VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMPhys.cpp@ 28003

Last change on this file since 28003 was 28003, checked in by vboxsync, 15 years ago

PGMR3QueryBalloonSize updates

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 131.8 KB
Line 
1/* $Id: PGMPhys.cpp 28003 2010-04-06 12:44:09Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_PGM_PHYS
27#include <VBox/pgm.h>
28#include <VBox/iom.h>
29#include <VBox/mm.h>
30#include <VBox/stam.h>
31#include <VBox/rem.h>
32#include <VBox/pdmdev.h>
33#include "PGMInternal.h"
34#include <VBox/vm.h>
35#include "PGMInline.h"
36#include <VBox/sup.h>
37#include <VBox/param.h>
38#include <VBox/err.h>
39#include <VBox/log.h>
40#include <iprt/assert.h>
41#include <iprt/alloc.h>
42#include <iprt/asm.h>
43#include <iprt/thread.h>
44#include <iprt/string.h>
45
46
47/*******************************************************************************
48* Defined Constants And Macros *
49*******************************************************************************/
50/** The number of pages to free in one batch. */
51#define PGMPHYS_FREE_PAGE_BATCH_SIZE 128
52
53
54/*******************************************************************************
55* Internal Functions *
56*******************************************************************************/
57static DECLCALLBACK(int) pgmR3PhysRomWriteHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
58static int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys);
59
60
61/*
62 * PGMR3PhysReadU8-64
63 * PGMR3PhysWriteU8-64
64 */
65#define PGMPHYSFN_READNAME PGMR3PhysReadU8
66#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8
67#define PGMPHYS_DATASIZE 1
68#define PGMPHYS_DATATYPE uint8_t
69#include "PGMPhysRWTmpl.h"
70
71#define PGMPHYSFN_READNAME PGMR3PhysReadU16
72#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16
73#define PGMPHYS_DATASIZE 2
74#define PGMPHYS_DATATYPE uint16_t
75#include "PGMPhysRWTmpl.h"
76
77#define PGMPHYSFN_READNAME PGMR3PhysReadU32
78#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32
79#define PGMPHYS_DATASIZE 4
80#define PGMPHYS_DATATYPE uint32_t
81#include "PGMPhysRWTmpl.h"
82
83#define PGMPHYSFN_READNAME PGMR3PhysReadU64
84#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64
85#define PGMPHYS_DATASIZE 8
86#define PGMPHYS_DATATYPE uint64_t
87#include "PGMPhysRWTmpl.h"
88
89
90/**
91 * EMT worker for PGMR3PhysReadExternal.
92 */
93static DECLCALLBACK(int) pgmR3PhysReadExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, void *pvBuf, size_t cbRead)
94{
95 PGMPhysRead(pVM, *pGCPhys, pvBuf, cbRead);
96 return VINF_SUCCESS;
97}
98
99
100/**
101 * Write to physical memory, external users.
102 *
103 * @returns VBox status code.
104 * @retval VINF_SUCCESS.
105 *
106 * @param pVM VM Handle.
107 * @param GCPhys Physical address to write to.
108 * @param pvBuf What to write.
109 * @param cbWrite How many bytes to write.
110 *
111 * @thread Any but EMTs.
112 */
113VMMR3DECL(int) PGMR3PhysReadExternal(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead)
114{
115 VM_ASSERT_OTHER_THREAD(pVM);
116
117 AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
118 LogFlow(("PGMR3PhysReadExternal: %RGp %d\n", GCPhys, cbRead));
119
120 pgmLock(pVM);
121
122 /*
123 * Copy loop on ram ranges.
124 */
125 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
126 for (;;)
127 {
128 /* Find range. */
129 while (pRam && GCPhys > pRam->GCPhysLast)
130 pRam = pRam->CTX_SUFF(pNext);
131 /* Inside range or not? */
132 if (pRam && GCPhys >= pRam->GCPhys)
133 {
134 /*
135 * Must work our way thru this page by page.
136 */
137 RTGCPHYS off = GCPhys - pRam->GCPhys;
138 while (off < pRam->cb)
139 {
140 unsigned iPage = off >> PAGE_SHIFT;
141 PPGMPAGE pPage = &pRam->aPages[iPage];
142
143 /*
144 * If the page has an ALL access handler, we'll have to
145 * delegate the job to EMT.
146 */
147 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
148 {
149 pgmUnlock(pVM);
150
151 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysReadExternalEMT, 4,
152 pVM, &GCPhys, pvBuf, cbRead);
153 }
154 Assert(!PGM_PAGE_IS_MMIO(pPage));
155
156 /*
157 * Simple stuff, go ahead.
158 */
159 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
160 if (cb > cbRead)
161 cb = cbRead;
162 const void *pvSrc;
163 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc);
164 if (RT_SUCCESS(rc))
165 memcpy(pvBuf, pvSrc, cb);
166 else
167 {
168 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
169 pRam->GCPhys + off, pPage, rc));
170 memset(pvBuf, 0xff, cb);
171 }
172
173 /* next page */
174 if (cb >= cbRead)
175 {
176 pgmUnlock(pVM);
177 return VINF_SUCCESS;
178 }
179 cbRead -= cb;
180 off += cb;
181 GCPhys += cb;
182 pvBuf = (char *)pvBuf + cb;
183 } /* walk pages in ram range. */
184 }
185 else
186 {
187 LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
188
189 /*
190 * Unassigned address space.
191 */
192 if (!pRam)
193 break;
194 size_t cb = pRam->GCPhys - GCPhys;
195 if (cb >= cbRead)
196 {
197 memset(pvBuf, 0xff, cbRead);
198 break;
199 }
200 memset(pvBuf, 0xff, cb);
201
202 cbRead -= cb;
203 pvBuf = (char *)pvBuf + cb;
204 GCPhys += cb;
205 }
206 } /* Ram range walk */
207
208 pgmUnlock(pVM);
209
210 return VINF_SUCCESS;
211}
212
213
214/**
215 * EMT worker for PGMR3PhysWriteExternal.
216 */
217static DECLCALLBACK(int) pgmR3PhysWriteExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, const void *pvBuf, size_t cbWrite)
218{
219 /** @todo VERR_EM_NO_MEMORY */
220 PGMPhysWrite(pVM, *pGCPhys, pvBuf, cbWrite);
221 return VINF_SUCCESS;
222}
223
224
225/**
226 * Write to physical memory, external users.
227 *
228 * @returns VBox status code.
229 * @retval VINF_SUCCESS.
230 * @retval VERR_EM_NO_MEMORY.
231 *
232 * @param pVM VM Handle.
233 * @param GCPhys Physical address to write to.
234 * @param pvBuf What to write.
235 * @param cbWrite How many bytes to write.
236 * @param pszWho Who is writing. For tracking down who is writing
237 * after we've saved the state.
238 *
239 * @thread Any but EMTs.
240 */
241VMMDECL(int) PGMR3PhysWriteExternal(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, const char *pszWho)
242{
243 VM_ASSERT_OTHER_THREAD(pVM);
244
245 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites,
246 ("Calling PGMR3PhysWriteExternal after pgmR3Save()! GCPhys=%RGp cbWrite=%#x pszWho=%s\n",
247 GCPhys, cbWrite, pszWho));
248 AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
249 LogFlow(("PGMR3PhysWriteExternal: %RGp %d\n", GCPhys, cbWrite));
250
251 pgmLock(pVM);
252
253 /*
254 * Copy loop on ram ranges, stop when we hit something difficult.
255 */
256 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
257 for (;;)
258 {
259 /* Find range. */
260 while (pRam && GCPhys > pRam->GCPhysLast)
261 pRam = pRam->CTX_SUFF(pNext);
262 /* Inside range or not? */
263 if (pRam && GCPhys >= pRam->GCPhys)
264 {
265 /*
266 * Must work our way thru this page by page.
267 */
268 RTGCPTR off = GCPhys - pRam->GCPhys;
269 while (off < pRam->cb)
270 {
271 RTGCPTR iPage = off >> PAGE_SHIFT;
272 PPGMPAGE pPage = &pRam->aPages[iPage];
273
274 /*
275 * Is the page problematic, we have to do the work on the EMT.
276 *
277 * Allocating writable pages and access handlers are
278 * problematic, write monitored pages are simple and can be
279 * dealth with here.
280 */
281 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
282 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
283 {
284 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
285 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
286 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
287 else
288 {
289 pgmUnlock(pVM);
290
291 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysWriteExternalEMT, 4,
292 pVM, &GCPhys, pvBuf, cbWrite);
293 }
294 }
295 Assert(!PGM_PAGE_IS_MMIO(pPage));
296
297 /*
298 * Simple stuff, go ahead.
299 */
300 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
301 if (cb > cbWrite)
302 cb = cbWrite;
303 void *pvDst;
304 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst);
305 if (RT_SUCCESS(rc))
306 memcpy(pvDst, pvBuf, cb);
307 else
308 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
309 pRam->GCPhys + off, pPage, rc));
310
311 /* next page */
312 if (cb >= cbWrite)
313 {
314 pgmUnlock(pVM);
315 return VINF_SUCCESS;
316 }
317
318 cbWrite -= cb;
319 off += cb;
320 GCPhys += cb;
321 pvBuf = (const char *)pvBuf + cb;
322 } /* walk pages in ram range */
323 }
324 else
325 {
326 /*
327 * Unassigned address space, skip it.
328 */
329 if (!pRam)
330 break;
331 size_t cb = pRam->GCPhys - GCPhys;
332 if (cb >= cbWrite)
333 break;
334 cbWrite -= cb;
335 pvBuf = (const char *)pvBuf + cb;
336 GCPhys += cb;
337 }
338 } /* Ram range walk */
339
340 pgmUnlock(pVM);
341 return VINF_SUCCESS;
342}
343
344
345/**
346 * VMR3ReqCall worker for PGMR3PhysGCPhys2CCPtrExternal to make pages writable.
347 *
348 * @returns see PGMR3PhysGCPhys2CCPtrExternal
349 * @param pVM The VM handle.
350 * @param pGCPhys Pointer to the guest physical address.
351 * @param ppv Where to store the mapping address.
352 * @param pLock Where to store the lock.
353 */
354static DECLCALLBACK(int) pgmR3PhysGCPhys2CCPtrDelegated(PVM pVM, PRTGCPHYS pGCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
355{
356 /*
357 * Just hand it to PGMPhysGCPhys2CCPtr and check that it's not a page with
358 * an access handler after it succeeds.
359 */
360 int rc = pgmLock(pVM);
361 AssertRCReturn(rc, rc);
362
363 rc = PGMPhysGCPhys2CCPtr(pVM, *pGCPhys, ppv, pLock);
364 if (RT_SUCCESS(rc))
365 {
366 PPGMPAGEMAPTLBE pTlbe;
367 int rc2 = pgmPhysPageQueryTlbe(&pVM->pgm.s, *pGCPhys, &pTlbe);
368 AssertFatalRC(rc2);
369 PPGMPAGE pPage = pTlbe->pPage;
370 if (PGM_PAGE_IS_MMIO(pPage))
371 {
372 PGMPhysReleasePageMappingLock(pVM, pLock);
373 rc = VERR_PGM_PHYS_PAGE_RESERVED;
374 }
375 else if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
376#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
377 || pgmPoolIsDirtyPage(pVM, *pGCPhys)
378#endif
379 )
380 {
381 /* We *must* flush any corresponding pgm pool page here, otherwise we'll
382 * not be informed about writes and keep bogus gst->shw mappings around.
383 */
384 pgmPoolFlushPageByGCPhys(pVM, *pGCPhys);
385 Assert(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage));
386 /** @todo r=bird: return VERR_PGM_PHYS_PAGE_RESERVED here if it still has
387 * active handlers, see the PGMR3PhysGCPhys2CCPtrExternal docs. */
388 }
389 }
390
391 pgmUnlock(pVM);
392 return rc;
393}
394
395
396/**
397 * Requests the mapping of a guest page into ring-3, external threads.
398 *
399 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
400 * release it.
401 *
402 * This API will assume your intention is to write to the page, and will
403 * therefore replace shared and zero pages. If you do not intend to modify the
404 * page, use the PGMR3PhysGCPhys2CCPtrReadOnlyExternal() API.
405 *
406 * @returns VBox status code.
407 * @retval VINF_SUCCESS on success.
408 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
409 * backing or if the page has any active access handlers. The caller
410 * must fall back on using PGMR3PhysWriteExternal.
411 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
412 *
413 * @param pVM The VM handle.
414 * @param GCPhys The guest physical address of the page that should be mapped.
415 * @param ppv Where to store the address corresponding to GCPhys.
416 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
417 *
418 * @remark Avoid calling this API from within critical sections (other than the
419 * PGM one) because of the deadlock risk when we have to delegating the
420 * task to an EMT.
421 * @thread Any.
422 */
423VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrExternal(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
424{
425 AssertPtr(ppv);
426 AssertPtr(pLock);
427
428 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
429
430 int rc = pgmLock(pVM);
431 AssertRCReturn(rc, rc);
432
433 /*
434 * Query the Physical TLB entry for the page (may fail).
435 */
436 PPGMPAGEMAPTLBE pTlbe;
437 rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
438 if (RT_SUCCESS(rc))
439 {
440 PPGMPAGE pPage = pTlbe->pPage;
441 if (PGM_PAGE_IS_MMIO(pPage))
442 rc = VERR_PGM_PHYS_PAGE_RESERVED;
443 else
444 {
445 /*
446 * If the page is shared, the zero page, or being write monitored
447 * it must be converted to an page that's writable if possible.
448 * We can only deal with write monitored pages here, the rest have
449 * to be on an EMT.
450 */
451 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
452 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
453#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
454 || pgmPoolIsDirtyPage(pVM, GCPhys)
455#endif
456 )
457 {
458 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
459 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
460#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
461 && !pgmPoolIsDirtyPage(pVM, GCPhys)
462#endif
463 )
464 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
465 else
466 {
467 pgmUnlock(pVM);
468
469 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
470 pVM, &GCPhys, ppv, pLock);
471 }
472 }
473
474 /*
475 * Now, just perform the locking and calculate the return address.
476 */
477 PPGMPAGEMAP pMap = pTlbe->pMap;
478 if (pMap)
479 pMap->cRefs++;
480
481 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
482 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
483 {
484 if (cLocks == 0)
485 pVM->pgm.s.cWriteLockedPages++;
486 PGM_PAGE_INC_WRITE_LOCKS(pPage);
487 }
488 else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
489 {
490 PGM_PAGE_INC_WRITE_LOCKS(pPage);
491 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", GCPhys, pPage));
492 if (pMap)
493 pMap->cRefs++; /* Extra ref to prevent it from going away. */
494 }
495
496 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
497 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
498 pLock->pvMap = pMap;
499 }
500 }
501
502 pgmUnlock(pVM);
503 return rc;
504}
505
506
507/**
508 * Requests the mapping of a guest page into ring-3, external threads.
509 *
510 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
511 * release it.
512 *
513 * @returns VBox status code.
514 * @retval VINF_SUCCESS on success.
515 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
516 * backing or if the page as an active ALL access handler. The caller
517 * must fall back on using PGMPhysRead.
518 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
519 *
520 * @param pVM The VM handle.
521 * @param GCPhys The guest physical address of the page that should be mapped.
522 * @param ppv Where to store the address corresponding to GCPhys.
523 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
524 *
525 * @remark Avoid calling this API from within critical sections (other than
526 * the PGM one) because of the deadlock risk.
527 * @thread Any.
528 */
529VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrReadOnlyExternal(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
530{
531 int rc = pgmLock(pVM);
532 AssertRCReturn(rc, rc);
533
534 /*
535 * Query the Physical TLB entry for the page (may fail).
536 */
537 PPGMPAGEMAPTLBE pTlbe;
538 rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
539 if (RT_SUCCESS(rc))
540 {
541 PPGMPAGE pPage = pTlbe->pPage;
542#if 1
543 /* MMIO pages doesn't have any readable backing. */
544 if (PGM_PAGE_IS_MMIO(pPage))
545 rc = VERR_PGM_PHYS_PAGE_RESERVED;
546#else
547 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
548 rc = VERR_PGM_PHYS_PAGE_RESERVED;
549#endif
550 else
551 {
552 /*
553 * Now, just perform the locking and calculate the return address.
554 */
555 PPGMPAGEMAP pMap = pTlbe->pMap;
556 if (pMap)
557 pMap->cRefs++;
558
559 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
560 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
561 {
562 if (cLocks == 0)
563 pVM->pgm.s.cReadLockedPages++;
564 PGM_PAGE_INC_READ_LOCKS(pPage);
565 }
566 else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
567 {
568 PGM_PAGE_INC_READ_LOCKS(pPage);
569 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", GCPhys, pPage));
570 if (pMap)
571 pMap->cRefs++; /* Extra ref to prevent it from going away. */
572 }
573
574 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
575 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
576 pLock->pvMap = pMap;
577 }
578 }
579
580 pgmUnlock(pVM);
581 return rc;
582}
583
584
585/**
586 * Relinks the RAM ranges using the pSelfRC and pSelfR0 pointers.
587 *
588 * Called when anything was relocated.
589 *
590 * @param pVM Pointer to the shared VM structure.
591 */
592void pgmR3PhysRelinkRamRanges(PVM pVM)
593{
594 PPGMRAMRANGE pCur;
595
596#ifdef VBOX_STRICT
597 for (pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
598 {
599 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfR0 == MMHyperCCToR0(pVM, pCur));
600 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfRC == MMHyperCCToRC(pVM, pCur));
601 Assert((pCur->GCPhys & PAGE_OFFSET_MASK) == 0);
602 Assert((pCur->GCPhysLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
603 Assert((pCur->cb & PAGE_OFFSET_MASK) == 0);
604 Assert(pCur->cb == pCur->GCPhysLast - pCur->GCPhys + 1);
605 for (PPGMRAMRANGE pCur2 = pVM->pgm.s.pRamRangesR3; pCur2; pCur2 = pCur2->pNextR3)
606 Assert( pCur2 == pCur
607 || strcmp(pCur2->pszDesc, pCur->pszDesc)); /** @todo fix MMIO ranges!! */
608 }
609#endif
610
611 pCur = pVM->pgm.s.pRamRangesR3;
612 if (pCur)
613 {
614 pVM->pgm.s.pRamRangesR0 = pCur->pSelfR0;
615 pVM->pgm.s.pRamRangesRC = pCur->pSelfRC;
616
617 for (; pCur->pNextR3; pCur = pCur->pNextR3)
618 {
619 pCur->pNextR0 = pCur->pNextR3->pSelfR0;
620 pCur->pNextRC = pCur->pNextR3->pSelfRC;
621 }
622
623 Assert(pCur->pNextR0 == NIL_RTR0PTR);
624 Assert(pCur->pNextRC == NIL_RTRCPTR);
625 }
626 else
627 {
628 Assert(pVM->pgm.s.pRamRangesR0 == NIL_RTR0PTR);
629 Assert(pVM->pgm.s.pRamRangesRC == NIL_RTRCPTR);
630 }
631 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
632}
633
634
635/**
636 * Links a new RAM range into the list.
637 *
638 * @param pVM Pointer to the shared VM structure.
639 * @param pNew Pointer to the new list entry.
640 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
641 */
642static void pgmR3PhysLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, PPGMRAMRANGE pPrev)
643{
644 AssertMsg(pNew->pszDesc, ("%RGp-%RGp\n", pNew->GCPhys, pNew->GCPhysLast));
645 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfR0 == MMHyperCCToR0(pVM, pNew));
646 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfRC == MMHyperCCToRC(pVM, pNew));
647
648 pgmLock(pVM);
649
650 PPGMRAMRANGE pRam = pPrev ? pPrev->pNextR3 : pVM->pgm.s.pRamRangesR3;
651 pNew->pNextR3 = pRam;
652 pNew->pNextR0 = pRam ? pRam->pSelfR0 : NIL_RTR0PTR;
653 pNew->pNextRC = pRam ? pRam->pSelfRC : NIL_RTRCPTR;
654
655 if (pPrev)
656 {
657 pPrev->pNextR3 = pNew;
658 pPrev->pNextR0 = pNew->pSelfR0;
659 pPrev->pNextRC = pNew->pSelfRC;
660 }
661 else
662 {
663 pVM->pgm.s.pRamRangesR3 = pNew;
664 pVM->pgm.s.pRamRangesR0 = pNew->pSelfR0;
665 pVM->pgm.s.pRamRangesRC = pNew->pSelfRC;
666 }
667 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
668 pgmUnlock(pVM);
669}
670
671
672/**
673 * Unlink an existing RAM range from the list.
674 *
675 * @param pVM Pointer to the shared VM structure.
676 * @param pRam Pointer to the new list entry.
677 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
678 */
679static void pgmR3PhysUnlinkRamRange2(PVM pVM, PPGMRAMRANGE pRam, PPGMRAMRANGE pPrev)
680{
681 Assert(pPrev ? pPrev->pNextR3 == pRam : pVM->pgm.s.pRamRangesR3 == pRam);
682 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfR0 == MMHyperCCToR0(pVM, pRam));
683 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfRC == MMHyperCCToRC(pVM, pRam));
684
685 pgmLock(pVM);
686
687 PPGMRAMRANGE pNext = pRam->pNextR3;
688 if (pPrev)
689 {
690 pPrev->pNextR3 = pNext;
691 pPrev->pNextR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
692 pPrev->pNextRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
693 }
694 else
695 {
696 Assert(pVM->pgm.s.pRamRangesR3 == pRam);
697 pVM->pgm.s.pRamRangesR3 = pNext;
698 pVM->pgm.s.pRamRangesR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
699 pVM->pgm.s.pRamRangesRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
700 }
701 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
702 pgmUnlock(pVM);
703}
704
705
706/**
707 * Unlink an existing RAM range from the list.
708 *
709 * @param pVM Pointer to the shared VM structure.
710 * @param pRam Pointer to the new list entry.
711 */
712static void pgmR3PhysUnlinkRamRange(PVM pVM, PPGMRAMRANGE pRam)
713{
714 pgmLock(pVM);
715
716 /* find prev. */
717 PPGMRAMRANGE pPrev = NULL;
718 PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3;
719 while (pCur != pRam)
720 {
721 pPrev = pCur;
722 pCur = pCur->pNextR3;
723 }
724 AssertFatal(pCur);
725
726 pgmR3PhysUnlinkRamRange2(pVM, pRam, pPrev);
727 pgmUnlock(pVM);
728}
729
730
731/**
732 * Frees a range of pages, replacing them with ZERO pages of the specified type.
733 *
734 * @returns VBox status code.
735 * @param pVM The VM handle.
736 * @param pRam The RAM range in which the pages resides.
737 * @param GCPhys The address of the first page.
738 * @param GCPhysLast The address of the last page.
739 * @param uType The page type to replace then with.
740 */
741static int pgmR3PhysFreePageRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, uint8_t uType)
742{
743 Assert(PGMIsLockOwner(pVM));
744 uint32_t cPendingPages = 0;
745 PGMMFREEPAGESREQ pReq;
746 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
747 AssertLogRelRCReturn(rc, rc);
748
749 /* Iterate the pages. */
750 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
751 uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1;
752 while (cPagesLeft-- > 0)
753 {
754 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
755 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
756
757 PGM_PAGE_SET_TYPE(pPageDst, uType);
758
759 GCPhys += PAGE_SIZE;
760 pPageDst++;
761 }
762
763 if (cPendingPages)
764 {
765 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
766 AssertLogRelRCReturn(rc, rc);
767 }
768 GMMR3FreePagesCleanup(pReq);
769
770 return rc;
771}
772
773/**
774 * Rendezvous callback used by PGMR3ChangeMemBalloon that changes the memory balloon size
775 *
776 * This is only called on one of the EMTs while the other ones are waiting for
777 * it to complete this function.
778 *
779 * @returns VINF_SUCCESS (VBox strict status code).
780 * @param pVM The VM handle.
781 * @param pVCpu The VMCPU for the EMT we're being called on. Unused.
782 * @param pvUser User parameter
783 */
784static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysChangeMemBalloonRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
785{
786 uintptr_t *paUser = (uintptr_t *)pvUser;
787 bool fInflate = !!paUser[0];
788 unsigned cPages = paUser[1];
789 RTGCPHYS *paPhysPage = (RTGCPHYS *)paUser[2];
790 uint32_t cPendingPages = 0;
791 PGMMFREEPAGESREQ pReq;
792 int rc;
793
794 Log(("pgmR3PhysChangeMemBalloonRendezvous: %s %x pages\n", (fInflate) ? "inflate" : "deflate", cPages));
795 pgmLock(pVM);
796
797 if (fInflate)
798 {
799 /* Replace pages with ZERO pages. */
800 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
801 if (RT_FAILURE(rc))
802 {
803 pgmUnlock(pVM);
804 AssertLogRelRC(rc);
805 return rc;
806 }
807
808 /* Iterate the pages. */
809 for (unsigned i = 0; i < cPages; i++)
810 {
811 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, paPhysPage[i]);
812 if ( pPage == NULL
813 || pPage->uTypeY != PGMPAGETYPE_RAM)
814 {
815 Log(("pgmR3PhysChangeMemBalloonRendezvous: invalid physical page %RGp pPage->u3Type=%d\n", paPhysPage[i], (pPage) ? pPage->uTypeY : 0));
816 break;
817 }
818
819 LogFlow(("balloon page: %RGp\n", paPhysPage[i]));
820
821 /* Flush the shadow PT if this page was previously used as a guest page table. */
822 pgmPoolFlushPageByGCPhys(pVM, paPhysPage[i]);
823
824 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, paPhysPage[i]);
825 if (RT_FAILURE(rc))
826 {
827 pgmUnlock(pVM);
828 AssertLogRelRC(rc);
829 return rc;
830 }
831 Assert(PGM_PAGE_IS_ZERO(pPage));
832 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_BALLOONED);
833 }
834
835 if (cPendingPages)
836 {
837 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
838 if (RT_FAILURE(rc))
839 {
840 pgmUnlock(pVM);
841 AssertLogRelRC(rc);
842 return rc;
843 }
844 }
845 GMMR3FreePagesCleanup(pReq);
846
847 /* Flush the PGM pool cache as we might have stale references to pages that we just freed. */
848 pgmR3PoolClearAllRendezvous(pVM, pVCpu, NULL);
849 }
850 else
851 {
852 /* Iterate the pages. */
853 for (unsigned i = 0; i < cPages; i++)
854 {
855 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, paPhysPage[i]);
856 AssertBreak(pPage && pPage->uTypeY == PGMPAGETYPE_RAM);
857
858 LogFlow(("Free ballooned page: %RGp\n", paPhysPage[i]));
859
860 Assert(PGM_PAGE_IS_BALLOONED(pPage));
861
862 /* Change back to zero page. */
863 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
864 }
865
866 /* Note that we currently do not map any ballooned pages in our shadow page tables, so no need to flush the pgm pool. */
867 }
868
869 /* Notify GMM about the balloon change. */
870 rc = GMMR3BalloonedPages(pVM, (fInflate) ? GMMBALLOONACTION_INFLATE : GMMBALLOONACTION_DEFLATE, cPages);
871 if (RT_SUCCESS(rc))
872 {
873 if (!fInflate)
874 {
875 Assert(pVM->pgm.s.cBalloonedPages >= cPages);
876 pVM->pgm.s.cBalloonedPages -= cPages;
877 }
878 else
879 pVM->pgm.s.cBalloonedPages += cPages;
880 }
881
882 pgmUnlock(pVM);
883
884 /* Flush the recompiler's TLB as well. */
885 for (unsigned i = 0; i < pVM->cCpus; i++)
886 CPUMSetChangedFlags(&pVM->aCpus[i], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
887
888 AssertLogRelRC(rc);
889 return rc;
890}
891
892/**
893 * Frees a range of ram pages, replacing them with ZERO pages; helper for PGMR3PhysFreeRamPages
894 *
895 * @returns VBox status code.
896 * @param pVM The VM handle.
897 * @param fInflate Inflate or deflate memory balloon
898 * @param cPages Number of pages to free
899 * @param paPhysPage Array of guest physical addresses
900 */
901static DECLCALLBACK(void) pgmR3PhysChangeMemBalloonHelper(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
902{
903 uintptr_t paUser[3];
904
905 paUser[0] = fInflate;
906 paUser[1] = cPages;
907 paUser[2] = (uintptr_t)paPhysPage;
908 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
909 AssertRC(rc);
910
911 /* Made a copy in PGMR3PhysFreeRamPages; free it here. */
912 RTMemFree(paPhysPage);
913}
914
915/**
916 * Inflate or deflate a memory balloon
917 *
918 * @returns VBox status code.
919 * @param pVM The VM handle.
920 * @param fInflate Inflate or deflate memory balloon
921 * @param cPages Number of pages to free
922 * @param paPhysPage Array of guest physical addresses
923 */
924VMMR3DECL(int) PGMR3PhysChangeMemBalloon(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
925{
926 int rc;
927
928 /* We own the IOM lock here and could cause a deadlock by waiting for another VCPU that is blocking on the IOM lock.
929 * In the SMP case we post a request packet to postpone the job.
930 */
931 if (pVM->cCpus > 1)
932 {
933 unsigned cbPhysPage = cPages * sizeof(paPhysPage[0]);
934 RTGCPHYS *paPhysPageCopy = (RTGCPHYS *)RTMemAlloc(cbPhysPage);
935 AssertReturn(paPhysPageCopy, VERR_NO_MEMORY);
936
937 memcpy(paPhysPageCopy, paPhysPage, cbPhysPage);
938
939 rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysChangeMemBalloonHelper, 4, pVM, fInflate, cPages, paPhysPageCopy);
940 AssertRC(rc);
941 }
942 else
943 {
944 uintptr_t paUser[3];
945
946 paUser[0] = fInflate;
947 paUser[1] = cPages;
948 paUser[2] = (uintptr_t)paPhysPage;
949 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
950 AssertRC(rc);
951 }
952 return rc;
953}
954
955/**
956 * Query the VM and host balloon sizes
957 *
958 * @returns VBox status code.
959 * @param pVM The VM handle.
960 * @param puVMBalloonSize Pointer to VM balloon size (in megabytes)
961 * @param puTotalBalloonSize Pointer to total balloon size of all VMs (in megabytes)
962 */
963VMMR3DECL(int) PGMR3QueryBalloonSize(PVM pVM, unsigned *puVMBalloonSize, unsigned *puTotalBalloonSize)
964{
965 int rc = VINF_SUCCESS;
966
967 if (puVMBalloonSize)
968 *puVMBalloonSize = pVM->pgm.s.cBalloonedPages * _4K / _1M;
969
970 if (puTotalBalloonSize)
971 {
972 uint64_t cPages = 0;
973 rc = GMMR3QueryTotalBalloonSize(pVM, &cPages);
974 AssertRC(rc);
975 *puTotalBalloonSize = (unsigned) (cPages * _4K / _1M);
976 }
977
978 return rc;
979}
980
981/**
982 * PGMR3PhysRegisterRam worker that initializes and links a RAM range.
983 *
984 * @param pVM The VM handle.
985 * @param pNew The new RAM range.
986 * @param GCPhys The address of the RAM range.
987 * @param GCPhysLast The last address of the RAM range.
988 * @param RCPtrNew The RC address if the range is floating. NIL_RTRCPTR
989 * if in HMA.
990 * @param R0PtrNew Ditto for R0.
991 * @param pszDesc The description.
992 * @param pPrev The previous RAM range (for linking).
993 */
994static void pgmR3PhysInitAndLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
995 RTRCPTR RCPtrNew, RTR0PTR R0PtrNew, const char *pszDesc, PPGMRAMRANGE pPrev)
996{
997 /*
998 * Initialize the range.
999 */
1000 pNew->pSelfR0 = R0PtrNew != NIL_RTR0PTR ? R0PtrNew : MMHyperCCToR0(pVM, pNew);
1001 pNew->pSelfRC = RCPtrNew != NIL_RTRCPTR ? RCPtrNew : MMHyperCCToRC(pVM, pNew);
1002 pNew->GCPhys = GCPhys;
1003 pNew->GCPhysLast = GCPhysLast;
1004 pNew->cb = GCPhysLast - GCPhys + 1;
1005 pNew->pszDesc = pszDesc;
1006 pNew->fFlags = RCPtrNew != NIL_RTRCPTR ? PGM_RAM_RANGE_FLAGS_FLOATING : 0;
1007 pNew->pvR3 = NULL;
1008 pNew->paLSPages = NULL;
1009
1010 uint32_t const cPages = pNew->cb >> PAGE_SHIFT;
1011 RTGCPHYS iPage = cPages;
1012 while (iPage-- > 0)
1013 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM);
1014
1015 /* Update the page count stats. */
1016 pVM->pgm.s.cZeroPages += cPages;
1017 pVM->pgm.s.cAllPages += cPages;
1018
1019 /*
1020 * Link it.
1021 */
1022 pgmR3PhysLinkRamRange(pVM, pNew, pPrev);
1023}
1024
1025
1026/**
1027 * Relocate a floating RAM range.
1028 *
1029 * @copydoc FNPGMRELOCATE.
1030 */
1031static DECLCALLBACK(bool) pgmR3PhysRamRangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew, PGMRELOCATECALL enmMode, void *pvUser)
1032{
1033 PPGMRAMRANGE pRam = (PPGMRAMRANGE)pvUser;
1034 Assert(pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING);
1035 Assert(pRam->pSelfRC == GCPtrOld + PAGE_SIZE);
1036
1037 switch (enmMode)
1038 {
1039 case PGMRELOCATECALL_SUGGEST:
1040 return true;
1041 case PGMRELOCATECALL_RELOCATE:
1042 {
1043 /* Update myself and then relink all the ranges. */
1044 pgmLock(pVM);
1045 pRam->pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE);
1046 pgmR3PhysRelinkRamRanges(pVM);
1047 pgmUnlock(pVM);
1048 return true;
1049 }
1050
1051 default:
1052 AssertFailedReturn(false);
1053 }
1054}
1055
1056
1057/**
1058 * PGMR3PhysRegisterRam worker that registers a high chunk.
1059 *
1060 * @returns VBox status code.
1061 * @param pVM The VM handle.
1062 * @param GCPhys The address of the RAM.
1063 * @param cRamPages The number of RAM pages to register.
1064 * @param cbChunk The size of the PGMRAMRANGE guest mapping.
1065 * @param iChunk The chunk number.
1066 * @param pszDesc The RAM range description.
1067 * @param ppPrev Previous RAM range pointer. In/Out.
1068 */
1069static int pgmR3PhysRegisterHighRamChunk(PVM pVM, RTGCPHYS GCPhys, uint32_t cRamPages,
1070 uint32_t cbChunk, uint32_t iChunk, const char *pszDesc,
1071 PPGMRAMRANGE *ppPrev)
1072{
1073 const char *pszDescChunk = iChunk == 0
1074 ? pszDesc
1075 : MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s (#%u)", pszDesc, iChunk + 1);
1076 AssertReturn(pszDescChunk, VERR_NO_MEMORY);
1077
1078 /*
1079 * Allocate memory for the new chunk.
1080 */
1081 size_t const cChunkPages = RT_ALIGN_Z(RT_UOFFSETOF(PGMRAMRANGE, aPages[cRamPages]), PAGE_SIZE) >> PAGE_SHIFT;
1082 PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
1083 AssertReturn(paChunkPages, VERR_NO_TMP_MEMORY);
1084 RTR0PTR R0PtrChunk = NIL_RTR0PTR;
1085 void *pvChunk = NULL;
1086 int rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk,
1087#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1088 VMMIsHwVirtExtForced(pVM) ? &R0PtrChunk : NULL,
1089#else
1090 NULL,
1091#endif
1092 paChunkPages);
1093 if (RT_SUCCESS(rc))
1094 {
1095#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1096 if (!VMMIsHwVirtExtForced(pVM))
1097 R0PtrChunk = NIL_RTR0PTR;
1098#else
1099 R0PtrChunk = (uintptr_t)pvChunk;
1100#endif
1101 memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
1102
1103 PPGMRAMRANGE pNew = (PPGMRAMRANGE)pvChunk;
1104
1105 /*
1106 * Create a mapping and map the pages into it.
1107 * We push these in below the HMA.
1108 */
1109 RTGCPTR GCPtrChunkMap = pVM->pgm.s.GCPtrPrevRamRangeMapping - cbChunk;
1110 rc = PGMR3MapPT(pVM, GCPtrChunkMap, cbChunk, 0 /*fFlags*/, pgmR3PhysRamRangeRelocate, pNew, pszDescChunk);
1111 if (RT_SUCCESS(rc))
1112 {
1113 pVM->pgm.s.GCPtrPrevRamRangeMapping = GCPtrChunkMap;
1114
1115 RTGCPTR const GCPtrChunk = GCPtrChunkMap + PAGE_SIZE;
1116 RTGCPTR GCPtrPage = GCPtrChunk;
1117 for (uint32_t iPage = 0; iPage < cChunkPages && RT_SUCCESS(rc); iPage++, GCPtrPage += PAGE_SIZE)
1118 rc = PGMMap(pVM, GCPtrPage, paChunkPages[iPage].Phys, PAGE_SIZE, 0);
1119 if (RT_SUCCESS(rc))
1120 {
1121 /*
1122 * Ok, init and link the range.
1123 */
1124 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhys + ((RTGCPHYS)cRamPages << PAGE_SHIFT) - 1,
1125 (RTRCPTR)GCPtrChunk, R0PtrChunk, pszDescChunk, *ppPrev);
1126 *ppPrev = pNew;
1127 }
1128 }
1129
1130 if (RT_FAILURE(rc))
1131 SUPR3PageFreeEx(pvChunk, cChunkPages);
1132 }
1133
1134 RTMemTmpFree(paChunkPages);
1135 return rc;
1136}
1137
1138
1139/**
1140 * Sets up a range RAM.
1141 *
1142 * This will check for conflicting registrations, make a resource
1143 * reservation for the memory (with GMM), and setup the per-page
1144 * tracking structures (PGMPAGE).
1145 *
1146 * @returns VBox stutus code.
1147 * @param pVM Pointer to the shared VM structure.
1148 * @param GCPhys The physical address of the RAM.
1149 * @param cb The size of the RAM.
1150 * @param pszDesc The description - not copied, so, don't free or change it.
1151 */
1152VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc)
1153{
1154 /*
1155 * Validate input.
1156 */
1157 Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc));
1158 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
1159 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
1160 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
1161 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1162 AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER);
1163 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1164 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1165
1166 pgmLock(pVM);
1167
1168 /*
1169 * Find range location and check for conflicts.
1170 * (We don't lock here because the locking by EMT is only required on update.)
1171 */
1172 PPGMRAMRANGE pPrev = NULL;
1173 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1174 while (pRam && GCPhysLast >= pRam->GCPhys)
1175 {
1176 if ( GCPhysLast >= pRam->GCPhys
1177 && GCPhys <= pRam->GCPhysLast)
1178 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
1179 GCPhys, GCPhysLast, pszDesc,
1180 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1181 VERR_PGM_RAM_CONFLICT);
1182
1183 /* next */
1184 pPrev = pRam;
1185 pRam = pRam->pNextR3;
1186 }
1187
1188 /*
1189 * Register it with GMM (the API bitches).
1190 */
1191 const RTGCPHYS cPages = cb >> PAGE_SHIFT;
1192 int rc = MMR3IncreaseBaseReservation(pVM, cPages);
1193 if (RT_FAILURE(rc))
1194 {
1195 pgmUnlock(pVM);
1196 return rc;
1197 }
1198
1199 if ( GCPhys >= _4G
1200 && cPages > 256)
1201 {
1202 /*
1203 * The PGMRAMRANGE structures for the high memory can get very big.
1204 * In order to avoid SUPR3PageAllocEx allocation failures due to the
1205 * allocation size limit there and also to avoid being unable to find
1206 * guest mapping space for them, we split this memory up into 4MB in
1207 * (potential) raw-mode configs and 16MB chunks in forced AMD-V/VT-x
1208 * mode.
1209 *
1210 * The first and last page of each mapping are guard pages and marked
1211 * not-present. So, we've got 4186112 and 16769024 bytes available for
1212 * the PGMRAMRANGE structure.
1213 *
1214 * Note! The sizes used here will influence the saved state.
1215 */
1216 uint32_t cbChunk;
1217 uint32_t cPagesPerChunk;
1218 if (VMMIsHwVirtExtForced(pVM))
1219 {
1220 cbChunk = 16U*_1M;
1221 cPagesPerChunk = 1048048; /* max ~1048059 */
1222 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2);
1223 }
1224 else
1225 {
1226 cbChunk = 4U*_1M;
1227 cPagesPerChunk = 261616; /* max ~261627 */
1228 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 261616 < 4U*_1M - PAGE_SIZE * 2);
1229 }
1230 AssertRelease(RT_UOFFSETOF(PGMRAMRANGE, aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
1231
1232 RTGCPHYS cPagesLeft = cPages;
1233 RTGCPHYS GCPhysChunk = GCPhys;
1234 uint32_t iChunk = 0;
1235 while (cPagesLeft > 0)
1236 {
1237 uint32_t cPagesInChunk = cPagesLeft;
1238 if (cPagesInChunk > cPagesPerChunk)
1239 cPagesInChunk = cPagesPerChunk;
1240
1241 rc = pgmR3PhysRegisterHighRamChunk(pVM, GCPhysChunk, cPagesInChunk, cbChunk, iChunk, pszDesc, &pPrev);
1242 AssertRCReturn(rc, rc);
1243
1244 /* advance */
1245 GCPhysChunk += (RTGCPHYS)cPagesInChunk << PAGE_SHIFT;
1246 cPagesLeft -= cPagesInChunk;
1247 iChunk++;
1248 }
1249 }
1250 else
1251 {
1252 /*
1253 * Allocate, initialize and link the new RAM range.
1254 */
1255 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
1256 PPGMRAMRANGE pNew;
1257 rc = MMR3HyperAllocOnceNoRel(pVM, cbRamRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1258 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
1259
1260 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhysLast, NIL_RTRCPTR, NIL_RTR0PTR, pszDesc, pPrev);
1261 }
1262 PGMPhysInvalidatePageMapTLB(pVM);
1263 pgmUnlock(pVM);
1264
1265 /*
1266 * Notify REM.
1267 */
1268 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_RAM);
1269
1270 return VINF_SUCCESS;
1271}
1272
1273
1274/**
1275 * Worker called by PGMR3InitFinalize if we're configured to pre-allocate RAM.
1276 *
1277 * We do this late in the init process so that all the ROM and MMIO ranges have
1278 * been registered already and we don't go wasting memory on them.
1279 *
1280 * @returns VBox status code.
1281 *
1282 * @param pVM Pointer to the shared VM structure.
1283 */
1284int pgmR3PhysRamPreAllocate(PVM pVM)
1285{
1286 Assert(pVM->pgm.s.fRamPreAlloc);
1287 Log(("pgmR3PhysRamPreAllocate: enter\n"));
1288
1289 /*
1290 * Walk the RAM ranges and allocate all RAM pages, halt at
1291 * the first allocation error.
1292 */
1293 uint64_t cPages = 0;
1294 uint64_t NanoTS = RTTimeNanoTS();
1295 pgmLock(pVM);
1296 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
1297 {
1298 PPGMPAGE pPage = &pRam->aPages[0];
1299 RTGCPHYS GCPhys = pRam->GCPhys;
1300 uint32_t cLeft = pRam->cb >> PAGE_SHIFT;
1301 while (cLeft-- > 0)
1302 {
1303 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
1304 {
1305 switch (PGM_PAGE_GET_STATE(pPage))
1306 {
1307 case PGM_PAGE_STATE_ZERO:
1308 {
1309 int rc = pgmPhysAllocPage(pVM, pPage, GCPhys);
1310 if (RT_FAILURE(rc))
1311 {
1312 LogRel(("PGM: RAM Pre-allocation failed at %RGp (in %s) with rc=%Rrc\n", GCPhys, pRam->pszDesc, rc));
1313 pgmUnlock(pVM);
1314 return rc;
1315 }
1316 cPages++;
1317 break;
1318 }
1319
1320 case PGM_PAGE_STATE_BALLOONED:
1321 case PGM_PAGE_STATE_ALLOCATED:
1322 case PGM_PAGE_STATE_WRITE_MONITORED:
1323 case PGM_PAGE_STATE_SHARED:
1324 /* nothing to do here. */
1325 break;
1326 }
1327 }
1328
1329 /* next */
1330 pPage++;
1331 GCPhys += PAGE_SIZE;
1332 }
1333 }
1334 pgmUnlock(pVM);
1335 NanoTS = RTTimeNanoTS() - NanoTS;
1336
1337 LogRel(("PGM: Pre-allocated %llu pages in %llu ms\n", cPages, NanoTS / 1000000));
1338 Log(("pgmR3PhysRamPreAllocate: returns VINF_SUCCESS\n"));
1339 return VINF_SUCCESS;
1340}
1341
1342
1343/**
1344 * Resets (zeros) the RAM.
1345 *
1346 * ASSUMES that the caller owns the PGM lock.
1347 *
1348 * @returns VBox status code.
1349 * @param pVM Pointer to the shared VM structure.
1350 */
1351int pgmR3PhysRamReset(PVM pVM)
1352{
1353 Assert(PGMIsLockOwner(pVM));
1354
1355 /* Reset the memory balloon. */
1356 int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
1357 AssertRC(rc);
1358
1359 /*
1360 * We batch up pages that should be freed instead of calling GMM for
1361 * each and every one of them.
1362 */
1363 uint32_t cPendingPages = 0;
1364 PGMMFREEPAGESREQ pReq;
1365 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1366 AssertLogRelRCReturn(rc, rc);
1367
1368 /*
1369 * Walk the ram ranges.
1370 */
1371 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
1372 {
1373 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
1374 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
1375
1376 if (!pVM->pgm.s.fRamPreAlloc)
1377 {
1378 /* Replace all RAM pages by ZERO pages. */
1379 while (iPage-- > 0)
1380 {
1381 PPGMPAGE pPage = &pRam->aPages[iPage];
1382 switch (PGM_PAGE_GET_TYPE(pPage))
1383 {
1384 case PGMPAGETYPE_RAM:
1385 /* Do not replace pages part of a 2 MB continuous range with zero pages, but zero them instead. */
1386 if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE)
1387 {
1388 void *pvPage;
1389 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
1390 AssertLogRelRCReturn(rc, rc);
1391 ASMMemZeroPage(pvPage);
1392 }
1393 else
1394 if (PGM_PAGE_IS_BALLOONED(pPage))
1395 {
1396 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
1397 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
1398 }
1399 else
1400 if (!PGM_PAGE_IS_ZERO(pPage))
1401 {
1402 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1403 AssertLogRelRCReturn(rc, rc);
1404 }
1405 break;
1406
1407 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1408 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1409 break;
1410
1411 case PGMPAGETYPE_MMIO2:
1412 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
1413 case PGMPAGETYPE_ROM:
1414 case PGMPAGETYPE_MMIO:
1415 break;
1416 default:
1417 AssertFailed();
1418 }
1419 } /* for each page */
1420 }
1421 else
1422 {
1423 /* Zero the memory. */
1424 while (iPage-- > 0)
1425 {
1426 PPGMPAGE pPage = &pRam->aPages[iPage];
1427 switch (PGM_PAGE_GET_TYPE(pPage))
1428 {
1429 case PGMPAGETYPE_RAM:
1430 switch (PGM_PAGE_GET_STATE(pPage))
1431 {
1432 case PGM_PAGE_STATE_ZERO:
1433 break;
1434
1435 case PGM_PAGE_STATE_BALLOONED:
1436 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
1437 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
1438 break;
1439
1440 case PGM_PAGE_STATE_SHARED:
1441 case PGM_PAGE_STATE_WRITE_MONITORED:
1442 rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1443 AssertLogRelRCReturn(rc, rc);
1444 /* no break */
1445
1446 case PGM_PAGE_STATE_ALLOCATED:
1447 {
1448 void *pvPage;
1449 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
1450 AssertLogRelRCReturn(rc, rc);
1451 ASMMemZeroPage(pvPage);
1452 break;
1453 }
1454 }
1455 break;
1456
1457 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1458 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1459 break;
1460
1461 case PGMPAGETYPE_MMIO2:
1462 case PGMPAGETYPE_ROM_SHADOW:
1463 case PGMPAGETYPE_ROM:
1464 case PGMPAGETYPE_MMIO:
1465 break;
1466 default:
1467 AssertFailed();
1468
1469 }
1470 } /* for each page */
1471 }
1472
1473 }
1474
1475 /*
1476 * Finish off any pages pending freeing.
1477 */
1478 if (cPendingPages)
1479 {
1480 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
1481 AssertLogRelRCReturn(rc, rc);
1482 }
1483 GMMR3FreePagesCleanup(pReq);
1484
1485 return VINF_SUCCESS;
1486}
1487
1488
1489/**
1490 * This is the interface IOM is using to register an MMIO region.
1491 *
1492 * It will check for conflicts and ensure that a RAM range structure
1493 * is present before calling the PGMR3HandlerPhysicalRegister API to
1494 * register the callbacks.
1495 *
1496 * @returns VBox status code.
1497 *
1498 * @param pVM Pointer to the shared VM structure.
1499 * @param GCPhys The start of the MMIO region.
1500 * @param cb The size of the MMIO region.
1501 * @param pfnHandlerR3 The address of the ring-3 handler. (IOMR3MMIOHandler)
1502 * @param pvUserR3 The user argument for R3.
1503 * @param pfnHandlerR0 The address of the ring-0 handler. (IOMMMIOHandler)
1504 * @param pvUserR0 The user argument for R0.
1505 * @param pfnHandlerRC The address of the RC handler. (IOMMMIOHandler)
1506 * @param pvUserRC The user argument for RC.
1507 * @param pszDesc The description of the MMIO region.
1508 */
1509VMMR3DECL(int) PGMR3PhysMMIORegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb,
1510 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3, RTR3PTR pvUserR3,
1511 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0, RTR0PTR pvUserR0,
1512 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnHandlerRC, RTRCPTR pvUserRC,
1513 R3PTRTYPE(const char *) pszDesc)
1514{
1515 /*
1516 * Assert on some assumption.
1517 */
1518 VM_ASSERT_EMT(pVM);
1519 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1520 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1521 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1522 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
1523
1524 /*
1525 * Make sure there's a RAM range structure for the region.
1526 */
1527 int rc;
1528 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1529 bool fRamExists = false;
1530 PPGMRAMRANGE pRamPrev = NULL;
1531 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1532 while (pRam && GCPhysLast >= pRam->GCPhys)
1533 {
1534 if ( GCPhysLast >= pRam->GCPhys
1535 && GCPhys <= pRam->GCPhysLast)
1536 {
1537 /* Simplification: all within the same range. */
1538 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
1539 && GCPhysLast <= pRam->GCPhysLast,
1540 ("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n",
1541 GCPhys, GCPhysLast, pszDesc,
1542 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1543 VERR_PGM_RAM_CONFLICT);
1544
1545 /* Check that it's all RAM or MMIO pages. */
1546 PCPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1547 uint32_t cLeft = cb >> PAGE_SHIFT;
1548 while (cLeft-- > 0)
1549 {
1550 AssertLogRelMsgReturn( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1551 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO,
1552 ("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n",
1553 GCPhys, GCPhysLast, pszDesc, PGM_PAGE_GET_TYPE(pPage), pRam->pszDesc),
1554 VERR_PGM_RAM_CONFLICT);
1555 pPage++;
1556 }
1557
1558 /* Looks good. */
1559 fRamExists = true;
1560 break;
1561 }
1562
1563 /* next */
1564 pRamPrev = pRam;
1565 pRam = pRam->pNextR3;
1566 }
1567 PPGMRAMRANGE pNew;
1568 if (fRamExists)
1569 {
1570 pNew = NULL;
1571
1572 /*
1573 * Make all the pages in the range MMIO/ZERO pages, freeing any
1574 * RAM pages currently mapped here. This might not be 100% correct
1575 * for PCI memory, but we're doing the same thing for MMIO2 pages.
1576 */
1577 rc = pgmLock(pVM);
1578 if (RT_SUCCESS(rc))
1579 {
1580 rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO);
1581 pgmUnlock(pVM);
1582 }
1583 AssertRCReturn(rc, rc);
1584 }
1585 else
1586 {
1587 pgmLock(pVM);
1588
1589 /*
1590 * No RAM range, insert an ad hoc one.
1591 *
1592 * Note that we don't have to tell REM about this range because
1593 * PGMHandlerPhysicalRegisterEx will do that for us.
1594 */
1595 Log(("PGMR3PhysMMIORegister: Adding ad hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc));
1596
1597 const uint32_t cPages = cb >> PAGE_SHIFT;
1598 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
1599 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), 16, MM_TAG_PGM_PHYS, (void **)&pNew);
1600 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
1601
1602 /* Initialize the range. */
1603 pNew->pSelfR0 = MMHyperCCToR0(pVM, pNew);
1604 pNew->pSelfRC = MMHyperCCToRC(pVM, pNew);
1605 pNew->GCPhys = GCPhys;
1606 pNew->GCPhysLast = GCPhysLast;
1607 pNew->cb = cb;
1608 pNew->pszDesc = pszDesc;
1609 pNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO;
1610 pNew->pvR3 = NULL;
1611 pNew->paLSPages = NULL;
1612
1613 uint32_t iPage = cPages;
1614 while (iPage-- > 0)
1615 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO);
1616 Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO);
1617
1618 /* update the page count stats. */
1619 pVM->pgm.s.cPureMmioPages += cPages;
1620 pVM->pgm.s.cAllPages += cPages;
1621
1622 /* link it */
1623 pgmR3PhysLinkRamRange(pVM, pNew, pRamPrev);
1624
1625 pgmUnlock(pVM);
1626 }
1627
1628 /*
1629 * Register the access handler.
1630 */
1631 rc = PGMHandlerPhysicalRegisterEx(pVM, PGMPHYSHANDLERTYPE_MMIO, GCPhys, GCPhysLast,
1632 pfnHandlerR3, pvUserR3,
1633 pfnHandlerR0, pvUserR0,
1634 pfnHandlerRC, pvUserRC, pszDesc);
1635 if ( RT_FAILURE(rc)
1636 && !fRamExists)
1637 {
1638 pVM->pgm.s.cPureMmioPages -= cb >> PAGE_SHIFT;
1639 pVM->pgm.s.cAllPages -= cb >> PAGE_SHIFT;
1640
1641 /* remove the ad hoc range. */
1642 pgmR3PhysUnlinkRamRange2(pVM, pNew, pRamPrev);
1643 pNew->cb = pNew->GCPhys = pNew->GCPhysLast = NIL_RTGCPHYS;
1644 MMHyperFree(pVM, pRam);
1645 }
1646 PGMPhysInvalidatePageMapTLB(pVM);
1647
1648 return rc;
1649}
1650
1651
1652/**
1653 * This is the interface IOM is using to register an MMIO region.
1654 *
1655 * It will take care of calling PGMHandlerPhysicalDeregister and clean up
1656 * any ad hoc PGMRAMRANGE left behind.
1657 *
1658 * @returns VBox status code.
1659 * @param pVM Pointer to the shared VM structure.
1660 * @param GCPhys The start of the MMIO region.
1661 * @param cb The size of the MMIO region.
1662 */
1663VMMR3DECL(int) PGMR3PhysMMIODeregister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
1664{
1665 VM_ASSERT_EMT(pVM);
1666
1667 /*
1668 * First deregister the handler, then check if we should remove the ram range.
1669 */
1670 int rc = PGMHandlerPhysicalDeregister(pVM, GCPhys);
1671 if (RT_SUCCESS(rc))
1672 {
1673 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1674 PPGMRAMRANGE pRamPrev = NULL;
1675 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1676 while (pRam && GCPhysLast >= pRam->GCPhys)
1677 {
1678 /** @todo We're being a bit too careful here. rewrite. */
1679 if ( GCPhysLast == pRam->GCPhysLast
1680 && GCPhys == pRam->GCPhys)
1681 {
1682 Assert(pRam->cb == cb);
1683
1684 /*
1685 * See if all the pages are dead MMIO pages.
1686 */
1687 uint32_t const cPages = cb >> PAGE_SHIFT;
1688 bool fAllMMIO = true;
1689 uint32_t iPage = 0;
1690 uint32_t cLeft = cPages;
1691 while (cLeft-- > 0)
1692 {
1693 PPGMPAGE pPage = &pRam->aPages[iPage];
1694 if ( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO
1695 /*|| not-out-of-action later */)
1696 {
1697 fAllMMIO = false;
1698 Assert(PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO2_ALIAS_MMIO);
1699 AssertMsgFailed(("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1700 break;
1701 }
1702 Assert(PGM_PAGE_IS_ZERO(pPage));
1703 pPage++;
1704 }
1705 if (fAllMMIO)
1706 {
1707 /*
1708 * Ad-hoc range, unlink and free it.
1709 */
1710 Log(("PGMR3PhysMMIODeregister: Freeing ad hoc MMIO range for %RGp-%RGp %s\n",
1711 GCPhys, GCPhysLast, pRam->pszDesc));
1712
1713 pVM->pgm.s.cAllPages -= cPages;
1714 pVM->pgm.s.cPureMmioPages -= cPages;
1715
1716 pgmR3PhysUnlinkRamRange2(pVM, pRam, pRamPrev);
1717 pRam->cb = pRam->GCPhys = pRam->GCPhysLast = NIL_RTGCPHYS;
1718 MMHyperFree(pVM, pRam);
1719 break;
1720 }
1721 }
1722
1723 /*
1724 * Range match? It will all be within one range (see PGMAllHandler.cpp).
1725 */
1726 if ( GCPhysLast >= pRam->GCPhys
1727 && GCPhys <= pRam->GCPhysLast)
1728 {
1729 Assert(GCPhys >= pRam->GCPhys);
1730 Assert(GCPhysLast <= pRam->GCPhysLast);
1731
1732 /*
1733 * Turn the pages back into RAM pages.
1734 */
1735 uint32_t iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
1736 uint32_t cLeft = cb >> PAGE_SHIFT;
1737 while (cLeft--)
1738 {
1739 PPGMPAGE pPage = &pRam->aPages[iPage];
1740 AssertMsg(PGM_PAGE_IS_MMIO(pPage), ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1741 AssertMsg(PGM_PAGE_IS_ZERO(pPage), ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1742 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO)
1743 PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_RAM);
1744 }
1745 break;
1746 }
1747
1748 /* next */
1749 pRamPrev = pRam;
1750 pRam = pRam->pNextR3;
1751 }
1752 }
1753
1754 PGMPhysInvalidatePageMapTLB(pVM);
1755 return rc;
1756}
1757
1758
1759/**
1760 * Locate a MMIO2 range.
1761 *
1762 * @returns Pointer to the MMIO2 range.
1763 * @param pVM Pointer to the shared VM structure.
1764 * @param pDevIns The device instance owning the region.
1765 * @param iRegion The region.
1766 */
1767DECLINLINE(PPGMMMIO2RANGE) pgmR3PhysMMIO2Find(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
1768{
1769 /*
1770 * Search the list.
1771 */
1772 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
1773 if ( pCur->pDevInsR3 == pDevIns
1774 && pCur->iRegion == iRegion)
1775 return pCur;
1776 return NULL;
1777}
1778
1779
1780/**
1781 * Allocate and register an MMIO2 region.
1782 *
1783 * As mentioned elsewhere, MMIO2 is just RAM spelled differently. It's
1784 * RAM associated with a device. It is also non-shared memory with a
1785 * permanent ring-3 mapping and page backing (presently).
1786 *
1787 * A MMIO2 range may overlap with base memory if a lot of RAM
1788 * is configured for the VM, in which case we'll drop the base
1789 * memory pages. Presently we will make no attempt to preserve
1790 * anything that happens to be present in the base memory that
1791 * is replaced, this is of course incorrectly but it's too much
1792 * effort.
1793 *
1794 * @returns VBox status code.
1795 * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the memory.
1796 * @retval VERR_ALREADY_EXISTS if the region already exists.
1797 *
1798 * @param pVM Pointer to the shared VM structure.
1799 * @param pDevIns The device instance owning the region.
1800 * @param iRegion The region number. If the MMIO2 memory is a PCI I/O region
1801 * this number has to be the number of that region. Otherwise
1802 * it can be any number safe UINT8_MAX.
1803 * @param cb The size of the region. Must be page aligned.
1804 * @param fFlags Reserved for future use, must be zero.
1805 * @param ppv Where to store the pointer to the ring-3 mapping of the memory.
1806 * @param pszDesc The description.
1807 */
1808VMMR3DECL(int) PGMR3PhysMMIO2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS cb, uint32_t fFlags, void **ppv, const char *pszDesc)
1809{
1810 /*
1811 * Validate input.
1812 */
1813 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1814 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1815 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
1816 AssertPtrReturn(ppv, VERR_INVALID_POINTER);
1817 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1818 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
1819 AssertReturn(pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion) == NULL, VERR_ALREADY_EXISTS);
1820 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1821 AssertReturn(cb, VERR_INVALID_PARAMETER);
1822 AssertReturn(!fFlags, VERR_INVALID_PARAMETER);
1823
1824 const uint32_t cPages = cb >> PAGE_SHIFT;
1825 AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cb, VERR_INVALID_PARAMETER);
1826 AssertLogRelReturn(cPages <= INT32_MAX / 2, VERR_NO_MEMORY);
1827
1828 /*
1829 * For the 2nd+ instance, mangle the description string so it's unique.
1830 */
1831 if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */
1832 {
1833 pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance);
1834 if (!pszDesc)
1835 return VERR_NO_MEMORY;
1836 }
1837
1838 /*
1839 * Try reserve and allocate the backing memory first as this is what is
1840 * most likely to fail.
1841 */
1842 int rc = MMR3AdjustFixedReservation(pVM, cPages, pszDesc);
1843 if (RT_SUCCESS(rc))
1844 {
1845 void *pvPages;
1846 PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cPages * sizeof(SUPPAGE));
1847 if (RT_SUCCESS(rc))
1848 rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, NULL /*pR0Ptr*/, paPages);
1849 if (RT_SUCCESS(rc))
1850 {
1851 memset(pvPages, 0, cPages * PAGE_SIZE);
1852
1853 /*
1854 * Create the MMIO2 range record for it.
1855 */
1856 const size_t cbRange = RT_OFFSETOF(PGMMMIO2RANGE, RamRange.aPages[cPages]);
1857 PPGMMMIO2RANGE pNew;
1858 rc = MMR3HyperAllocOnceNoRel(pVM, cbRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1859 AssertLogRelMsgRC(rc, ("cbRamRange=%zu\n", cbRange));
1860 if (RT_SUCCESS(rc))
1861 {
1862 pNew->pDevInsR3 = pDevIns;
1863 pNew->pvR3 = pvPages;
1864 //pNew->pNext = NULL;
1865 //pNew->fMapped = false;
1866 //pNew->fOverlapping = false;
1867 pNew->iRegion = iRegion;
1868 pNew->idSavedState = UINT8_MAX;
1869 pNew->RamRange.pSelfR0 = MMHyperCCToR0(pVM, &pNew->RamRange);
1870 pNew->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pNew->RamRange);
1871 pNew->RamRange.GCPhys = NIL_RTGCPHYS;
1872 pNew->RamRange.GCPhysLast = NIL_RTGCPHYS;
1873 pNew->RamRange.pszDesc = pszDesc;
1874 pNew->RamRange.cb = cb;
1875 pNew->RamRange.fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO2;
1876 pNew->RamRange.pvR3 = pvPages;
1877 //pNew->RamRange.paLSPages = NULL;
1878
1879 uint32_t iPage = cPages;
1880 while (iPage-- > 0)
1881 {
1882 PGM_PAGE_INIT(&pNew->RamRange.aPages[iPage],
1883 paPages[iPage].Phys, NIL_GMM_PAGEID,
1884 PGMPAGETYPE_MMIO2, PGM_PAGE_STATE_ALLOCATED);
1885 }
1886
1887 /* update page count stats */
1888 pVM->pgm.s.cAllPages += cPages;
1889 pVM->pgm.s.cPrivatePages += cPages;
1890
1891 /*
1892 * Link it into the list.
1893 * Since there is no particular order, just push it.
1894 */
1895 pgmLock(pVM);
1896 pNew->pNextR3 = pVM->pgm.s.pMmio2RangesR3;
1897 pVM->pgm.s.pMmio2RangesR3 = pNew;
1898 pgmUnlock(pVM);
1899
1900 *ppv = pvPages;
1901 RTMemTmpFree(paPages);
1902 PGMPhysInvalidatePageMapTLB(pVM);
1903 return VINF_SUCCESS;
1904 }
1905
1906 SUPR3PageFreeEx(pvPages, cPages);
1907 }
1908 RTMemTmpFree(paPages);
1909 MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pszDesc);
1910 }
1911 if (pDevIns->iInstance > 0)
1912 MMR3HeapFree((void *)pszDesc);
1913 return rc;
1914}
1915
1916
1917/**
1918 * Deregisters and frees an MMIO2 region.
1919 *
1920 * Any physical (and virtual) access handlers registered for the region must
1921 * be deregistered before calling this function.
1922 *
1923 * @returns VBox status code.
1924 * @param pVM Pointer to the shared VM structure.
1925 * @param pDevIns The device instance owning the region.
1926 * @param iRegion The region. If it's UINT32_MAX it'll be a wildcard match.
1927 */
1928VMMR3DECL(int) PGMR3PhysMMIO2Deregister(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
1929{
1930 /*
1931 * Validate input.
1932 */
1933 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1934 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1935 AssertReturn(iRegion <= UINT8_MAX || iRegion == UINT32_MAX, VERR_INVALID_PARAMETER);
1936
1937 pgmLock(pVM);
1938 int rc = VINF_SUCCESS;
1939 unsigned cFound = 0;
1940 PPGMMMIO2RANGE pPrev = NULL;
1941 PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3;
1942 while (pCur)
1943 {
1944 if ( pCur->pDevInsR3 == pDevIns
1945 && ( iRegion == UINT32_MAX
1946 || pCur->iRegion == iRegion))
1947 {
1948 cFound++;
1949
1950 /*
1951 * Unmap it if it's mapped.
1952 */
1953 if (pCur->fMapped)
1954 {
1955 int rc2 = PGMR3PhysMMIO2Unmap(pVM, pCur->pDevInsR3, pCur->iRegion, pCur->RamRange.GCPhys);
1956 AssertRC(rc2);
1957 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1958 rc = rc2;
1959 }
1960
1961 /*
1962 * Unlink it
1963 */
1964 PPGMMMIO2RANGE pNext = pCur->pNextR3;
1965 if (pPrev)
1966 pPrev->pNextR3 = pNext;
1967 else
1968 pVM->pgm.s.pMmio2RangesR3 = pNext;
1969 pCur->pNextR3 = NULL;
1970
1971 /*
1972 * Free the memory.
1973 */
1974 int rc2 = SUPR3PageFreeEx(pCur->pvR3, pCur->RamRange.cb >> PAGE_SHIFT);
1975 AssertRC(rc2);
1976 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1977 rc = rc2;
1978
1979 uint32_t const cPages = pCur->RamRange.cb >> PAGE_SHIFT;
1980 rc2 = MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pCur->RamRange.pszDesc);
1981 AssertRC(rc2);
1982 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1983 rc = rc2;
1984
1985 /* we're leaking hyper memory here if done at runtime. */
1986#ifdef VBOX_STRICT
1987 VMSTATE const enmState = VMR3GetState(pVM);
1988 AssertMsg( enmState == VMSTATE_POWERING_OFF
1989 || enmState == VMSTATE_POWERING_OFF_LS
1990 || enmState == VMSTATE_OFF
1991 || enmState == VMSTATE_OFF_LS
1992 || enmState == VMSTATE_DESTROYING
1993 || enmState == VMSTATE_TERMINATED
1994 || enmState == VMSTATE_CREATING
1995 , ("%s\n", VMR3GetStateName(enmState)));
1996#endif
1997 /*rc = MMHyperFree(pVM, pCur);
1998 AssertRCReturn(rc, rc); - not safe, see the alloc call. */
1999
2000
2001 /* update page count stats */
2002 pVM->pgm.s.cAllPages -= cPages;
2003 pVM->pgm.s.cPrivatePages -= cPages;
2004
2005 /* next */
2006 pCur = pNext;
2007 }
2008 else
2009 {
2010 pPrev = pCur;
2011 pCur = pCur->pNextR3;
2012 }
2013 }
2014 PGMPhysInvalidatePageMapTLB(pVM);
2015 pgmUnlock(pVM);
2016 return !cFound && iRegion != UINT32_MAX ? VERR_NOT_FOUND : rc;
2017}
2018
2019
2020/**
2021 * Maps a MMIO2 region.
2022 *
2023 * This is done when a guest / the bios / state loading changes the
2024 * PCI config. The replacing of base memory has the same restrictions
2025 * as during registration, of course.
2026 *
2027 * @returns VBox status code.
2028 *
2029 * @param pVM Pointer to the shared VM structure.
2030 * @param pDevIns The
2031 */
2032VMMR3DECL(int) PGMR3PhysMMIO2Map(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
2033{
2034 /*
2035 * Validate input
2036 */
2037 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2038 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2039 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2040 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
2041 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
2042 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2043
2044 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2045 AssertReturn(pCur, VERR_NOT_FOUND);
2046 AssertReturn(!pCur->fMapped, VERR_WRONG_ORDER);
2047 Assert(pCur->RamRange.GCPhys == NIL_RTGCPHYS);
2048 Assert(pCur->RamRange.GCPhysLast == NIL_RTGCPHYS);
2049
2050 const RTGCPHYS GCPhysLast = GCPhys + pCur->RamRange.cb - 1;
2051 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
2052
2053 /*
2054 * Find our location in the ram range list, checking for
2055 * restriction we don't bother implementing yet (partially overlapping).
2056 */
2057 bool fRamExists = false;
2058 PPGMRAMRANGE pRamPrev = NULL;
2059 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
2060 while (pRam && GCPhysLast >= pRam->GCPhys)
2061 {
2062 if ( GCPhys <= pRam->GCPhysLast
2063 && GCPhysLast >= pRam->GCPhys)
2064 {
2065 /* completely within? */
2066 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
2067 && GCPhysLast <= pRam->GCPhysLast,
2068 ("%RGp-%RGp (MMIO2/%s) falls partly outside %RGp-%RGp (%s)\n",
2069 GCPhys, GCPhysLast, pCur->RamRange.pszDesc,
2070 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2071 VERR_PGM_RAM_CONFLICT);
2072 fRamExists = true;
2073 break;
2074 }
2075
2076 /* next */
2077 pRamPrev = pRam;
2078 pRam = pRam->pNextR3;
2079 }
2080 if (fRamExists)
2081 {
2082 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2083 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2084 while (cPagesLeft-- > 0)
2085 {
2086 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
2087 ("%RGp isn't a RAM page (%d) - mapping %RGp-%RGp (MMIO2/%s).\n",
2088 GCPhys, PGM_PAGE_GET_TYPE(pPage), GCPhys, GCPhysLast, pCur->RamRange.pszDesc),
2089 VERR_PGM_RAM_CONFLICT);
2090 pPage++;
2091 }
2092 }
2093 Log(("PGMR3PhysMMIO2Map: %RGp-%RGp fRamExists=%RTbool %s\n",
2094 GCPhys, GCPhysLast, fRamExists, pCur->RamRange.pszDesc));
2095
2096 /*
2097 * Make the changes.
2098 */
2099 pgmLock(pVM);
2100
2101 pCur->RamRange.GCPhys = GCPhys;
2102 pCur->RamRange.GCPhysLast = GCPhysLast;
2103 pCur->fMapped = true;
2104 pCur->fOverlapping = fRamExists;
2105
2106 if (fRamExists)
2107 {
2108/** @todo use pgmR3PhysFreePageRange here. */
2109 uint32_t cPendingPages = 0;
2110 PGMMFREEPAGESREQ pReq;
2111 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2112 AssertLogRelRCReturn(rc, rc);
2113
2114 /* replace the pages, freeing all present RAM pages. */
2115 PPGMPAGE pPageSrc = &pCur->RamRange.aPages[0];
2116 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2117 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2118 while (cPagesLeft-- > 0)
2119 {
2120 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
2121 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
2122
2123 RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc);
2124 PGM_PAGE_SET_HCPHYS(pPageDst, HCPhys);
2125 PGM_PAGE_SET_TYPE(pPageDst, PGMPAGETYPE_MMIO2);
2126 PGM_PAGE_SET_STATE(pPageDst, PGM_PAGE_STATE_ALLOCATED);
2127
2128 pVM->pgm.s.cZeroPages--;
2129 GCPhys += PAGE_SIZE;
2130 pPageSrc++;
2131 pPageDst++;
2132 }
2133
2134 /* Flush physical page map TLB. */
2135 PGMPhysInvalidatePageMapTLB(pVM);
2136
2137 if (cPendingPages)
2138 {
2139 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2140 AssertLogRelRCReturn(rc, rc);
2141 }
2142 GMMR3FreePagesCleanup(pReq);
2143 pgmUnlock(pVM);
2144 }
2145 else
2146 {
2147 RTGCPHYS cb = pCur->RamRange.cb;
2148
2149 /* link in the ram range */
2150 pgmR3PhysLinkRamRange(pVM, &pCur->RamRange, pRamPrev);
2151 pgmUnlock(pVM);
2152
2153 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_MMIO2);
2154 }
2155
2156 PGMPhysInvalidatePageMapTLB(pVM);
2157 return VINF_SUCCESS;
2158}
2159
2160
2161/**
2162 * Unmaps a MMIO2 region.
2163 *
2164 * This is done when a guest / the bios / state loading changes the
2165 * PCI config. The replacing of base memory has the same restrictions
2166 * as during registration, of course.
2167 */
2168VMMR3DECL(int) PGMR3PhysMMIO2Unmap(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
2169{
2170 /*
2171 * Validate input
2172 */
2173 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2174 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2175 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2176 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
2177 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
2178 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2179
2180 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2181 AssertReturn(pCur, VERR_NOT_FOUND);
2182 AssertReturn(pCur->fMapped, VERR_WRONG_ORDER);
2183 AssertReturn(pCur->RamRange.GCPhys == GCPhys, VERR_INVALID_PARAMETER);
2184 Assert(pCur->RamRange.GCPhysLast != NIL_RTGCPHYS);
2185
2186 Log(("PGMR3PhysMMIO2Unmap: %RGp-%RGp %s\n",
2187 pCur->RamRange.GCPhys, pCur->RamRange.GCPhysLast, pCur->RamRange.pszDesc));
2188
2189 /*
2190 * Unmap it.
2191 */
2192 pgmLock(pVM);
2193
2194 RTGCPHYS GCPhysRangeREM;
2195 RTGCPHYS cbRangeREM;
2196 bool fInformREM;
2197 if (pCur->fOverlapping)
2198 {
2199 /* Restore the RAM pages we've replaced. */
2200 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
2201 while (pRam->GCPhys > pCur->RamRange.GCPhysLast)
2202 pRam = pRam->pNextR3;
2203
2204 RTHCPHYS const HCPhysZeroPg = pVM->pgm.s.HCPhysZeroPg;
2205 Assert(HCPhysZeroPg != 0 && HCPhysZeroPg != NIL_RTHCPHYS);
2206 PPGMPAGE pPageDst = &pRam->aPages[(pCur->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2207 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2208 while (cPagesLeft-- > 0)
2209 {
2210 PGM_PAGE_SET_HCPHYS(pPageDst, HCPhysZeroPg);
2211 PGM_PAGE_SET_TYPE(pPageDst, PGMPAGETYPE_RAM);
2212 PGM_PAGE_SET_STATE(pPageDst, PGM_PAGE_STATE_ZERO);
2213 PGM_PAGE_SET_PAGEID(pPageDst, NIL_GMM_PAGEID);
2214 PGM_PAGE_SET_PDE_TYPE(pPageDst, PGM_PAGE_PDE_TYPE_DONTCARE);
2215
2216 pVM->pgm.s.cZeroPages++;
2217 pPageDst++;
2218 }
2219
2220 /* Flush physical page map TLB. */
2221 PGMPhysInvalidatePageMapTLB(pVM);
2222
2223 GCPhysRangeREM = NIL_RTGCPHYS; /* shuts up gcc */
2224 cbRangeREM = RTGCPHYS_MAX; /* ditto */
2225 fInformREM = false;
2226 }
2227 else
2228 {
2229 GCPhysRangeREM = pCur->RamRange.GCPhys;
2230 cbRangeREM = pCur->RamRange.cb;
2231 fInformREM = true;
2232
2233 pgmR3PhysUnlinkRamRange(pVM, &pCur->RamRange);
2234 }
2235
2236 pCur->RamRange.GCPhys = NIL_RTGCPHYS;
2237 pCur->RamRange.GCPhysLast = NIL_RTGCPHYS;
2238 pCur->fOverlapping = false;
2239 pCur->fMapped = false;
2240
2241 PGMPhysInvalidatePageMapTLB(pVM);
2242 pgmUnlock(pVM);
2243
2244 if (fInformREM)
2245 REMR3NotifyPhysRamDeregister(pVM, GCPhysRangeREM, cbRangeREM);
2246
2247 return VINF_SUCCESS;
2248}
2249
2250
2251/**
2252 * Checks if the given address is an MMIO2 base address or not.
2253 *
2254 * @returns true/false accordingly.
2255 * @param pVM Pointer to the shared VM structure.
2256 * @param pDevIns The owner of the memory, optional.
2257 * @param GCPhys The address to check.
2258 */
2259VMMR3DECL(bool) PGMR3PhysMMIO2IsBase(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys)
2260{
2261 /*
2262 * Validate input
2263 */
2264 VM_ASSERT_EMT_RETURN(pVM, false);
2265 AssertPtrReturn(pDevIns, false);
2266 AssertReturn(GCPhys != NIL_RTGCPHYS, false);
2267 AssertReturn(GCPhys != 0, false);
2268 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), false);
2269
2270 /*
2271 * Search the list.
2272 */
2273 pgmLock(pVM);
2274 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2275 if (pCur->RamRange.GCPhys == GCPhys)
2276 {
2277 Assert(pCur->fMapped);
2278 pgmUnlock(pVM);
2279 return true;
2280 }
2281 pgmUnlock(pVM);
2282 return false;
2283}
2284
2285
2286/**
2287 * Gets the HC physical address of a page in the MMIO2 region.
2288 *
2289 * This is API is intended for MMHyper and shouldn't be called
2290 * by anyone else...
2291 *
2292 * @returns VBox status code.
2293 * @param pVM Pointer to the shared VM structure.
2294 * @param pDevIns The owner of the memory, optional.
2295 * @param iRegion The region.
2296 * @param off The page expressed an offset into the MMIO2 region.
2297 * @param pHCPhys Where to store the result.
2298 */
2299VMMR3DECL(int) PGMR3PhysMMIO2GetHCPhys(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, PRTHCPHYS pHCPhys)
2300{
2301 /*
2302 * Validate input
2303 */
2304 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2305 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2306 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2307
2308 pgmLock(pVM);
2309 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2310 AssertReturn(pCur, VERR_NOT_FOUND);
2311 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2312
2313 PCPGMPAGE pPage = &pCur->RamRange.aPages[off >> PAGE_SHIFT];
2314 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage);
2315 pgmUnlock(pVM);
2316 return VINF_SUCCESS;
2317}
2318
2319
2320/**
2321 * Maps a portion of an MMIO2 region into kernel space (host).
2322 *
2323 * The kernel mapping will become invalid when the MMIO2 memory is deregistered
2324 * or the VM is terminated.
2325 *
2326 * @return VBox status code.
2327 *
2328 * @param pVM Pointer to the shared VM structure.
2329 * @param pDevIns The device owning the MMIO2 memory.
2330 * @param iRegion The region.
2331 * @param off The offset into the region. Must be page aligned.
2332 * @param cb The number of bytes to map. Must be page aligned.
2333 * @param pszDesc Mapping description.
2334 * @param pR0Ptr Where to store the R0 address.
2335 */
2336VMMR3DECL(int) PGMR3PhysMMIO2MapKernel(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, RTGCPHYS cb,
2337 const char *pszDesc, PRTR0PTR pR0Ptr)
2338{
2339 /*
2340 * Validate input.
2341 */
2342 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2343 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2344 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2345
2346 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2347 AssertReturn(pCur, VERR_NOT_FOUND);
2348 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2349 AssertReturn(cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2350 AssertReturn(off + cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2351
2352 /*
2353 * Pass the request on to the support library/driver.
2354 */
2355 int rc = SUPR3PageMapKernel(pCur->pvR3, off, cb, 0, pR0Ptr);
2356
2357 return rc;
2358}
2359
2360
2361/**
2362 * Registers a ROM image.
2363 *
2364 * Shadowed ROM images requires double the amount of backing memory, so,
2365 * don't use that unless you have to. Shadowing of ROM images is process
2366 * where we can select where the reads go and where the writes go. On real
2367 * hardware the chipset provides means to configure this. We provide
2368 * PGMR3PhysProtectROM() for this purpose.
2369 *
2370 * A read-only copy of the ROM image will always be kept around while we
2371 * will allocate RAM pages for the changes on demand (unless all memory
2372 * is configured to be preallocated).
2373 *
2374 * @returns VBox status.
2375 * @param pVM VM Handle.
2376 * @param pDevIns The device instance owning the ROM.
2377 * @param GCPhys First physical address in the range.
2378 * Must be page aligned!
2379 * @param cbRange The size of the range (in bytes).
2380 * Must be page aligned!
2381 * @param pvBinary Pointer to the binary data backing the ROM image.
2382 * This must be exactly \a cbRange in size.
2383 * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
2384 * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
2385 * @param pszDesc Pointer to description string. This must not be freed.
2386 *
2387 * @remark There is no way to remove the rom, automatically on device cleanup or
2388 * manually from the device yet. This isn't difficult in any way, it's
2389 * just not something we expect to be necessary for a while.
2390 */
2391VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
2392 const void *pvBinary, uint32_t fFlags, const char *pszDesc)
2393{
2394 Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p fFlags=%#x pszDesc=%s\n",
2395 pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, fFlags, pszDesc));
2396
2397 /*
2398 * Validate input.
2399 */
2400 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2401 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
2402 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
2403 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2404 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
2405 AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER);
2406 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
2407 AssertReturn(!(fFlags & ~(PGMPHYS_ROM_FLAGS_SHADOWED | PGMPHYS_ROM_FLAGS_PERMANENT_BINARY)), VERR_INVALID_PARAMETER);
2408 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE);
2409
2410 const uint32_t cPages = cb >> PAGE_SHIFT;
2411
2412 /*
2413 * Find the ROM location in the ROM list first.
2414 */
2415 PPGMROMRANGE pRomPrev = NULL;
2416 PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
2417 while (pRom && GCPhysLast >= pRom->GCPhys)
2418 {
2419 if ( GCPhys <= pRom->GCPhysLast
2420 && GCPhysLast >= pRom->GCPhys)
2421 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
2422 GCPhys, GCPhysLast, pszDesc,
2423 pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc),
2424 VERR_PGM_RAM_CONFLICT);
2425 /* next */
2426 pRomPrev = pRom;
2427 pRom = pRom->pNextR3;
2428 }
2429
2430 /*
2431 * Find the RAM location and check for conflicts.
2432 *
2433 * Conflict detection is a bit different than for RAM
2434 * registration since a ROM can be located within a RAM
2435 * range. So, what we have to check for is other memory
2436 * types (other than RAM that is) and that we don't span
2437 * more than one RAM range (layz).
2438 */
2439 bool fRamExists = false;
2440 PPGMRAMRANGE pRamPrev = NULL;
2441 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
2442 while (pRam && GCPhysLast >= pRam->GCPhys)
2443 {
2444 if ( GCPhys <= pRam->GCPhysLast
2445 && GCPhysLast >= pRam->GCPhys)
2446 {
2447 /* completely within? */
2448 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
2449 && GCPhysLast <= pRam->GCPhysLast,
2450 ("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n",
2451 GCPhys, GCPhysLast, pszDesc,
2452 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2453 VERR_PGM_RAM_CONFLICT);
2454 fRamExists = true;
2455 break;
2456 }
2457
2458 /* next */
2459 pRamPrev = pRam;
2460 pRam = pRam->pNextR3;
2461 }
2462 if (fRamExists)
2463 {
2464 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2465 uint32_t cPagesLeft = cPages;
2466 while (cPagesLeft-- > 0)
2467 {
2468 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
2469 ("%RGp (%R[pgmpage]) isn't a RAM page - registering %RGp-%RGp (%s).\n",
2470 pRam->GCPhys + ((RTGCPHYS)(uintptr_t)(pPage - &pRam->aPages[0]) << PAGE_SHIFT),
2471 pPage, GCPhys, GCPhysLast, pszDesc), VERR_PGM_RAM_CONFLICT);
2472 Assert(PGM_PAGE_IS_ZERO(pPage));
2473 pPage++;
2474 }
2475 }
2476
2477 /*
2478 * Update the base memory reservation if necessary.
2479 */
2480 uint32_t cExtraBaseCost = fRamExists ? 0 : cPages;
2481 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2482 cExtraBaseCost += cPages;
2483 if (cExtraBaseCost)
2484 {
2485 int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost);
2486 if (RT_FAILURE(rc))
2487 return rc;
2488 }
2489
2490 /*
2491 * Allocate memory for the virgin copy of the RAM.
2492 */
2493 PGMMALLOCATEPAGESREQ pReq;
2494 int rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cPages, GMMACCOUNT_BASE);
2495 AssertRCReturn(rc, rc);
2496
2497 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2498 {
2499 pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << PAGE_SHIFT);
2500 pReq->aPages[iPage].idPage = NIL_GMM_PAGEID;
2501 pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID;
2502 }
2503
2504 pgmLock(pVM);
2505 rc = GMMR3AllocatePagesPerform(pVM, pReq);
2506 pgmUnlock(pVM);
2507 if (RT_FAILURE(rc))
2508 {
2509 GMMR3AllocatePagesCleanup(pReq);
2510 return rc;
2511 }
2512
2513 /*
2514 * Allocate the new ROM range and RAM range (if necessary).
2515 */
2516 PPGMROMRANGE pRomNew;
2517 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMROMRANGE, aPages[cPages]), 0, MM_TAG_PGM_PHYS, (void **)&pRomNew);
2518 if (RT_SUCCESS(rc))
2519 {
2520 PPGMRAMRANGE pRamNew = NULL;
2521 if (!fRamExists)
2522 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), sizeof(PGMPAGE), MM_TAG_PGM_PHYS, (void **)&pRamNew);
2523 if (RT_SUCCESS(rc))
2524 {
2525 pgmLock(pVM);
2526
2527 /*
2528 * Initialize and insert the RAM range (if required).
2529 */
2530 PPGMROMPAGE pRomPage = &pRomNew->aPages[0];
2531 if (!fRamExists)
2532 {
2533 pRamNew->pSelfR0 = MMHyperCCToR0(pVM, pRamNew);
2534 pRamNew->pSelfRC = MMHyperCCToRC(pVM, pRamNew);
2535 pRamNew->GCPhys = GCPhys;
2536 pRamNew->GCPhysLast = GCPhysLast;
2537 pRamNew->cb = cb;
2538 pRamNew->pszDesc = pszDesc;
2539 pRamNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_ROM;
2540 pRamNew->pvR3 = NULL;
2541 pRamNew->paLSPages = NULL;
2542
2543 PPGMPAGE pPage = &pRamNew->aPages[0];
2544 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
2545 {
2546 PGM_PAGE_INIT(pPage,
2547 pReq->aPages[iPage].HCPhysGCPhys,
2548 pReq->aPages[iPage].idPage,
2549 PGMPAGETYPE_ROM,
2550 PGM_PAGE_STATE_ALLOCATED);
2551
2552 pRomPage->Virgin = *pPage;
2553 }
2554
2555 pVM->pgm.s.cAllPages += cPages;
2556 pgmR3PhysLinkRamRange(pVM, pRamNew, pRamPrev);
2557 }
2558 else
2559 {
2560 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2561 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
2562 {
2563 PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_ROM);
2564 PGM_PAGE_SET_HCPHYS(pPage, pReq->aPages[iPage].HCPhysGCPhys);
2565 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
2566 PGM_PAGE_SET_PAGEID(pPage, pReq->aPages[iPage].idPage);
2567
2568 pRomPage->Virgin = *pPage;
2569 }
2570
2571 pRamNew = pRam;
2572
2573 pVM->pgm.s.cZeroPages -= cPages;
2574 }
2575 pVM->pgm.s.cPrivatePages += cPages;
2576
2577 /* Flush physical page map TLB. */
2578 PGMPhysInvalidatePageMapTLB(pVM);
2579
2580 pgmUnlock(pVM);
2581
2582
2583 /*
2584 * !HACK ALERT! REM + (Shadowed) ROM ==> mess.
2585 *
2586 * If it's shadowed we'll register the handler after the ROM notification
2587 * so we get the access handler callbacks that we should. If it isn't
2588 * shadowed we'll do it the other way around to make REM use the built-in
2589 * ROM behavior and not the handler behavior (which is to route all access
2590 * to PGM atm).
2591 */
2592 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2593 {
2594 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, true /* fShadowed */);
2595 rc = PGMR3HandlerPhysicalRegister(pVM,
2596 fFlags & PGMPHYS_ROM_FLAGS_SHADOWED
2597 ? PGMPHYSHANDLERTYPE_PHYSICAL_ALL
2598 : PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
2599 GCPhys, GCPhysLast,
2600 pgmR3PhysRomWriteHandler, pRomNew,
2601 NULL, "pgmPhysRomWriteHandler", MMHyperCCToR0(pVM, pRomNew),
2602 NULL, "pgmPhysRomWriteHandler", MMHyperCCToRC(pVM, pRomNew), pszDesc);
2603 }
2604 else
2605 {
2606 rc = PGMR3HandlerPhysicalRegister(pVM,
2607 fFlags & PGMPHYS_ROM_FLAGS_SHADOWED
2608 ? PGMPHYSHANDLERTYPE_PHYSICAL_ALL
2609 : PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
2610 GCPhys, GCPhysLast,
2611 pgmR3PhysRomWriteHandler, pRomNew,
2612 NULL, "pgmPhysRomWriteHandler", MMHyperCCToR0(pVM, pRomNew),
2613 NULL, "pgmPhysRomWriteHandler", MMHyperCCToRC(pVM, pRomNew), pszDesc);
2614 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, false /* fShadowed */);
2615 }
2616 if (RT_SUCCESS(rc))
2617 {
2618 pgmLock(pVM);
2619
2620 /*
2621 * Copy the image over to the virgin pages.
2622 * This must be done after linking in the RAM range.
2623 */
2624 PPGMPAGE pRamPage = &pRamNew->aPages[(GCPhys - pRamNew->GCPhys) >> PAGE_SHIFT];
2625 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++)
2626 {
2627 void *pvDstPage;
2628 rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << PAGE_SHIFT), &pvDstPage);
2629 if (RT_FAILURE(rc))
2630 {
2631 VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys);
2632 break;
2633 }
2634 memcpy(pvDstPage, (const uint8_t *)pvBinary + (iPage << PAGE_SHIFT), PAGE_SIZE);
2635 }
2636 if (RT_SUCCESS(rc))
2637 {
2638 /*
2639 * Initialize the ROM range.
2640 * Note that the Virgin member of the pages has already been initialized above.
2641 */
2642 pRomNew->GCPhys = GCPhys;
2643 pRomNew->GCPhysLast = GCPhysLast;
2644 pRomNew->cb = cb;
2645 pRomNew->fFlags = fFlags;
2646 pRomNew->idSavedState = UINT8_MAX;
2647 pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY ? pvBinary : NULL;
2648 pRomNew->pszDesc = pszDesc;
2649
2650 for (unsigned iPage = 0; iPage < cPages; iPage++)
2651 {
2652 PPGMROMPAGE pPage = &pRomNew->aPages[iPage];
2653 pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE;
2654 PGM_PAGE_INIT_ZERO(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW);
2655 }
2656
2657 /* update the page count stats for the shadow pages. */
2658 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2659 {
2660 pVM->pgm.s.cZeroPages += cPages;
2661 pVM->pgm.s.cAllPages += cPages;
2662 }
2663
2664 /*
2665 * Insert the ROM range, tell REM and return successfully.
2666 */
2667 pRomNew->pNextR3 = pRom;
2668 pRomNew->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
2669 pRomNew->pNextRC = pRom ? MMHyperCCToRC(pVM, pRom) : NIL_RTRCPTR;
2670
2671 if (pRomPrev)
2672 {
2673 pRomPrev->pNextR3 = pRomNew;
2674 pRomPrev->pNextR0 = MMHyperCCToR0(pVM, pRomNew);
2675 pRomPrev->pNextRC = MMHyperCCToRC(pVM, pRomNew);
2676 }
2677 else
2678 {
2679 pVM->pgm.s.pRomRangesR3 = pRomNew;
2680 pVM->pgm.s.pRomRangesR0 = MMHyperCCToR0(pVM, pRomNew);
2681 pVM->pgm.s.pRomRangesRC = MMHyperCCToRC(pVM, pRomNew);
2682 }
2683
2684 PGMPhysInvalidatePageMapTLB(pVM);
2685 GMMR3AllocatePagesCleanup(pReq);
2686 pgmUnlock(pVM);
2687 return VINF_SUCCESS;
2688 }
2689
2690 /* bail out */
2691
2692 pgmUnlock(pVM);
2693 int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys);
2694 AssertRC(rc2);
2695 pgmLock(pVM);
2696 }
2697
2698 if (!fRamExists)
2699 {
2700 pgmR3PhysUnlinkRamRange2(pVM, pRamNew, pRamPrev);
2701 MMHyperFree(pVM, pRamNew);
2702 }
2703 }
2704 MMHyperFree(pVM, pRomNew);
2705 }
2706
2707 /** @todo Purge the mapping cache or something... */
2708 GMMR3FreeAllocatedPages(pVM, pReq);
2709 GMMR3AllocatePagesCleanup(pReq);
2710 pgmUnlock(pVM);
2711 return rc;
2712}
2713
2714
2715/**
2716 * \#PF Handler callback for ROM write accesses.
2717 *
2718 * @returns VINF_SUCCESS if the handler have carried out the operation.
2719 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
2720 * @param pVM VM Handle.
2721 * @param GCPhys The physical address the guest is writing to.
2722 * @param pvPhys The HC mapping of that address.
2723 * @param pvBuf What the guest is reading/writing.
2724 * @param cbBuf How much it's reading/writing.
2725 * @param enmAccessType The access type.
2726 * @param pvUser User argument.
2727 */
2728static DECLCALLBACK(int) pgmR3PhysRomWriteHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser)
2729{
2730 PPGMROMRANGE pRom = (PPGMROMRANGE)pvUser;
2731 const uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
2732 Assert(iPage < (pRom->cb >> PAGE_SHIFT));
2733 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
2734 Log5(("pgmR3PhysRomWriteHandler: %d %c %#08RGp %#04zx\n", pRomPage->enmProt, enmAccessType == PGMACCESSTYPE_READ ? 'R' : 'W', GCPhys, cbBuf));
2735
2736 if (enmAccessType == PGMACCESSTYPE_READ)
2737 {
2738 switch (pRomPage->enmProt)
2739 {
2740 /*
2741 * Take the default action.
2742 */
2743 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
2744 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
2745 case PGMROMPROT_READ_ROM_WRITE_RAM:
2746 case PGMROMPROT_READ_RAM_WRITE_RAM:
2747 return VINF_PGM_HANDLER_DO_DEFAULT;
2748
2749 default:
2750 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
2751 pRom->aPages[iPage].enmProt, iPage, GCPhys),
2752 VERR_INTERNAL_ERROR);
2753 }
2754 }
2755 else
2756 {
2757 Assert(enmAccessType == PGMACCESSTYPE_WRITE);
2758 switch (pRomPage->enmProt)
2759 {
2760 /*
2761 * Ignore writes.
2762 */
2763 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
2764 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
2765 return VINF_SUCCESS;
2766
2767 /*
2768 * Write to the ram page.
2769 */
2770 case PGMROMPROT_READ_ROM_WRITE_RAM:
2771 case PGMROMPROT_READ_RAM_WRITE_RAM: /* yes this will get here too, it's *way* simpler that way. */
2772 {
2773 /* This should be impossible now, pvPhys doesn't work cross page anylonger. */
2774 Assert(((GCPhys - pRom->GCPhys + cbBuf - 1) >> PAGE_SHIFT) == iPage);
2775
2776 /*
2777 * Take the lock, do lazy allocation, map the page and copy the data.
2778 *
2779 * Note that we have to bypass the mapping TLB since it works on
2780 * guest physical addresses and entering the shadow page would
2781 * kind of screw things up...
2782 */
2783 int rc = pgmLock(pVM);
2784 AssertRC(rc);
2785
2786 PPGMPAGE pShadowPage = &pRomPage->Shadow;
2787 if (!PGMROMPROT_IS_ROM(pRomPage->enmProt))
2788 {
2789 pShadowPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
2790 AssertLogRelReturn(pShadowPage, VERR_INTERNAL_ERROR);
2791 }
2792
2793 void *pvDstPage;
2794 rc = pgmPhysPageMakeWritableAndMap(pVM, pShadowPage, GCPhys & X86_PTE_PG_MASK, &pvDstPage);
2795 if (RT_SUCCESS(rc))
2796 {
2797 memcpy((uint8_t *)pvDstPage + (GCPhys & PAGE_OFFSET_MASK), pvBuf, cbBuf);
2798 pRomPage->LiveSave.fWrittenTo = true;
2799 }
2800
2801 pgmUnlock(pVM);
2802 return rc;
2803 }
2804
2805 default:
2806 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
2807 pRom->aPages[iPage].enmProt, iPage, GCPhys),
2808 VERR_INTERNAL_ERROR);
2809 }
2810 }
2811}
2812
2813
2814/**
2815 * Called by PGMR3Reset to reset the shadow, switch to the virgin,
2816 * and verify that the virgin part is untouched.
2817 *
2818 * This is done after the normal memory has been cleared.
2819 *
2820 * ASSUMES that the caller owns the PGM lock.
2821 *
2822 * @param pVM The VM handle.
2823 */
2824int pgmR3PhysRomReset(PVM pVM)
2825{
2826 Assert(PGMIsLockOwner(pVM));
2827 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
2828 {
2829 const uint32_t cPages = pRom->cb >> PAGE_SHIFT;
2830
2831 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2832 {
2833 /*
2834 * Reset the physical handler.
2835 */
2836 int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE);
2837 AssertRCReturn(rc, rc);
2838
2839 /*
2840 * What we do with the shadow pages depends on the memory
2841 * preallocation option. If not enabled, we'll just throw
2842 * out all the dirty pages and replace them by the zero page.
2843 */
2844 if (!pVM->pgm.s.fRamPreAlloc)
2845 {
2846 /* Free the dirty pages. */
2847 uint32_t cPendingPages = 0;
2848 PGMMFREEPAGESREQ pReq;
2849 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2850 AssertRCReturn(rc, rc);
2851
2852 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2853 if ( !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow)
2854 && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow))
2855 {
2856 Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) == PGM_PAGE_STATE_ALLOCATED);
2857 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, &pRom->aPages[iPage].Shadow, pRom->GCPhys + (iPage << PAGE_SHIFT));
2858 AssertLogRelRCReturn(rc, rc);
2859 }
2860
2861 if (cPendingPages)
2862 {
2863 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2864 AssertLogRelRCReturn(rc, rc);
2865 }
2866 GMMR3FreePagesCleanup(pReq);
2867 }
2868 else
2869 {
2870 /* clear all the shadow pages. */
2871 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2872 {
2873 Assert(!PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow) && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow));
2874 void *pvDstPage;
2875 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
2876 rc = pgmPhysPageMakeWritableAndMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pvDstPage);
2877 if (RT_FAILURE(rc))
2878 break;
2879 ASMMemZeroPage(pvDstPage);
2880 }
2881 AssertRCReturn(rc, rc);
2882 }
2883 }
2884
2885#ifdef VBOX_STRICT
2886 /*
2887 * Verify that the virgin page is unchanged if possible.
2888 */
2889 if (pRom->pvOriginal)
2890 {
2891 uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal;
2892 for (uint32_t iPage = 0; iPage < cPages; iPage++, pbSrcPage += PAGE_SIZE)
2893 {
2894 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
2895 void const *pvDstPage;
2896 int rc = pgmPhysPageMapReadOnly(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPage);
2897 if (RT_FAILURE(rc))
2898 break;
2899 if (memcmp(pvDstPage, pbSrcPage, PAGE_SIZE))
2900 LogRel(("pgmR3PhysRomReset: %RGp rom page changed (%s) - loaded saved state?\n",
2901 GCPhys, pRom->pszDesc));
2902 }
2903 }
2904#endif
2905 }
2906
2907 return VINF_SUCCESS;
2908}
2909
2910
2911/**
2912 * Change the shadowing of a range of ROM pages.
2913 *
2914 * This is intended for implementing chipset specific memory registers
2915 * and will not be very strict about the input. It will silently ignore
2916 * any pages that are not the part of a shadowed ROM.
2917 *
2918 * @returns VBox status code.
2919 * @retval VINF_PGM_SYNC_CR3
2920 *
2921 * @param pVM Pointer to the shared VM structure.
2922 * @param GCPhys Where to start. Page aligned.
2923 * @param cb How much to change. Page aligned.
2924 * @param enmProt The new ROM protection.
2925 */
2926VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt)
2927{
2928 /*
2929 * Check input
2930 */
2931 if (!cb)
2932 return VINF_SUCCESS;
2933 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2934 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2935 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2936 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
2937 AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER);
2938
2939 /*
2940 * Process the request.
2941 */
2942 pgmLock(pVM);
2943 int rc = VINF_SUCCESS;
2944 bool fFlushTLB = false;
2945 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
2946 {
2947 if ( GCPhys <= pRom->GCPhysLast
2948 && GCPhysLast >= pRom->GCPhys
2949 && (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
2950 {
2951 /*
2952 * Iterate the relevant pages and make necessary the changes.
2953 */
2954 bool fChanges = false;
2955 uint32_t const cPages = pRom->GCPhysLast <= GCPhysLast
2956 ? pRom->cb >> PAGE_SHIFT
2957 : (GCPhysLast - pRom->GCPhys + 1) >> PAGE_SHIFT;
2958 for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
2959 iPage < cPages;
2960 iPage++)
2961 {
2962 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
2963 if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt))
2964 {
2965 fChanges = true;
2966
2967 /* flush references to the page. */
2968 PPGMPAGE pRamPage = pgmPhysGetPage(&pVM->pgm.s, pRom->GCPhys + (iPage << PAGE_SHIFT));
2969 int rc2 = pgmPoolTrackFlushGCPhys(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT), pRamPage, &fFlushTLB);
2970 if (rc2 != VINF_SUCCESS && (rc == VINF_SUCCESS || RT_FAILURE(rc2)))
2971 rc = rc2;
2972
2973 PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
2974 PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2975
2976 *pOld = *pRamPage;
2977 *pRamPage = *pNew;
2978 /** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */
2979 }
2980 pRomPage->enmProt = enmProt;
2981 }
2982
2983 /*
2984 * Reset the access handler if we made changes, no need
2985 * to optimize this.
2986 */
2987 if (fChanges)
2988 {
2989 int rc2 = PGMHandlerPhysicalReset(pVM, pRom->GCPhys);
2990 if (RT_FAILURE(rc2))
2991 {
2992 pgmUnlock(pVM);
2993 AssertRC(rc);
2994 return rc2;
2995 }
2996 }
2997
2998 /* Advance - cb isn't updated. */
2999 GCPhys = pRom->GCPhys + (cPages << PAGE_SHIFT);
3000 }
3001 }
3002 pgmUnlock(pVM);
3003 if (fFlushTLB)
3004 PGM_INVL_ALL_VCPU_TLBS(pVM);
3005
3006 return rc;
3007}
3008
3009
3010/**
3011 * Sets the Address Gate 20 state.
3012 *
3013 * @param pVCpu The VCPU to operate on.
3014 * @param fEnable True if the gate should be enabled.
3015 * False if the gate should be disabled.
3016 */
3017VMMDECL(void) PGMR3PhysSetA20(PVMCPU pVCpu, bool fEnable)
3018{
3019 LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVCpu->pgm.s.fA20Enabled));
3020 if (pVCpu->pgm.s.fA20Enabled != fEnable)
3021 {
3022 pVCpu->pgm.s.fA20Enabled = fEnable;
3023 pVCpu->pgm.s.GCPhysA20Mask = ~(RTGCPHYS)(!fEnable << 20);
3024 REMR3A20Set(pVCpu->pVMR3, pVCpu, fEnable);
3025 /** @todo we're not handling this correctly for VT-x / AMD-V. See #2911 */
3026 }
3027}
3028
3029
3030/**
3031 * Tree enumeration callback for dealing with age rollover.
3032 * It will perform a simple compression of the current age.
3033 */
3034static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
3035{
3036 Assert(PGMIsLockOwner((PVM)pvUser));
3037 /* Age compression - ASSUMES iNow == 4. */
3038 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
3039 if (pChunk->iAge >= UINT32_C(0xffffff00))
3040 pChunk->iAge = 3;
3041 else if (pChunk->iAge >= UINT32_C(0xfffff000))
3042 pChunk->iAge = 2;
3043 else if (pChunk->iAge)
3044 pChunk->iAge = 1;
3045 else /* iAge = 0 */
3046 pChunk->iAge = 4;
3047
3048 /* reinsert */
3049 PVM pVM = (PVM)pvUser;
3050 RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
3051 pChunk->AgeCore.Key = pChunk->iAge;
3052 RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
3053 return 0;
3054}
3055
3056
3057/**
3058 * Tree enumeration callback that updates the chunks that have
3059 * been used since the last
3060 */
3061static DECLCALLBACK(int) pgmR3PhysChunkAgeingCallback(PAVLU32NODECORE pNode, void *pvUser)
3062{
3063 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
3064 if (!pChunk->iAge)
3065 {
3066 PVM pVM = (PVM)pvUser;
3067 RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
3068 pChunk->AgeCore.Key = pChunk->iAge = pVM->pgm.s.ChunkR3Map.iNow;
3069 RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
3070 }
3071
3072 return 0;
3073}
3074
3075
3076/**
3077 * Performs ageing of the ring-3 chunk mappings.
3078 *
3079 * @param pVM The VM handle.
3080 */
3081VMMR3DECL(void) PGMR3PhysChunkAgeing(PVM pVM)
3082{
3083 pgmLock(pVM);
3084 pVM->pgm.s.ChunkR3Map.AgeingCountdown = RT_MIN(pVM->pgm.s.ChunkR3Map.cMax / 4, 1024);
3085 pVM->pgm.s.ChunkR3Map.iNow++;
3086 if (pVM->pgm.s.ChunkR3Map.iNow == 0)
3087 {
3088 pVM->pgm.s.ChunkR3Map.iNow = 4;
3089 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, pVM);
3090 }
3091 else
3092 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingCallback, pVM);
3093 pgmUnlock(pVM);
3094}
3095
3096
3097/**
3098 * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
3099 */
3100typedef struct PGMR3PHYSCHUNKUNMAPCB
3101{
3102 PVM pVM; /**< The VM handle. */
3103 PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
3104} PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
3105
3106
3107/**
3108 * Callback used to find the mapping that's been unused for
3109 * the longest time.
3110 */
3111static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLLU32NODECORE pNode, void *pvUser)
3112{
3113 do
3114 {
3115 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)((uint8_t *)pNode - RT_OFFSETOF(PGMCHUNKR3MAP, AgeCore));
3116 if ( pChunk->iAge
3117 && !pChunk->cRefs)
3118 {
3119 /*
3120 * Check that it's not in any of the TLBs.
3121 */
3122 PVM pVM = ((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pVM;
3123 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
3124 if (pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk == pChunk)
3125 {
3126 pChunk = NULL;
3127 break;
3128 }
3129 if (pChunk)
3130 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
3131 if (pVM->pgm.s.PhysTlbHC.aEntries[i].pMap == pChunk)
3132 {
3133 pChunk = NULL;
3134 break;
3135 }
3136 if (pChunk)
3137 {
3138 ((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pChunk = pChunk;
3139 return 1; /* done */
3140 }
3141 }
3142
3143 /* next with the same age - this version of the AVL API doesn't enumerate the list, so we have to do it. */
3144 pNode = pNode->pList;
3145 } while (pNode);
3146 return 0;
3147}
3148
3149
3150/**
3151 * Finds a good candidate for unmapping when the ring-3 mapping cache is full.
3152 *
3153 * The candidate will not be part of any TLBs, so no need to flush
3154 * anything afterwards.
3155 *
3156 * @returns Chunk id.
3157 * @param pVM The VM handle.
3158 */
3159static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
3160{
3161 Assert(PGMIsLockOwner(pVM));
3162
3163 /*
3164 * Do tree ageing first?
3165 */
3166 if (pVM->pgm.s.ChunkR3Map.AgeingCountdown-- == 0)
3167 PGMR3PhysChunkAgeing(pVM);
3168
3169 /*
3170 * Enumerate the age tree starting with the left most node.
3171 */
3172 PGMR3PHYSCHUNKUNMAPCB Args;
3173 Args.pVM = pVM;
3174 Args.pChunk = NULL;
3175 if (RTAvllU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pAgeTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, pVM))
3176 return Args.pChunk->Core.Key;
3177 return INT32_MAX;
3178}
3179
3180
3181/**
3182 * Maps the given chunk into the ring-3 mapping cache.
3183 *
3184 * This will call ring-0.
3185 *
3186 * @returns VBox status code.
3187 * @param pVM The VM handle.
3188 * @param idChunk The chunk in question.
3189 * @param ppChunk Where to store the chunk tracking structure.
3190 *
3191 * @remarks Called from within the PGM critical section.
3192 */
3193int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
3194{
3195 int rc;
3196
3197 Assert(PGMIsLockOwner(pVM));
3198 /*
3199 * Allocate a new tracking structure first.
3200 */
3201#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
3202 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAlloc(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
3203#else
3204 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3UkHeapAlloc(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk), NULL);
3205#endif
3206 AssertReturn(pChunk, VERR_NO_MEMORY);
3207 pChunk->Core.Key = idChunk;
3208 pChunk->AgeCore.Key = pVM->pgm.s.ChunkR3Map.iNow;
3209 pChunk->iAge = 0;
3210 pChunk->cRefs = 0;
3211 pChunk->cPermRefs = 0;
3212 pChunk->pv = NULL;
3213
3214 /*
3215 * Request the ring-0 part to map the chunk in question and if
3216 * necessary unmap another one to make space in the mapping cache.
3217 */
3218 GMMMAPUNMAPCHUNKREQ Req;
3219 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
3220 Req.Hdr.cbReq = sizeof(Req);
3221 Req.pvR3 = NULL;
3222 Req.idChunkMap = idChunk;
3223 Req.idChunkUnmap = NIL_GMM_CHUNKID;
3224 if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
3225 Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
3226/** @todo This is wrong. Any thread in the VM process should be able to do this,
3227 * there are depenenecies on this. What currently saves the day is that
3228 * we don't unmap anything and that all non-zero memory will therefore
3229 * be present when non-EMTs tries to access it. */
3230 rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
3231 if (RT_SUCCESS(rc))
3232 {
3233 /*
3234 * Update the tree.
3235 */
3236 /* insert the new one. */
3237 AssertPtr(Req.pvR3);
3238 pChunk->pv = Req.pvR3;
3239 bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
3240 AssertRelease(fRc);
3241 pVM->pgm.s.ChunkR3Map.c++;
3242
3243 fRc = RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
3244 AssertRelease(fRc);
3245
3246 /* remove the unmapped one. */
3247 if (Req.idChunkUnmap != NIL_GMM_CHUNKID)
3248 {
3249 PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
3250 AssertRelease(pUnmappedChunk);
3251 pUnmappedChunk->pv = NULL;
3252 pUnmappedChunk->Core.Key = UINT32_MAX;
3253#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
3254 MMR3HeapFree(pUnmappedChunk);
3255#else
3256 MMR3UkHeapFree(pVM, pUnmappedChunk, MM_TAG_PGM_CHUNK_MAPPING);
3257#endif
3258 pVM->pgm.s.ChunkR3Map.c--;
3259
3260 /* Chunk removed, so clear the page map TBL as well (might still be referenced). */
3261 PGMPhysInvalidatePageMapTLB(pVM);
3262 }
3263 }
3264 else
3265 {
3266 AssertRC(rc);
3267#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
3268 MMR3HeapFree(pChunk);
3269#else
3270 MMR3UkHeapFree(pVM, pChunk, MM_TAG_PGM_CHUNK_MAPPING);
3271#endif
3272 pChunk = NULL;
3273 }
3274
3275 *ppChunk = pChunk;
3276 return rc;
3277}
3278
3279
3280/**
3281 * For VMMCALLRING3_PGM_MAP_CHUNK, considered internal.
3282 *
3283 * @returns see pgmR3PhysChunkMap.
3284 * @param pVM The VM handle.
3285 * @param idChunk The chunk to map.
3286 */
3287VMMR3DECL(int) PGMR3PhysChunkMap(PVM pVM, uint32_t idChunk)
3288{
3289 PPGMCHUNKR3MAP pChunk;
3290 int rc;
3291
3292 pgmLock(pVM);
3293 rc = pgmR3PhysChunkMap(pVM, idChunk, &pChunk);
3294 pgmUnlock(pVM);
3295 return rc;
3296}
3297
3298
3299/**
3300 * Invalidates the TLB for the ring-3 mapping cache.
3301 *
3302 * @param pVM The VM handle.
3303 */
3304VMMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM)
3305{
3306 pgmLock(pVM);
3307 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
3308 {
3309 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
3310 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
3311 }
3312 /* The page map TLB references chunks, so invalidate that one too. */
3313 PGMPhysInvalidatePageMapTLB(pVM);
3314 pgmUnlock(pVM);
3315}
3316
3317
3318/**
3319 * Response to VMMCALLRING3_PGM_ALLOCATE_LARGE_PAGE to allocate a large (2MB) page
3320 * for use with a nested paging PDE.
3321 *
3322 * @returns The following VBox status codes.
3323 * @retval VINF_SUCCESS on success.
3324 * @retval VINF_EM_NO_MEMORY if we're out of memory.
3325 *
3326 * @param pVM The VM handle.
3327 * @param GCPhys GC physical start address of the 2 MB range
3328 */
3329VMMR3DECL(int) PGMR3PhysAllocateLargeHandyPage(PVM pVM, RTGCPHYS GCPhys)
3330{
3331 pgmLock(pVM);
3332
3333 STAM_PROFILE_START(&pVM->pgm.s.StatAllocLargePage, a);
3334 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_LARGE_HANDY_PAGE, 0, NULL);
3335 STAM_PROFILE_STOP(&pVM->pgm.s.StatAllocLargePage, a);
3336 if (RT_SUCCESS(rc))
3337 {
3338 Assert(pVM->pgm.s.cLargeHandyPages == 1);
3339
3340 uint32_t idPage = pVM->pgm.s.aLargeHandyPage[0].idPage;
3341 RTHCPHYS HCPhys = pVM->pgm.s.aLargeHandyPage[0].HCPhysGCPhys;
3342
3343 void *pv;
3344
3345 /* Map the large page into our address space.
3346 *
3347 * Note: assuming that within the 2 MB range:
3348 * - GCPhys + PAGE_SIZE = HCPhys + PAGE_SIZE (whole point of this exercise)
3349 * - user space mapping is continuous as well
3350 * - page id (GCPhys) + 1 = page id (GCPhys + PAGE_SIZE)
3351 */
3352 rc = pgmPhysPageMapByPageID(pVM, idPage, HCPhys, &pv);
3353 AssertLogRelMsg(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc", idPage, HCPhys, rc));
3354
3355 if (RT_SUCCESS(rc))
3356 {
3357 /*
3358 * Clear the pages.
3359 */
3360 STAM_PROFILE_START(&pVM->pgm.s.StatClearLargePage, b);
3361 for (unsigned i = 0; i < _2M/PAGE_SIZE; i++)
3362 {
3363 ASMMemZeroPage(pv);
3364
3365 PPGMPAGE pPage;
3366 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
3367 AssertRC(rc);
3368
3369 Assert(PGM_PAGE_IS_ZERO(pPage));
3370 STAM_COUNTER_INC(&pVM->pgm.s.StatRZPageReplaceZero);
3371 pVM->pgm.s.cZeroPages--;
3372
3373 /*
3374 * Do the PGMPAGE modifications.
3375 */
3376 pVM->pgm.s.cPrivatePages++;
3377 PGM_PAGE_SET_HCPHYS(pPage, HCPhys);
3378 PGM_PAGE_SET_PAGEID(pPage, idPage);
3379 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
3380 PGM_PAGE_SET_PDE_TYPE(pPage, PGM_PAGE_PDE_TYPE_PDE);
3381
3382 /* Somewhat dirty assumption that page ids are increasing. */
3383 idPage++;
3384
3385 HCPhys += PAGE_SIZE;
3386 GCPhys += PAGE_SIZE;
3387
3388 pv = (void *)((uintptr_t)pv + PAGE_SIZE);
3389
3390 Log3(("PGMR3PhysAllocateLargePage: idPage=%#x HCPhys=%RGp\n", idPage, HCPhys));
3391 }
3392 STAM_PROFILE_STOP(&pVM->pgm.s.StatClearLargePage, b);
3393
3394 /* Flush all TLBs. */
3395 PGM_INVL_ALL_VCPU_TLBS(pVM);
3396 PGMPhysInvalidatePageMapTLB(pVM);
3397 }
3398 pVM->pgm.s.cLargeHandyPages = 0;
3399 }
3400
3401 pgmUnlock(pVM);
3402 return rc;
3403}
3404
3405
3406/**
3407 * Response to VM_FF_PGM_NEED_HANDY_PAGES and VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES.
3408 *
3409 * This function will also work the VM_FF_PGM_NO_MEMORY force action flag, to
3410 * signal and clear the out of memory condition. When contracted, this API is
3411 * used to try clear the condition when the user wants to resume.
3412 *
3413 * @returns The following VBox status codes.
3414 * @retval VINF_SUCCESS on success. FFs cleared.
3415 * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in
3416 * this case and it gets accompanied by VM_FF_PGM_NO_MEMORY.
3417 *
3418 * @param pVM The VM handle.
3419 *
3420 * @remarks The VINF_EM_NO_MEMORY status is for the benefit of the FF processing
3421 * in EM.cpp and shouldn't be propagated outside TRPM, HWACCM, EM and
3422 * pgmPhysEnsureHandyPage. There is one exception to this in the \#PF
3423 * handler.
3424 */
3425VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
3426{
3427 pgmLock(pVM);
3428
3429 /*
3430 * Allocate more pages, noting down the index of the first new page.
3431 */
3432 uint32_t iClear = pVM->pgm.s.cHandyPages;
3433 AssertMsgReturn(iClear <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d", iClear), VERR_INTERNAL_ERROR);
3434 Log(("PGMR3PhysAllocateHandyPages: %d -> %d\n", iClear, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
3435 int rcAlloc = VINF_SUCCESS;
3436 int rcSeed = VINF_SUCCESS;
3437 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
3438 while (rc == VERR_GMM_SEED_ME)
3439 {
3440 void *pvChunk;
3441 rcAlloc = rc = SUPR3PageAlloc(GMM_CHUNK_SIZE >> PAGE_SHIFT, &pvChunk);
3442 if (RT_SUCCESS(rc))
3443 {
3444 rcSeed = rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_SEED_CHUNK, (uintptr_t)pvChunk, NULL);
3445 if (RT_FAILURE(rc))
3446 SUPR3PageFree(pvChunk, GMM_CHUNK_SIZE >> PAGE_SHIFT);
3447 }
3448 if (RT_SUCCESS(rc))
3449 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
3450 }
3451
3452 if (RT_SUCCESS(rc))
3453 {
3454 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
3455 Assert(pVM->pgm.s.cHandyPages > 0);
3456 VM_FF_CLEAR(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
3457 VM_FF_CLEAR(pVM, VM_FF_PGM_NO_MEMORY);
3458
3459 /*
3460 * Clear the pages.
3461 */
3462 while (iClear < pVM->pgm.s.cHandyPages)
3463 {
3464 PGMMPAGEDESC pPage = &pVM->pgm.s.aHandyPages[iClear];
3465 void *pv;
3466 rc = pgmPhysPageMapByPageID(pVM, pPage->idPage, pPage->HCPhysGCPhys, &pv);
3467 AssertLogRelMsgBreak(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc", pPage->idPage, pPage->HCPhysGCPhys, rc));
3468 ASMMemZeroPage(pv);
3469 iClear++;
3470 Log3(("PGMR3PhysAllocateHandyPages: idPage=%#x HCPhys=%RGp\n", pPage->idPage, pPage->HCPhysGCPhys));
3471 }
3472 }
3473 else
3474 {
3475 /*
3476 * We should never get here unless there is a genuine shortage of
3477 * memory (or some internal error). Flag the error so the VM can be
3478 * suspended ASAP and the user informed. If we're totally out of
3479 * handy pages we will return failure.
3480 */
3481 /* Report the failure. */
3482 LogRel(("PGM: Failed to procure handy pages; rc=%Rrc rcAlloc=%Rrc rcSeed=%Rrc cHandyPages=%#x\n"
3483 " cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n",
3484 rc, rcAlloc, rcSeed,
3485 pVM->pgm.s.cHandyPages,
3486 pVM->pgm.s.cAllPages,
3487 pVM->pgm.s.cPrivatePages,
3488 pVM->pgm.s.cSharedPages,
3489 pVM->pgm.s.cZeroPages));
3490 if ( rc != VERR_NO_MEMORY
3491 && rc != VERR_LOCK_FAILED)
3492 {
3493 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
3494 {
3495 LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n",
3496 i, pVM->pgm.s.aHandyPages[i].HCPhysGCPhys, pVM->pgm.s.aHandyPages[i].idPage,
3497 pVM->pgm.s.aHandyPages[i].idSharedPage));
3498 uint32_t const idPage = pVM->pgm.s.aHandyPages[i].idPage;
3499 if (idPage != NIL_GMM_PAGEID)
3500 {
3501 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
3502 pRam;
3503 pRam = pRam->pNextR3)
3504 {
3505 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
3506 for (uint32_t iPage = 0; iPage < cPages; iPage++)
3507 if (PGM_PAGE_GET_PAGEID(&pRam->aPages[iPage]) == idPage)
3508 LogRel(("PGM: Used by %RGp %R[pgmpage] (%s)\n",
3509 pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pRam->aPages[iPage], pRam->pszDesc));
3510 }
3511 }
3512 }
3513 }
3514
3515 /* Set the FFs and adjust rc. */
3516 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
3517 VM_FF_SET(pVM, VM_FF_PGM_NO_MEMORY);
3518 if ( rc == VERR_NO_MEMORY
3519 || rc == VERR_LOCK_FAILED)
3520 rc = VINF_EM_NO_MEMORY;
3521 }
3522
3523 pgmUnlock(pVM);
3524 return rc;
3525}
3526
3527
3528/**
3529 * Frees the specified RAM page and replaces it with the ZERO page.
3530 *
3531 * This is used by ballooning, remapping MMIO2 and RAM reset.
3532 *
3533 * @param pVM Pointer to the shared VM structure.
3534 * @param pReq Pointer to the request.
3535 * @param pPage Pointer to the page structure.
3536 * @param GCPhys The guest physical address of the page, if applicable.
3537 *
3538 * @remarks The caller must own the PGM lock.
3539 */
3540static int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys)
3541{
3542 /*
3543 * Assert sanity.
3544 */
3545 Assert(PGMIsLockOwner(pVM));
3546 if (RT_UNLIKELY( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
3547 && PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW))
3548 {
3549 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
3550 return VMSetError(pVM, VERR_PGM_PHYS_NOT_RAM, RT_SRC_POS, "GCPhys=%RGp type=%d", GCPhys, PGM_PAGE_GET_TYPE(pPage));
3551 }
3552
3553 if ( PGM_PAGE_IS_ZERO(pPage)
3554 || PGM_PAGE_IS_BALLOONED(pPage))
3555 return VINF_SUCCESS;
3556
3557 const uint32_t idPage = PGM_PAGE_GET_PAGEID(pPage);
3558 Log3(("pgmPhysFreePage: idPage=%#x HCPhys=%RGp pPage=%R[pgmpage]\n", idPage, pPage));
3559 if (RT_UNLIKELY( idPage == NIL_GMM_PAGEID
3560 || idPage > GMM_PAGEID_LAST
3561 || PGM_PAGE_GET_CHUNKID(pPage) == NIL_GMM_CHUNKID))
3562 {
3563 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
3564 return VMSetError(pVM, VERR_PGM_PHYS_INVALID_PAGE_ID, RT_SRC_POS, "GCPhys=%RGp idPage=%#x", GCPhys, pPage);
3565 }
3566
3567 /* update page count stats. */
3568 if (PGM_PAGE_IS_SHARED(pPage))
3569 pVM->pgm.s.cSharedPages--;
3570 else
3571 pVM->pgm.s.cPrivatePages--;
3572 pVM->pgm.s.cZeroPages++;
3573
3574 /* Deal with write monitored pages. */
3575 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
3576 {
3577 PGM_PAGE_SET_WRITTEN_TO(pPage);
3578 pVM->pgm.s.cWrittenToPages++;
3579 }
3580
3581 /*
3582 * pPage = ZERO page.
3583 */
3584 PGM_PAGE_SET_HCPHYS(pPage, pVM->pgm.s.HCPhysZeroPg);
3585 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
3586 PGM_PAGE_SET_PAGEID(pPage, NIL_GMM_PAGEID);
3587 PGM_PAGE_SET_PDE_TYPE(pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
3588
3589 /* Flush physical page map TLB entry. */
3590 PGMPhysInvalidatePageMapTLBEntry(pVM, GCPhys);
3591
3592 /*
3593 * Make sure it's not in the handy page array.
3594 */
3595 for (uint32_t i = pVM->pgm.s.cHandyPages; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
3596 {
3597 if (pVM->pgm.s.aHandyPages[i].idPage == idPage)
3598 {
3599 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
3600 break;
3601 }
3602 if (pVM->pgm.s.aHandyPages[i].idSharedPage == idPage)
3603 {
3604 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
3605 break;
3606 }
3607 }
3608
3609 /*
3610 * Push it onto the page array.
3611 */
3612 uint32_t iPage = *pcPendingPages;
3613 Assert(iPage < PGMPHYS_FREE_PAGE_BATCH_SIZE);
3614 *pcPendingPages += 1;
3615
3616 pReq->aPages[iPage].idPage = idPage;
3617
3618 if (iPage + 1 < PGMPHYS_FREE_PAGE_BATCH_SIZE)
3619 return VINF_SUCCESS;
3620
3621 /*
3622 * Flush the pages.
3623 */
3624 int rc = GMMR3FreePagesPerform(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE);
3625 if (RT_SUCCESS(rc))
3626 {
3627 GMMR3FreePagesRePrep(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
3628 *pcPendingPages = 0;
3629 }
3630 return rc;
3631}
3632
3633
3634/**
3635 * Converts a GC physical address to a HC ring-3 pointer, with some
3636 * additional checks.
3637 *
3638 * @returns VBox status code.
3639 * @retval VINF_SUCCESS on success.
3640 * @retval VINF_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
3641 * access handler of some kind.
3642 * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
3643 * accesses or is odd in any way.
3644 * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
3645 *
3646 * @param pVM The VM handle.
3647 * @param GCPhys The GC physical address to convert.
3648 * @param fWritable Whether write access is required.
3649 * @param ppv Where to store the pointer corresponding to GCPhys on
3650 * success.
3651 */
3652VMMR3DECL(int) PGMR3PhysTlbGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, void **ppv)
3653{
3654 pgmLock(pVM);
3655
3656 PPGMRAMRANGE pRam;
3657 PPGMPAGE pPage;
3658 int rc = pgmPhysGetPageAndRangeEx(&pVM->pgm.s, GCPhys, &pPage, &pRam);
3659 if (RT_SUCCESS(rc))
3660 {
3661 if (PGM_PAGE_IS_BALLOONED(pPage))
3662 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
3663 else if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage))
3664 rc = VINF_SUCCESS;
3665 else
3666 {
3667 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
3668 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
3669 else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
3670 {
3671 /** @todo Handle TLB loads of virtual handlers so ./test.sh can be made to work
3672 * in -norawr0 mode. */
3673 if (fWritable)
3674 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
3675 }
3676 else
3677 {
3678 /* Temporarily disabled physical handler(s), since the recompiler
3679 doesn't get notified when it's reset we'll have to pretend it's
3680 operating normally. */
3681 if (pgmHandlerPhysicalIsAll(pVM, GCPhys))
3682 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
3683 else
3684 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
3685 }
3686 }
3687 if (RT_SUCCESS(rc))
3688 {
3689 int rc2;
3690
3691 /* Make sure what we return is writable. */
3692 if (fWritable && rc != VINF_PGM_PHYS_TLB_CATCH_WRITE)
3693 switch (PGM_PAGE_GET_STATE(pPage))
3694 {
3695 case PGM_PAGE_STATE_ALLOCATED:
3696 break;
3697 case PGM_PAGE_STATE_BALLOONED:
3698 AssertFailed();
3699 break;
3700 case PGM_PAGE_STATE_ZERO:
3701 case PGM_PAGE_STATE_SHARED:
3702 case PGM_PAGE_STATE_WRITE_MONITORED:
3703 rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
3704 AssertLogRelRCReturn(rc2, rc2);
3705 break;
3706 }
3707
3708 /* Get a ring-3 mapping of the address. */
3709 PPGMPAGER3MAPTLBE pTlbe;
3710 rc2 = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
3711 AssertLogRelRCReturn(rc2, rc2);
3712 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
3713 /** @todo mapping/locking hell; this isn't horribly efficient since
3714 * pgmPhysPageLoadIntoTlb will repeat the lookup we've done here. */
3715
3716 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
3717 }
3718 else
3719 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));
3720
3721 /* else: handler catching all access, no pointer returned. */
3722 }
3723 else
3724 rc = VERR_PGM_PHYS_TLB_UNASSIGNED;
3725
3726 pgmUnlock(pVM);
3727 return rc;
3728}
3729
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette