VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMPhys.cpp@ 27644

Last change on this file since 27644 was 27598, checked in by vboxsync, 15 years ago

Comment added

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 130.7 KB
Line 
1/* $Id: PGMPhys.cpp 27598 2010-03-22 15:27:07Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_PGM_PHYS
27#include <VBox/pgm.h>
28#include <VBox/iom.h>
29#include <VBox/mm.h>
30#include <VBox/stam.h>
31#include <VBox/rem.h>
32#include <VBox/pdmdev.h>
33#include "PGMInternal.h"
34#include <VBox/vm.h>
35#include "PGMInline.h"
36#include <VBox/sup.h>
37#include <VBox/param.h>
38#include <VBox/err.h>
39#include <VBox/log.h>
40#include <iprt/assert.h>
41#include <iprt/alloc.h>
42#include <iprt/asm.h>
43#include <iprt/thread.h>
44#include <iprt/string.h>
45
46
47/*******************************************************************************
48* Defined Constants And Macros *
49*******************************************************************************/
50/** The number of pages to free in one batch. */
51#define PGMPHYS_FREE_PAGE_BATCH_SIZE 128
52
53
54/*******************************************************************************
55* Internal Functions *
56*******************************************************************************/
57static DECLCALLBACK(int) pgmR3PhysRomWriteHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
58static int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys);
59
60
61/*
62 * PGMR3PhysReadU8-64
63 * PGMR3PhysWriteU8-64
64 */
65#define PGMPHYSFN_READNAME PGMR3PhysReadU8
66#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8
67#define PGMPHYS_DATASIZE 1
68#define PGMPHYS_DATATYPE uint8_t
69#include "PGMPhysRWTmpl.h"
70
71#define PGMPHYSFN_READNAME PGMR3PhysReadU16
72#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16
73#define PGMPHYS_DATASIZE 2
74#define PGMPHYS_DATATYPE uint16_t
75#include "PGMPhysRWTmpl.h"
76
77#define PGMPHYSFN_READNAME PGMR3PhysReadU32
78#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32
79#define PGMPHYS_DATASIZE 4
80#define PGMPHYS_DATATYPE uint32_t
81#include "PGMPhysRWTmpl.h"
82
83#define PGMPHYSFN_READNAME PGMR3PhysReadU64
84#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64
85#define PGMPHYS_DATASIZE 8
86#define PGMPHYS_DATATYPE uint64_t
87#include "PGMPhysRWTmpl.h"
88
89
90/**
91 * EMT worker for PGMR3PhysReadExternal.
92 */
93static DECLCALLBACK(int) pgmR3PhysReadExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, void *pvBuf, size_t cbRead)
94{
95 PGMPhysRead(pVM, *pGCPhys, pvBuf, cbRead);
96 return VINF_SUCCESS;
97}
98
99
100/**
101 * Write to physical memory, external users.
102 *
103 * @returns VBox status code.
104 * @retval VINF_SUCCESS.
105 *
106 * @param pVM VM Handle.
107 * @param GCPhys Physical address to write to.
108 * @param pvBuf What to write.
109 * @param cbWrite How many bytes to write.
110 *
111 * @thread Any but EMTs.
112 */
113VMMR3DECL(int) PGMR3PhysReadExternal(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead)
114{
115 VM_ASSERT_OTHER_THREAD(pVM);
116
117 AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
118 LogFlow(("PGMR3PhysReadExternal: %RGp %d\n", GCPhys, cbRead));
119
120 pgmLock(pVM);
121
122 /*
123 * Copy loop on ram ranges.
124 */
125 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
126 for (;;)
127 {
128 /* Find range. */
129 while (pRam && GCPhys > pRam->GCPhysLast)
130 pRam = pRam->CTX_SUFF(pNext);
131 /* Inside range or not? */
132 if (pRam && GCPhys >= pRam->GCPhys)
133 {
134 /*
135 * Must work our way thru this page by page.
136 */
137 RTGCPHYS off = GCPhys - pRam->GCPhys;
138 while (off < pRam->cb)
139 {
140 unsigned iPage = off >> PAGE_SHIFT;
141 PPGMPAGE pPage = &pRam->aPages[iPage];
142
143 /*
144 * If the page has an ALL access handler, we'll have to
145 * delegate the job to EMT.
146 */
147 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
148 {
149 pgmUnlock(pVM);
150
151 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysReadExternalEMT, 4,
152 pVM, &GCPhys, pvBuf, cbRead);
153 }
154 Assert(!PGM_PAGE_IS_MMIO(pPage));
155
156 /*
157 * Simple stuff, go ahead.
158 */
159 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
160 if (cb > cbRead)
161 cb = cbRead;
162 const void *pvSrc;
163 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc);
164 if (RT_SUCCESS(rc))
165 memcpy(pvBuf, pvSrc, cb);
166 else
167 {
168 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
169 pRam->GCPhys + off, pPage, rc));
170 memset(pvBuf, 0xff, cb);
171 }
172
173 /* next page */
174 if (cb >= cbRead)
175 {
176 pgmUnlock(pVM);
177 return VINF_SUCCESS;
178 }
179 cbRead -= cb;
180 off += cb;
181 GCPhys += cb;
182 pvBuf = (char *)pvBuf + cb;
183 } /* walk pages in ram range. */
184 }
185 else
186 {
187 LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
188
189 /*
190 * Unassigned address space.
191 */
192 if (!pRam)
193 break;
194 size_t cb = pRam->GCPhys - GCPhys;
195 if (cb >= cbRead)
196 {
197 memset(pvBuf, 0xff, cbRead);
198 break;
199 }
200 memset(pvBuf, 0xff, cb);
201
202 cbRead -= cb;
203 pvBuf = (char *)pvBuf + cb;
204 GCPhys += cb;
205 }
206 } /* Ram range walk */
207
208 pgmUnlock(pVM);
209
210 return VINF_SUCCESS;
211}
212
213
214/**
215 * EMT worker for PGMR3PhysWriteExternal.
216 */
217static DECLCALLBACK(int) pgmR3PhysWriteExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, const void *pvBuf, size_t cbWrite)
218{
219 /** @todo VERR_EM_NO_MEMORY */
220 PGMPhysWrite(pVM, *pGCPhys, pvBuf, cbWrite);
221 return VINF_SUCCESS;
222}
223
224
225/**
226 * Write to physical memory, external users.
227 *
228 * @returns VBox status code.
229 * @retval VINF_SUCCESS.
230 * @retval VERR_EM_NO_MEMORY.
231 *
232 * @param pVM VM Handle.
233 * @param GCPhys Physical address to write to.
234 * @param pvBuf What to write.
235 * @param cbWrite How many bytes to write.
236 * @param pszWho Who is writing. For tracking down who is writing
237 * after we've saved the state.
238 *
239 * @thread Any but EMTs.
240 */
241VMMDECL(int) PGMR3PhysWriteExternal(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, const char *pszWho)
242{
243 VM_ASSERT_OTHER_THREAD(pVM);
244
245 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites,
246 ("Calling PGMR3PhysWriteExternal after pgmR3Save()! GCPhys=%RGp cbWrite=%#x pszWho=%s\n",
247 GCPhys, cbWrite, pszWho));
248 AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
249 LogFlow(("PGMR3PhysWriteExternal: %RGp %d\n", GCPhys, cbWrite));
250
251 pgmLock(pVM);
252
253 /*
254 * Copy loop on ram ranges, stop when we hit something difficult.
255 */
256 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
257 for (;;)
258 {
259 /* Find range. */
260 while (pRam && GCPhys > pRam->GCPhysLast)
261 pRam = pRam->CTX_SUFF(pNext);
262 /* Inside range or not? */
263 if (pRam && GCPhys >= pRam->GCPhys)
264 {
265 /*
266 * Must work our way thru this page by page.
267 */
268 RTGCPTR off = GCPhys - pRam->GCPhys;
269 while (off < pRam->cb)
270 {
271 RTGCPTR iPage = off >> PAGE_SHIFT;
272 PPGMPAGE pPage = &pRam->aPages[iPage];
273
274 /*
275 * Is the page problematic, we have to do the work on the EMT.
276 *
277 * Allocating writable pages and access handlers are
278 * problematic, write monitored pages are simple and can be
279 * dealth with here.
280 */
281 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
282 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
283 {
284 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
285 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
286 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
287 else
288 {
289 pgmUnlock(pVM);
290
291 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysWriteExternalEMT, 4,
292 pVM, &GCPhys, pvBuf, cbWrite);
293 }
294 }
295 Assert(!PGM_PAGE_IS_MMIO(pPage));
296
297 /*
298 * Simple stuff, go ahead.
299 */
300 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
301 if (cb > cbWrite)
302 cb = cbWrite;
303 void *pvDst;
304 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst);
305 if (RT_SUCCESS(rc))
306 memcpy(pvDst, pvBuf, cb);
307 else
308 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
309 pRam->GCPhys + off, pPage, rc));
310
311 /* next page */
312 if (cb >= cbWrite)
313 {
314 pgmUnlock(pVM);
315 return VINF_SUCCESS;
316 }
317
318 cbWrite -= cb;
319 off += cb;
320 GCPhys += cb;
321 pvBuf = (const char *)pvBuf + cb;
322 } /* walk pages in ram range */
323 }
324 else
325 {
326 /*
327 * Unassigned address space, skip it.
328 */
329 if (!pRam)
330 break;
331 size_t cb = pRam->GCPhys - GCPhys;
332 if (cb >= cbWrite)
333 break;
334 cbWrite -= cb;
335 pvBuf = (const char *)pvBuf + cb;
336 GCPhys += cb;
337 }
338 } /* Ram range walk */
339
340 pgmUnlock(pVM);
341 return VINF_SUCCESS;
342}
343
344
345/**
346 * VMR3ReqCall worker for PGMR3PhysGCPhys2CCPtrExternal to make pages writable.
347 *
348 * @returns see PGMR3PhysGCPhys2CCPtrExternal
349 * @param pVM The VM handle.
350 * @param pGCPhys Pointer to the guest physical address.
351 * @param ppv Where to store the mapping address.
352 * @param pLock Where to store the lock.
353 */
354static DECLCALLBACK(int) pgmR3PhysGCPhys2CCPtrDelegated(PVM pVM, PRTGCPHYS pGCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
355{
356 /*
357 * Just hand it to PGMPhysGCPhys2CCPtr and check that it's not a page with
358 * an access handler after it succeeds.
359 */
360 int rc = pgmLock(pVM);
361 AssertRCReturn(rc, rc);
362
363 rc = PGMPhysGCPhys2CCPtr(pVM, *pGCPhys, ppv, pLock);
364 if (RT_SUCCESS(rc))
365 {
366 PPGMPAGEMAPTLBE pTlbe;
367 int rc2 = pgmPhysPageQueryTlbe(&pVM->pgm.s, *pGCPhys, &pTlbe);
368 AssertFatalRC(rc2);
369 PPGMPAGE pPage = pTlbe->pPage;
370 if (PGM_PAGE_IS_MMIO(pPage))
371 {
372 PGMPhysReleasePageMappingLock(pVM, pLock);
373 rc = VERR_PGM_PHYS_PAGE_RESERVED;
374 }
375 else if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
376#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
377 || pgmPoolIsDirtyPage(pVM, *pGCPhys)
378#endif
379 )
380 {
381 /* We *must* flush any corresponding pgm pool page here, otherwise we'll
382 * not be informed about writes and keep bogus gst->shw mappings around.
383 */
384 pgmPoolFlushPageByGCPhys(pVM, *pGCPhys);
385 Assert(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage));
386 /** @todo r=bird: return VERR_PGM_PHYS_PAGE_RESERVED here if it still has
387 * active handlers, see the PGMR3PhysGCPhys2CCPtrExternal docs. */
388 }
389 }
390
391 pgmUnlock(pVM);
392 return rc;
393}
394
395
396/**
397 * Requests the mapping of a guest page into ring-3, external threads.
398 *
399 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
400 * release it.
401 *
402 * This API will assume your intention is to write to the page, and will
403 * therefore replace shared and zero pages. If you do not intend to modify the
404 * page, use the PGMR3PhysGCPhys2CCPtrReadOnlyExternal() API.
405 *
406 * @returns VBox status code.
407 * @retval VINF_SUCCESS on success.
408 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
409 * backing or if the page has any active access handlers. The caller
410 * must fall back on using PGMR3PhysWriteExternal.
411 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
412 *
413 * @param pVM The VM handle.
414 * @param GCPhys The guest physical address of the page that should be mapped.
415 * @param ppv Where to store the address corresponding to GCPhys.
416 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
417 *
418 * @remark Avoid calling this API from within critical sections (other than the
419 * PGM one) because of the deadlock risk when we have to delegating the
420 * task to an EMT.
421 * @thread Any.
422 */
423VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrExternal(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
424{
425 AssertPtr(ppv);
426 AssertPtr(pLock);
427
428 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
429
430 int rc = pgmLock(pVM);
431 AssertRCReturn(rc, rc);
432
433 /*
434 * Query the Physical TLB entry for the page (may fail).
435 */
436 PPGMPAGEMAPTLBE pTlbe;
437 rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
438 if (RT_SUCCESS(rc))
439 {
440 PPGMPAGE pPage = pTlbe->pPage;
441 if (PGM_PAGE_IS_MMIO(pPage))
442 rc = VERR_PGM_PHYS_PAGE_RESERVED;
443 else
444 {
445 /*
446 * If the page is shared, the zero page, or being write monitored
447 * it must be converted to an page that's writable if possible.
448 * We can only deal with write monitored pages here, the rest have
449 * to be on an EMT.
450 */
451 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
452 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
453#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
454 || pgmPoolIsDirtyPage(pVM, GCPhys)
455#endif
456 )
457 {
458 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
459 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
460#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
461 && !pgmPoolIsDirtyPage(pVM, GCPhys)
462#endif
463 )
464 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
465 else
466 {
467 pgmUnlock(pVM);
468
469 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
470 pVM, &GCPhys, ppv, pLock);
471 }
472 }
473
474 /*
475 * Now, just perform the locking and calculate the return address.
476 */
477 PPGMPAGEMAP pMap = pTlbe->pMap;
478 if (pMap)
479 pMap->cRefs++;
480
481 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
482 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
483 {
484 if (cLocks == 0)
485 pVM->pgm.s.cWriteLockedPages++;
486 PGM_PAGE_INC_WRITE_LOCKS(pPage);
487 }
488 else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
489 {
490 PGM_PAGE_INC_WRITE_LOCKS(pPage);
491 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", GCPhys, pPage));
492 if (pMap)
493 pMap->cRefs++; /* Extra ref to prevent it from going away. */
494 }
495
496 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
497 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
498 pLock->pvMap = pMap;
499 }
500 }
501
502 pgmUnlock(pVM);
503 return rc;
504}
505
506
507/**
508 * Requests the mapping of a guest page into ring-3, external threads.
509 *
510 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
511 * release it.
512 *
513 * @returns VBox status code.
514 * @retval VINF_SUCCESS on success.
515 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
516 * backing or if the page as an active ALL access handler. The caller
517 * must fall back on using PGMPhysRead.
518 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
519 *
520 * @param pVM The VM handle.
521 * @param GCPhys The guest physical address of the page that should be mapped.
522 * @param ppv Where to store the address corresponding to GCPhys.
523 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
524 *
525 * @remark Avoid calling this API from within critical sections (other than
526 * the PGM one) because of the deadlock risk.
527 * @thread Any.
528 */
529VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrReadOnlyExternal(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
530{
531 int rc = pgmLock(pVM);
532 AssertRCReturn(rc, rc);
533
534 /*
535 * Query the Physical TLB entry for the page (may fail).
536 */
537 PPGMPAGEMAPTLBE pTlbe;
538 rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
539 if (RT_SUCCESS(rc))
540 {
541 PPGMPAGE pPage = pTlbe->pPage;
542#if 1
543 /* MMIO pages doesn't have any readable backing. */
544 if (PGM_PAGE_IS_MMIO(pPage))
545 rc = VERR_PGM_PHYS_PAGE_RESERVED;
546#else
547 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
548 rc = VERR_PGM_PHYS_PAGE_RESERVED;
549#endif
550 else
551 {
552 /*
553 * Now, just perform the locking and calculate the return address.
554 */
555 PPGMPAGEMAP pMap = pTlbe->pMap;
556 if (pMap)
557 pMap->cRefs++;
558
559 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
560 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
561 {
562 if (cLocks == 0)
563 pVM->pgm.s.cReadLockedPages++;
564 PGM_PAGE_INC_READ_LOCKS(pPage);
565 }
566 else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
567 {
568 PGM_PAGE_INC_READ_LOCKS(pPage);
569 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", GCPhys, pPage));
570 if (pMap)
571 pMap->cRefs++; /* Extra ref to prevent it from going away. */
572 }
573
574 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
575 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
576 pLock->pvMap = pMap;
577 }
578 }
579
580 pgmUnlock(pVM);
581 return rc;
582}
583
584
585/**
586 * Relinks the RAM ranges using the pSelfRC and pSelfR0 pointers.
587 *
588 * Called when anything was relocated.
589 *
590 * @param pVM Pointer to the shared VM structure.
591 */
592void pgmR3PhysRelinkRamRanges(PVM pVM)
593{
594 PPGMRAMRANGE pCur;
595
596#ifdef VBOX_STRICT
597 for (pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
598 {
599 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfR0 == MMHyperCCToR0(pVM, pCur));
600 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfRC == MMHyperCCToRC(pVM, pCur));
601 Assert((pCur->GCPhys & PAGE_OFFSET_MASK) == 0);
602 Assert((pCur->GCPhysLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
603 Assert((pCur->cb & PAGE_OFFSET_MASK) == 0);
604 Assert(pCur->cb == pCur->GCPhysLast - pCur->GCPhys + 1);
605 for (PPGMRAMRANGE pCur2 = pVM->pgm.s.pRamRangesR3; pCur2; pCur2 = pCur2->pNextR3)
606 Assert( pCur2 == pCur
607 || strcmp(pCur2->pszDesc, pCur->pszDesc)); /** @todo fix MMIO ranges!! */
608 }
609#endif
610
611 pCur = pVM->pgm.s.pRamRangesR3;
612 if (pCur)
613 {
614 pVM->pgm.s.pRamRangesR0 = pCur->pSelfR0;
615 pVM->pgm.s.pRamRangesRC = pCur->pSelfRC;
616
617 for (; pCur->pNextR3; pCur = pCur->pNextR3)
618 {
619 pCur->pNextR0 = pCur->pNextR3->pSelfR0;
620 pCur->pNextRC = pCur->pNextR3->pSelfRC;
621 }
622
623 Assert(pCur->pNextR0 == NIL_RTR0PTR);
624 Assert(pCur->pNextRC == NIL_RTRCPTR);
625 }
626 else
627 {
628 Assert(pVM->pgm.s.pRamRangesR0 == NIL_RTR0PTR);
629 Assert(pVM->pgm.s.pRamRangesRC == NIL_RTRCPTR);
630 }
631 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
632}
633
634
635/**
636 * Links a new RAM range into the list.
637 *
638 * @param pVM Pointer to the shared VM structure.
639 * @param pNew Pointer to the new list entry.
640 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
641 */
642static void pgmR3PhysLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, PPGMRAMRANGE pPrev)
643{
644 AssertMsg(pNew->pszDesc, ("%RGp-%RGp\n", pNew->GCPhys, pNew->GCPhysLast));
645 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfR0 == MMHyperCCToR0(pVM, pNew));
646 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfRC == MMHyperCCToRC(pVM, pNew));
647
648 pgmLock(pVM);
649
650 PPGMRAMRANGE pRam = pPrev ? pPrev->pNextR3 : pVM->pgm.s.pRamRangesR3;
651 pNew->pNextR3 = pRam;
652 pNew->pNextR0 = pRam ? pRam->pSelfR0 : NIL_RTR0PTR;
653 pNew->pNextRC = pRam ? pRam->pSelfRC : NIL_RTRCPTR;
654
655 if (pPrev)
656 {
657 pPrev->pNextR3 = pNew;
658 pPrev->pNextR0 = pNew->pSelfR0;
659 pPrev->pNextRC = pNew->pSelfRC;
660 }
661 else
662 {
663 pVM->pgm.s.pRamRangesR3 = pNew;
664 pVM->pgm.s.pRamRangesR0 = pNew->pSelfR0;
665 pVM->pgm.s.pRamRangesRC = pNew->pSelfRC;
666 }
667 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
668 pgmUnlock(pVM);
669}
670
671
672/**
673 * Unlink an existing RAM range from the list.
674 *
675 * @param pVM Pointer to the shared VM structure.
676 * @param pRam Pointer to the new list entry.
677 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
678 */
679static void pgmR3PhysUnlinkRamRange2(PVM pVM, PPGMRAMRANGE pRam, PPGMRAMRANGE pPrev)
680{
681 Assert(pPrev ? pPrev->pNextR3 == pRam : pVM->pgm.s.pRamRangesR3 == pRam);
682 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfR0 == MMHyperCCToR0(pVM, pRam));
683 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfRC == MMHyperCCToRC(pVM, pRam));
684
685 pgmLock(pVM);
686
687 PPGMRAMRANGE pNext = pRam->pNextR3;
688 if (pPrev)
689 {
690 pPrev->pNextR3 = pNext;
691 pPrev->pNextR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
692 pPrev->pNextRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
693 }
694 else
695 {
696 Assert(pVM->pgm.s.pRamRangesR3 == pRam);
697 pVM->pgm.s.pRamRangesR3 = pNext;
698 pVM->pgm.s.pRamRangesR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
699 pVM->pgm.s.pRamRangesRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
700 }
701 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
702 pgmUnlock(pVM);
703}
704
705
706/**
707 * Unlink an existing RAM range from the list.
708 *
709 * @param pVM Pointer to the shared VM structure.
710 * @param pRam Pointer to the new list entry.
711 */
712static void pgmR3PhysUnlinkRamRange(PVM pVM, PPGMRAMRANGE pRam)
713{
714 pgmLock(pVM);
715
716 /* find prev. */
717 PPGMRAMRANGE pPrev = NULL;
718 PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3;
719 while (pCur != pRam)
720 {
721 pPrev = pCur;
722 pCur = pCur->pNextR3;
723 }
724 AssertFatal(pCur);
725
726 pgmR3PhysUnlinkRamRange2(pVM, pRam, pPrev);
727 pgmUnlock(pVM);
728}
729
730
731/**
732 * Frees a range of pages, replacing them with ZERO pages of the specified type.
733 *
734 * @returns VBox status code.
735 * @param pVM The VM handle.
736 * @param pRam The RAM range in which the pages resides.
737 * @param GCPhys The address of the first page.
738 * @param GCPhysLast The address of the last page.
739 * @param uType The page type to replace then with.
740 */
741static int pgmR3PhysFreePageRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, uint8_t uType)
742{
743 Assert(PGMIsLockOwner(pVM));
744 uint32_t cPendingPages = 0;
745 PGMMFREEPAGESREQ pReq;
746 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
747 AssertLogRelRCReturn(rc, rc);
748
749 /* Iterate the pages. */
750 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
751 uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1;
752 while (cPagesLeft-- > 0)
753 {
754 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
755 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
756
757 PGM_PAGE_SET_TYPE(pPageDst, uType);
758
759 GCPhys += PAGE_SIZE;
760 pPageDst++;
761 }
762
763 if (cPendingPages)
764 {
765 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
766 AssertLogRelRCReturn(rc, rc);
767 }
768 GMMR3FreePagesCleanup(pReq);
769
770 return rc;
771}
772
773/**
774 * Rendezvous callback used by PGMR3ChangeMemBalloon that changes the memory balloon size
775 *
776 * This is only called on one of the EMTs while the other ones are waiting for
777 * it to complete this function.
778 *
779 * @returns VINF_SUCCESS (VBox strict status code).
780 * @param pVM The VM handle.
781 * @param pVCpu The VMCPU for the EMT we're being called on. Unused.
782 * @param pvUser User parameter
783 */
784static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysChangeMemBalloonRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
785{
786 uintptr_t *paUser = (uintptr_t *)pvUser;
787 bool fInflate = !!paUser[0];
788 unsigned cPages = paUser[1];
789 RTGCPHYS *paPhysPage = (RTGCPHYS *)paUser[2];
790 uint32_t cPendingPages = 0;
791 PGMMFREEPAGESREQ pReq;
792 int rc;
793
794 Log(("pgmR3PhysChangeMemBalloonRendezvous: %s %x pages\n", (fInflate) ? "inflate" : "deflate", cPages));
795 pgmLock(pVM);
796
797 if (fInflate)
798 {
799 /* Replace pages with ZERO pages. */
800 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
801 if (RT_FAILURE(rc))
802 {
803 pgmUnlock(pVM);
804 AssertLogRelRC(rc);
805 return rc;
806 }
807
808 /* Iterate the pages. */
809 for (unsigned i = 0; i < cPages; i++)
810 {
811 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, paPhysPage[i]);
812 if ( pPage == NULL
813 || pPage->uTypeY != PGMPAGETYPE_RAM)
814 {
815 Log(("pgmR3PhysChangeMemBalloonRendezvous: invalid physical page %RGp pPage->u3Type=%d\n", paPhysPage[i], (pPage) ? pPage->uTypeY : 0));
816 break;
817 }
818
819 LogFlow(("balloon page: %RGp\n", paPhysPage[i]));
820
821 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, paPhysPage[i]);
822 if (RT_FAILURE(rc))
823 {
824 pgmUnlock(pVM);
825 AssertLogRelRC(rc);
826 return rc;
827 }
828 Assert(PGM_PAGE_IS_ZERO(pPage));
829 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_BALLOONED);
830 }
831
832 if (cPendingPages)
833 {
834 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
835 if (RT_FAILURE(rc))
836 {
837 pgmUnlock(pVM);
838 AssertLogRelRC(rc);
839 return rc;
840 }
841 }
842 GMMR3FreePagesCleanup(pReq);
843
844 /* Flush the PGM pool cache as we might have stale references to pages that we just freed. */
845 pgmR3PoolClearAllRendezvous(pVM, pVCpu, NULL);
846 }
847 else
848 {
849 /* Iterate the pages. */
850 for (unsigned i = 0; i < cPages; i++)
851 {
852 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, paPhysPage[i]);
853 AssertBreak(pPage && pPage->uTypeY == PGMPAGETYPE_RAM);
854
855 LogFlow(("Free ballooned page: %RGp\n", paPhysPage[i]));
856
857 Assert(PGM_PAGE_IS_BALLOONED(pPage));
858
859 /* Change back to zero page. */
860 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
861 }
862
863 /* Note that we currently do not map any ballooned pages in our shadow page tables, so no need to flush the pgm pool. */
864 }
865
866 /* Notify GMM about the balloon change. */
867 rc = GMMR3BalloonedPages(pVM, (fInflate) ? GMMBALLOONACTION_INFLATE : GMMBALLOONACTION_DEFLATE, cPages);
868 if (RT_SUCCESS(rc))
869 {
870 if (!fInflate)
871 {
872 Assert(pVM->pgm.s.cBalloonedPages >= cPages);
873 pVM->pgm.s.cBalloonedPages -= cPages;
874 }
875 else
876 pVM->pgm.s.cBalloonedPages += cPages;
877 }
878
879 pgmUnlock(pVM);
880
881 /* Flush the recompiler's TLB as well. */
882 for (unsigned i = 0; i < pVM->cCpus; i++)
883 CPUMSetChangedFlags(&pVM->aCpus[i], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
884
885 AssertLogRelRC(rc);
886 return rc;
887}
888
889/**
890 * Frees a range of ram pages, replacing them with ZERO pages; helper for PGMR3PhysFreeRamPages
891 *
892 * @returns VBox status code.
893 * @param pVM The VM handle.
894 * @param fInflate Inflate or deflate memory balloon
895 * @param cPages Number of pages to free
896 * @param paPhysPage Array of guest physical addresses
897 */
898static DECLCALLBACK(void) pgmR3PhysChangeMemBalloonHelper(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
899{
900 uintptr_t paUser[3];
901
902 paUser[0] = fInflate;
903 paUser[1] = cPages;
904 paUser[2] = (uintptr_t)paPhysPage;
905 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
906 AssertRC(rc);
907
908 /* Made a copy in PGMR3PhysFreeRamPages; free it here. */
909 RTMemFree(paPhysPage);
910}
911
912/**
913 * Inflate or deflate a memory balloon
914 *
915 * @returns VBox status code.
916 * @param pVM The VM handle.
917 * @param fInflate Inflate or deflate memory balloon
918 * @param cPages Number of pages to free
919 * @param paPhysPage Array of guest physical addresses
920 */
921VMMR3DECL(int) PGMR3PhysChangeMemBalloon(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
922{
923 int rc;
924
925 /* We own the IOM lock here and could cause a deadlock by waiting for another VCPU that is blocking on the IOM lock.
926 * In the SMP case we post a request packet to postpone the job.
927 */
928 if (pVM->cCpus > 1)
929 {
930 unsigned cbPhysPage = cPages * sizeof(paPhysPage[0]);
931 RTGCPHYS *paPhysPageCopy = (RTGCPHYS *)RTMemAlloc(cbPhysPage);
932 AssertReturn(paPhysPageCopy, VERR_NO_MEMORY);
933
934 memcpy(paPhysPageCopy, paPhysPage, cbPhysPage);
935
936 rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysChangeMemBalloonHelper, 4, pVM, fInflate, cPages, paPhysPageCopy);
937 AssertRC(rc);
938 }
939 else
940 {
941 uintptr_t paUser[3];
942
943 paUser[0] = fInflate;
944 paUser[1] = cPages;
945 paUser[2] = (uintptr_t)paPhysPage;
946 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
947 AssertRC(rc);
948 }
949 return rc;
950}
951
952
953/**
954 * PGMR3PhysRegisterRam worker that initializes and links a RAM range.
955 *
956 * @param pVM The VM handle.
957 * @param pNew The new RAM range.
958 * @param GCPhys The address of the RAM range.
959 * @param GCPhysLast The last address of the RAM range.
960 * @param RCPtrNew The RC address if the range is floating. NIL_RTRCPTR
961 * if in HMA.
962 * @param R0PtrNew Ditto for R0.
963 * @param pszDesc The description.
964 * @param pPrev The previous RAM range (for linking).
965 */
966static void pgmR3PhysInitAndLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
967 RTRCPTR RCPtrNew, RTR0PTR R0PtrNew, const char *pszDesc, PPGMRAMRANGE pPrev)
968{
969 /*
970 * Initialize the range.
971 */
972 pNew->pSelfR0 = R0PtrNew != NIL_RTR0PTR ? R0PtrNew : MMHyperCCToR0(pVM, pNew);
973 pNew->pSelfRC = RCPtrNew != NIL_RTRCPTR ? RCPtrNew : MMHyperCCToRC(pVM, pNew);
974 pNew->GCPhys = GCPhys;
975 pNew->GCPhysLast = GCPhysLast;
976 pNew->cb = GCPhysLast - GCPhys + 1;
977 pNew->pszDesc = pszDesc;
978 pNew->fFlags = RCPtrNew != NIL_RTRCPTR ? PGM_RAM_RANGE_FLAGS_FLOATING : 0;
979 pNew->pvR3 = NULL;
980 pNew->paLSPages = NULL;
981
982 uint32_t const cPages = pNew->cb >> PAGE_SHIFT;
983 RTGCPHYS iPage = cPages;
984 while (iPage-- > 0)
985 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM);
986
987 /* Update the page count stats. */
988 pVM->pgm.s.cZeroPages += cPages;
989 pVM->pgm.s.cAllPages += cPages;
990
991 /*
992 * Link it.
993 */
994 pgmR3PhysLinkRamRange(pVM, pNew, pPrev);
995}
996
997
998/**
999 * Relocate a floating RAM range.
1000 *
1001 * @copydoc FNPGMRELOCATE.
1002 */
1003static DECLCALLBACK(bool) pgmR3PhysRamRangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew, PGMRELOCATECALL enmMode, void *pvUser)
1004{
1005 PPGMRAMRANGE pRam = (PPGMRAMRANGE)pvUser;
1006 Assert(pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING);
1007 Assert(pRam->pSelfRC == GCPtrOld + PAGE_SIZE);
1008
1009 switch (enmMode)
1010 {
1011 case PGMRELOCATECALL_SUGGEST:
1012 return true;
1013 case PGMRELOCATECALL_RELOCATE:
1014 {
1015 /* Update myself and then relink all the ranges. */
1016 pgmLock(pVM);
1017 pRam->pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE);
1018 pgmR3PhysRelinkRamRanges(pVM);
1019 pgmUnlock(pVM);
1020 return true;
1021 }
1022
1023 default:
1024 AssertFailedReturn(false);
1025 }
1026}
1027
1028
1029/**
1030 * PGMR3PhysRegisterRam worker that registers a high chunk.
1031 *
1032 * @returns VBox status code.
1033 * @param pVM The VM handle.
1034 * @param GCPhys The address of the RAM.
1035 * @param cRamPages The number of RAM pages to register.
1036 * @param cbChunk The size of the PGMRAMRANGE guest mapping.
1037 * @param iChunk The chunk number.
1038 * @param pszDesc The RAM range description.
1039 * @param ppPrev Previous RAM range pointer. In/Out.
1040 */
1041static int pgmR3PhysRegisterHighRamChunk(PVM pVM, RTGCPHYS GCPhys, uint32_t cRamPages,
1042 uint32_t cbChunk, uint32_t iChunk, const char *pszDesc,
1043 PPGMRAMRANGE *ppPrev)
1044{
1045 const char *pszDescChunk = iChunk == 0
1046 ? pszDesc
1047 : MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s (#%u)", pszDesc, iChunk + 1);
1048 AssertReturn(pszDescChunk, VERR_NO_MEMORY);
1049
1050 /*
1051 * Allocate memory for the new chunk.
1052 */
1053 size_t const cChunkPages = RT_ALIGN_Z(RT_UOFFSETOF(PGMRAMRANGE, aPages[cRamPages]), PAGE_SIZE) >> PAGE_SHIFT;
1054 PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
1055 AssertReturn(paChunkPages, VERR_NO_TMP_MEMORY);
1056 RTR0PTR R0PtrChunk = NIL_RTR0PTR;
1057 void *pvChunk = NULL;
1058 int rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk,
1059#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1060 VMMIsHwVirtExtForced(pVM) ? &R0PtrChunk : NULL,
1061#else
1062 NULL,
1063#endif
1064 paChunkPages);
1065 if (RT_SUCCESS(rc))
1066 {
1067#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1068 if (!VMMIsHwVirtExtForced(pVM))
1069 R0PtrChunk = NIL_RTR0PTR;
1070#else
1071 R0PtrChunk = (uintptr_t)pvChunk;
1072#endif
1073 memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
1074
1075 PPGMRAMRANGE pNew = (PPGMRAMRANGE)pvChunk;
1076
1077 /*
1078 * Create a mapping and map the pages into it.
1079 * We push these in below the HMA.
1080 */
1081 RTGCPTR GCPtrChunkMap = pVM->pgm.s.GCPtrPrevRamRangeMapping - cbChunk;
1082 rc = PGMR3MapPT(pVM, GCPtrChunkMap, cbChunk, 0 /*fFlags*/, pgmR3PhysRamRangeRelocate, pNew, pszDescChunk);
1083 if (RT_SUCCESS(rc))
1084 {
1085 pVM->pgm.s.GCPtrPrevRamRangeMapping = GCPtrChunkMap;
1086
1087 RTGCPTR const GCPtrChunk = GCPtrChunkMap + PAGE_SIZE;
1088 RTGCPTR GCPtrPage = GCPtrChunk;
1089 for (uint32_t iPage = 0; iPage < cChunkPages && RT_SUCCESS(rc); iPage++, GCPtrPage += PAGE_SIZE)
1090 rc = PGMMap(pVM, GCPtrPage, paChunkPages[iPage].Phys, PAGE_SIZE, 0);
1091 if (RT_SUCCESS(rc))
1092 {
1093 /*
1094 * Ok, init and link the range.
1095 */
1096 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhys + ((RTGCPHYS)cRamPages << PAGE_SHIFT) - 1,
1097 (RTRCPTR)GCPtrChunk, R0PtrChunk, pszDescChunk, *ppPrev);
1098 *ppPrev = pNew;
1099 }
1100 }
1101
1102 if (RT_FAILURE(rc))
1103 SUPR3PageFreeEx(pvChunk, cChunkPages);
1104 }
1105
1106 RTMemTmpFree(paChunkPages);
1107 return rc;
1108}
1109
1110
1111/**
1112 * Sets up a range RAM.
1113 *
1114 * This will check for conflicting registrations, make a resource
1115 * reservation for the memory (with GMM), and setup the per-page
1116 * tracking structures (PGMPAGE).
1117 *
1118 * @returns VBox stutus code.
1119 * @param pVM Pointer to the shared VM structure.
1120 * @param GCPhys The physical address of the RAM.
1121 * @param cb The size of the RAM.
1122 * @param pszDesc The description - not copied, so, don't free or change it.
1123 */
1124VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc)
1125{
1126 /*
1127 * Validate input.
1128 */
1129 Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc));
1130 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
1131 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
1132 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
1133 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1134 AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER);
1135 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1136 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1137
1138 pgmLock(pVM);
1139
1140 /*
1141 * Find range location and check for conflicts.
1142 * (We don't lock here because the locking by EMT is only required on update.)
1143 */
1144 PPGMRAMRANGE pPrev = NULL;
1145 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1146 while (pRam && GCPhysLast >= pRam->GCPhys)
1147 {
1148 if ( GCPhysLast >= pRam->GCPhys
1149 && GCPhys <= pRam->GCPhysLast)
1150 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
1151 GCPhys, GCPhysLast, pszDesc,
1152 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1153 VERR_PGM_RAM_CONFLICT);
1154
1155 /* next */
1156 pPrev = pRam;
1157 pRam = pRam->pNextR3;
1158 }
1159
1160 /*
1161 * Register it with GMM (the API bitches).
1162 */
1163 const RTGCPHYS cPages = cb >> PAGE_SHIFT;
1164 int rc = MMR3IncreaseBaseReservation(pVM, cPages);
1165 if (RT_FAILURE(rc))
1166 {
1167 pgmUnlock(pVM);
1168 return rc;
1169 }
1170
1171 if ( GCPhys >= _4G
1172 && cPages > 256)
1173 {
1174 /*
1175 * The PGMRAMRANGE structures for the high memory can get very big.
1176 * In order to avoid SUPR3PageAllocEx allocation failures due to the
1177 * allocation size limit there and also to avoid being unable to find
1178 * guest mapping space for them, we split this memory up into 4MB in
1179 * (potential) raw-mode configs and 16MB chunks in forced AMD-V/VT-x
1180 * mode.
1181 *
1182 * The first and last page of each mapping are guard pages and marked
1183 * not-present. So, we've got 4186112 and 16769024 bytes available for
1184 * the PGMRAMRANGE structure.
1185 *
1186 * Note! The sizes used here will influence the saved state.
1187 */
1188 uint32_t cbChunk;
1189 uint32_t cPagesPerChunk;
1190 if (VMMIsHwVirtExtForced(pVM))
1191 {
1192 cbChunk = 16U*_1M;
1193 cPagesPerChunk = 1048048; /* max ~1048059 */
1194 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2);
1195 }
1196 else
1197 {
1198 cbChunk = 4U*_1M;
1199 cPagesPerChunk = 261616; /* max ~261627 */
1200 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 261616 < 4U*_1M - PAGE_SIZE * 2);
1201 }
1202 AssertRelease(RT_UOFFSETOF(PGMRAMRANGE, aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
1203
1204 RTGCPHYS cPagesLeft = cPages;
1205 RTGCPHYS GCPhysChunk = GCPhys;
1206 uint32_t iChunk = 0;
1207 while (cPagesLeft > 0)
1208 {
1209 uint32_t cPagesInChunk = cPagesLeft;
1210 if (cPagesInChunk > cPagesPerChunk)
1211 cPagesInChunk = cPagesPerChunk;
1212
1213 rc = pgmR3PhysRegisterHighRamChunk(pVM, GCPhysChunk, cPagesInChunk, cbChunk, iChunk, pszDesc, &pPrev);
1214 AssertRCReturn(rc, rc);
1215
1216 /* advance */
1217 GCPhysChunk += (RTGCPHYS)cPagesInChunk << PAGE_SHIFT;
1218 cPagesLeft -= cPagesInChunk;
1219 iChunk++;
1220 }
1221 }
1222 else
1223 {
1224 /*
1225 * Allocate, initialize and link the new RAM range.
1226 */
1227 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
1228 PPGMRAMRANGE pNew;
1229 rc = MMR3HyperAllocOnceNoRel(pVM, cbRamRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1230 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
1231
1232 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhysLast, NIL_RTRCPTR, NIL_RTR0PTR, pszDesc, pPrev);
1233 }
1234 PGMPhysInvalidatePageMapTLB(pVM);
1235 pgmUnlock(pVM);
1236
1237 /*
1238 * Notify REM.
1239 */
1240 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_RAM);
1241
1242 return VINF_SUCCESS;
1243}
1244
1245
1246/**
1247 * Worker called by PGMR3InitFinalize if we're configured to pre-allocate RAM.
1248 *
1249 * We do this late in the init process so that all the ROM and MMIO ranges have
1250 * been registered already and we don't go wasting memory on them.
1251 *
1252 * @returns VBox status code.
1253 *
1254 * @param pVM Pointer to the shared VM structure.
1255 */
1256int pgmR3PhysRamPreAllocate(PVM pVM)
1257{
1258 Assert(pVM->pgm.s.fRamPreAlloc);
1259 Log(("pgmR3PhysRamPreAllocate: enter\n"));
1260
1261 /*
1262 * Walk the RAM ranges and allocate all RAM pages, halt at
1263 * the first allocation error.
1264 */
1265 uint64_t cPages = 0;
1266 uint64_t NanoTS = RTTimeNanoTS();
1267 pgmLock(pVM);
1268 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
1269 {
1270 PPGMPAGE pPage = &pRam->aPages[0];
1271 RTGCPHYS GCPhys = pRam->GCPhys;
1272 uint32_t cLeft = pRam->cb >> PAGE_SHIFT;
1273 while (cLeft-- > 0)
1274 {
1275 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
1276 {
1277 switch (PGM_PAGE_GET_STATE(pPage))
1278 {
1279 case PGM_PAGE_STATE_ZERO:
1280 {
1281 int rc = pgmPhysAllocPage(pVM, pPage, GCPhys);
1282 if (RT_FAILURE(rc))
1283 {
1284 LogRel(("PGM: RAM Pre-allocation failed at %RGp (in %s) with rc=%Rrc\n", GCPhys, pRam->pszDesc, rc));
1285 pgmUnlock(pVM);
1286 return rc;
1287 }
1288 cPages++;
1289 break;
1290 }
1291
1292 case PGM_PAGE_STATE_BALLOONED:
1293 case PGM_PAGE_STATE_ALLOCATED:
1294 case PGM_PAGE_STATE_WRITE_MONITORED:
1295 case PGM_PAGE_STATE_SHARED:
1296 /* nothing to do here. */
1297 break;
1298 }
1299 }
1300
1301 /* next */
1302 pPage++;
1303 GCPhys += PAGE_SIZE;
1304 }
1305 }
1306 pgmUnlock(pVM);
1307 NanoTS = RTTimeNanoTS() - NanoTS;
1308
1309 LogRel(("PGM: Pre-allocated %llu pages in %llu ms\n", cPages, NanoTS / 1000000));
1310 Log(("pgmR3PhysRamPreAllocate: returns VINF_SUCCESS\n"));
1311 return VINF_SUCCESS;
1312}
1313
1314
1315/**
1316 * Resets (zeros) the RAM.
1317 *
1318 * ASSUMES that the caller owns the PGM lock.
1319 *
1320 * @returns VBox status code.
1321 * @param pVM Pointer to the shared VM structure.
1322 */
1323int pgmR3PhysRamReset(PVM pVM)
1324{
1325 Assert(PGMIsLockOwner(pVM));
1326
1327 /* Reset the memory balloon. */
1328 int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
1329 AssertRC(rc);
1330
1331 /*
1332 * We batch up pages that should be freed instead of calling GMM for
1333 * each and every one of them.
1334 */
1335 uint32_t cPendingPages = 0;
1336 PGMMFREEPAGESREQ pReq;
1337 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1338 AssertLogRelRCReturn(rc, rc);
1339
1340 /*
1341 * Walk the ram ranges.
1342 */
1343 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
1344 {
1345 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
1346 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
1347
1348 if (!pVM->pgm.s.fRamPreAlloc)
1349 {
1350 /* Replace all RAM pages by ZERO pages. */
1351 while (iPage-- > 0)
1352 {
1353 PPGMPAGE pPage = &pRam->aPages[iPage];
1354 switch (PGM_PAGE_GET_TYPE(pPage))
1355 {
1356 case PGMPAGETYPE_RAM:
1357 /* Do not replace pages part of a 2 MB continuous range with zero pages, but zero them instead. */
1358 if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE)
1359 {
1360 void *pvPage;
1361 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
1362 AssertLogRelRCReturn(rc, rc);
1363 ASMMemZeroPage(pvPage);
1364 }
1365 else
1366 if ( !PGM_PAGE_IS_ZERO(pPage)
1367 && !PGM_PAGE_IS_BALLOONED(pPage))
1368 {
1369 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1370 AssertLogRelRCReturn(rc, rc);
1371 }
1372 break;
1373
1374 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1375 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1376 break;
1377
1378 case PGMPAGETYPE_MMIO2:
1379 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
1380 case PGMPAGETYPE_ROM:
1381 case PGMPAGETYPE_MMIO:
1382 break;
1383 default:
1384 AssertFailed();
1385 }
1386 } /* for each page */
1387 }
1388 else
1389 {
1390 /* Zero the memory. */
1391 while (iPage-- > 0)
1392 {
1393 PPGMPAGE pPage = &pRam->aPages[iPage];
1394 switch (PGM_PAGE_GET_TYPE(pPage))
1395 {
1396 case PGMPAGETYPE_RAM:
1397 switch (PGM_PAGE_GET_STATE(pPage))
1398 {
1399 case PGM_PAGE_STATE_ZERO:
1400 break;
1401
1402 case PGM_PAGE_STATE_BALLOONED:
1403 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
1404 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
1405 break;
1406
1407 case PGM_PAGE_STATE_SHARED:
1408 case PGM_PAGE_STATE_WRITE_MONITORED:
1409 rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1410 AssertLogRelRCReturn(rc, rc);
1411 /* no break */
1412
1413 case PGM_PAGE_STATE_ALLOCATED:
1414 {
1415 void *pvPage;
1416 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
1417 AssertLogRelRCReturn(rc, rc);
1418 ASMMemZeroPage(pvPage);
1419 break;
1420 }
1421 }
1422 break;
1423
1424 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1425 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1426 break;
1427
1428 case PGMPAGETYPE_MMIO2:
1429 case PGMPAGETYPE_ROM_SHADOW:
1430 case PGMPAGETYPE_ROM:
1431 case PGMPAGETYPE_MMIO:
1432 break;
1433 default:
1434 AssertFailed();
1435
1436 }
1437 } /* for each page */
1438 }
1439
1440 }
1441
1442 /*
1443 * Finish off any pages pending freeing.
1444 */
1445 if (cPendingPages)
1446 {
1447 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
1448 AssertLogRelRCReturn(rc, rc);
1449 }
1450 GMMR3FreePagesCleanup(pReq);
1451
1452 return VINF_SUCCESS;
1453}
1454
1455
1456/**
1457 * This is the interface IOM is using to register an MMIO region.
1458 *
1459 * It will check for conflicts and ensure that a RAM range structure
1460 * is present before calling the PGMR3HandlerPhysicalRegister API to
1461 * register the callbacks.
1462 *
1463 * @returns VBox status code.
1464 *
1465 * @param pVM Pointer to the shared VM structure.
1466 * @param GCPhys The start of the MMIO region.
1467 * @param cb The size of the MMIO region.
1468 * @param pfnHandlerR3 The address of the ring-3 handler. (IOMR3MMIOHandler)
1469 * @param pvUserR3 The user argument for R3.
1470 * @param pfnHandlerR0 The address of the ring-0 handler. (IOMMMIOHandler)
1471 * @param pvUserR0 The user argument for R0.
1472 * @param pfnHandlerRC The address of the RC handler. (IOMMMIOHandler)
1473 * @param pvUserRC The user argument for RC.
1474 * @param pszDesc The description of the MMIO region.
1475 */
1476VMMR3DECL(int) PGMR3PhysMMIORegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb,
1477 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3, RTR3PTR pvUserR3,
1478 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0, RTR0PTR pvUserR0,
1479 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnHandlerRC, RTRCPTR pvUserRC,
1480 R3PTRTYPE(const char *) pszDesc)
1481{
1482 /*
1483 * Assert on some assumption.
1484 */
1485 VM_ASSERT_EMT(pVM);
1486 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1487 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1488 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1489 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
1490
1491 /*
1492 * Make sure there's a RAM range structure for the region.
1493 */
1494 int rc;
1495 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1496 bool fRamExists = false;
1497 PPGMRAMRANGE pRamPrev = NULL;
1498 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1499 while (pRam && GCPhysLast >= pRam->GCPhys)
1500 {
1501 if ( GCPhysLast >= pRam->GCPhys
1502 && GCPhys <= pRam->GCPhysLast)
1503 {
1504 /* Simplification: all within the same range. */
1505 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
1506 && GCPhysLast <= pRam->GCPhysLast,
1507 ("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n",
1508 GCPhys, GCPhysLast, pszDesc,
1509 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1510 VERR_PGM_RAM_CONFLICT);
1511
1512 /* Check that it's all RAM or MMIO pages. */
1513 PCPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1514 uint32_t cLeft = cb >> PAGE_SHIFT;
1515 while (cLeft-- > 0)
1516 {
1517 AssertLogRelMsgReturn( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1518 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO,
1519 ("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n",
1520 GCPhys, GCPhysLast, pszDesc, PGM_PAGE_GET_TYPE(pPage), pRam->pszDesc),
1521 VERR_PGM_RAM_CONFLICT);
1522 pPage++;
1523 }
1524
1525 /* Looks good. */
1526 fRamExists = true;
1527 break;
1528 }
1529
1530 /* next */
1531 pRamPrev = pRam;
1532 pRam = pRam->pNextR3;
1533 }
1534 PPGMRAMRANGE pNew;
1535 if (fRamExists)
1536 {
1537 pNew = NULL;
1538
1539 /*
1540 * Make all the pages in the range MMIO/ZERO pages, freeing any
1541 * RAM pages currently mapped here. This might not be 100% correct
1542 * for PCI memory, but we're doing the same thing for MMIO2 pages.
1543 */
1544 rc = pgmLock(pVM);
1545 if (RT_SUCCESS(rc))
1546 {
1547 rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO);
1548 pgmUnlock(pVM);
1549 }
1550 AssertRCReturn(rc, rc);
1551 }
1552 else
1553 {
1554 pgmLock(pVM);
1555
1556 /*
1557 * No RAM range, insert an ad hoc one.
1558 *
1559 * Note that we don't have to tell REM about this range because
1560 * PGMHandlerPhysicalRegisterEx will do that for us.
1561 */
1562 Log(("PGMR3PhysMMIORegister: Adding ad hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc));
1563
1564 const uint32_t cPages = cb >> PAGE_SHIFT;
1565 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
1566 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), 16, MM_TAG_PGM_PHYS, (void **)&pNew);
1567 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
1568
1569 /* Initialize the range. */
1570 pNew->pSelfR0 = MMHyperCCToR0(pVM, pNew);
1571 pNew->pSelfRC = MMHyperCCToRC(pVM, pNew);
1572 pNew->GCPhys = GCPhys;
1573 pNew->GCPhysLast = GCPhysLast;
1574 pNew->cb = cb;
1575 pNew->pszDesc = pszDesc;
1576 pNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO;
1577 pNew->pvR3 = NULL;
1578 pNew->paLSPages = NULL;
1579
1580 uint32_t iPage = cPages;
1581 while (iPage-- > 0)
1582 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO);
1583 Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO);
1584
1585 /* update the page count stats. */
1586 pVM->pgm.s.cPureMmioPages += cPages;
1587 pVM->pgm.s.cAllPages += cPages;
1588
1589 /* link it */
1590 pgmR3PhysLinkRamRange(pVM, pNew, pRamPrev);
1591
1592 pgmUnlock(pVM);
1593 }
1594
1595 /*
1596 * Register the access handler.
1597 */
1598 rc = PGMHandlerPhysicalRegisterEx(pVM, PGMPHYSHANDLERTYPE_MMIO, GCPhys, GCPhysLast,
1599 pfnHandlerR3, pvUserR3,
1600 pfnHandlerR0, pvUserR0,
1601 pfnHandlerRC, pvUserRC, pszDesc);
1602 if ( RT_FAILURE(rc)
1603 && !fRamExists)
1604 {
1605 pVM->pgm.s.cPureMmioPages -= cb >> PAGE_SHIFT;
1606 pVM->pgm.s.cAllPages -= cb >> PAGE_SHIFT;
1607
1608 /* remove the ad hoc range. */
1609 pgmR3PhysUnlinkRamRange2(pVM, pNew, pRamPrev);
1610 pNew->cb = pNew->GCPhys = pNew->GCPhysLast = NIL_RTGCPHYS;
1611 MMHyperFree(pVM, pRam);
1612 }
1613 PGMPhysInvalidatePageMapTLB(pVM);
1614
1615 return rc;
1616}
1617
1618
1619/**
1620 * This is the interface IOM is using to register an MMIO region.
1621 *
1622 * It will take care of calling PGMHandlerPhysicalDeregister and clean up
1623 * any ad hoc PGMRAMRANGE left behind.
1624 *
1625 * @returns VBox status code.
1626 * @param pVM Pointer to the shared VM structure.
1627 * @param GCPhys The start of the MMIO region.
1628 * @param cb The size of the MMIO region.
1629 */
1630VMMR3DECL(int) PGMR3PhysMMIODeregister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
1631{
1632 VM_ASSERT_EMT(pVM);
1633
1634 /*
1635 * First deregister the handler, then check if we should remove the ram range.
1636 */
1637 int rc = PGMHandlerPhysicalDeregister(pVM, GCPhys);
1638 if (RT_SUCCESS(rc))
1639 {
1640 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1641 PPGMRAMRANGE pRamPrev = NULL;
1642 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1643 while (pRam && GCPhysLast >= pRam->GCPhys)
1644 {
1645 /** @todo We're being a bit too careful here. rewrite. */
1646 if ( GCPhysLast == pRam->GCPhysLast
1647 && GCPhys == pRam->GCPhys)
1648 {
1649 Assert(pRam->cb == cb);
1650
1651 /*
1652 * See if all the pages are dead MMIO pages.
1653 */
1654 uint32_t const cPages = cb >> PAGE_SHIFT;
1655 bool fAllMMIO = true;
1656 uint32_t iPage = 0;
1657 uint32_t cLeft = cPages;
1658 while (cLeft-- > 0)
1659 {
1660 PPGMPAGE pPage = &pRam->aPages[iPage];
1661 if ( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO
1662 /*|| not-out-of-action later */)
1663 {
1664 fAllMMIO = false;
1665 Assert(PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO2_ALIAS_MMIO);
1666 AssertMsgFailed(("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1667 break;
1668 }
1669 Assert(PGM_PAGE_IS_ZERO(pPage));
1670 pPage++;
1671 }
1672 if (fAllMMIO)
1673 {
1674 /*
1675 * Ad-hoc range, unlink and free it.
1676 */
1677 Log(("PGMR3PhysMMIODeregister: Freeing ad hoc MMIO range for %RGp-%RGp %s\n",
1678 GCPhys, GCPhysLast, pRam->pszDesc));
1679
1680 pVM->pgm.s.cAllPages -= cPages;
1681 pVM->pgm.s.cPureMmioPages -= cPages;
1682
1683 pgmR3PhysUnlinkRamRange2(pVM, pRam, pRamPrev);
1684 pRam->cb = pRam->GCPhys = pRam->GCPhysLast = NIL_RTGCPHYS;
1685 MMHyperFree(pVM, pRam);
1686 break;
1687 }
1688 }
1689
1690 /*
1691 * Range match? It will all be within one range (see PGMAllHandler.cpp).
1692 */
1693 if ( GCPhysLast >= pRam->GCPhys
1694 && GCPhys <= pRam->GCPhysLast)
1695 {
1696 Assert(GCPhys >= pRam->GCPhys);
1697 Assert(GCPhysLast <= pRam->GCPhysLast);
1698
1699 /*
1700 * Turn the pages back into RAM pages.
1701 */
1702 uint32_t iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
1703 uint32_t cLeft = cb >> PAGE_SHIFT;
1704 while (cLeft--)
1705 {
1706 PPGMPAGE pPage = &pRam->aPages[iPage];
1707 AssertMsg(PGM_PAGE_IS_MMIO(pPage), ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1708 AssertMsg(PGM_PAGE_IS_ZERO(pPage), ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1709 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO)
1710 PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_RAM);
1711 }
1712 break;
1713 }
1714
1715 /* next */
1716 pRamPrev = pRam;
1717 pRam = pRam->pNextR3;
1718 }
1719 }
1720
1721 PGMPhysInvalidatePageMapTLB(pVM);
1722 return rc;
1723}
1724
1725
1726/**
1727 * Locate a MMIO2 range.
1728 *
1729 * @returns Pointer to the MMIO2 range.
1730 * @param pVM Pointer to the shared VM structure.
1731 * @param pDevIns The device instance owning the region.
1732 * @param iRegion The region.
1733 */
1734DECLINLINE(PPGMMMIO2RANGE) pgmR3PhysMMIO2Find(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
1735{
1736 /*
1737 * Search the list.
1738 */
1739 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
1740 if ( pCur->pDevInsR3 == pDevIns
1741 && pCur->iRegion == iRegion)
1742 return pCur;
1743 return NULL;
1744}
1745
1746
1747/**
1748 * Allocate and register an MMIO2 region.
1749 *
1750 * As mentioned elsewhere, MMIO2 is just RAM spelled differently. It's
1751 * RAM associated with a device. It is also non-shared memory with a
1752 * permanent ring-3 mapping and page backing (presently).
1753 *
1754 * A MMIO2 range may overlap with base memory if a lot of RAM
1755 * is configured for the VM, in which case we'll drop the base
1756 * memory pages. Presently we will make no attempt to preserve
1757 * anything that happens to be present in the base memory that
1758 * is replaced, this is of course incorrectly but it's too much
1759 * effort.
1760 *
1761 * @returns VBox status code.
1762 * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the memory.
1763 * @retval VERR_ALREADY_EXISTS if the region already exists.
1764 *
1765 * @param pVM Pointer to the shared VM structure.
1766 * @param pDevIns The device instance owning the region.
1767 * @param iRegion The region number. If the MMIO2 memory is a PCI I/O region
1768 * this number has to be the number of that region. Otherwise
1769 * it can be any number safe UINT8_MAX.
1770 * @param cb The size of the region. Must be page aligned.
1771 * @param fFlags Reserved for future use, must be zero.
1772 * @param ppv Where to store the pointer to the ring-3 mapping of the memory.
1773 * @param pszDesc The description.
1774 */
1775VMMR3DECL(int) PGMR3PhysMMIO2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS cb, uint32_t fFlags, void **ppv, const char *pszDesc)
1776{
1777 /*
1778 * Validate input.
1779 */
1780 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1781 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1782 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
1783 AssertPtrReturn(ppv, VERR_INVALID_POINTER);
1784 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1785 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
1786 AssertReturn(pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion) == NULL, VERR_ALREADY_EXISTS);
1787 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1788 AssertReturn(cb, VERR_INVALID_PARAMETER);
1789 AssertReturn(!fFlags, VERR_INVALID_PARAMETER);
1790
1791 const uint32_t cPages = cb >> PAGE_SHIFT;
1792 AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cb, VERR_INVALID_PARAMETER);
1793 AssertLogRelReturn(cPages <= INT32_MAX / 2, VERR_NO_MEMORY);
1794
1795 /*
1796 * For the 2nd+ instance, mangle the description string so it's unique.
1797 */
1798 if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */
1799 {
1800 pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance);
1801 if (!pszDesc)
1802 return VERR_NO_MEMORY;
1803 }
1804
1805 /*
1806 * Try reserve and allocate the backing memory first as this is what is
1807 * most likely to fail.
1808 */
1809 int rc = MMR3AdjustFixedReservation(pVM, cPages, pszDesc);
1810 if (RT_SUCCESS(rc))
1811 {
1812 void *pvPages;
1813 PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cPages * sizeof(SUPPAGE));
1814 if (RT_SUCCESS(rc))
1815 rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, NULL /*pR0Ptr*/, paPages);
1816 if (RT_SUCCESS(rc))
1817 {
1818 memset(pvPages, 0, cPages * PAGE_SIZE);
1819
1820 /*
1821 * Create the MMIO2 range record for it.
1822 */
1823 const size_t cbRange = RT_OFFSETOF(PGMMMIO2RANGE, RamRange.aPages[cPages]);
1824 PPGMMMIO2RANGE pNew;
1825 rc = MMR3HyperAllocOnceNoRel(pVM, cbRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1826 AssertLogRelMsgRC(rc, ("cbRamRange=%zu\n", cbRange));
1827 if (RT_SUCCESS(rc))
1828 {
1829 pNew->pDevInsR3 = pDevIns;
1830 pNew->pvR3 = pvPages;
1831 //pNew->pNext = NULL;
1832 //pNew->fMapped = false;
1833 //pNew->fOverlapping = false;
1834 pNew->iRegion = iRegion;
1835 pNew->idSavedState = UINT8_MAX;
1836 pNew->RamRange.pSelfR0 = MMHyperCCToR0(pVM, &pNew->RamRange);
1837 pNew->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pNew->RamRange);
1838 pNew->RamRange.GCPhys = NIL_RTGCPHYS;
1839 pNew->RamRange.GCPhysLast = NIL_RTGCPHYS;
1840 pNew->RamRange.pszDesc = pszDesc;
1841 pNew->RamRange.cb = cb;
1842 pNew->RamRange.fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO2;
1843 pNew->RamRange.pvR3 = pvPages;
1844 //pNew->RamRange.paLSPages = NULL;
1845
1846 uint32_t iPage = cPages;
1847 while (iPage-- > 0)
1848 {
1849 PGM_PAGE_INIT(&pNew->RamRange.aPages[iPage],
1850 paPages[iPage].Phys, NIL_GMM_PAGEID,
1851 PGMPAGETYPE_MMIO2, PGM_PAGE_STATE_ALLOCATED);
1852 }
1853
1854 /* update page count stats */
1855 pVM->pgm.s.cAllPages += cPages;
1856 pVM->pgm.s.cPrivatePages += cPages;
1857
1858 /*
1859 * Link it into the list.
1860 * Since there is no particular order, just push it.
1861 */
1862 pgmLock(pVM);
1863 pNew->pNextR3 = pVM->pgm.s.pMmio2RangesR3;
1864 pVM->pgm.s.pMmio2RangesR3 = pNew;
1865 pgmUnlock(pVM);
1866
1867 *ppv = pvPages;
1868 RTMemTmpFree(paPages);
1869 PGMPhysInvalidatePageMapTLB(pVM);
1870 return VINF_SUCCESS;
1871 }
1872
1873 SUPR3PageFreeEx(pvPages, cPages);
1874 }
1875 RTMemTmpFree(paPages);
1876 MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pszDesc);
1877 }
1878 if (pDevIns->iInstance > 0)
1879 MMR3HeapFree((void *)pszDesc);
1880 return rc;
1881}
1882
1883
1884/**
1885 * Deregisters and frees an MMIO2 region.
1886 *
1887 * Any physical (and virtual) access handlers registered for the region must
1888 * be deregistered before calling this function.
1889 *
1890 * @returns VBox status code.
1891 * @param pVM Pointer to the shared VM structure.
1892 * @param pDevIns The device instance owning the region.
1893 * @param iRegion The region. If it's UINT32_MAX it'll be a wildcard match.
1894 */
1895VMMR3DECL(int) PGMR3PhysMMIO2Deregister(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
1896{
1897 /*
1898 * Validate input.
1899 */
1900 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1901 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1902 AssertReturn(iRegion <= UINT8_MAX || iRegion == UINT32_MAX, VERR_INVALID_PARAMETER);
1903
1904 pgmLock(pVM);
1905 int rc = VINF_SUCCESS;
1906 unsigned cFound = 0;
1907 PPGMMMIO2RANGE pPrev = NULL;
1908 PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3;
1909 while (pCur)
1910 {
1911 if ( pCur->pDevInsR3 == pDevIns
1912 && ( iRegion == UINT32_MAX
1913 || pCur->iRegion == iRegion))
1914 {
1915 cFound++;
1916
1917 /*
1918 * Unmap it if it's mapped.
1919 */
1920 if (pCur->fMapped)
1921 {
1922 int rc2 = PGMR3PhysMMIO2Unmap(pVM, pCur->pDevInsR3, pCur->iRegion, pCur->RamRange.GCPhys);
1923 AssertRC(rc2);
1924 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1925 rc = rc2;
1926 }
1927
1928 /*
1929 * Unlink it
1930 */
1931 PPGMMMIO2RANGE pNext = pCur->pNextR3;
1932 if (pPrev)
1933 pPrev->pNextR3 = pNext;
1934 else
1935 pVM->pgm.s.pMmio2RangesR3 = pNext;
1936 pCur->pNextR3 = NULL;
1937
1938 /*
1939 * Free the memory.
1940 */
1941 int rc2 = SUPR3PageFreeEx(pCur->pvR3, pCur->RamRange.cb >> PAGE_SHIFT);
1942 AssertRC(rc2);
1943 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1944 rc = rc2;
1945
1946 uint32_t const cPages = pCur->RamRange.cb >> PAGE_SHIFT;
1947 rc2 = MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pCur->RamRange.pszDesc);
1948 AssertRC(rc2);
1949 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1950 rc = rc2;
1951
1952 /* we're leaking hyper memory here if done at runtime. */
1953#ifdef VBOX_STRICT
1954 VMSTATE const enmState = VMR3GetState(pVM);
1955 AssertMsg( enmState == VMSTATE_POWERING_OFF
1956 || enmState == VMSTATE_POWERING_OFF_LS
1957 || enmState == VMSTATE_OFF
1958 || enmState == VMSTATE_OFF_LS
1959 || enmState == VMSTATE_DESTROYING
1960 || enmState == VMSTATE_TERMINATED
1961 || enmState == VMSTATE_CREATING
1962 , ("%s\n", VMR3GetStateName(enmState)));
1963#endif
1964 /*rc = MMHyperFree(pVM, pCur);
1965 AssertRCReturn(rc, rc); - not safe, see the alloc call. */
1966
1967
1968 /* update page count stats */
1969 pVM->pgm.s.cAllPages -= cPages;
1970 pVM->pgm.s.cPrivatePages -= cPages;
1971
1972 /* next */
1973 pCur = pNext;
1974 }
1975 else
1976 {
1977 pPrev = pCur;
1978 pCur = pCur->pNextR3;
1979 }
1980 }
1981 PGMPhysInvalidatePageMapTLB(pVM);
1982 pgmUnlock(pVM);
1983 return !cFound && iRegion != UINT32_MAX ? VERR_NOT_FOUND : rc;
1984}
1985
1986
1987/**
1988 * Maps a MMIO2 region.
1989 *
1990 * This is done when a guest / the bios / state loading changes the
1991 * PCI config. The replacing of base memory has the same restrictions
1992 * as during registration, of course.
1993 *
1994 * @returns VBox status code.
1995 *
1996 * @param pVM Pointer to the shared VM structure.
1997 * @param pDevIns The
1998 */
1999VMMR3DECL(int) PGMR3PhysMMIO2Map(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
2000{
2001 /*
2002 * Validate input
2003 */
2004 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2005 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2006 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2007 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
2008 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
2009 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2010
2011 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2012 AssertReturn(pCur, VERR_NOT_FOUND);
2013 AssertReturn(!pCur->fMapped, VERR_WRONG_ORDER);
2014 Assert(pCur->RamRange.GCPhys == NIL_RTGCPHYS);
2015 Assert(pCur->RamRange.GCPhysLast == NIL_RTGCPHYS);
2016
2017 const RTGCPHYS GCPhysLast = GCPhys + pCur->RamRange.cb - 1;
2018 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
2019
2020 /*
2021 * Find our location in the ram range list, checking for
2022 * restriction we don't bother implementing yet (partially overlapping).
2023 */
2024 bool fRamExists = false;
2025 PPGMRAMRANGE pRamPrev = NULL;
2026 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
2027 while (pRam && GCPhysLast >= pRam->GCPhys)
2028 {
2029 if ( GCPhys <= pRam->GCPhysLast
2030 && GCPhysLast >= pRam->GCPhys)
2031 {
2032 /* completely within? */
2033 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
2034 && GCPhysLast <= pRam->GCPhysLast,
2035 ("%RGp-%RGp (MMIO2/%s) falls partly outside %RGp-%RGp (%s)\n",
2036 GCPhys, GCPhysLast, pCur->RamRange.pszDesc,
2037 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2038 VERR_PGM_RAM_CONFLICT);
2039 fRamExists = true;
2040 break;
2041 }
2042
2043 /* next */
2044 pRamPrev = pRam;
2045 pRam = pRam->pNextR3;
2046 }
2047 if (fRamExists)
2048 {
2049 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2050 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2051 while (cPagesLeft-- > 0)
2052 {
2053 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
2054 ("%RGp isn't a RAM page (%d) - mapping %RGp-%RGp (MMIO2/%s).\n",
2055 GCPhys, PGM_PAGE_GET_TYPE(pPage), GCPhys, GCPhysLast, pCur->RamRange.pszDesc),
2056 VERR_PGM_RAM_CONFLICT);
2057 pPage++;
2058 }
2059 }
2060 Log(("PGMR3PhysMMIO2Map: %RGp-%RGp fRamExists=%RTbool %s\n",
2061 GCPhys, GCPhysLast, fRamExists, pCur->RamRange.pszDesc));
2062
2063 /*
2064 * Make the changes.
2065 */
2066 pgmLock(pVM);
2067
2068 pCur->RamRange.GCPhys = GCPhys;
2069 pCur->RamRange.GCPhysLast = GCPhysLast;
2070 pCur->fMapped = true;
2071 pCur->fOverlapping = fRamExists;
2072
2073 if (fRamExists)
2074 {
2075/** @todo use pgmR3PhysFreePageRange here. */
2076 uint32_t cPendingPages = 0;
2077 PGMMFREEPAGESREQ pReq;
2078 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2079 AssertLogRelRCReturn(rc, rc);
2080
2081 /* replace the pages, freeing all present RAM pages. */
2082 PPGMPAGE pPageSrc = &pCur->RamRange.aPages[0];
2083 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2084 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2085 while (cPagesLeft-- > 0)
2086 {
2087 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
2088 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
2089
2090 RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc);
2091 PGM_PAGE_SET_HCPHYS(pPageDst, HCPhys);
2092 PGM_PAGE_SET_TYPE(pPageDst, PGMPAGETYPE_MMIO2);
2093 PGM_PAGE_SET_STATE(pPageDst, PGM_PAGE_STATE_ALLOCATED);
2094
2095 pVM->pgm.s.cZeroPages--;
2096 GCPhys += PAGE_SIZE;
2097 pPageSrc++;
2098 pPageDst++;
2099 }
2100
2101 /* Flush physical page map TLB. */
2102 PGMPhysInvalidatePageMapTLB(pVM);
2103
2104 if (cPendingPages)
2105 {
2106 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2107 AssertLogRelRCReturn(rc, rc);
2108 }
2109 GMMR3FreePagesCleanup(pReq);
2110 pgmUnlock(pVM);
2111 }
2112 else
2113 {
2114 RTGCPHYS cb = pCur->RamRange.cb;
2115
2116 /* link in the ram range */
2117 pgmR3PhysLinkRamRange(pVM, &pCur->RamRange, pRamPrev);
2118 pgmUnlock(pVM);
2119
2120 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_MMIO2);
2121 }
2122
2123 PGMPhysInvalidatePageMapTLB(pVM);
2124 return VINF_SUCCESS;
2125}
2126
2127
2128/**
2129 * Unmaps a MMIO2 region.
2130 *
2131 * This is done when a guest / the bios / state loading changes the
2132 * PCI config. The replacing of base memory has the same restrictions
2133 * as during registration, of course.
2134 */
2135VMMR3DECL(int) PGMR3PhysMMIO2Unmap(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
2136{
2137 /*
2138 * Validate input
2139 */
2140 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2141 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2142 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2143 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
2144 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
2145 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2146
2147 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2148 AssertReturn(pCur, VERR_NOT_FOUND);
2149 AssertReturn(pCur->fMapped, VERR_WRONG_ORDER);
2150 AssertReturn(pCur->RamRange.GCPhys == GCPhys, VERR_INVALID_PARAMETER);
2151 Assert(pCur->RamRange.GCPhysLast != NIL_RTGCPHYS);
2152
2153 Log(("PGMR3PhysMMIO2Unmap: %RGp-%RGp %s\n",
2154 pCur->RamRange.GCPhys, pCur->RamRange.GCPhysLast, pCur->RamRange.pszDesc));
2155
2156 /*
2157 * Unmap it.
2158 */
2159 pgmLock(pVM);
2160
2161 RTGCPHYS GCPhysRangeREM;
2162 RTGCPHYS cbRangeREM;
2163 bool fInformREM;
2164 if (pCur->fOverlapping)
2165 {
2166 /* Restore the RAM pages we've replaced. */
2167 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
2168 while (pRam->GCPhys > pCur->RamRange.GCPhysLast)
2169 pRam = pRam->pNextR3;
2170
2171 RTHCPHYS const HCPhysZeroPg = pVM->pgm.s.HCPhysZeroPg;
2172 Assert(HCPhysZeroPg != 0 && HCPhysZeroPg != NIL_RTHCPHYS);
2173 PPGMPAGE pPageDst = &pRam->aPages[(pCur->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2174 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2175 while (cPagesLeft-- > 0)
2176 {
2177 PGM_PAGE_SET_HCPHYS(pPageDst, HCPhysZeroPg);
2178 PGM_PAGE_SET_TYPE(pPageDst, PGMPAGETYPE_RAM);
2179 PGM_PAGE_SET_STATE(pPageDst, PGM_PAGE_STATE_ZERO);
2180 PGM_PAGE_SET_PAGEID(pPageDst, NIL_GMM_PAGEID);
2181 PGM_PAGE_SET_PDE_TYPE(pPageDst, PGM_PAGE_PDE_TYPE_DONTCARE);
2182
2183 pVM->pgm.s.cZeroPages++;
2184 pPageDst++;
2185 }
2186
2187 /* Flush physical page map TLB. */
2188 PGMPhysInvalidatePageMapTLB(pVM);
2189
2190 GCPhysRangeREM = NIL_RTGCPHYS; /* shuts up gcc */
2191 cbRangeREM = RTGCPHYS_MAX; /* ditto */
2192 fInformREM = false;
2193 }
2194 else
2195 {
2196 GCPhysRangeREM = pCur->RamRange.GCPhys;
2197 cbRangeREM = pCur->RamRange.cb;
2198 fInformREM = true;
2199
2200 pgmR3PhysUnlinkRamRange(pVM, &pCur->RamRange);
2201 }
2202
2203 pCur->RamRange.GCPhys = NIL_RTGCPHYS;
2204 pCur->RamRange.GCPhysLast = NIL_RTGCPHYS;
2205 pCur->fOverlapping = false;
2206 pCur->fMapped = false;
2207
2208 PGMPhysInvalidatePageMapTLB(pVM);
2209 pgmUnlock(pVM);
2210
2211 if (fInformREM)
2212 REMR3NotifyPhysRamDeregister(pVM, GCPhysRangeREM, cbRangeREM);
2213
2214 return VINF_SUCCESS;
2215}
2216
2217
2218/**
2219 * Checks if the given address is an MMIO2 base address or not.
2220 *
2221 * @returns true/false accordingly.
2222 * @param pVM Pointer to the shared VM structure.
2223 * @param pDevIns The owner of the memory, optional.
2224 * @param GCPhys The address to check.
2225 */
2226VMMR3DECL(bool) PGMR3PhysMMIO2IsBase(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys)
2227{
2228 /*
2229 * Validate input
2230 */
2231 VM_ASSERT_EMT_RETURN(pVM, false);
2232 AssertPtrReturn(pDevIns, false);
2233 AssertReturn(GCPhys != NIL_RTGCPHYS, false);
2234 AssertReturn(GCPhys != 0, false);
2235 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), false);
2236
2237 /*
2238 * Search the list.
2239 */
2240 pgmLock(pVM);
2241 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2242 if (pCur->RamRange.GCPhys == GCPhys)
2243 {
2244 Assert(pCur->fMapped);
2245 pgmUnlock(pVM);
2246 return true;
2247 }
2248 pgmUnlock(pVM);
2249 return false;
2250}
2251
2252
2253/**
2254 * Gets the HC physical address of a page in the MMIO2 region.
2255 *
2256 * This is API is intended for MMHyper and shouldn't be called
2257 * by anyone else...
2258 *
2259 * @returns VBox status code.
2260 * @param pVM Pointer to the shared VM structure.
2261 * @param pDevIns The owner of the memory, optional.
2262 * @param iRegion The region.
2263 * @param off The page expressed an offset into the MMIO2 region.
2264 * @param pHCPhys Where to store the result.
2265 */
2266VMMR3DECL(int) PGMR3PhysMMIO2GetHCPhys(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, PRTHCPHYS pHCPhys)
2267{
2268 /*
2269 * Validate input
2270 */
2271 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2272 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2273 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2274
2275 pgmLock(pVM);
2276 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2277 AssertReturn(pCur, VERR_NOT_FOUND);
2278 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2279
2280 PCPGMPAGE pPage = &pCur->RamRange.aPages[off >> PAGE_SHIFT];
2281 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage);
2282 pgmUnlock(pVM);
2283 return VINF_SUCCESS;
2284}
2285
2286
2287/**
2288 * Maps a portion of an MMIO2 region into kernel space (host).
2289 *
2290 * The kernel mapping will become invalid when the MMIO2 memory is deregistered
2291 * or the VM is terminated.
2292 *
2293 * @return VBox status code.
2294 *
2295 * @param pVM Pointer to the shared VM structure.
2296 * @param pDevIns The device owning the MMIO2 memory.
2297 * @param iRegion The region.
2298 * @param off The offset into the region. Must be page aligned.
2299 * @param cb The number of bytes to map. Must be page aligned.
2300 * @param pszDesc Mapping description.
2301 * @param pR0Ptr Where to store the R0 address.
2302 */
2303VMMR3DECL(int) PGMR3PhysMMIO2MapKernel(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, RTGCPHYS cb,
2304 const char *pszDesc, PRTR0PTR pR0Ptr)
2305{
2306 /*
2307 * Validate input.
2308 */
2309 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2310 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2311 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2312
2313 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2314 AssertReturn(pCur, VERR_NOT_FOUND);
2315 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2316 AssertReturn(cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2317 AssertReturn(off + cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2318
2319 /*
2320 * Pass the request on to the support library/driver.
2321 */
2322 int rc = SUPR3PageMapKernel(pCur->pvR3, off, cb, 0, pR0Ptr);
2323
2324 return rc;
2325}
2326
2327
2328/**
2329 * Registers a ROM image.
2330 *
2331 * Shadowed ROM images requires double the amount of backing memory, so,
2332 * don't use that unless you have to. Shadowing of ROM images is process
2333 * where we can select where the reads go and where the writes go. On real
2334 * hardware the chipset provides means to configure this. We provide
2335 * PGMR3PhysProtectROM() for this purpose.
2336 *
2337 * A read-only copy of the ROM image will always be kept around while we
2338 * will allocate RAM pages for the changes on demand (unless all memory
2339 * is configured to be preallocated).
2340 *
2341 * @returns VBox status.
2342 * @param pVM VM Handle.
2343 * @param pDevIns The device instance owning the ROM.
2344 * @param GCPhys First physical address in the range.
2345 * Must be page aligned!
2346 * @param cbRange The size of the range (in bytes).
2347 * Must be page aligned!
2348 * @param pvBinary Pointer to the binary data backing the ROM image.
2349 * This must be exactly \a cbRange in size.
2350 * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
2351 * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
2352 * @param pszDesc Pointer to description string. This must not be freed.
2353 *
2354 * @remark There is no way to remove the rom, automatically on device cleanup or
2355 * manually from the device yet. This isn't difficult in any way, it's
2356 * just not something we expect to be necessary for a while.
2357 */
2358VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
2359 const void *pvBinary, uint32_t fFlags, const char *pszDesc)
2360{
2361 Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p fFlags=%#x pszDesc=%s\n",
2362 pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, fFlags, pszDesc));
2363
2364 /*
2365 * Validate input.
2366 */
2367 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2368 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
2369 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
2370 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2371 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
2372 AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER);
2373 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
2374 AssertReturn(!(fFlags & ~(PGMPHYS_ROM_FLAGS_SHADOWED | PGMPHYS_ROM_FLAGS_PERMANENT_BINARY)), VERR_INVALID_PARAMETER);
2375 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE);
2376
2377 const uint32_t cPages = cb >> PAGE_SHIFT;
2378
2379 /*
2380 * Find the ROM location in the ROM list first.
2381 */
2382 PPGMROMRANGE pRomPrev = NULL;
2383 PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
2384 while (pRom && GCPhysLast >= pRom->GCPhys)
2385 {
2386 if ( GCPhys <= pRom->GCPhysLast
2387 && GCPhysLast >= pRom->GCPhys)
2388 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
2389 GCPhys, GCPhysLast, pszDesc,
2390 pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc),
2391 VERR_PGM_RAM_CONFLICT);
2392 /* next */
2393 pRomPrev = pRom;
2394 pRom = pRom->pNextR3;
2395 }
2396
2397 /*
2398 * Find the RAM location and check for conflicts.
2399 *
2400 * Conflict detection is a bit different than for RAM
2401 * registration since a ROM can be located within a RAM
2402 * range. So, what we have to check for is other memory
2403 * types (other than RAM that is) and that we don't span
2404 * more than one RAM range (layz).
2405 */
2406 bool fRamExists = false;
2407 PPGMRAMRANGE pRamPrev = NULL;
2408 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
2409 while (pRam && GCPhysLast >= pRam->GCPhys)
2410 {
2411 if ( GCPhys <= pRam->GCPhysLast
2412 && GCPhysLast >= pRam->GCPhys)
2413 {
2414 /* completely within? */
2415 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
2416 && GCPhysLast <= pRam->GCPhysLast,
2417 ("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n",
2418 GCPhys, GCPhysLast, pszDesc,
2419 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2420 VERR_PGM_RAM_CONFLICT);
2421 fRamExists = true;
2422 break;
2423 }
2424
2425 /* next */
2426 pRamPrev = pRam;
2427 pRam = pRam->pNextR3;
2428 }
2429 if (fRamExists)
2430 {
2431 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2432 uint32_t cPagesLeft = cPages;
2433 while (cPagesLeft-- > 0)
2434 {
2435 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
2436 ("%RGp (%R[pgmpage]) isn't a RAM page - registering %RGp-%RGp (%s).\n",
2437 pRam->GCPhys + ((RTGCPHYS)(uintptr_t)(pPage - &pRam->aPages[0]) << PAGE_SHIFT),
2438 pPage, GCPhys, GCPhysLast, pszDesc), VERR_PGM_RAM_CONFLICT);
2439 Assert(PGM_PAGE_IS_ZERO(pPage));
2440 pPage++;
2441 }
2442 }
2443
2444 /*
2445 * Update the base memory reservation if necessary.
2446 */
2447 uint32_t cExtraBaseCost = fRamExists ? 0 : cPages;
2448 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2449 cExtraBaseCost += cPages;
2450 if (cExtraBaseCost)
2451 {
2452 int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost);
2453 if (RT_FAILURE(rc))
2454 return rc;
2455 }
2456
2457 /*
2458 * Allocate memory for the virgin copy of the RAM.
2459 */
2460 PGMMALLOCATEPAGESREQ pReq;
2461 int rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cPages, GMMACCOUNT_BASE);
2462 AssertRCReturn(rc, rc);
2463
2464 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2465 {
2466 pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << PAGE_SHIFT);
2467 pReq->aPages[iPage].idPage = NIL_GMM_PAGEID;
2468 pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID;
2469 }
2470
2471 pgmLock(pVM);
2472 rc = GMMR3AllocatePagesPerform(pVM, pReq);
2473 pgmUnlock(pVM);
2474 if (RT_FAILURE(rc))
2475 {
2476 GMMR3AllocatePagesCleanup(pReq);
2477 return rc;
2478 }
2479
2480 /*
2481 * Allocate the new ROM range and RAM range (if necessary).
2482 */
2483 PPGMROMRANGE pRomNew;
2484 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMROMRANGE, aPages[cPages]), 0, MM_TAG_PGM_PHYS, (void **)&pRomNew);
2485 if (RT_SUCCESS(rc))
2486 {
2487 PPGMRAMRANGE pRamNew = NULL;
2488 if (!fRamExists)
2489 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), sizeof(PGMPAGE), MM_TAG_PGM_PHYS, (void **)&pRamNew);
2490 if (RT_SUCCESS(rc))
2491 {
2492 pgmLock(pVM);
2493
2494 /*
2495 * Initialize and insert the RAM range (if required).
2496 */
2497 PPGMROMPAGE pRomPage = &pRomNew->aPages[0];
2498 if (!fRamExists)
2499 {
2500 pRamNew->pSelfR0 = MMHyperCCToR0(pVM, pRamNew);
2501 pRamNew->pSelfRC = MMHyperCCToRC(pVM, pRamNew);
2502 pRamNew->GCPhys = GCPhys;
2503 pRamNew->GCPhysLast = GCPhysLast;
2504 pRamNew->cb = cb;
2505 pRamNew->pszDesc = pszDesc;
2506 pRamNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_ROM;
2507 pRamNew->pvR3 = NULL;
2508 pRamNew->paLSPages = NULL;
2509
2510 PPGMPAGE pPage = &pRamNew->aPages[0];
2511 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
2512 {
2513 PGM_PAGE_INIT(pPage,
2514 pReq->aPages[iPage].HCPhysGCPhys,
2515 pReq->aPages[iPage].idPage,
2516 PGMPAGETYPE_ROM,
2517 PGM_PAGE_STATE_ALLOCATED);
2518
2519 pRomPage->Virgin = *pPage;
2520 }
2521
2522 pVM->pgm.s.cAllPages += cPages;
2523 pgmR3PhysLinkRamRange(pVM, pRamNew, pRamPrev);
2524 }
2525 else
2526 {
2527 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2528 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
2529 {
2530 PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_ROM);
2531 PGM_PAGE_SET_HCPHYS(pPage, pReq->aPages[iPage].HCPhysGCPhys);
2532 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
2533 PGM_PAGE_SET_PAGEID(pPage, pReq->aPages[iPage].idPage);
2534
2535 pRomPage->Virgin = *pPage;
2536 }
2537
2538 pRamNew = pRam;
2539
2540 pVM->pgm.s.cZeroPages -= cPages;
2541 }
2542 pVM->pgm.s.cPrivatePages += cPages;
2543
2544 /* Flush physical page map TLB. */
2545 PGMPhysInvalidatePageMapTLB(pVM);
2546
2547 pgmUnlock(pVM);
2548
2549
2550 /*
2551 * !HACK ALERT! REM + (Shadowed) ROM ==> mess.
2552 *
2553 * If it's shadowed we'll register the handler after the ROM notification
2554 * so we get the access handler callbacks that we should. If it isn't
2555 * shadowed we'll do it the other way around to make REM use the built-in
2556 * ROM behavior and not the handler behavior (which is to route all access
2557 * to PGM atm).
2558 */
2559 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2560 {
2561 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, true /* fShadowed */);
2562 rc = PGMR3HandlerPhysicalRegister(pVM,
2563 fFlags & PGMPHYS_ROM_FLAGS_SHADOWED
2564 ? PGMPHYSHANDLERTYPE_PHYSICAL_ALL
2565 : PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
2566 GCPhys, GCPhysLast,
2567 pgmR3PhysRomWriteHandler, pRomNew,
2568 NULL, "pgmPhysRomWriteHandler", MMHyperCCToR0(pVM, pRomNew),
2569 NULL, "pgmPhysRomWriteHandler", MMHyperCCToRC(pVM, pRomNew), pszDesc);
2570 }
2571 else
2572 {
2573 rc = PGMR3HandlerPhysicalRegister(pVM,
2574 fFlags & PGMPHYS_ROM_FLAGS_SHADOWED
2575 ? PGMPHYSHANDLERTYPE_PHYSICAL_ALL
2576 : PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
2577 GCPhys, GCPhysLast,
2578 pgmR3PhysRomWriteHandler, pRomNew,
2579 NULL, "pgmPhysRomWriteHandler", MMHyperCCToR0(pVM, pRomNew),
2580 NULL, "pgmPhysRomWriteHandler", MMHyperCCToRC(pVM, pRomNew), pszDesc);
2581 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, false /* fShadowed */);
2582 }
2583 if (RT_SUCCESS(rc))
2584 {
2585 pgmLock(pVM);
2586
2587 /*
2588 * Copy the image over to the virgin pages.
2589 * This must be done after linking in the RAM range.
2590 */
2591 PPGMPAGE pRamPage = &pRamNew->aPages[(GCPhys - pRamNew->GCPhys) >> PAGE_SHIFT];
2592 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++)
2593 {
2594 void *pvDstPage;
2595 rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << PAGE_SHIFT), &pvDstPage);
2596 if (RT_FAILURE(rc))
2597 {
2598 VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys);
2599 break;
2600 }
2601 memcpy(pvDstPage, (const uint8_t *)pvBinary + (iPage << PAGE_SHIFT), PAGE_SIZE);
2602 }
2603 if (RT_SUCCESS(rc))
2604 {
2605 /*
2606 * Initialize the ROM range.
2607 * Note that the Virgin member of the pages has already been initialized above.
2608 */
2609 pRomNew->GCPhys = GCPhys;
2610 pRomNew->GCPhysLast = GCPhysLast;
2611 pRomNew->cb = cb;
2612 pRomNew->fFlags = fFlags;
2613 pRomNew->idSavedState = UINT8_MAX;
2614 pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY ? pvBinary : NULL;
2615 pRomNew->pszDesc = pszDesc;
2616
2617 for (unsigned iPage = 0; iPage < cPages; iPage++)
2618 {
2619 PPGMROMPAGE pPage = &pRomNew->aPages[iPage];
2620 pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE;
2621 PGM_PAGE_INIT_ZERO(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW);
2622 }
2623
2624 /* update the page count stats for the shadow pages. */
2625 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2626 {
2627 pVM->pgm.s.cZeroPages += cPages;
2628 pVM->pgm.s.cAllPages += cPages;
2629 }
2630
2631 /*
2632 * Insert the ROM range, tell REM and return successfully.
2633 */
2634 pRomNew->pNextR3 = pRom;
2635 pRomNew->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
2636 pRomNew->pNextRC = pRom ? MMHyperCCToRC(pVM, pRom) : NIL_RTRCPTR;
2637
2638 if (pRomPrev)
2639 {
2640 pRomPrev->pNextR3 = pRomNew;
2641 pRomPrev->pNextR0 = MMHyperCCToR0(pVM, pRomNew);
2642 pRomPrev->pNextRC = MMHyperCCToRC(pVM, pRomNew);
2643 }
2644 else
2645 {
2646 pVM->pgm.s.pRomRangesR3 = pRomNew;
2647 pVM->pgm.s.pRomRangesR0 = MMHyperCCToR0(pVM, pRomNew);
2648 pVM->pgm.s.pRomRangesRC = MMHyperCCToRC(pVM, pRomNew);
2649 }
2650
2651 PGMPhysInvalidatePageMapTLB(pVM);
2652 GMMR3AllocatePagesCleanup(pReq);
2653 pgmUnlock(pVM);
2654 return VINF_SUCCESS;
2655 }
2656
2657 /* bail out */
2658
2659 pgmUnlock(pVM);
2660 int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys);
2661 AssertRC(rc2);
2662 pgmLock(pVM);
2663 }
2664
2665 if (!fRamExists)
2666 {
2667 pgmR3PhysUnlinkRamRange2(pVM, pRamNew, pRamPrev);
2668 MMHyperFree(pVM, pRamNew);
2669 }
2670 }
2671 MMHyperFree(pVM, pRomNew);
2672 }
2673
2674 /** @todo Purge the mapping cache or something... */
2675 GMMR3FreeAllocatedPages(pVM, pReq);
2676 GMMR3AllocatePagesCleanup(pReq);
2677 pgmUnlock(pVM);
2678 return rc;
2679}
2680
2681
2682/**
2683 * \#PF Handler callback for ROM write accesses.
2684 *
2685 * @returns VINF_SUCCESS if the handler have carried out the operation.
2686 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
2687 * @param pVM VM Handle.
2688 * @param GCPhys The physical address the guest is writing to.
2689 * @param pvPhys The HC mapping of that address.
2690 * @param pvBuf What the guest is reading/writing.
2691 * @param cbBuf How much it's reading/writing.
2692 * @param enmAccessType The access type.
2693 * @param pvUser User argument.
2694 */
2695static DECLCALLBACK(int) pgmR3PhysRomWriteHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser)
2696{
2697 PPGMROMRANGE pRom = (PPGMROMRANGE)pvUser;
2698 const uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
2699 Assert(iPage < (pRom->cb >> PAGE_SHIFT));
2700 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
2701 Log5(("pgmR3PhysRomWriteHandler: %d %c %#08RGp %#04zx\n", pRomPage->enmProt, enmAccessType == PGMACCESSTYPE_READ ? 'R' : 'W', GCPhys, cbBuf));
2702
2703 if (enmAccessType == PGMACCESSTYPE_READ)
2704 {
2705 switch (pRomPage->enmProt)
2706 {
2707 /*
2708 * Take the default action.
2709 */
2710 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
2711 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
2712 case PGMROMPROT_READ_ROM_WRITE_RAM:
2713 case PGMROMPROT_READ_RAM_WRITE_RAM:
2714 return VINF_PGM_HANDLER_DO_DEFAULT;
2715
2716 default:
2717 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
2718 pRom->aPages[iPage].enmProt, iPage, GCPhys),
2719 VERR_INTERNAL_ERROR);
2720 }
2721 }
2722 else
2723 {
2724 Assert(enmAccessType == PGMACCESSTYPE_WRITE);
2725 switch (pRomPage->enmProt)
2726 {
2727 /*
2728 * Ignore writes.
2729 */
2730 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
2731 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
2732 return VINF_SUCCESS;
2733
2734 /*
2735 * Write to the ram page.
2736 */
2737 case PGMROMPROT_READ_ROM_WRITE_RAM:
2738 case PGMROMPROT_READ_RAM_WRITE_RAM: /* yes this will get here too, it's *way* simpler that way. */
2739 {
2740 /* This should be impossible now, pvPhys doesn't work cross page anylonger. */
2741 Assert(((GCPhys - pRom->GCPhys + cbBuf - 1) >> PAGE_SHIFT) == iPage);
2742
2743 /*
2744 * Take the lock, do lazy allocation, map the page and copy the data.
2745 *
2746 * Note that we have to bypass the mapping TLB since it works on
2747 * guest physical addresses and entering the shadow page would
2748 * kind of screw things up...
2749 */
2750 int rc = pgmLock(pVM);
2751 AssertRC(rc);
2752
2753 PPGMPAGE pShadowPage = &pRomPage->Shadow;
2754 if (!PGMROMPROT_IS_ROM(pRomPage->enmProt))
2755 {
2756 pShadowPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
2757 AssertLogRelReturn(pShadowPage, VERR_INTERNAL_ERROR);
2758 }
2759
2760 void *pvDstPage;
2761 rc = pgmPhysPageMakeWritableAndMap(pVM, pShadowPage, GCPhys & X86_PTE_PG_MASK, &pvDstPage);
2762 if (RT_SUCCESS(rc))
2763 {
2764 memcpy((uint8_t *)pvDstPage + (GCPhys & PAGE_OFFSET_MASK), pvBuf, cbBuf);
2765 pRomPage->LiveSave.fWrittenTo = true;
2766 }
2767
2768 pgmUnlock(pVM);
2769 return rc;
2770 }
2771
2772 default:
2773 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
2774 pRom->aPages[iPage].enmProt, iPage, GCPhys),
2775 VERR_INTERNAL_ERROR);
2776 }
2777 }
2778}
2779
2780
2781/**
2782 * Called by PGMR3Reset to reset the shadow, switch to the virgin,
2783 * and verify that the virgin part is untouched.
2784 *
2785 * This is done after the normal memory has been cleared.
2786 *
2787 * ASSUMES that the caller owns the PGM lock.
2788 *
2789 * @param pVM The VM handle.
2790 */
2791int pgmR3PhysRomReset(PVM pVM)
2792{
2793 Assert(PGMIsLockOwner(pVM));
2794 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
2795 {
2796 const uint32_t cPages = pRom->cb >> PAGE_SHIFT;
2797
2798 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2799 {
2800 /*
2801 * Reset the physical handler.
2802 */
2803 int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE);
2804 AssertRCReturn(rc, rc);
2805
2806 /*
2807 * What we do with the shadow pages depends on the memory
2808 * preallocation option. If not enabled, we'll just throw
2809 * out all the dirty pages and replace them by the zero page.
2810 */
2811 if (!pVM->pgm.s.fRamPreAlloc)
2812 {
2813 /* Free the dirty pages. */
2814 uint32_t cPendingPages = 0;
2815 PGMMFREEPAGESREQ pReq;
2816 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2817 AssertRCReturn(rc, rc);
2818
2819 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2820 if ( !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow)
2821 && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow))
2822 {
2823 Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) == PGM_PAGE_STATE_ALLOCATED);
2824 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, &pRom->aPages[iPage].Shadow, pRom->GCPhys + (iPage << PAGE_SHIFT));
2825 AssertLogRelRCReturn(rc, rc);
2826 }
2827
2828 if (cPendingPages)
2829 {
2830 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2831 AssertLogRelRCReturn(rc, rc);
2832 }
2833 GMMR3FreePagesCleanup(pReq);
2834 }
2835 else
2836 {
2837 /* clear all the shadow pages. */
2838 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2839 {
2840 Assert(!PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow) && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow));
2841 void *pvDstPage;
2842 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
2843 rc = pgmPhysPageMakeWritableAndMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pvDstPage);
2844 if (RT_FAILURE(rc))
2845 break;
2846 ASMMemZeroPage(pvDstPage);
2847 }
2848 AssertRCReturn(rc, rc);
2849 }
2850 }
2851
2852#ifdef VBOX_STRICT
2853 /*
2854 * Verify that the virgin page is unchanged if possible.
2855 */
2856 if (pRom->pvOriginal)
2857 {
2858 uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal;
2859 for (uint32_t iPage = 0; iPage < cPages; iPage++, pbSrcPage += PAGE_SIZE)
2860 {
2861 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
2862 void const *pvDstPage;
2863 int rc = pgmPhysPageMapReadOnly(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPage);
2864 if (RT_FAILURE(rc))
2865 break;
2866 if (memcmp(pvDstPage, pbSrcPage, PAGE_SIZE))
2867 LogRel(("pgmR3PhysRomReset: %RGp rom page changed (%s) - loaded saved state?\n",
2868 GCPhys, pRom->pszDesc));
2869 }
2870 }
2871#endif
2872 }
2873
2874 return VINF_SUCCESS;
2875}
2876
2877
2878/**
2879 * Change the shadowing of a range of ROM pages.
2880 *
2881 * This is intended for implementing chipset specific memory registers
2882 * and will not be very strict about the input. It will silently ignore
2883 * any pages that are not the part of a shadowed ROM.
2884 *
2885 * @returns VBox status code.
2886 * @retval VINF_PGM_SYNC_CR3
2887 *
2888 * @param pVM Pointer to the shared VM structure.
2889 * @param GCPhys Where to start. Page aligned.
2890 * @param cb How much to change. Page aligned.
2891 * @param enmProt The new ROM protection.
2892 */
2893VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt)
2894{
2895 /*
2896 * Check input
2897 */
2898 if (!cb)
2899 return VINF_SUCCESS;
2900 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2901 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2902 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2903 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
2904 AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER);
2905
2906 /*
2907 * Process the request.
2908 */
2909 pgmLock(pVM);
2910 int rc = VINF_SUCCESS;
2911 bool fFlushTLB = false;
2912 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
2913 {
2914 if ( GCPhys <= pRom->GCPhysLast
2915 && GCPhysLast >= pRom->GCPhys
2916 && (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
2917 {
2918 /*
2919 * Iterate the relevant pages and make necessary the changes.
2920 */
2921 bool fChanges = false;
2922 uint32_t const cPages = pRom->GCPhysLast <= GCPhysLast
2923 ? pRom->cb >> PAGE_SHIFT
2924 : (GCPhysLast - pRom->GCPhys + 1) >> PAGE_SHIFT;
2925 for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
2926 iPage < cPages;
2927 iPage++)
2928 {
2929 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
2930 if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt))
2931 {
2932 fChanges = true;
2933
2934 /* flush references to the page. */
2935 PPGMPAGE pRamPage = pgmPhysGetPage(&pVM->pgm.s, pRom->GCPhys + (iPage << PAGE_SHIFT));
2936 int rc2 = pgmPoolTrackFlushGCPhys(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT), pRamPage, &fFlushTLB);
2937 if (rc2 != VINF_SUCCESS && (rc == VINF_SUCCESS || RT_FAILURE(rc2)))
2938 rc = rc2;
2939
2940 PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
2941 PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2942
2943 *pOld = *pRamPage;
2944 *pRamPage = *pNew;
2945 /** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */
2946 }
2947 pRomPage->enmProt = enmProt;
2948 }
2949
2950 /*
2951 * Reset the access handler if we made changes, no need
2952 * to optimize this.
2953 */
2954 if (fChanges)
2955 {
2956 int rc2 = PGMHandlerPhysicalReset(pVM, pRom->GCPhys);
2957 if (RT_FAILURE(rc2))
2958 {
2959 pgmUnlock(pVM);
2960 AssertRC(rc);
2961 return rc2;
2962 }
2963 }
2964
2965 /* Advance - cb isn't updated. */
2966 GCPhys = pRom->GCPhys + (cPages << PAGE_SHIFT);
2967 }
2968 }
2969 pgmUnlock(pVM);
2970 if (fFlushTLB)
2971 PGM_INVL_ALL_VCPU_TLBS(pVM);
2972
2973 return rc;
2974}
2975
2976
2977/**
2978 * Sets the Address Gate 20 state.
2979 *
2980 * @param pVCpu The VCPU to operate on.
2981 * @param fEnable True if the gate should be enabled.
2982 * False if the gate should be disabled.
2983 */
2984VMMDECL(void) PGMR3PhysSetA20(PVMCPU pVCpu, bool fEnable)
2985{
2986 LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVCpu->pgm.s.fA20Enabled));
2987 if (pVCpu->pgm.s.fA20Enabled != fEnable)
2988 {
2989 pVCpu->pgm.s.fA20Enabled = fEnable;
2990 pVCpu->pgm.s.GCPhysA20Mask = ~(RTGCPHYS)(!fEnable << 20);
2991 REMR3A20Set(pVCpu->pVMR3, pVCpu, fEnable);
2992 /** @todo we're not handling this correctly for VT-x / AMD-V. See #2911 */
2993 }
2994}
2995
2996
2997/**
2998 * Tree enumeration callback for dealing with age rollover.
2999 * It will perform a simple compression of the current age.
3000 */
3001static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
3002{
3003 Assert(PGMIsLockOwner((PVM)pvUser));
3004 /* Age compression - ASSUMES iNow == 4. */
3005 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
3006 if (pChunk->iAge >= UINT32_C(0xffffff00))
3007 pChunk->iAge = 3;
3008 else if (pChunk->iAge >= UINT32_C(0xfffff000))
3009 pChunk->iAge = 2;
3010 else if (pChunk->iAge)
3011 pChunk->iAge = 1;
3012 else /* iAge = 0 */
3013 pChunk->iAge = 4;
3014
3015 /* reinsert */
3016 PVM pVM = (PVM)pvUser;
3017 RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
3018 pChunk->AgeCore.Key = pChunk->iAge;
3019 RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
3020 return 0;
3021}
3022
3023
3024/**
3025 * Tree enumeration callback that updates the chunks that have
3026 * been used since the last
3027 */
3028static DECLCALLBACK(int) pgmR3PhysChunkAgeingCallback(PAVLU32NODECORE pNode, void *pvUser)
3029{
3030 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
3031 if (!pChunk->iAge)
3032 {
3033 PVM pVM = (PVM)pvUser;
3034 RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
3035 pChunk->AgeCore.Key = pChunk->iAge = pVM->pgm.s.ChunkR3Map.iNow;
3036 RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
3037 }
3038
3039 return 0;
3040}
3041
3042
3043/**
3044 * Performs ageing of the ring-3 chunk mappings.
3045 *
3046 * @param pVM The VM handle.
3047 */
3048VMMR3DECL(void) PGMR3PhysChunkAgeing(PVM pVM)
3049{
3050 pgmLock(pVM);
3051 pVM->pgm.s.ChunkR3Map.AgeingCountdown = RT_MIN(pVM->pgm.s.ChunkR3Map.cMax / 4, 1024);
3052 pVM->pgm.s.ChunkR3Map.iNow++;
3053 if (pVM->pgm.s.ChunkR3Map.iNow == 0)
3054 {
3055 pVM->pgm.s.ChunkR3Map.iNow = 4;
3056 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, pVM);
3057 }
3058 else
3059 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingCallback, pVM);
3060 pgmUnlock(pVM);
3061}
3062
3063
3064/**
3065 * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
3066 */
3067typedef struct PGMR3PHYSCHUNKUNMAPCB
3068{
3069 PVM pVM; /**< The VM handle. */
3070 PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
3071} PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
3072
3073
3074/**
3075 * Callback used to find the mapping that's been unused for
3076 * the longest time.
3077 */
3078static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLLU32NODECORE pNode, void *pvUser)
3079{
3080 do
3081 {
3082 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)((uint8_t *)pNode - RT_OFFSETOF(PGMCHUNKR3MAP, AgeCore));
3083 if ( pChunk->iAge
3084 && !pChunk->cRefs)
3085 {
3086 /*
3087 * Check that it's not in any of the TLBs.
3088 */
3089 PVM pVM = ((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pVM;
3090 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
3091 if (pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk == pChunk)
3092 {
3093 pChunk = NULL;
3094 break;
3095 }
3096 if (pChunk)
3097 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
3098 if (pVM->pgm.s.PhysTlbHC.aEntries[i].pMap == pChunk)
3099 {
3100 pChunk = NULL;
3101 break;
3102 }
3103 if (pChunk)
3104 {
3105 ((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pChunk = pChunk;
3106 return 1; /* done */
3107 }
3108 }
3109
3110 /* next with the same age - this version of the AVL API doesn't enumerate the list, so we have to do it. */
3111 pNode = pNode->pList;
3112 } while (pNode);
3113 return 0;
3114}
3115
3116
3117/**
3118 * Finds a good candidate for unmapping when the ring-3 mapping cache is full.
3119 *
3120 * The candidate will not be part of any TLBs, so no need to flush
3121 * anything afterwards.
3122 *
3123 * @returns Chunk id.
3124 * @param pVM The VM handle.
3125 */
3126static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
3127{
3128 Assert(PGMIsLockOwner(pVM));
3129
3130 /*
3131 * Do tree ageing first?
3132 */
3133 if (pVM->pgm.s.ChunkR3Map.AgeingCountdown-- == 0)
3134 PGMR3PhysChunkAgeing(pVM);
3135
3136 /*
3137 * Enumerate the age tree starting with the left most node.
3138 */
3139 PGMR3PHYSCHUNKUNMAPCB Args;
3140 Args.pVM = pVM;
3141 Args.pChunk = NULL;
3142 if (RTAvllU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pAgeTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, pVM))
3143 return Args.pChunk->Core.Key;
3144 return INT32_MAX;
3145}
3146
3147
3148/**
3149 * Maps the given chunk into the ring-3 mapping cache.
3150 *
3151 * This will call ring-0.
3152 *
3153 * @returns VBox status code.
3154 * @param pVM The VM handle.
3155 * @param idChunk The chunk in question.
3156 * @param ppChunk Where to store the chunk tracking structure.
3157 *
3158 * @remarks Called from within the PGM critical section.
3159 */
3160int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
3161{
3162 int rc;
3163
3164 Assert(PGMIsLockOwner(pVM));
3165 /*
3166 * Allocate a new tracking structure first.
3167 */
3168#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
3169 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAlloc(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
3170#else
3171 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3UkHeapAlloc(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk), NULL);
3172#endif
3173 AssertReturn(pChunk, VERR_NO_MEMORY);
3174 pChunk->Core.Key = idChunk;
3175 pChunk->AgeCore.Key = pVM->pgm.s.ChunkR3Map.iNow;
3176 pChunk->iAge = 0;
3177 pChunk->cRefs = 0;
3178 pChunk->cPermRefs = 0;
3179 pChunk->pv = NULL;
3180
3181 /*
3182 * Request the ring-0 part to map the chunk in question and if
3183 * necessary unmap another one to make space in the mapping cache.
3184 */
3185 GMMMAPUNMAPCHUNKREQ Req;
3186 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
3187 Req.Hdr.cbReq = sizeof(Req);
3188 Req.pvR3 = NULL;
3189 Req.idChunkMap = idChunk;
3190 Req.idChunkUnmap = NIL_GMM_CHUNKID;
3191 if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
3192 Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
3193/** @todo This is wrong. Any thread in the VM process should be able to do this,
3194 * there are depenenecies on this. What currently saves the day is that
3195 * we don't unmap anything and that all non-zero memory will therefore
3196 * be present when non-EMTs tries to access it. */
3197 rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
3198 if (RT_SUCCESS(rc))
3199 {
3200 /*
3201 * Update the tree.
3202 */
3203 /* insert the new one. */
3204 AssertPtr(Req.pvR3);
3205 pChunk->pv = Req.pvR3;
3206 bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
3207 AssertRelease(fRc);
3208 pVM->pgm.s.ChunkR3Map.c++;
3209
3210 fRc = RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
3211 AssertRelease(fRc);
3212
3213 /* remove the unmapped one. */
3214 if (Req.idChunkUnmap != NIL_GMM_CHUNKID)
3215 {
3216 PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
3217 AssertRelease(pUnmappedChunk);
3218 pUnmappedChunk->pv = NULL;
3219 pUnmappedChunk->Core.Key = UINT32_MAX;
3220#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
3221 MMR3HeapFree(pUnmappedChunk);
3222#else
3223 MMR3UkHeapFree(pVM, pUnmappedChunk, MM_TAG_PGM_CHUNK_MAPPING);
3224#endif
3225 pVM->pgm.s.ChunkR3Map.c--;
3226
3227 /* Chunk removed, so clear the page map TBL as well (might still be referenced). */
3228 PGMPhysInvalidatePageMapTLB(pVM);
3229 }
3230 }
3231 else
3232 {
3233 AssertRC(rc);
3234#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
3235 MMR3HeapFree(pChunk);
3236#else
3237 MMR3UkHeapFree(pVM, pChunk, MM_TAG_PGM_CHUNK_MAPPING);
3238#endif
3239 pChunk = NULL;
3240 }
3241
3242 *ppChunk = pChunk;
3243 return rc;
3244}
3245
3246
3247/**
3248 * For VMMCALLRING3_PGM_MAP_CHUNK, considered internal.
3249 *
3250 * @returns see pgmR3PhysChunkMap.
3251 * @param pVM The VM handle.
3252 * @param idChunk The chunk to map.
3253 */
3254VMMR3DECL(int) PGMR3PhysChunkMap(PVM pVM, uint32_t idChunk)
3255{
3256 PPGMCHUNKR3MAP pChunk;
3257 int rc;
3258
3259 pgmLock(pVM);
3260 rc = pgmR3PhysChunkMap(pVM, idChunk, &pChunk);
3261 pgmUnlock(pVM);
3262 return rc;
3263}
3264
3265
3266/**
3267 * Invalidates the TLB for the ring-3 mapping cache.
3268 *
3269 * @param pVM The VM handle.
3270 */
3271VMMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM)
3272{
3273 pgmLock(pVM);
3274 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
3275 {
3276 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
3277 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
3278 }
3279 /* The page map TLB references chunks, so invalidate that one too. */
3280 PGMPhysInvalidatePageMapTLB(pVM);
3281 pgmUnlock(pVM);
3282}
3283
3284
3285/**
3286 * Response to VMMCALLRING3_PGM_ALLOCATE_LARGE_PAGE to allocate a large (2MB) page
3287 * for use with a nested paging PDE.
3288 *
3289 * @returns The following VBox status codes.
3290 * @retval VINF_SUCCESS on success.
3291 * @retval VINF_EM_NO_MEMORY if we're out of memory.
3292 *
3293 * @param pVM The VM handle.
3294 * @param GCPhys GC physical start address of the 2 MB range
3295 */
3296VMMR3DECL(int) PGMR3PhysAllocateLargeHandyPage(PVM pVM, RTGCPHYS GCPhys)
3297{
3298 pgmLock(pVM);
3299
3300 STAM_PROFILE_START(&pVM->pgm.s.StatAllocLargePage, a);
3301 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_LARGE_HANDY_PAGE, 0, NULL);
3302 STAM_PROFILE_STOP(&pVM->pgm.s.StatAllocLargePage, a);
3303 if (RT_SUCCESS(rc))
3304 {
3305 Assert(pVM->pgm.s.cLargeHandyPages == 1);
3306
3307 uint32_t idPage = pVM->pgm.s.aLargeHandyPage[0].idPage;
3308 RTHCPHYS HCPhys = pVM->pgm.s.aLargeHandyPage[0].HCPhysGCPhys;
3309
3310 void *pv;
3311
3312 /* Map the large page into our address space.
3313 *
3314 * Note: assuming that within the 2 MB range:
3315 * - GCPhys + PAGE_SIZE = HCPhys + PAGE_SIZE (whole point of this exercise)
3316 * - user space mapping is continuous as well
3317 * - page id (GCPhys) + 1 = page id (GCPhys + PAGE_SIZE)
3318 */
3319 rc = pgmPhysPageMapByPageID(pVM, idPage, HCPhys, &pv);
3320 AssertLogRelMsg(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc", idPage, HCPhys, rc));
3321
3322 if (RT_SUCCESS(rc))
3323 {
3324 /*
3325 * Clear the pages.
3326 */
3327 STAM_PROFILE_START(&pVM->pgm.s.StatClearLargePage, b);
3328 for (unsigned i = 0; i < _2M/PAGE_SIZE; i++)
3329 {
3330 ASMMemZeroPage(pv);
3331
3332 PPGMPAGE pPage;
3333 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
3334 AssertRC(rc);
3335
3336 Assert(PGM_PAGE_IS_ZERO(pPage));
3337 STAM_COUNTER_INC(&pVM->pgm.s.StatRZPageReplaceZero);
3338 pVM->pgm.s.cZeroPages--;
3339
3340 /*
3341 * Do the PGMPAGE modifications.
3342 */
3343 pVM->pgm.s.cPrivatePages++;
3344 PGM_PAGE_SET_HCPHYS(pPage, HCPhys);
3345 PGM_PAGE_SET_PAGEID(pPage, idPage);
3346 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
3347 PGM_PAGE_SET_PDE_TYPE(pPage, PGM_PAGE_PDE_TYPE_PDE);
3348
3349 /* Somewhat dirty assumption that page ids are increasing. */
3350 idPage++;
3351
3352 HCPhys += PAGE_SIZE;
3353 GCPhys += PAGE_SIZE;
3354
3355 pv = (void *)((uintptr_t)pv + PAGE_SIZE);
3356
3357 Log3(("PGMR3PhysAllocateLargePage: idPage=%#x HCPhys=%RGp\n", idPage, HCPhys));
3358 }
3359 STAM_PROFILE_STOP(&pVM->pgm.s.StatClearLargePage, b);
3360
3361 /* Flush all TLBs. */
3362 PGM_INVL_ALL_VCPU_TLBS(pVM);
3363 PGMPhysInvalidatePageMapTLB(pVM);
3364 }
3365 pVM->pgm.s.cLargeHandyPages = 0;
3366 }
3367
3368 pgmUnlock(pVM);
3369 return rc;
3370}
3371
3372
3373/**
3374 * Response to VM_FF_PGM_NEED_HANDY_PAGES and VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES.
3375 *
3376 * This function will also work the VM_FF_PGM_NO_MEMORY force action flag, to
3377 * signal and clear the out of memory condition. When contracted, this API is
3378 * used to try clear the condition when the user wants to resume.
3379 *
3380 * @returns The following VBox status codes.
3381 * @retval VINF_SUCCESS on success. FFs cleared.
3382 * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in
3383 * this case and it gets accompanied by VM_FF_PGM_NO_MEMORY.
3384 *
3385 * @param pVM The VM handle.
3386 *
3387 * @remarks The VINF_EM_NO_MEMORY status is for the benefit of the FF processing
3388 * in EM.cpp and shouldn't be propagated outside TRPM, HWACCM, EM and
3389 * pgmPhysEnsureHandyPage. There is one exception to this in the \#PF
3390 * handler.
3391 */
3392VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
3393{
3394 pgmLock(pVM);
3395
3396 /*
3397 * Allocate more pages, noting down the index of the first new page.
3398 */
3399 uint32_t iClear = pVM->pgm.s.cHandyPages;
3400 AssertMsgReturn(iClear <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d", iClear), VERR_INTERNAL_ERROR);
3401 Log(("PGMR3PhysAllocateHandyPages: %d -> %d\n", iClear, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
3402 int rcAlloc = VINF_SUCCESS;
3403 int rcSeed = VINF_SUCCESS;
3404 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
3405 while (rc == VERR_GMM_SEED_ME)
3406 {
3407 void *pvChunk;
3408 rcAlloc = rc = SUPR3PageAlloc(GMM_CHUNK_SIZE >> PAGE_SHIFT, &pvChunk);
3409 if (RT_SUCCESS(rc))
3410 {
3411 rcSeed = rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_SEED_CHUNK, (uintptr_t)pvChunk, NULL);
3412 if (RT_FAILURE(rc))
3413 SUPR3PageFree(pvChunk, GMM_CHUNK_SIZE >> PAGE_SHIFT);
3414 }
3415 if (RT_SUCCESS(rc))
3416 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
3417 }
3418
3419 if (RT_SUCCESS(rc))
3420 {
3421 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
3422 Assert(pVM->pgm.s.cHandyPages > 0);
3423 VM_FF_CLEAR(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
3424 VM_FF_CLEAR(pVM, VM_FF_PGM_NO_MEMORY);
3425
3426 /*
3427 * Clear the pages.
3428 */
3429 while (iClear < pVM->pgm.s.cHandyPages)
3430 {
3431 PGMMPAGEDESC pPage = &pVM->pgm.s.aHandyPages[iClear];
3432 void *pv;
3433 rc = pgmPhysPageMapByPageID(pVM, pPage->idPage, pPage->HCPhysGCPhys, &pv);
3434 AssertLogRelMsgBreak(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc", pPage->idPage, pPage->HCPhysGCPhys, rc));
3435 ASMMemZeroPage(pv);
3436 iClear++;
3437 Log3(("PGMR3PhysAllocateHandyPages: idPage=%#x HCPhys=%RGp\n", pPage->idPage, pPage->HCPhysGCPhys));
3438 }
3439 }
3440 else
3441 {
3442 /*
3443 * We should never get here unless there is a genuine shortage of
3444 * memory (or some internal error). Flag the error so the VM can be
3445 * suspended ASAP and the user informed. If we're totally out of
3446 * handy pages we will return failure.
3447 */
3448 /* Report the failure. */
3449 LogRel(("PGM: Failed to procure handy pages; rc=%Rrc rcAlloc=%Rrc rcSeed=%Rrc cHandyPages=%#x\n"
3450 " cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n",
3451 rc, rcAlloc, rcSeed,
3452 pVM->pgm.s.cHandyPages,
3453 pVM->pgm.s.cAllPages,
3454 pVM->pgm.s.cPrivatePages,
3455 pVM->pgm.s.cSharedPages,
3456 pVM->pgm.s.cZeroPages));
3457 if ( rc != VERR_NO_MEMORY
3458 && rc != VERR_LOCK_FAILED)
3459 {
3460 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
3461 {
3462 LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n",
3463 i, pVM->pgm.s.aHandyPages[i].HCPhysGCPhys, pVM->pgm.s.aHandyPages[i].idPage,
3464 pVM->pgm.s.aHandyPages[i].idSharedPage));
3465 uint32_t const idPage = pVM->pgm.s.aHandyPages[i].idPage;
3466 if (idPage != NIL_GMM_PAGEID)
3467 {
3468 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
3469 pRam;
3470 pRam = pRam->pNextR3)
3471 {
3472 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
3473 for (uint32_t iPage = 0; iPage < cPages; iPage++)
3474 if (PGM_PAGE_GET_PAGEID(&pRam->aPages[iPage]) == idPage)
3475 LogRel(("PGM: Used by %RGp %R[pgmpage] (%s)\n",
3476 pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pRam->aPages[iPage], pRam->pszDesc));
3477 }
3478 }
3479 }
3480 }
3481
3482 /* Set the FFs and adjust rc. */
3483 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
3484 VM_FF_SET(pVM, VM_FF_PGM_NO_MEMORY);
3485 if ( rc == VERR_NO_MEMORY
3486 || rc == VERR_LOCK_FAILED)
3487 rc = VINF_EM_NO_MEMORY;
3488 }
3489
3490 pgmUnlock(pVM);
3491 return rc;
3492}
3493
3494
3495/**
3496 * Frees the specified RAM page and replaces it with the ZERO page.
3497 *
3498 * This is used by ballooning, remapping MMIO2 and RAM reset.
3499 *
3500 * @param pVM Pointer to the shared VM structure.
3501 * @param pReq Pointer to the request.
3502 * @param pPage Pointer to the page structure.
3503 * @param GCPhys The guest physical address of the page, if applicable.
3504 *
3505 * @remarks The caller must own the PGM lock.
3506 */
3507static int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys)
3508{
3509 /*
3510 * Assert sanity.
3511 */
3512 Assert(PGMIsLockOwner(pVM));
3513 if (RT_UNLIKELY( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
3514 && PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW))
3515 {
3516 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
3517 return VMSetError(pVM, VERR_PGM_PHYS_NOT_RAM, RT_SRC_POS, "GCPhys=%RGp type=%d", GCPhys, PGM_PAGE_GET_TYPE(pPage));
3518 }
3519
3520 if ( PGM_PAGE_IS_ZERO(pPage)
3521 || PGM_PAGE_IS_BALLOONED(pPage))
3522 return VINF_SUCCESS;
3523
3524 const uint32_t idPage = PGM_PAGE_GET_PAGEID(pPage);
3525 Log3(("pgmPhysFreePage: idPage=%#x HCPhys=%RGp pPage=%R[pgmpage]\n", idPage, pPage));
3526 if (RT_UNLIKELY( idPage == NIL_GMM_PAGEID
3527 || idPage > GMM_PAGEID_LAST
3528 || PGM_PAGE_GET_CHUNKID(pPage) == NIL_GMM_CHUNKID))
3529 {
3530 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
3531 return VMSetError(pVM, VERR_PGM_PHYS_INVALID_PAGE_ID, RT_SRC_POS, "GCPhys=%RGp idPage=%#x", GCPhys, pPage);
3532 }
3533
3534 /* update page count stats. */
3535 if (PGM_PAGE_IS_SHARED(pPage))
3536 pVM->pgm.s.cSharedPages--;
3537 else
3538 pVM->pgm.s.cPrivatePages--;
3539 pVM->pgm.s.cZeroPages++;
3540
3541 /* Deal with write monitored pages. */
3542 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
3543 {
3544 PGM_PAGE_SET_WRITTEN_TO(pPage);
3545 pVM->pgm.s.cWrittenToPages++;
3546 }
3547
3548 /*
3549 * pPage = ZERO page.
3550 */
3551 PGM_PAGE_SET_HCPHYS(pPage, pVM->pgm.s.HCPhysZeroPg);
3552 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
3553 PGM_PAGE_SET_PAGEID(pPage, NIL_GMM_PAGEID);
3554 PGM_PAGE_SET_PDE_TYPE(pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
3555
3556 /* Flush physical page map TLB entry. */
3557 PGMPhysInvalidatePageMapTLBEntry(pVM, GCPhys);
3558
3559 /*
3560 * Make sure it's not in the handy page array.
3561 */
3562 for (uint32_t i = pVM->pgm.s.cHandyPages; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
3563 {
3564 if (pVM->pgm.s.aHandyPages[i].idPage == idPage)
3565 {
3566 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
3567 break;
3568 }
3569 if (pVM->pgm.s.aHandyPages[i].idSharedPage == idPage)
3570 {
3571 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
3572 break;
3573 }
3574 }
3575
3576 /*
3577 * Push it onto the page array.
3578 */
3579 uint32_t iPage = *pcPendingPages;
3580 Assert(iPage < PGMPHYS_FREE_PAGE_BATCH_SIZE);
3581 *pcPendingPages += 1;
3582
3583 pReq->aPages[iPage].idPage = idPage;
3584
3585 if (iPage + 1 < PGMPHYS_FREE_PAGE_BATCH_SIZE)
3586 return VINF_SUCCESS;
3587
3588 /*
3589 * Flush the pages.
3590 */
3591 int rc = GMMR3FreePagesPerform(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE);
3592 if (RT_SUCCESS(rc))
3593 {
3594 GMMR3FreePagesRePrep(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
3595 *pcPendingPages = 0;
3596 }
3597 return rc;
3598}
3599
3600
3601/**
3602 * Converts a GC physical address to a HC ring-3 pointer, with some
3603 * additional checks.
3604 *
3605 * @returns VBox status code.
3606 * @retval VINF_SUCCESS on success.
3607 * @retval VINF_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
3608 * access handler of some kind.
3609 * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
3610 * accesses or is odd in any way.
3611 * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
3612 *
3613 * @param pVM The VM handle.
3614 * @param GCPhys The GC physical address to convert.
3615 * @param fWritable Whether write access is required.
3616 * @param ppv Where to store the pointer corresponding to GCPhys on
3617 * success.
3618 */
3619VMMR3DECL(int) PGMR3PhysTlbGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, void **ppv)
3620{
3621 pgmLock(pVM);
3622
3623 PPGMRAMRANGE pRam;
3624 PPGMPAGE pPage;
3625 int rc = pgmPhysGetPageAndRangeEx(&pVM->pgm.s, GCPhys, &pPage, &pRam);
3626 if (RT_SUCCESS(rc))
3627 {
3628 if (PGM_PAGE_IS_BALLOONED(pPage))
3629 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
3630 else if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage))
3631 rc = VINF_SUCCESS;
3632 else
3633 {
3634 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
3635 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
3636 else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
3637 {
3638 /** @todo Handle TLB loads of virtual handlers so ./test.sh can be made to work
3639 * in -norawr0 mode. */
3640 if (fWritable)
3641 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
3642 }
3643 else
3644 {
3645 /* Temporarily disabled physical handler(s), since the recompiler
3646 doesn't get notified when it's reset we'll have to pretend it's
3647 operating normally. */
3648 if (pgmHandlerPhysicalIsAll(pVM, GCPhys))
3649 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
3650 else
3651 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
3652 }
3653 }
3654 if (RT_SUCCESS(rc))
3655 {
3656 int rc2;
3657
3658 /* Make sure what we return is writable. */
3659 if (fWritable && rc != VINF_PGM_PHYS_TLB_CATCH_WRITE)
3660 switch (PGM_PAGE_GET_STATE(pPage))
3661 {
3662 case PGM_PAGE_STATE_ALLOCATED:
3663 break;
3664 case PGM_PAGE_STATE_BALLOONED:
3665 AssertFailed();
3666 break;
3667 case PGM_PAGE_STATE_ZERO:
3668 case PGM_PAGE_STATE_SHARED:
3669 case PGM_PAGE_STATE_WRITE_MONITORED:
3670 rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
3671 AssertLogRelRCReturn(rc2, rc2);
3672 break;
3673 }
3674
3675 /* Get a ring-3 mapping of the address. */
3676 PPGMPAGER3MAPTLBE pTlbe;
3677 rc2 = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
3678 AssertLogRelRCReturn(rc2, rc2);
3679 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
3680 /** @todo mapping/locking hell; this isn't horribly efficient since
3681 * pgmPhysPageLoadIntoTlb will repeat the lookup we've done here. */
3682
3683 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
3684 }
3685 else
3686 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));
3687
3688 /* else: handler catching all access, no pointer returned. */
3689 }
3690 else
3691 rc = VERR_PGM_PHYS_TLB_UNASSIGNED;
3692
3693 pgmUnlock(pVM);
3694 return rc;
3695}
3696
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette