VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMPhys.cpp@ 27590

Last change on this file since 27590 was 27590, checked in by vboxsync, 15 years ago

Compile fix

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 130.0 KB
Line 
1/* $Id: PGMPhys.cpp 27590 2010-03-22 13:52:58Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_PGM_PHYS
27#include <VBox/pgm.h>
28#include <VBox/iom.h>
29#include <VBox/mm.h>
30#include <VBox/stam.h>
31#include <VBox/rem.h>
32#include <VBox/pdmdev.h>
33#include "PGMInternal.h"
34#include <VBox/vm.h>
35#include "PGMInline.h"
36#include <VBox/sup.h>
37#include <VBox/param.h>
38#include <VBox/err.h>
39#include <VBox/log.h>
40#include <iprt/assert.h>
41#include <iprt/alloc.h>
42#include <iprt/asm.h>
43#include <iprt/thread.h>
44#include <iprt/string.h>
45
46
47/*******************************************************************************
48* Defined Constants And Macros *
49*******************************************************************************/
50/** The number of pages to free in one batch. */
51#define PGMPHYS_FREE_PAGE_BATCH_SIZE 128
52
53
54/*******************************************************************************
55* Internal Functions *
56*******************************************************************************/
57static DECLCALLBACK(int) pgmR3PhysRomWriteHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
58static int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys);
59
60
61/*
62 * PGMR3PhysReadU8-64
63 * PGMR3PhysWriteU8-64
64 */
65#define PGMPHYSFN_READNAME PGMR3PhysReadU8
66#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8
67#define PGMPHYS_DATASIZE 1
68#define PGMPHYS_DATATYPE uint8_t
69#include "PGMPhysRWTmpl.h"
70
71#define PGMPHYSFN_READNAME PGMR3PhysReadU16
72#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16
73#define PGMPHYS_DATASIZE 2
74#define PGMPHYS_DATATYPE uint16_t
75#include "PGMPhysRWTmpl.h"
76
77#define PGMPHYSFN_READNAME PGMR3PhysReadU32
78#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32
79#define PGMPHYS_DATASIZE 4
80#define PGMPHYS_DATATYPE uint32_t
81#include "PGMPhysRWTmpl.h"
82
83#define PGMPHYSFN_READNAME PGMR3PhysReadU64
84#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64
85#define PGMPHYS_DATASIZE 8
86#define PGMPHYS_DATATYPE uint64_t
87#include "PGMPhysRWTmpl.h"
88
89
90/**
91 * EMT worker for PGMR3PhysReadExternal.
92 */
93static DECLCALLBACK(int) pgmR3PhysReadExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, void *pvBuf, size_t cbRead)
94{
95 PGMPhysRead(pVM, *pGCPhys, pvBuf, cbRead);
96 return VINF_SUCCESS;
97}
98
99
100/**
101 * Write to physical memory, external users.
102 *
103 * @returns VBox status code.
104 * @retval VINF_SUCCESS.
105 *
106 * @param pVM VM Handle.
107 * @param GCPhys Physical address to write to.
108 * @param pvBuf What to write.
109 * @param cbWrite How many bytes to write.
110 *
111 * @thread Any but EMTs.
112 */
113VMMR3DECL(int) PGMR3PhysReadExternal(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead)
114{
115 VM_ASSERT_OTHER_THREAD(pVM);
116
117 AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
118 LogFlow(("PGMR3PhysReadExternal: %RGp %d\n", GCPhys, cbRead));
119
120 pgmLock(pVM);
121
122 /*
123 * Copy loop on ram ranges.
124 */
125 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
126 for (;;)
127 {
128 /* Find range. */
129 while (pRam && GCPhys > pRam->GCPhysLast)
130 pRam = pRam->CTX_SUFF(pNext);
131 /* Inside range or not? */
132 if (pRam && GCPhys >= pRam->GCPhys)
133 {
134 /*
135 * Must work our way thru this page by page.
136 */
137 RTGCPHYS off = GCPhys - pRam->GCPhys;
138 while (off < pRam->cb)
139 {
140 unsigned iPage = off >> PAGE_SHIFT;
141 PPGMPAGE pPage = &pRam->aPages[iPage];
142
143 /*
144 * If the page has an ALL access handler, we'll have to
145 * delegate the job to EMT.
146 */
147 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
148 {
149 pgmUnlock(pVM);
150
151 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysReadExternalEMT, 4,
152 pVM, &GCPhys, pvBuf, cbRead);
153 }
154 Assert(!PGM_PAGE_IS_MMIO(pPage));
155
156 /*
157 * Simple stuff, go ahead.
158 */
159 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
160 if (cb > cbRead)
161 cb = cbRead;
162 const void *pvSrc;
163 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc);
164 if (RT_SUCCESS(rc))
165 memcpy(pvBuf, pvSrc, cb);
166 else
167 {
168 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
169 pRam->GCPhys + off, pPage, rc));
170 memset(pvBuf, 0xff, cb);
171 }
172
173 /* next page */
174 if (cb >= cbRead)
175 {
176 pgmUnlock(pVM);
177 return VINF_SUCCESS;
178 }
179 cbRead -= cb;
180 off += cb;
181 GCPhys += cb;
182 pvBuf = (char *)pvBuf + cb;
183 } /* walk pages in ram range. */
184 }
185 else
186 {
187 LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
188
189 /*
190 * Unassigned address space.
191 */
192 if (!pRam)
193 break;
194 size_t cb = pRam->GCPhys - GCPhys;
195 if (cb >= cbRead)
196 {
197 memset(pvBuf, 0xff, cbRead);
198 break;
199 }
200 memset(pvBuf, 0xff, cb);
201
202 cbRead -= cb;
203 pvBuf = (char *)pvBuf + cb;
204 GCPhys += cb;
205 }
206 } /* Ram range walk */
207
208 pgmUnlock(pVM);
209
210 return VINF_SUCCESS;
211}
212
213
214/**
215 * EMT worker for PGMR3PhysWriteExternal.
216 */
217static DECLCALLBACK(int) pgmR3PhysWriteExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, const void *pvBuf, size_t cbWrite)
218{
219 /** @todo VERR_EM_NO_MEMORY */
220 PGMPhysWrite(pVM, *pGCPhys, pvBuf, cbWrite);
221 return VINF_SUCCESS;
222}
223
224
225/**
226 * Write to physical memory, external users.
227 *
228 * @returns VBox status code.
229 * @retval VINF_SUCCESS.
230 * @retval VERR_EM_NO_MEMORY.
231 *
232 * @param pVM VM Handle.
233 * @param GCPhys Physical address to write to.
234 * @param pvBuf What to write.
235 * @param cbWrite How many bytes to write.
236 * @param pszWho Who is writing. For tracking down who is writing
237 * after we've saved the state.
238 *
239 * @thread Any but EMTs.
240 */
241VMMDECL(int) PGMR3PhysWriteExternal(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, const char *pszWho)
242{
243 VM_ASSERT_OTHER_THREAD(pVM);
244
245 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites,
246 ("Calling PGMR3PhysWriteExternal after pgmR3Save()! GCPhys=%RGp cbWrite=%#x pszWho=%s\n",
247 GCPhys, cbWrite, pszWho));
248 AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
249 LogFlow(("PGMR3PhysWriteExternal: %RGp %d\n", GCPhys, cbWrite));
250
251 pgmLock(pVM);
252
253 /*
254 * Copy loop on ram ranges, stop when we hit something difficult.
255 */
256 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
257 for (;;)
258 {
259 /* Find range. */
260 while (pRam && GCPhys > pRam->GCPhysLast)
261 pRam = pRam->CTX_SUFF(pNext);
262 /* Inside range or not? */
263 if (pRam && GCPhys >= pRam->GCPhys)
264 {
265 /*
266 * Must work our way thru this page by page.
267 */
268 RTGCPTR off = GCPhys - pRam->GCPhys;
269 while (off < pRam->cb)
270 {
271 RTGCPTR iPage = off >> PAGE_SHIFT;
272 PPGMPAGE pPage = &pRam->aPages[iPage];
273
274 /*
275 * Is the page problematic, we have to do the work on the EMT.
276 *
277 * Allocating writable pages and access handlers are
278 * problematic, write monitored pages are simple and can be
279 * dealth with here.
280 */
281 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
282 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
283 {
284 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
285 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
286 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
287 else
288 {
289 pgmUnlock(pVM);
290
291 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysWriteExternalEMT, 4,
292 pVM, &GCPhys, pvBuf, cbWrite);
293 }
294 }
295 Assert(!PGM_PAGE_IS_MMIO(pPage));
296
297 /*
298 * Simple stuff, go ahead.
299 */
300 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
301 if (cb > cbWrite)
302 cb = cbWrite;
303 void *pvDst;
304 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst);
305 if (RT_SUCCESS(rc))
306 memcpy(pvDst, pvBuf, cb);
307 else
308 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
309 pRam->GCPhys + off, pPage, rc));
310
311 /* next page */
312 if (cb >= cbWrite)
313 {
314 pgmUnlock(pVM);
315 return VINF_SUCCESS;
316 }
317
318 cbWrite -= cb;
319 off += cb;
320 GCPhys += cb;
321 pvBuf = (const char *)pvBuf + cb;
322 } /* walk pages in ram range */
323 }
324 else
325 {
326 /*
327 * Unassigned address space, skip it.
328 */
329 if (!pRam)
330 break;
331 size_t cb = pRam->GCPhys - GCPhys;
332 if (cb >= cbWrite)
333 break;
334 cbWrite -= cb;
335 pvBuf = (const char *)pvBuf + cb;
336 GCPhys += cb;
337 }
338 } /* Ram range walk */
339
340 pgmUnlock(pVM);
341 return VINF_SUCCESS;
342}
343
344
345/**
346 * VMR3ReqCall worker for PGMR3PhysGCPhys2CCPtrExternal to make pages writable.
347 *
348 * @returns see PGMR3PhysGCPhys2CCPtrExternal
349 * @param pVM The VM handle.
350 * @param pGCPhys Pointer to the guest physical address.
351 * @param ppv Where to store the mapping address.
352 * @param pLock Where to store the lock.
353 */
354static DECLCALLBACK(int) pgmR3PhysGCPhys2CCPtrDelegated(PVM pVM, PRTGCPHYS pGCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
355{
356 /*
357 * Just hand it to PGMPhysGCPhys2CCPtr and check that it's not a page with
358 * an access handler after it succeeds.
359 */
360 int rc = pgmLock(pVM);
361 AssertRCReturn(rc, rc);
362
363 rc = PGMPhysGCPhys2CCPtr(pVM, *pGCPhys, ppv, pLock);
364 if (RT_SUCCESS(rc))
365 {
366 PPGMPAGEMAPTLBE pTlbe;
367 int rc2 = pgmPhysPageQueryTlbe(&pVM->pgm.s, *pGCPhys, &pTlbe);
368 AssertFatalRC(rc2);
369 PPGMPAGE pPage = pTlbe->pPage;
370 if (PGM_PAGE_IS_MMIO(pPage))
371 {
372 PGMPhysReleasePageMappingLock(pVM, pLock);
373 rc = VERR_PGM_PHYS_PAGE_RESERVED;
374 }
375 else if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
376#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
377 || pgmPoolIsDirtyPage(pVM, *pGCPhys)
378#endif
379 )
380 {
381 /* We *must* flush any corresponding pgm pool page here, otherwise we'll
382 * not be informed about writes and keep bogus gst->shw mappings around.
383 */
384 pgmPoolFlushPageByGCPhys(pVM, *pGCPhys);
385 Assert(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage));
386 /** @todo r=bird: return VERR_PGM_PHYS_PAGE_RESERVED here if it still has
387 * active handlers, see the PGMR3PhysGCPhys2CCPtrExternal docs. */
388 }
389 }
390
391 pgmUnlock(pVM);
392 return rc;
393}
394
395
396/**
397 * Requests the mapping of a guest page into ring-3, external threads.
398 *
399 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
400 * release it.
401 *
402 * This API will assume your intention is to write to the page, and will
403 * therefore replace shared and zero pages. If you do not intend to modify the
404 * page, use the PGMR3PhysGCPhys2CCPtrReadOnlyExternal() API.
405 *
406 * @returns VBox status code.
407 * @retval VINF_SUCCESS on success.
408 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
409 * backing or if the page has any active access handlers. The caller
410 * must fall back on using PGMR3PhysWriteExternal.
411 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
412 *
413 * @param pVM The VM handle.
414 * @param GCPhys The guest physical address of the page that should be mapped.
415 * @param ppv Where to store the address corresponding to GCPhys.
416 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
417 *
418 * @remark Avoid calling this API from within critical sections (other than the
419 * PGM one) because of the deadlock risk when we have to delegating the
420 * task to an EMT.
421 * @thread Any.
422 */
423VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrExternal(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
424{
425 AssertPtr(ppv);
426 AssertPtr(pLock);
427
428 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
429
430 int rc = pgmLock(pVM);
431 AssertRCReturn(rc, rc);
432
433 /*
434 * Query the Physical TLB entry for the page (may fail).
435 */
436 PPGMPAGEMAPTLBE pTlbe;
437 rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
438 if (RT_SUCCESS(rc))
439 {
440 PPGMPAGE pPage = pTlbe->pPage;
441 if (PGM_PAGE_IS_MMIO(pPage))
442 rc = VERR_PGM_PHYS_PAGE_RESERVED;
443 else
444 {
445 /*
446 * If the page is shared, the zero page, or being write monitored
447 * it must be converted to an page that's writable if possible.
448 * We can only deal with write monitored pages here, the rest have
449 * to be on an EMT.
450 */
451 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
452 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
453#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
454 || pgmPoolIsDirtyPage(pVM, GCPhys)
455#endif
456 )
457 {
458 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
459 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
460#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
461 && !pgmPoolIsDirtyPage(pVM, GCPhys)
462#endif
463 )
464 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
465 else
466 {
467 pgmUnlock(pVM);
468
469 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
470 pVM, &GCPhys, ppv, pLock);
471 }
472 }
473
474 /*
475 * Now, just perform the locking and calculate the return address.
476 */
477 PPGMPAGEMAP pMap = pTlbe->pMap;
478 if (pMap)
479 pMap->cRefs++;
480
481 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
482 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
483 {
484 if (cLocks == 0)
485 pVM->pgm.s.cWriteLockedPages++;
486 PGM_PAGE_INC_WRITE_LOCKS(pPage);
487 }
488 else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
489 {
490 PGM_PAGE_INC_WRITE_LOCKS(pPage);
491 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", GCPhys, pPage));
492 if (pMap)
493 pMap->cRefs++; /* Extra ref to prevent it from going away. */
494 }
495
496 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
497 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
498 pLock->pvMap = pMap;
499 }
500 }
501
502 pgmUnlock(pVM);
503 return rc;
504}
505
506
507/**
508 * Requests the mapping of a guest page into ring-3, external threads.
509 *
510 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
511 * release it.
512 *
513 * @returns VBox status code.
514 * @retval VINF_SUCCESS on success.
515 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
516 * backing or if the page as an active ALL access handler. The caller
517 * must fall back on using PGMPhysRead.
518 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
519 *
520 * @param pVM The VM handle.
521 * @param GCPhys The guest physical address of the page that should be mapped.
522 * @param ppv Where to store the address corresponding to GCPhys.
523 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
524 *
525 * @remark Avoid calling this API from within critical sections (other than
526 * the PGM one) because of the deadlock risk.
527 * @thread Any.
528 */
529VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrReadOnlyExternal(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
530{
531 int rc = pgmLock(pVM);
532 AssertRCReturn(rc, rc);
533
534 /*
535 * Query the Physical TLB entry for the page (may fail).
536 */
537 PPGMPAGEMAPTLBE pTlbe;
538 rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
539 if (RT_SUCCESS(rc))
540 {
541 PPGMPAGE pPage = pTlbe->pPage;
542#if 1
543 /* MMIO pages doesn't have any readable backing. */
544 if (PGM_PAGE_IS_MMIO(pPage))
545 rc = VERR_PGM_PHYS_PAGE_RESERVED;
546#else
547 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
548 rc = VERR_PGM_PHYS_PAGE_RESERVED;
549#endif
550 else
551 {
552 /*
553 * Now, just perform the locking and calculate the return address.
554 */
555 PPGMPAGEMAP pMap = pTlbe->pMap;
556 if (pMap)
557 pMap->cRefs++;
558
559 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
560 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
561 {
562 if (cLocks == 0)
563 pVM->pgm.s.cReadLockedPages++;
564 PGM_PAGE_INC_READ_LOCKS(pPage);
565 }
566 else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
567 {
568 PGM_PAGE_INC_READ_LOCKS(pPage);
569 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", GCPhys, pPage));
570 if (pMap)
571 pMap->cRefs++; /* Extra ref to prevent it from going away. */
572 }
573
574 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
575 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
576 pLock->pvMap = pMap;
577 }
578 }
579
580 pgmUnlock(pVM);
581 return rc;
582}
583
584
585/**
586 * Relinks the RAM ranges using the pSelfRC and pSelfR0 pointers.
587 *
588 * Called when anything was relocated.
589 *
590 * @param pVM Pointer to the shared VM structure.
591 */
592void pgmR3PhysRelinkRamRanges(PVM pVM)
593{
594 PPGMRAMRANGE pCur;
595
596#ifdef VBOX_STRICT
597 for (pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
598 {
599 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfR0 == MMHyperCCToR0(pVM, pCur));
600 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfRC == MMHyperCCToRC(pVM, pCur));
601 Assert((pCur->GCPhys & PAGE_OFFSET_MASK) == 0);
602 Assert((pCur->GCPhysLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
603 Assert((pCur->cb & PAGE_OFFSET_MASK) == 0);
604 Assert(pCur->cb == pCur->GCPhysLast - pCur->GCPhys + 1);
605 for (PPGMRAMRANGE pCur2 = pVM->pgm.s.pRamRangesR3; pCur2; pCur2 = pCur2->pNextR3)
606 Assert( pCur2 == pCur
607 || strcmp(pCur2->pszDesc, pCur->pszDesc)); /** @todo fix MMIO ranges!! */
608 }
609#endif
610
611 pCur = pVM->pgm.s.pRamRangesR3;
612 if (pCur)
613 {
614 pVM->pgm.s.pRamRangesR0 = pCur->pSelfR0;
615 pVM->pgm.s.pRamRangesRC = pCur->pSelfRC;
616
617 for (; pCur->pNextR3; pCur = pCur->pNextR3)
618 {
619 pCur->pNextR0 = pCur->pNextR3->pSelfR0;
620 pCur->pNextRC = pCur->pNextR3->pSelfRC;
621 }
622
623 Assert(pCur->pNextR0 == NIL_RTR0PTR);
624 Assert(pCur->pNextRC == NIL_RTRCPTR);
625 }
626 else
627 {
628 Assert(pVM->pgm.s.pRamRangesR0 == NIL_RTR0PTR);
629 Assert(pVM->pgm.s.pRamRangesRC == NIL_RTRCPTR);
630 }
631 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
632}
633
634
635/**
636 * Links a new RAM range into the list.
637 *
638 * @param pVM Pointer to the shared VM structure.
639 * @param pNew Pointer to the new list entry.
640 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
641 */
642static void pgmR3PhysLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, PPGMRAMRANGE pPrev)
643{
644 AssertMsg(pNew->pszDesc, ("%RGp-%RGp\n", pNew->GCPhys, pNew->GCPhysLast));
645 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfR0 == MMHyperCCToR0(pVM, pNew));
646 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfRC == MMHyperCCToRC(pVM, pNew));
647
648 pgmLock(pVM);
649
650 PPGMRAMRANGE pRam = pPrev ? pPrev->pNextR3 : pVM->pgm.s.pRamRangesR3;
651 pNew->pNextR3 = pRam;
652 pNew->pNextR0 = pRam ? pRam->pSelfR0 : NIL_RTR0PTR;
653 pNew->pNextRC = pRam ? pRam->pSelfRC : NIL_RTRCPTR;
654
655 if (pPrev)
656 {
657 pPrev->pNextR3 = pNew;
658 pPrev->pNextR0 = pNew->pSelfR0;
659 pPrev->pNextRC = pNew->pSelfRC;
660 }
661 else
662 {
663 pVM->pgm.s.pRamRangesR3 = pNew;
664 pVM->pgm.s.pRamRangesR0 = pNew->pSelfR0;
665 pVM->pgm.s.pRamRangesRC = pNew->pSelfRC;
666 }
667 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
668 pgmUnlock(pVM);
669}
670
671
672/**
673 * Unlink an existing RAM range from the list.
674 *
675 * @param pVM Pointer to the shared VM structure.
676 * @param pRam Pointer to the new list entry.
677 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
678 */
679static void pgmR3PhysUnlinkRamRange2(PVM pVM, PPGMRAMRANGE pRam, PPGMRAMRANGE pPrev)
680{
681 Assert(pPrev ? pPrev->pNextR3 == pRam : pVM->pgm.s.pRamRangesR3 == pRam);
682 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfR0 == MMHyperCCToR0(pVM, pRam));
683 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfRC == MMHyperCCToRC(pVM, pRam));
684
685 pgmLock(pVM);
686
687 PPGMRAMRANGE pNext = pRam->pNextR3;
688 if (pPrev)
689 {
690 pPrev->pNextR3 = pNext;
691 pPrev->pNextR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
692 pPrev->pNextRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
693 }
694 else
695 {
696 Assert(pVM->pgm.s.pRamRangesR3 == pRam);
697 pVM->pgm.s.pRamRangesR3 = pNext;
698 pVM->pgm.s.pRamRangesR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
699 pVM->pgm.s.pRamRangesRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
700 }
701 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
702 pgmUnlock(pVM);
703}
704
705
706/**
707 * Unlink an existing RAM range from the list.
708 *
709 * @param pVM Pointer to the shared VM structure.
710 * @param pRam Pointer to the new list entry.
711 */
712static void pgmR3PhysUnlinkRamRange(PVM pVM, PPGMRAMRANGE pRam)
713{
714 pgmLock(pVM);
715
716 /* find prev. */
717 PPGMRAMRANGE pPrev = NULL;
718 PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3;
719 while (pCur != pRam)
720 {
721 pPrev = pCur;
722 pCur = pCur->pNextR3;
723 }
724 AssertFatal(pCur);
725
726 pgmR3PhysUnlinkRamRange2(pVM, pRam, pPrev);
727 pgmUnlock(pVM);
728}
729
730
731/**
732 * Frees a range of pages, replacing them with ZERO pages of the specified type.
733 *
734 * @returns VBox status code.
735 * @param pVM The VM handle.
736 * @param pRam The RAM range in which the pages resides.
737 * @param GCPhys The address of the first page.
738 * @param GCPhysLast The address of the last page.
739 * @param uType The page type to replace then with.
740 */
741static int pgmR3PhysFreePageRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, uint8_t uType)
742{
743 Assert(PGMIsLockOwner(pVM));
744 uint32_t cPendingPages = 0;
745 PGMMFREEPAGESREQ pReq;
746 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
747 AssertLogRelRCReturn(rc, rc);
748
749 /* Iterate the pages. */
750 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
751 uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1;
752 while (cPagesLeft-- > 0)
753 {
754 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
755 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
756
757 PGM_PAGE_SET_TYPE(pPageDst, uType);
758
759 GCPhys += PAGE_SIZE;
760 pPageDst++;
761 }
762
763 if (cPendingPages)
764 {
765 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
766 AssertLogRelRCReturn(rc, rc);
767 }
768 GMMR3FreePagesCleanup(pReq);
769
770 return rc;
771}
772
773/**
774 * Rendezvous callback used by PGMR3ChangeMemBalloon that changes the memory balloon size
775 *
776 * This is only called on one of the EMTs while the other ones are waiting for
777 * it to complete this function.
778 *
779 * @returns VINF_SUCCESS (VBox strict status code).
780 * @param pVM The VM handle.
781 * @param pVCpu The VMCPU for the EMT we're being called on. Unused.
782 * @param pvUser User parameter
783 */
784static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysChangeMemBalloonRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
785{
786 uintptr_t *paUser = (uintptr_t *)pvUser;
787 bool fInflate = !!paUser[0];
788 unsigned cPages = paUser[1];
789 RTGCPHYS *paPhysPage = (RTGCPHYS *)paUser[2];
790 uint32_t cPendingPages = 0;
791 PGMMFREEPAGESREQ pReq;
792 int rc;
793
794 Log(("pgmR3PhysChangeMemBalloonRendezvous: %s %x pages\n", (fInflate) ? "inflate" : "deflate", cPages));
795 pgmLock(pVM);
796
797 if (fInflate)
798 {
799 /* Replace pages with ZERO pages. */
800 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
801 if (RT_FAILURE(rc))
802 {
803 pgmUnlock(pVM);
804 AssertLogRelRC(rc);
805 return rc;
806 }
807
808 /* Iterate the pages. */
809 for (unsigned i = 0; i < cPages; i++)
810 {
811 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, paPhysPage[i]);
812 if ( pPage == NULL
813 || pPage->uTypeY != PGMPAGETYPE_RAM)
814 {
815 Log(("pgmR3PhysChangeMemBalloonRendezvous: invalid physical page %RGp pPage->u3Type=%d\n", paPhysPage[i], (pPage) ? pPage->uTypeY : 0));
816 break;
817 }
818
819 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, paPhysPage[i]);
820 if (RT_FAILURE(rc))
821 {
822 pgmUnlock(pVM);
823 AssertLogRelRC(rc);
824 return rc;
825 }
826 Assert(PGM_PAGE_IS_ZERO(pPage));
827 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_BALLOONED);
828 }
829
830 if (cPendingPages)
831 {
832 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
833 if (RT_FAILURE(rc))
834 {
835 pgmUnlock(pVM);
836 AssertLogRelRC(rc);
837 return rc;
838 }
839 }
840 GMMR3FreePagesCleanup(pReq);
841
842 /* Flush the PGM pool cache as we might have stale references to pages that we just freed. */
843 pgmR3PoolClearAllRendezvous(pVM, pVCpu, NULL);
844 }
845
846 /* Notify GMM about the balloon change. */
847 rc = GMMR3BalloonedPages(pVM, (fInflate) ? GMMBALLOONACTION_INFLATE : GMMBALLOONACTION_DEFLATE, cPages);
848 if (RT_SUCCESS(rc))
849 {
850 if (!fInflate)
851 {
852 Assert(pVM->pgm.s.cBalloonedPages >= cPages);
853 pVM->pgm.s.cBalloonedPages -= cPages;
854 }
855 else
856 pVM->pgm.s.cBalloonedPages += cPages;
857 }
858
859 pgmUnlock(pVM);
860
861 /* Flush the recompiler's TLB as well. */
862 for (unsigned i = 0; i < pVM->cCpus; i++)
863 CPUMSetChangedFlags(&pVM->aCpus[i], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
864
865 AssertLogRelRC(rc);
866 return rc;
867}
868
869/**
870 * Frees a range of ram pages, replacing them with ZERO pages; helper for PGMR3PhysFreeRamPages
871 *
872 * @returns VBox status code.
873 * @param pVM The VM handle.
874 * @param fInflate Inflate or deflate memory balloon
875 * @param cPages Number of pages to free
876 * @param paPhysPage Array of guest physical addresses
877 */
878static DECLCALLBACK(void) pgmR3PhysChangeMemBalloonHelper(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
879{
880 uintptr_t paUser[3];
881
882 paUser[0] = fInflate;
883 paUser[1] = cPages;
884 paUser[2] = (uintptr_t)paPhysPage;
885 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
886 AssertRC(rc);
887
888 /* Made a copy in PGMR3PhysFreeRamPages; free it here. */
889 RTMemFree(paPhysPage);
890}
891
892/**
893 * Inflate or deflate a memory balloon
894 *
895 * @returns VBox status code.
896 * @param pVM The VM handle.
897 * @param fInflate Inflate or deflate memory balloon
898 * @param cPages Number of pages to free
899 * @param paPhysPage Array of guest physical addresses
900 */
901VMMR3DECL(int) PGMR3PhysChangeMemBalloon(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
902{
903 int rc;
904
905 /* We own the IOM lock here and could cause a deadlock by waiting for another VCPU that is blocking on the IOM lock.
906 * In the SMP case we post a request packet to postpone the job.
907 */
908 if (pVM->cCpus > 1)
909 {
910 unsigned cbPhysPage = cPages * sizeof(paPhysPage[0]);
911 RTGCPHYS *paPhysPageCopy = (RTGCPHYS *)RTMemAlloc(cbPhysPage);
912 AssertReturn(paPhysPageCopy, VERR_NO_MEMORY);
913
914 memcpy(paPhysPageCopy, paPhysPage, cbPhysPage);
915
916 rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysChangeMemBalloonHelper, 4, pVM, fInflate, cPages, paPhysPageCopy);
917 AssertRC(rc);
918 }
919 else
920 {
921 uintptr_t paUser[3];
922
923 paUser[0] = fInflate;
924 paUser[1] = cPages;
925 paUser[2] = (uintptr_t)paPhysPage;
926 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
927 AssertRC(rc);
928 }
929 return rc;
930}
931
932
933/**
934 * PGMR3PhysRegisterRam worker that initializes and links a RAM range.
935 *
936 * @param pVM The VM handle.
937 * @param pNew The new RAM range.
938 * @param GCPhys The address of the RAM range.
939 * @param GCPhysLast The last address of the RAM range.
940 * @param RCPtrNew The RC address if the range is floating. NIL_RTRCPTR
941 * if in HMA.
942 * @param R0PtrNew Ditto for R0.
943 * @param pszDesc The description.
944 * @param pPrev The previous RAM range (for linking).
945 */
946static void pgmR3PhysInitAndLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
947 RTRCPTR RCPtrNew, RTR0PTR R0PtrNew, const char *pszDesc, PPGMRAMRANGE pPrev)
948{
949 /*
950 * Initialize the range.
951 */
952 pNew->pSelfR0 = R0PtrNew != NIL_RTR0PTR ? R0PtrNew : MMHyperCCToR0(pVM, pNew);
953 pNew->pSelfRC = RCPtrNew != NIL_RTRCPTR ? RCPtrNew : MMHyperCCToRC(pVM, pNew);
954 pNew->GCPhys = GCPhys;
955 pNew->GCPhysLast = GCPhysLast;
956 pNew->cb = GCPhysLast - GCPhys + 1;
957 pNew->pszDesc = pszDesc;
958 pNew->fFlags = RCPtrNew != NIL_RTRCPTR ? PGM_RAM_RANGE_FLAGS_FLOATING : 0;
959 pNew->pvR3 = NULL;
960 pNew->paLSPages = NULL;
961
962 uint32_t const cPages = pNew->cb >> PAGE_SHIFT;
963 RTGCPHYS iPage = cPages;
964 while (iPage-- > 0)
965 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM);
966
967 /* Update the page count stats. */
968 pVM->pgm.s.cZeroPages += cPages;
969 pVM->pgm.s.cAllPages += cPages;
970
971 /*
972 * Link it.
973 */
974 pgmR3PhysLinkRamRange(pVM, pNew, pPrev);
975}
976
977
978/**
979 * Relocate a floating RAM range.
980 *
981 * @copydoc FNPGMRELOCATE.
982 */
983static DECLCALLBACK(bool) pgmR3PhysRamRangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew, PGMRELOCATECALL enmMode, void *pvUser)
984{
985 PPGMRAMRANGE pRam = (PPGMRAMRANGE)pvUser;
986 Assert(pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING);
987 Assert(pRam->pSelfRC == GCPtrOld + PAGE_SIZE);
988
989 switch (enmMode)
990 {
991 case PGMRELOCATECALL_SUGGEST:
992 return true;
993 case PGMRELOCATECALL_RELOCATE:
994 {
995 /* Update myself and then relink all the ranges. */
996 pgmLock(pVM);
997 pRam->pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE);
998 pgmR3PhysRelinkRamRanges(pVM);
999 pgmUnlock(pVM);
1000 return true;
1001 }
1002
1003 default:
1004 AssertFailedReturn(false);
1005 }
1006}
1007
1008
1009/**
1010 * PGMR3PhysRegisterRam worker that registers a high chunk.
1011 *
1012 * @returns VBox status code.
1013 * @param pVM The VM handle.
1014 * @param GCPhys The address of the RAM.
1015 * @param cRamPages The number of RAM pages to register.
1016 * @param cbChunk The size of the PGMRAMRANGE guest mapping.
1017 * @param iChunk The chunk number.
1018 * @param pszDesc The RAM range description.
1019 * @param ppPrev Previous RAM range pointer. In/Out.
1020 */
1021static int pgmR3PhysRegisterHighRamChunk(PVM pVM, RTGCPHYS GCPhys, uint32_t cRamPages,
1022 uint32_t cbChunk, uint32_t iChunk, const char *pszDesc,
1023 PPGMRAMRANGE *ppPrev)
1024{
1025 const char *pszDescChunk = iChunk == 0
1026 ? pszDesc
1027 : MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s (#%u)", pszDesc, iChunk + 1);
1028 AssertReturn(pszDescChunk, VERR_NO_MEMORY);
1029
1030 /*
1031 * Allocate memory for the new chunk.
1032 */
1033 size_t const cChunkPages = RT_ALIGN_Z(RT_UOFFSETOF(PGMRAMRANGE, aPages[cRamPages]), PAGE_SIZE) >> PAGE_SHIFT;
1034 PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
1035 AssertReturn(paChunkPages, VERR_NO_TMP_MEMORY);
1036 RTR0PTR R0PtrChunk = NIL_RTR0PTR;
1037 void *pvChunk = NULL;
1038 int rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk,
1039#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1040 VMMIsHwVirtExtForced(pVM) ? &R0PtrChunk : NULL,
1041#else
1042 NULL,
1043#endif
1044 paChunkPages);
1045 if (RT_SUCCESS(rc))
1046 {
1047#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1048 if (!VMMIsHwVirtExtForced(pVM))
1049 R0PtrChunk = NIL_RTR0PTR;
1050#else
1051 R0PtrChunk = (uintptr_t)pvChunk;
1052#endif
1053 memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
1054
1055 PPGMRAMRANGE pNew = (PPGMRAMRANGE)pvChunk;
1056
1057 /*
1058 * Create a mapping and map the pages into it.
1059 * We push these in below the HMA.
1060 */
1061 RTGCPTR GCPtrChunkMap = pVM->pgm.s.GCPtrPrevRamRangeMapping - cbChunk;
1062 rc = PGMR3MapPT(pVM, GCPtrChunkMap, cbChunk, 0 /*fFlags*/, pgmR3PhysRamRangeRelocate, pNew, pszDescChunk);
1063 if (RT_SUCCESS(rc))
1064 {
1065 pVM->pgm.s.GCPtrPrevRamRangeMapping = GCPtrChunkMap;
1066
1067 RTGCPTR const GCPtrChunk = GCPtrChunkMap + PAGE_SIZE;
1068 RTGCPTR GCPtrPage = GCPtrChunk;
1069 for (uint32_t iPage = 0; iPage < cChunkPages && RT_SUCCESS(rc); iPage++, GCPtrPage += PAGE_SIZE)
1070 rc = PGMMap(pVM, GCPtrPage, paChunkPages[iPage].Phys, PAGE_SIZE, 0);
1071 if (RT_SUCCESS(rc))
1072 {
1073 /*
1074 * Ok, init and link the range.
1075 */
1076 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhys + ((RTGCPHYS)cRamPages << PAGE_SHIFT) - 1,
1077 (RTRCPTR)GCPtrChunk, R0PtrChunk, pszDescChunk, *ppPrev);
1078 *ppPrev = pNew;
1079 }
1080 }
1081
1082 if (RT_FAILURE(rc))
1083 SUPR3PageFreeEx(pvChunk, cChunkPages);
1084 }
1085
1086 RTMemTmpFree(paChunkPages);
1087 return rc;
1088}
1089
1090
1091/**
1092 * Sets up a range RAM.
1093 *
1094 * This will check for conflicting registrations, make a resource
1095 * reservation for the memory (with GMM), and setup the per-page
1096 * tracking structures (PGMPAGE).
1097 *
1098 * @returns VBox stutus code.
1099 * @param pVM Pointer to the shared VM structure.
1100 * @param GCPhys The physical address of the RAM.
1101 * @param cb The size of the RAM.
1102 * @param pszDesc The description - not copied, so, don't free or change it.
1103 */
1104VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc)
1105{
1106 /*
1107 * Validate input.
1108 */
1109 Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc));
1110 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
1111 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
1112 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
1113 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1114 AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER);
1115 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1116 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1117
1118 pgmLock(pVM);
1119
1120 /*
1121 * Find range location and check for conflicts.
1122 * (We don't lock here because the locking by EMT is only required on update.)
1123 */
1124 PPGMRAMRANGE pPrev = NULL;
1125 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1126 while (pRam && GCPhysLast >= pRam->GCPhys)
1127 {
1128 if ( GCPhysLast >= pRam->GCPhys
1129 && GCPhys <= pRam->GCPhysLast)
1130 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
1131 GCPhys, GCPhysLast, pszDesc,
1132 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1133 VERR_PGM_RAM_CONFLICT);
1134
1135 /* next */
1136 pPrev = pRam;
1137 pRam = pRam->pNextR3;
1138 }
1139
1140 /*
1141 * Register it with GMM (the API bitches).
1142 */
1143 const RTGCPHYS cPages = cb >> PAGE_SHIFT;
1144 int rc = MMR3IncreaseBaseReservation(pVM, cPages);
1145 if (RT_FAILURE(rc))
1146 {
1147 pgmUnlock(pVM);
1148 return rc;
1149 }
1150
1151 if ( GCPhys >= _4G
1152 && cPages > 256)
1153 {
1154 /*
1155 * The PGMRAMRANGE structures for the high memory can get very big.
1156 * In order to avoid SUPR3PageAllocEx allocation failures due to the
1157 * allocation size limit there and also to avoid being unable to find
1158 * guest mapping space for them, we split this memory up into 4MB in
1159 * (potential) raw-mode configs and 16MB chunks in forced AMD-V/VT-x
1160 * mode.
1161 *
1162 * The first and last page of each mapping are guard pages and marked
1163 * not-present. So, we've got 4186112 and 16769024 bytes available for
1164 * the PGMRAMRANGE structure.
1165 *
1166 * Note! The sizes used here will influence the saved state.
1167 */
1168 uint32_t cbChunk;
1169 uint32_t cPagesPerChunk;
1170 if (VMMIsHwVirtExtForced(pVM))
1171 {
1172 cbChunk = 16U*_1M;
1173 cPagesPerChunk = 1048048; /* max ~1048059 */
1174 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2);
1175 }
1176 else
1177 {
1178 cbChunk = 4U*_1M;
1179 cPagesPerChunk = 261616; /* max ~261627 */
1180 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 261616 < 4U*_1M - PAGE_SIZE * 2);
1181 }
1182 AssertRelease(RT_UOFFSETOF(PGMRAMRANGE, aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
1183
1184 RTGCPHYS cPagesLeft = cPages;
1185 RTGCPHYS GCPhysChunk = GCPhys;
1186 uint32_t iChunk = 0;
1187 while (cPagesLeft > 0)
1188 {
1189 uint32_t cPagesInChunk = cPagesLeft;
1190 if (cPagesInChunk > cPagesPerChunk)
1191 cPagesInChunk = cPagesPerChunk;
1192
1193 rc = pgmR3PhysRegisterHighRamChunk(pVM, GCPhysChunk, cPagesInChunk, cbChunk, iChunk, pszDesc, &pPrev);
1194 AssertRCReturn(rc, rc);
1195
1196 /* advance */
1197 GCPhysChunk += (RTGCPHYS)cPagesInChunk << PAGE_SHIFT;
1198 cPagesLeft -= cPagesInChunk;
1199 iChunk++;
1200 }
1201 }
1202 else
1203 {
1204 /*
1205 * Allocate, initialize and link the new RAM range.
1206 */
1207 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
1208 PPGMRAMRANGE pNew;
1209 rc = MMR3HyperAllocOnceNoRel(pVM, cbRamRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1210 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
1211
1212 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhysLast, NIL_RTRCPTR, NIL_RTR0PTR, pszDesc, pPrev);
1213 }
1214 PGMPhysInvalidatePageMapTLB(pVM);
1215 pgmUnlock(pVM);
1216
1217 /*
1218 * Notify REM.
1219 */
1220 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_RAM);
1221
1222 return VINF_SUCCESS;
1223}
1224
1225
1226/**
1227 * Worker called by PGMR3InitFinalize if we're configured to pre-allocate RAM.
1228 *
1229 * We do this late in the init process so that all the ROM and MMIO ranges have
1230 * been registered already and we don't go wasting memory on them.
1231 *
1232 * @returns VBox status code.
1233 *
1234 * @param pVM Pointer to the shared VM structure.
1235 */
1236int pgmR3PhysRamPreAllocate(PVM pVM)
1237{
1238 Assert(pVM->pgm.s.fRamPreAlloc);
1239 Log(("pgmR3PhysRamPreAllocate: enter\n"));
1240
1241 /*
1242 * Walk the RAM ranges and allocate all RAM pages, halt at
1243 * the first allocation error.
1244 */
1245 uint64_t cPages = 0;
1246 uint64_t NanoTS = RTTimeNanoTS();
1247 pgmLock(pVM);
1248 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
1249 {
1250 PPGMPAGE pPage = &pRam->aPages[0];
1251 RTGCPHYS GCPhys = pRam->GCPhys;
1252 uint32_t cLeft = pRam->cb >> PAGE_SHIFT;
1253 while (cLeft-- > 0)
1254 {
1255 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
1256 {
1257 switch (PGM_PAGE_GET_STATE(pPage))
1258 {
1259 case PGM_PAGE_STATE_ZERO:
1260 {
1261 int rc = pgmPhysAllocPage(pVM, pPage, GCPhys);
1262 if (RT_FAILURE(rc))
1263 {
1264 LogRel(("PGM: RAM Pre-allocation failed at %RGp (in %s) with rc=%Rrc\n", GCPhys, pRam->pszDesc, rc));
1265 pgmUnlock(pVM);
1266 return rc;
1267 }
1268 cPages++;
1269 break;
1270 }
1271
1272 case PGM_PAGE_STATE_BALLOONED:
1273 case PGM_PAGE_STATE_ALLOCATED:
1274 case PGM_PAGE_STATE_WRITE_MONITORED:
1275 case PGM_PAGE_STATE_SHARED:
1276 /* nothing to do here. */
1277 break;
1278 }
1279 }
1280
1281 /* next */
1282 pPage++;
1283 GCPhys += PAGE_SIZE;
1284 }
1285 }
1286 pgmUnlock(pVM);
1287 NanoTS = RTTimeNanoTS() - NanoTS;
1288
1289 LogRel(("PGM: Pre-allocated %llu pages in %llu ms\n", cPages, NanoTS / 1000000));
1290 Log(("pgmR3PhysRamPreAllocate: returns VINF_SUCCESS\n"));
1291 return VINF_SUCCESS;
1292}
1293
1294
1295/**
1296 * Resets (zeros) the RAM.
1297 *
1298 * ASSUMES that the caller owns the PGM lock.
1299 *
1300 * @returns VBox status code.
1301 * @param pVM Pointer to the shared VM structure.
1302 */
1303int pgmR3PhysRamReset(PVM pVM)
1304{
1305 Assert(PGMIsLockOwner(pVM));
1306
1307 /* Reset the memory balloon. */
1308 int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
1309 AssertRC(rc);
1310
1311 /*
1312 * We batch up pages that should be freed instead of calling GMM for
1313 * each and every one of them.
1314 */
1315 uint32_t cPendingPages = 0;
1316 PGMMFREEPAGESREQ pReq;
1317 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1318 AssertLogRelRCReturn(rc, rc);
1319
1320 /*
1321 * Walk the ram ranges.
1322 */
1323 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
1324 {
1325 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
1326 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
1327
1328 if (!pVM->pgm.s.fRamPreAlloc)
1329 {
1330 /* Replace all RAM pages by ZERO pages. */
1331 while (iPage-- > 0)
1332 {
1333 PPGMPAGE pPage = &pRam->aPages[iPage];
1334 switch (PGM_PAGE_GET_TYPE(pPage))
1335 {
1336 case PGMPAGETYPE_RAM:
1337 /* Do not replace pages part of a 2 MB continuous range with zero pages, but zero them instead. */
1338 if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE)
1339 {
1340 void *pvPage;
1341 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
1342 AssertLogRelRCReturn(rc, rc);
1343 ASMMemZeroPage(pvPage);
1344 }
1345 else
1346 if ( !PGM_PAGE_IS_ZERO(pPage)
1347 && !PGM_PAGE_IS_BALLOONED(pPage))
1348 {
1349 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1350 AssertLogRelRCReturn(rc, rc);
1351 }
1352 break;
1353
1354 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1355 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1356 break;
1357
1358 case PGMPAGETYPE_MMIO2:
1359 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
1360 case PGMPAGETYPE_ROM:
1361 case PGMPAGETYPE_MMIO:
1362 break;
1363 default:
1364 AssertFailed();
1365 }
1366 } /* for each page */
1367 }
1368 else
1369 {
1370 /* Zero the memory. */
1371 while (iPage-- > 0)
1372 {
1373 PPGMPAGE pPage = &pRam->aPages[iPage];
1374 switch (PGM_PAGE_GET_TYPE(pPage))
1375 {
1376 case PGMPAGETYPE_RAM:
1377 switch (PGM_PAGE_GET_STATE(pPage))
1378 {
1379 case PGM_PAGE_STATE_ZERO:
1380 break;
1381
1382 case PGM_PAGE_STATE_BALLOONED:
1383 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
1384 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
1385 break;
1386
1387 case PGM_PAGE_STATE_SHARED:
1388 case PGM_PAGE_STATE_WRITE_MONITORED:
1389 rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1390 AssertLogRelRCReturn(rc, rc);
1391 /* no break */
1392
1393 case PGM_PAGE_STATE_ALLOCATED:
1394 {
1395 void *pvPage;
1396 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
1397 AssertLogRelRCReturn(rc, rc);
1398 ASMMemZeroPage(pvPage);
1399 break;
1400 }
1401 }
1402 break;
1403
1404 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1405 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1406 break;
1407
1408 case PGMPAGETYPE_MMIO2:
1409 case PGMPAGETYPE_ROM_SHADOW:
1410 case PGMPAGETYPE_ROM:
1411 case PGMPAGETYPE_MMIO:
1412 break;
1413 default:
1414 AssertFailed();
1415
1416 }
1417 } /* for each page */
1418 }
1419
1420 }
1421
1422 /*
1423 * Finish off any pages pending freeing.
1424 */
1425 if (cPendingPages)
1426 {
1427 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
1428 AssertLogRelRCReturn(rc, rc);
1429 }
1430 GMMR3FreePagesCleanup(pReq);
1431
1432 return VINF_SUCCESS;
1433}
1434
1435
1436/**
1437 * This is the interface IOM is using to register an MMIO region.
1438 *
1439 * It will check for conflicts and ensure that a RAM range structure
1440 * is present before calling the PGMR3HandlerPhysicalRegister API to
1441 * register the callbacks.
1442 *
1443 * @returns VBox status code.
1444 *
1445 * @param pVM Pointer to the shared VM structure.
1446 * @param GCPhys The start of the MMIO region.
1447 * @param cb The size of the MMIO region.
1448 * @param pfnHandlerR3 The address of the ring-3 handler. (IOMR3MMIOHandler)
1449 * @param pvUserR3 The user argument for R3.
1450 * @param pfnHandlerR0 The address of the ring-0 handler. (IOMMMIOHandler)
1451 * @param pvUserR0 The user argument for R0.
1452 * @param pfnHandlerRC The address of the RC handler. (IOMMMIOHandler)
1453 * @param pvUserRC The user argument for RC.
1454 * @param pszDesc The description of the MMIO region.
1455 */
1456VMMR3DECL(int) PGMR3PhysMMIORegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb,
1457 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3, RTR3PTR pvUserR3,
1458 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0, RTR0PTR pvUserR0,
1459 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnHandlerRC, RTRCPTR pvUserRC,
1460 R3PTRTYPE(const char *) pszDesc)
1461{
1462 /*
1463 * Assert on some assumption.
1464 */
1465 VM_ASSERT_EMT(pVM);
1466 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1467 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1468 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1469 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
1470
1471 /*
1472 * Make sure there's a RAM range structure for the region.
1473 */
1474 int rc;
1475 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1476 bool fRamExists = false;
1477 PPGMRAMRANGE pRamPrev = NULL;
1478 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1479 while (pRam && GCPhysLast >= pRam->GCPhys)
1480 {
1481 if ( GCPhysLast >= pRam->GCPhys
1482 && GCPhys <= pRam->GCPhysLast)
1483 {
1484 /* Simplification: all within the same range. */
1485 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
1486 && GCPhysLast <= pRam->GCPhysLast,
1487 ("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n",
1488 GCPhys, GCPhysLast, pszDesc,
1489 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1490 VERR_PGM_RAM_CONFLICT);
1491
1492 /* Check that it's all RAM or MMIO pages. */
1493 PCPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1494 uint32_t cLeft = cb >> PAGE_SHIFT;
1495 while (cLeft-- > 0)
1496 {
1497 AssertLogRelMsgReturn( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1498 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO,
1499 ("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n",
1500 GCPhys, GCPhysLast, pszDesc, PGM_PAGE_GET_TYPE(pPage), pRam->pszDesc),
1501 VERR_PGM_RAM_CONFLICT);
1502 pPage++;
1503 }
1504
1505 /* Looks good. */
1506 fRamExists = true;
1507 break;
1508 }
1509
1510 /* next */
1511 pRamPrev = pRam;
1512 pRam = pRam->pNextR3;
1513 }
1514 PPGMRAMRANGE pNew;
1515 if (fRamExists)
1516 {
1517 pNew = NULL;
1518
1519 /*
1520 * Make all the pages in the range MMIO/ZERO pages, freeing any
1521 * RAM pages currently mapped here. This might not be 100% correct
1522 * for PCI memory, but we're doing the same thing for MMIO2 pages.
1523 */
1524 rc = pgmLock(pVM);
1525 if (RT_SUCCESS(rc))
1526 {
1527 rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO);
1528 pgmUnlock(pVM);
1529 }
1530 AssertRCReturn(rc, rc);
1531 }
1532 else
1533 {
1534 pgmLock(pVM);
1535
1536 /*
1537 * No RAM range, insert an ad hoc one.
1538 *
1539 * Note that we don't have to tell REM about this range because
1540 * PGMHandlerPhysicalRegisterEx will do that for us.
1541 */
1542 Log(("PGMR3PhysMMIORegister: Adding ad hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc));
1543
1544 const uint32_t cPages = cb >> PAGE_SHIFT;
1545 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
1546 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), 16, MM_TAG_PGM_PHYS, (void **)&pNew);
1547 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
1548
1549 /* Initialize the range. */
1550 pNew->pSelfR0 = MMHyperCCToR0(pVM, pNew);
1551 pNew->pSelfRC = MMHyperCCToRC(pVM, pNew);
1552 pNew->GCPhys = GCPhys;
1553 pNew->GCPhysLast = GCPhysLast;
1554 pNew->cb = cb;
1555 pNew->pszDesc = pszDesc;
1556 pNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO;
1557 pNew->pvR3 = NULL;
1558 pNew->paLSPages = NULL;
1559
1560 uint32_t iPage = cPages;
1561 while (iPage-- > 0)
1562 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO);
1563 Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO);
1564
1565 /* update the page count stats. */
1566 pVM->pgm.s.cPureMmioPages += cPages;
1567 pVM->pgm.s.cAllPages += cPages;
1568
1569 /* link it */
1570 pgmR3PhysLinkRamRange(pVM, pNew, pRamPrev);
1571
1572 pgmUnlock(pVM);
1573 }
1574
1575 /*
1576 * Register the access handler.
1577 */
1578 rc = PGMHandlerPhysicalRegisterEx(pVM, PGMPHYSHANDLERTYPE_MMIO, GCPhys, GCPhysLast,
1579 pfnHandlerR3, pvUserR3,
1580 pfnHandlerR0, pvUserR0,
1581 pfnHandlerRC, pvUserRC, pszDesc);
1582 if ( RT_FAILURE(rc)
1583 && !fRamExists)
1584 {
1585 pVM->pgm.s.cPureMmioPages -= cb >> PAGE_SHIFT;
1586 pVM->pgm.s.cAllPages -= cb >> PAGE_SHIFT;
1587
1588 /* remove the ad hoc range. */
1589 pgmR3PhysUnlinkRamRange2(pVM, pNew, pRamPrev);
1590 pNew->cb = pNew->GCPhys = pNew->GCPhysLast = NIL_RTGCPHYS;
1591 MMHyperFree(pVM, pRam);
1592 }
1593 PGMPhysInvalidatePageMapTLB(pVM);
1594
1595 return rc;
1596}
1597
1598
1599/**
1600 * This is the interface IOM is using to register an MMIO region.
1601 *
1602 * It will take care of calling PGMHandlerPhysicalDeregister and clean up
1603 * any ad hoc PGMRAMRANGE left behind.
1604 *
1605 * @returns VBox status code.
1606 * @param pVM Pointer to the shared VM structure.
1607 * @param GCPhys The start of the MMIO region.
1608 * @param cb The size of the MMIO region.
1609 */
1610VMMR3DECL(int) PGMR3PhysMMIODeregister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
1611{
1612 VM_ASSERT_EMT(pVM);
1613
1614 /*
1615 * First deregister the handler, then check if we should remove the ram range.
1616 */
1617 int rc = PGMHandlerPhysicalDeregister(pVM, GCPhys);
1618 if (RT_SUCCESS(rc))
1619 {
1620 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1621 PPGMRAMRANGE pRamPrev = NULL;
1622 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1623 while (pRam && GCPhysLast >= pRam->GCPhys)
1624 {
1625 /** @todo We're being a bit too careful here. rewrite. */
1626 if ( GCPhysLast == pRam->GCPhysLast
1627 && GCPhys == pRam->GCPhys)
1628 {
1629 Assert(pRam->cb == cb);
1630
1631 /*
1632 * See if all the pages are dead MMIO pages.
1633 */
1634 uint32_t const cPages = cb >> PAGE_SHIFT;
1635 bool fAllMMIO = true;
1636 uint32_t iPage = 0;
1637 uint32_t cLeft = cPages;
1638 while (cLeft-- > 0)
1639 {
1640 PPGMPAGE pPage = &pRam->aPages[iPage];
1641 if ( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO
1642 /*|| not-out-of-action later */)
1643 {
1644 fAllMMIO = false;
1645 Assert(PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO2_ALIAS_MMIO);
1646 AssertMsgFailed(("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1647 break;
1648 }
1649 Assert(PGM_PAGE_IS_ZERO(pPage));
1650 pPage++;
1651 }
1652 if (fAllMMIO)
1653 {
1654 /*
1655 * Ad-hoc range, unlink and free it.
1656 */
1657 Log(("PGMR3PhysMMIODeregister: Freeing ad hoc MMIO range for %RGp-%RGp %s\n",
1658 GCPhys, GCPhysLast, pRam->pszDesc));
1659
1660 pVM->pgm.s.cAllPages -= cPages;
1661 pVM->pgm.s.cPureMmioPages -= cPages;
1662
1663 pgmR3PhysUnlinkRamRange2(pVM, pRam, pRamPrev);
1664 pRam->cb = pRam->GCPhys = pRam->GCPhysLast = NIL_RTGCPHYS;
1665 MMHyperFree(pVM, pRam);
1666 break;
1667 }
1668 }
1669
1670 /*
1671 * Range match? It will all be within one range (see PGMAllHandler.cpp).
1672 */
1673 if ( GCPhysLast >= pRam->GCPhys
1674 && GCPhys <= pRam->GCPhysLast)
1675 {
1676 Assert(GCPhys >= pRam->GCPhys);
1677 Assert(GCPhysLast <= pRam->GCPhysLast);
1678
1679 /*
1680 * Turn the pages back into RAM pages.
1681 */
1682 uint32_t iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
1683 uint32_t cLeft = cb >> PAGE_SHIFT;
1684 while (cLeft--)
1685 {
1686 PPGMPAGE pPage = &pRam->aPages[iPage];
1687 AssertMsg(PGM_PAGE_IS_MMIO(pPage), ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1688 AssertMsg(PGM_PAGE_IS_ZERO(pPage), ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1689 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO)
1690 PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_RAM);
1691 }
1692 break;
1693 }
1694
1695 /* next */
1696 pRamPrev = pRam;
1697 pRam = pRam->pNextR3;
1698 }
1699 }
1700
1701 PGMPhysInvalidatePageMapTLB(pVM);
1702 return rc;
1703}
1704
1705
1706/**
1707 * Locate a MMIO2 range.
1708 *
1709 * @returns Pointer to the MMIO2 range.
1710 * @param pVM Pointer to the shared VM structure.
1711 * @param pDevIns The device instance owning the region.
1712 * @param iRegion The region.
1713 */
1714DECLINLINE(PPGMMMIO2RANGE) pgmR3PhysMMIO2Find(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
1715{
1716 /*
1717 * Search the list.
1718 */
1719 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
1720 if ( pCur->pDevInsR3 == pDevIns
1721 && pCur->iRegion == iRegion)
1722 return pCur;
1723 return NULL;
1724}
1725
1726
1727/**
1728 * Allocate and register an MMIO2 region.
1729 *
1730 * As mentioned elsewhere, MMIO2 is just RAM spelled differently. It's
1731 * RAM associated with a device. It is also non-shared memory with a
1732 * permanent ring-3 mapping and page backing (presently).
1733 *
1734 * A MMIO2 range may overlap with base memory if a lot of RAM
1735 * is configured for the VM, in which case we'll drop the base
1736 * memory pages. Presently we will make no attempt to preserve
1737 * anything that happens to be present in the base memory that
1738 * is replaced, this is of course incorrectly but it's too much
1739 * effort.
1740 *
1741 * @returns VBox status code.
1742 * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the memory.
1743 * @retval VERR_ALREADY_EXISTS if the region already exists.
1744 *
1745 * @param pVM Pointer to the shared VM structure.
1746 * @param pDevIns The device instance owning the region.
1747 * @param iRegion The region number. If the MMIO2 memory is a PCI I/O region
1748 * this number has to be the number of that region. Otherwise
1749 * it can be any number safe UINT8_MAX.
1750 * @param cb The size of the region. Must be page aligned.
1751 * @param fFlags Reserved for future use, must be zero.
1752 * @param ppv Where to store the pointer to the ring-3 mapping of the memory.
1753 * @param pszDesc The description.
1754 */
1755VMMR3DECL(int) PGMR3PhysMMIO2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS cb, uint32_t fFlags, void **ppv, const char *pszDesc)
1756{
1757 /*
1758 * Validate input.
1759 */
1760 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1761 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1762 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
1763 AssertPtrReturn(ppv, VERR_INVALID_POINTER);
1764 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1765 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
1766 AssertReturn(pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion) == NULL, VERR_ALREADY_EXISTS);
1767 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1768 AssertReturn(cb, VERR_INVALID_PARAMETER);
1769 AssertReturn(!fFlags, VERR_INVALID_PARAMETER);
1770
1771 const uint32_t cPages = cb >> PAGE_SHIFT;
1772 AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cb, VERR_INVALID_PARAMETER);
1773 AssertLogRelReturn(cPages <= INT32_MAX / 2, VERR_NO_MEMORY);
1774
1775 /*
1776 * For the 2nd+ instance, mangle the description string so it's unique.
1777 */
1778 if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */
1779 {
1780 pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance);
1781 if (!pszDesc)
1782 return VERR_NO_MEMORY;
1783 }
1784
1785 /*
1786 * Try reserve and allocate the backing memory first as this is what is
1787 * most likely to fail.
1788 */
1789 int rc = MMR3AdjustFixedReservation(pVM, cPages, pszDesc);
1790 if (RT_SUCCESS(rc))
1791 {
1792 void *pvPages;
1793 PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cPages * sizeof(SUPPAGE));
1794 if (RT_SUCCESS(rc))
1795 rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, NULL /*pR0Ptr*/, paPages);
1796 if (RT_SUCCESS(rc))
1797 {
1798 memset(pvPages, 0, cPages * PAGE_SIZE);
1799
1800 /*
1801 * Create the MMIO2 range record for it.
1802 */
1803 const size_t cbRange = RT_OFFSETOF(PGMMMIO2RANGE, RamRange.aPages[cPages]);
1804 PPGMMMIO2RANGE pNew;
1805 rc = MMR3HyperAllocOnceNoRel(pVM, cbRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1806 AssertLogRelMsgRC(rc, ("cbRamRange=%zu\n", cbRange));
1807 if (RT_SUCCESS(rc))
1808 {
1809 pNew->pDevInsR3 = pDevIns;
1810 pNew->pvR3 = pvPages;
1811 //pNew->pNext = NULL;
1812 //pNew->fMapped = false;
1813 //pNew->fOverlapping = false;
1814 pNew->iRegion = iRegion;
1815 pNew->idSavedState = UINT8_MAX;
1816 pNew->RamRange.pSelfR0 = MMHyperCCToR0(pVM, &pNew->RamRange);
1817 pNew->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pNew->RamRange);
1818 pNew->RamRange.GCPhys = NIL_RTGCPHYS;
1819 pNew->RamRange.GCPhysLast = NIL_RTGCPHYS;
1820 pNew->RamRange.pszDesc = pszDesc;
1821 pNew->RamRange.cb = cb;
1822 pNew->RamRange.fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO2;
1823 pNew->RamRange.pvR3 = pvPages;
1824 //pNew->RamRange.paLSPages = NULL;
1825
1826 uint32_t iPage = cPages;
1827 while (iPage-- > 0)
1828 {
1829 PGM_PAGE_INIT(&pNew->RamRange.aPages[iPage],
1830 paPages[iPage].Phys, NIL_GMM_PAGEID,
1831 PGMPAGETYPE_MMIO2, PGM_PAGE_STATE_ALLOCATED);
1832 }
1833
1834 /* update page count stats */
1835 pVM->pgm.s.cAllPages += cPages;
1836 pVM->pgm.s.cPrivatePages += cPages;
1837
1838 /*
1839 * Link it into the list.
1840 * Since there is no particular order, just push it.
1841 */
1842 pgmLock(pVM);
1843 pNew->pNextR3 = pVM->pgm.s.pMmio2RangesR3;
1844 pVM->pgm.s.pMmio2RangesR3 = pNew;
1845 pgmUnlock(pVM);
1846
1847 *ppv = pvPages;
1848 RTMemTmpFree(paPages);
1849 PGMPhysInvalidatePageMapTLB(pVM);
1850 return VINF_SUCCESS;
1851 }
1852
1853 SUPR3PageFreeEx(pvPages, cPages);
1854 }
1855 RTMemTmpFree(paPages);
1856 MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pszDesc);
1857 }
1858 if (pDevIns->iInstance > 0)
1859 MMR3HeapFree((void *)pszDesc);
1860 return rc;
1861}
1862
1863
1864/**
1865 * Deregisters and frees an MMIO2 region.
1866 *
1867 * Any physical (and virtual) access handlers registered for the region must
1868 * be deregistered before calling this function.
1869 *
1870 * @returns VBox status code.
1871 * @param pVM Pointer to the shared VM structure.
1872 * @param pDevIns The device instance owning the region.
1873 * @param iRegion The region. If it's UINT32_MAX it'll be a wildcard match.
1874 */
1875VMMR3DECL(int) PGMR3PhysMMIO2Deregister(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
1876{
1877 /*
1878 * Validate input.
1879 */
1880 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1881 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1882 AssertReturn(iRegion <= UINT8_MAX || iRegion == UINT32_MAX, VERR_INVALID_PARAMETER);
1883
1884 pgmLock(pVM);
1885 int rc = VINF_SUCCESS;
1886 unsigned cFound = 0;
1887 PPGMMMIO2RANGE pPrev = NULL;
1888 PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3;
1889 while (pCur)
1890 {
1891 if ( pCur->pDevInsR3 == pDevIns
1892 && ( iRegion == UINT32_MAX
1893 || pCur->iRegion == iRegion))
1894 {
1895 cFound++;
1896
1897 /*
1898 * Unmap it if it's mapped.
1899 */
1900 if (pCur->fMapped)
1901 {
1902 int rc2 = PGMR3PhysMMIO2Unmap(pVM, pCur->pDevInsR3, pCur->iRegion, pCur->RamRange.GCPhys);
1903 AssertRC(rc2);
1904 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1905 rc = rc2;
1906 }
1907
1908 /*
1909 * Unlink it
1910 */
1911 PPGMMMIO2RANGE pNext = pCur->pNextR3;
1912 if (pPrev)
1913 pPrev->pNextR3 = pNext;
1914 else
1915 pVM->pgm.s.pMmio2RangesR3 = pNext;
1916 pCur->pNextR3 = NULL;
1917
1918 /*
1919 * Free the memory.
1920 */
1921 int rc2 = SUPR3PageFreeEx(pCur->pvR3, pCur->RamRange.cb >> PAGE_SHIFT);
1922 AssertRC(rc2);
1923 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1924 rc = rc2;
1925
1926 uint32_t const cPages = pCur->RamRange.cb >> PAGE_SHIFT;
1927 rc2 = MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pCur->RamRange.pszDesc);
1928 AssertRC(rc2);
1929 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1930 rc = rc2;
1931
1932 /* we're leaking hyper memory here if done at runtime. */
1933#ifdef VBOX_STRICT
1934 VMSTATE const enmState = VMR3GetState(pVM);
1935 AssertMsg( enmState == VMSTATE_POWERING_OFF
1936 || enmState == VMSTATE_POWERING_OFF_LS
1937 || enmState == VMSTATE_OFF
1938 || enmState == VMSTATE_OFF_LS
1939 || enmState == VMSTATE_DESTROYING
1940 || enmState == VMSTATE_TERMINATED
1941 || enmState == VMSTATE_CREATING
1942 , ("%s\n", VMR3GetStateName(enmState)));
1943#endif
1944 /*rc = MMHyperFree(pVM, pCur);
1945 AssertRCReturn(rc, rc); - not safe, see the alloc call. */
1946
1947
1948 /* update page count stats */
1949 pVM->pgm.s.cAllPages -= cPages;
1950 pVM->pgm.s.cPrivatePages -= cPages;
1951
1952 /* next */
1953 pCur = pNext;
1954 }
1955 else
1956 {
1957 pPrev = pCur;
1958 pCur = pCur->pNextR3;
1959 }
1960 }
1961 PGMPhysInvalidatePageMapTLB(pVM);
1962 pgmUnlock(pVM);
1963 return !cFound && iRegion != UINT32_MAX ? VERR_NOT_FOUND : rc;
1964}
1965
1966
1967/**
1968 * Maps a MMIO2 region.
1969 *
1970 * This is done when a guest / the bios / state loading changes the
1971 * PCI config. The replacing of base memory has the same restrictions
1972 * as during registration, of course.
1973 *
1974 * @returns VBox status code.
1975 *
1976 * @param pVM Pointer to the shared VM structure.
1977 * @param pDevIns The
1978 */
1979VMMR3DECL(int) PGMR3PhysMMIO2Map(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
1980{
1981 /*
1982 * Validate input
1983 */
1984 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1985 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1986 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
1987 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
1988 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
1989 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1990
1991 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
1992 AssertReturn(pCur, VERR_NOT_FOUND);
1993 AssertReturn(!pCur->fMapped, VERR_WRONG_ORDER);
1994 Assert(pCur->RamRange.GCPhys == NIL_RTGCPHYS);
1995 Assert(pCur->RamRange.GCPhysLast == NIL_RTGCPHYS);
1996
1997 const RTGCPHYS GCPhysLast = GCPhys + pCur->RamRange.cb - 1;
1998 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
1999
2000 /*
2001 * Find our location in the ram range list, checking for
2002 * restriction we don't bother implementing yet (partially overlapping).
2003 */
2004 bool fRamExists = false;
2005 PPGMRAMRANGE pRamPrev = NULL;
2006 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
2007 while (pRam && GCPhysLast >= pRam->GCPhys)
2008 {
2009 if ( GCPhys <= pRam->GCPhysLast
2010 && GCPhysLast >= pRam->GCPhys)
2011 {
2012 /* completely within? */
2013 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
2014 && GCPhysLast <= pRam->GCPhysLast,
2015 ("%RGp-%RGp (MMIO2/%s) falls partly outside %RGp-%RGp (%s)\n",
2016 GCPhys, GCPhysLast, pCur->RamRange.pszDesc,
2017 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2018 VERR_PGM_RAM_CONFLICT);
2019 fRamExists = true;
2020 break;
2021 }
2022
2023 /* next */
2024 pRamPrev = pRam;
2025 pRam = pRam->pNextR3;
2026 }
2027 if (fRamExists)
2028 {
2029 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2030 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2031 while (cPagesLeft-- > 0)
2032 {
2033 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
2034 ("%RGp isn't a RAM page (%d) - mapping %RGp-%RGp (MMIO2/%s).\n",
2035 GCPhys, PGM_PAGE_GET_TYPE(pPage), GCPhys, GCPhysLast, pCur->RamRange.pszDesc),
2036 VERR_PGM_RAM_CONFLICT);
2037 pPage++;
2038 }
2039 }
2040 Log(("PGMR3PhysMMIO2Map: %RGp-%RGp fRamExists=%RTbool %s\n",
2041 GCPhys, GCPhysLast, fRamExists, pCur->RamRange.pszDesc));
2042
2043 /*
2044 * Make the changes.
2045 */
2046 pgmLock(pVM);
2047
2048 pCur->RamRange.GCPhys = GCPhys;
2049 pCur->RamRange.GCPhysLast = GCPhysLast;
2050 pCur->fMapped = true;
2051 pCur->fOverlapping = fRamExists;
2052
2053 if (fRamExists)
2054 {
2055/** @todo use pgmR3PhysFreePageRange here. */
2056 uint32_t cPendingPages = 0;
2057 PGMMFREEPAGESREQ pReq;
2058 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2059 AssertLogRelRCReturn(rc, rc);
2060
2061 /* replace the pages, freeing all present RAM pages. */
2062 PPGMPAGE pPageSrc = &pCur->RamRange.aPages[0];
2063 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2064 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2065 while (cPagesLeft-- > 0)
2066 {
2067 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
2068 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
2069
2070 RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc);
2071 PGM_PAGE_SET_HCPHYS(pPageDst, HCPhys);
2072 PGM_PAGE_SET_TYPE(pPageDst, PGMPAGETYPE_MMIO2);
2073 PGM_PAGE_SET_STATE(pPageDst, PGM_PAGE_STATE_ALLOCATED);
2074
2075 pVM->pgm.s.cZeroPages--;
2076 GCPhys += PAGE_SIZE;
2077 pPageSrc++;
2078 pPageDst++;
2079 }
2080
2081 /* Flush physical page map TLB. */
2082 PGMPhysInvalidatePageMapTLB(pVM);
2083
2084 if (cPendingPages)
2085 {
2086 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2087 AssertLogRelRCReturn(rc, rc);
2088 }
2089 GMMR3FreePagesCleanup(pReq);
2090 pgmUnlock(pVM);
2091 }
2092 else
2093 {
2094 RTGCPHYS cb = pCur->RamRange.cb;
2095
2096 /* link in the ram range */
2097 pgmR3PhysLinkRamRange(pVM, &pCur->RamRange, pRamPrev);
2098 pgmUnlock(pVM);
2099
2100 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_MMIO2);
2101 }
2102
2103 PGMPhysInvalidatePageMapTLB(pVM);
2104 return VINF_SUCCESS;
2105}
2106
2107
2108/**
2109 * Unmaps a MMIO2 region.
2110 *
2111 * This is done when a guest / the bios / state loading changes the
2112 * PCI config. The replacing of base memory has the same restrictions
2113 * as during registration, of course.
2114 */
2115VMMR3DECL(int) PGMR3PhysMMIO2Unmap(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
2116{
2117 /*
2118 * Validate input
2119 */
2120 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2121 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2122 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2123 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
2124 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
2125 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2126
2127 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2128 AssertReturn(pCur, VERR_NOT_FOUND);
2129 AssertReturn(pCur->fMapped, VERR_WRONG_ORDER);
2130 AssertReturn(pCur->RamRange.GCPhys == GCPhys, VERR_INVALID_PARAMETER);
2131 Assert(pCur->RamRange.GCPhysLast != NIL_RTGCPHYS);
2132
2133 Log(("PGMR3PhysMMIO2Unmap: %RGp-%RGp %s\n",
2134 pCur->RamRange.GCPhys, pCur->RamRange.GCPhysLast, pCur->RamRange.pszDesc));
2135
2136 /*
2137 * Unmap it.
2138 */
2139 pgmLock(pVM);
2140
2141 RTGCPHYS GCPhysRangeREM;
2142 RTGCPHYS cbRangeREM;
2143 bool fInformREM;
2144 if (pCur->fOverlapping)
2145 {
2146 /* Restore the RAM pages we've replaced. */
2147 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
2148 while (pRam->GCPhys > pCur->RamRange.GCPhysLast)
2149 pRam = pRam->pNextR3;
2150
2151 RTHCPHYS const HCPhysZeroPg = pVM->pgm.s.HCPhysZeroPg;
2152 Assert(HCPhysZeroPg != 0 && HCPhysZeroPg != NIL_RTHCPHYS);
2153 PPGMPAGE pPageDst = &pRam->aPages[(pCur->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2154 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2155 while (cPagesLeft-- > 0)
2156 {
2157 PGM_PAGE_SET_HCPHYS(pPageDst, HCPhysZeroPg);
2158 PGM_PAGE_SET_TYPE(pPageDst, PGMPAGETYPE_RAM);
2159 PGM_PAGE_SET_STATE(pPageDst, PGM_PAGE_STATE_ZERO);
2160 PGM_PAGE_SET_PAGEID(pPageDst, NIL_GMM_PAGEID);
2161 PGM_PAGE_SET_PDE_TYPE(pPageDst, PGM_PAGE_PDE_TYPE_DONTCARE);
2162
2163 pVM->pgm.s.cZeroPages++;
2164 pPageDst++;
2165 }
2166
2167 /* Flush physical page map TLB. */
2168 PGMPhysInvalidatePageMapTLB(pVM);
2169
2170 GCPhysRangeREM = NIL_RTGCPHYS; /* shuts up gcc */
2171 cbRangeREM = RTGCPHYS_MAX; /* ditto */
2172 fInformREM = false;
2173 }
2174 else
2175 {
2176 GCPhysRangeREM = pCur->RamRange.GCPhys;
2177 cbRangeREM = pCur->RamRange.cb;
2178 fInformREM = true;
2179
2180 pgmR3PhysUnlinkRamRange(pVM, &pCur->RamRange);
2181 }
2182
2183 pCur->RamRange.GCPhys = NIL_RTGCPHYS;
2184 pCur->RamRange.GCPhysLast = NIL_RTGCPHYS;
2185 pCur->fOverlapping = false;
2186 pCur->fMapped = false;
2187
2188 PGMPhysInvalidatePageMapTLB(pVM);
2189 pgmUnlock(pVM);
2190
2191 if (fInformREM)
2192 REMR3NotifyPhysRamDeregister(pVM, GCPhysRangeREM, cbRangeREM);
2193
2194 return VINF_SUCCESS;
2195}
2196
2197
2198/**
2199 * Checks if the given address is an MMIO2 base address or not.
2200 *
2201 * @returns true/false accordingly.
2202 * @param pVM Pointer to the shared VM structure.
2203 * @param pDevIns The owner of the memory, optional.
2204 * @param GCPhys The address to check.
2205 */
2206VMMR3DECL(bool) PGMR3PhysMMIO2IsBase(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys)
2207{
2208 /*
2209 * Validate input
2210 */
2211 VM_ASSERT_EMT_RETURN(pVM, false);
2212 AssertPtrReturn(pDevIns, false);
2213 AssertReturn(GCPhys != NIL_RTGCPHYS, false);
2214 AssertReturn(GCPhys != 0, false);
2215 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), false);
2216
2217 /*
2218 * Search the list.
2219 */
2220 pgmLock(pVM);
2221 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2222 if (pCur->RamRange.GCPhys == GCPhys)
2223 {
2224 Assert(pCur->fMapped);
2225 pgmUnlock(pVM);
2226 return true;
2227 }
2228 pgmUnlock(pVM);
2229 return false;
2230}
2231
2232
2233/**
2234 * Gets the HC physical address of a page in the MMIO2 region.
2235 *
2236 * This is API is intended for MMHyper and shouldn't be called
2237 * by anyone else...
2238 *
2239 * @returns VBox status code.
2240 * @param pVM Pointer to the shared VM structure.
2241 * @param pDevIns The owner of the memory, optional.
2242 * @param iRegion The region.
2243 * @param off The page expressed an offset into the MMIO2 region.
2244 * @param pHCPhys Where to store the result.
2245 */
2246VMMR3DECL(int) PGMR3PhysMMIO2GetHCPhys(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, PRTHCPHYS pHCPhys)
2247{
2248 /*
2249 * Validate input
2250 */
2251 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2252 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2253 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2254
2255 pgmLock(pVM);
2256 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2257 AssertReturn(pCur, VERR_NOT_FOUND);
2258 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2259
2260 PCPGMPAGE pPage = &pCur->RamRange.aPages[off >> PAGE_SHIFT];
2261 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage);
2262 pgmUnlock(pVM);
2263 return VINF_SUCCESS;
2264}
2265
2266
2267/**
2268 * Maps a portion of an MMIO2 region into kernel space (host).
2269 *
2270 * The kernel mapping will become invalid when the MMIO2 memory is deregistered
2271 * or the VM is terminated.
2272 *
2273 * @return VBox status code.
2274 *
2275 * @param pVM Pointer to the shared VM structure.
2276 * @param pDevIns The device owning the MMIO2 memory.
2277 * @param iRegion The region.
2278 * @param off The offset into the region. Must be page aligned.
2279 * @param cb The number of bytes to map. Must be page aligned.
2280 * @param pszDesc Mapping description.
2281 * @param pR0Ptr Where to store the R0 address.
2282 */
2283VMMR3DECL(int) PGMR3PhysMMIO2MapKernel(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, RTGCPHYS cb,
2284 const char *pszDesc, PRTR0PTR pR0Ptr)
2285{
2286 /*
2287 * Validate input.
2288 */
2289 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2290 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2291 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2292
2293 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2294 AssertReturn(pCur, VERR_NOT_FOUND);
2295 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2296 AssertReturn(cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2297 AssertReturn(off + cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2298
2299 /*
2300 * Pass the request on to the support library/driver.
2301 */
2302 int rc = SUPR3PageMapKernel(pCur->pvR3, off, cb, 0, pR0Ptr);
2303
2304 return rc;
2305}
2306
2307
2308/**
2309 * Registers a ROM image.
2310 *
2311 * Shadowed ROM images requires double the amount of backing memory, so,
2312 * don't use that unless you have to. Shadowing of ROM images is process
2313 * where we can select where the reads go and where the writes go. On real
2314 * hardware the chipset provides means to configure this. We provide
2315 * PGMR3PhysProtectROM() for this purpose.
2316 *
2317 * A read-only copy of the ROM image will always be kept around while we
2318 * will allocate RAM pages for the changes on demand (unless all memory
2319 * is configured to be preallocated).
2320 *
2321 * @returns VBox status.
2322 * @param pVM VM Handle.
2323 * @param pDevIns The device instance owning the ROM.
2324 * @param GCPhys First physical address in the range.
2325 * Must be page aligned!
2326 * @param cbRange The size of the range (in bytes).
2327 * Must be page aligned!
2328 * @param pvBinary Pointer to the binary data backing the ROM image.
2329 * This must be exactly \a cbRange in size.
2330 * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
2331 * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
2332 * @param pszDesc Pointer to description string. This must not be freed.
2333 *
2334 * @remark There is no way to remove the rom, automatically on device cleanup or
2335 * manually from the device yet. This isn't difficult in any way, it's
2336 * just not something we expect to be necessary for a while.
2337 */
2338VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
2339 const void *pvBinary, uint32_t fFlags, const char *pszDesc)
2340{
2341 Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p fFlags=%#x pszDesc=%s\n",
2342 pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, fFlags, pszDesc));
2343
2344 /*
2345 * Validate input.
2346 */
2347 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2348 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
2349 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
2350 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2351 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
2352 AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER);
2353 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
2354 AssertReturn(!(fFlags & ~(PGMPHYS_ROM_FLAGS_SHADOWED | PGMPHYS_ROM_FLAGS_PERMANENT_BINARY)), VERR_INVALID_PARAMETER);
2355 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE);
2356
2357 const uint32_t cPages = cb >> PAGE_SHIFT;
2358
2359 /*
2360 * Find the ROM location in the ROM list first.
2361 */
2362 PPGMROMRANGE pRomPrev = NULL;
2363 PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
2364 while (pRom && GCPhysLast >= pRom->GCPhys)
2365 {
2366 if ( GCPhys <= pRom->GCPhysLast
2367 && GCPhysLast >= pRom->GCPhys)
2368 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
2369 GCPhys, GCPhysLast, pszDesc,
2370 pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc),
2371 VERR_PGM_RAM_CONFLICT);
2372 /* next */
2373 pRomPrev = pRom;
2374 pRom = pRom->pNextR3;
2375 }
2376
2377 /*
2378 * Find the RAM location and check for conflicts.
2379 *
2380 * Conflict detection is a bit different than for RAM
2381 * registration since a ROM can be located within a RAM
2382 * range. So, what we have to check for is other memory
2383 * types (other than RAM that is) and that we don't span
2384 * more than one RAM range (layz).
2385 */
2386 bool fRamExists = false;
2387 PPGMRAMRANGE pRamPrev = NULL;
2388 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
2389 while (pRam && GCPhysLast >= pRam->GCPhys)
2390 {
2391 if ( GCPhys <= pRam->GCPhysLast
2392 && GCPhysLast >= pRam->GCPhys)
2393 {
2394 /* completely within? */
2395 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
2396 && GCPhysLast <= pRam->GCPhysLast,
2397 ("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n",
2398 GCPhys, GCPhysLast, pszDesc,
2399 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2400 VERR_PGM_RAM_CONFLICT);
2401 fRamExists = true;
2402 break;
2403 }
2404
2405 /* next */
2406 pRamPrev = pRam;
2407 pRam = pRam->pNextR3;
2408 }
2409 if (fRamExists)
2410 {
2411 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2412 uint32_t cPagesLeft = cPages;
2413 while (cPagesLeft-- > 0)
2414 {
2415 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
2416 ("%RGp (%R[pgmpage]) isn't a RAM page - registering %RGp-%RGp (%s).\n",
2417 pRam->GCPhys + ((RTGCPHYS)(uintptr_t)(pPage - &pRam->aPages[0]) << PAGE_SHIFT),
2418 pPage, GCPhys, GCPhysLast, pszDesc), VERR_PGM_RAM_CONFLICT);
2419 Assert(PGM_PAGE_IS_ZERO(pPage));
2420 pPage++;
2421 }
2422 }
2423
2424 /*
2425 * Update the base memory reservation if necessary.
2426 */
2427 uint32_t cExtraBaseCost = fRamExists ? 0 : cPages;
2428 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2429 cExtraBaseCost += cPages;
2430 if (cExtraBaseCost)
2431 {
2432 int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost);
2433 if (RT_FAILURE(rc))
2434 return rc;
2435 }
2436
2437 /*
2438 * Allocate memory for the virgin copy of the RAM.
2439 */
2440 PGMMALLOCATEPAGESREQ pReq;
2441 int rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cPages, GMMACCOUNT_BASE);
2442 AssertRCReturn(rc, rc);
2443
2444 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2445 {
2446 pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << PAGE_SHIFT);
2447 pReq->aPages[iPage].idPage = NIL_GMM_PAGEID;
2448 pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID;
2449 }
2450
2451 pgmLock(pVM);
2452 rc = GMMR3AllocatePagesPerform(pVM, pReq);
2453 pgmUnlock(pVM);
2454 if (RT_FAILURE(rc))
2455 {
2456 GMMR3AllocatePagesCleanup(pReq);
2457 return rc;
2458 }
2459
2460 /*
2461 * Allocate the new ROM range and RAM range (if necessary).
2462 */
2463 PPGMROMRANGE pRomNew;
2464 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMROMRANGE, aPages[cPages]), 0, MM_TAG_PGM_PHYS, (void **)&pRomNew);
2465 if (RT_SUCCESS(rc))
2466 {
2467 PPGMRAMRANGE pRamNew = NULL;
2468 if (!fRamExists)
2469 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), sizeof(PGMPAGE), MM_TAG_PGM_PHYS, (void **)&pRamNew);
2470 if (RT_SUCCESS(rc))
2471 {
2472 pgmLock(pVM);
2473
2474 /*
2475 * Initialize and insert the RAM range (if required).
2476 */
2477 PPGMROMPAGE pRomPage = &pRomNew->aPages[0];
2478 if (!fRamExists)
2479 {
2480 pRamNew->pSelfR0 = MMHyperCCToR0(pVM, pRamNew);
2481 pRamNew->pSelfRC = MMHyperCCToRC(pVM, pRamNew);
2482 pRamNew->GCPhys = GCPhys;
2483 pRamNew->GCPhysLast = GCPhysLast;
2484 pRamNew->cb = cb;
2485 pRamNew->pszDesc = pszDesc;
2486 pRamNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_ROM;
2487 pRamNew->pvR3 = NULL;
2488 pRamNew->paLSPages = NULL;
2489
2490 PPGMPAGE pPage = &pRamNew->aPages[0];
2491 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
2492 {
2493 PGM_PAGE_INIT(pPage,
2494 pReq->aPages[iPage].HCPhysGCPhys,
2495 pReq->aPages[iPage].idPage,
2496 PGMPAGETYPE_ROM,
2497 PGM_PAGE_STATE_ALLOCATED);
2498
2499 pRomPage->Virgin = *pPage;
2500 }
2501
2502 pVM->pgm.s.cAllPages += cPages;
2503 pgmR3PhysLinkRamRange(pVM, pRamNew, pRamPrev);
2504 }
2505 else
2506 {
2507 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2508 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
2509 {
2510 PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_ROM);
2511 PGM_PAGE_SET_HCPHYS(pPage, pReq->aPages[iPage].HCPhysGCPhys);
2512 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
2513 PGM_PAGE_SET_PAGEID(pPage, pReq->aPages[iPage].idPage);
2514
2515 pRomPage->Virgin = *pPage;
2516 }
2517
2518 pRamNew = pRam;
2519
2520 pVM->pgm.s.cZeroPages -= cPages;
2521 }
2522 pVM->pgm.s.cPrivatePages += cPages;
2523
2524 /* Flush physical page map TLB. */
2525 PGMPhysInvalidatePageMapTLB(pVM);
2526
2527 pgmUnlock(pVM);
2528
2529
2530 /*
2531 * !HACK ALERT! REM + (Shadowed) ROM ==> mess.
2532 *
2533 * If it's shadowed we'll register the handler after the ROM notification
2534 * so we get the access handler callbacks that we should. If it isn't
2535 * shadowed we'll do it the other way around to make REM use the built-in
2536 * ROM behavior and not the handler behavior (which is to route all access
2537 * to PGM atm).
2538 */
2539 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2540 {
2541 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, true /* fShadowed */);
2542 rc = PGMR3HandlerPhysicalRegister(pVM,
2543 fFlags & PGMPHYS_ROM_FLAGS_SHADOWED
2544 ? PGMPHYSHANDLERTYPE_PHYSICAL_ALL
2545 : PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
2546 GCPhys, GCPhysLast,
2547 pgmR3PhysRomWriteHandler, pRomNew,
2548 NULL, "pgmPhysRomWriteHandler", MMHyperCCToR0(pVM, pRomNew),
2549 NULL, "pgmPhysRomWriteHandler", MMHyperCCToRC(pVM, pRomNew), pszDesc);
2550 }
2551 else
2552 {
2553 rc = PGMR3HandlerPhysicalRegister(pVM,
2554 fFlags & PGMPHYS_ROM_FLAGS_SHADOWED
2555 ? PGMPHYSHANDLERTYPE_PHYSICAL_ALL
2556 : PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
2557 GCPhys, GCPhysLast,
2558 pgmR3PhysRomWriteHandler, pRomNew,
2559 NULL, "pgmPhysRomWriteHandler", MMHyperCCToR0(pVM, pRomNew),
2560 NULL, "pgmPhysRomWriteHandler", MMHyperCCToRC(pVM, pRomNew), pszDesc);
2561 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, false /* fShadowed */);
2562 }
2563 if (RT_SUCCESS(rc))
2564 {
2565 pgmLock(pVM);
2566
2567 /*
2568 * Copy the image over to the virgin pages.
2569 * This must be done after linking in the RAM range.
2570 */
2571 PPGMPAGE pRamPage = &pRamNew->aPages[(GCPhys - pRamNew->GCPhys) >> PAGE_SHIFT];
2572 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++)
2573 {
2574 void *pvDstPage;
2575 rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << PAGE_SHIFT), &pvDstPage);
2576 if (RT_FAILURE(rc))
2577 {
2578 VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys);
2579 break;
2580 }
2581 memcpy(pvDstPage, (const uint8_t *)pvBinary + (iPage << PAGE_SHIFT), PAGE_SIZE);
2582 }
2583 if (RT_SUCCESS(rc))
2584 {
2585 /*
2586 * Initialize the ROM range.
2587 * Note that the Virgin member of the pages has already been initialized above.
2588 */
2589 pRomNew->GCPhys = GCPhys;
2590 pRomNew->GCPhysLast = GCPhysLast;
2591 pRomNew->cb = cb;
2592 pRomNew->fFlags = fFlags;
2593 pRomNew->idSavedState = UINT8_MAX;
2594 pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY ? pvBinary : NULL;
2595 pRomNew->pszDesc = pszDesc;
2596
2597 for (unsigned iPage = 0; iPage < cPages; iPage++)
2598 {
2599 PPGMROMPAGE pPage = &pRomNew->aPages[iPage];
2600 pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE;
2601 PGM_PAGE_INIT_ZERO(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW);
2602 }
2603
2604 /* update the page count stats for the shadow pages. */
2605 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2606 {
2607 pVM->pgm.s.cZeroPages += cPages;
2608 pVM->pgm.s.cAllPages += cPages;
2609 }
2610
2611 /*
2612 * Insert the ROM range, tell REM and return successfully.
2613 */
2614 pRomNew->pNextR3 = pRom;
2615 pRomNew->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
2616 pRomNew->pNextRC = pRom ? MMHyperCCToRC(pVM, pRom) : NIL_RTRCPTR;
2617
2618 if (pRomPrev)
2619 {
2620 pRomPrev->pNextR3 = pRomNew;
2621 pRomPrev->pNextR0 = MMHyperCCToR0(pVM, pRomNew);
2622 pRomPrev->pNextRC = MMHyperCCToRC(pVM, pRomNew);
2623 }
2624 else
2625 {
2626 pVM->pgm.s.pRomRangesR3 = pRomNew;
2627 pVM->pgm.s.pRomRangesR0 = MMHyperCCToR0(pVM, pRomNew);
2628 pVM->pgm.s.pRomRangesRC = MMHyperCCToRC(pVM, pRomNew);
2629 }
2630
2631 PGMPhysInvalidatePageMapTLB(pVM);
2632 GMMR3AllocatePagesCleanup(pReq);
2633 pgmUnlock(pVM);
2634 return VINF_SUCCESS;
2635 }
2636
2637 /* bail out */
2638
2639 pgmUnlock(pVM);
2640 int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys);
2641 AssertRC(rc2);
2642 pgmLock(pVM);
2643 }
2644
2645 if (!fRamExists)
2646 {
2647 pgmR3PhysUnlinkRamRange2(pVM, pRamNew, pRamPrev);
2648 MMHyperFree(pVM, pRamNew);
2649 }
2650 }
2651 MMHyperFree(pVM, pRomNew);
2652 }
2653
2654 /** @todo Purge the mapping cache or something... */
2655 GMMR3FreeAllocatedPages(pVM, pReq);
2656 GMMR3AllocatePagesCleanup(pReq);
2657 pgmUnlock(pVM);
2658 return rc;
2659}
2660
2661
2662/**
2663 * \#PF Handler callback for ROM write accesses.
2664 *
2665 * @returns VINF_SUCCESS if the handler have carried out the operation.
2666 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
2667 * @param pVM VM Handle.
2668 * @param GCPhys The physical address the guest is writing to.
2669 * @param pvPhys The HC mapping of that address.
2670 * @param pvBuf What the guest is reading/writing.
2671 * @param cbBuf How much it's reading/writing.
2672 * @param enmAccessType The access type.
2673 * @param pvUser User argument.
2674 */
2675static DECLCALLBACK(int) pgmR3PhysRomWriteHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser)
2676{
2677 PPGMROMRANGE pRom = (PPGMROMRANGE)pvUser;
2678 const uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
2679 Assert(iPage < (pRom->cb >> PAGE_SHIFT));
2680 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
2681 Log5(("pgmR3PhysRomWriteHandler: %d %c %#08RGp %#04zx\n", pRomPage->enmProt, enmAccessType == PGMACCESSTYPE_READ ? 'R' : 'W', GCPhys, cbBuf));
2682
2683 if (enmAccessType == PGMACCESSTYPE_READ)
2684 {
2685 switch (pRomPage->enmProt)
2686 {
2687 /*
2688 * Take the default action.
2689 */
2690 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
2691 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
2692 case PGMROMPROT_READ_ROM_WRITE_RAM:
2693 case PGMROMPROT_READ_RAM_WRITE_RAM:
2694 return VINF_PGM_HANDLER_DO_DEFAULT;
2695
2696 default:
2697 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
2698 pRom->aPages[iPage].enmProt, iPage, GCPhys),
2699 VERR_INTERNAL_ERROR);
2700 }
2701 }
2702 else
2703 {
2704 Assert(enmAccessType == PGMACCESSTYPE_WRITE);
2705 switch (pRomPage->enmProt)
2706 {
2707 /*
2708 * Ignore writes.
2709 */
2710 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
2711 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
2712 return VINF_SUCCESS;
2713
2714 /*
2715 * Write to the ram page.
2716 */
2717 case PGMROMPROT_READ_ROM_WRITE_RAM:
2718 case PGMROMPROT_READ_RAM_WRITE_RAM: /* yes this will get here too, it's *way* simpler that way. */
2719 {
2720 /* This should be impossible now, pvPhys doesn't work cross page anylonger. */
2721 Assert(((GCPhys - pRom->GCPhys + cbBuf - 1) >> PAGE_SHIFT) == iPage);
2722
2723 /*
2724 * Take the lock, do lazy allocation, map the page and copy the data.
2725 *
2726 * Note that we have to bypass the mapping TLB since it works on
2727 * guest physical addresses and entering the shadow page would
2728 * kind of screw things up...
2729 */
2730 int rc = pgmLock(pVM);
2731 AssertRC(rc);
2732
2733 PPGMPAGE pShadowPage = &pRomPage->Shadow;
2734 if (!PGMROMPROT_IS_ROM(pRomPage->enmProt))
2735 {
2736 pShadowPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
2737 AssertLogRelReturn(pShadowPage, VERR_INTERNAL_ERROR);
2738 }
2739
2740 void *pvDstPage;
2741 rc = pgmPhysPageMakeWritableAndMap(pVM, pShadowPage, GCPhys & X86_PTE_PG_MASK, &pvDstPage);
2742 if (RT_SUCCESS(rc))
2743 {
2744 memcpy((uint8_t *)pvDstPage + (GCPhys & PAGE_OFFSET_MASK), pvBuf, cbBuf);
2745 pRomPage->LiveSave.fWrittenTo = true;
2746 }
2747
2748 pgmUnlock(pVM);
2749 return rc;
2750 }
2751
2752 default:
2753 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
2754 pRom->aPages[iPage].enmProt, iPage, GCPhys),
2755 VERR_INTERNAL_ERROR);
2756 }
2757 }
2758}
2759
2760
2761/**
2762 * Called by PGMR3Reset to reset the shadow, switch to the virgin,
2763 * and verify that the virgin part is untouched.
2764 *
2765 * This is done after the normal memory has been cleared.
2766 *
2767 * ASSUMES that the caller owns the PGM lock.
2768 *
2769 * @param pVM The VM handle.
2770 */
2771int pgmR3PhysRomReset(PVM pVM)
2772{
2773 Assert(PGMIsLockOwner(pVM));
2774 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
2775 {
2776 const uint32_t cPages = pRom->cb >> PAGE_SHIFT;
2777
2778 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2779 {
2780 /*
2781 * Reset the physical handler.
2782 */
2783 int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE);
2784 AssertRCReturn(rc, rc);
2785
2786 /*
2787 * What we do with the shadow pages depends on the memory
2788 * preallocation option. If not enabled, we'll just throw
2789 * out all the dirty pages and replace them by the zero page.
2790 */
2791 if (!pVM->pgm.s.fRamPreAlloc)
2792 {
2793 /* Free the dirty pages. */
2794 uint32_t cPendingPages = 0;
2795 PGMMFREEPAGESREQ pReq;
2796 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2797 AssertRCReturn(rc, rc);
2798
2799 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2800 if ( !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow)
2801 && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow))
2802 {
2803 Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) == PGM_PAGE_STATE_ALLOCATED);
2804 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, &pRom->aPages[iPage].Shadow, pRom->GCPhys + (iPage << PAGE_SHIFT));
2805 AssertLogRelRCReturn(rc, rc);
2806 }
2807
2808 if (cPendingPages)
2809 {
2810 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2811 AssertLogRelRCReturn(rc, rc);
2812 }
2813 GMMR3FreePagesCleanup(pReq);
2814 }
2815 else
2816 {
2817 /* clear all the shadow pages. */
2818 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2819 {
2820 Assert(!PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow) && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow));
2821 void *pvDstPage;
2822 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
2823 rc = pgmPhysPageMakeWritableAndMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pvDstPage);
2824 if (RT_FAILURE(rc))
2825 break;
2826 ASMMemZeroPage(pvDstPage);
2827 }
2828 AssertRCReturn(rc, rc);
2829 }
2830 }
2831
2832#ifdef VBOX_STRICT
2833 /*
2834 * Verify that the virgin page is unchanged if possible.
2835 */
2836 if (pRom->pvOriginal)
2837 {
2838 uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal;
2839 for (uint32_t iPage = 0; iPage < cPages; iPage++, pbSrcPage += PAGE_SIZE)
2840 {
2841 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
2842 void const *pvDstPage;
2843 int rc = pgmPhysPageMapReadOnly(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPage);
2844 if (RT_FAILURE(rc))
2845 break;
2846 if (memcmp(pvDstPage, pbSrcPage, PAGE_SIZE))
2847 LogRel(("pgmR3PhysRomReset: %RGp rom page changed (%s) - loaded saved state?\n",
2848 GCPhys, pRom->pszDesc));
2849 }
2850 }
2851#endif
2852 }
2853
2854 return VINF_SUCCESS;
2855}
2856
2857
2858/**
2859 * Change the shadowing of a range of ROM pages.
2860 *
2861 * This is intended for implementing chipset specific memory registers
2862 * and will not be very strict about the input. It will silently ignore
2863 * any pages that are not the part of a shadowed ROM.
2864 *
2865 * @returns VBox status code.
2866 * @retval VINF_PGM_SYNC_CR3
2867 *
2868 * @param pVM Pointer to the shared VM structure.
2869 * @param GCPhys Where to start. Page aligned.
2870 * @param cb How much to change. Page aligned.
2871 * @param enmProt The new ROM protection.
2872 */
2873VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt)
2874{
2875 /*
2876 * Check input
2877 */
2878 if (!cb)
2879 return VINF_SUCCESS;
2880 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2881 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2882 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2883 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
2884 AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER);
2885
2886 /*
2887 * Process the request.
2888 */
2889 pgmLock(pVM);
2890 int rc = VINF_SUCCESS;
2891 bool fFlushTLB = false;
2892 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
2893 {
2894 if ( GCPhys <= pRom->GCPhysLast
2895 && GCPhysLast >= pRom->GCPhys
2896 && (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
2897 {
2898 /*
2899 * Iterate the relevant pages and make necessary the changes.
2900 */
2901 bool fChanges = false;
2902 uint32_t const cPages = pRom->GCPhysLast <= GCPhysLast
2903 ? pRom->cb >> PAGE_SHIFT
2904 : (GCPhysLast - pRom->GCPhys + 1) >> PAGE_SHIFT;
2905 for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
2906 iPage < cPages;
2907 iPage++)
2908 {
2909 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
2910 if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt))
2911 {
2912 fChanges = true;
2913
2914 /* flush references to the page. */
2915 PPGMPAGE pRamPage = pgmPhysGetPage(&pVM->pgm.s, pRom->GCPhys + (iPage << PAGE_SHIFT));
2916 int rc2 = pgmPoolTrackFlushGCPhys(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT), pRamPage, &fFlushTLB);
2917 if (rc2 != VINF_SUCCESS && (rc == VINF_SUCCESS || RT_FAILURE(rc2)))
2918 rc = rc2;
2919
2920 PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
2921 PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2922
2923 *pOld = *pRamPage;
2924 *pRamPage = *pNew;
2925 /** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */
2926 }
2927 pRomPage->enmProt = enmProt;
2928 }
2929
2930 /*
2931 * Reset the access handler if we made changes, no need
2932 * to optimize this.
2933 */
2934 if (fChanges)
2935 {
2936 int rc2 = PGMHandlerPhysicalReset(pVM, pRom->GCPhys);
2937 if (RT_FAILURE(rc2))
2938 {
2939 pgmUnlock(pVM);
2940 AssertRC(rc);
2941 return rc2;
2942 }
2943 }
2944
2945 /* Advance - cb isn't updated. */
2946 GCPhys = pRom->GCPhys + (cPages << PAGE_SHIFT);
2947 }
2948 }
2949 pgmUnlock(pVM);
2950 if (fFlushTLB)
2951 PGM_INVL_ALL_VCPU_TLBS(pVM);
2952
2953 return rc;
2954}
2955
2956
2957/**
2958 * Sets the Address Gate 20 state.
2959 *
2960 * @param pVCpu The VCPU to operate on.
2961 * @param fEnable True if the gate should be enabled.
2962 * False if the gate should be disabled.
2963 */
2964VMMDECL(void) PGMR3PhysSetA20(PVMCPU pVCpu, bool fEnable)
2965{
2966 LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVCpu->pgm.s.fA20Enabled));
2967 if (pVCpu->pgm.s.fA20Enabled != fEnable)
2968 {
2969 pVCpu->pgm.s.fA20Enabled = fEnable;
2970 pVCpu->pgm.s.GCPhysA20Mask = ~(RTGCPHYS)(!fEnable << 20);
2971 REMR3A20Set(pVCpu->pVMR3, pVCpu, fEnable);
2972 /** @todo we're not handling this correctly for VT-x / AMD-V. See #2911 */
2973 }
2974}
2975
2976
2977/**
2978 * Tree enumeration callback for dealing with age rollover.
2979 * It will perform a simple compression of the current age.
2980 */
2981static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
2982{
2983 Assert(PGMIsLockOwner((PVM)pvUser));
2984 /* Age compression - ASSUMES iNow == 4. */
2985 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
2986 if (pChunk->iAge >= UINT32_C(0xffffff00))
2987 pChunk->iAge = 3;
2988 else if (pChunk->iAge >= UINT32_C(0xfffff000))
2989 pChunk->iAge = 2;
2990 else if (pChunk->iAge)
2991 pChunk->iAge = 1;
2992 else /* iAge = 0 */
2993 pChunk->iAge = 4;
2994
2995 /* reinsert */
2996 PVM pVM = (PVM)pvUser;
2997 RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
2998 pChunk->AgeCore.Key = pChunk->iAge;
2999 RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
3000 return 0;
3001}
3002
3003
3004/**
3005 * Tree enumeration callback that updates the chunks that have
3006 * been used since the last
3007 */
3008static DECLCALLBACK(int) pgmR3PhysChunkAgeingCallback(PAVLU32NODECORE pNode, void *pvUser)
3009{
3010 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
3011 if (!pChunk->iAge)
3012 {
3013 PVM pVM = (PVM)pvUser;
3014 RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
3015 pChunk->AgeCore.Key = pChunk->iAge = pVM->pgm.s.ChunkR3Map.iNow;
3016 RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
3017 }
3018
3019 return 0;
3020}
3021
3022
3023/**
3024 * Performs ageing of the ring-3 chunk mappings.
3025 *
3026 * @param pVM The VM handle.
3027 */
3028VMMR3DECL(void) PGMR3PhysChunkAgeing(PVM pVM)
3029{
3030 pgmLock(pVM);
3031 pVM->pgm.s.ChunkR3Map.AgeingCountdown = RT_MIN(pVM->pgm.s.ChunkR3Map.cMax / 4, 1024);
3032 pVM->pgm.s.ChunkR3Map.iNow++;
3033 if (pVM->pgm.s.ChunkR3Map.iNow == 0)
3034 {
3035 pVM->pgm.s.ChunkR3Map.iNow = 4;
3036 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, pVM);
3037 }
3038 else
3039 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingCallback, pVM);
3040 pgmUnlock(pVM);
3041}
3042
3043
3044/**
3045 * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
3046 */
3047typedef struct PGMR3PHYSCHUNKUNMAPCB
3048{
3049 PVM pVM; /**< The VM handle. */
3050 PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
3051} PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
3052
3053
3054/**
3055 * Callback used to find the mapping that's been unused for
3056 * the longest time.
3057 */
3058static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLLU32NODECORE pNode, void *pvUser)
3059{
3060 do
3061 {
3062 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)((uint8_t *)pNode - RT_OFFSETOF(PGMCHUNKR3MAP, AgeCore));
3063 if ( pChunk->iAge
3064 && !pChunk->cRefs)
3065 {
3066 /*
3067 * Check that it's not in any of the TLBs.
3068 */
3069 PVM pVM = ((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pVM;
3070 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
3071 if (pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk == pChunk)
3072 {
3073 pChunk = NULL;
3074 break;
3075 }
3076 if (pChunk)
3077 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
3078 if (pVM->pgm.s.PhysTlbHC.aEntries[i].pMap == pChunk)
3079 {
3080 pChunk = NULL;
3081 break;
3082 }
3083 if (pChunk)
3084 {
3085 ((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pChunk = pChunk;
3086 return 1; /* done */
3087 }
3088 }
3089
3090 /* next with the same age - this version of the AVL API doesn't enumerate the list, so we have to do it. */
3091 pNode = pNode->pList;
3092 } while (pNode);
3093 return 0;
3094}
3095
3096
3097/**
3098 * Finds a good candidate for unmapping when the ring-3 mapping cache is full.
3099 *
3100 * The candidate will not be part of any TLBs, so no need to flush
3101 * anything afterwards.
3102 *
3103 * @returns Chunk id.
3104 * @param pVM The VM handle.
3105 */
3106static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
3107{
3108 Assert(PGMIsLockOwner(pVM));
3109
3110 /*
3111 * Do tree ageing first?
3112 */
3113 if (pVM->pgm.s.ChunkR3Map.AgeingCountdown-- == 0)
3114 PGMR3PhysChunkAgeing(pVM);
3115
3116 /*
3117 * Enumerate the age tree starting with the left most node.
3118 */
3119 PGMR3PHYSCHUNKUNMAPCB Args;
3120 Args.pVM = pVM;
3121 Args.pChunk = NULL;
3122 if (RTAvllU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pAgeTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, pVM))
3123 return Args.pChunk->Core.Key;
3124 return INT32_MAX;
3125}
3126
3127
3128/**
3129 * Maps the given chunk into the ring-3 mapping cache.
3130 *
3131 * This will call ring-0.
3132 *
3133 * @returns VBox status code.
3134 * @param pVM The VM handle.
3135 * @param idChunk The chunk in question.
3136 * @param ppChunk Where to store the chunk tracking structure.
3137 *
3138 * @remarks Called from within the PGM critical section.
3139 */
3140int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
3141{
3142 int rc;
3143
3144 Assert(PGMIsLockOwner(pVM));
3145 /*
3146 * Allocate a new tracking structure first.
3147 */
3148#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
3149 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAlloc(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
3150#else
3151 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3UkHeapAlloc(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk), NULL);
3152#endif
3153 AssertReturn(pChunk, VERR_NO_MEMORY);
3154 pChunk->Core.Key = idChunk;
3155 pChunk->AgeCore.Key = pVM->pgm.s.ChunkR3Map.iNow;
3156 pChunk->iAge = 0;
3157 pChunk->cRefs = 0;
3158 pChunk->cPermRefs = 0;
3159 pChunk->pv = NULL;
3160
3161 /*
3162 * Request the ring-0 part to map the chunk in question and if
3163 * necessary unmap another one to make space in the mapping cache.
3164 */
3165 GMMMAPUNMAPCHUNKREQ Req;
3166 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
3167 Req.Hdr.cbReq = sizeof(Req);
3168 Req.pvR3 = NULL;
3169 Req.idChunkMap = idChunk;
3170 Req.idChunkUnmap = NIL_GMM_CHUNKID;
3171 if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
3172 Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
3173/** @todo This is wrong. Any thread in the VM process should be able to do this,
3174 * there are depenenecies on this. What currently saves the day is that
3175 * we don't unmap anything and that all non-zero memory will therefore
3176 * be present when non-EMTs tries to access it. */
3177 rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
3178 if (RT_SUCCESS(rc))
3179 {
3180 /*
3181 * Update the tree.
3182 */
3183 /* insert the new one. */
3184 AssertPtr(Req.pvR3);
3185 pChunk->pv = Req.pvR3;
3186 bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
3187 AssertRelease(fRc);
3188 pVM->pgm.s.ChunkR3Map.c++;
3189
3190 fRc = RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
3191 AssertRelease(fRc);
3192
3193 /* remove the unmapped one. */
3194 if (Req.idChunkUnmap != NIL_GMM_CHUNKID)
3195 {
3196 PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
3197 AssertRelease(pUnmappedChunk);
3198 pUnmappedChunk->pv = NULL;
3199 pUnmappedChunk->Core.Key = UINT32_MAX;
3200#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
3201 MMR3HeapFree(pUnmappedChunk);
3202#else
3203 MMR3UkHeapFree(pVM, pUnmappedChunk, MM_TAG_PGM_CHUNK_MAPPING);
3204#endif
3205 pVM->pgm.s.ChunkR3Map.c--;
3206
3207 /* Chunk removed, so clear the page map TBL as well (might still be referenced). */
3208 PGMPhysInvalidatePageMapTLB(pVM);
3209 }
3210 }
3211 else
3212 {
3213 AssertRC(rc);
3214#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
3215 MMR3HeapFree(pChunk);
3216#else
3217 MMR3UkHeapFree(pVM, pChunk, MM_TAG_PGM_CHUNK_MAPPING);
3218#endif
3219 pChunk = NULL;
3220 }
3221
3222 *ppChunk = pChunk;
3223 return rc;
3224}
3225
3226
3227/**
3228 * For VMMCALLRING3_PGM_MAP_CHUNK, considered internal.
3229 *
3230 * @returns see pgmR3PhysChunkMap.
3231 * @param pVM The VM handle.
3232 * @param idChunk The chunk to map.
3233 */
3234VMMR3DECL(int) PGMR3PhysChunkMap(PVM pVM, uint32_t idChunk)
3235{
3236 PPGMCHUNKR3MAP pChunk;
3237 int rc;
3238
3239 pgmLock(pVM);
3240 rc = pgmR3PhysChunkMap(pVM, idChunk, &pChunk);
3241 pgmUnlock(pVM);
3242 return rc;
3243}
3244
3245
3246/**
3247 * Invalidates the TLB for the ring-3 mapping cache.
3248 *
3249 * @param pVM The VM handle.
3250 */
3251VMMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM)
3252{
3253 pgmLock(pVM);
3254 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
3255 {
3256 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
3257 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
3258 }
3259 /* The page map TLB references chunks, so invalidate that one too. */
3260 PGMPhysInvalidatePageMapTLB(pVM);
3261 pgmUnlock(pVM);
3262}
3263
3264
3265/**
3266 * Response to VMMCALLRING3_PGM_ALLOCATE_LARGE_PAGE to allocate a large (2MB) page
3267 * for use with a nested paging PDE.
3268 *
3269 * @returns The following VBox status codes.
3270 * @retval VINF_SUCCESS on success.
3271 * @retval VINF_EM_NO_MEMORY if we're out of memory.
3272 *
3273 * @param pVM The VM handle.
3274 * @param GCPhys GC physical start address of the 2 MB range
3275 */
3276VMMR3DECL(int) PGMR3PhysAllocateLargeHandyPage(PVM pVM, RTGCPHYS GCPhys)
3277{
3278 pgmLock(pVM);
3279
3280 STAM_PROFILE_START(&pVM->pgm.s.StatAllocLargePage, a);
3281 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_LARGE_HANDY_PAGE, 0, NULL);
3282 STAM_PROFILE_STOP(&pVM->pgm.s.StatAllocLargePage, a);
3283 if (RT_SUCCESS(rc))
3284 {
3285 Assert(pVM->pgm.s.cLargeHandyPages == 1);
3286
3287 uint32_t idPage = pVM->pgm.s.aLargeHandyPage[0].idPage;
3288 RTHCPHYS HCPhys = pVM->pgm.s.aLargeHandyPage[0].HCPhysGCPhys;
3289
3290 void *pv;
3291
3292 /* Map the large page into our address space.
3293 *
3294 * Note: assuming that within the 2 MB range:
3295 * - GCPhys + PAGE_SIZE = HCPhys + PAGE_SIZE (whole point of this exercise)
3296 * - user space mapping is continuous as well
3297 * - page id (GCPhys) + 1 = page id (GCPhys + PAGE_SIZE)
3298 */
3299 rc = pgmPhysPageMapByPageID(pVM, idPage, HCPhys, &pv);
3300 AssertLogRelMsg(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc", idPage, HCPhys, rc));
3301
3302 if (RT_SUCCESS(rc))
3303 {
3304 /*
3305 * Clear the pages.
3306 */
3307 STAM_PROFILE_START(&pVM->pgm.s.StatClearLargePage, b);
3308 for (unsigned i = 0; i < _2M/PAGE_SIZE; i++)
3309 {
3310 ASMMemZeroPage(pv);
3311
3312 PPGMPAGE pPage;
3313 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
3314 AssertRC(rc);
3315
3316 Assert(PGM_PAGE_IS_ZERO(pPage));
3317 STAM_COUNTER_INC(&pVM->pgm.s.StatRZPageReplaceZero);
3318 pVM->pgm.s.cZeroPages--;
3319
3320 /*
3321 * Do the PGMPAGE modifications.
3322 */
3323 pVM->pgm.s.cPrivatePages++;
3324 PGM_PAGE_SET_HCPHYS(pPage, HCPhys);
3325 PGM_PAGE_SET_PAGEID(pPage, idPage);
3326 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
3327 PGM_PAGE_SET_PDE_TYPE(pPage, PGM_PAGE_PDE_TYPE_PDE);
3328
3329 /* Somewhat dirty assumption that page ids are increasing. */
3330 idPage++;
3331
3332 HCPhys += PAGE_SIZE;
3333 GCPhys += PAGE_SIZE;
3334
3335 pv = (void *)((uintptr_t)pv + PAGE_SIZE);
3336
3337 Log3(("PGMR3PhysAllocateLargePage: idPage=%#x HCPhys=%RGp\n", idPage, HCPhys));
3338 }
3339 STAM_PROFILE_STOP(&pVM->pgm.s.StatClearLargePage, b);
3340
3341 /* Flush all TLBs. */
3342 PGM_INVL_ALL_VCPU_TLBS(pVM);
3343 PGMPhysInvalidatePageMapTLB(pVM);
3344 }
3345 pVM->pgm.s.cLargeHandyPages = 0;
3346 }
3347
3348 pgmUnlock(pVM);
3349 return rc;
3350}
3351
3352
3353/**
3354 * Response to VM_FF_PGM_NEED_HANDY_PAGES and VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES.
3355 *
3356 * This function will also work the VM_FF_PGM_NO_MEMORY force action flag, to
3357 * signal and clear the out of memory condition. When contracted, this API is
3358 * used to try clear the condition when the user wants to resume.
3359 *
3360 * @returns The following VBox status codes.
3361 * @retval VINF_SUCCESS on success. FFs cleared.
3362 * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in
3363 * this case and it gets accompanied by VM_FF_PGM_NO_MEMORY.
3364 *
3365 * @param pVM The VM handle.
3366 *
3367 * @remarks The VINF_EM_NO_MEMORY status is for the benefit of the FF processing
3368 * in EM.cpp and shouldn't be propagated outside TRPM, HWACCM, EM and
3369 * pgmPhysEnsureHandyPage. There is one exception to this in the \#PF
3370 * handler.
3371 */
3372VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
3373{
3374 pgmLock(pVM);
3375
3376 /*
3377 * Allocate more pages, noting down the index of the first new page.
3378 */
3379 uint32_t iClear = pVM->pgm.s.cHandyPages;
3380 AssertMsgReturn(iClear <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d", iClear), VERR_INTERNAL_ERROR);
3381 Log(("PGMR3PhysAllocateHandyPages: %d -> %d\n", iClear, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
3382 int rcAlloc = VINF_SUCCESS;
3383 int rcSeed = VINF_SUCCESS;
3384 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
3385 while (rc == VERR_GMM_SEED_ME)
3386 {
3387 void *pvChunk;
3388 rcAlloc = rc = SUPR3PageAlloc(GMM_CHUNK_SIZE >> PAGE_SHIFT, &pvChunk);
3389 if (RT_SUCCESS(rc))
3390 {
3391 rcSeed = rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_SEED_CHUNK, (uintptr_t)pvChunk, NULL);
3392 if (RT_FAILURE(rc))
3393 SUPR3PageFree(pvChunk, GMM_CHUNK_SIZE >> PAGE_SHIFT);
3394 }
3395 if (RT_SUCCESS(rc))
3396 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
3397 }
3398
3399 if (RT_SUCCESS(rc))
3400 {
3401 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
3402 Assert(pVM->pgm.s.cHandyPages > 0);
3403 VM_FF_CLEAR(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
3404 VM_FF_CLEAR(pVM, VM_FF_PGM_NO_MEMORY);
3405
3406 /*
3407 * Clear the pages.
3408 */
3409 while (iClear < pVM->pgm.s.cHandyPages)
3410 {
3411 PGMMPAGEDESC pPage = &pVM->pgm.s.aHandyPages[iClear];
3412 void *pv;
3413 rc = pgmPhysPageMapByPageID(pVM, pPage->idPage, pPage->HCPhysGCPhys, &pv);
3414 AssertLogRelMsgBreak(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc", pPage->idPage, pPage->HCPhysGCPhys, rc));
3415 ASMMemZeroPage(pv);
3416 iClear++;
3417 Log3(("PGMR3PhysAllocateHandyPages: idPage=%#x HCPhys=%RGp\n", pPage->idPage, pPage->HCPhysGCPhys));
3418 }
3419 }
3420 else
3421 {
3422 /*
3423 * We should never get here unless there is a genuine shortage of
3424 * memory (or some internal error). Flag the error so the VM can be
3425 * suspended ASAP and the user informed. If we're totally out of
3426 * handy pages we will return failure.
3427 */
3428 /* Report the failure. */
3429 LogRel(("PGM: Failed to procure handy pages; rc=%Rrc rcAlloc=%Rrc rcSeed=%Rrc cHandyPages=%#x\n"
3430 " cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n",
3431 rc, rcAlloc, rcSeed,
3432 pVM->pgm.s.cHandyPages,
3433 pVM->pgm.s.cAllPages,
3434 pVM->pgm.s.cPrivatePages,
3435 pVM->pgm.s.cSharedPages,
3436 pVM->pgm.s.cZeroPages));
3437 if ( rc != VERR_NO_MEMORY
3438 && rc != VERR_LOCK_FAILED)
3439 {
3440 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
3441 {
3442 LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n",
3443 i, pVM->pgm.s.aHandyPages[i].HCPhysGCPhys, pVM->pgm.s.aHandyPages[i].idPage,
3444 pVM->pgm.s.aHandyPages[i].idSharedPage));
3445 uint32_t const idPage = pVM->pgm.s.aHandyPages[i].idPage;
3446 if (idPage != NIL_GMM_PAGEID)
3447 {
3448 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
3449 pRam;
3450 pRam = pRam->pNextR3)
3451 {
3452 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
3453 for (uint32_t iPage = 0; iPage < cPages; iPage++)
3454 if (PGM_PAGE_GET_PAGEID(&pRam->aPages[iPage]) == idPage)
3455 LogRel(("PGM: Used by %RGp %R[pgmpage] (%s)\n",
3456 pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pRam->aPages[iPage], pRam->pszDesc));
3457 }
3458 }
3459 }
3460 }
3461
3462 /* Set the FFs and adjust rc. */
3463 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
3464 VM_FF_SET(pVM, VM_FF_PGM_NO_MEMORY);
3465 if ( rc == VERR_NO_MEMORY
3466 || rc == VERR_LOCK_FAILED)
3467 rc = VINF_EM_NO_MEMORY;
3468 }
3469
3470 pgmUnlock(pVM);
3471 return rc;
3472}
3473
3474
3475/**
3476 * Frees the specified RAM page and replaces it with the ZERO page.
3477 *
3478 * This is used by ballooning, remapping MMIO2 and RAM reset.
3479 *
3480 * @param pVM Pointer to the shared VM structure.
3481 * @param pReq Pointer to the request.
3482 * @param pPage Pointer to the page structure.
3483 * @param GCPhys The guest physical address of the page, if applicable.
3484 *
3485 * @remarks The caller must own the PGM lock.
3486 */
3487static int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys)
3488{
3489 /*
3490 * Assert sanity.
3491 */
3492 Assert(PGMIsLockOwner(pVM));
3493 if (RT_UNLIKELY( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
3494 && PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW))
3495 {
3496 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
3497 return VMSetError(pVM, VERR_PGM_PHYS_NOT_RAM, RT_SRC_POS, "GCPhys=%RGp type=%d", GCPhys, PGM_PAGE_GET_TYPE(pPage));
3498 }
3499
3500 if ( PGM_PAGE_IS_ZERO(pPage)
3501 || PGM_PAGE_IS_BALLOONED(pPage))
3502 return VINF_SUCCESS;
3503
3504 const uint32_t idPage = PGM_PAGE_GET_PAGEID(pPage);
3505 Log3(("pgmPhysFreePage: idPage=%#x HCPhys=%RGp pPage=%R[pgmpage]\n", idPage, pPage));
3506 if (RT_UNLIKELY( idPage == NIL_GMM_PAGEID
3507 || idPage > GMM_PAGEID_LAST
3508 || PGM_PAGE_GET_CHUNKID(pPage) == NIL_GMM_CHUNKID))
3509 {
3510 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
3511 return VMSetError(pVM, VERR_PGM_PHYS_INVALID_PAGE_ID, RT_SRC_POS, "GCPhys=%RGp idPage=%#x", GCPhys, pPage);
3512 }
3513
3514 /* update page count stats. */
3515 if (PGM_PAGE_IS_SHARED(pPage))
3516 pVM->pgm.s.cSharedPages--;
3517 else
3518 pVM->pgm.s.cPrivatePages--;
3519 pVM->pgm.s.cZeroPages++;
3520
3521 /* Deal with write monitored pages. */
3522 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
3523 {
3524 PGM_PAGE_SET_WRITTEN_TO(pPage);
3525 pVM->pgm.s.cWrittenToPages++;
3526 }
3527
3528 /*
3529 * pPage = ZERO page.
3530 */
3531 PGM_PAGE_SET_HCPHYS(pPage, pVM->pgm.s.HCPhysZeroPg);
3532 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
3533 PGM_PAGE_SET_PAGEID(pPage, NIL_GMM_PAGEID);
3534 PGM_PAGE_SET_PDE_TYPE(pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
3535
3536 /* Flush physical page map TLB entry. */
3537 PGMPhysInvalidatePageMapTLBEntry(pVM, GCPhys);
3538
3539 /*
3540 * Make sure it's not in the handy page array.
3541 */
3542 for (uint32_t i = pVM->pgm.s.cHandyPages; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
3543 {
3544 if (pVM->pgm.s.aHandyPages[i].idPage == idPage)
3545 {
3546 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
3547 break;
3548 }
3549 if (pVM->pgm.s.aHandyPages[i].idSharedPage == idPage)
3550 {
3551 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
3552 break;
3553 }
3554 }
3555
3556 /*
3557 * Push it onto the page array.
3558 */
3559 uint32_t iPage = *pcPendingPages;
3560 Assert(iPage < PGMPHYS_FREE_PAGE_BATCH_SIZE);
3561 *pcPendingPages += 1;
3562
3563 pReq->aPages[iPage].idPage = idPage;
3564
3565 if (iPage + 1 < PGMPHYS_FREE_PAGE_BATCH_SIZE)
3566 return VINF_SUCCESS;
3567
3568 /*
3569 * Flush the pages.
3570 */
3571 int rc = GMMR3FreePagesPerform(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE);
3572 if (RT_SUCCESS(rc))
3573 {
3574 GMMR3FreePagesRePrep(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
3575 *pcPendingPages = 0;
3576 }
3577 return rc;
3578}
3579
3580
3581/**
3582 * Converts a GC physical address to a HC ring-3 pointer, with some
3583 * additional checks.
3584 *
3585 * @returns VBox status code.
3586 * @retval VINF_SUCCESS on success.
3587 * @retval VINF_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
3588 * access handler of some kind.
3589 * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
3590 * accesses or is odd in any way.
3591 * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
3592 *
3593 * @param pVM The VM handle.
3594 * @param GCPhys The GC physical address to convert.
3595 * @param fWritable Whether write access is required.
3596 * @param ppv Where to store the pointer corresponding to GCPhys on
3597 * success.
3598 */
3599VMMR3DECL(int) PGMR3PhysTlbGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, void **ppv)
3600{
3601 pgmLock(pVM);
3602
3603 PPGMRAMRANGE pRam;
3604 PPGMPAGE pPage;
3605 int rc = pgmPhysGetPageAndRangeEx(&pVM->pgm.s, GCPhys, &pPage, &pRam);
3606 if (RT_SUCCESS(rc))
3607 {
3608 if (PGM_PAGE_IS_BALLOONED(pPage))
3609 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
3610 else if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage))
3611 rc = VINF_SUCCESS;
3612 else
3613 {
3614 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
3615 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
3616 else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
3617 {
3618 /** @todo Handle TLB loads of virtual handlers so ./test.sh can be made to work
3619 * in -norawr0 mode. */
3620 if (fWritable)
3621 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
3622 }
3623 else
3624 {
3625 /* Temporarily disabled physical handler(s), since the recompiler
3626 doesn't get notified when it's reset we'll have to pretend it's
3627 operating normally. */
3628 if (pgmHandlerPhysicalIsAll(pVM, GCPhys))
3629 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
3630 else
3631 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
3632 }
3633 }
3634 if (RT_SUCCESS(rc))
3635 {
3636 int rc2;
3637
3638 /* Make sure what we return is writable. */
3639 if (fWritable && rc != VINF_PGM_PHYS_TLB_CATCH_WRITE)
3640 switch (PGM_PAGE_GET_STATE(pPage))
3641 {
3642 case PGM_PAGE_STATE_ALLOCATED:
3643 break;
3644 case PGM_PAGE_STATE_BALLOONED:
3645 AssertFailed();
3646 break;
3647 case PGM_PAGE_STATE_ZERO:
3648 case PGM_PAGE_STATE_SHARED:
3649 case PGM_PAGE_STATE_WRITE_MONITORED:
3650 rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
3651 AssertLogRelRCReturn(rc2, rc2);
3652 break;
3653 }
3654
3655 /* Get a ring-3 mapping of the address. */
3656 PPGMPAGER3MAPTLBE pTlbe;
3657 rc2 = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
3658 AssertLogRelRCReturn(rc2, rc2);
3659 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
3660 /** @todo mapping/locking hell; this isn't horribly efficient since
3661 * pgmPhysPageLoadIntoTlb will repeat the lookup we've done here. */
3662
3663 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
3664 }
3665 else
3666 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));
3667
3668 /* else: handler catching all access, no pointer returned. */
3669 }
3670 else
3671 rc = VERR_PGM_PHYS_TLB_UNASSIGNED;
3672
3673 pgmUnlock(pVM);
3674 return rc;
3675}
3676
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette