VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMPhys.cpp@ 27948

Last change on this file since 27948 was 27750, checked in by vboxsync, 15 years ago

Reset the balloon state when the VM resets

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 131.1 KB
Line 
1/* $Id: PGMPhys.cpp 27750 2010-03-26 15:28:11Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_PGM_PHYS
27#include <VBox/pgm.h>
28#include <VBox/iom.h>
29#include <VBox/mm.h>
30#include <VBox/stam.h>
31#include <VBox/rem.h>
32#include <VBox/pdmdev.h>
33#include "PGMInternal.h"
34#include <VBox/vm.h>
35#include "PGMInline.h"
36#include <VBox/sup.h>
37#include <VBox/param.h>
38#include <VBox/err.h>
39#include <VBox/log.h>
40#include <iprt/assert.h>
41#include <iprt/alloc.h>
42#include <iprt/asm.h>
43#include <iprt/thread.h>
44#include <iprt/string.h>
45
46
47/*******************************************************************************
48* Defined Constants And Macros *
49*******************************************************************************/
50/** The number of pages to free in one batch. */
51#define PGMPHYS_FREE_PAGE_BATCH_SIZE 128
52
53
54/*******************************************************************************
55* Internal Functions *
56*******************************************************************************/
57static DECLCALLBACK(int) pgmR3PhysRomWriteHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
58static int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys);
59
60
61/*
62 * PGMR3PhysReadU8-64
63 * PGMR3PhysWriteU8-64
64 */
65#define PGMPHYSFN_READNAME PGMR3PhysReadU8
66#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8
67#define PGMPHYS_DATASIZE 1
68#define PGMPHYS_DATATYPE uint8_t
69#include "PGMPhysRWTmpl.h"
70
71#define PGMPHYSFN_READNAME PGMR3PhysReadU16
72#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16
73#define PGMPHYS_DATASIZE 2
74#define PGMPHYS_DATATYPE uint16_t
75#include "PGMPhysRWTmpl.h"
76
77#define PGMPHYSFN_READNAME PGMR3PhysReadU32
78#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32
79#define PGMPHYS_DATASIZE 4
80#define PGMPHYS_DATATYPE uint32_t
81#include "PGMPhysRWTmpl.h"
82
83#define PGMPHYSFN_READNAME PGMR3PhysReadU64
84#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64
85#define PGMPHYS_DATASIZE 8
86#define PGMPHYS_DATATYPE uint64_t
87#include "PGMPhysRWTmpl.h"
88
89
90/**
91 * EMT worker for PGMR3PhysReadExternal.
92 */
93static DECLCALLBACK(int) pgmR3PhysReadExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, void *pvBuf, size_t cbRead)
94{
95 PGMPhysRead(pVM, *pGCPhys, pvBuf, cbRead);
96 return VINF_SUCCESS;
97}
98
99
100/**
101 * Write to physical memory, external users.
102 *
103 * @returns VBox status code.
104 * @retval VINF_SUCCESS.
105 *
106 * @param pVM VM Handle.
107 * @param GCPhys Physical address to write to.
108 * @param pvBuf What to write.
109 * @param cbWrite How many bytes to write.
110 *
111 * @thread Any but EMTs.
112 */
113VMMR3DECL(int) PGMR3PhysReadExternal(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead)
114{
115 VM_ASSERT_OTHER_THREAD(pVM);
116
117 AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
118 LogFlow(("PGMR3PhysReadExternal: %RGp %d\n", GCPhys, cbRead));
119
120 pgmLock(pVM);
121
122 /*
123 * Copy loop on ram ranges.
124 */
125 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
126 for (;;)
127 {
128 /* Find range. */
129 while (pRam && GCPhys > pRam->GCPhysLast)
130 pRam = pRam->CTX_SUFF(pNext);
131 /* Inside range or not? */
132 if (pRam && GCPhys >= pRam->GCPhys)
133 {
134 /*
135 * Must work our way thru this page by page.
136 */
137 RTGCPHYS off = GCPhys - pRam->GCPhys;
138 while (off < pRam->cb)
139 {
140 unsigned iPage = off >> PAGE_SHIFT;
141 PPGMPAGE pPage = &pRam->aPages[iPage];
142
143 /*
144 * If the page has an ALL access handler, we'll have to
145 * delegate the job to EMT.
146 */
147 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
148 {
149 pgmUnlock(pVM);
150
151 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysReadExternalEMT, 4,
152 pVM, &GCPhys, pvBuf, cbRead);
153 }
154 Assert(!PGM_PAGE_IS_MMIO(pPage));
155
156 /*
157 * Simple stuff, go ahead.
158 */
159 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
160 if (cb > cbRead)
161 cb = cbRead;
162 const void *pvSrc;
163 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc);
164 if (RT_SUCCESS(rc))
165 memcpy(pvBuf, pvSrc, cb);
166 else
167 {
168 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
169 pRam->GCPhys + off, pPage, rc));
170 memset(pvBuf, 0xff, cb);
171 }
172
173 /* next page */
174 if (cb >= cbRead)
175 {
176 pgmUnlock(pVM);
177 return VINF_SUCCESS;
178 }
179 cbRead -= cb;
180 off += cb;
181 GCPhys += cb;
182 pvBuf = (char *)pvBuf + cb;
183 } /* walk pages in ram range. */
184 }
185 else
186 {
187 LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
188
189 /*
190 * Unassigned address space.
191 */
192 if (!pRam)
193 break;
194 size_t cb = pRam->GCPhys - GCPhys;
195 if (cb >= cbRead)
196 {
197 memset(pvBuf, 0xff, cbRead);
198 break;
199 }
200 memset(pvBuf, 0xff, cb);
201
202 cbRead -= cb;
203 pvBuf = (char *)pvBuf + cb;
204 GCPhys += cb;
205 }
206 } /* Ram range walk */
207
208 pgmUnlock(pVM);
209
210 return VINF_SUCCESS;
211}
212
213
214/**
215 * EMT worker for PGMR3PhysWriteExternal.
216 */
217static DECLCALLBACK(int) pgmR3PhysWriteExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, const void *pvBuf, size_t cbWrite)
218{
219 /** @todo VERR_EM_NO_MEMORY */
220 PGMPhysWrite(pVM, *pGCPhys, pvBuf, cbWrite);
221 return VINF_SUCCESS;
222}
223
224
225/**
226 * Write to physical memory, external users.
227 *
228 * @returns VBox status code.
229 * @retval VINF_SUCCESS.
230 * @retval VERR_EM_NO_MEMORY.
231 *
232 * @param pVM VM Handle.
233 * @param GCPhys Physical address to write to.
234 * @param pvBuf What to write.
235 * @param cbWrite How many bytes to write.
236 * @param pszWho Who is writing. For tracking down who is writing
237 * after we've saved the state.
238 *
239 * @thread Any but EMTs.
240 */
241VMMDECL(int) PGMR3PhysWriteExternal(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, const char *pszWho)
242{
243 VM_ASSERT_OTHER_THREAD(pVM);
244
245 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites,
246 ("Calling PGMR3PhysWriteExternal after pgmR3Save()! GCPhys=%RGp cbWrite=%#x pszWho=%s\n",
247 GCPhys, cbWrite, pszWho));
248 AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
249 LogFlow(("PGMR3PhysWriteExternal: %RGp %d\n", GCPhys, cbWrite));
250
251 pgmLock(pVM);
252
253 /*
254 * Copy loop on ram ranges, stop when we hit something difficult.
255 */
256 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
257 for (;;)
258 {
259 /* Find range. */
260 while (pRam && GCPhys > pRam->GCPhysLast)
261 pRam = pRam->CTX_SUFF(pNext);
262 /* Inside range or not? */
263 if (pRam && GCPhys >= pRam->GCPhys)
264 {
265 /*
266 * Must work our way thru this page by page.
267 */
268 RTGCPTR off = GCPhys - pRam->GCPhys;
269 while (off < pRam->cb)
270 {
271 RTGCPTR iPage = off >> PAGE_SHIFT;
272 PPGMPAGE pPage = &pRam->aPages[iPage];
273
274 /*
275 * Is the page problematic, we have to do the work on the EMT.
276 *
277 * Allocating writable pages and access handlers are
278 * problematic, write monitored pages are simple and can be
279 * dealth with here.
280 */
281 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
282 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
283 {
284 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
285 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
286 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
287 else
288 {
289 pgmUnlock(pVM);
290
291 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysWriteExternalEMT, 4,
292 pVM, &GCPhys, pvBuf, cbWrite);
293 }
294 }
295 Assert(!PGM_PAGE_IS_MMIO(pPage));
296
297 /*
298 * Simple stuff, go ahead.
299 */
300 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
301 if (cb > cbWrite)
302 cb = cbWrite;
303 void *pvDst;
304 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst);
305 if (RT_SUCCESS(rc))
306 memcpy(pvDst, pvBuf, cb);
307 else
308 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
309 pRam->GCPhys + off, pPage, rc));
310
311 /* next page */
312 if (cb >= cbWrite)
313 {
314 pgmUnlock(pVM);
315 return VINF_SUCCESS;
316 }
317
318 cbWrite -= cb;
319 off += cb;
320 GCPhys += cb;
321 pvBuf = (const char *)pvBuf + cb;
322 } /* walk pages in ram range */
323 }
324 else
325 {
326 /*
327 * Unassigned address space, skip it.
328 */
329 if (!pRam)
330 break;
331 size_t cb = pRam->GCPhys - GCPhys;
332 if (cb >= cbWrite)
333 break;
334 cbWrite -= cb;
335 pvBuf = (const char *)pvBuf + cb;
336 GCPhys += cb;
337 }
338 } /* Ram range walk */
339
340 pgmUnlock(pVM);
341 return VINF_SUCCESS;
342}
343
344
345/**
346 * VMR3ReqCall worker for PGMR3PhysGCPhys2CCPtrExternal to make pages writable.
347 *
348 * @returns see PGMR3PhysGCPhys2CCPtrExternal
349 * @param pVM The VM handle.
350 * @param pGCPhys Pointer to the guest physical address.
351 * @param ppv Where to store the mapping address.
352 * @param pLock Where to store the lock.
353 */
354static DECLCALLBACK(int) pgmR3PhysGCPhys2CCPtrDelegated(PVM pVM, PRTGCPHYS pGCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
355{
356 /*
357 * Just hand it to PGMPhysGCPhys2CCPtr and check that it's not a page with
358 * an access handler after it succeeds.
359 */
360 int rc = pgmLock(pVM);
361 AssertRCReturn(rc, rc);
362
363 rc = PGMPhysGCPhys2CCPtr(pVM, *pGCPhys, ppv, pLock);
364 if (RT_SUCCESS(rc))
365 {
366 PPGMPAGEMAPTLBE pTlbe;
367 int rc2 = pgmPhysPageQueryTlbe(&pVM->pgm.s, *pGCPhys, &pTlbe);
368 AssertFatalRC(rc2);
369 PPGMPAGE pPage = pTlbe->pPage;
370 if (PGM_PAGE_IS_MMIO(pPage))
371 {
372 PGMPhysReleasePageMappingLock(pVM, pLock);
373 rc = VERR_PGM_PHYS_PAGE_RESERVED;
374 }
375 else if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
376#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
377 || pgmPoolIsDirtyPage(pVM, *pGCPhys)
378#endif
379 )
380 {
381 /* We *must* flush any corresponding pgm pool page here, otherwise we'll
382 * not be informed about writes and keep bogus gst->shw mappings around.
383 */
384 pgmPoolFlushPageByGCPhys(pVM, *pGCPhys);
385 Assert(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage));
386 /** @todo r=bird: return VERR_PGM_PHYS_PAGE_RESERVED here if it still has
387 * active handlers, see the PGMR3PhysGCPhys2CCPtrExternal docs. */
388 }
389 }
390
391 pgmUnlock(pVM);
392 return rc;
393}
394
395
396/**
397 * Requests the mapping of a guest page into ring-3, external threads.
398 *
399 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
400 * release it.
401 *
402 * This API will assume your intention is to write to the page, and will
403 * therefore replace shared and zero pages. If you do not intend to modify the
404 * page, use the PGMR3PhysGCPhys2CCPtrReadOnlyExternal() API.
405 *
406 * @returns VBox status code.
407 * @retval VINF_SUCCESS on success.
408 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
409 * backing or if the page has any active access handlers. The caller
410 * must fall back on using PGMR3PhysWriteExternal.
411 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
412 *
413 * @param pVM The VM handle.
414 * @param GCPhys The guest physical address of the page that should be mapped.
415 * @param ppv Where to store the address corresponding to GCPhys.
416 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
417 *
418 * @remark Avoid calling this API from within critical sections (other than the
419 * PGM one) because of the deadlock risk when we have to delegating the
420 * task to an EMT.
421 * @thread Any.
422 */
423VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrExternal(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
424{
425 AssertPtr(ppv);
426 AssertPtr(pLock);
427
428 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
429
430 int rc = pgmLock(pVM);
431 AssertRCReturn(rc, rc);
432
433 /*
434 * Query the Physical TLB entry for the page (may fail).
435 */
436 PPGMPAGEMAPTLBE pTlbe;
437 rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
438 if (RT_SUCCESS(rc))
439 {
440 PPGMPAGE pPage = pTlbe->pPage;
441 if (PGM_PAGE_IS_MMIO(pPage))
442 rc = VERR_PGM_PHYS_PAGE_RESERVED;
443 else
444 {
445 /*
446 * If the page is shared, the zero page, or being write monitored
447 * it must be converted to an page that's writable if possible.
448 * We can only deal with write monitored pages here, the rest have
449 * to be on an EMT.
450 */
451 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
452 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
453#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
454 || pgmPoolIsDirtyPage(pVM, GCPhys)
455#endif
456 )
457 {
458 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
459 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
460#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
461 && !pgmPoolIsDirtyPage(pVM, GCPhys)
462#endif
463 )
464 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
465 else
466 {
467 pgmUnlock(pVM);
468
469 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
470 pVM, &GCPhys, ppv, pLock);
471 }
472 }
473
474 /*
475 * Now, just perform the locking and calculate the return address.
476 */
477 PPGMPAGEMAP pMap = pTlbe->pMap;
478 if (pMap)
479 pMap->cRefs++;
480
481 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
482 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
483 {
484 if (cLocks == 0)
485 pVM->pgm.s.cWriteLockedPages++;
486 PGM_PAGE_INC_WRITE_LOCKS(pPage);
487 }
488 else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
489 {
490 PGM_PAGE_INC_WRITE_LOCKS(pPage);
491 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", GCPhys, pPage));
492 if (pMap)
493 pMap->cRefs++; /* Extra ref to prevent it from going away. */
494 }
495
496 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
497 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
498 pLock->pvMap = pMap;
499 }
500 }
501
502 pgmUnlock(pVM);
503 return rc;
504}
505
506
507/**
508 * Requests the mapping of a guest page into ring-3, external threads.
509 *
510 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
511 * release it.
512 *
513 * @returns VBox status code.
514 * @retval VINF_SUCCESS on success.
515 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
516 * backing or if the page as an active ALL access handler. The caller
517 * must fall back on using PGMPhysRead.
518 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
519 *
520 * @param pVM The VM handle.
521 * @param GCPhys The guest physical address of the page that should be mapped.
522 * @param ppv Where to store the address corresponding to GCPhys.
523 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
524 *
525 * @remark Avoid calling this API from within critical sections (other than
526 * the PGM one) because of the deadlock risk.
527 * @thread Any.
528 */
529VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrReadOnlyExternal(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
530{
531 int rc = pgmLock(pVM);
532 AssertRCReturn(rc, rc);
533
534 /*
535 * Query the Physical TLB entry for the page (may fail).
536 */
537 PPGMPAGEMAPTLBE pTlbe;
538 rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
539 if (RT_SUCCESS(rc))
540 {
541 PPGMPAGE pPage = pTlbe->pPage;
542#if 1
543 /* MMIO pages doesn't have any readable backing. */
544 if (PGM_PAGE_IS_MMIO(pPage))
545 rc = VERR_PGM_PHYS_PAGE_RESERVED;
546#else
547 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
548 rc = VERR_PGM_PHYS_PAGE_RESERVED;
549#endif
550 else
551 {
552 /*
553 * Now, just perform the locking and calculate the return address.
554 */
555 PPGMPAGEMAP pMap = pTlbe->pMap;
556 if (pMap)
557 pMap->cRefs++;
558
559 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
560 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
561 {
562 if (cLocks == 0)
563 pVM->pgm.s.cReadLockedPages++;
564 PGM_PAGE_INC_READ_LOCKS(pPage);
565 }
566 else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
567 {
568 PGM_PAGE_INC_READ_LOCKS(pPage);
569 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", GCPhys, pPage));
570 if (pMap)
571 pMap->cRefs++; /* Extra ref to prevent it from going away. */
572 }
573
574 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
575 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
576 pLock->pvMap = pMap;
577 }
578 }
579
580 pgmUnlock(pVM);
581 return rc;
582}
583
584
585/**
586 * Relinks the RAM ranges using the pSelfRC and pSelfR0 pointers.
587 *
588 * Called when anything was relocated.
589 *
590 * @param pVM Pointer to the shared VM structure.
591 */
592void pgmR3PhysRelinkRamRanges(PVM pVM)
593{
594 PPGMRAMRANGE pCur;
595
596#ifdef VBOX_STRICT
597 for (pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
598 {
599 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfR0 == MMHyperCCToR0(pVM, pCur));
600 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfRC == MMHyperCCToRC(pVM, pCur));
601 Assert((pCur->GCPhys & PAGE_OFFSET_MASK) == 0);
602 Assert((pCur->GCPhysLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
603 Assert((pCur->cb & PAGE_OFFSET_MASK) == 0);
604 Assert(pCur->cb == pCur->GCPhysLast - pCur->GCPhys + 1);
605 for (PPGMRAMRANGE pCur2 = pVM->pgm.s.pRamRangesR3; pCur2; pCur2 = pCur2->pNextR3)
606 Assert( pCur2 == pCur
607 || strcmp(pCur2->pszDesc, pCur->pszDesc)); /** @todo fix MMIO ranges!! */
608 }
609#endif
610
611 pCur = pVM->pgm.s.pRamRangesR3;
612 if (pCur)
613 {
614 pVM->pgm.s.pRamRangesR0 = pCur->pSelfR0;
615 pVM->pgm.s.pRamRangesRC = pCur->pSelfRC;
616
617 for (; pCur->pNextR3; pCur = pCur->pNextR3)
618 {
619 pCur->pNextR0 = pCur->pNextR3->pSelfR0;
620 pCur->pNextRC = pCur->pNextR3->pSelfRC;
621 }
622
623 Assert(pCur->pNextR0 == NIL_RTR0PTR);
624 Assert(pCur->pNextRC == NIL_RTRCPTR);
625 }
626 else
627 {
628 Assert(pVM->pgm.s.pRamRangesR0 == NIL_RTR0PTR);
629 Assert(pVM->pgm.s.pRamRangesRC == NIL_RTRCPTR);
630 }
631 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
632}
633
634
635/**
636 * Links a new RAM range into the list.
637 *
638 * @param pVM Pointer to the shared VM structure.
639 * @param pNew Pointer to the new list entry.
640 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
641 */
642static void pgmR3PhysLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, PPGMRAMRANGE pPrev)
643{
644 AssertMsg(pNew->pszDesc, ("%RGp-%RGp\n", pNew->GCPhys, pNew->GCPhysLast));
645 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfR0 == MMHyperCCToR0(pVM, pNew));
646 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfRC == MMHyperCCToRC(pVM, pNew));
647
648 pgmLock(pVM);
649
650 PPGMRAMRANGE pRam = pPrev ? pPrev->pNextR3 : pVM->pgm.s.pRamRangesR3;
651 pNew->pNextR3 = pRam;
652 pNew->pNextR0 = pRam ? pRam->pSelfR0 : NIL_RTR0PTR;
653 pNew->pNextRC = pRam ? pRam->pSelfRC : NIL_RTRCPTR;
654
655 if (pPrev)
656 {
657 pPrev->pNextR3 = pNew;
658 pPrev->pNextR0 = pNew->pSelfR0;
659 pPrev->pNextRC = pNew->pSelfRC;
660 }
661 else
662 {
663 pVM->pgm.s.pRamRangesR3 = pNew;
664 pVM->pgm.s.pRamRangesR0 = pNew->pSelfR0;
665 pVM->pgm.s.pRamRangesRC = pNew->pSelfRC;
666 }
667 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
668 pgmUnlock(pVM);
669}
670
671
672/**
673 * Unlink an existing RAM range from the list.
674 *
675 * @param pVM Pointer to the shared VM structure.
676 * @param pRam Pointer to the new list entry.
677 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
678 */
679static void pgmR3PhysUnlinkRamRange2(PVM pVM, PPGMRAMRANGE pRam, PPGMRAMRANGE pPrev)
680{
681 Assert(pPrev ? pPrev->pNextR3 == pRam : pVM->pgm.s.pRamRangesR3 == pRam);
682 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfR0 == MMHyperCCToR0(pVM, pRam));
683 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfRC == MMHyperCCToRC(pVM, pRam));
684
685 pgmLock(pVM);
686
687 PPGMRAMRANGE pNext = pRam->pNextR3;
688 if (pPrev)
689 {
690 pPrev->pNextR3 = pNext;
691 pPrev->pNextR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
692 pPrev->pNextRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
693 }
694 else
695 {
696 Assert(pVM->pgm.s.pRamRangesR3 == pRam);
697 pVM->pgm.s.pRamRangesR3 = pNext;
698 pVM->pgm.s.pRamRangesR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
699 pVM->pgm.s.pRamRangesRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
700 }
701 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
702 pgmUnlock(pVM);
703}
704
705
706/**
707 * Unlink an existing RAM range from the list.
708 *
709 * @param pVM Pointer to the shared VM structure.
710 * @param pRam Pointer to the new list entry.
711 */
712static void pgmR3PhysUnlinkRamRange(PVM pVM, PPGMRAMRANGE pRam)
713{
714 pgmLock(pVM);
715
716 /* find prev. */
717 PPGMRAMRANGE pPrev = NULL;
718 PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3;
719 while (pCur != pRam)
720 {
721 pPrev = pCur;
722 pCur = pCur->pNextR3;
723 }
724 AssertFatal(pCur);
725
726 pgmR3PhysUnlinkRamRange2(pVM, pRam, pPrev);
727 pgmUnlock(pVM);
728}
729
730
731/**
732 * Frees a range of pages, replacing them with ZERO pages of the specified type.
733 *
734 * @returns VBox status code.
735 * @param pVM The VM handle.
736 * @param pRam The RAM range in which the pages resides.
737 * @param GCPhys The address of the first page.
738 * @param GCPhysLast The address of the last page.
739 * @param uType The page type to replace then with.
740 */
741static int pgmR3PhysFreePageRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, uint8_t uType)
742{
743 Assert(PGMIsLockOwner(pVM));
744 uint32_t cPendingPages = 0;
745 PGMMFREEPAGESREQ pReq;
746 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
747 AssertLogRelRCReturn(rc, rc);
748
749 /* Iterate the pages. */
750 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
751 uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1;
752 while (cPagesLeft-- > 0)
753 {
754 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
755 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
756
757 PGM_PAGE_SET_TYPE(pPageDst, uType);
758
759 GCPhys += PAGE_SIZE;
760 pPageDst++;
761 }
762
763 if (cPendingPages)
764 {
765 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
766 AssertLogRelRCReturn(rc, rc);
767 }
768 GMMR3FreePagesCleanup(pReq);
769
770 return rc;
771}
772
773/**
774 * Rendezvous callback used by PGMR3ChangeMemBalloon that changes the memory balloon size
775 *
776 * This is only called on one of the EMTs while the other ones are waiting for
777 * it to complete this function.
778 *
779 * @returns VINF_SUCCESS (VBox strict status code).
780 * @param pVM The VM handle.
781 * @param pVCpu The VMCPU for the EMT we're being called on. Unused.
782 * @param pvUser User parameter
783 */
784static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysChangeMemBalloonRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
785{
786 uintptr_t *paUser = (uintptr_t *)pvUser;
787 bool fInflate = !!paUser[0];
788 unsigned cPages = paUser[1];
789 RTGCPHYS *paPhysPage = (RTGCPHYS *)paUser[2];
790 uint32_t cPendingPages = 0;
791 PGMMFREEPAGESREQ pReq;
792 int rc;
793
794 Log(("pgmR3PhysChangeMemBalloonRendezvous: %s %x pages\n", (fInflate) ? "inflate" : "deflate", cPages));
795 pgmLock(pVM);
796
797 if (fInflate)
798 {
799 /* Replace pages with ZERO pages. */
800 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
801 if (RT_FAILURE(rc))
802 {
803 pgmUnlock(pVM);
804 AssertLogRelRC(rc);
805 return rc;
806 }
807
808 /* Iterate the pages. */
809 for (unsigned i = 0; i < cPages; i++)
810 {
811 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, paPhysPage[i]);
812 if ( pPage == NULL
813 || pPage->uTypeY != PGMPAGETYPE_RAM)
814 {
815 Log(("pgmR3PhysChangeMemBalloonRendezvous: invalid physical page %RGp pPage->u3Type=%d\n", paPhysPage[i], (pPage) ? pPage->uTypeY : 0));
816 break;
817 }
818
819 LogFlow(("balloon page: %RGp\n", paPhysPage[i]));
820
821 /* Flush the shadow PT if this page was previously used as a guest page table. */
822 pgmPoolFlushPageByGCPhys(pVM, paPhysPage[i]);
823
824 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, paPhysPage[i]);
825 if (RT_FAILURE(rc))
826 {
827 pgmUnlock(pVM);
828 AssertLogRelRC(rc);
829 return rc;
830 }
831 Assert(PGM_PAGE_IS_ZERO(pPage));
832 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_BALLOONED);
833 }
834
835 if (cPendingPages)
836 {
837 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
838 if (RT_FAILURE(rc))
839 {
840 pgmUnlock(pVM);
841 AssertLogRelRC(rc);
842 return rc;
843 }
844 }
845 GMMR3FreePagesCleanup(pReq);
846
847 /* Flush the PGM pool cache as we might have stale references to pages that we just freed. */
848 pgmR3PoolClearAllRendezvous(pVM, pVCpu, NULL);
849 }
850 else
851 {
852 /* Iterate the pages. */
853 for (unsigned i = 0; i < cPages; i++)
854 {
855 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, paPhysPage[i]);
856 AssertBreak(pPage && pPage->uTypeY == PGMPAGETYPE_RAM);
857
858 LogFlow(("Free ballooned page: %RGp\n", paPhysPage[i]));
859
860 Assert(PGM_PAGE_IS_BALLOONED(pPage));
861
862 /* Change back to zero page. */
863 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
864 }
865
866 /* Note that we currently do not map any ballooned pages in our shadow page tables, so no need to flush the pgm pool. */
867 }
868
869 /* Notify GMM about the balloon change. */
870 rc = GMMR3BalloonedPages(pVM, (fInflate) ? GMMBALLOONACTION_INFLATE : GMMBALLOONACTION_DEFLATE, cPages);
871 if (RT_SUCCESS(rc))
872 {
873 if (!fInflate)
874 {
875 Assert(pVM->pgm.s.cBalloonedPages >= cPages);
876 pVM->pgm.s.cBalloonedPages -= cPages;
877 }
878 else
879 pVM->pgm.s.cBalloonedPages += cPages;
880 }
881
882 pgmUnlock(pVM);
883
884 /* Flush the recompiler's TLB as well. */
885 for (unsigned i = 0; i < pVM->cCpus; i++)
886 CPUMSetChangedFlags(&pVM->aCpus[i], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
887
888 AssertLogRelRC(rc);
889 return rc;
890}
891
892/**
893 * Frees a range of ram pages, replacing them with ZERO pages; helper for PGMR3PhysFreeRamPages
894 *
895 * @returns VBox status code.
896 * @param pVM The VM handle.
897 * @param fInflate Inflate or deflate memory balloon
898 * @param cPages Number of pages to free
899 * @param paPhysPage Array of guest physical addresses
900 */
901static DECLCALLBACK(void) pgmR3PhysChangeMemBalloonHelper(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
902{
903 uintptr_t paUser[3];
904
905 paUser[0] = fInflate;
906 paUser[1] = cPages;
907 paUser[2] = (uintptr_t)paPhysPage;
908 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
909 AssertRC(rc);
910
911 /* Made a copy in PGMR3PhysFreeRamPages; free it here. */
912 RTMemFree(paPhysPage);
913}
914
915/**
916 * Inflate or deflate a memory balloon
917 *
918 * @returns VBox status code.
919 * @param pVM The VM handle.
920 * @param fInflate Inflate or deflate memory balloon
921 * @param cPages Number of pages to free
922 * @param paPhysPage Array of guest physical addresses
923 */
924VMMR3DECL(int) PGMR3PhysChangeMemBalloon(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
925{
926 int rc;
927
928 /* We own the IOM lock here and could cause a deadlock by waiting for another VCPU that is blocking on the IOM lock.
929 * In the SMP case we post a request packet to postpone the job.
930 */
931 if (pVM->cCpus > 1)
932 {
933 unsigned cbPhysPage = cPages * sizeof(paPhysPage[0]);
934 RTGCPHYS *paPhysPageCopy = (RTGCPHYS *)RTMemAlloc(cbPhysPage);
935 AssertReturn(paPhysPageCopy, VERR_NO_MEMORY);
936
937 memcpy(paPhysPageCopy, paPhysPage, cbPhysPage);
938
939 rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysChangeMemBalloonHelper, 4, pVM, fInflate, cPages, paPhysPageCopy);
940 AssertRC(rc);
941 }
942 else
943 {
944 uintptr_t paUser[3];
945
946 paUser[0] = fInflate;
947 paUser[1] = cPages;
948 paUser[2] = (uintptr_t)paPhysPage;
949 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
950 AssertRC(rc);
951 }
952 return rc;
953}
954
955
956/**
957 * PGMR3PhysRegisterRam worker that initializes and links a RAM range.
958 *
959 * @param pVM The VM handle.
960 * @param pNew The new RAM range.
961 * @param GCPhys The address of the RAM range.
962 * @param GCPhysLast The last address of the RAM range.
963 * @param RCPtrNew The RC address if the range is floating. NIL_RTRCPTR
964 * if in HMA.
965 * @param R0PtrNew Ditto for R0.
966 * @param pszDesc The description.
967 * @param pPrev The previous RAM range (for linking).
968 */
969static void pgmR3PhysInitAndLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
970 RTRCPTR RCPtrNew, RTR0PTR R0PtrNew, const char *pszDesc, PPGMRAMRANGE pPrev)
971{
972 /*
973 * Initialize the range.
974 */
975 pNew->pSelfR0 = R0PtrNew != NIL_RTR0PTR ? R0PtrNew : MMHyperCCToR0(pVM, pNew);
976 pNew->pSelfRC = RCPtrNew != NIL_RTRCPTR ? RCPtrNew : MMHyperCCToRC(pVM, pNew);
977 pNew->GCPhys = GCPhys;
978 pNew->GCPhysLast = GCPhysLast;
979 pNew->cb = GCPhysLast - GCPhys + 1;
980 pNew->pszDesc = pszDesc;
981 pNew->fFlags = RCPtrNew != NIL_RTRCPTR ? PGM_RAM_RANGE_FLAGS_FLOATING : 0;
982 pNew->pvR3 = NULL;
983 pNew->paLSPages = NULL;
984
985 uint32_t const cPages = pNew->cb >> PAGE_SHIFT;
986 RTGCPHYS iPage = cPages;
987 while (iPage-- > 0)
988 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM);
989
990 /* Update the page count stats. */
991 pVM->pgm.s.cZeroPages += cPages;
992 pVM->pgm.s.cAllPages += cPages;
993
994 /*
995 * Link it.
996 */
997 pgmR3PhysLinkRamRange(pVM, pNew, pPrev);
998}
999
1000
1001/**
1002 * Relocate a floating RAM range.
1003 *
1004 * @copydoc FNPGMRELOCATE.
1005 */
1006static DECLCALLBACK(bool) pgmR3PhysRamRangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew, PGMRELOCATECALL enmMode, void *pvUser)
1007{
1008 PPGMRAMRANGE pRam = (PPGMRAMRANGE)pvUser;
1009 Assert(pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING);
1010 Assert(pRam->pSelfRC == GCPtrOld + PAGE_SIZE);
1011
1012 switch (enmMode)
1013 {
1014 case PGMRELOCATECALL_SUGGEST:
1015 return true;
1016 case PGMRELOCATECALL_RELOCATE:
1017 {
1018 /* Update myself and then relink all the ranges. */
1019 pgmLock(pVM);
1020 pRam->pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE);
1021 pgmR3PhysRelinkRamRanges(pVM);
1022 pgmUnlock(pVM);
1023 return true;
1024 }
1025
1026 default:
1027 AssertFailedReturn(false);
1028 }
1029}
1030
1031
1032/**
1033 * PGMR3PhysRegisterRam worker that registers a high chunk.
1034 *
1035 * @returns VBox status code.
1036 * @param pVM The VM handle.
1037 * @param GCPhys The address of the RAM.
1038 * @param cRamPages The number of RAM pages to register.
1039 * @param cbChunk The size of the PGMRAMRANGE guest mapping.
1040 * @param iChunk The chunk number.
1041 * @param pszDesc The RAM range description.
1042 * @param ppPrev Previous RAM range pointer. In/Out.
1043 */
1044static int pgmR3PhysRegisterHighRamChunk(PVM pVM, RTGCPHYS GCPhys, uint32_t cRamPages,
1045 uint32_t cbChunk, uint32_t iChunk, const char *pszDesc,
1046 PPGMRAMRANGE *ppPrev)
1047{
1048 const char *pszDescChunk = iChunk == 0
1049 ? pszDesc
1050 : MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s (#%u)", pszDesc, iChunk + 1);
1051 AssertReturn(pszDescChunk, VERR_NO_MEMORY);
1052
1053 /*
1054 * Allocate memory for the new chunk.
1055 */
1056 size_t const cChunkPages = RT_ALIGN_Z(RT_UOFFSETOF(PGMRAMRANGE, aPages[cRamPages]), PAGE_SIZE) >> PAGE_SHIFT;
1057 PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
1058 AssertReturn(paChunkPages, VERR_NO_TMP_MEMORY);
1059 RTR0PTR R0PtrChunk = NIL_RTR0PTR;
1060 void *pvChunk = NULL;
1061 int rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk,
1062#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1063 VMMIsHwVirtExtForced(pVM) ? &R0PtrChunk : NULL,
1064#else
1065 NULL,
1066#endif
1067 paChunkPages);
1068 if (RT_SUCCESS(rc))
1069 {
1070#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1071 if (!VMMIsHwVirtExtForced(pVM))
1072 R0PtrChunk = NIL_RTR0PTR;
1073#else
1074 R0PtrChunk = (uintptr_t)pvChunk;
1075#endif
1076 memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
1077
1078 PPGMRAMRANGE pNew = (PPGMRAMRANGE)pvChunk;
1079
1080 /*
1081 * Create a mapping and map the pages into it.
1082 * We push these in below the HMA.
1083 */
1084 RTGCPTR GCPtrChunkMap = pVM->pgm.s.GCPtrPrevRamRangeMapping - cbChunk;
1085 rc = PGMR3MapPT(pVM, GCPtrChunkMap, cbChunk, 0 /*fFlags*/, pgmR3PhysRamRangeRelocate, pNew, pszDescChunk);
1086 if (RT_SUCCESS(rc))
1087 {
1088 pVM->pgm.s.GCPtrPrevRamRangeMapping = GCPtrChunkMap;
1089
1090 RTGCPTR const GCPtrChunk = GCPtrChunkMap + PAGE_SIZE;
1091 RTGCPTR GCPtrPage = GCPtrChunk;
1092 for (uint32_t iPage = 0; iPage < cChunkPages && RT_SUCCESS(rc); iPage++, GCPtrPage += PAGE_SIZE)
1093 rc = PGMMap(pVM, GCPtrPage, paChunkPages[iPage].Phys, PAGE_SIZE, 0);
1094 if (RT_SUCCESS(rc))
1095 {
1096 /*
1097 * Ok, init and link the range.
1098 */
1099 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhys + ((RTGCPHYS)cRamPages << PAGE_SHIFT) - 1,
1100 (RTRCPTR)GCPtrChunk, R0PtrChunk, pszDescChunk, *ppPrev);
1101 *ppPrev = pNew;
1102 }
1103 }
1104
1105 if (RT_FAILURE(rc))
1106 SUPR3PageFreeEx(pvChunk, cChunkPages);
1107 }
1108
1109 RTMemTmpFree(paChunkPages);
1110 return rc;
1111}
1112
1113
1114/**
1115 * Sets up a range RAM.
1116 *
1117 * This will check for conflicting registrations, make a resource
1118 * reservation for the memory (with GMM), and setup the per-page
1119 * tracking structures (PGMPAGE).
1120 *
1121 * @returns VBox stutus code.
1122 * @param pVM Pointer to the shared VM structure.
1123 * @param GCPhys The physical address of the RAM.
1124 * @param cb The size of the RAM.
1125 * @param pszDesc The description - not copied, so, don't free or change it.
1126 */
1127VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc)
1128{
1129 /*
1130 * Validate input.
1131 */
1132 Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc));
1133 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
1134 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
1135 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
1136 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1137 AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER);
1138 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1139 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1140
1141 pgmLock(pVM);
1142
1143 /*
1144 * Find range location and check for conflicts.
1145 * (We don't lock here because the locking by EMT is only required on update.)
1146 */
1147 PPGMRAMRANGE pPrev = NULL;
1148 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1149 while (pRam && GCPhysLast >= pRam->GCPhys)
1150 {
1151 if ( GCPhysLast >= pRam->GCPhys
1152 && GCPhys <= pRam->GCPhysLast)
1153 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
1154 GCPhys, GCPhysLast, pszDesc,
1155 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1156 VERR_PGM_RAM_CONFLICT);
1157
1158 /* next */
1159 pPrev = pRam;
1160 pRam = pRam->pNextR3;
1161 }
1162
1163 /*
1164 * Register it with GMM (the API bitches).
1165 */
1166 const RTGCPHYS cPages = cb >> PAGE_SHIFT;
1167 int rc = MMR3IncreaseBaseReservation(pVM, cPages);
1168 if (RT_FAILURE(rc))
1169 {
1170 pgmUnlock(pVM);
1171 return rc;
1172 }
1173
1174 if ( GCPhys >= _4G
1175 && cPages > 256)
1176 {
1177 /*
1178 * The PGMRAMRANGE structures for the high memory can get very big.
1179 * In order to avoid SUPR3PageAllocEx allocation failures due to the
1180 * allocation size limit there and also to avoid being unable to find
1181 * guest mapping space for them, we split this memory up into 4MB in
1182 * (potential) raw-mode configs and 16MB chunks in forced AMD-V/VT-x
1183 * mode.
1184 *
1185 * The first and last page of each mapping are guard pages and marked
1186 * not-present. So, we've got 4186112 and 16769024 bytes available for
1187 * the PGMRAMRANGE structure.
1188 *
1189 * Note! The sizes used here will influence the saved state.
1190 */
1191 uint32_t cbChunk;
1192 uint32_t cPagesPerChunk;
1193 if (VMMIsHwVirtExtForced(pVM))
1194 {
1195 cbChunk = 16U*_1M;
1196 cPagesPerChunk = 1048048; /* max ~1048059 */
1197 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2);
1198 }
1199 else
1200 {
1201 cbChunk = 4U*_1M;
1202 cPagesPerChunk = 261616; /* max ~261627 */
1203 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 261616 < 4U*_1M - PAGE_SIZE * 2);
1204 }
1205 AssertRelease(RT_UOFFSETOF(PGMRAMRANGE, aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
1206
1207 RTGCPHYS cPagesLeft = cPages;
1208 RTGCPHYS GCPhysChunk = GCPhys;
1209 uint32_t iChunk = 0;
1210 while (cPagesLeft > 0)
1211 {
1212 uint32_t cPagesInChunk = cPagesLeft;
1213 if (cPagesInChunk > cPagesPerChunk)
1214 cPagesInChunk = cPagesPerChunk;
1215
1216 rc = pgmR3PhysRegisterHighRamChunk(pVM, GCPhysChunk, cPagesInChunk, cbChunk, iChunk, pszDesc, &pPrev);
1217 AssertRCReturn(rc, rc);
1218
1219 /* advance */
1220 GCPhysChunk += (RTGCPHYS)cPagesInChunk << PAGE_SHIFT;
1221 cPagesLeft -= cPagesInChunk;
1222 iChunk++;
1223 }
1224 }
1225 else
1226 {
1227 /*
1228 * Allocate, initialize and link the new RAM range.
1229 */
1230 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
1231 PPGMRAMRANGE pNew;
1232 rc = MMR3HyperAllocOnceNoRel(pVM, cbRamRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1233 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
1234
1235 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhysLast, NIL_RTRCPTR, NIL_RTR0PTR, pszDesc, pPrev);
1236 }
1237 PGMPhysInvalidatePageMapTLB(pVM);
1238 pgmUnlock(pVM);
1239
1240 /*
1241 * Notify REM.
1242 */
1243 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_RAM);
1244
1245 return VINF_SUCCESS;
1246}
1247
1248
1249/**
1250 * Worker called by PGMR3InitFinalize if we're configured to pre-allocate RAM.
1251 *
1252 * We do this late in the init process so that all the ROM and MMIO ranges have
1253 * been registered already and we don't go wasting memory on them.
1254 *
1255 * @returns VBox status code.
1256 *
1257 * @param pVM Pointer to the shared VM structure.
1258 */
1259int pgmR3PhysRamPreAllocate(PVM pVM)
1260{
1261 Assert(pVM->pgm.s.fRamPreAlloc);
1262 Log(("pgmR3PhysRamPreAllocate: enter\n"));
1263
1264 /*
1265 * Walk the RAM ranges and allocate all RAM pages, halt at
1266 * the first allocation error.
1267 */
1268 uint64_t cPages = 0;
1269 uint64_t NanoTS = RTTimeNanoTS();
1270 pgmLock(pVM);
1271 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
1272 {
1273 PPGMPAGE pPage = &pRam->aPages[0];
1274 RTGCPHYS GCPhys = pRam->GCPhys;
1275 uint32_t cLeft = pRam->cb >> PAGE_SHIFT;
1276 while (cLeft-- > 0)
1277 {
1278 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
1279 {
1280 switch (PGM_PAGE_GET_STATE(pPage))
1281 {
1282 case PGM_PAGE_STATE_ZERO:
1283 {
1284 int rc = pgmPhysAllocPage(pVM, pPage, GCPhys);
1285 if (RT_FAILURE(rc))
1286 {
1287 LogRel(("PGM: RAM Pre-allocation failed at %RGp (in %s) with rc=%Rrc\n", GCPhys, pRam->pszDesc, rc));
1288 pgmUnlock(pVM);
1289 return rc;
1290 }
1291 cPages++;
1292 break;
1293 }
1294
1295 case PGM_PAGE_STATE_BALLOONED:
1296 case PGM_PAGE_STATE_ALLOCATED:
1297 case PGM_PAGE_STATE_WRITE_MONITORED:
1298 case PGM_PAGE_STATE_SHARED:
1299 /* nothing to do here. */
1300 break;
1301 }
1302 }
1303
1304 /* next */
1305 pPage++;
1306 GCPhys += PAGE_SIZE;
1307 }
1308 }
1309 pgmUnlock(pVM);
1310 NanoTS = RTTimeNanoTS() - NanoTS;
1311
1312 LogRel(("PGM: Pre-allocated %llu pages in %llu ms\n", cPages, NanoTS / 1000000));
1313 Log(("pgmR3PhysRamPreAllocate: returns VINF_SUCCESS\n"));
1314 return VINF_SUCCESS;
1315}
1316
1317
1318/**
1319 * Resets (zeros) the RAM.
1320 *
1321 * ASSUMES that the caller owns the PGM lock.
1322 *
1323 * @returns VBox status code.
1324 * @param pVM Pointer to the shared VM structure.
1325 */
1326int pgmR3PhysRamReset(PVM pVM)
1327{
1328 Assert(PGMIsLockOwner(pVM));
1329
1330 /* Reset the memory balloon. */
1331 int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
1332 AssertRC(rc);
1333
1334 /*
1335 * We batch up pages that should be freed instead of calling GMM for
1336 * each and every one of them.
1337 */
1338 uint32_t cPendingPages = 0;
1339 PGMMFREEPAGESREQ pReq;
1340 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1341 AssertLogRelRCReturn(rc, rc);
1342
1343 /*
1344 * Walk the ram ranges.
1345 */
1346 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
1347 {
1348 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
1349 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
1350
1351 if (!pVM->pgm.s.fRamPreAlloc)
1352 {
1353 /* Replace all RAM pages by ZERO pages. */
1354 while (iPage-- > 0)
1355 {
1356 PPGMPAGE pPage = &pRam->aPages[iPage];
1357 switch (PGM_PAGE_GET_TYPE(pPage))
1358 {
1359 case PGMPAGETYPE_RAM:
1360 /* Do not replace pages part of a 2 MB continuous range with zero pages, but zero them instead. */
1361 if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE)
1362 {
1363 void *pvPage;
1364 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
1365 AssertLogRelRCReturn(rc, rc);
1366 ASMMemZeroPage(pvPage);
1367 }
1368 else
1369 if (PGM_PAGE_IS_BALLOONED(pPage))
1370 {
1371 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
1372 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
1373 }
1374 else
1375 if (!PGM_PAGE_IS_ZERO(pPage))
1376 {
1377 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1378 AssertLogRelRCReturn(rc, rc);
1379 }
1380 break;
1381
1382 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1383 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1384 break;
1385
1386 case PGMPAGETYPE_MMIO2:
1387 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
1388 case PGMPAGETYPE_ROM:
1389 case PGMPAGETYPE_MMIO:
1390 break;
1391 default:
1392 AssertFailed();
1393 }
1394 } /* for each page */
1395 }
1396 else
1397 {
1398 /* Zero the memory. */
1399 while (iPage-- > 0)
1400 {
1401 PPGMPAGE pPage = &pRam->aPages[iPage];
1402 switch (PGM_PAGE_GET_TYPE(pPage))
1403 {
1404 case PGMPAGETYPE_RAM:
1405 switch (PGM_PAGE_GET_STATE(pPage))
1406 {
1407 case PGM_PAGE_STATE_ZERO:
1408 break;
1409
1410 case PGM_PAGE_STATE_BALLOONED:
1411 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
1412 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
1413 break;
1414
1415 case PGM_PAGE_STATE_SHARED:
1416 case PGM_PAGE_STATE_WRITE_MONITORED:
1417 rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1418 AssertLogRelRCReturn(rc, rc);
1419 /* no break */
1420
1421 case PGM_PAGE_STATE_ALLOCATED:
1422 {
1423 void *pvPage;
1424 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
1425 AssertLogRelRCReturn(rc, rc);
1426 ASMMemZeroPage(pvPage);
1427 break;
1428 }
1429 }
1430 break;
1431
1432 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1433 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1434 break;
1435
1436 case PGMPAGETYPE_MMIO2:
1437 case PGMPAGETYPE_ROM_SHADOW:
1438 case PGMPAGETYPE_ROM:
1439 case PGMPAGETYPE_MMIO:
1440 break;
1441 default:
1442 AssertFailed();
1443
1444 }
1445 } /* for each page */
1446 }
1447
1448 }
1449
1450 /*
1451 * Finish off any pages pending freeing.
1452 */
1453 if (cPendingPages)
1454 {
1455 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
1456 AssertLogRelRCReturn(rc, rc);
1457 }
1458 GMMR3FreePagesCleanup(pReq);
1459
1460 return VINF_SUCCESS;
1461}
1462
1463
1464/**
1465 * This is the interface IOM is using to register an MMIO region.
1466 *
1467 * It will check for conflicts and ensure that a RAM range structure
1468 * is present before calling the PGMR3HandlerPhysicalRegister API to
1469 * register the callbacks.
1470 *
1471 * @returns VBox status code.
1472 *
1473 * @param pVM Pointer to the shared VM structure.
1474 * @param GCPhys The start of the MMIO region.
1475 * @param cb The size of the MMIO region.
1476 * @param pfnHandlerR3 The address of the ring-3 handler. (IOMR3MMIOHandler)
1477 * @param pvUserR3 The user argument for R3.
1478 * @param pfnHandlerR0 The address of the ring-0 handler. (IOMMMIOHandler)
1479 * @param pvUserR0 The user argument for R0.
1480 * @param pfnHandlerRC The address of the RC handler. (IOMMMIOHandler)
1481 * @param pvUserRC The user argument for RC.
1482 * @param pszDesc The description of the MMIO region.
1483 */
1484VMMR3DECL(int) PGMR3PhysMMIORegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb,
1485 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3, RTR3PTR pvUserR3,
1486 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0, RTR0PTR pvUserR0,
1487 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnHandlerRC, RTRCPTR pvUserRC,
1488 R3PTRTYPE(const char *) pszDesc)
1489{
1490 /*
1491 * Assert on some assumption.
1492 */
1493 VM_ASSERT_EMT(pVM);
1494 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1495 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1496 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1497 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
1498
1499 /*
1500 * Make sure there's a RAM range structure for the region.
1501 */
1502 int rc;
1503 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1504 bool fRamExists = false;
1505 PPGMRAMRANGE pRamPrev = NULL;
1506 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1507 while (pRam && GCPhysLast >= pRam->GCPhys)
1508 {
1509 if ( GCPhysLast >= pRam->GCPhys
1510 && GCPhys <= pRam->GCPhysLast)
1511 {
1512 /* Simplification: all within the same range. */
1513 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
1514 && GCPhysLast <= pRam->GCPhysLast,
1515 ("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n",
1516 GCPhys, GCPhysLast, pszDesc,
1517 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1518 VERR_PGM_RAM_CONFLICT);
1519
1520 /* Check that it's all RAM or MMIO pages. */
1521 PCPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1522 uint32_t cLeft = cb >> PAGE_SHIFT;
1523 while (cLeft-- > 0)
1524 {
1525 AssertLogRelMsgReturn( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1526 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO,
1527 ("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n",
1528 GCPhys, GCPhysLast, pszDesc, PGM_PAGE_GET_TYPE(pPage), pRam->pszDesc),
1529 VERR_PGM_RAM_CONFLICT);
1530 pPage++;
1531 }
1532
1533 /* Looks good. */
1534 fRamExists = true;
1535 break;
1536 }
1537
1538 /* next */
1539 pRamPrev = pRam;
1540 pRam = pRam->pNextR3;
1541 }
1542 PPGMRAMRANGE pNew;
1543 if (fRamExists)
1544 {
1545 pNew = NULL;
1546
1547 /*
1548 * Make all the pages in the range MMIO/ZERO pages, freeing any
1549 * RAM pages currently mapped here. This might not be 100% correct
1550 * for PCI memory, but we're doing the same thing for MMIO2 pages.
1551 */
1552 rc = pgmLock(pVM);
1553 if (RT_SUCCESS(rc))
1554 {
1555 rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO);
1556 pgmUnlock(pVM);
1557 }
1558 AssertRCReturn(rc, rc);
1559 }
1560 else
1561 {
1562 pgmLock(pVM);
1563
1564 /*
1565 * No RAM range, insert an ad hoc one.
1566 *
1567 * Note that we don't have to tell REM about this range because
1568 * PGMHandlerPhysicalRegisterEx will do that for us.
1569 */
1570 Log(("PGMR3PhysMMIORegister: Adding ad hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc));
1571
1572 const uint32_t cPages = cb >> PAGE_SHIFT;
1573 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
1574 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), 16, MM_TAG_PGM_PHYS, (void **)&pNew);
1575 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
1576
1577 /* Initialize the range. */
1578 pNew->pSelfR0 = MMHyperCCToR0(pVM, pNew);
1579 pNew->pSelfRC = MMHyperCCToRC(pVM, pNew);
1580 pNew->GCPhys = GCPhys;
1581 pNew->GCPhysLast = GCPhysLast;
1582 pNew->cb = cb;
1583 pNew->pszDesc = pszDesc;
1584 pNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO;
1585 pNew->pvR3 = NULL;
1586 pNew->paLSPages = NULL;
1587
1588 uint32_t iPage = cPages;
1589 while (iPage-- > 0)
1590 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO);
1591 Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO);
1592
1593 /* update the page count stats. */
1594 pVM->pgm.s.cPureMmioPages += cPages;
1595 pVM->pgm.s.cAllPages += cPages;
1596
1597 /* link it */
1598 pgmR3PhysLinkRamRange(pVM, pNew, pRamPrev);
1599
1600 pgmUnlock(pVM);
1601 }
1602
1603 /*
1604 * Register the access handler.
1605 */
1606 rc = PGMHandlerPhysicalRegisterEx(pVM, PGMPHYSHANDLERTYPE_MMIO, GCPhys, GCPhysLast,
1607 pfnHandlerR3, pvUserR3,
1608 pfnHandlerR0, pvUserR0,
1609 pfnHandlerRC, pvUserRC, pszDesc);
1610 if ( RT_FAILURE(rc)
1611 && !fRamExists)
1612 {
1613 pVM->pgm.s.cPureMmioPages -= cb >> PAGE_SHIFT;
1614 pVM->pgm.s.cAllPages -= cb >> PAGE_SHIFT;
1615
1616 /* remove the ad hoc range. */
1617 pgmR3PhysUnlinkRamRange2(pVM, pNew, pRamPrev);
1618 pNew->cb = pNew->GCPhys = pNew->GCPhysLast = NIL_RTGCPHYS;
1619 MMHyperFree(pVM, pRam);
1620 }
1621 PGMPhysInvalidatePageMapTLB(pVM);
1622
1623 return rc;
1624}
1625
1626
1627/**
1628 * This is the interface IOM is using to register an MMIO region.
1629 *
1630 * It will take care of calling PGMHandlerPhysicalDeregister and clean up
1631 * any ad hoc PGMRAMRANGE left behind.
1632 *
1633 * @returns VBox status code.
1634 * @param pVM Pointer to the shared VM structure.
1635 * @param GCPhys The start of the MMIO region.
1636 * @param cb The size of the MMIO region.
1637 */
1638VMMR3DECL(int) PGMR3PhysMMIODeregister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
1639{
1640 VM_ASSERT_EMT(pVM);
1641
1642 /*
1643 * First deregister the handler, then check if we should remove the ram range.
1644 */
1645 int rc = PGMHandlerPhysicalDeregister(pVM, GCPhys);
1646 if (RT_SUCCESS(rc))
1647 {
1648 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1649 PPGMRAMRANGE pRamPrev = NULL;
1650 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1651 while (pRam && GCPhysLast >= pRam->GCPhys)
1652 {
1653 /** @todo We're being a bit too careful here. rewrite. */
1654 if ( GCPhysLast == pRam->GCPhysLast
1655 && GCPhys == pRam->GCPhys)
1656 {
1657 Assert(pRam->cb == cb);
1658
1659 /*
1660 * See if all the pages are dead MMIO pages.
1661 */
1662 uint32_t const cPages = cb >> PAGE_SHIFT;
1663 bool fAllMMIO = true;
1664 uint32_t iPage = 0;
1665 uint32_t cLeft = cPages;
1666 while (cLeft-- > 0)
1667 {
1668 PPGMPAGE pPage = &pRam->aPages[iPage];
1669 if ( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO
1670 /*|| not-out-of-action later */)
1671 {
1672 fAllMMIO = false;
1673 Assert(PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO2_ALIAS_MMIO);
1674 AssertMsgFailed(("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1675 break;
1676 }
1677 Assert(PGM_PAGE_IS_ZERO(pPage));
1678 pPage++;
1679 }
1680 if (fAllMMIO)
1681 {
1682 /*
1683 * Ad-hoc range, unlink and free it.
1684 */
1685 Log(("PGMR3PhysMMIODeregister: Freeing ad hoc MMIO range for %RGp-%RGp %s\n",
1686 GCPhys, GCPhysLast, pRam->pszDesc));
1687
1688 pVM->pgm.s.cAllPages -= cPages;
1689 pVM->pgm.s.cPureMmioPages -= cPages;
1690
1691 pgmR3PhysUnlinkRamRange2(pVM, pRam, pRamPrev);
1692 pRam->cb = pRam->GCPhys = pRam->GCPhysLast = NIL_RTGCPHYS;
1693 MMHyperFree(pVM, pRam);
1694 break;
1695 }
1696 }
1697
1698 /*
1699 * Range match? It will all be within one range (see PGMAllHandler.cpp).
1700 */
1701 if ( GCPhysLast >= pRam->GCPhys
1702 && GCPhys <= pRam->GCPhysLast)
1703 {
1704 Assert(GCPhys >= pRam->GCPhys);
1705 Assert(GCPhysLast <= pRam->GCPhysLast);
1706
1707 /*
1708 * Turn the pages back into RAM pages.
1709 */
1710 uint32_t iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
1711 uint32_t cLeft = cb >> PAGE_SHIFT;
1712 while (cLeft--)
1713 {
1714 PPGMPAGE pPage = &pRam->aPages[iPage];
1715 AssertMsg(PGM_PAGE_IS_MMIO(pPage), ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1716 AssertMsg(PGM_PAGE_IS_ZERO(pPage), ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1717 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO)
1718 PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_RAM);
1719 }
1720 break;
1721 }
1722
1723 /* next */
1724 pRamPrev = pRam;
1725 pRam = pRam->pNextR3;
1726 }
1727 }
1728
1729 PGMPhysInvalidatePageMapTLB(pVM);
1730 return rc;
1731}
1732
1733
1734/**
1735 * Locate a MMIO2 range.
1736 *
1737 * @returns Pointer to the MMIO2 range.
1738 * @param pVM Pointer to the shared VM structure.
1739 * @param pDevIns The device instance owning the region.
1740 * @param iRegion The region.
1741 */
1742DECLINLINE(PPGMMMIO2RANGE) pgmR3PhysMMIO2Find(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
1743{
1744 /*
1745 * Search the list.
1746 */
1747 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
1748 if ( pCur->pDevInsR3 == pDevIns
1749 && pCur->iRegion == iRegion)
1750 return pCur;
1751 return NULL;
1752}
1753
1754
1755/**
1756 * Allocate and register an MMIO2 region.
1757 *
1758 * As mentioned elsewhere, MMIO2 is just RAM spelled differently. It's
1759 * RAM associated with a device. It is also non-shared memory with a
1760 * permanent ring-3 mapping and page backing (presently).
1761 *
1762 * A MMIO2 range may overlap with base memory if a lot of RAM
1763 * is configured for the VM, in which case we'll drop the base
1764 * memory pages. Presently we will make no attempt to preserve
1765 * anything that happens to be present in the base memory that
1766 * is replaced, this is of course incorrectly but it's too much
1767 * effort.
1768 *
1769 * @returns VBox status code.
1770 * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the memory.
1771 * @retval VERR_ALREADY_EXISTS if the region already exists.
1772 *
1773 * @param pVM Pointer to the shared VM structure.
1774 * @param pDevIns The device instance owning the region.
1775 * @param iRegion The region number. If the MMIO2 memory is a PCI I/O region
1776 * this number has to be the number of that region. Otherwise
1777 * it can be any number safe UINT8_MAX.
1778 * @param cb The size of the region. Must be page aligned.
1779 * @param fFlags Reserved for future use, must be zero.
1780 * @param ppv Where to store the pointer to the ring-3 mapping of the memory.
1781 * @param pszDesc The description.
1782 */
1783VMMR3DECL(int) PGMR3PhysMMIO2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS cb, uint32_t fFlags, void **ppv, const char *pszDesc)
1784{
1785 /*
1786 * Validate input.
1787 */
1788 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1789 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1790 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
1791 AssertPtrReturn(ppv, VERR_INVALID_POINTER);
1792 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1793 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
1794 AssertReturn(pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion) == NULL, VERR_ALREADY_EXISTS);
1795 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1796 AssertReturn(cb, VERR_INVALID_PARAMETER);
1797 AssertReturn(!fFlags, VERR_INVALID_PARAMETER);
1798
1799 const uint32_t cPages = cb >> PAGE_SHIFT;
1800 AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cb, VERR_INVALID_PARAMETER);
1801 AssertLogRelReturn(cPages <= INT32_MAX / 2, VERR_NO_MEMORY);
1802
1803 /*
1804 * For the 2nd+ instance, mangle the description string so it's unique.
1805 */
1806 if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */
1807 {
1808 pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance);
1809 if (!pszDesc)
1810 return VERR_NO_MEMORY;
1811 }
1812
1813 /*
1814 * Try reserve and allocate the backing memory first as this is what is
1815 * most likely to fail.
1816 */
1817 int rc = MMR3AdjustFixedReservation(pVM, cPages, pszDesc);
1818 if (RT_SUCCESS(rc))
1819 {
1820 void *pvPages;
1821 PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cPages * sizeof(SUPPAGE));
1822 if (RT_SUCCESS(rc))
1823 rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, NULL /*pR0Ptr*/, paPages);
1824 if (RT_SUCCESS(rc))
1825 {
1826 memset(pvPages, 0, cPages * PAGE_SIZE);
1827
1828 /*
1829 * Create the MMIO2 range record for it.
1830 */
1831 const size_t cbRange = RT_OFFSETOF(PGMMMIO2RANGE, RamRange.aPages[cPages]);
1832 PPGMMMIO2RANGE pNew;
1833 rc = MMR3HyperAllocOnceNoRel(pVM, cbRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1834 AssertLogRelMsgRC(rc, ("cbRamRange=%zu\n", cbRange));
1835 if (RT_SUCCESS(rc))
1836 {
1837 pNew->pDevInsR3 = pDevIns;
1838 pNew->pvR3 = pvPages;
1839 //pNew->pNext = NULL;
1840 //pNew->fMapped = false;
1841 //pNew->fOverlapping = false;
1842 pNew->iRegion = iRegion;
1843 pNew->idSavedState = UINT8_MAX;
1844 pNew->RamRange.pSelfR0 = MMHyperCCToR0(pVM, &pNew->RamRange);
1845 pNew->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pNew->RamRange);
1846 pNew->RamRange.GCPhys = NIL_RTGCPHYS;
1847 pNew->RamRange.GCPhysLast = NIL_RTGCPHYS;
1848 pNew->RamRange.pszDesc = pszDesc;
1849 pNew->RamRange.cb = cb;
1850 pNew->RamRange.fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO2;
1851 pNew->RamRange.pvR3 = pvPages;
1852 //pNew->RamRange.paLSPages = NULL;
1853
1854 uint32_t iPage = cPages;
1855 while (iPage-- > 0)
1856 {
1857 PGM_PAGE_INIT(&pNew->RamRange.aPages[iPage],
1858 paPages[iPage].Phys, NIL_GMM_PAGEID,
1859 PGMPAGETYPE_MMIO2, PGM_PAGE_STATE_ALLOCATED);
1860 }
1861
1862 /* update page count stats */
1863 pVM->pgm.s.cAllPages += cPages;
1864 pVM->pgm.s.cPrivatePages += cPages;
1865
1866 /*
1867 * Link it into the list.
1868 * Since there is no particular order, just push it.
1869 */
1870 pgmLock(pVM);
1871 pNew->pNextR3 = pVM->pgm.s.pMmio2RangesR3;
1872 pVM->pgm.s.pMmio2RangesR3 = pNew;
1873 pgmUnlock(pVM);
1874
1875 *ppv = pvPages;
1876 RTMemTmpFree(paPages);
1877 PGMPhysInvalidatePageMapTLB(pVM);
1878 return VINF_SUCCESS;
1879 }
1880
1881 SUPR3PageFreeEx(pvPages, cPages);
1882 }
1883 RTMemTmpFree(paPages);
1884 MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pszDesc);
1885 }
1886 if (pDevIns->iInstance > 0)
1887 MMR3HeapFree((void *)pszDesc);
1888 return rc;
1889}
1890
1891
1892/**
1893 * Deregisters and frees an MMIO2 region.
1894 *
1895 * Any physical (and virtual) access handlers registered for the region must
1896 * be deregistered before calling this function.
1897 *
1898 * @returns VBox status code.
1899 * @param pVM Pointer to the shared VM structure.
1900 * @param pDevIns The device instance owning the region.
1901 * @param iRegion The region. If it's UINT32_MAX it'll be a wildcard match.
1902 */
1903VMMR3DECL(int) PGMR3PhysMMIO2Deregister(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
1904{
1905 /*
1906 * Validate input.
1907 */
1908 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1909 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1910 AssertReturn(iRegion <= UINT8_MAX || iRegion == UINT32_MAX, VERR_INVALID_PARAMETER);
1911
1912 pgmLock(pVM);
1913 int rc = VINF_SUCCESS;
1914 unsigned cFound = 0;
1915 PPGMMMIO2RANGE pPrev = NULL;
1916 PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3;
1917 while (pCur)
1918 {
1919 if ( pCur->pDevInsR3 == pDevIns
1920 && ( iRegion == UINT32_MAX
1921 || pCur->iRegion == iRegion))
1922 {
1923 cFound++;
1924
1925 /*
1926 * Unmap it if it's mapped.
1927 */
1928 if (pCur->fMapped)
1929 {
1930 int rc2 = PGMR3PhysMMIO2Unmap(pVM, pCur->pDevInsR3, pCur->iRegion, pCur->RamRange.GCPhys);
1931 AssertRC(rc2);
1932 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1933 rc = rc2;
1934 }
1935
1936 /*
1937 * Unlink it
1938 */
1939 PPGMMMIO2RANGE pNext = pCur->pNextR3;
1940 if (pPrev)
1941 pPrev->pNextR3 = pNext;
1942 else
1943 pVM->pgm.s.pMmio2RangesR3 = pNext;
1944 pCur->pNextR3 = NULL;
1945
1946 /*
1947 * Free the memory.
1948 */
1949 int rc2 = SUPR3PageFreeEx(pCur->pvR3, pCur->RamRange.cb >> PAGE_SHIFT);
1950 AssertRC(rc2);
1951 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1952 rc = rc2;
1953
1954 uint32_t const cPages = pCur->RamRange.cb >> PAGE_SHIFT;
1955 rc2 = MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pCur->RamRange.pszDesc);
1956 AssertRC(rc2);
1957 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1958 rc = rc2;
1959
1960 /* we're leaking hyper memory here if done at runtime. */
1961#ifdef VBOX_STRICT
1962 VMSTATE const enmState = VMR3GetState(pVM);
1963 AssertMsg( enmState == VMSTATE_POWERING_OFF
1964 || enmState == VMSTATE_POWERING_OFF_LS
1965 || enmState == VMSTATE_OFF
1966 || enmState == VMSTATE_OFF_LS
1967 || enmState == VMSTATE_DESTROYING
1968 || enmState == VMSTATE_TERMINATED
1969 || enmState == VMSTATE_CREATING
1970 , ("%s\n", VMR3GetStateName(enmState)));
1971#endif
1972 /*rc = MMHyperFree(pVM, pCur);
1973 AssertRCReturn(rc, rc); - not safe, see the alloc call. */
1974
1975
1976 /* update page count stats */
1977 pVM->pgm.s.cAllPages -= cPages;
1978 pVM->pgm.s.cPrivatePages -= cPages;
1979
1980 /* next */
1981 pCur = pNext;
1982 }
1983 else
1984 {
1985 pPrev = pCur;
1986 pCur = pCur->pNextR3;
1987 }
1988 }
1989 PGMPhysInvalidatePageMapTLB(pVM);
1990 pgmUnlock(pVM);
1991 return !cFound && iRegion != UINT32_MAX ? VERR_NOT_FOUND : rc;
1992}
1993
1994
1995/**
1996 * Maps a MMIO2 region.
1997 *
1998 * This is done when a guest / the bios / state loading changes the
1999 * PCI config. The replacing of base memory has the same restrictions
2000 * as during registration, of course.
2001 *
2002 * @returns VBox status code.
2003 *
2004 * @param pVM Pointer to the shared VM structure.
2005 * @param pDevIns The
2006 */
2007VMMR3DECL(int) PGMR3PhysMMIO2Map(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
2008{
2009 /*
2010 * Validate input
2011 */
2012 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2013 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2014 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2015 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
2016 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
2017 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2018
2019 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2020 AssertReturn(pCur, VERR_NOT_FOUND);
2021 AssertReturn(!pCur->fMapped, VERR_WRONG_ORDER);
2022 Assert(pCur->RamRange.GCPhys == NIL_RTGCPHYS);
2023 Assert(pCur->RamRange.GCPhysLast == NIL_RTGCPHYS);
2024
2025 const RTGCPHYS GCPhysLast = GCPhys + pCur->RamRange.cb - 1;
2026 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
2027
2028 /*
2029 * Find our location in the ram range list, checking for
2030 * restriction we don't bother implementing yet (partially overlapping).
2031 */
2032 bool fRamExists = false;
2033 PPGMRAMRANGE pRamPrev = NULL;
2034 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
2035 while (pRam && GCPhysLast >= pRam->GCPhys)
2036 {
2037 if ( GCPhys <= pRam->GCPhysLast
2038 && GCPhysLast >= pRam->GCPhys)
2039 {
2040 /* completely within? */
2041 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
2042 && GCPhysLast <= pRam->GCPhysLast,
2043 ("%RGp-%RGp (MMIO2/%s) falls partly outside %RGp-%RGp (%s)\n",
2044 GCPhys, GCPhysLast, pCur->RamRange.pszDesc,
2045 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2046 VERR_PGM_RAM_CONFLICT);
2047 fRamExists = true;
2048 break;
2049 }
2050
2051 /* next */
2052 pRamPrev = pRam;
2053 pRam = pRam->pNextR3;
2054 }
2055 if (fRamExists)
2056 {
2057 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2058 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2059 while (cPagesLeft-- > 0)
2060 {
2061 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
2062 ("%RGp isn't a RAM page (%d) - mapping %RGp-%RGp (MMIO2/%s).\n",
2063 GCPhys, PGM_PAGE_GET_TYPE(pPage), GCPhys, GCPhysLast, pCur->RamRange.pszDesc),
2064 VERR_PGM_RAM_CONFLICT);
2065 pPage++;
2066 }
2067 }
2068 Log(("PGMR3PhysMMIO2Map: %RGp-%RGp fRamExists=%RTbool %s\n",
2069 GCPhys, GCPhysLast, fRamExists, pCur->RamRange.pszDesc));
2070
2071 /*
2072 * Make the changes.
2073 */
2074 pgmLock(pVM);
2075
2076 pCur->RamRange.GCPhys = GCPhys;
2077 pCur->RamRange.GCPhysLast = GCPhysLast;
2078 pCur->fMapped = true;
2079 pCur->fOverlapping = fRamExists;
2080
2081 if (fRamExists)
2082 {
2083/** @todo use pgmR3PhysFreePageRange here. */
2084 uint32_t cPendingPages = 0;
2085 PGMMFREEPAGESREQ pReq;
2086 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2087 AssertLogRelRCReturn(rc, rc);
2088
2089 /* replace the pages, freeing all present RAM pages. */
2090 PPGMPAGE pPageSrc = &pCur->RamRange.aPages[0];
2091 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2092 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2093 while (cPagesLeft-- > 0)
2094 {
2095 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
2096 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
2097
2098 RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc);
2099 PGM_PAGE_SET_HCPHYS(pPageDst, HCPhys);
2100 PGM_PAGE_SET_TYPE(pPageDst, PGMPAGETYPE_MMIO2);
2101 PGM_PAGE_SET_STATE(pPageDst, PGM_PAGE_STATE_ALLOCATED);
2102
2103 pVM->pgm.s.cZeroPages--;
2104 GCPhys += PAGE_SIZE;
2105 pPageSrc++;
2106 pPageDst++;
2107 }
2108
2109 /* Flush physical page map TLB. */
2110 PGMPhysInvalidatePageMapTLB(pVM);
2111
2112 if (cPendingPages)
2113 {
2114 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2115 AssertLogRelRCReturn(rc, rc);
2116 }
2117 GMMR3FreePagesCleanup(pReq);
2118 pgmUnlock(pVM);
2119 }
2120 else
2121 {
2122 RTGCPHYS cb = pCur->RamRange.cb;
2123
2124 /* link in the ram range */
2125 pgmR3PhysLinkRamRange(pVM, &pCur->RamRange, pRamPrev);
2126 pgmUnlock(pVM);
2127
2128 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_MMIO2);
2129 }
2130
2131 PGMPhysInvalidatePageMapTLB(pVM);
2132 return VINF_SUCCESS;
2133}
2134
2135
2136/**
2137 * Unmaps a MMIO2 region.
2138 *
2139 * This is done when a guest / the bios / state loading changes the
2140 * PCI config. The replacing of base memory has the same restrictions
2141 * as during registration, of course.
2142 */
2143VMMR3DECL(int) PGMR3PhysMMIO2Unmap(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
2144{
2145 /*
2146 * Validate input
2147 */
2148 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2149 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2150 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2151 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
2152 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
2153 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2154
2155 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2156 AssertReturn(pCur, VERR_NOT_FOUND);
2157 AssertReturn(pCur->fMapped, VERR_WRONG_ORDER);
2158 AssertReturn(pCur->RamRange.GCPhys == GCPhys, VERR_INVALID_PARAMETER);
2159 Assert(pCur->RamRange.GCPhysLast != NIL_RTGCPHYS);
2160
2161 Log(("PGMR3PhysMMIO2Unmap: %RGp-%RGp %s\n",
2162 pCur->RamRange.GCPhys, pCur->RamRange.GCPhysLast, pCur->RamRange.pszDesc));
2163
2164 /*
2165 * Unmap it.
2166 */
2167 pgmLock(pVM);
2168
2169 RTGCPHYS GCPhysRangeREM;
2170 RTGCPHYS cbRangeREM;
2171 bool fInformREM;
2172 if (pCur->fOverlapping)
2173 {
2174 /* Restore the RAM pages we've replaced. */
2175 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
2176 while (pRam->GCPhys > pCur->RamRange.GCPhysLast)
2177 pRam = pRam->pNextR3;
2178
2179 RTHCPHYS const HCPhysZeroPg = pVM->pgm.s.HCPhysZeroPg;
2180 Assert(HCPhysZeroPg != 0 && HCPhysZeroPg != NIL_RTHCPHYS);
2181 PPGMPAGE pPageDst = &pRam->aPages[(pCur->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2182 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2183 while (cPagesLeft-- > 0)
2184 {
2185 PGM_PAGE_SET_HCPHYS(pPageDst, HCPhysZeroPg);
2186 PGM_PAGE_SET_TYPE(pPageDst, PGMPAGETYPE_RAM);
2187 PGM_PAGE_SET_STATE(pPageDst, PGM_PAGE_STATE_ZERO);
2188 PGM_PAGE_SET_PAGEID(pPageDst, NIL_GMM_PAGEID);
2189 PGM_PAGE_SET_PDE_TYPE(pPageDst, PGM_PAGE_PDE_TYPE_DONTCARE);
2190
2191 pVM->pgm.s.cZeroPages++;
2192 pPageDst++;
2193 }
2194
2195 /* Flush physical page map TLB. */
2196 PGMPhysInvalidatePageMapTLB(pVM);
2197
2198 GCPhysRangeREM = NIL_RTGCPHYS; /* shuts up gcc */
2199 cbRangeREM = RTGCPHYS_MAX; /* ditto */
2200 fInformREM = false;
2201 }
2202 else
2203 {
2204 GCPhysRangeREM = pCur->RamRange.GCPhys;
2205 cbRangeREM = pCur->RamRange.cb;
2206 fInformREM = true;
2207
2208 pgmR3PhysUnlinkRamRange(pVM, &pCur->RamRange);
2209 }
2210
2211 pCur->RamRange.GCPhys = NIL_RTGCPHYS;
2212 pCur->RamRange.GCPhysLast = NIL_RTGCPHYS;
2213 pCur->fOverlapping = false;
2214 pCur->fMapped = false;
2215
2216 PGMPhysInvalidatePageMapTLB(pVM);
2217 pgmUnlock(pVM);
2218
2219 if (fInformREM)
2220 REMR3NotifyPhysRamDeregister(pVM, GCPhysRangeREM, cbRangeREM);
2221
2222 return VINF_SUCCESS;
2223}
2224
2225
2226/**
2227 * Checks if the given address is an MMIO2 base address or not.
2228 *
2229 * @returns true/false accordingly.
2230 * @param pVM Pointer to the shared VM structure.
2231 * @param pDevIns The owner of the memory, optional.
2232 * @param GCPhys The address to check.
2233 */
2234VMMR3DECL(bool) PGMR3PhysMMIO2IsBase(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys)
2235{
2236 /*
2237 * Validate input
2238 */
2239 VM_ASSERT_EMT_RETURN(pVM, false);
2240 AssertPtrReturn(pDevIns, false);
2241 AssertReturn(GCPhys != NIL_RTGCPHYS, false);
2242 AssertReturn(GCPhys != 0, false);
2243 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), false);
2244
2245 /*
2246 * Search the list.
2247 */
2248 pgmLock(pVM);
2249 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2250 if (pCur->RamRange.GCPhys == GCPhys)
2251 {
2252 Assert(pCur->fMapped);
2253 pgmUnlock(pVM);
2254 return true;
2255 }
2256 pgmUnlock(pVM);
2257 return false;
2258}
2259
2260
2261/**
2262 * Gets the HC physical address of a page in the MMIO2 region.
2263 *
2264 * This is API is intended for MMHyper and shouldn't be called
2265 * by anyone else...
2266 *
2267 * @returns VBox status code.
2268 * @param pVM Pointer to the shared VM structure.
2269 * @param pDevIns The owner of the memory, optional.
2270 * @param iRegion The region.
2271 * @param off The page expressed an offset into the MMIO2 region.
2272 * @param pHCPhys Where to store the result.
2273 */
2274VMMR3DECL(int) PGMR3PhysMMIO2GetHCPhys(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, PRTHCPHYS pHCPhys)
2275{
2276 /*
2277 * Validate input
2278 */
2279 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2280 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2281 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2282
2283 pgmLock(pVM);
2284 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2285 AssertReturn(pCur, VERR_NOT_FOUND);
2286 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2287
2288 PCPGMPAGE pPage = &pCur->RamRange.aPages[off >> PAGE_SHIFT];
2289 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage);
2290 pgmUnlock(pVM);
2291 return VINF_SUCCESS;
2292}
2293
2294
2295/**
2296 * Maps a portion of an MMIO2 region into kernel space (host).
2297 *
2298 * The kernel mapping will become invalid when the MMIO2 memory is deregistered
2299 * or the VM is terminated.
2300 *
2301 * @return VBox status code.
2302 *
2303 * @param pVM Pointer to the shared VM structure.
2304 * @param pDevIns The device owning the MMIO2 memory.
2305 * @param iRegion The region.
2306 * @param off The offset into the region. Must be page aligned.
2307 * @param cb The number of bytes to map. Must be page aligned.
2308 * @param pszDesc Mapping description.
2309 * @param pR0Ptr Where to store the R0 address.
2310 */
2311VMMR3DECL(int) PGMR3PhysMMIO2MapKernel(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, RTGCPHYS cb,
2312 const char *pszDesc, PRTR0PTR pR0Ptr)
2313{
2314 /*
2315 * Validate input.
2316 */
2317 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2318 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2319 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2320
2321 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2322 AssertReturn(pCur, VERR_NOT_FOUND);
2323 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2324 AssertReturn(cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2325 AssertReturn(off + cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2326
2327 /*
2328 * Pass the request on to the support library/driver.
2329 */
2330 int rc = SUPR3PageMapKernel(pCur->pvR3, off, cb, 0, pR0Ptr);
2331
2332 return rc;
2333}
2334
2335
2336/**
2337 * Registers a ROM image.
2338 *
2339 * Shadowed ROM images requires double the amount of backing memory, so,
2340 * don't use that unless you have to. Shadowing of ROM images is process
2341 * where we can select where the reads go and where the writes go. On real
2342 * hardware the chipset provides means to configure this. We provide
2343 * PGMR3PhysProtectROM() for this purpose.
2344 *
2345 * A read-only copy of the ROM image will always be kept around while we
2346 * will allocate RAM pages for the changes on demand (unless all memory
2347 * is configured to be preallocated).
2348 *
2349 * @returns VBox status.
2350 * @param pVM VM Handle.
2351 * @param pDevIns The device instance owning the ROM.
2352 * @param GCPhys First physical address in the range.
2353 * Must be page aligned!
2354 * @param cbRange The size of the range (in bytes).
2355 * Must be page aligned!
2356 * @param pvBinary Pointer to the binary data backing the ROM image.
2357 * This must be exactly \a cbRange in size.
2358 * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
2359 * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
2360 * @param pszDesc Pointer to description string. This must not be freed.
2361 *
2362 * @remark There is no way to remove the rom, automatically on device cleanup or
2363 * manually from the device yet. This isn't difficult in any way, it's
2364 * just not something we expect to be necessary for a while.
2365 */
2366VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
2367 const void *pvBinary, uint32_t fFlags, const char *pszDesc)
2368{
2369 Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p fFlags=%#x pszDesc=%s\n",
2370 pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, fFlags, pszDesc));
2371
2372 /*
2373 * Validate input.
2374 */
2375 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2376 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
2377 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
2378 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2379 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
2380 AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER);
2381 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
2382 AssertReturn(!(fFlags & ~(PGMPHYS_ROM_FLAGS_SHADOWED | PGMPHYS_ROM_FLAGS_PERMANENT_BINARY)), VERR_INVALID_PARAMETER);
2383 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE);
2384
2385 const uint32_t cPages = cb >> PAGE_SHIFT;
2386
2387 /*
2388 * Find the ROM location in the ROM list first.
2389 */
2390 PPGMROMRANGE pRomPrev = NULL;
2391 PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
2392 while (pRom && GCPhysLast >= pRom->GCPhys)
2393 {
2394 if ( GCPhys <= pRom->GCPhysLast
2395 && GCPhysLast >= pRom->GCPhys)
2396 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
2397 GCPhys, GCPhysLast, pszDesc,
2398 pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc),
2399 VERR_PGM_RAM_CONFLICT);
2400 /* next */
2401 pRomPrev = pRom;
2402 pRom = pRom->pNextR3;
2403 }
2404
2405 /*
2406 * Find the RAM location and check for conflicts.
2407 *
2408 * Conflict detection is a bit different than for RAM
2409 * registration since a ROM can be located within a RAM
2410 * range. So, what we have to check for is other memory
2411 * types (other than RAM that is) and that we don't span
2412 * more than one RAM range (layz).
2413 */
2414 bool fRamExists = false;
2415 PPGMRAMRANGE pRamPrev = NULL;
2416 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
2417 while (pRam && GCPhysLast >= pRam->GCPhys)
2418 {
2419 if ( GCPhys <= pRam->GCPhysLast
2420 && GCPhysLast >= pRam->GCPhys)
2421 {
2422 /* completely within? */
2423 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
2424 && GCPhysLast <= pRam->GCPhysLast,
2425 ("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n",
2426 GCPhys, GCPhysLast, pszDesc,
2427 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2428 VERR_PGM_RAM_CONFLICT);
2429 fRamExists = true;
2430 break;
2431 }
2432
2433 /* next */
2434 pRamPrev = pRam;
2435 pRam = pRam->pNextR3;
2436 }
2437 if (fRamExists)
2438 {
2439 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2440 uint32_t cPagesLeft = cPages;
2441 while (cPagesLeft-- > 0)
2442 {
2443 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
2444 ("%RGp (%R[pgmpage]) isn't a RAM page - registering %RGp-%RGp (%s).\n",
2445 pRam->GCPhys + ((RTGCPHYS)(uintptr_t)(pPage - &pRam->aPages[0]) << PAGE_SHIFT),
2446 pPage, GCPhys, GCPhysLast, pszDesc), VERR_PGM_RAM_CONFLICT);
2447 Assert(PGM_PAGE_IS_ZERO(pPage));
2448 pPage++;
2449 }
2450 }
2451
2452 /*
2453 * Update the base memory reservation if necessary.
2454 */
2455 uint32_t cExtraBaseCost = fRamExists ? 0 : cPages;
2456 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2457 cExtraBaseCost += cPages;
2458 if (cExtraBaseCost)
2459 {
2460 int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost);
2461 if (RT_FAILURE(rc))
2462 return rc;
2463 }
2464
2465 /*
2466 * Allocate memory for the virgin copy of the RAM.
2467 */
2468 PGMMALLOCATEPAGESREQ pReq;
2469 int rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cPages, GMMACCOUNT_BASE);
2470 AssertRCReturn(rc, rc);
2471
2472 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2473 {
2474 pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << PAGE_SHIFT);
2475 pReq->aPages[iPage].idPage = NIL_GMM_PAGEID;
2476 pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID;
2477 }
2478
2479 pgmLock(pVM);
2480 rc = GMMR3AllocatePagesPerform(pVM, pReq);
2481 pgmUnlock(pVM);
2482 if (RT_FAILURE(rc))
2483 {
2484 GMMR3AllocatePagesCleanup(pReq);
2485 return rc;
2486 }
2487
2488 /*
2489 * Allocate the new ROM range and RAM range (if necessary).
2490 */
2491 PPGMROMRANGE pRomNew;
2492 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMROMRANGE, aPages[cPages]), 0, MM_TAG_PGM_PHYS, (void **)&pRomNew);
2493 if (RT_SUCCESS(rc))
2494 {
2495 PPGMRAMRANGE pRamNew = NULL;
2496 if (!fRamExists)
2497 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), sizeof(PGMPAGE), MM_TAG_PGM_PHYS, (void **)&pRamNew);
2498 if (RT_SUCCESS(rc))
2499 {
2500 pgmLock(pVM);
2501
2502 /*
2503 * Initialize and insert the RAM range (if required).
2504 */
2505 PPGMROMPAGE pRomPage = &pRomNew->aPages[0];
2506 if (!fRamExists)
2507 {
2508 pRamNew->pSelfR0 = MMHyperCCToR0(pVM, pRamNew);
2509 pRamNew->pSelfRC = MMHyperCCToRC(pVM, pRamNew);
2510 pRamNew->GCPhys = GCPhys;
2511 pRamNew->GCPhysLast = GCPhysLast;
2512 pRamNew->cb = cb;
2513 pRamNew->pszDesc = pszDesc;
2514 pRamNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_ROM;
2515 pRamNew->pvR3 = NULL;
2516 pRamNew->paLSPages = NULL;
2517
2518 PPGMPAGE pPage = &pRamNew->aPages[0];
2519 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
2520 {
2521 PGM_PAGE_INIT(pPage,
2522 pReq->aPages[iPage].HCPhysGCPhys,
2523 pReq->aPages[iPage].idPage,
2524 PGMPAGETYPE_ROM,
2525 PGM_PAGE_STATE_ALLOCATED);
2526
2527 pRomPage->Virgin = *pPage;
2528 }
2529
2530 pVM->pgm.s.cAllPages += cPages;
2531 pgmR3PhysLinkRamRange(pVM, pRamNew, pRamPrev);
2532 }
2533 else
2534 {
2535 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2536 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
2537 {
2538 PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_ROM);
2539 PGM_PAGE_SET_HCPHYS(pPage, pReq->aPages[iPage].HCPhysGCPhys);
2540 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
2541 PGM_PAGE_SET_PAGEID(pPage, pReq->aPages[iPage].idPage);
2542
2543 pRomPage->Virgin = *pPage;
2544 }
2545
2546 pRamNew = pRam;
2547
2548 pVM->pgm.s.cZeroPages -= cPages;
2549 }
2550 pVM->pgm.s.cPrivatePages += cPages;
2551
2552 /* Flush physical page map TLB. */
2553 PGMPhysInvalidatePageMapTLB(pVM);
2554
2555 pgmUnlock(pVM);
2556
2557
2558 /*
2559 * !HACK ALERT! REM + (Shadowed) ROM ==> mess.
2560 *
2561 * If it's shadowed we'll register the handler after the ROM notification
2562 * so we get the access handler callbacks that we should. If it isn't
2563 * shadowed we'll do it the other way around to make REM use the built-in
2564 * ROM behavior and not the handler behavior (which is to route all access
2565 * to PGM atm).
2566 */
2567 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2568 {
2569 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, true /* fShadowed */);
2570 rc = PGMR3HandlerPhysicalRegister(pVM,
2571 fFlags & PGMPHYS_ROM_FLAGS_SHADOWED
2572 ? PGMPHYSHANDLERTYPE_PHYSICAL_ALL
2573 : PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
2574 GCPhys, GCPhysLast,
2575 pgmR3PhysRomWriteHandler, pRomNew,
2576 NULL, "pgmPhysRomWriteHandler", MMHyperCCToR0(pVM, pRomNew),
2577 NULL, "pgmPhysRomWriteHandler", MMHyperCCToRC(pVM, pRomNew), pszDesc);
2578 }
2579 else
2580 {
2581 rc = PGMR3HandlerPhysicalRegister(pVM,
2582 fFlags & PGMPHYS_ROM_FLAGS_SHADOWED
2583 ? PGMPHYSHANDLERTYPE_PHYSICAL_ALL
2584 : PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
2585 GCPhys, GCPhysLast,
2586 pgmR3PhysRomWriteHandler, pRomNew,
2587 NULL, "pgmPhysRomWriteHandler", MMHyperCCToR0(pVM, pRomNew),
2588 NULL, "pgmPhysRomWriteHandler", MMHyperCCToRC(pVM, pRomNew), pszDesc);
2589 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, false /* fShadowed */);
2590 }
2591 if (RT_SUCCESS(rc))
2592 {
2593 pgmLock(pVM);
2594
2595 /*
2596 * Copy the image over to the virgin pages.
2597 * This must be done after linking in the RAM range.
2598 */
2599 PPGMPAGE pRamPage = &pRamNew->aPages[(GCPhys - pRamNew->GCPhys) >> PAGE_SHIFT];
2600 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++)
2601 {
2602 void *pvDstPage;
2603 rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << PAGE_SHIFT), &pvDstPage);
2604 if (RT_FAILURE(rc))
2605 {
2606 VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys);
2607 break;
2608 }
2609 memcpy(pvDstPage, (const uint8_t *)pvBinary + (iPage << PAGE_SHIFT), PAGE_SIZE);
2610 }
2611 if (RT_SUCCESS(rc))
2612 {
2613 /*
2614 * Initialize the ROM range.
2615 * Note that the Virgin member of the pages has already been initialized above.
2616 */
2617 pRomNew->GCPhys = GCPhys;
2618 pRomNew->GCPhysLast = GCPhysLast;
2619 pRomNew->cb = cb;
2620 pRomNew->fFlags = fFlags;
2621 pRomNew->idSavedState = UINT8_MAX;
2622 pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY ? pvBinary : NULL;
2623 pRomNew->pszDesc = pszDesc;
2624
2625 for (unsigned iPage = 0; iPage < cPages; iPage++)
2626 {
2627 PPGMROMPAGE pPage = &pRomNew->aPages[iPage];
2628 pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE;
2629 PGM_PAGE_INIT_ZERO(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW);
2630 }
2631
2632 /* update the page count stats for the shadow pages. */
2633 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2634 {
2635 pVM->pgm.s.cZeroPages += cPages;
2636 pVM->pgm.s.cAllPages += cPages;
2637 }
2638
2639 /*
2640 * Insert the ROM range, tell REM and return successfully.
2641 */
2642 pRomNew->pNextR3 = pRom;
2643 pRomNew->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
2644 pRomNew->pNextRC = pRom ? MMHyperCCToRC(pVM, pRom) : NIL_RTRCPTR;
2645
2646 if (pRomPrev)
2647 {
2648 pRomPrev->pNextR3 = pRomNew;
2649 pRomPrev->pNextR0 = MMHyperCCToR0(pVM, pRomNew);
2650 pRomPrev->pNextRC = MMHyperCCToRC(pVM, pRomNew);
2651 }
2652 else
2653 {
2654 pVM->pgm.s.pRomRangesR3 = pRomNew;
2655 pVM->pgm.s.pRomRangesR0 = MMHyperCCToR0(pVM, pRomNew);
2656 pVM->pgm.s.pRomRangesRC = MMHyperCCToRC(pVM, pRomNew);
2657 }
2658
2659 PGMPhysInvalidatePageMapTLB(pVM);
2660 GMMR3AllocatePagesCleanup(pReq);
2661 pgmUnlock(pVM);
2662 return VINF_SUCCESS;
2663 }
2664
2665 /* bail out */
2666
2667 pgmUnlock(pVM);
2668 int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys);
2669 AssertRC(rc2);
2670 pgmLock(pVM);
2671 }
2672
2673 if (!fRamExists)
2674 {
2675 pgmR3PhysUnlinkRamRange2(pVM, pRamNew, pRamPrev);
2676 MMHyperFree(pVM, pRamNew);
2677 }
2678 }
2679 MMHyperFree(pVM, pRomNew);
2680 }
2681
2682 /** @todo Purge the mapping cache or something... */
2683 GMMR3FreeAllocatedPages(pVM, pReq);
2684 GMMR3AllocatePagesCleanup(pReq);
2685 pgmUnlock(pVM);
2686 return rc;
2687}
2688
2689
2690/**
2691 * \#PF Handler callback for ROM write accesses.
2692 *
2693 * @returns VINF_SUCCESS if the handler have carried out the operation.
2694 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
2695 * @param pVM VM Handle.
2696 * @param GCPhys The physical address the guest is writing to.
2697 * @param pvPhys The HC mapping of that address.
2698 * @param pvBuf What the guest is reading/writing.
2699 * @param cbBuf How much it's reading/writing.
2700 * @param enmAccessType The access type.
2701 * @param pvUser User argument.
2702 */
2703static DECLCALLBACK(int) pgmR3PhysRomWriteHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser)
2704{
2705 PPGMROMRANGE pRom = (PPGMROMRANGE)pvUser;
2706 const uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
2707 Assert(iPage < (pRom->cb >> PAGE_SHIFT));
2708 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
2709 Log5(("pgmR3PhysRomWriteHandler: %d %c %#08RGp %#04zx\n", pRomPage->enmProt, enmAccessType == PGMACCESSTYPE_READ ? 'R' : 'W', GCPhys, cbBuf));
2710
2711 if (enmAccessType == PGMACCESSTYPE_READ)
2712 {
2713 switch (pRomPage->enmProt)
2714 {
2715 /*
2716 * Take the default action.
2717 */
2718 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
2719 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
2720 case PGMROMPROT_READ_ROM_WRITE_RAM:
2721 case PGMROMPROT_READ_RAM_WRITE_RAM:
2722 return VINF_PGM_HANDLER_DO_DEFAULT;
2723
2724 default:
2725 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
2726 pRom->aPages[iPage].enmProt, iPage, GCPhys),
2727 VERR_INTERNAL_ERROR);
2728 }
2729 }
2730 else
2731 {
2732 Assert(enmAccessType == PGMACCESSTYPE_WRITE);
2733 switch (pRomPage->enmProt)
2734 {
2735 /*
2736 * Ignore writes.
2737 */
2738 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
2739 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
2740 return VINF_SUCCESS;
2741
2742 /*
2743 * Write to the ram page.
2744 */
2745 case PGMROMPROT_READ_ROM_WRITE_RAM:
2746 case PGMROMPROT_READ_RAM_WRITE_RAM: /* yes this will get here too, it's *way* simpler that way. */
2747 {
2748 /* This should be impossible now, pvPhys doesn't work cross page anylonger. */
2749 Assert(((GCPhys - pRom->GCPhys + cbBuf - 1) >> PAGE_SHIFT) == iPage);
2750
2751 /*
2752 * Take the lock, do lazy allocation, map the page and copy the data.
2753 *
2754 * Note that we have to bypass the mapping TLB since it works on
2755 * guest physical addresses and entering the shadow page would
2756 * kind of screw things up...
2757 */
2758 int rc = pgmLock(pVM);
2759 AssertRC(rc);
2760
2761 PPGMPAGE pShadowPage = &pRomPage->Shadow;
2762 if (!PGMROMPROT_IS_ROM(pRomPage->enmProt))
2763 {
2764 pShadowPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
2765 AssertLogRelReturn(pShadowPage, VERR_INTERNAL_ERROR);
2766 }
2767
2768 void *pvDstPage;
2769 rc = pgmPhysPageMakeWritableAndMap(pVM, pShadowPage, GCPhys & X86_PTE_PG_MASK, &pvDstPage);
2770 if (RT_SUCCESS(rc))
2771 {
2772 memcpy((uint8_t *)pvDstPage + (GCPhys & PAGE_OFFSET_MASK), pvBuf, cbBuf);
2773 pRomPage->LiveSave.fWrittenTo = true;
2774 }
2775
2776 pgmUnlock(pVM);
2777 return rc;
2778 }
2779
2780 default:
2781 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
2782 pRom->aPages[iPage].enmProt, iPage, GCPhys),
2783 VERR_INTERNAL_ERROR);
2784 }
2785 }
2786}
2787
2788
2789/**
2790 * Called by PGMR3Reset to reset the shadow, switch to the virgin,
2791 * and verify that the virgin part is untouched.
2792 *
2793 * This is done after the normal memory has been cleared.
2794 *
2795 * ASSUMES that the caller owns the PGM lock.
2796 *
2797 * @param pVM The VM handle.
2798 */
2799int pgmR3PhysRomReset(PVM pVM)
2800{
2801 Assert(PGMIsLockOwner(pVM));
2802 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
2803 {
2804 const uint32_t cPages = pRom->cb >> PAGE_SHIFT;
2805
2806 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2807 {
2808 /*
2809 * Reset the physical handler.
2810 */
2811 int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE);
2812 AssertRCReturn(rc, rc);
2813
2814 /*
2815 * What we do with the shadow pages depends on the memory
2816 * preallocation option. If not enabled, we'll just throw
2817 * out all the dirty pages and replace them by the zero page.
2818 */
2819 if (!pVM->pgm.s.fRamPreAlloc)
2820 {
2821 /* Free the dirty pages. */
2822 uint32_t cPendingPages = 0;
2823 PGMMFREEPAGESREQ pReq;
2824 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2825 AssertRCReturn(rc, rc);
2826
2827 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2828 if ( !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow)
2829 && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow))
2830 {
2831 Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) == PGM_PAGE_STATE_ALLOCATED);
2832 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, &pRom->aPages[iPage].Shadow, pRom->GCPhys + (iPage << PAGE_SHIFT));
2833 AssertLogRelRCReturn(rc, rc);
2834 }
2835
2836 if (cPendingPages)
2837 {
2838 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2839 AssertLogRelRCReturn(rc, rc);
2840 }
2841 GMMR3FreePagesCleanup(pReq);
2842 }
2843 else
2844 {
2845 /* clear all the shadow pages. */
2846 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2847 {
2848 Assert(!PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow) && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow));
2849 void *pvDstPage;
2850 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
2851 rc = pgmPhysPageMakeWritableAndMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pvDstPage);
2852 if (RT_FAILURE(rc))
2853 break;
2854 ASMMemZeroPage(pvDstPage);
2855 }
2856 AssertRCReturn(rc, rc);
2857 }
2858 }
2859
2860#ifdef VBOX_STRICT
2861 /*
2862 * Verify that the virgin page is unchanged if possible.
2863 */
2864 if (pRom->pvOriginal)
2865 {
2866 uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal;
2867 for (uint32_t iPage = 0; iPage < cPages; iPage++, pbSrcPage += PAGE_SIZE)
2868 {
2869 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
2870 void const *pvDstPage;
2871 int rc = pgmPhysPageMapReadOnly(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPage);
2872 if (RT_FAILURE(rc))
2873 break;
2874 if (memcmp(pvDstPage, pbSrcPage, PAGE_SIZE))
2875 LogRel(("pgmR3PhysRomReset: %RGp rom page changed (%s) - loaded saved state?\n",
2876 GCPhys, pRom->pszDesc));
2877 }
2878 }
2879#endif
2880 }
2881
2882 return VINF_SUCCESS;
2883}
2884
2885
2886/**
2887 * Change the shadowing of a range of ROM pages.
2888 *
2889 * This is intended for implementing chipset specific memory registers
2890 * and will not be very strict about the input. It will silently ignore
2891 * any pages that are not the part of a shadowed ROM.
2892 *
2893 * @returns VBox status code.
2894 * @retval VINF_PGM_SYNC_CR3
2895 *
2896 * @param pVM Pointer to the shared VM structure.
2897 * @param GCPhys Where to start. Page aligned.
2898 * @param cb How much to change. Page aligned.
2899 * @param enmProt The new ROM protection.
2900 */
2901VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt)
2902{
2903 /*
2904 * Check input
2905 */
2906 if (!cb)
2907 return VINF_SUCCESS;
2908 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2909 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2910 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2911 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
2912 AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER);
2913
2914 /*
2915 * Process the request.
2916 */
2917 pgmLock(pVM);
2918 int rc = VINF_SUCCESS;
2919 bool fFlushTLB = false;
2920 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
2921 {
2922 if ( GCPhys <= pRom->GCPhysLast
2923 && GCPhysLast >= pRom->GCPhys
2924 && (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
2925 {
2926 /*
2927 * Iterate the relevant pages and make necessary the changes.
2928 */
2929 bool fChanges = false;
2930 uint32_t const cPages = pRom->GCPhysLast <= GCPhysLast
2931 ? pRom->cb >> PAGE_SHIFT
2932 : (GCPhysLast - pRom->GCPhys + 1) >> PAGE_SHIFT;
2933 for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
2934 iPage < cPages;
2935 iPage++)
2936 {
2937 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
2938 if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt))
2939 {
2940 fChanges = true;
2941
2942 /* flush references to the page. */
2943 PPGMPAGE pRamPage = pgmPhysGetPage(&pVM->pgm.s, pRom->GCPhys + (iPage << PAGE_SHIFT));
2944 int rc2 = pgmPoolTrackFlushGCPhys(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT), pRamPage, &fFlushTLB);
2945 if (rc2 != VINF_SUCCESS && (rc == VINF_SUCCESS || RT_FAILURE(rc2)))
2946 rc = rc2;
2947
2948 PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
2949 PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2950
2951 *pOld = *pRamPage;
2952 *pRamPage = *pNew;
2953 /** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */
2954 }
2955 pRomPage->enmProt = enmProt;
2956 }
2957
2958 /*
2959 * Reset the access handler if we made changes, no need
2960 * to optimize this.
2961 */
2962 if (fChanges)
2963 {
2964 int rc2 = PGMHandlerPhysicalReset(pVM, pRom->GCPhys);
2965 if (RT_FAILURE(rc2))
2966 {
2967 pgmUnlock(pVM);
2968 AssertRC(rc);
2969 return rc2;
2970 }
2971 }
2972
2973 /* Advance - cb isn't updated. */
2974 GCPhys = pRom->GCPhys + (cPages << PAGE_SHIFT);
2975 }
2976 }
2977 pgmUnlock(pVM);
2978 if (fFlushTLB)
2979 PGM_INVL_ALL_VCPU_TLBS(pVM);
2980
2981 return rc;
2982}
2983
2984
2985/**
2986 * Sets the Address Gate 20 state.
2987 *
2988 * @param pVCpu The VCPU to operate on.
2989 * @param fEnable True if the gate should be enabled.
2990 * False if the gate should be disabled.
2991 */
2992VMMDECL(void) PGMR3PhysSetA20(PVMCPU pVCpu, bool fEnable)
2993{
2994 LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVCpu->pgm.s.fA20Enabled));
2995 if (pVCpu->pgm.s.fA20Enabled != fEnable)
2996 {
2997 pVCpu->pgm.s.fA20Enabled = fEnable;
2998 pVCpu->pgm.s.GCPhysA20Mask = ~(RTGCPHYS)(!fEnable << 20);
2999 REMR3A20Set(pVCpu->pVMR3, pVCpu, fEnable);
3000 /** @todo we're not handling this correctly for VT-x / AMD-V. See #2911 */
3001 }
3002}
3003
3004
3005/**
3006 * Tree enumeration callback for dealing with age rollover.
3007 * It will perform a simple compression of the current age.
3008 */
3009static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
3010{
3011 Assert(PGMIsLockOwner((PVM)pvUser));
3012 /* Age compression - ASSUMES iNow == 4. */
3013 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
3014 if (pChunk->iAge >= UINT32_C(0xffffff00))
3015 pChunk->iAge = 3;
3016 else if (pChunk->iAge >= UINT32_C(0xfffff000))
3017 pChunk->iAge = 2;
3018 else if (pChunk->iAge)
3019 pChunk->iAge = 1;
3020 else /* iAge = 0 */
3021 pChunk->iAge = 4;
3022
3023 /* reinsert */
3024 PVM pVM = (PVM)pvUser;
3025 RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
3026 pChunk->AgeCore.Key = pChunk->iAge;
3027 RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
3028 return 0;
3029}
3030
3031
3032/**
3033 * Tree enumeration callback that updates the chunks that have
3034 * been used since the last
3035 */
3036static DECLCALLBACK(int) pgmR3PhysChunkAgeingCallback(PAVLU32NODECORE pNode, void *pvUser)
3037{
3038 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
3039 if (!pChunk->iAge)
3040 {
3041 PVM pVM = (PVM)pvUser;
3042 RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
3043 pChunk->AgeCore.Key = pChunk->iAge = pVM->pgm.s.ChunkR3Map.iNow;
3044 RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
3045 }
3046
3047 return 0;
3048}
3049
3050
3051/**
3052 * Performs ageing of the ring-3 chunk mappings.
3053 *
3054 * @param pVM The VM handle.
3055 */
3056VMMR3DECL(void) PGMR3PhysChunkAgeing(PVM pVM)
3057{
3058 pgmLock(pVM);
3059 pVM->pgm.s.ChunkR3Map.AgeingCountdown = RT_MIN(pVM->pgm.s.ChunkR3Map.cMax / 4, 1024);
3060 pVM->pgm.s.ChunkR3Map.iNow++;
3061 if (pVM->pgm.s.ChunkR3Map.iNow == 0)
3062 {
3063 pVM->pgm.s.ChunkR3Map.iNow = 4;
3064 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, pVM);
3065 }
3066 else
3067 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingCallback, pVM);
3068 pgmUnlock(pVM);
3069}
3070
3071
3072/**
3073 * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
3074 */
3075typedef struct PGMR3PHYSCHUNKUNMAPCB
3076{
3077 PVM pVM; /**< The VM handle. */
3078 PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
3079} PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
3080
3081
3082/**
3083 * Callback used to find the mapping that's been unused for
3084 * the longest time.
3085 */
3086static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLLU32NODECORE pNode, void *pvUser)
3087{
3088 do
3089 {
3090 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)((uint8_t *)pNode - RT_OFFSETOF(PGMCHUNKR3MAP, AgeCore));
3091 if ( pChunk->iAge
3092 && !pChunk->cRefs)
3093 {
3094 /*
3095 * Check that it's not in any of the TLBs.
3096 */
3097 PVM pVM = ((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pVM;
3098 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
3099 if (pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk == pChunk)
3100 {
3101 pChunk = NULL;
3102 break;
3103 }
3104 if (pChunk)
3105 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
3106 if (pVM->pgm.s.PhysTlbHC.aEntries[i].pMap == pChunk)
3107 {
3108 pChunk = NULL;
3109 break;
3110 }
3111 if (pChunk)
3112 {
3113 ((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pChunk = pChunk;
3114 return 1; /* done */
3115 }
3116 }
3117
3118 /* next with the same age - this version of the AVL API doesn't enumerate the list, so we have to do it. */
3119 pNode = pNode->pList;
3120 } while (pNode);
3121 return 0;
3122}
3123
3124
3125/**
3126 * Finds a good candidate for unmapping when the ring-3 mapping cache is full.
3127 *
3128 * The candidate will not be part of any TLBs, so no need to flush
3129 * anything afterwards.
3130 *
3131 * @returns Chunk id.
3132 * @param pVM The VM handle.
3133 */
3134static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
3135{
3136 Assert(PGMIsLockOwner(pVM));
3137
3138 /*
3139 * Do tree ageing first?
3140 */
3141 if (pVM->pgm.s.ChunkR3Map.AgeingCountdown-- == 0)
3142 PGMR3PhysChunkAgeing(pVM);
3143
3144 /*
3145 * Enumerate the age tree starting with the left most node.
3146 */
3147 PGMR3PHYSCHUNKUNMAPCB Args;
3148 Args.pVM = pVM;
3149 Args.pChunk = NULL;
3150 if (RTAvllU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pAgeTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, pVM))
3151 return Args.pChunk->Core.Key;
3152 return INT32_MAX;
3153}
3154
3155
3156/**
3157 * Maps the given chunk into the ring-3 mapping cache.
3158 *
3159 * This will call ring-0.
3160 *
3161 * @returns VBox status code.
3162 * @param pVM The VM handle.
3163 * @param idChunk The chunk in question.
3164 * @param ppChunk Where to store the chunk tracking structure.
3165 *
3166 * @remarks Called from within the PGM critical section.
3167 */
3168int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
3169{
3170 int rc;
3171
3172 Assert(PGMIsLockOwner(pVM));
3173 /*
3174 * Allocate a new tracking structure first.
3175 */
3176#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
3177 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAlloc(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
3178#else
3179 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3UkHeapAlloc(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk), NULL);
3180#endif
3181 AssertReturn(pChunk, VERR_NO_MEMORY);
3182 pChunk->Core.Key = idChunk;
3183 pChunk->AgeCore.Key = pVM->pgm.s.ChunkR3Map.iNow;
3184 pChunk->iAge = 0;
3185 pChunk->cRefs = 0;
3186 pChunk->cPermRefs = 0;
3187 pChunk->pv = NULL;
3188
3189 /*
3190 * Request the ring-0 part to map the chunk in question and if
3191 * necessary unmap another one to make space in the mapping cache.
3192 */
3193 GMMMAPUNMAPCHUNKREQ Req;
3194 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
3195 Req.Hdr.cbReq = sizeof(Req);
3196 Req.pvR3 = NULL;
3197 Req.idChunkMap = idChunk;
3198 Req.idChunkUnmap = NIL_GMM_CHUNKID;
3199 if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
3200 Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
3201/** @todo This is wrong. Any thread in the VM process should be able to do this,
3202 * there are depenenecies on this. What currently saves the day is that
3203 * we don't unmap anything and that all non-zero memory will therefore
3204 * be present when non-EMTs tries to access it. */
3205 rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
3206 if (RT_SUCCESS(rc))
3207 {
3208 /*
3209 * Update the tree.
3210 */
3211 /* insert the new one. */
3212 AssertPtr(Req.pvR3);
3213 pChunk->pv = Req.pvR3;
3214 bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
3215 AssertRelease(fRc);
3216 pVM->pgm.s.ChunkR3Map.c++;
3217
3218 fRc = RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
3219 AssertRelease(fRc);
3220
3221 /* remove the unmapped one. */
3222 if (Req.idChunkUnmap != NIL_GMM_CHUNKID)
3223 {
3224 PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
3225 AssertRelease(pUnmappedChunk);
3226 pUnmappedChunk->pv = NULL;
3227 pUnmappedChunk->Core.Key = UINT32_MAX;
3228#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
3229 MMR3HeapFree(pUnmappedChunk);
3230#else
3231 MMR3UkHeapFree(pVM, pUnmappedChunk, MM_TAG_PGM_CHUNK_MAPPING);
3232#endif
3233 pVM->pgm.s.ChunkR3Map.c--;
3234
3235 /* Chunk removed, so clear the page map TBL as well (might still be referenced). */
3236 PGMPhysInvalidatePageMapTLB(pVM);
3237 }
3238 }
3239 else
3240 {
3241 AssertRC(rc);
3242#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
3243 MMR3HeapFree(pChunk);
3244#else
3245 MMR3UkHeapFree(pVM, pChunk, MM_TAG_PGM_CHUNK_MAPPING);
3246#endif
3247 pChunk = NULL;
3248 }
3249
3250 *ppChunk = pChunk;
3251 return rc;
3252}
3253
3254
3255/**
3256 * For VMMCALLRING3_PGM_MAP_CHUNK, considered internal.
3257 *
3258 * @returns see pgmR3PhysChunkMap.
3259 * @param pVM The VM handle.
3260 * @param idChunk The chunk to map.
3261 */
3262VMMR3DECL(int) PGMR3PhysChunkMap(PVM pVM, uint32_t idChunk)
3263{
3264 PPGMCHUNKR3MAP pChunk;
3265 int rc;
3266
3267 pgmLock(pVM);
3268 rc = pgmR3PhysChunkMap(pVM, idChunk, &pChunk);
3269 pgmUnlock(pVM);
3270 return rc;
3271}
3272
3273
3274/**
3275 * Invalidates the TLB for the ring-3 mapping cache.
3276 *
3277 * @param pVM The VM handle.
3278 */
3279VMMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM)
3280{
3281 pgmLock(pVM);
3282 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
3283 {
3284 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
3285 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
3286 }
3287 /* The page map TLB references chunks, so invalidate that one too. */
3288 PGMPhysInvalidatePageMapTLB(pVM);
3289 pgmUnlock(pVM);
3290}
3291
3292
3293/**
3294 * Response to VMMCALLRING3_PGM_ALLOCATE_LARGE_PAGE to allocate a large (2MB) page
3295 * for use with a nested paging PDE.
3296 *
3297 * @returns The following VBox status codes.
3298 * @retval VINF_SUCCESS on success.
3299 * @retval VINF_EM_NO_MEMORY if we're out of memory.
3300 *
3301 * @param pVM The VM handle.
3302 * @param GCPhys GC physical start address of the 2 MB range
3303 */
3304VMMR3DECL(int) PGMR3PhysAllocateLargeHandyPage(PVM pVM, RTGCPHYS GCPhys)
3305{
3306 pgmLock(pVM);
3307
3308 STAM_PROFILE_START(&pVM->pgm.s.StatAllocLargePage, a);
3309 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_LARGE_HANDY_PAGE, 0, NULL);
3310 STAM_PROFILE_STOP(&pVM->pgm.s.StatAllocLargePage, a);
3311 if (RT_SUCCESS(rc))
3312 {
3313 Assert(pVM->pgm.s.cLargeHandyPages == 1);
3314
3315 uint32_t idPage = pVM->pgm.s.aLargeHandyPage[0].idPage;
3316 RTHCPHYS HCPhys = pVM->pgm.s.aLargeHandyPage[0].HCPhysGCPhys;
3317
3318 void *pv;
3319
3320 /* Map the large page into our address space.
3321 *
3322 * Note: assuming that within the 2 MB range:
3323 * - GCPhys + PAGE_SIZE = HCPhys + PAGE_SIZE (whole point of this exercise)
3324 * - user space mapping is continuous as well
3325 * - page id (GCPhys) + 1 = page id (GCPhys + PAGE_SIZE)
3326 */
3327 rc = pgmPhysPageMapByPageID(pVM, idPage, HCPhys, &pv);
3328 AssertLogRelMsg(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc", idPage, HCPhys, rc));
3329
3330 if (RT_SUCCESS(rc))
3331 {
3332 /*
3333 * Clear the pages.
3334 */
3335 STAM_PROFILE_START(&pVM->pgm.s.StatClearLargePage, b);
3336 for (unsigned i = 0; i < _2M/PAGE_SIZE; i++)
3337 {
3338 ASMMemZeroPage(pv);
3339
3340 PPGMPAGE pPage;
3341 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
3342 AssertRC(rc);
3343
3344 Assert(PGM_PAGE_IS_ZERO(pPage));
3345 STAM_COUNTER_INC(&pVM->pgm.s.StatRZPageReplaceZero);
3346 pVM->pgm.s.cZeroPages--;
3347
3348 /*
3349 * Do the PGMPAGE modifications.
3350 */
3351 pVM->pgm.s.cPrivatePages++;
3352 PGM_PAGE_SET_HCPHYS(pPage, HCPhys);
3353 PGM_PAGE_SET_PAGEID(pPage, idPage);
3354 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
3355 PGM_PAGE_SET_PDE_TYPE(pPage, PGM_PAGE_PDE_TYPE_PDE);
3356
3357 /* Somewhat dirty assumption that page ids are increasing. */
3358 idPage++;
3359
3360 HCPhys += PAGE_SIZE;
3361 GCPhys += PAGE_SIZE;
3362
3363 pv = (void *)((uintptr_t)pv + PAGE_SIZE);
3364
3365 Log3(("PGMR3PhysAllocateLargePage: idPage=%#x HCPhys=%RGp\n", idPage, HCPhys));
3366 }
3367 STAM_PROFILE_STOP(&pVM->pgm.s.StatClearLargePage, b);
3368
3369 /* Flush all TLBs. */
3370 PGM_INVL_ALL_VCPU_TLBS(pVM);
3371 PGMPhysInvalidatePageMapTLB(pVM);
3372 }
3373 pVM->pgm.s.cLargeHandyPages = 0;
3374 }
3375
3376 pgmUnlock(pVM);
3377 return rc;
3378}
3379
3380
3381/**
3382 * Response to VM_FF_PGM_NEED_HANDY_PAGES and VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES.
3383 *
3384 * This function will also work the VM_FF_PGM_NO_MEMORY force action flag, to
3385 * signal and clear the out of memory condition. When contracted, this API is
3386 * used to try clear the condition when the user wants to resume.
3387 *
3388 * @returns The following VBox status codes.
3389 * @retval VINF_SUCCESS on success. FFs cleared.
3390 * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in
3391 * this case and it gets accompanied by VM_FF_PGM_NO_MEMORY.
3392 *
3393 * @param pVM The VM handle.
3394 *
3395 * @remarks The VINF_EM_NO_MEMORY status is for the benefit of the FF processing
3396 * in EM.cpp and shouldn't be propagated outside TRPM, HWACCM, EM and
3397 * pgmPhysEnsureHandyPage. There is one exception to this in the \#PF
3398 * handler.
3399 */
3400VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
3401{
3402 pgmLock(pVM);
3403
3404 /*
3405 * Allocate more pages, noting down the index of the first new page.
3406 */
3407 uint32_t iClear = pVM->pgm.s.cHandyPages;
3408 AssertMsgReturn(iClear <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d", iClear), VERR_INTERNAL_ERROR);
3409 Log(("PGMR3PhysAllocateHandyPages: %d -> %d\n", iClear, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
3410 int rcAlloc = VINF_SUCCESS;
3411 int rcSeed = VINF_SUCCESS;
3412 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
3413 while (rc == VERR_GMM_SEED_ME)
3414 {
3415 void *pvChunk;
3416 rcAlloc = rc = SUPR3PageAlloc(GMM_CHUNK_SIZE >> PAGE_SHIFT, &pvChunk);
3417 if (RT_SUCCESS(rc))
3418 {
3419 rcSeed = rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_SEED_CHUNK, (uintptr_t)pvChunk, NULL);
3420 if (RT_FAILURE(rc))
3421 SUPR3PageFree(pvChunk, GMM_CHUNK_SIZE >> PAGE_SHIFT);
3422 }
3423 if (RT_SUCCESS(rc))
3424 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
3425 }
3426
3427 if (RT_SUCCESS(rc))
3428 {
3429 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
3430 Assert(pVM->pgm.s.cHandyPages > 0);
3431 VM_FF_CLEAR(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
3432 VM_FF_CLEAR(pVM, VM_FF_PGM_NO_MEMORY);
3433
3434 /*
3435 * Clear the pages.
3436 */
3437 while (iClear < pVM->pgm.s.cHandyPages)
3438 {
3439 PGMMPAGEDESC pPage = &pVM->pgm.s.aHandyPages[iClear];
3440 void *pv;
3441 rc = pgmPhysPageMapByPageID(pVM, pPage->idPage, pPage->HCPhysGCPhys, &pv);
3442 AssertLogRelMsgBreak(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc", pPage->idPage, pPage->HCPhysGCPhys, rc));
3443 ASMMemZeroPage(pv);
3444 iClear++;
3445 Log3(("PGMR3PhysAllocateHandyPages: idPage=%#x HCPhys=%RGp\n", pPage->idPage, pPage->HCPhysGCPhys));
3446 }
3447 }
3448 else
3449 {
3450 /*
3451 * We should never get here unless there is a genuine shortage of
3452 * memory (or some internal error). Flag the error so the VM can be
3453 * suspended ASAP and the user informed. If we're totally out of
3454 * handy pages we will return failure.
3455 */
3456 /* Report the failure. */
3457 LogRel(("PGM: Failed to procure handy pages; rc=%Rrc rcAlloc=%Rrc rcSeed=%Rrc cHandyPages=%#x\n"
3458 " cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n",
3459 rc, rcAlloc, rcSeed,
3460 pVM->pgm.s.cHandyPages,
3461 pVM->pgm.s.cAllPages,
3462 pVM->pgm.s.cPrivatePages,
3463 pVM->pgm.s.cSharedPages,
3464 pVM->pgm.s.cZeroPages));
3465 if ( rc != VERR_NO_MEMORY
3466 && rc != VERR_LOCK_FAILED)
3467 {
3468 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
3469 {
3470 LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n",
3471 i, pVM->pgm.s.aHandyPages[i].HCPhysGCPhys, pVM->pgm.s.aHandyPages[i].idPage,
3472 pVM->pgm.s.aHandyPages[i].idSharedPage));
3473 uint32_t const idPage = pVM->pgm.s.aHandyPages[i].idPage;
3474 if (idPage != NIL_GMM_PAGEID)
3475 {
3476 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
3477 pRam;
3478 pRam = pRam->pNextR3)
3479 {
3480 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
3481 for (uint32_t iPage = 0; iPage < cPages; iPage++)
3482 if (PGM_PAGE_GET_PAGEID(&pRam->aPages[iPage]) == idPage)
3483 LogRel(("PGM: Used by %RGp %R[pgmpage] (%s)\n",
3484 pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pRam->aPages[iPage], pRam->pszDesc));
3485 }
3486 }
3487 }
3488 }
3489
3490 /* Set the FFs and adjust rc. */
3491 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
3492 VM_FF_SET(pVM, VM_FF_PGM_NO_MEMORY);
3493 if ( rc == VERR_NO_MEMORY
3494 || rc == VERR_LOCK_FAILED)
3495 rc = VINF_EM_NO_MEMORY;
3496 }
3497
3498 pgmUnlock(pVM);
3499 return rc;
3500}
3501
3502
3503/**
3504 * Frees the specified RAM page and replaces it with the ZERO page.
3505 *
3506 * This is used by ballooning, remapping MMIO2 and RAM reset.
3507 *
3508 * @param pVM Pointer to the shared VM structure.
3509 * @param pReq Pointer to the request.
3510 * @param pPage Pointer to the page structure.
3511 * @param GCPhys The guest physical address of the page, if applicable.
3512 *
3513 * @remarks The caller must own the PGM lock.
3514 */
3515static int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys)
3516{
3517 /*
3518 * Assert sanity.
3519 */
3520 Assert(PGMIsLockOwner(pVM));
3521 if (RT_UNLIKELY( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
3522 && PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW))
3523 {
3524 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
3525 return VMSetError(pVM, VERR_PGM_PHYS_NOT_RAM, RT_SRC_POS, "GCPhys=%RGp type=%d", GCPhys, PGM_PAGE_GET_TYPE(pPage));
3526 }
3527
3528 if ( PGM_PAGE_IS_ZERO(pPage)
3529 || PGM_PAGE_IS_BALLOONED(pPage))
3530 return VINF_SUCCESS;
3531
3532 const uint32_t idPage = PGM_PAGE_GET_PAGEID(pPage);
3533 Log3(("pgmPhysFreePage: idPage=%#x HCPhys=%RGp pPage=%R[pgmpage]\n", idPage, pPage));
3534 if (RT_UNLIKELY( idPage == NIL_GMM_PAGEID
3535 || idPage > GMM_PAGEID_LAST
3536 || PGM_PAGE_GET_CHUNKID(pPage) == NIL_GMM_CHUNKID))
3537 {
3538 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
3539 return VMSetError(pVM, VERR_PGM_PHYS_INVALID_PAGE_ID, RT_SRC_POS, "GCPhys=%RGp idPage=%#x", GCPhys, pPage);
3540 }
3541
3542 /* update page count stats. */
3543 if (PGM_PAGE_IS_SHARED(pPage))
3544 pVM->pgm.s.cSharedPages--;
3545 else
3546 pVM->pgm.s.cPrivatePages--;
3547 pVM->pgm.s.cZeroPages++;
3548
3549 /* Deal with write monitored pages. */
3550 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
3551 {
3552 PGM_PAGE_SET_WRITTEN_TO(pPage);
3553 pVM->pgm.s.cWrittenToPages++;
3554 }
3555
3556 /*
3557 * pPage = ZERO page.
3558 */
3559 PGM_PAGE_SET_HCPHYS(pPage, pVM->pgm.s.HCPhysZeroPg);
3560 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
3561 PGM_PAGE_SET_PAGEID(pPage, NIL_GMM_PAGEID);
3562 PGM_PAGE_SET_PDE_TYPE(pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
3563
3564 /* Flush physical page map TLB entry. */
3565 PGMPhysInvalidatePageMapTLBEntry(pVM, GCPhys);
3566
3567 /*
3568 * Make sure it's not in the handy page array.
3569 */
3570 for (uint32_t i = pVM->pgm.s.cHandyPages; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
3571 {
3572 if (pVM->pgm.s.aHandyPages[i].idPage == idPage)
3573 {
3574 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
3575 break;
3576 }
3577 if (pVM->pgm.s.aHandyPages[i].idSharedPage == idPage)
3578 {
3579 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
3580 break;
3581 }
3582 }
3583
3584 /*
3585 * Push it onto the page array.
3586 */
3587 uint32_t iPage = *pcPendingPages;
3588 Assert(iPage < PGMPHYS_FREE_PAGE_BATCH_SIZE);
3589 *pcPendingPages += 1;
3590
3591 pReq->aPages[iPage].idPage = idPage;
3592
3593 if (iPage + 1 < PGMPHYS_FREE_PAGE_BATCH_SIZE)
3594 return VINF_SUCCESS;
3595
3596 /*
3597 * Flush the pages.
3598 */
3599 int rc = GMMR3FreePagesPerform(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE);
3600 if (RT_SUCCESS(rc))
3601 {
3602 GMMR3FreePagesRePrep(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
3603 *pcPendingPages = 0;
3604 }
3605 return rc;
3606}
3607
3608
3609/**
3610 * Converts a GC physical address to a HC ring-3 pointer, with some
3611 * additional checks.
3612 *
3613 * @returns VBox status code.
3614 * @retval VINF_SUCCESS on success.
3615 * @retval VINF_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
3616 * access handler of some kind.
3617 * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
3618 * accesses or is odd in any way.
3619 * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
3620 *
3621 * @param pVM The VM handle.
3622 * @param GCPhys The GC physical address to convert.
3623 * @param fWritable Whether write access is required.
3624 * @param ppv Where to store the pointer corresponding to GCPhys on
3625 * success.
3626 */
3627VMMR3DECL(int) PGMR3PhysTlbGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, void **ppv)
3628{
3629 pgmLock(pVM);
3630
3631 PPGMRAMRANGE pRam;
3632 PPGMPAGE pPage;
3633 int rc = pgmPhysGetPageAndRangeEx(&pVM->pgm.s, GCPhys, &pPage, &pRam);
3634 if (RT_SUCCESS(rc))
3635 {
3636 if (PGM_PAGE_IS_BALLOONED(pPage))
3637 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
3638 else if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage))
3639 rc = VINF_SUCCESS;
3640 else
3641 {
3642 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
3643 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
3644 else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
3645 {
3646 /** @todo Handle TLB loads of virtual handlers so ./test.sh can be made to work
3647 * in -norawr0 mode. */
3648 if (fWritable)
3649 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
3650 }
3651 else
3652 {
3653 /* Temporarily disabled physical handler(s), since the recompiler
3654 doesn't get notified when it's reset we'll have to pretend it's
3655 operating normally. */
3656 if (pgmHandlerPhysicalIsAll(pVM, GCPhys))
3657 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
3658 else
3659 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
3660 }
3661 }
3662 if (RT_SUCCESS(rc))
3663 {
3664 int rc2;
3665
3666 /* Make sure what we return is writable. */
3667 if (fWritable && rc != VINF_PGM_PHYS_TLB_CATCH_WRITE)
3668 switch (PGM_PAGE_GET_STATE(pPage))
3669 {
3670 case PGM_PAGE_STATE_ALLOCATED:
3671 break;
3672 case PGM_PAGE_STATE_BALLOONED:
3673 AssertFailed();
3674 break;
3675 case PGM_PAGE_STATE_ZERO:
3676 case PGM_PAGE_STATE_SHARED:
3677 case PGM_PAGE_STATE_WRITE_MONITORED:
3678 rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
3679 AssertLogRelRCReturn(rc2, rc2);
3680 break;
3681 }
3682
3683 /* Get a ring-3 mapping of the address. */
3684 PPGMPAGER3MAPTLBE pTlbe;
3685 rc2 = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
3686 AssertLogRelRCReturn(rc2, rc2);
3687 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
3688 /** @todo mapping/locking hell; this isn't horribly efficient since
3689 * pgmPhysPageLoadIntoTlb will repeat the lookup we've done here. */
3690
3691 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
3692 }
3693 else
3694 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));
3695
3696 /* else: handler catching all access, no pointer returned. */
3697 }
3698 else
3699 rc = VERR_PGM_PHYS_TLB_UNASSIGNED;
3700
3701 pgmUnlock(pVM);
3702 return rc;
3703}
3704
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette