void *pvPages;
1760 PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cPages * sizeof(SUPPAGE));
1761 if (RT_SUCCESS(rc))
1762 rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, NULL /*pR0Ptr*/, paPages);
1763 if (RT_SUCCESS(rc))
1764 {
1765 memset(pvPages, 0, cPages * PAGE_SIZE);
1766
1767 /*
1768 * Create the MMIO2 range record for it.
1769 */
1770 const size_t cbRange = RT_OFFSETOF(PGMMMIO2RANGE, RamRange.aPages[cPages]);
1771 PPGMMMIO2RANGE pNew;
1772 rc = MMR3HyperAllocOnceNoRel(pVM, cbRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1773 AssertLogRelMsgRC(rc, ("cbRamRange=%zu\n", cbRange));
1774 if (RT_SUCCESS(rc))
1775 {
1776 pNew->pDevInsR3 = pDevIns;
1777 pNew->pvR3 = pvPages;
1778 //pNew->pNext = NULL;
1779 //pNew->fMapped = false;
1780 //pNew->fOverlapping = false;
1781 pNew->iRegion = iRegion;
1782 pNew->idSavedState = UINT8_MAX;
1783 pNew->RamRange.pSelfR0 = MMHyperCCToR0(pVM, &pNew->RamRange);
1784 pNew->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pNew->RamRange);
1785 pNew->RamRange.GCPhys = NIL_RTGCPHYS;
1786 pNew->RamRange.GCPhysLast = NIL_RTGCPHYS;
1787 pNew->RamRange.pszDesc = pszDesc;
1788 pNew->RamRange.cb = cb;
1789 pNew->RamRange.fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO2;
1790 pNew->RamRange.pvR3 = pvPages;
1791 //pNew->RamRange.paLSPages = NULL;
1792
1793 uint32_t iPage = cPages;
1794 while (iPage-- > 0)
1795 {
1796 PGM_PAGE_INIT(&pNew->RamRange.aPages[iPage],
1797 paPages[iPage].Phys, NIL_GMM_PAGEID,
1798 PGMPAGETYPE_MMIO2, PGM_PAGE_STATE_ALLOCATED);
1799 }
1800
1801 /* update page count stats */
1802 pVM->pgm.s.cAllPages += cPages;
1803 pVM->pgm.s.cPrivatePages += cPages;
1804
1805 /*
1806 * Link it into the list.
1807 * Since there is no particular order, just push it.
1808 */
1809 pgmLock(pVM);
1810 pNew->pNextR3 = pVM->pgm.s.pMmio2RangesR3;
1811 pVM->pgm.s.pMmio2RangesR3 = pNew;
1812 pgmUnlock(pVM);
1813
1814 *ppv = pvPages;
1815 RTMemTmpFree(paPages);
1816 PGMPhysInvalidatePageMapTLB(pVM);
1817 return VINF_SUCCESS;
1818 }
1819
1820 SUPR3PageFreeEx(pvPages, cPages);
1821 }
1822 RTMemTmpFree(paPages);
1823 MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pszDesc);
1824 }
1825 if (pDevIns->iInstance > 0)
1826 MMR3HeapFree((void *)pszDesc);
1827 return rc;
1828}
1829
1830
1831/**
1832 * Deregisters and frees an MMIO2 region.
1833 *
1834 * Any physical (and virtual) access handlers registered for the region must
1835 * be deregistered before calling this function.
1836 *
1837 * @returns VBox status code.
1838 * @param pVM Pointer to the shared VM structure.
1839 * @param pDevIns The device instance owning the region.
1840 * @param iRegion The region. If it's UINT32_MAX it'll be a wildcard match.
1841 */
1842VMMR3DECL(int) PGMR3PhysMMIO2Deregister(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
1843{
1844 /*
1845 * Validate input.
1846 */
1847 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1848 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1849 AssertReturn(iRegion <= UINT8_MAX || iRegion == UINT32_MAX, VERR_INVALID_PARAMETER);
1850
1851 pgmLock(pVM);
1852 int rc = VINF_SUCCESS;
1853 unsigned cFound = 0;
1854 PPGMMMIO2RANGE pPrev = NULL;
1855 PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3;
1856 while (pCur)
1857 {
1858 if ( pCur->pDevInsR3 == pDevIns
1859 && ( iRegion == UINT32_MAX
1860 || pCur->iRegion == iRegion))
1861 {
1862 cFound++;
1863
1864 /*
1865 * Unmap it if it's mapped.
1866 */
1867 if (pCur->fMapped)
1868 {
1869 int rc2 = PGMR3PhysMMIO2Unmap(pVM, pCur->pDevInsR3, pCur->iRegion, pCur->RamRange.GCPhys);
1870 AssertRC(rc2);
1871 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1872 rc = rc2;
1873 }
1874
1875 /*
1876 * Unlink it
1877 */
1878 PPGMMMIO2RANGE pNext = pCur->pNextR3;
1879 if (pPrev)
1880 pPrev->pNextR3 = pNext;
1881 else
1882 pVM->pgm.s.pMmio2RangesR3 = pNext;
1883 pCur->pNextR3 = NULL;
1884
1885 /*
1886 * Free the memory.
1887 */
1888 int rc2 = SUPR3PageFreeEx(pCur->pvR3, pCur->RamRange.cb >> PAGE_SHIFT);
1889 AssertRC(rc2);
1890 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1891 rc = rc2;
1892
1893 uint32_t const cPages = pCur->RamRange.cb >> PAGE_SHIFT;
1894 rc2 = MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pCur->RamRange.pszDesc);
1895 AssertRC(rc2);
1896 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1897 rc = rc2;
1898
1899 /* we're leaking hyper memory here if done at runtime. */
1900#ifdef VBOX_STRICT
1901 VMSTATE const enmState = VMR3GetState(pVM);
1902 AssertMsg( enmState == VMSTATE_POWERING_OFF
1903 || enmState == VMSTATE_POWERING_OFF_LS
1904 || enmState == VMSTATE_OFF
1905 || enmState == VMSTATE_OFF_LS
1906 || enmState == VMSTATE_DESTROYING
1907 || enmState == VMSTATE_TERMINATED
1908 || enmState == VMSTATE_CREATING
1909 , ("%s\n", VMR3GetStateName(enmState)));
1910#endif
1911 /*rc = MMHyperFree(pVM, pCur);
1912 AssertRCReturn(rc, rc); - not safe, see the alloc call. */
1913
1914
1915 /* update page count stats */
1916 pVM->pgm.s.cAllPages -= cPages;
1917 pVM->pgm.s.cPrivatePages -= cPages;
1918
1919 /* next */
1920 pCur = pNext;
1921 }
1922 else
1923 {
1924 pPrev = pCur;
1925 pCur = pCur->pNextR3;
1926 }
1927 }
1928 PGMPhysInvalidatePageMapTLB(pVM);
1929 pgmUnlock(pVM);
1930 return !cFound && iRegion != UINT32_MAX ? VERR_NOT_FOUND : rc;
1931}
1932
1933
1934/**
1935 * Maps a MMIO2 region.
1936 *
1937 * This is done when a guest / the bios / state loading changes the
1938 * PCI config. The replacing of base memory has the same restrictions
1939 * as during registration, of course.
1940 *
1941 * @returns VBox status code.
1942 *
1943 * @param pVM Pointer to the shared VM structure.
1944 * @param pDevIns The
1945 */
1946VMMR3DECL(int) PGMR3PhysMMIO2Map(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
1947{
1948 /*
1949 * Validate input
1950 */
1951 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1952 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1953 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
1954 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
1955 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
1956 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1957
1958 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
1959 AssertReturn(pCur, VERR_NOT_FOUND);
1960 AssertReturn(!pCur->fMapped, VERR_WRONG_ORDER);
1961 Assert(pCur->RamRange.GCPhys == NIL_RTGCPHYS);
1962 Assert(pCur->RamRange.GCPhysLast == NIL_RTGCPHYS);
1963
1964 const RTGCPHYS GCPhysLast = GCPhys + pCur->RamRange.cb - 1;
1965 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
1966
1967 /*
1968 * Find our location in the ram range list, checking for
1969 * restriction we don't bother implementing yet (partially overlapping).
1970 */
1971 bool fRamExists = false;
1972 PPGMRAMRANGE pRamPrev = NULL;
1973 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1974 while (pRam && GCPhysLast >= pRam->GCPhys)
1975 {
1976 if ( GCPhys <= pRam->GCPhysLast
1977 && GCPhysLast >= pRam->GCPhys)
1978 {
1979 /* completely within? */
1980 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
1981 && GCPhysLast <= pRam->GCPhysLast,
1982 ("%RGp-%RGp (MMIO2/%s) falls partly outside %RGp-%RGp (%s)\n",
1983 GCPhys, GCPhysLast, pCur->RamRange.pszDesc,
1984 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1985 VERR_PGM_RAM_CONFLICT);
1986 fRamExists = true;
1987 break;
1988 }
1989
1990 /* next */
1991 pRamPrev = pRam;
1992 pRam = pRam->pNextR3;
1993 }
1994 if (fRamExists)
1995 {
1996 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1997 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
1998 while (cPagesLeft-- > 0)
1999 {
2000 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
2001 ("%RGp isn't a RAM page (%d) - mapping %RGp-%RGp (MMIO2/%s).\n",
2002 GCPhys, PGM_PAGE_GET_TYPE(pPage), GCPhys, GCPhysLast, pCur->RamRange.pszDesc),
2003 VERR_PGM_RAM_CONFLICT);
2004 pPage++;
2005 }
2006 }
2007 Log(("PGMR3PhysMMIO2Map: %RGp-%RGp fRamExists=%RTbool %s\n",
2008 GCPhys, GCPhysLast, fRamExists, pCur->RamRange.pszDesc));
2009
2010 /*
2011 * Make the changes.
2012 */
2013 pgmLock(pVM);
2014
2015 pCur->RamRange.GCPhys = GCPhys;
2016 pCur->RamRange.GCPhysLast = GCPhysLast;
2017 pCur->fMapped = true;
2018 pCur->fOverlapping = fRamExists;
2019
2020 if (fRamExists)
2021 {
2022/** @todo use pgmR3PhysFreePageRange here. */
2023 uint32_t cPendingPages = 0;
2024 PGMMFREEPAGESREQ pReq;
2025 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2026 AssertLogRelRCReturn(rc, rc);
2027
2028 /* replace the pages, freeing all present RAM pages. */
2029 PPGMPAGE pPageSrc = &pCur->RamRange.aPages[0];
2030 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2031 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2032 while (cPagesLeft-- > 0)
2033 {
2034 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
2035 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
2036
2037 RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc);
2038 PGM_PAGE_SET_HCPHYS(pPageDst, HCPhys);
2039 PGM_PAGE_SET_TYPE(pPageDst, PGMPAGETYPE_MMIO2);
2040 PGM_PAGE_SET_STATE(pPageDst, PGM_PAGE_STATE_ALLOCATED);
2041
2042 pVM->pgm.s.cZeroPages--;
2043 GCPhys += PAGE_SIZE;
2044 pPageSrc++;
2045 pPageDst++;
2046 }
2047
2048 /* Flush physical page map TLB. */
2049 PGMPhysInvalidatePageMapTLB(pVM);
2050
2051 if (cPendingPages)
2052 {
2053 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2054 AssertLogRelRCReturn(rc, rc);
2055 }
2056 GMMR3FreePagesCleanup(pReq);
2057 pgmUnlock(pVM);
2058 }
2059 else
2060 {
2061 RTGCPHYS cb = pCur->RamRange.cb;
2062
2063 /* link in the ram range */
2064 pgmR3PhysLinkRamRange(pVM, &pCur->RamRange, pRamPrev);
2065 pgmUnlock(pVM);
2066
2067 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_MMIO2);
2068 }
2069
2070 PGMPhysInvalidatePageMapTLB(pVM);
2071 return VINF_SUCCESS;
2072}
2073
2074
2075/**
2076 * Unmaps a MMIO2 region.
2077 *
2078 * This is done when a guest / the bios / state loading changes the
2079 * PCI config. The replacing of base memory has the same restrictions
2080 * as during registration, of course.
2081 */
2082VMMR3DECL(int) PGMR3PhysMMIO2Unmap(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
2083{
2084 /*
2085 * Validate input
2086 */
2087 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2088 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2089 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2090 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
2091 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
2092 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2093
2094 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2095 AssertReturn(pCur, VERR_NOT_FOUND);
2096 AssertReturn(pCur->fMapped, VERR_WRONG_ORDER);
2097 AssertReturn(pCur->RamRange.GCPhys == GCPhys, VERR_INVALID_PARAMETER);
2098 Assert(pCur->RamRange.GCPhysLast != NIL_RTGCPHYS);
2099
2100 Log(("PGMR3PhysMMIO2Unmap: %RGp-%RGp %s\n",
2101 pCur->RamRange.GCPhys, pCur->RamRange.GCPhysLast, pCur->RamRange.pszDesc));
2102
2103 /*
2104 * Unmap it.
2105 */
2106 pgmLock(pVM);
2107
2108 RTGCPHYS GCPhysRangeREM;
2109 RTGCPHYS cbRangeREM;
2110 bool fInformREM;
2111 if (pCur->fOverlapping)
2112 {
2113 /* Restore the RAM pages we've replaced. */
2114 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
2115 while (pRam->GCPhys > pCur->RamRange.GCPhysLast)
2116 pRam = pRam->pNextR3;
2117
2118 RTHCPHYS const HCPhysZeroPg = pVM->pgm.s.HCPhysZeroPg;
2119 Assert(HCPhysZeroPg != 0 && HCPhysZeroPg != NIL_RTHCPHYS);
2120 PPGMPAGE pPageDst = &pRam->aPages[(pCur->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2121 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2122 while (cPagesLeft-- > 0)
2123 {
2124 PGM_PAGE_SET_HCPHYS(pPageDst, HCPhysZeroPg);
2125 PGM_PAGE_SET_TYPE(pPageDst, PGMPAGETYPE_RAM);
2126 PGM_PAGE_SET_STATE(pPageDst, PGM_PAGE_STATE_ZERO);
2127 PGM_PAGE_SET_PAGEID(pPageDst, NIL_GMM_PAGEID);
2128 PGM_PAGE_SET_PDE_TYPE(pPageDst, PGM_PAGE_PDE_TYPE_DONTCARE);
2129
2130 pVM->pgm.s.cZeroPages++;
2131 pPageDst++;
2132 }
2133
2134 /* Flush physical page map TLB. */
2135 PGMPhysInvalidatePageMapTLB(pVM);
2136
2137 GCPhysRangeREM = NIL_RTGCPHYS; /* shuts up gcc */
2138 cbRangeREM = RTGCPHYS_MAX; /* ditto */
2139 fInformREM = false;
2140 }
2141 else
2142 {
2143 GCPhysRangeREM = pCur->RamRange.GCPhys;
2144 cbRangeREM = pCur->RamRange.cb;
2145 fInformREM = true;
2146
2147 pgmR3PhysUnlinkRamRange(pVM, &pCur->RamRange);
2148 }
2149
2150 pCur->RamRange.GCPhys = NIL_RTGCPHYS;
2151 pCur->RamRange.GCPhysLast = NIL_RTGCPHYS;
2152 pCur->fOverlapping = false;
2153 pCur->fMapped = false;
2154
2155 PGMPhysInvalidatePageMapTLB(pVM);
2156 pgmUnlock(pVM);
2157
2158 if (fInformREM)
2159 REMR3NotifyPhysRamDeregister(pVM, GCPhysRangeREM, cbRangeREM);
2160
2161 return VINF_SUCCESS;
2162}
2163
2164
2165/**
2166 * Checks if the given address is an MMIO2 base address or not.
2167 *
2168 * @returns true/false accordingly.
2169 * @param pVM Pointer to the shared VM structure.
2170 * @param pDevIns The owner of the memory, optional.
2171 * @param GCPhys The address to check.
2172 */
2173VMMR3DECL(bool) PGMR3PhysMMIO2IsBase(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys)
2174{
2175 /*
2176 * Validate input
2177 */
2178 VM_ASSERT_EMT_RETURN(pVM, false);
2179 AssertPtrReturn(pDevIns, false);
2180 AssertReturn(GCPhys != NIL_RTGCPHYS, false);
2181 AssertReturn(GCPhys != 0, false);
2182 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), false);
2183
2184 /*
2185 * Search the list.
2186 */
2187 pgmLock(pVM);
2188 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2189 if (pCur->RamRange.GCPhys == GCPhys)
2190 {
2191 Assert(pCur->fMapped);
2192 pgmUnlock(pVM);
2193 return true;
2194 }
2195 pgmUnlock(pVM);
2196 return false;
2197}
2198
2199
2200/**
2201 * Gets the HC physical address of a page in the MMIO2 region.
2202 *
2203 * This is API is intended for MMHyper and shouldn't be called
2204 * by anyone else...
2205 *
2206 * @returns VBox status code.
2207 * @param pVM Pointer to the shared VM structure.
2208 * @param pDevIns The owner of the memory, optional.
2209 * @param iRegion The region.
2210 * @param off The page expressed an offset into the MMIO2 region.
2211 * @param pHCPhys Where to store the result.
2212 */
2213VMMR3DECL(int) PGMR3PhysMMIO2GetHCPhys(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, PRTHCPHYS pHCPhys)
2214{
2215 /*
2216 * Validate input
2217 */
2218 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2219 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2220 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2221
2222 pgmLock(pVM);
2223 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2224 AssertReturn(pCur, VERR_NOT_FOUND);
2225 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2226
2227 PCPGMPAGE pPage = &pCur->RamRange.aPages[off >> PAGE_SHIFT];
2228 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage);
2229 pgmUnlock(pVM);
2230 return VINF_SUCCESS;
2231}
2232
2233
2234/**
2235 * Maps a portion of an MMIO2 region into kernel space (host).
2236 *
2237 * The kernel mapping will become invalid when the MMIO2 memory is deregistered
2238 * or the VM is terminated.
2239 *
2240 * @return VBox status code.
2241 *
2242 * @param pVM Pointer to the shared VM structure.
2243 * @param pDevIns The device owning the MMIO2 memory.
2244 * @param iRegion The region.
2245 * @param off The offset into the region. Must be page aligned.
2246 * @param cb The number of bytes to map. Must be page aligned.
2247 * @param pszDesc Mapping description.
2248 * @param pR0Ptr Where to store the R0 address.
2249 */
2250VMMR3DECL(int) PGMR3PhysMMIO2MapKernel(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, RTGCPHYS cb,
2251 const char *pszDesc, PRTR0PTR pR0Ptr)
2252{
2253 /*
2254 * Validate input.
2255 */
2256 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2257 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2258 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2259
2260 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2261 AssertReturn(pCur, VERR_NOT_FOUND);
2262 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2263 AssertReturn(cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2264 AssertReturn(off + cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2265
2266 /*
2267 * Pass the request on to the support library/driver.
2268 */
2269 int rc = SUPR3PageMapKernel(pCur->pvR3, off, cb, 0, pR0Ptr);
2270
2271 return rc;
2272}
2273
2274
2275/**
2276 * Registers a ROM image.
2277 *
2278 * Shadowed ROM images requires double the amount of backing memory, so,
2279 * don't use that unless you have to. Shadowing of ROM images is process
2280 * where we can select where the reads go and where the writes go. On real
2281 * hardware the chipset provides means to configure this. We provide
2282 * PGMR3PhysProtectROM() for this purpose.
2283 *
2284 * A read-only copy of the ROM image will always be kept around while we
2285 * will allocate RAM pages for the changes on demand (unless all memory
2286 * is configured to be preallocated).
2287 *
2288 * @returns VBox status.
2289 * @param pVM VM Handle.
2290 * @param pDevIns The device instance owning the ROM.
2291 * @param GCPhys First physical address in the range.
2292 * Must be page aligned!
2293 * @param cbRange The size of the range (in bytes).
2294 * Must be page aligned!
2295 * @param pvBinary Pointer to the binary data backing the ROM image.
2296 * This must be exactly \a cbRange in size.
2297 * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
2298 * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
2299 * @param pszDesc Pointer to description string. This must not be freed.
2300 *
2301 * @remark There is no way to remove the rom, automatically on device cleanup or
2302 * manually from the device yet. This isn't difficult in any way, it's
2303 * just not something we expect to be necessary for a while.
2304 */
2305VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
2306 const void *pvBinary, uint32_t fFlags, const char *pszDesc)
2307{
2308 Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p fFlags=%#x pszDesc=%s\n",
2309 pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, fFlags, pszDesc));
2310
2311 /*
2312 * Validate input.
2313 */
2314 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2315 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
2316 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
2317 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2318 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
2319 AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER);
2320 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
2321 AssertReturn(!(fFlags & ~(PGMPHYS_ROM_FLAGS_SHADOWED | PGMPHYS_ROM_FLAGS_PERMANENT_BINARY)), VERR_INVALID_PARAMETER);
2322 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE);
2323
2324 const uint32_t cPages = cb >> PAGE_SHIFT;
2325
2326 /*
2327 * Find the ROM location in the ROM list first.
2328 */
2329 PPGMROMRANGE pRomPrev = NULL;
2330 PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
2331 while (pRom && GCPhysLast >= pRom->GCPhys)
2332 {
2333 if ( GCPhys <= pRom->GCPhysLast
2334 && GCPhysLast >= pRom->GCPhys)
2335 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
2336 GCPhys, GCPhysLast, pszDesc,
2337 pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc),
2338 VERR_PGM_RAM_CONFLICT);
2339 /* next */
2340 pRomPrev = pRom;
2341 pRom = pRom->pNextR3;
2342 }
2343
2344 /*
2345 * Find the RAM location and check for conflicts.
2346 *
2347 * Conflict detection is a bit different than for RAM
2348 * registration since a ROM can be located within a RAM
2349 * range. So, what we have to check for is other memory
2350 * types (other than RAM that is) and that we don't span
2351 * more than one RAM range (layz).
2352 */
2353 bool fRamExists = false;
2354 PPGMRAMRANGE pRamPrev = NULL;
2355 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
2356 while (pRam && GCPhysLast >= pRam->GCPhys)
2357 {
2358 if ( GCPhys <= pRam->GCPhysLast
2359 && GCPhysLast >= pRam->GCPhys)
2360 {
2361 /* completely within? */
2362 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
2363 && GCPhysLast <= pRam->GCPhysLast,
2364 ("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n",
2365 GCPhys, GCPhysLast, pszDesc,
2366 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2367 VERR_PGM_RAM_CONFLICT);
2368 fRamExists = true;
2369 break;
2370 }
2371
2372 /* next */
2373 pRamPrev = pRam;
2374 pRam = pRam->pNextR3;
2375 }
2376 if (fRamExists)
2377 {
2378 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2379 uint32_t cPagesLeft = cPages;
2380 while (cPagesLeft-- > 0)
2381 {
2382 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
2383 ("%RGp (%R[pgmpage]) isn't a RAM page - registering %RGp-%RGp (%s).\n",
2384 pRam->GCPhys + ((RTGCPHYS)(uintptr_t)(pPage - &pRam->aPages[0]) << PAGE_SHIFT),
2385 pPage, GCPhys, GCPhysLast, pszDesc), VERR_PGM_RAM_CONFLICT);
2386 Assert(PGM_PAGE_IS_ZERO(pPage));
2387 pPage++;
2388 }
2389 }
2390
2391 /*
2392 * Update the base memory reservation if necessary.
2393 */
2394 uint32_t cExtraBaseCost = fRamExists ? 0 : cPages;
2395 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2396 cExtraBaseCost += cPages;
2397 if (cExtraBaseCost)
2398 {
2399 int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost);
2400 if (RT_FAILURE(rc))
2401 return rc;
2402 }
2403
2404 /*
2405 * Allocate memory for the virgin copy of the RAM.
2406 */
2407 PGMMALLOCATEPAGESREQ pReq;
2408 int rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cPages, GMMACCOUNT_BASE);
2409 AssertRCReturn(rc, rc);
2410
2411 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2412 {
2413 pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << PAGE_SHIFT);
2414 pReq->aPages[iPage].idPage = NIL_GMM_PAGEID;
2415 pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID;
2416 }
2417
2418 pgmLock(pVM);
2419 rc = GMMR3AllocatePagesPerform(pVM, pReq);
2420 pgmUnlock(pVM);
2421 if (RT_FAILURE(rc))
2422 {
2423 GMMR3AllocatePagesCleanup(pReq);
2424 return rc;
2425 }
2426
2427 /*
2428 * Allocate the new ROM range and RAM range (if necessary).
2429 */
2430 PPGMROMRANGE pRomNew;
2431 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMROMRANGE, aPages[cPages]), 0, MM_TAG_PGM_PHYS, (void **)&pRomNew);
2432 if (RT_SUCCESS(rc))
2433 {
2434 PPGMRAMRANGE pRamNew = NULL;
2435 if (!fRamExists)
2436 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), sizeof(PGMPAGE), MM_TAG_PGM_PHYS, (void **)&pRamNew);
2437 if (RT_SUCCESS(rc))
2438 {
2439 pgmLock(pVM);
2440
2441 /*
2442 * Initialize and insert the RAM range (if required).
2443 */
2444 PPGMROMPAGE pRomPage = &pRomNew->aPages[0];
2445 if (!fRamExists)
2446 {
2447 pRamNew->pSelfR0 = MMHyperCCToR0(pVM, pRamNew);
2448 pRamNew->pSelfRC = MMHyperCCToRC(pVM, pRamNew);
2449 pRamNew->GCPhys = GCPhys;
2450 pRamNew->GCPhysLast = GCPhysLast;
2451 pRamNew->cb = cb;
2452 pRamNew->pszDesc = pszDesc;
2453 pRamNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_ROM;
2454 pRamNew->pvR3 = NULL;
2455 pRamNew->paLSPages = NULL;
2456
2457 PPGMPAGE pPage = &pRamNew->aPages[0];
2458 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
2459 {
2460 PGM_PAGE_INIT(pPage,
2461 pReq->aPages[iPage].HCPhysGCPhys,
2462 pReq->aPages[iPage].idPage,
2463 PGMPAGETYPE_ROM,
2464 PGM_PAGE_STATE_ALLOCATED);
2465
2466 pRomPage->Virgin = *pPage;
2467 }
2468
2469 pVM->pgm.s.cAllPages += cPages;
2470 pgmR3PhysLinkRamRange(pVM, pRamNew, pRamPrev);
2471 }
2472 else
2473 {
2474 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2475 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
2476 {
2477 PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_ROM);
2478 PGM_PAGE_SET_HCPHYS(pPage, pReq->aPages[iPage].HCPhysGCPhys);
2479 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
2480 PGM_PAGE_SET_PAGEID(pPage, pReq->aPages[iPage].idPage);
2481
2482 pRomPage->Virgin = *pPage;
2483 }
2484
2485 pRamNew = pRam;
2486
2487 pVM->pgm.s.cZeroPages -= cPages;
2488 }
2489 pVM->pgm.s.cPrivatePages += cPages;
2490
2491 /* Flush physical page map TLB. */
2492 PGMPhysInvalidatePageMapTLB(pVM);
2493
2494 pgmUnlock(pVM);
2495
2496
2497 /*
2498 * !HACK ALERT! REM + (Shadowed) ROM ==> mess.
2499 *
2500 * If it's shadowed we'll register the handler after the ROM notification
2501 * so we get the access handler callbacks that we should. If it isn't
2502 * shadowed we'll do it the other way around to make REM use the built-in
2503 * ROM behavior and not the handler behavior (which is to route all access
2504 * to PGM atm).
2505 */
2506 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2507 {
2508 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, true /* fShadowed */);
2509 rc = PGMR3HandlerPhysicalRegister(pVM,
2510 fFlags & PGMPHYS_ROM_FLAGS_SHADOWED
2511 ? PGMPHYSHANDLERTYPE_PHYSICAL_ALL
2512 : PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
2513 GCPhys, GCPhysLast,
2514 pgmR3PhysRomWriteHandler, pRomNew,
2515 NULL, "pgmPhysRomWriteHandler", MMHyperCCToR0(pVM, pRomNew),
2516 NULL, "pgmPhysRomWriteHandler", MMHyperCCToRC(pVM, pRomNew), pszDesc);
2517 }
2518 else
2519 {
2520 rc = PGMR3HandlerPhysicalRegister(pVM,
2521 fFlags & PGMPHYS_ROM_FLAGS_SHADOWED
2522 ? PGMPHYSHANDLERTYPE_PHYSICAL_ALL
2523 : PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
2524 GCPhys, GCPhysLast,
2525 pgmR3PhysRomWriteHandler, pRomNew,
2526 NULL, "pgmPhysRomWriteHandler", MMHyperCCToR0(pVM, pRomNew),
2527 NULL, "pgmPhysRomWriteHandler", MMHyperCCToRC(pVM, pRomNew), pszDesc);
2528 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, false /* fShadowed */);
2529 }
2530 if (RT_SUCCESS(rc))
2531 {
2532 pgmLock(pVM);
2533
2534 /*
2535 * Copy the image over to the virgin pages.
2536 * This must be done after linking in the RAM range.
2537 */
2538 PPGMPAGE pRamPage = &pRamNew->aPages[(GCPhys - pRamNew->GCPhys) >> PAGE_SHIFT];
2539 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++)
2540 {
2541 void *pvDstPage;
2542 rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << PAGE_SHIFT), &pvDstPage);
2543 if (RT_FAILURE(rc))
2544 {
2545 VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys);
2546 break;
2547 }
2548 memcpy(pvDstPage, (const uint8_t *)pvBinary + (iPage << PAGE_SHIFT), PAGE_SIZE);
2549 }
2550 if (RT_SUCCESS(rc))
2551 {
2552 /*
2553 * Initialize the ROM range.
2554 * Note that the Virgin member of the pages has already been initialized above.
2555 */
2556 pRomNew->GCPhys = GCPhys;
2557 pRomNew->GCPhysLast = GCPhysLast;
2558 pRomNew->cb = cb;
2559 pRomNew->fFlags = fFlags;
2560 pRomNew->idSavedState = UINT8_MAX;
2561 pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY ? pvBinary : NULL;
2562 pRomNew->pszDesc = pszDesc;
2563
2564 for (unsigned iPage = 0; iPage < cPages; iPage++)
2565 {
2566 PPGMROMPAGE pPage = &pRomNew->aPages[iPage];
2567 pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE;
2568 PGM_PAGE_INIT_ZERO(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW);
2569 }
2570
2571 /* update the page count stats for the shadow pages. */
2572 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2573 {
2574 pVM->pgm.s.cZeroPages += cPages;
2575 pVM->pgm.s.cAllPages += cPages;
2576 }
2577
2578 /*
2579 * Insert the ROM range, tell REM and return successfully.
2580 */
2581 pRomNew->pNextR3 = pRom;
2582 pRomNew->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
2583 pRomNew->pNextRC = pRom ? MMHyperCCToRC(pVM, pRom) : NIL_RTRCPTR;
2584
2585 if (pRomPrev)
2586 {
2587 pRomPrev->pNextR3 = pRomNew;
2588 pRomPrev->pNextR0 = MMHyperCCToR0(pVM, pRomNew);
2589 pRomPrev->pNextRC = MMHyperCCToRC(pVM, pRomNew);
2590 }
2591 else
2592 {
2593 pVM->pgm.s.pRomRangesR3 = pRomNew;
2594 pVM->pgm.s.pRomRangesR0 = MMHyperCCToR0(pVM, pRomNew);
2595 pVM->pgm.s.pRomRangesRC = MMHyperCCToRC(pVM, pRomNew);
2596 }
2597
2598 PGMPhysInvalidatePageMapTLB(pVM);
2599 GMMR3AllocatePagesCleanup(pReq);
2600 pgmUnlock(pVM);
2601 return VINF_SUCCESS;
2602 }
2603
2604 /* bail out */
2605
2606 pgmUnlock(pVM);
2607 int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys);
2608 AssertRC(rc2);
2609 pgmLock(pVM);
2610 }
2611
2612 if (!fRamExists)
2613 {
2614 pgmR3PhysUnlinkRamRange2(pVM, pRamNew, pRamPrev);
2615 MMHyperFree(pVM, pRamNew);
2616 }
2617 }
2618 MMHyperFree(pVM, pRomNew);
2619 }
2620
2621 /** @todo Purge the mapping cache or something... */
2622 GMMR3FreeAllocatedPages(pVM, pReq);
2623 GMMR3AllocatePagesCleanup(pReq);
2624 pgmUnlock(pVM);
2625 return rc;
2626}
2627
2628
2629/**
2630 * \#PF Handler callback for ROM write accesses.
2631 *
2632 * @returns VINF_SUCCESS if the handler have carried out the operation.
2633 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
2634 * @param pVM VM Handle.
2635 * @param GCPhys The physical address the guest is writing to.
2636 * @param pvPhys The HC mapping of that address.
2637 * @param pvBuf What the guest is reading/writing.
2638 * @param cbBuf How much it's reading/writing.
2639 * @param enmAccessType The access type.
2640 * @param pvUser User argument.
2641 */
2642static DECLCALLBACK(int) pgmR3PhysRomWriteHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser)
2643{
2644 PPGMROMRANGE pRom = (PPGMROMRANGE)pvUser;
2645 const uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
2646 Assert(iPage < (pRom->cb >> PAGE_SHIFT));
2647 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
2648 Log5(("pgmR3PhysRomWriteHandler: %d %c %#08RGp %#04zx\n", pRomPage->enmProt, enmAccessType == PGMACCESSTYPE_READ ? 'R' : 'W', GCPhys, cbBuf));
2649
2650 if (enmAccessType == PGMACCESSTYPE_READ)
2651 {
2652 switch (pRomPage->enmProt)
2653 {
2654 /*
2655 * Take the default action.
2656 */
2657 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
2658 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
2659 case PGMROMPROT_READ_ROM_WRITE_RAM:
2660 case PGMROMPROT_READ_RAM_WRITE_RAM:
2661 return VINF_PGM_HANDLER_DO_DEFAULT;
2662
2663 default:
2664 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
2665 pRom->aPages[iPage].enmProt, iPage, GCPhys),
2666 VERR_INTERNAL_ERROR);
2667 }
2668 }
2669 else
2670 {
2671 Assert(enmAccessType == PGMACCESSTYPE_WRITE);
2672 switch (pRomPage->enmProt)
2673 {
2674 /*
2675 * Ignore writes.
2676 */
2677 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
2678 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
2679 return VINF_SUCCESS;
2680
2681 /*
2682 * Write to the ram page.
2683 */
2684 case PGMROMPROT_READ_ROM_WRITE_RAM:
2685 case PGMROMPROT_READ_RAM_WRITE_RAM: /* yes this will get here too, it's *way* simpler that way. */
2686 {
2687 /* This should be impossible now, pvPhys doesn't work cross page anylonger. */
2688 Assert(((GCPhys - pRom->GCPhys + cbBuf - 1) >> PAGE_SHIFT) == iPage);
2689
2690 /*
2691 * Take the lock, do lazy allocation, map the page and copy the data.
2692 *
2693 * Note that we have to bypass the mapping TLB since it works on
2694 * guest physical addresses and entering the shadow page would
2695 * kind of screw things up...
2696 */
2697 int rc = pgmLock(pVM);
2698 AssertRC(rc);
2699
2700 PPGMPAGE pShadowPage = &pRomPage->Shadow;
2701 if (!PGMROMPROT_IS_ROM(pRomPage->enmProt))
2702 {
2703 pShadowPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
2704 AssertLogRelReturn(pShadowPage, VERR_INTERNAL_ERROR);
2705 }
2706
2707 void *pvDstPage;
2708 rc = pgmPhysPageMakeWritableAndMap(pVM, pShadowPage, GCPhys & X86_PTE_PG_MASK, &pvDstPage);
2709 if (RT_SUCCESS(rc))
2710 {
2711 memcpy((uint8_t *)pvDstPage + (GCPhys & PAGE_OFFSET_MASK), pvBuf, cbBuf);
2712 pRomPage->LiveSave.fWrittenTo = true;
2713 }
2714
2715 pgmUnlock(pVM);
2716 return rc;
2717 }
2718
2719 default:
2720 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
2721 pRom->aPages[iPage].enmProt, iPage, GCPhys),
2722 VERR_INTERNAL_ERROR);
2723 }
2724 }
2725}
2726
2727
2728/**
2729 * Called by PGMR3Reset to reset the shadow, switch to the virgin,
2730 * and verify that the virgin part is untouched.
2731 *
2732 * This is done after the normal memory has been cleared.
2733 *
2734 * ASSUMES that the caller owns the PGM lock.
2735 *
2736 * @param pVM The VM handle.
2737 */
2738int pgmR3PhysRomReset(PVM pVM)
2739{
2740 Assert(PGMIsLockOwner(pVM));
2741 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
2742 {
2743 const uint32_t cPages = pRom->cb >> PAGE_SHIFT;
2744
2745 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2746 {
2747 /*
2748 * Reset the physical handler.
2749 */
2750 int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE);
2751 AssertRCReturn(rc, rc);
2752
2753 /*
2754 * What we do with the shadow pages depends on the memory
2755 * preallocation option. If not enabled, we'll just throw
2756 * out all the dirty pages and replace them by the zero page.
2757 */
2758 if (!pVM->pgm.s.fRamPreAlloc)
2759 {
2760 /* Free the dirty pages. */
2761 uint32_t cPendingPages = 0;
2762 PGMMFREEPAGESREQ pReq;
2763 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2764 AssertRCReturn(rc, rc);
2765
2766 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2767 if (PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) != PGM_PAGE_STATE_ZERO)
2768 {
2769 Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) == PGM_PAGE_STATE_ALLOCATED);
2770 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, &pRom->aPages[iPage].Shadow, pRom->GCPhys + (iPage << PAGE_SHIFT));
2771 AssertLogRelRCReturn(rc, rc);
2772 }
2773
2774 if (cPendingPages)
2775 {
2776 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2777 AssertLogRelRCReturn(rc, rc);
2778 }
2779 GMMR3FreePagesCleanup(pReq);
2780 }
2781 else
2782 {
2783 /* clear all the shadow pages. */
2784 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2785 {
2786 Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) != PGM_PAGE_STATE_ZERO);
2787 void *pvDstPage;
2788 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
2789 rc = pgmPhysPageMakeWritableAndMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pvDstPage);
2790 if (RT_FAILURE(rc))
2791 break;
2792 ASMMemZeroPage(pvDstPage);
2793 }
2794 AssertRCReturn(rc, rc);
2795 }
2796 }
2797
2798#ifdef VBOX_STRICT
2799 /*
2800 * Verify that the virgin page is unchanged if possible.
2801 */
2802 if (pRom->pvOriginal)
2803 {
2804 uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal;
2805 for (uint32_t iPage = 0; iPage < cPages; iPage++, pbSrcPage += PAGE_SIZE)
2806 {
2807 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
2808 void const *pvDstPage;
2809 int rc = pgmPhysPageMapReadOnly(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPage);
2810 if (RT_FAILURE(rc))
2811 break;
2812 if (memcmp(pvDstPage, pbSrcPage, PAGE_SIZE))
2813 LogRel(("pgmR3PhysRomReset: %RGp rom page changed (%s) - loaded saved state?\n",
2814 GCPhys, pRom->pszDesc));
2815 }
2816 }
2817#endif
2818 }
2819
2820 return VINF_SUCCESS;
2821}
2822
2823
2824/**
2825 * Change the shadowing of a range of ROM pages.
2826 *
2827 * This is intended for implementing chipset specific memory registers
2828 * and will not be very strict about the input. It will silently ignore
2829 * any pages that are not the part of a shadowed ROM.
2830 *
2831 * @returns VBox status code.
2832 * @retval VINF_PGM_SYNC_CR3
2833 *
2834 * @param pVM Pointer to the shared VM structure.
2835 * @param GCPhys Where to start. Page aligned.
2836 * @param cb How much to change. Page aligned.
2837 * @param enmProt The new ROM protection.
2838 */
2839VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt)
2840{
2841 /*
2842 * Check input
2843 */
2844 if (!cb)
2845 return VINF_SUCCESS;
2846 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2847 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2848 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2849 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
2850 AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER);
2851
2852 /*
2853 * Process the request.
2854 */
2855 pgmLock(pVM);
2856 int rc = VINF_SUCCESS;
2857 bool fFlushTLB = false;
2858 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
2859 {
2860 if ( GCPhys <= pRom->GCPhysLast
2861 && GCPhysLast >= pRom->GCPhys
2862 && (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
2863 {
2864 /*
2865 * Iterate the relevant pages and make necessary the changes.
2866 */
2867 bool fChanges = false;
2868 uint32_t const cPages = pRom->GCPhysLast <= GCPhysLast
2869 ? pRom->cb >> PAGE_SHIFT
2870 : (GCPhysLast - pRom->GCPhys + 1) >> PAGE_SHIFT;
2871 for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
2872 iPage < cPages;
2873 iPage++)
2874 {
2875 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
2876 if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt))
2877 {
2878 fChanges = true;
2879
2880 /* flush references to the page. */
2881 PPGMPAGE pRamPage = pgmPhysGetPage(&pVM->pgm.s, pRom->GCPhys + (iPage << PAGE_SHIFT));
2882 int rc2 = pgmPoolTrackFlushGCPhys(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT), pRamPage, &fFlushTLB);
2883 if (rc2 != VINF_SUCCESS && (rc == VINF_SUCCESS || RT_FAILURE(rc2)))
2884 rc = rc2;
2885
2886 PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
2887 PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2888
2889 *pOld = *pRamPage;
2890 *pRamPage = *pNew;
2891 /** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */
2892 }
2893 pRomPage->enmProt = enmProt;
2894 }
2895
2896 /*
2897 * Reset the access handler if we made changes, no need
2898 * to optimize this.
2899 */
2900 if (fChanges)
2901 {
2902 int rc2 = PGMHandlerPhysicalReset(pVM, pRom->GCPhys);
2903 if (RT_FAILURE(rc2))
2904 {
2905 pgmUnlock(pVM);
2906 AssertRC(rc);
2907 return rc2;
2908 }
2909 }
2910
2911 /* Advance - cb isn't updated. */
2912 GCPhys = pRom->GCPhys + (cPages << PAGE_SHIFT);
2913 }
2914 }
2915 pgmUnlock(pVM);
2916 if (fFlushTLB)
2917 PGM_INVL_ALL_VCPU_TLBS(pVM);
2918
2919 return rc;
2920}
2921
2922
2923/**
2924 * Sets the Address Gate 20 state.
2925 *
2926 * @param pVCpu The VCPU to operate on.
2927 * @param fEnable True if the gate should be enabled.
2928 * False if the gate should be disabled.
2929 */
2930VMMDECL(void) PGMR3PhysSetA20(PVMCPU pVCpu, bool fEnable)
2931{
2932 LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVCpu->pgm.s.fA20Enabled));
2933 if (pVCpu->pgm.s.fA20Enabled != fEnable)
2934 {
2935 pVCpu->pgm.s.fA20Enabled = fEnable;
2936 pVCpu->pgm.s.GCPhysA20Mask = ~(RTGCPHYS)(!fEnable << 20);
2937 REMR3A20Set(pVCpu->pVMR3, pVCpu, fEnable);
2938 /** @todo we're not handling this correctly for VT-x / AMD-V. See #2911 */
2939 }
2940}
2941
2942
2943/**
2944 * Tree enumeration callback for dealing with age rollover.
2945 * It will perform a simple compression of the current age.
2946 */
2947static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
2948{
2949 Assert(PGMIsLockOwner((PVM)pvUser));
2950 /* Age compression - ASSUMES iNow == 4. */
2951 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
2952 if (pChunk->iAge >= UINT32_C(0xffffff00))
2953 pChunk->iAge = 3;
2954 else if (pChunk->iAge >= UINT32_C(0xfffff000))
2955 pChunk->iAge = 2;
2956 else if (pChunk->iAge)
2957 pChunk->iAge = 1;
2958 else /* iAge = 0 */
2959 pChunk->iAge = 4;
2960
2961 /* reinsert */
2962 PVM pVM = (PVM)pvUser;
2963 RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
2964 pChunk->AgeCore.Key = pChunk->iAge;
2965 RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
2966 return 0;
2967}
2968
2969
2970/**
2971 * Tree enumeration callback that updates the chunks that have
2972 * been used since the last
2973 */
2974static DECLCALLBACK(int) pgmR3PhysChunkAgeingCallback(PAVLU32NODECORE pNode, void *pvUser)
2975{
2976 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
2977 if (!pChunk->iAge)
2978 {
2979 PVM pVM = (PVM)pvUser;
2980 RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
2981 pChunk->AgeCore.Key = pChunk->iAge = pVM->pgm.s.ChunkR3Map.iNow;
2982 RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
2983 }
2984
2985 return 0;
2986}
2987
2988
2989/**
2990 * Performs ageing of the ring-3 chunk mappings.
2991 *
2992 * @param pVM The VM handle.
2993 */
2994VMMR3DECL(void) PGMR3PhysChunkAgeing(PVM pVM)
2995{
2996 pgmLock(pVM);
2997 pVM->pgm.s.ChunkR3Map.AgeingCountdown = RT_MIN(pVM->pgm.s.ChunkR3Map.cMax / 4, 1024);
2998 pVM->pgm.s.ChunkR3Map.iNow++;
2999 if (pVM->pgm.s.ChunkR3Map.iNow == 0)
3000 {
3001 pVM->pgm.s.ChunkR3Map.iNow = 4;
3002 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, pVM);
3003 }
3004 else
3005 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingCallback, pVM);
3006 pgmUnlock(pVM);
3007}
3008
3009
3010/**
3011 * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
3012 */
3013typedef struct PGMR3PHYSCHUNKUNMAPCB
3014{
3015 PVM pVM; /**< The VM handle. */
3016 PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
3017} PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
3018
3019
3020/**
3021 * Callback used to find the mapping that's been unused for
3022 * the longest time.
3023 */
3024static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLLU32NODECORE pNode, void *pvUser)
3025{
3026 do
3027 {
3028 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)((uint8_t *)pNode - RT_OFFSETOF(PGMCHUNKR3MAP, AgeCore));
3029 if ( pChunk->iAge
3030 && !pChunk->cRefs)
3031 {
3032 /*
3033 * Check that it's not in any of the TLBs.
3034 */
3035 PVM pVM = ((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pVM;
3036 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
3037 if (pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk == pChunk)
3038 {
3039 pChunk = NULL;
3040 break;
3041 }
3042 if (pChunk)
3043 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
3044 if (pVM->pgm.s.PhysTlbHC.aEntries[i].pMap == pChunk)
3045 {
3046 pChunk = NULL;
3047 break;
3048 }
3049 if (pChunk)
3050 {
3051 ((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pChunk = pChunk;
3052 return 1; /* done */
3053 }
3054 }
3055
3056 /* next with the same age - this version of the AVL API doesn't enumerate the list, so we have to do it. */
3057 pNode = pNode->pList;
3058 } while (pNode);
3059 return 0;
3060}
3061
3062
3063/**
3064 * Finds a good candidate for unmapping when the ring-3 mapping cache is full.
3065 *
3066 * The candidate will not be part of any TLBs, so no need to flush
3067 * anything afterwards.
3068 *
3069 * @returns Chunk id.
3070 * @param pVM The VM handle.
3071 */
3072static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
3073{
3074 Assert(PGMIsLockOwner(pVM));
3075
3076 /*
3077 * Do tree ageing first?
3078 */
3079 if (pVM->pgm.s.ChunkR3Map.AgeingCountdown-- == 0)
3080 PGMR3PhysChunkAgeing(pVM);
3081
3082 /*
3083 * Enumerate the age tree starting with the left most node.
3084 */
3085 PGMR3PHYSCHUNKUNMAPCB Args;
3086 Args.pVM = pVM;
3087 Args.pChunk = NULL;
3088 if (RTAvllU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pAgeTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, pVM))
3089 return Args.pChunk->Core.Key;
3090 return INT32_MAX;
3091}
3092
3093
3094/**
3095 * Maps the given chunk into the ring-3 mapping cache.
3096 *
3097 * This will call ring-0.
3098 *
3099 * @returns VBox status code.
3100 * @param pVM The VM handle.
3101 * @param idChunk The chunk in question.
3102 * @param ppChunk Where to store the chunk tracking structure.
3103 *
3104 * @remarks Called from within the PGM critical section.
3105 */
3106int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
3107{
3108 int rc;
3109
3110 Assert(PGMIsLockOwner(pVM));
3111 /*
3112 * Allocate a new tracking structure first.
3113 */
3114#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
3115 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAlloc(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
3116#else
3117 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3UkHeapAlloc(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk), NULL);
3118#endif
3119 AssertReturn(pChunk, VERR_NO_MEMORY);
3120 pChunk->Core.Key = idChunk;
3121 pChunk->AgeCore.Key = pVM->pgm.s.ChunkR3Map.iNow;
3122 pChunk->iAge = 0;
3123 pChunk->cRefs = 0;
3124 pChunk->cPermRefs = 0;
3125 pChunk->pv = NULL;
3126
3127 /*
3128 * Request the ring-0 part to map the chunk in question and if
3129 * necessary unmap another one to make space in the mapping cache.
3130 */
3131 GMMMAPUNMAPCHUNKREQ Req;
3132 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
3133 Req.Hdr.cbReq = sizeof(Req);
3134 Req.pvR3 = NULL;
3135 Req.idChunkMap = idChunk;
3136 Req.idChunkUnmap = NIL_GMM_CHUNKID;
3137 if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
3138 Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
3139/** @todo This is wrong. Any thread in the VM process should be able to do this,
3140 * there are depenenecies on this. What currently saves the day is that
3141 * we don't unmap anything and that all non-zero memory will therefore
3142 * be present when non-EMTs tries to access it. */
3143 rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
3144 if (RT_SUCCESS(rc))
3145 {
3146 /*
3147 * Update the tree.
3148 */
3149 /* insert the new one. */
3150 AssertPtr(Req.pvR3);
3151 pChunk->pv = Req.pvR3;
3152 bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
3153 AssertRelease(fRc);
3154 pVM->pgm.s.ChunkR3Map.c++;
3155
3156 fRc = RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
3157 AssertRelease(fRc);
3158
3159 /* remove the unmapped one. */
3160 if (Req.idChunkUnmap != NIL_GMM_CHUNKID)
3161 {
3162 PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
3163 AssertRelease(pUnmappedChunk);
3164 pUnmappedChunk->pv = NULL;
3165 pUnmappedChunk->Core.Key = UINT32_MAX;
3166#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
3167 MMR3HeapFree(pUnmappedChunk);
3168#else
3169 MMR3UkHeapFree(pVM, pUnmappedChunk, MM_TAG_PGM_CHUNK_MAPPING);
3170#endif
3171 pVM->pgm.s.ChunkR3Map.c--;
3172
3173 /* Chunk removed, so clear the page map TBL as well (might still be referenced). */
3174 PGMPhysInvalidatePageMapTLB(pVM);
3175 }
3176 }
3177 else
3178 {
3179 AssertRC(rc);
3180#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
3181 MMR3HeapFree(pChunk);
3182#else
3183 MMR3UkHeapFree(pVM, pChunk, MM_TAG_PGM_CHUNK_MAPPING);
3184#endif
3185 pChunk = NULL;
3186 }
3187
3188 *ppChunk = pChunk;
3189 return rc;
3190}
3191
3192
3193/**
3194 * For VMMCALLRING3_PGM_MAP_CHUNK, considered internal.
3195 *
3196 * @returns see pgmR3PhysChunkMap.
3197 * @param pVM The VM handle.
3198 * @param idChunk The chunk to map.
3199 */
3200VMMR3DECL(int) PGMR3PhysChunkMap(PVM pVM, uint32_t idChunk)
3201{
3202 PPGMCHUNKR3MAP pChunk;
3203 int rc;
3204
3205 pgmLock(pVM);
3206 rc = pgmR3PhysChunkMap(pVM, idChunk, &pChunk);
3207 pgmUnlock(pVM);
3208 return rc;
3209}
3210
3211
3212/**
3213 * Invalidates the TLB for the ring-3 mapping cache.
3214 *
3215 * @param pVM The VM handle.
3216 */
3217VMMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM)
3218{
3219 pgmLock(pVM);
3220 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
3221 {
3222 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
3223 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
3224 }
3225 /* The page map TLB references chunks, so invalidate that one too. */
3226 PGMPhysInvalidatePageMapTLB(pVM);
3227 pgmUnlock(pVM);
3228}
3229
3230
3231/**
3232 * Response to VMMCALLRING3_PGM_ALLOCATE_LARGE_PAGE to allocate a large (2MB) page
3233 * for use with a nested paging PDE.
3234 *
3235 * @returns The following VBox status codes.
3236 * @retval VINF_SUCCESS on success.
3237 * @retval VINF_EM_NO_MEMORY if we're out of memory.
3238 *
3239 * @param pVM The VM handle.
3240 * @param GCPhys GC physical start address of the 2 MB range
3241 */
3242VMMR3DECL(int) PGMR3PhysAllocateLargeHandyPage(PVM pVM, RTGCPHYS GCPhys)
3243{
3244 pgmLock(pVM);
3245
3246 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_LARGE_HANDY_PAGE, 0, NULL);
3247 if (RT_SUCCESS(rc))
3248 {
3249 Assert(pVM->pgm.s.cLargeHandyPages == 1);
3250
3251 uint32_t idPage = pVM->pgm.s.aLargeHandyPage[0].idPage;
3252 RTHCPHYS HCPhys = pVM->pgm.s.aLargeHandyPage[0].HCPhysGCPhys;
3253
3254 void *pv;
3255
3256 /* Map the large page into our address space.
3257 *
3258 * Note: assuming that within the 2 MB range:
3259 * - GCPhys + PAGE_SIZE = HCPhys + PAGE_SIZE (whole point of this exercise)
3260 * - user space mapping is continuous as well
3261 * - page id (GCPhys) + 1 = page id (GCPhys + PAGE_SIZE)
3262 */
3263 rc = pgmPhysPageMapByPageID(pVM, idPage, HCPhys, &pv);
3264 AssertLogRelMsg(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc", idPage, HCPhys, rc));
3265
3266 if (RT_SUCCESS(rc))
3267 {
3268 /*
3269 * Clear the pages.
3270 */
3271 for (unsigned i = 0; i < _2M/PAGE_SIZE; i++)
3272 {
3273 ASMMemZeroPage(pv);
3274
3275 PPGMPAGE pPage;
3276 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
3277 AssertRC(rc);
3278
3279 Assert(PGM_PAGE_IS_ZERO(pPage));
3280 STAM_COUNTER_INC(&pVM->pgm.s.StatRZPageReplaceZero);
3281 pVM->pgm.s.cZeroPages--;
3282
3283 /*
3284 * Do the PGMPAGE modifications.
3285 */
3286 pVM->pgm.s.cPrivatePages++;
3287 PGM_PAGE_SET_HCPHYS(pPage, HCPhys);
3288 PGM_PAGE_SET_PAGEID(pPage, idPage);
3289 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
3290 PGM_PAGE_SET_PDE_TYPE(pPage, PGM_PAGE_PDE_TYPE_PDE);
3291
3292 /* Somewhat dirty assumption that page ids are increasing. */
3293 idPage++;
3294
3295 HCPhys += PAGE_SIZE;
3296 GCPhys += PAGE_SIZE;
3297
3298 pv = (void *)((uintptr_t)pv + PAGE_SIZE);
3299
3300 Log3(("PGMR3PhysAllocateLargePage: idPage=%#x HCPhys=%RGp\n", idPage, HCPhys));
3301 }
3302 /* Flush all TLBs. */
3303 PGM_INVL_ALL_VCPU_TLBS(pVM);
3304 PGMPhysInvalidatePageMapTLB(pVM);
3305 }
3306 pVM->pgm.s.cLargeHandyPages = 0;
3307 }
3308
3309 pgmUnlock(pVM);
3310 return rc;
3311}
3312
3313
3314/**
3315 * Response to VM_FF_PGM_NEED_HANDY_PAGES and VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES.
3316 *
3317 * This function will also work the VM_FF_PGM_NO_MEMORY force action flag, to
3318 * signal and clear the out of memory condition. When contracted, this API is
3319 * used to try clear the condition when the user wants to resume.
3320 *
3321 * @returns The following VBox status codes.
3322 * @retval VINF_SUCCESS on success. FFs cleared.
3323 * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in
3324 * this case and it gets accompanied by VM_FF_PGM_NO_MEMORY.
3325 *
3326 * @param pVM The VM handle.
3327 *
3328 * @remarks The VINF_EM_NO_MEMORY status is for the benefit of the FF processing
3329 * in EM.cpp and shouldn't be propagated outside TRPM, HWACCM, EM and
3330 * pgmPhysEnsureHandyPage. There is one exception to this in the \#PF
3331 * handler.
3332 */
3333VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
3334{
3335 pgmLock(pVM);
3336
3337 /*
3338 * Allocate more pages, noting down the index of the first new page.
3339 */
3340 uint32_t iClear = pVM->pgm.s.cHandyPages;
3341 AssertMsgReturn(iClear <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d", iClear), VERR_INTERNAL_ERROR);
3342 Log(("PGMR3PhysAllocateHandyPages: %d -> %d\n", iClear, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
3343 int rcAlloc = VINF_SUCCESS;
3344 int rcSeed = VINF_SUCCESS;
3345 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
3346 while (rc == VERR_GMM_SEED_ME)
3347 {
3348 void *pvChunk;
3349 rcAlloc = rc = SUPR3PageAlloc(GMM_CHUNK_SIZE >> PAGE_SHIFT, &pvChunk);
3350 if (RT_SUCCESS(rc))
3351 {
3352 rcSeed = rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_SEED_CHUNK, (uintptr_t)pvChunk, NULL);
3353 if (RT_FAILURE(rc))
3354 SUPR3PageFree(pvChunk, GMM_CHUNK_SIZE >> PAGE_SHIFT);
3355 }
3356 if (RT_SUCCESS(rc))
3357 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
3358 }
3359
3360 if (RT_SUCCESS(rc))
3361 {
3362 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
3363 Assert(pVM->pgm.s.cHandyPages > 0);
3364 VM_FF_CLEAR(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
3365 VM_FF_CLEAR(pVM, VM_FF_PGM_NO_MEMORY);
3366
3367 /*
3368 * Clear the pages.
3369 */
3370 while (iClear < pVM->pgm.s.cHandyPages)
3371 {
3372 PGMMPAGEDESC pPage = &pVM->pgm.s.aHandyPages[iClear];
3373 void *pv;
3374 rc = pgmPhysPageMapByPageID(pVM, pPage->idPage, pPage->HCPhysGCPhys, &pv);
3375 AssertLogRelMsgBreak(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc", pPage->idPage, pPage->HCPhysGCPhys, rc));
3376 ASMMemZeroPage(pv);
3377 iClear++;
3378 Log3(("PGMR3PhysAllocateHandyPages: idPage=%#x HCPhys=%RGp\n", pPage->idPage, pPage->HCPhysGCPhys));
3379 }
3380 }
3381 else
3382 {
3383 /*
3384 * We should never get here unless there is a genuine shortage of
3385 * memory (or some internal error). Flag the error so the VM can be
3386 * suspended ASAP and the user informed. If we're totally out of
3387 * handy pages we will return failure.
3388 */
3389 /* Report the failure. */
3390 LogRel(("PGM: Failed to procure handy pages; rc=%Rrc rcAlloc=%Rrc rcSeed=%Rrc cHandyPages=%#x\n"
3391 " cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n",
3392 rc, rcAlloc, rcSeed,
3393 pVM->pgm.s.cHandyPages,
3394 pVM->pgm.s.cAllPages,
3395 pVM->pgm.s.cPrivatePages,
3396 pVM->pgm.s.cSharedPages,
3397 pVM->pgm.s.cZeroPages));
3398 if ( rc != VERR_NO_MEMORY
3399 && rc != VERR_LOCK_FAILED)
3400 {
3401 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
3402 {
3403 LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n",
3404 i, pVM->pgm.s.aHandyPages[i].HCPhysGCPhys, pVM->pgm.s.aHandyPages[i].idPage,
3405 pVM->pgm.s.aHandyPages[i].idSharedPage));
3406 uint32_t const idPage = pVM->pgm.s.aHandyPages[i].idPage;
3407 if (idPage != NIL_GMM_PAGEID)
3408 {
3409 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
3410 pRam;
3411 pRam = pRam->pNextR3)
3412 {
3413 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
3414 for (uint32_t iPage = 0; iPage < cPages; iPage++)
3415 if (PGM_PAGE_GET_PAGEID(&pRam->aPages[iPage]) == idPage)
3416 LogRel(("PGM: Used by %RGp %R[pgmpage] (%s)\n",
3417 pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pRam->aPages[iPage], pRam->pszDesc));
3418 }
3419 }
3420 }
3421 }
3422
3423 /* Set the FFs and adjust rc. */
3424 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
3425 VM_FF_SET(pVM, VM_FF_PGM_NO_MEMORY);
3426 if ( rc == VERR_NO_MEMORY
3427 || rc == VERR_LOCK_FAILED)
3428 rc = VINF_EM_NO_MEMORY;
3429 }
3430
3431 pgmUnlock(pVM);
3432 return rc;
3433}
3434
3435
3436/**
3437 * Frees the specified RAM page and replaces it with the ZERO page.
3438 *
3439 * This is used by ballooning, remapping MMIO2 and RAM reset.
3440 *
3441 * @param pVM Pointer to the shared VM structure.
3442 * @param pReq Pointer to the request.
3443 * @param pPage Pointer to the page structure.
3444 * @param GCPhys The guest physical address of the page, if applicable.
3445 *
3446 * @remarks The caller must own the PGM lock.
3447 */
3448static int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys)
3449{
3450 /*
3451 * Assert sanity.
3452 */
3453 Assert(PGMIsLockOwner(pVM));
3454 if (RT_UNLIKELY( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
3455 && PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW))
3456 {
3457 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
3458 return VMSetError(pVM, VERR_PGM_PHYS_NOT_RAM, RT_SRC_POS, "GCPhys=%RGp type=%d", GCPhys, PGM_PAGE_GET_TYPE(pPage));
3459 }
3460
3461 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ZERO)
3462 return VINF_SUCCESS;
3463
3464 const uint32_t idPage = PGM_PAGE_GET_PAGEID(pPage);
3465 Log3(("pgmPhysFreePage: idPage=%#x HCPhys=%RGp pPage=%R[pgmpage]\n", idPage, pPage));
3466 if (RT_UNLIKELY( idPage == NIL_GMM_PAGEID
3467 || idPage > GMM_PAGEID_LAST
3468 || PGM_PAGE_GET_CHUNKID(pPage) == NIL_GMM_CHUNKID))
3469 {
3470 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
3471 return VMSetError(pVM, VERR_PGM_PHYS_INVALID_PAGE_ID, RT_SRC_POS, "GCPhys=%RGp idPage=%#x", GCPhys, pPage);
3472 }
3473
3474 /* update page count stats. */
3475 if (PGM_PAGE_IS_SHARED(pPage))
3476 pVM->pgm.s.cSharedPages--;
3477 else
3478 pVM->pgm.s.cPrivatePages--;
3479 pVM->pgm.s.cZeroPages++;
3480
3481 /* Deal with write monitored pages. */
3482 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
3483 {
3484 PGM_PAGE_SET_WRITTEN_TO(pPage);
3485 pVM->pgm.s.cWrittenToPages++;
3486 }
3487
3488 /*
3489 * pPage = ZERO page.
3490 */
3491 PGM_PAGE_SET_HCPHYS(pPage, pVM->pgm.s.HCPhysZeroPg);
3492 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
3493 PGM_PAGE_SET_PAGEID(pPage, NIL_GMM_PAGEID);
3494 PGM_PAGE_SET_PDE_TYPE(pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
3495
3496 /* Flush physical page map TLB entry. */
3497 PGMPhysInvalidatePageMapTLBEntry(pVM, GCPhys);
3498
3499 /*
3500 * Make sure it's not in the handy page array.
3501 */
3502 for (uint32_t i = pVM->pgm.s.cHandyPages; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
3503 {
3504 if (pVM->pgm.s.aHandyPages[i].idPage == idPage)
3505 {
3506 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
3507 break;
3508 }
3509 if (pVM->pgm.s.aHandyPages[i].idSharedPage == idPage)
3510 {
3511 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
3512 break;
3513 }
3514 }
3515
3516 /*
3517 * Push it onto the page array.
3518 */
3519 uint32_t iPage = *pcPendingPages;
3520 Assert(iPage < PGMPHYS_FREE_PAGE_BATCH_SIZE);
3521 *pcPendingPages += 1;
3522
3523 pReq->aPages[iPage].idPage = idPage;
3524
3525 if (iPage + 1 < PGMPHYS_FREE_PAGE_BATCH_SIZE)
3526 return VINF_SUCCESS;
3527
3528 /*
3529 * Flush the pages.
3530 */
3531 int rc = GMMR3FreePagesPerform(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE);
3532 if (RT_SUCCESS(rc))
3533 {
3534 GMMR3FreePagesRePrep(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
3535 *pcPendingPages = 0;
3536 }
3537 return rc;
3538}
3539
3540
3541/**
3542 * Converts a GC physical address to a HC ring-3 pointer, with some
3543 * additional checks.
3544 *
3545 * @returns VBox status code.
3546 * @retval VINF_SUCCESS on success.
3547 * @retval VINF_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
3548 * access handler of some kind.
3549 * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
3550 * accesses or is odd in any way.
3551 * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
3552 *
3553 * @param pVM The VM handle.
3554 * @param GCPhys The GC physical address to convert.
3555 * @param fWritable Whether write access is required.
3556 * @param ppv Where to store the pointer corresponding to GCPhys on
3557 * success.
3558 */
3559VMMR3DECL(int) PGMR3PhysTlbGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, void **ppv)
3560{
3561 pgmLock(pVM);
3562
3563 PPGMRAMRANGE pRam;
3564 PPGMPAGE pPage;
3565 int rc = pgmPhysGetPageAndRangeEx(&pVM->pgm.s, GCPhys, &pPage, &pRam);
3566 if (RT_SUCCESS(rc))
3567 {
3568 if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage))
3569 rc = VINF_SUCCESS;
3570 else
3571 {
3572 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
3573 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
3574 else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
3575 {
3576 /** @todo Handle TLB loads of virtual handlers so ./test.sh can be made to work
3577 * in -norawr0 mode. */
3578 if (fWritable)
3579 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
3580 }
3581 else
3582 {
3583 /* Temporarily disabled physical handler(s), since the recompiler
3584 doesn't get notified when it's reset we'll have to pretend it's
3585 operating normally. */
3586 if (pgmHandlerPhysicalIsAll(pVM, GCPhys))
3587 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
3588 else
3589 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
3590 }
3591 }
3592 if (RT_SUCCESS(rc))
3593 {
3594 int rc2;
3595
3596 /* Make sure what we return is writable. */
3597 if (fWritable && rc != VINF_PGM_PHYS_TLB_CATCH_WRITE)
3598 switch (PGM_PAGE_GET_STATE(pPage))
3599 {
3600 case PGM_PAGE_STATE_ALLOCATED:
3601 break;
3602 case PGM_PAGE_STATE_ZERO:
3603 case PGM_PAGE_STATE_SHARED:
3604 case PGM_PAGE_STATE_WRITE_MONITORED:
3605 rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
3606 AssertLogRelRCReturn(rc2, rc2);
3607 break;
3608 }
3609
3610 /* Get a ring-3 mapping of the address. */
3611 PPGMPAGER3MAPTLBE pTlbe;
3612 rc2 = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
3613 AssertLogRelRCReturn(rc2, rc2);
3614 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
3615 /** @todo mapping/locking hell; this isn't horribly efficient since
3616 * pgmPhysPageLoadIntoTlb will repeat the lookup we've done here. */
3617
3618 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
3619 }
3620 else
3621 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));
3622
3623 /* else: handler catching all access, no pointer returned. */
3624 }
3625 else
3626 rc = VERR_PGM_PHYS_TLB_UNASSIGNED;
3627
3628 pgmUnlock(pVM);
3629 return rc;
3630}
3631
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette