VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMPhys.cpp@ 29294

Last change on this file since 29294 was 29294, checked in by vboxsync, 15 years ago

Clear the pgm pool immediately

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 133.3 KB
Line 
1/* $Id: PGMPhys.cpp 29294 2010-05-10 11:23:14Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Header Files *
21*******************************************************************************/
22#define LOG_GROUP LOG_GROUP_PGM_PHYS
23#include <VBox/pgm.h>
24#include <VBox/iom.h>
25#include <VBox/mm.h>
26#include <VBox/stam.h>
27#include <VBox/rem.h>
28#include <VBox/pdmdev.h>
29#include "PGMInternal.h"
30#include <VBox/vm.h>
31#include "PGMInline.h"
32#include <VBox/sup.h>
33#include <VBox/param.h>
34#include <VBox/err.h>
35#include <VBox/log.h>
36#include <iprt/assert.h>
37#include <iprt/alloc.h>
38#include <iprt/asm.h>
39#include <iprt/thread.h>
40#include <iprt/string.h>
41
42
43/*******************************************************************************
44* Defined Constants And Macros *
45*******************************************************************************/
46/** The number of pages to free in one batch. */
47#define PGMPHYS_FREE_PAGE_BATCH_SIZE 128
48
49
50/*******************************************************************************
51* Internal Functions *
52*******************************************************************************/
53static DECLCALLBACK(int) pgmR3PhysRomWriteHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
54static int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys);
55
56
57/*
58 * PGMR3PhysReadU8-64
59 * PGMR3PhysWriteU8-64
60 */
61#define PGMPHYSFN_READNAME PGMR3PhysReadU8
62#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8
63#define PGMPHYS_DATASIZE 1
64#define PGMPHYS_DATATYPE uint8_t
65#include "PGMPhysRWTmpl.h"
66
67#define PGMPHYSFN_READNAME PGMR3PhysReadU16
68#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16
69#define PGMPHYS_DATASIZE 2
70#define PGMPHYS_DATATYPE uint16_t
71#include "PGMPhysRWTmpl.h"
72
73#define PGMPHYSFN_READNAME PGMR3PhysReadU32
74#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32
75#define PGMPHYS_DATASIZE 4
76#define PGMPHYS_DATATYPE uint32_t
77#include "PGMPhysRWTmpl.h"
78
79#define PGMPHYSFN_READNAME PGMR3PhysReadU64
80#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64
81#define PGMPHYS_DATASIZE 8
82#define PGMPHYS_DATATYPE uint64_t
83#include "PGMPhysRWTmpl.h"
84
85
86/**
87 * EMT worker for PGMR3PhysReadExternal.
88 */
89static DECLCALLBACK(int) pgmR3PhysReadExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, void *pvBuf, size_t cbRead)
90{
91 PGMPhysRead(pVM, *pGCPhys, pvBuf, cbRead);
92 return VINF_SUCCESS;
93}
94
95
96/**
97 * Write to physical memory, external users.
98 *
99 * @returns VBox status code.
100 * @retval VINF_SUCCESS.
101 *
102 * @param pVM VM Handle.
103 * @param GCPhys Physical address to write to.
104 * @param pvBuf What to write.
105 * @param cbWrite How many bytes to write.
106 *
107 * @thread Any but EMTs.
108 */
109VMMR3DECL(int) PGMR3PhysReadExternal(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead)
110{
111 VM_ASSERT_OTHER_THREAD(pVM);
112
113 AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
114 LogFlow(("PGMR3PhysReadExternal: %RGp %d\n", GCPhys, cbRead));
115
116 pgmLock(pVM);
117
118 /*
119 * Copy loop on ram ranges.
120 */
121 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
122 for (;;)
123 {
124 /* Find range. */
125 while (pRam && GCPhys > pRam->GCPhysLast)
126 pRam = pRam->CTX_SUFF(pNext);
127 /* Inside range or not? */
128 if (pRam && GCPhys >= pRam->GCPhys)
129 {
130 /*
131 * Must work our way thru this page by page.
132 */
133 RTGCPHYS off = GCPhys - pRam->GCPhys;
134 while (off < pRam->cb)
135 {
136 unsigned iPage = off >> PAGE_SHIFT;
137 PPGMPAGE pPage = &pRam->aPages[iPage];
138
139 /*
140 * If the page has an ALL access handler, we'll have to
141 * delegate the job to EMT.
142 */
143 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
144 {
145 pgmUnlock(pVM);
146
147 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysReadExternalEMT, 4,
148 pVM, &GCPhys, pvBuf, cbRead);
149 }
150 Assert(!PGM_PAGE_IS_MMIO(pPage));
151
152 /*
153 * Simple stuff, go ahead.
154 */
155 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
156 if (cb > cbRead)
157 cb = cbRead;
158 const void *pvSrc;
159 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc);
160 if (RT_SUCCESS(rc))
161 memcpy(pvBuf, pvSrc, cb);
162 else
163 {
164 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
165 pRam->GCPhys + off, pPage, rc));
166 memset(pvBuf, 0xff, cb);
167 }
168
169 /* next page */
170 if (cb >= cbRead)
171 {
172 pgmUnlock(pVM);
173 return VINF_SUCCESS;
174 }
175 cbRead -= cb;
176 off += cb;
177 GCPhys += cb;
178 pvBuf = (char *)pvBuf + cb;
179 } /* walk pages in ram range. */
180 }
181 else
182 {
183 LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
184
185 /*
186 * Unassigned address space.
187 */
188 if (!pRam)
189 break;
190 size_t cb = pRam->GCPhys - GCPhys;
191 if (cb >= cbRead)
192 {
193 memset(pvBuf, 0xff, cbRead);
194 break;
195 }
196 memset(pvBuf, 0xff, cb);
197
198 cbRead -= cb;
199 pvBuf = (char *)pvBuf + cb;
200 GCPhys += cb;
201 }
202 } /* Ram range walk */
203
204 pgmUnlock(pVM);
205
206 return VINF_SUCCESS;
207}
208
209
210/**
211 * EMT worker for PGMR3PhysWriteExternal.
212 */
213static DECLCALLBACK(int) pgmR3PhysWriteExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, const void *pvBuf, size_t cbWrite)
214{
215 /** @todo VERR_EM_NO_MEMORY */
216 PGMPhysWrite(pVM, *pGCPhys, pvBuf, cbWrite);
217 return VINF_SUCCESS;
218}
219
220
221/**
222 * Write to physical memory, external users.
223 *
224 * @returns VBox status code.
225 * @retval VINF_SUCCESS.
226 * @retval VERR_EM_NO_MEMORY.
227 *
228 * @param pVM VM Handle.
229 * @param GCPhys Physical address to write to.
230 * @param pvBuf What to write.
231 * @param cbWrite How many bytes to write.
232 * @param pszWho Who is writing. For tracking down who is writing
233 * after we've saved the state.
234 *
235 * @thread Any but EMTs.
236 */
237VMMDECL(int) PGMR3PhysWriteExternal(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, const char *pszWho)
238{
239 VM_ASSERT_OTHER_THREAD(pVM);
240
241 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites,
242 ("Calling PGMR3PhysWriteExternal after pgmR3Save()! GCPhys=%RGp cbWrite=%#x pszWho=%s\n",
243 GCPhys, cbWrite, pszWho));
244 AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
245 LogFlow(("PGMR3PhysWriteExternal: %RGp %d\n", GCPhys, cbWrite));
246
247 pgmLock(pVM);
248
249 /*
250 * Copy loop on ram ranges, stop when we hit something difficult.
251 */
252 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
253 for (;;)
254 {
255 /* Find range. */
256 while (pRam && GCPhys > pRam->GCPhysLast)
257 pRam = pRam->CTX_SUFF(pNext);
258 /* Inside range or not? */
259 if (pRam && GCPhys >= pRam->GCPhys)
260 {
261 /*
262 * Must work our way thru this page by page.
263 */
264 RTGCPTR off = GCPhys - pRam->GCPhys;
265 while (off < pRam->cb)
266 {
267 RTGCPTR iPage = off >> PAGE_SHIFT;
268 PPGMPAGE pPage = &pRam->aPages[iPage];
269
270 /*
271 * Is the page problematic, we have to do the work on the EMT.
272 *
273 * Allocating writable pages and access handlers are
274 * problematic, write monitored pages are simple and can be
275 * dealth with here.
276 */
277 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
278 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
279 {
280 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
281 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
282 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
283 else
284 {
285 pgmUnlock(pVM);
286
287 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysWriteExternalEMT, 4,
288 pVM, &GCPhys, pvBuf, cbWrite);
289 }
290 }
291 Assert(!PGM_PAGE_IS_MMIO(pPage));
292
293 /*
294 * Simple stuff, go ahead.
295 */
296 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
297 if (cb > cbWrite)
298 cb = cbWrite;
299 void *pvDst;
300 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst);
301 if (RT_SUCCESS(rc))
302 memcpy(pvDst, pvBuf, cb);
303 else
304 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
305 pRam->GCPhys + off, pPage, rc));
306
307 /* next page */
308 if (cb >= cbWrite)
309 {
310 pgmUnlock(pVM);
311 return VINF_SUCCESS;
312 }
313
314 cbWrite -= cb;
315 off += cb;
316 GCPhys += cb;
317 pvBuf = (const char *)pvBuf + cb;
318 } /* walk pages in ram range */
319 }
320 else
321 {
322 /*
323 * Unassigned address space, skip it.
324 */
325 if (!pRam)
326 break;
327 size_t cb = pRam->GCPhys - GCPhys;
328 if (cb >= cbWrite)
329 break;
330 cbWrite -= cb;
331 pvBuf = (const char *)pvBuf + cb;
332 GCPhys += cb;
333 }
334 } /* Ram range walk */
335
336 pgmUnlock(pVM);
337 return VINF_SUCCESS;
338}
339
340
341/**
342 * VMR3ReqCall worker for PGMR3PhysGCPhys2CCPtrExternal to make pages writable.
343 *
344 * @returns see PGMR3PhysGCPhys2CCPtrExternal
345 * @param pVM The VM handle.
346 * @param pGCPhys Pointer to the guest physical address.
347 * @param ppv Where to store the mapping address.
348 * @param pLock Where to store the lock.
349 */
350static DECLCALLBACK(int) pgmR3PhysGCPhys2CCPtrDelegated(PVM pVM, PRTGCPHYS pGCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
351{
352 /*
353 * Just hand it to PGMPhysGCPhys2CCPtr and check that it's not a page with
354 * an access handler after it succeeds.
355 */
356 int rc = pgmLock(pVM);
357 AssertRCReturn(rc, rc);
358
359 rc = PGMPhysGCPhys2CCPtr(pVM, *pGCPhys, ppv, pLock);
360 if (RT_SUCCESS(rc))
361 {
362 PPGMPAGEMAPTLBE pTlbe;
363 int rc2 = pgmPhysPageQueryTlbe(&pVM->pgm.s, *pGCPhys, &pTlbe);
364 AssertFatalRC(rc2);
365 PPGMPAGE pPage = pTlbe->pPage;
366 if (PGM_PAGE_IS_MMIO(pPage))
367 {
368 PGMPhysReleasePageMappingLock(pVM, pLock);
369 rc = VERR_PGM_PHYS_PAGE_RESERVED;
370 }
371 else if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
372#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
373 || pgmPoolIsDirtyPage(pVM, *pGCPhys)
374#endif
375 )
376 {
377 /* We *must* flush any corresponding pgm pool page here, otherwise we'll
378 * not be informed about writes and keep bogus gst->shw mappings around.
379 */
380 pgmPoolFlushPageByGCPhys(pVM, *pGCPhys);
381 Assert(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage));
382 /** @todo r=bird: return VERR_PGM_PHYS_PAGE_RESERVED here if it still has
383 * active handlers, see the PGMR3PhysGCPhys2CCPtrExternal docs. */
384 }
385 }
386
387 pgmUnlock(pVM);
388 return rc;
389}
390
391
392/**
393 * Requests the mapping of a guest page into ring-3, external threads.
394 *
395 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
396 * release it.
397 *
398 * This API will assume your intention is to write to the page, and will
399 * therefore replace shared and zero pages. If you do not intend to modify the
400 * page, use the PGMR3PhysGCPhys2CCPtrReadOnlyExternal() API.
401 *
402 * @returns VBox status code.
403 * @retval VINF_SUCCESS on success.
404 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
405 * backing or if the page has any active access handlers. The caller
406 * must fall back on using PGMR3PhysWriteExternal.
407 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
408 *
409 * @param pVM The VM handle.
410 * @param GCPhys The guest physical address of the page that should be mapped.
411 * @param ppv Where to store the address corresponding to GCPhys.
412 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
413 *
414 * @remark Avoid calling this API from within critical sections (other than the
415 * PGM one) because of the deadlock risk when we have to delegating the
416 * task to an EMT.
417 * @thread Any.
418 */
419VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrExternal(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
420{
421 AssertPtr(ppv);
422 AssertPtr(pLock);
423
424 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
425
426 int rc = pgmLock(pVM);
427 AssertRCReturn(rc, rc);
428
429 /*
430 * Query the Physical TLB entry for the page (may fail).
431 */
432 PPGMPAGEMAPTLBE pTlbe;
433 rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
434 if (RT_SUCCESS(rc))
435 {
436 PPGMPAGE pPage = pTlbe->pPage;
437 if (PGM_PAGE_IS_MMIO(pPage))
438 rc = VERR_PGM_PHYS_PAGE_RESERVED;
439 else
440 {
441 /*
442 * If the page is shared, the zero page, or being write monitored
443 * it must be converted to an page that's writable if possible.
444 * We can only deal with write monitored pages here, the rest have
445 * to be on an EMT.
446 */
447 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
448 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
449#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
450 || pgmPoolIsDirtyPage(pVM, GCPhys)
451#endif
452 )
453 {
454 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
455 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
456#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
457 && !pgmPoolIsDirtyPage(pVM, GCPhys)
458#endif
459 )
460 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
461 else
462 {
463 pgmUnlock(pVM);
464
465 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
466 pVM, &GCPhys, ppv, pLock);
467 }
468 }
469
470 /*
471 * Now, just perform the locking and calculate the return address.
472 */
473 PPGMPAGEMAP pMap = pTlbe->pMap;
474 if (pMap)
475 pMap->cRefs++;
476
477 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
478 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
479 {
480 if (cLocks == 0)
481 pVM->pgm.s.cWriteLockedPages++;
482 PGM_PAGE_INC_WRITE_LOCKS(pPage);
483 }
484 else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
485 {
486 PGM_PAGE_INC_WRITE_LOCKS(pPage);
487 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", GCPhys, pPage));
488 if (pMap)
489 pMap->cRefs++; /* Extra ref to prevent it from going away. */
490 }
491
492 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
493 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
494 pLock->pvMap = pMap;
495 }
496 }
497
498 pgmUnlock(pVM);
499 return rc;
500}
501
502
503/**
504 * Requests the mapping of a guest page into ring-3, external threads.
505 *
506 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
507 * release it.
508 *
509 * @returns VBox status code.
510 * @retval VINF_SUCCESS on success.
511 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
512 * backing or if the page as an active ALL access handler. The caller
513 * must fall back on using PGMPhysRead.
514 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
515 *
516 * @param pVM The VM handle.
517 * @param GCPhys The guest physical address of the page that should be mapped.
518 * @param ppv Where to store the address corresponding to GCPhys.
519 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
520 *
521 * @remark Avoid calling this API from within critical sections (other than
522 * the PGM one) because of the deadlock risk.
523 * @thread Any.
524 */
525VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrReadOnlyExternal(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
526{
527 int rc = pgmLock(pVM);
528 AssertRCReturn(rc, rc);
529
530 /*
531 * Query the Physical TLB entry for the page (may fail).
532 */
533 PPGMPAGEMAPTLBE pTlbe;
534 rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
535 if (RT_SUCCESS(rc))
536 {
537 PPGMPAGE pPage = pTlbe->pPage;
538#if 1
539 /* MMIO pages doesn't have any readable backing. */
540 if (PGM_PAGE_IS_MMIO(pPage))
541 rc = VERR_PGM_PHYS_PAGE_RESERVED;
542#else
543 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
544 rc = VERR_PGM_PHYS_PAGE_RESERVED;
545#endif
546 else
547 {
548 /*
549 * Now, just perform the locking and calculate the return address.
550 */
551 PPGMPAGEMAP pMap = pTlbe->pMap;
552 if (pMap)
553 pMap->cRefs++;
554
555 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
556 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
557 {
558 if (cLocks == 0)
559 pVM->pgm.s.cReadLockedPages++;
560 PGM_PAGE_INC_READ_LOCKS(pPage);
561 }
562 else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
563 {
564 PGM_PAGE_INC_READ_LOCKS(pPage);
565 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", GCPhys, pPage));
566 if (pMap)
567 pMap->cRefs++; /* Extra ref to prevent it from going away. */
568 }
569
570 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
571 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
572 pLock->pvMap = pMap;
573 }
574 }
575
576 pgmUnlock(pVM);
577 return rc;
578}
579
580
581/**
582 * Relinks the RAM ranges using the pSelfRC and pSelfR0 pointers.
583 *
584 * Called when anything was relocated.
585 *
586 * @param pVM Pointer to the shared VM structure.
587 */
588void pgmR3PhysRelinkRamRanges(PVM pVM)
589{
590 PPGMRAMRANGE pCur;
591
592#ifdef VBOX_STRICT
593 for (pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
594 {
595 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfR0 == MMHyperCCToR0(pVM, pCur));
596 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfRC == MMHyperCCToRC(pVM, pCur));
597 Assert((pCur->GCPhys & PAGE_OFFSET_MASK) == 0);
598 Assert((pCur->GCPhysLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
599 Assert((pCur->cb & PAGE_OFFSET_MASK) == 0);
600 Assert(pCur->cb == pCur->GCPhysLast - pCur->GCPhys + 1);
601 for (PPGMRAMRANGE pCur2 = pVM->pgm.s.pRamRangesR3; pCur2; pCur2 = pCur2->pNextR3)
602 Assert( pCur2 == pCur
603 || strcmp(pCur2->pszDesc, pCur->pszDesc)); /** @todo fix MMIO ranges!! */
604 }
605#endif
606
607 pCur = pVM->pgm.s.pRamRangesR3;
608 if (pCur)
609 {
610 pVM->pgm.s.pRamRangesR0 = pCur->pSelfR0;
611 pVM->pgm.s.pRamRangesRC = pCur->pSelfRC;
612
613 for (; pCur->pNextR3; pCur = pCur->pNextR3)
614 {
615 pCur->pNextR0 = pCur->pNextR3->pSelfR0;
616 pCur->pNextRC = pCur->pNextR3->pSelfRC;
617 }
618
619 Assert(pCur->pNextR0 == NIL_RTR0PTR);
620 Assert(pCur->pNextRC == NIL_RTRCPTR);
621 }
622 else
623 {
624 Assert(pVM->pgm.s.pRamRangesR0 == NIL_RTR0PTR);
625 Assert(pVM->pgm.s.pRamRangesRC == NIL_RTRCPTR);
626 }
627 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
628}
629
630
631/**
632 * Links a new RAM range into the list.
633 *
634 * @param pVM Pointer to the shared VM structure.
635 * @param pNew Pointer to the new list entry.
636 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
637 */
638static void pgmR3PhysLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, PPGMRAMRANGE pPrev)
639{
640 AssertMsg(pNew->pszDesc, ("%RGp-%RGp\n", pNew->GCPhys, pNew->GCPhysLast));
641 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfR0 == MMHyperCCToR0(pVM, pNew));
642 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfRC == MMHyperCCToRC(pVM, pNew));
643
644 pgmLock(pVM);
645
646 PPGMRAMRANGE pRam = pPrev ? pPrev->pNextR3 : pVM->pgm.s.pRamRangesR3;
647 pNew->pNextR3 = pRam;
648 pNew->pNextR0 = pRam ? pRam->pSelfR0 : NIL_RTR0PTR;
649 pNew->pNextRC = pRam ? pRam->pSelfRC : NIL_RTRCPTR;
650
651 if (pPrev)
652 {
653 pPrev->pNextR3 = pNew;
654 pPrev->pNextR0 = pNew->pSelfR0;
655 pPrev->pNextRC = pNew->pSelfRC;
656 }
657 else
658 {
659 pVM->pgm.s.pRamRangesR3 = pNew;
660 pVM->pgm.s.pRamRangesR0 = pNew->pSelfR0;
661 pVM->pgm.s.pRamRangesRC = pNew->pSelfRC;
662 }
663 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
664 pgmUnlock(pVM);
665}
666
667
668/**
669 * Unlink an existing RAM range from the list.
670 *
671 * @param pVM Pointer to the shared VM structure.
672 * @param pRam Pointer to the new list entry.
673 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
674 */
675static void pgmR3PhysUnlinkRamRange2(PVM pVM, PPGMRAMRANGE pRam, PPGMRAMRANGE pPrev)
676{
677 Assert(pPrev ? pPrev->pNextR3 == pRam : pVM->pgm.s.pRamRangesR3 == pRam);
678 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfR0 == MMHyperCCToR0(pVM, pRam));
679 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfRC == MMHyperCCToRC(pVM, pRam));
680
681 pgmLock(pVM);
682
683 PPGMRAMRANGE pNext = pRam->pNextR3;
684 if (pPrev)
685 {
686 pPrev->pNextR3 = pNext;
687 pPrev->pNextR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
688 pPrev->pNextRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
689 }
690 else
691 {
692 Assert(pVM->pgm.s.pRamRangesR3 == pRam);
693 pVM->pgm.s.pRamRangesR3 = pNext;
694 pVM->pgm.s.pRamRangesR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
695 pVM->pgm.s.pRamRangesRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
696 }
697 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
698 pgmUnlock(pVM);
699}
700
701
702/**
703 * Unlink an existing RAM range from the list.
704 *
705 * @param pVM Pointer to the shared VM structure.
706 * @param pRam Pointer to the new list entry.
707 */
708static void pgmR3PhysUnlinkRamRange(PVM pVM, PPGMRAMRANGE pRam)
709{
710 pgmLock(pVM);
711
712 /* find prev. */
713 PPGMRAMRANGE pPrev = NULL;
714 PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3;
715 while (pCur != pRam)
716 {
717 pPrev = pCur;
718 pCur = pCur->pNextR3;
719 }
720 AssertFatal(pCur);
721
722 pgmR3PhysUnlinkRamRange2(pVM, pRam, pPrev);
723 pgmUnlock(pVM);
724}
725
726
727/**
728 * Frees a range of pages, replacing them with ZERO pages of the specified type.
729 *
730 * @returns VBox status code.
731 * @param pVM The VM handle.
732 * @param pRam The RAM range in which the pages resides.
733 * @param GCPhys The address of the first page.
734 * @param GCPhysLast The address of the last page.
735 * @param uType The page type to replace then with.
736 */
737static int pgmR3PhysFreePageRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, uint8_t uType)
738{
739 Assert(PGMIsLockOwner(pVM));
740 uint32_t cPendingPages = 0;
741 PGMMFREEPAGESREQ pReq;
742 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
743 AssertLogRelRCReturn(rc, rc);
744
745 /* Iterate the pages. */
746 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
747 uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1;
748 while (cPagesLeft-- > 0)
749 {
750 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
751 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
752
753 PGM_PAGE_SET_TYPE(pPageDst, uType);
754
755 GCPhys += PAGE_SIZE;
756 pPageDst++;
757 }
758
759 if (cPendingPages)
760 {
761 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
762 AssertLogRelRCReturn(rc, rc);
763 }
764 GMMR3FreePagesCleanup(pReq);
765
766 return rc;
767}
768
769/**
770 * Rendezvous callback used by PGMR3ChangeMemBalloon that changes the memory balloon size
771 *
772 * This is only called on one of the EMTs while the other ones are waiting for
773 * it to complete this function.
774 *
775 * @returns VINF_SUCCESS (VBox strict status code).
776 * @param pVM The VM handle.
777 * @param pVCpu The VMCPU for the EMT we're being called on. Unused.
778 * @param pvUser User parameter
779 */
780static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysChangeMemBalloonRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
781{
782 uintptr_t *paUser = (uintptr_t *)pvUser;
783 bool fInflate = !!paUser[0];
784 unsigned cPages = paUser[1];
785 RTGCPHYS *paPhysPage = (RTGCPHYS *)paUser[2];
786 uint32_t cPendingPages = 0;
787 PGMMFREEPAGESREQ pReq;
788 int rc;
789
790 Log(("pgmR3PhysChangeMemBalloonRendezvous: %s %x pages\n", (fInflate) ? "inflate" : "deflate", cPages));
791 pgmLock(pVM);
792
793 if (fInflate)
794 {
795 /* Flush the PGM pool cache as we might have stale references to pages that we just freed. */
796 pgmR3PoolClearAllRendezvous(pVM, pVCpu, NULL);
797
798 /* Replace pages with ZERO pages. */
799 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
800 if (RT_FAILURE(rc))
801 {
802 pgmUnlock(pVM);
803 AssertLogRelRC(rc);
804 return rc;
805 }
806
807 /* Iterate the pages. */
808 for (unsigned i = 0; i < cPages; i++)
809 {
810 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, paPhysPage[i]);
811 if ( pPage == NULL
812 || pPage->uTypeY != PGMPAGETYPE_RAM)
813 {
814 Log(("pgmR3PhysChangeMemBalloonRendezvous: invalid physical page %RGp pPage->u3Type=%d\n", paPhysPage[i], (pPage) ? pPage->uTypeY : 0));
815 break;
816 }
817
818 LogFlow(("balloon page: %RGp\n", paPhysPage[i]));
819
820 /* Flush the shadow PT if this page was previously used as a guest page table. */
821 pgmPoolFlushPageByGCPhys(pVM, paPhysPage[i]);
822
823 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, paPhysPage[i]);
824 if (RT_FAILURE(rc))
825 {
826 pgmUnlock(pVM);
827 AssertLogRelRC(rc);
828 return rc;
829 }
830 Assert(PGM_PAGE_IS_ZERO(pPage));
831 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_BALLOONED);
832 }
833
834 if (cPendingPages)
835 {
836 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
837 if (RT_FAILURE(rc))
838 {
839 pgmUnlock(pVM);
840 AssertLogRelRC(rc);
841 return rc;
842 }
843 }
844 GMMR3FreePagesCleanup(pReq);
845 }
846 else
847 {
848 /* Iterate the pages. */
849 for (unsigned i = 0; i < cPages; i++)
850 {
851 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, paPhysPage[i]);
852 AssertBreak(pPage && pPage->uTypeY == PGMPAGETYPE_RAM);
853
854 LogFlow(("Free ballooned page: %RGp\n", paPhysPage[i]));
855
856 Assert(PGM_PAGE_IS_BALLOONED(pPage));
857
858 /* Change back to zero page. */
859 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
860 }
861
862 /* Note that we currently do not map any ballooned pages in our shadow page tables, so no need to flush the pgm pool. */
863 }
864
865 /* Notify GMM about the balloon change. */
866 rc = GMMR3BalloonedPages(pVM, (fInflate) ? GMMBALLOONACTION_INFLATE : GMMBALLOONACTION_DEFLATE, cPages);
867 if (RT_SUCCESS(rc))
868 {
869 if (!fInflate)
870 {
871 Assert(pVM->pgm.s.cBalloonedPages >= cPages);
872 pVM->pgm.s.cBalloonedPages -= cPages;
873 }
874 else
875 pVM->pgm.s.cBalloonedPages += cPages;
876 }
877
878 pgmUnlock(pVM);
879
880 /* Flush the recompiler's TLB as well. */
881 for (unsigned i = 0; i < pVM->cCpus; i++)
882 CPUMSetChangedFlags(&pVM->aCpus[i], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
883
884 AssertLogRelRC(rc);
885 return rc;
886}
887
888/**
889 * Frees a range of ram pages, replacing them with ZERO pages; helper for PGMR3PhysFreeRamPages
890 *
891 * @returns VBox status code.
892 * @param pVM The VM handle.
893 * @param fInflate Inflate or deflate memory balloon
894 * @param cPages Number of pages to free
895 * @param paPhysPage Array of guest physical addresses
896 */
897static DECLCALLBACK(void) pgmR3PhysChangeMemBalloonHelper(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
898{
899 uintptr_t paUser[3];
900
901 paUser[0] = fInflate;
902 paUser[1] = cPages;
903 paUser[2] = (uintptr_t)paPhysPage;
904 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
905 AssertRC(rc);
906
907 /* Made a copy in PGMR3PhysFreeRamPages; free it here. */
908 RTMemFree(paPhysPage);
909}
910
911/**
912 * Inflate or deflate a memory balloon
913 *
914 * @returns VBox status code.
915 * @param pVM The VM handle.
916 * @param fInflate Inflate or deflate memory balloon
917 * @param cPages Number of pages to free
918 * @param paPhysPage Array of guest physical addresses
919 */
920VMMR3DECL(int) PGMR3PhysChangeMemBalloon(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
921{
922 int rc;
923
924 /* Older additions (ancient non-functioning balloon code) pass wrong physical addresses. */
925 AssertReturn(!(paPhysPage[0] & 0xfff), VERR_INVALID_PARAMETER);
926
927 /* We own the IOM lock here and could cause a deadlock by waiting for another VCPU that is blocking on the IOM lock.
928 * In the SMP case we post a request packet to postpone the job.
929 */
930 if (pVM->cCpus > 1)
931 {
932 unsigned cbPhysPage = cPages * sizeof(paPhysPage[0]);
933 RTGCPHYS *paPhysPageCopy = (RTGCPHYS *)RTMemAlloc(cbPhysPage);
934 AssertReturn(paPhysPageCopy, VERR_NO_MEMORY);
935
936 memcpy(paPhysPageCopy, paPhysPage, cbPhysPage);
937
938 rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysChangeMemBalloonHelper, 4, pVM, fInflate, cPages, paPhysPageCopy);
939 AssertRC(rc);
940 }
941 else
942 {
943 uintptr_t paUser[3];
944
945 paUser[0] = fInflate;
946 paUser[1] = cPages;
947 paUser[2] = (uintptr_t)paPhysPage;
948 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
949 AssertRC(rc);
950 }
951 return rc;
952}
953
954/**
955 * Query the amount of free memory inside VMMR0
956 *
957 * @returns VBox status code.
958 * @param pVM The VM handle.
959 * @param puTotalAllocSize Pointer to total allocated memory inside VMMR0 (in bytes)
960 * @param puTotalFreeSize Pointer to total free (allocated but not used yet) memory inside VMMR0 (in bytes)
961 * @param puTotalBalloonSize Pointer to total ballooned memory inside VMMR0 (in bytes)
962 */
963VMMR3DECL(int) PGMR3QueryVMMMemoryStats(PVM pVM, uint64_t *puTotalAllocSize, uint64_t *puTotalFreeSize, uint64_t *puTotalBalloonSize)
964{
965 int rc;
966
967 uint64_t cAllocPages = 0, cFreePages = 0, cBalloonPages = 0;
968 rc = GMMR3QueryHypervisorMemoryStats(pVM, &cAllocPages, &cFreePages, &cBalloonPages);
969 AssertRCReturn(rc, rc);
970
971 if (puTotalAllocSize)
972 *puTotalAllocSize = cAllocPages * _4K;
973
974 if (puTotalFreeSize)
975 *puTotalFreeSize = cFreePages * _4K;
976
977 if (puTotalBalloonSize)
978 *puTotalBalloonSize = cBalloonPages * _4K;
979
980 return VINF_SUCCESS;
981}
982
983/**
984 * PGMR3PhysRegisterRam worker that initializes and links a RAM range.
985 *
986 * @param pVM The VM handle.
987 * @param pNew The new RAM range.
988 * @param GCPhys The address of the RAM range.
989 * @param GCPhysLast The last address of the RAM range.
990 * @param RCPtrNew The RC address if the range is floating. NIL_RTRCPTR
991 * if in HMA.
992 * @param R0PtrNew Ditto for R0.
993 * @param pszDesc The description.
994 * @param pPrev The previous RAM range (for linking).
995 */
996static void pgmR3PhysInitAndLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
997 RTRCPTR RCPtrNew, RTR0PTR R0PtrNew, const char *pszDesc, PPGMRAMRANGE pPrev)
998{
999 /*
1000 * Initialize the range.
1001 */
1002 pNew->pSelfR0 = R0PtrNew != NIL_RTR0PTR ? R0PtrNew : MMHyperCCToR0(pVM, pNew);
1003 pNew->pSelfRC = RCPtrNew != NIL_RTRCPTR ? RCPtrNew : MMHyperCCToRC(pVM, pNew);
1004 pNew->GCPhys = GCPhys;
1005 pNew->GCPhysLast = GCPhysLast;
1006 pNew->cb = GCPhysLast - GCPhys + 1;
1007 pNew->pszDesc = pszDesc;
1008 pNew->fFlags = RCPtrNew != NIL_RTRCPTR ? PGM_RAM_RANGE_FLAGS_FLOATING : 0;
1009 pNew->pvR3 = NULL;
1010 pNew->paLSPages = NULL;
1011
1012 uint32_t const cPages = pNew->cb >> PAGE_SHIFT;
1013 RTGCPHYS iPage = cPages;
1014 while (iPage-- > 0)
1015 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM);
1016
1017 /* Update the page count stats. */
1018 pVM->pgm.s.cZeroPages += cPages;
1019 pVM->pgm.s.cAllPages += cPages;
1020
1021 /*
1022 * Link it.
1023 */
1024 pgmR3PhysLinkRamRange(pVM, pNew, pPrev);
1025}
1026
1027
1028/**
1029 * Relocate a floating RAM range.
1030 *
1031 * @copydoc FNPGMRELOCATE.
1032 */
1033static DECLCALLBACK(bool) pgmR3PhysRamRangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew, PGMRELOCATECALL enmMode, void *pvUser)
1034{
1035 PPGMRAMRANGE pRam = (PPGMRAMRANGE)pvUser;
1036 Assert(pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING);
1037 Assert(pRam->pSelfRC == GCPtrOld + PAGE_SIZE);
1038
1039 switch (enmMode)
1040 {
1041 case PGMRELOCATECALL_SUGGEST:
1042 return true;
1043 case PGMRELOCATECALL_RELOCATE:
1044 {
1045 /* Update myself and then relink all the ranges. */
1046 pgmLock(pVM);
1047 pRam->pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE);
1048 pgmR3PhysRelinkRamRanges(pVM);
1049 pgmUnlock(pVM);
1050 return true;
1051 }
1052
1053 default:
1054 AssertFailedReturn(false);
1055 }
1056}
1057
1058
1059/**
1060 * PGMR3PhysRegisterRam worker that registers a high chunk.
1061 *
1062 * @returns VBox status code.
1063 * @param pVM The VM handle.
1064 * @param GCPhys The address of the RAM.
1065 * @param cRamPages The number of RAM pages to register.
1066 * @param cbChunk The size of the PGMRAMRANGE guest mapping.
1067 * @param iChunk The chunk number.
1068 * @param pszDesc The RAM range description.
1069 * @param ppPrev Previous RAM range pointer. In/Out.
1070 */
1071static int pgmR3PhysRegisterHighRamChunk(PVM pVM, RTGCPHYS GCPhys, uint32_t cRamPages,
1072 uint32_t cbChunk, uint32_t iChunk, const char *pszDesc,
1073 PPGMRAMRANGE *ppPrev)
1074{
1075 const char *pszDescChunk = iChunk == 0
1076 ? pszDesc
1077 : MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s (#%u)", pszDesc, iChunk + 1);
1078 AssertReturn(pszDescChunk, VERR_NO_MEMORY);
1079
1080 /*
1081 * Allocate memory for the new chunk.
1082 */
1083 size_t const cChunkPages = RT_ALIGN_Z(RT_UOFFSETOF(PGMRAMRANGE, aPages[cRamPages]), PAGE_SIZE) >> PAGE_SHIFT;
1084 PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
1085 AssertReturn(paChunkPages, VERR_NO_TMP_MEMORY);
1086 RTR0PTR R0PtrChunk = NIL_RTR0PTR;
1087 void *pvChunk = NULL;
1088 int rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk,
1089#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1090 VMMIsHwVirtExtForced(pVM) ? &R0PtrChunk : NULL,
1091#else
1092 NULL,
1093#endif
1094 paChunkPages);
1095 if (RT_SUCCESS(rc))
1096 {
1097#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1098 if (!VMMIsHwVirtExtForced(pVM))
1099 R0PtrChunk = NIL_RTR0PTR;
1100#else
1101 R0PtrChunk = (uintptr_t)pvChunk;
1102#endif
1103 memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
1104
1105 PPGMRAMRANGE pNew = (PPGMRAMRANGE)pvChunk;
1106
1107 /*
1108 * Create a mapping and map the pages into it.
1109 * We push these in below the HMA.
1110 */
1111 RTGCPTR GCPtrChunkMap = pVM->pgm.s.GCPtrPrevRamRangeMapping - cbChunk;
1112 rc = PGMR3MapPT(pVM, GCPtrChunkMap, cbChunk, 0 /*fFlags*/, pgmR3PhysRamRangeRelocate, pNew, pszDescChunk);
1113 if (RT_SUCCESS(rc))
1114 {
1115 pVM->pgm.s.GCPtrPrevRamRangeMapping = GCPtrChunkMap;
1116
1117 RTGCPTR const GCPtrChunk = GCPtrChunkMap + PAGE_SIZE;
1118 RTGCPTR GCPtrPage = GCPtrChunk;
1119 for (uint32_t iPage = 0; iPage < cChunkPages && RT_SUCCESS(rc); iPage++, GCPtrPage += PAGE_SIZE)
1120 rc = PGMMap(pVM, GCPtrPage, paChunkPages[iPage].Phys, PAGE_SIZE, 0);
1121 if (RT_SUCCESS(rc))
1122 {
1123 /*
1124 * Ok, init and link the range.
1125 */
1126 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhys + ((RTGCPHYS)cRamPages << PAGE_SHIFT) - 1,
1127 (RTRCPTR)GCPtrChunk, R0PtrChunk, pszDescChunk, *ppPrev);
1128 *ppPrev = pNew;
1129 }
1130 }
1131
1132 if (RT_FAILURE(rc))
1133 SUPR3PageFreeEx(pvChunk, cChunkPages);
1134 }
1135
1136 RTMemTmpFree(paChunkPages);
1137 return rc;
1138}
1139
1140
1141/**
1142 * Sets up a range RAM.
1143 *
1144 * This will check for conflicting registrations, make a resource
1145 * reservation for the memory (with GMM), and setup the per-page
1146 * tracking structures (PGMPAGE).
1147 *
1148 * @returns VBox stutus code.
1149 * @param pVM Pointer to the shared VM structure.
1150 * @param GCPhys The physical address of the RAM.
1151 * @param cb The size of the RAM.
1152 * @param pszDesc The description - not copied, so, don't free or change it.
1153 */
1154VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc)
1155{
1156 /*
1157 * Validate input.
1158 */
1159 Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc));
1160 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
1161 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
1162 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
1163 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1164 AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER);
1165 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1166 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1167
1168 pgmLock(pVM);
1169
1170 /*
1171 * Find range location and check for conflicts.
1172 * (We don't lock here because the locking by EMT is only required on update.)
1173 */
1174 PPGMRAMRANGE pPrev = NULL;
1175 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1176 while (pRam && GCPhysLast >= pRam->GCPhys)
1177 {
1178 if ( GCPhysLast >= pRam->GCPhys
1179 && GCPhys <= pRam->GCPhysLast)
1180 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
1181 GCPhys, GCPhysLast, pszDesc,
1182 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1183 VERR_PGM_RAM_CONFLICT);
1184
1185 /* next */
1186 pPrev = pRam;
1187 pRam = pRam->pNextR3;
1188 }
1189
1190 /*
1191 * Register it with GMM (the API bitches).
1192 */
1193 const RTGCPHYS cPages = cb >> PAGE_SHIFT;
1194 int rc = MMR3IncreaseBaseReservation(pVM, cPages);
1195 if (RT_FAILURE(rc))
1196 {
1197 pgmUnlock(pVM);
1198 return rc;
1199 }
1200
1201 if ( GCPhys >= _4G
1202 && cPages > 256)
1203 {
1204 /*
1205 * The PGMRAMRANGE structures for the high memory can get very big.
1206 * In order to avoid SUPR3PageAllocEx allocation failures due to the
1207 * allocation size limit there and also to avoid being unable to find
1208 * guest mapping space for them, we split this memory up into 4MB in
1209 * (potential) raw-mode configs and 16MB chunks in forced AMD-V/VT-x
1210 * mode.
1211 *
1212 * The first and last page of each mapping are guard pages and marked
1213 * not-present. So, we've got 4186112 and 16769024 bytes available for
1214 * the PGMRAMRANGE structure.
1215 *
1216 * Note! The sizes used here will influence the saved state.
1217 */
1218 uint32_t cbChunk;
1219 uint32_t cPagesPerChunk;
1220 if (VMMIsHwVirtExtForced(pVM))
1221 {
1222 cbChunk = 16U*_1M;
1223 cPagesPerChunk = 1048048; /* max ~1048059 */
1224 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2);
1225 }
1226 else
1227 {
1228 cbChunk = 4U*_1M;
1229 cPagesPerChunk = 261616; /* max ~261627 */
1230 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 261616 < 4U*_1M - PAGE_SIZE * 2);
1231 }
1232 AssertRelease(RT_UOFFSETOF(PGMRAMRANGE, aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
1233
1234 RTGCPHYS cPagesLeft = cPages;
1235 RTGCPHYS GCPhysChunk = GCPhys;
1236 uint32_t iChunk = 0;
1237 while (cPagesLeft > 0)
1238 {
1239 uint32_t cPagesInChunk = cPagesLeft;
1240 if (cPagesInChunk > cPagesPerChunk)
1241 cPagesInChunk = cPagesPerChunk;
1242
1243 rc = pgmR3PhysRegisterHighRamChunk(pVM, GCPhysChunk, cPagesInChunk, cbChunk, iChunk, pszDesc, &pPrev);
1244 AssertRCReturn(rc, rc);
1245
1246 /* advance */
1247 GCPhysChunk += (RTGCPHYS)cPagesInChunk << PAGE_SHIFT;
1248 cPagesLeft -= cPagesInChunk;
1249 iChunk++;
1250 }
1251 }
1252 else
1253 {
1254 /*
1255 * Allocate, initialize and link the new RAM range.
1256 */
1257 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
1258 PPGMRAMRANGE pNew;
1259 rc = MMR3HyperAllocOnceNoRel(pVM, cbRamRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1260 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
1261
1262 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhysLast, NIL_RTRCPTR, NIL_RTR0PTR, pszDesc, pPrev);
1263 }
1264 PGMPhysInvalidatePageMapTLB(pVM);
1265 pgmUnlock(pVM);
1266
1267 /*
1268 * Notify REM.
1269 */
1270 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_RAM);
1271
1272 return VINF_SUCCESS;
1273}
1274
1275
1276/**
1277 * Worker called by PGMR3InitFinalize if we're configured to pre-allocate RAM.
1278 *
1279 * We do this late in the init process so that all the ROM and MMIO ranges have
1280 * been registered already and we don't go wasting memory on them.
1281 *
1282 * @returns VBox status code.
1283 *
1284 * @param pVM Pointer to the shared VM structure.
1285 */
1286int pgmR3PhysRamPreAllocate(PVM pVM)
1287{
1288 Assert(pVM->pgm.s.fRamPreAlloc);
1289 Log(("pgmR3PhysRamPreAllocate: enter\n"));
1290
1291 /*
1292 * Walk the RAM ranges and allocate all RAM pages, halt at
1293 * the first allocation error.
1294 */
1295 uint64_t cPages = 0;
1296 uint64_t NanoTS = RTTimeNanoTS();
1297 pgmLock(pVM);
1298 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
1299 {
1300 PPGMPAGE pPage = &pRam->aPages[0];
1301 RTGCPHYS GCPhys = pRam->GCPhys;
1302 uint32_t cLeft = pRam->cb >> PAGE_SHIFT;
1303 while (cLeft-- > 0)
1304 {
1305 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
1306 {
1307 switch (PGM_PAGE_GET_STATE(pPage))
1308 {
1309 case PGM_PAGE_STATE_ZERO:
1310 {
1311 int rc = pgmPhysAllocPage(pVM, pPage, GCPhys);
1312 if (RT_FAILURE(rc))
1313 {
1314 LogRel(("PGM: RAM Pre-allocation failed at %RGp (in %s) with rc=%Rrc\n", GCPhys, pRam->pszDesc, rc));
1315 pgmUnlock(pVM);
1316 return rc;
1317 }
1318 cPages++;
1319 break;
1320 }
1321
1322 case PGM_PAGE_STATE_BALLOONED:
1323 case PGM_PAGE_STATE_ALLOCATED:
1324 case PGM_PAGE_STATE_WRITE_MONITORED:
1325 case PGM_PAGE_STATE_SHARED:
1326 /* nothing to do here. */
1327 break;
1328 }
1329 }
1330
1331 /* next */
1332 pPage++;
1333 GCPhys += PAGE_SIZE;
1334 }
1335 }
1336 pgmUnlock(pVM);
1337 NanoTS = RTTimeNanoTS() - NanoTS;
1338
1339 LogRel(("PGM: Pre-allocated %llu pages in %llu ms\n", cPages, NanoTS / 1000000));
1340 Log(("pgmR3PhysRamPreAllocate: returns VINF_SUCCESS\n"));
1341 return VINF_SUCCESS;
1342}
1343
1344
1345/**
1346 * Resets (zeros) the RAM.
1347 *
1348 * ASSUMES that the caller owns the PGM lock.
1349 *
1350 * @returns VBox status code.
1351 * @param pVM Pointer to the shared VM structure.
1352 */
1353int pgmR3PhysRamReset(PVM pVM)
1354{
1355 Assert(PGMIsLockOwner(pVM));
1356
1357 /* Reset the memory balloon. */
1358 int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
1359 AssertRC(rc);
1360
1361#ifdef VBOX_WITH_PAGE_SHARING
1362 /* Clear all registered shared modules. */
1363 rc = GMMR3ResetSharedModules(pVM);
1364 AssertRC(rc);
1365#endif
1366
1367 /*
1368 * We batch up pages that should be freed instead of calling GMM for
1369 * each and every one of them.
1370 */
1371 uint32_t cPendingPages = 0;
1372 PGMMFREEPAGESREQ pReq;
1373 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1374 AssertLogRelRCReturn(rc, rc);
1375
1376 /*
1377 * Walk the ram ranges.
1378 */
1379 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
1380 {
1381 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
1382 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
1383
1384 if (!pVM->pgm.s.fRamPreAlloc)
1385 {
1386 /* Replace all RAM pages by ZERO pages. */
1387 while (iPage-- > 0)
1388 {
1389 PPGMPAGE pPage = &pRam->aPages[iPage];
1390 switch (PGM_PAGE_GET_TYPE(pPage))
1391 {
1392 case PGMPAGETYPE_RAM:
1393 /* Do not replace pages part of a 2 MB continuous range with zero pages, but zero them instead. */
1394 if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE)
1395 {
1396 void *pvPage;
1397 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
1398 AssertLogRelRCReturn(rc, rc);
1399 ASMMemZeroPage(pvPage);
1400 }
1401 else
1402 if (PGM_PAGE_IS_BALLOONED(pPage))
1403 {
1404 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
1405 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
1406 }
1407 else
1408 if (!PGM_PAGE_IS_ZERO(pPage))
1409 {
1410 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1411 AssertLogRelRCReturn(rc, rc);
1412 }
1413 break;
1414
1415 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1416 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1417 break;
1418
1419 case PGMPAGETYPE_MMIO2:
1420 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
1421 case PGMPAGETYPE_ROM:
1422 case PGMPAGETYPE_MMIO:
1423 break;
1424 default:
1425 AssertFailed();
1426 }
1427 } /* for each page */
1428 }
1429 else
1430 {
1431 /* Zero the memory. */
1432 while (iPage-- > 0)
1433 {
1434 PPGMPAGE pPage = &pRam->aPages[iPage];
1435 switch (PGM_PAGE_GET_TYPE(pPage))
1436 {
1437 case PGMPAGETYPE_RAM:
1438 switch (PGM_PAGE_GET_STATE(pPage))
1439 {
1440 case PGM_PAGE_STATE_ZERO:
1441 break;
1442
1443 case PGM_PAGE_STATE_BALLOONED:
1444 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
1445 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
1446 break;
1447
1448 case PGM_PAGE_STATE_SHARED:
1449 case PGM_PAGE_STATE_WRITE_MONITORED:
1450 rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1451 AssertLogRelRCReturn(rc, rc);
1452 /* no break */
1453
1454 case PGM_PAGE_STATE_ALLOCATED:
1455 {
1456 void *pvPage;
1457 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
1458 AssertLogRelRCReturn(rc, rc);
1459 ASMMemZeroPage(pvPage);
1460 break;
1461 }
1462 }
1463 break;
1464
1465 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1466 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1467 break;
1468
1469 case PGMPAGETYPE_MMIO2:
1470 case PGMPAGETYPE_ROM_SHADOW:
1471 case PGMPAGETYPE_ROM:
1472 case PGMPAGETYPE_MMIO:
1473 break;
1474 default:
1475 AssertFailed();
1476
1477 }
1478 } /* for each page */
1479 }
1480
1481 }
1482
1483 /*
1484 * Finish off any pages pending freeing.
1485 */
1486 if (cPendingPages)
1487 {
1488 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
1489 AssertLogRelRCReturn(rc, rc);
1490 }
1491 GMMR3FreePagesCleanup(pReq);
1492
1493 return VINF_SUCCESS;
1494}
1495
1496
1497/**
1498 * This is the interface IOM is using to register an MMIO region.
1499 *
1500 * It will check for conflicts and ensure that a RAM range structure
1501 * is present before calling the PGMR3HandlerPhysicalRegister API to
1502 * register the callbacks.
1503 *
1504 * @returns VBox status code.
1505 *
1506 * @param pVM Pointer to the shared VM structure.
1507 * @param GCPhys The start of the MMIO region.
1508 * @param cb The size of the MMIO region.
1509 * @param pfnHandlerR3 The address of the ring-3 handler. (IOMR3MMIOHandler)
1510 * @param pvUserR3 The user argument for R3.
1511 * @param pfnHandlerR0 The address of the ring-0 handler. (IOMMMIOHandler)
1512 * @param pvUserR0 The user argument for R0.
1513 * @param pfnHandlerRC The address of the RC handler. (IOMMMIOHandler)
1514 * @param pvUserRC The user argument for RC.
1515 * @param pszDesc The description of the MMIO region.
1516 */
1517VMMR3DECL(int) PGMR3PhysMMIORegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb,
1518 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3, RTR3PTR pvUserR3,
1519 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0, RTR0PTR pvUserR0,
1520 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnHandlerRC, RTRCPTR pvUserRC,
1521 R3PTRTYPE(const char *) pszDesc)
1522{
1523 /*
1524 * Assert on some assumption.
1525 */
1526 VM_ASSERT_EMT(pVM);
1527 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1528 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1529 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1530 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
1531
1532 /*
1533 * Make sure there's a RAM range structure for the region.
1534 */
1535 int rc;
1536 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1537 bool fRamExists = false;
1538 PPGMRAMRANGE pRamPrev = NULL;
1539 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1540 while (pRam && GCPhysLast >= pRam->GCPhys)
1541 {
1542 if ( GCPhysLast >= pRam->GCPhys
1543 && GCPhys <= pRam->GCPhysLast)
1544 {
1545 /* Simplification: all within the same range. */
1546 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
1547 && GCPhysLast <= pRam->GCPhysLast,
1548 ("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n",
1549 GCPhys, GCPhysLast, pszDesc,
1550 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1551 VERR_PGM_RAM_CONFLICT);
1552
1553 /* Check that it's all RAM or MMIO pages. */
1554 PCPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1555 uint32_t cLeft = cb >> PAGE_SHIFT;
1556 while (cLeft-- > 0)
1557 {
1558 AssertLogRelMsgReturn( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1559 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO,
1560 ("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n",
1561 GCPhys, GCPhysLast, pszDesc, PGM_PAGE_GET_TYPE(pPage), pRam->pszDesc),
1562 VERR_PGM_RAM_CONFLICT);
1563 pPage++;
1564 }
1565
1566 /* Looks good. */
1567 fRamExists = true;
1568 break;
1569 }
1570
1571 /* next */
1572 pRamPrev = pRam;
1573 pRam = pRam->pNextR3;
1574 }
1575 PPGMRAMRANGE pNew;
1576 if (fRamExists)
1577 {
1578 pNew = NULL;
1579
1580 /*
1581 * Make all the pages in the range MMIO/ZERO pages, freeing any
1582 * RAM pages currently mapped here. This might not be 100% correct
1583 * for PCI memory, but we're doing the same thing for MMIO2 pages.
1584 */
1585 rc = pgmLock(pVM);
1586 if (RT_SUCCESS(rc))
1587 {
1588 rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO);
1589 pgmUnlock(pVM);
1590 }
1591 AssertRCReturn(rc, rc);
1592
1593 /* Force a PGM pool flush as guest ram references have been changed. */
1594 /** todo; not entirely SMP safe; assuming for now the guest takes care of this internally (not touch mapped mmio while changing the mapping). */
1595 PVMCPU pVCpu = VMMGetCpu(pVM);
1596 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
1597 pgmPoolSyncCR3(pVCpu);
1598 }
1599 else
1600 {
1601 pgmLock(pVM);
1602
1603 /*
1604 * No RAM range, insert an ad hoc one.
1605 *
1606 * Note that we don't have to tell REM about this range because
1607 * PGMHandlerPhysicalRegisterEx will do that for us.
1608 */
1609 Log(("PGMR3PhysMMIORegister: Adding ad hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc));
1610
1611 const uint32_t cPages = cb >> PAGE_SHIFT;
1612 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
1613 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), 16, MM_TAG_PGM_PHYS, (void **)&pNew);
1614 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
1615
1616 /* Initialize the range. */
1617 pNew->pSelfR0 = MMHyperCCToR0(pVM, pNew);
1618 pNew->pSelfRC = MMHyperCCToRC(pVM, pNew);
1619 pNew->GCPhys = GCPhys;
1620 pNew->GCPhysLast = GCPhysLast;
1621 pNew->cb = cb;
1622 pNew->pszDesc = pszDesc;
1623 pNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO;
1624 pNew->pvR3 = NULL;
1625 pNew->paLSPages = NULL;
1626
1627 uint32_t iPage = cPages;
1628 while (iPage-- > 0)
1629 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO);
1630 Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO);
1631
1632 /* update the page count stats. */
1633 pVM->pgm.s.cPureMmioPages += cPages;
1634 pVM->pgm.s.cAllPages += cPages;
1635
1636 /* link it */
1637 pgmR3PhysLinkRamRange(pVM, pNew, pRamPrev);
1638
1639 pgmUnlock(pVM);
1640 }
1641
1642 /*
1643 * Register the access handler.
1644 */
1645 rc = PGMHandlerPhysicalRegisterEx(pVM, PGMPHYSHANDLERTYPE_MMIO, GCPhys, GCPhysLast,
1646 pfnHandlerR3, pvUserR3,
1647 pfnHandlerR0, pvUserR0,
1648 pfnHandlerRC, pvUserRC, pszDesc);
1649 if ( RT_FAILURE(rc)
1650 && !fRamExists)
1651 {
1652 pVM->pgm.s.cPureMmioPages -= cb >> PAGE_SHIFT;
1653 pVM->pgm.s.cAllPages -= cb >> PAGE_SHIFT;
1654
1655 /* remove the ad hoc range. */
1656 pgmR3PhysUnlinkRamRange2(pVM, pNew, pRamPrev);
1657 pNew->cb = pNew->GCPhys = pNew->GCPhysLast = NIL_RTGCPHYS;
1658 MMHyperFree(pVM, pRam);
1659 }
1660 PGMPhysInvalidatePageMapTLB(pVM);
1661
1662 return rc;
1663}
1664
1665
1666/**
1667 * This is the interface IOM is using to register an MMIO region.
1668 *
1669 * It will take care of calling PGMHandlerPhysicalDeregister and clean up
1670 * any ad hoc PGMRAMRANGE left behind.
1671 *
1672 * @returns VBox status code.
1673 * @param pVM Pointer to the shared VM structure.
1674 * @param GCPhys The start of the MMIO region.
1675 * @param cb The size of the MMIO region.
1676 */
1677VMMR3DECL(int) PGMR3PhysMMIODeregister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
1678{
1679 VM_ASSERT_EMT(pVM);
1680
1681 /*
1682 * First deregister the handler, then check if we should remove the ram range.
1683 */
1684 int rc = PGMHandlerPhysicalDeregister(pVM, GCPhys);
1685 if (RT_SUCCESS(rc))
1686 {
1687 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1688 PPGMRAMRANGE pRamPrev = NULL;
1689 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1690 while (pRam && GCPhysLast >= pRam->GCPhys)
1691 {
1692 /** @todo We're being a bit too careful here. rewrite. */
1693 if ( GCPhysLast == pRam->GCPhysLast
1694 && GCPhys == pRam->GCPhys)
1695 {
1696 Assert(pRam->cb == cb);
1697
1698 /*
1699 * See if all the pages are dead MMIO pages.
1700 */
1701 uint32_t const cPages = cb >> PAGE_SHIFT;
1702 bool fAllMMIO = true;
1703 uint32_t iPage = 0;
1704 uint32_t cLeft = cPages;
1705 while (cLeft-- > 0)
1706 {
1707 PPGMPAGE pPage = &pRam->aPages[iPage];
1708 if ( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO
1709 /*|| not-out-of-action later */)
1710 {
1711 fAllMMIO = false;
1712 Assert(PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO2_ALIAS_MMIO);
1713 AssertMsgFailed(("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1714 break;
1715 }
1716 Assert(PGM_PAGE_IS_ZERO(pPage));
1717 pPage++;
1718 }
1719 if (fAllMMIO)
1720 {
1721 /*
1722 * Ad-hoc range, unlink and free it.
1723 */
1724 Log(("PGMR3PhysMMIODeregister: Freeing ad hoc MMIO range for %RGp-%RGp %s\n",
1725 GCPhys, GCPhysLast, pRam->pszDesc));
1726
1727 pVM->pgm.s.cAllPages -= cPages;
1728 pVM->pgm.s.cPureMmioPages -= cPages;
1729
1730 pgmR3PhysUnlinkRamRange2(pVM, pRam, pRamPrev);
1731 pRam->cb = pRam->GCPhys = pRam->GCPhysLast = NIL_RTGCPHYS;
1732 MMHyperFree(pVM, pRam);
1733 break;
1734 }
1735 }
1736
1737 /*
1738 * Range match? It will all be within one range (see PGMAllHandler.cpp).
1739 */
1740 if ( GCPhysLast >= pRam->GCPhys
1741 && GCPhys <= pRam->GCPhysLast)
1742 {
1743 Assert(GCPhys >= pRam->GCPhys);
1744 Assert(GCPhysLast <= pRam->GCPhysLast);
1745
1746 /*
1747 * Turn the pages back into RAM pages.
1748 */
1749 uint32_t iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
1750 uint32_t cLeft = cb >> PAGE_SHIFT;
1751 while (cLeft--)
1752 {
1753 PPGMPAGE pPage = &pRam->aPages[iPage];
1754 AssertMsg(PGM_PAGE_IS_MMIO(pPage), ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1755 AssertMsg(PGM_PAGE_IS_ZERO(pPage), ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
1756 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO)
1757 PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_RAM);
1758 }
1759 break;
1760 }
1761
1762 /* next */
1763 pRamPrev = pRam;
1764 pRam = pRam->pNextR3;
1765 }
1766 }
1767
1768 /* Force a PGM pool flush as guest ram references have been changed. */
1769 /** todo; not entirely SMP safe; assuming for now the guest takes care of this internally (not touch mapped mmio while changing the mapping). */
1770 PVMCPU pVCpu = VMMGetCpu(pVM);
1771 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
1772 pgmPoolSyncCR3(pVCpu);
1773
1774 PGMPhysInvalidatePageMapTLB(pVM);
1775 return rc;
1776}
1777
1778
1779/**
1780 * Locate a MMIO2 range.
1781 *
1782 * @returns Pointer to the MMIO2 range.
1783 * @param pVM Pointer to the shared VM structure.
1784 * @param pDevIns The device instance owning the region.
1785 * @param iRegion The region.
1786 */
1787DECLINLINE(PPGMMMIO2RANGE) pgmR3PhysMMIO2Find(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
1788{
1789 /*
1790 * Search the list.
1791 */
1792 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
1793 if ( pCur->pDevInsR3 == pDevIns
1794 && pCur->iRegion == iRegion)
1795 return pCur;
1796 return NULL;
1797}
1798
1799
1800/**
1801 * Allocate and register an MMIO2 region.
1802 *
1803 * As mentioned elsewhere, MMIO2 is just RAM spelled differently. It's
1804 * RAM associated with a device. It is also non-shared memory with a
1805 * permanent ring-3 mapping and page backing (presently).
1806 *
1807 * A MMIO2 range may overlap with base memory if a lot of RAM
1808 * is configured for the VM, in which case we'll drop the base
1809 * memory pages. Presently we will make no attempt to preserve
1810 * anything that happens to be present in the base memory that
1811 * is replaced, this is of course incorrectly but it's too much
1812 * effort.
1813 *
1814 * @returns VBox status code.
1815 * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the memory.
1816 * @retval VERR_ALREADY_EXISTS if the region already exists.
1817 *
1818 * @param pVM Pointer to the shared VM structure.
1819 * @param pDevIns The device instance owning the region.
1820 * @param iRegion The region number. If the MMIO2 memory is a PCI I/O region
1821 * this number has to be the number of that region. Otherwise
1822 * it can be any number safe UINT8_MAX.
1823 * @param cb The size of the region. Must be page aligned.
1824 * @param fFlags Reserved for future use, must be zero.
1825 * @param ppv Where to store the pointer to the ring-3 mapping of the memory.
1826 * @param pszDesc The description.
1827 */
1828VMMR3DECL(int) PGMR3PhysMMIO2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS cb, uint32_t fFlags, void **ppv, const char *pszDesc)
1829{
1830 /*
1831 * Validate input.
1832 */
1833 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1834 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1835 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
1836 AssertPtrReturn(ppv, VERR_INVALID_POINTER);
1837 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1838 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
1839 AssertReturn(pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion) == NULL, VERR_ALREADY_EXISTS);
1840 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1841 AssertReturn(cb, VERR_INVALID_PARAMETER);
1842 AssertReturn(!fFlags, VERR_INVALID_PARAMETER);
1843
1844 const uint32_t cPages = cb >> PAGE_SHIFT;
1845 AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cb, VERR_INVALID_PARAMETER);
1846 AssertLogRelReturn(cPages <= INT32_MAX / 2, VERR_NO_MEMORY);
1847
1848 /*
1849 * For the 2nd+ instance, mangle the description string so it's unique.
1850 */
1851 if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */
1852 {
1853 pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance);
1854 if (!pszDesc)
1855 return VERR_NO_MEMORY;
1856 }
1857
1858 /*
1859 * Try reserve and allocate the backing memory first as this is what is
1860 * most likely to fail.
1861 */
1862 int rc = MMR3AdjustFixedReservation(pVM, cPages, pszDesc);
1863 if (RT_SUCCESS(rc))
1864 {
1865 void *pvPages;
1866 PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cPages * sizeof(SUPPAGE));
1867 if (RT_SUCCESS(rc))
1868 rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, NULL /*pR0Ptr*/, paPages);
1869 if (RT_SUCCESS(rc))
1870 {
1871 memset(pvPages, 0, cPages * PAGE_SIZE);
1872
1873 /*
1874 * Create the MMIO2 range record for it.
1875 */
1876 const size_t cbRange = RT_OFFSETOF(PGMMMIO2RANGE, RamRange.aPages[cPages]);
1877 PPGMMMIO2RANGE pNew;
1878 rc = MMR3HyperAllocOnceNoRel(pVM, cbRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1879 AssertLogRelMsgRC(rc, ("cbRamRange=%zu\n", cbRange));
1880 if (RT_SUCCESS(rc))
1881 {
1882 pNew->pDevInsR3 = pDevIns;
1883 pNew->pvR3 = pvPages;
1884 //pNew->pNext = NULL;
1885 //pNew->fMapped = false;
1886 //pNew->fOverlapping = false;
1887 pNew->iRegion = iRegion;
1888 pNew->idSavedState = UINT8_MAX;
1889 pNew->RamRange.pSelfR0 = MMHyperCCToR0(pVM, &pNew->RamRange);
1890 pNew->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pNew->RamRange);
1891 pNew->RamRange.GCPhys = NIL_RTGCPHYS;
1892 pNew->RamRange.GCPhysLast = NIL_RTGCPHYS;
1893 pNew->RamRange.pszDesc = pszDesc;
1894 pNew->RamRange.cb = cb;
1895 pNew->RamRange.fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO2;
1896 pNew->RamRange.pvR3 = pvPages;
1897 //pNew->RamRange.paLSPages = NULL;
1898
1899 uint32_t iPage = cPages;
1900 while (iPage-- > 0)
1901 {
1902 PGM_PAGE_INIT(&pNew->RamRange.aPages[iPage],
1903 paPages[iPage].Phys, NIL_GMM_PAGEID,
1904 PGMPAGETYPE_MMIO2, PGM_PAGE_STATE_ALLOCATED);
1905 }
1906
1907 /* update page count stats */
1908 pVM->pgm.s.cAllPages += cPages;
1909 pVM->pgm.s.cPrivatePages += cPages;
1910
1911 /*
1912 * Link it into the list.
1913 * Since there is no particular order, just push it.
1914 */
1915 pgmLock(pVM);
1916 pNew->pNextR3 = pVM->pgm.s.pMmio2RangesR3;
1917 pVM->pgm.s.pMmio2RangesR3 = pNew;
1918 pgmUnlock(pVM);
1919
1920 *ppv = pvPages;
1921 RTMemTmpFree(paPages);
1922 PGMPhysInvalidatePageMapTLB(pVM);
1923 return VINF_SUCCESS;
1924 }
1925
1926 SUPR3PageFreeEx(pvPages, cPages);
1927 }
1928 RTMemTmpFree(paPages);
1929 MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pszDesc);
1930 }
1931 if (pDevIns->iInstance > 0)
1932 MMR3HeapFree((void *)pszDesc);
1933 return rc;
1934}
1935
1936
1937/**
1938 * Deregisters and frees an MMIO2 region.
1939 *
1940 * Any physical (and virtual) access handlers registered for the region must
1941 * be deregistered before calling this function.
1942 *
1943 * @returns VBox status code.
1944 * @param pVM Pointer to the shared VM structure.
1945 * @param pDevIns The device instance owning the region.
1946 * @param iRegion The region. If it's UINT32_MAX it'll be a wildcard match.
1947 */
1948VMMR3DECL(int) PGMR3PhysMMIO2Deregister(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
1949{
1950 /*
1951 * Validate input.
1952 */
1953 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1954 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
1955 AssertReturn(iRegion <= UINT8_MAX || iRegion == UINT32_MAX, VERR_INVALID_PARAMETER);
1956
1957 pgmLock(pVM);
1958 int rc = VINF_SUCCESS;
1959 unsigned cFound = 0;
1960 PPGMMMIO2RANGE pPrev = NULL;
1961 PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3;
1962 while (pCur)
1963 {
1964 if ( pCur->pDevInsR3 == pDevIns
1965 && ( iRegion == UINT32_MAX
1966 || pCur->iRegion == iRegion))
1967 {
1968 cFound++;
1969
1970 /*
1971 * Unmap it if it's mapped.
1972 */
1973 if (pCur->fMapped)
1974 {
1975 int rc2 = PGMR3PhysMMIO2Unmap(pVM, pCur->pDevInsR3, pCur->iRegion, pCur->RamRange.GCPhys);
1976 AssertRC(rc2);
1977 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1978 rc = rc2;
1979 }
1980
1981 /*
1982 * Unlink it
1983 */
1984 PPGMMMIO2RANGE pNext = pCur->pNextR3;
1985 if (pPrev)
1986 pPrev->pNextR3 = pNext;
1987 else
1988 pVM->pgm.s.pMmio2RangesR3 = pNext;
1989 pCur->pNextR3 = NULL;
1990
1991 /*
1992 * Free the memory.
1993 */
1994 int rc2 = SUPR3PageFreeEx(pCur->pvR3, pCur->RamRange.cb >> PAGE_SHIFT);
1995 AssertRC(rc2);
1996 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
1997 rc = rc2;
1998
1999 uint32_t const cPages = pCur->RamRange.cb >> PAGE_SHIFT;
2000 rc2 = MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pCur->RamRange.pszDesc);
2001 AssertRC(rc2);
2002 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
2003 rc = rc2;
2004
2005 /* we're leaking hyper memory here if done at runtime. */
2006#ifdef VBOX_STRICT
2007 VMSTATE const enmState = VMR3GetState(pVM);
2008 AssertMsg( enmState == VMSTATE_POWERING_OFF
2009 || enmState == VMSTATE_POWERING_OFF_LS
2010 || enmState == VMSTATE_OFF
2011 || enmState == VMSTATE_OFF_LS
2012 || enmState == VMSTATE_DESTROYING
2013 || enmState == VMSTATE_TERMINATED
2014 || enmState == VMSTATE_CREATING
2015 , ("%s\n", VMR3GetStateName(enmState)));
2016#endif
2017 /*rc = MMHyperFree(pVM, pCur);
2018 AssertRCReturn(rc, rc); - not safe, see the alloc call. */
2019
2020
2021 /* update page count stats */
2022 pVM->pgm.s.cAllPages -= cPages;
2023 pVM->pgm.s.cPrivatePages -= cPages;
2024
2025 /* next */
2026 pCur = pNext;
2027 }
2028 else
2029 {
2030 pPrev = pCur;
2031 pCur = pCur->pNextR3;
2032 }
2033 }
2034 PGMPhysInvalidatePageMapTLB(pVM);
2035 pgmUnlock(pVM);
2036 return !cFound && iRegion != UINT32_MAX ? VERR_NOT_FOUND : rc;
2037}
2038
2039
2040/**
2041 * Maps a MMIO2 region.
2042 *
2043 * This is done when a guest / the bios / state loading changes the
2044 * PCI config. The replacing of base memory has the same restrictions
2045 * as during registration, of course.
2046 *
2047 * @returns VBox status code.
2048 *
2049 * @param pVM Pointer to the shared VM structure.
2050 * @param pDevIns The
2051 */
2052VMMR3DECL(int) PGMR3PhysMMIO2Map(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
2053{
2054 /*
2055 * Validate input
2056 */
2057 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2058 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2059 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2060 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
2061 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
2062 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2063
2064 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2065 AssertReturn(pCur, VERR_NOT_FOUND);
2066 AssertReturn(!pCur->fMapped, VERR_WRONG_ORDER);
2067 Assert(pCur->RamRange.GCPhys == NIL_RTGCPHYS);
2068 Assert(pCur->RamRange.GCPhysLast == NIL_RTGCPHYS);
2069
2070 const RTGCPHYS GCPhysLast = GCPhys + pCur->RamRange.cb - 1;
2071 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
2072
2073 /*
2074 * Find our location in the ram range list, checking for
2075 * restriction we don't bother implementing yet (partially overlapping).
2076 */
2077 bool fRamExists = false;
2078 PPGMRAMRANGE pRamPrev = NULL;
2079 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
2080 while (pRam && GCPhysLast >= pRam->GCPhys)
2081 {
2082 if ( GCPhys <= pRam->GCPhysLast
2083 && GCPhysLast >= pRam->GCPhys)
2084 {
2085 /* completely within? */
2086 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
2087 && GCPhysLast <= pRam->GCPhysLast,
2088 ("%RGp-%RGp (MMIO2/%s) falls partly outside %RGp-%RGp (%s)\n",
2089 GCPhys, GCPhysLast, pCur->RamRange.pszDesc,
2090 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2091 VERR_PGM_RAM_CONFLICT);
2092 fRamExists = true;
2093 break;
2094 }
2095
2096 /* next */
2097 pRamPrev = pRam;
2098 pRam = pRam->pNextR3;
2099 }
2100 if (fRamExists)
2101 {
2102 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2103 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2104 while (cPagesLeft-- > 0)
2105 {
2106 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
2107 ("%RGp isn't a RAM page (%d) - mapping %RGp-%RGp (MMIO2/%s).\n",
2108 GCPhys, PGM_PAGE_GET_TYPE(pPage), GCPhys, GCPhysLast, pCur->RamRange.pszDesc),
2109 VERR_PGM_RAM_CONFLICT);
2110 pPage++;
2111 }
2112 }
2113 Log(("PGMR3PhysMMIO2Map: %RGp-%RGp fRamExists=%RTbool %s\n",
2114 GCPhys, GCPhysLast, fRamExists, pCur->RamRange.pszDesc));
2115
2116 /*
2117 * Make the changes.
2118 */
2119 pgmLock(pVM);
2120
2121 pCur->RamRange.GCPhys = GCPhys;
2122 pCur->RamRange.GCPhysLast = GCPhysLast;
2123 pCur->fMapped = true;
2124 pCur->fOverlapping = fRamExists;
2125
2126 if (fRamExists)
2127 {
2128/** @todo use pgmR3PhysFreePageRange here. */
2129 uint32_t cPendingPages = 0;
2130 PGMMFREEPAGESREQ pReq;
2131 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2132 AssertLogRelRCReturn(rc, rc);
2133
2134 /* replace the pages, freeing all present RAM pages. */
2135 PPGMPAGE pPageSrc = &pCur->RamRange.aPages[0];
2136 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2137 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2138 while (cPagesLeft-- > 0)
2139 {
2140 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
2141 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
2142
2143 RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc);
2144 PGM_PAGE_SET_HCPHYS(pPageDst, HCPhys);
2145 PGM_PAGE_SET_TYPE(pPageDst, PGMPAGETYPE_MMIO2);
2146 PGM_PAGE_SET_STATE(pPageDst, PGM_PAGE_STATE_ALLOCATED);
2147
2148 pVM->pgm.s.cZeroPages--;
2149 GCPhys += PAGE_SIZE;
2150 pPageSrc++;
2151 pPageDst++;
2152 }
2153
2154 /* Flush physical page map TLB. */
2155 PGMPhysInvalidatePageMapTLB(pVM);
2156
2157 if (cPendingPages)
2158 {
2159 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2160 AssertLogRelRCReturn(rc, rc);
2161 }
2162 GMMR3FreePagesCleanup(pReq);
2163 pgmUnlock(pVM);
2164 }
2165 else
2166 {
2167 RTGCPHYS cb = pCur->RamRange.cb;
2168
2169 /* link in the ram range */
2170 pgmR3PhysLinkRamRange(pVM, &pCur->RamRange, pRamPrev);
2171 pgmUnlock(pVM);
2172
2173 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_MMIO2);
2174 }
2175
2176 PGMPhysInvalidatePageMapTLB(pVM);
2177 return VINF_SUCCESS;
2178}
2179
2180
2181/**
2182 * Unmaps a MMIO2 region.
2183 *
2184 * This is done when a guest / the bios / state loading changes the
2185 * PCI config. The replacing of base memory has the same restrictions
2186 * as during registration, of course.
2187 */
2188VMMR3DECL(int) PGMR3PhysMMIO2Unmap(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
2189{
2190 /*
2191 * Validate input
2192 */
2193 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2194 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2195 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2196 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
2197 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
2198 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2199
2200 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2201 AssertReturn(pCur, VERR_NOT_FOUND);
2202 AssertReturn(pCur->fMapped, VERR_WRONG_ORDER);
2203 AssertReturn(pCur->RamRange.GCPhys == GCPhys, VERR_INVALID_PARAMETER);
2204 Assert(pCur->RamRange.GCPhysLast != NIL_RTGCPHYS);
2205
2206 Log(("PGMR3PhysMMIO2Unmap: %RGp-%RGp %s\n",
2207 pCur->RamRange.GCPhys, pCur->RamRange.GCPhysLast, pCur->RamRange.pszDesc));
2208
2209 /*
2210 * Unmap it.
2211 */
2212 pgmLock(pVM);
2213
2214 RTGCPHYS GCPhysRangeREM;
2215 RTGCPHYS cbRangeREM;
2216 bool fInformREM;
2217 if (pCur->fOverlapping)
2218 {
2219 /* Restore the RAM pages we've replaced. */
2220 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
2221 while (pRam->GCPhys > pCur->RamRange.GCPhysLast)
2222 pRam = pRam->pNextR3;
2223
2224 RTHCPHYS const HCPhysZeroPg = pVM->pgm.s.HCPhysZeroPg;
2225 Assert(HCPhysZeroPg != 0 && HCPhysZeroPg != NIL_RTHCPHYS);
2226 PPGMPAGE pPageDst = &pRam->aPages[(pCur->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2227 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2228 while (cPagesLeft-- > 0)
2229 {
2230 PGM_PAGE_SET_HCPHYS(pPageDst, HCPhysZeroPg);
2231 PGM_PAGE_SET_TYPE(pPageDst, PGMPAGETYPE_RAM);
2232 PGM_PAGE_SET_STATE(pPageDst, PGM_PAGE_STATE_ZERO);
2233 PGM_PAGE_SET_PAGEID(pPageDst, NIL_GMM_PAGEID);
2234 PGM_PAGE_SET_PDE_TYPE(pPageDst, PGM_PAGE_PDE_TYPE_DONTCARE);
2235
2236 pVM->pgm.s.cZeroPages++;
2237 pPageDst++;
2238 }
2239
2240 /* Flush physical page map TLB. */
2241 PGMPhysInvalidatePageMapTLB(pVM);
2242
2243 GCPhysRangeREM = NIL_RTGCPHYS; /* shuts up gcc */
2244 cbRangeREM = RTGCPHYS_MAX; /* ditto */
2245 fInformREM = false;
2246 }
2247 else
2248 {
2249 GCPhysRangeREM = pCur->RamRange.GCPhys;
2250 cbRangeREM = pCur->RamRange.cb;
2251 fInformREM = true;
2252
2253 pgmR3PhysUnlinkRamRange(pVM, &pCur->RamRange);
2254 }
2255
2256 pCur->RamRange.GCPhys = NIL_RTGCPHYS;
2257 pCur->RamRange.GCPhysLast = NIL_RTGCPHYS;
2258 pCur->fOverlapping = false;
2259 pCur->fMapped = false;
2260
2261 PGMPhysInvalidatePageMapTLB(pVM);
2262 pgmUnlock(pVM);
2263
2264 if (fInformREM)
2265 REMR3NotifyPhysRamDeregister(pVM, GCPhysRangeREM, cbRangeREM);
2266
2267 return VINF_SUCCESS;
2268}
2269
2270
2271/**
2272 * Checks if the given address is an MMIO2 base address or not.
2273 *
2274 * @returns true/false accordingly.
2275 * @param pVM Pointer to the shared VM structure.
2276 * @param pDevIns The owner of the memory, optional.
2277 * @param GCPhys The address to check.
2278 */
2279VMMR3DECL(bool) PGMR3PhysMMIO2IsBase(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys)
2280{
2281 /*
2282 * Validate input
2283 */
2284 VM_ASSERT_EMT_RETURN(pVM, false);
2285 AssertPtrReturn(pDevIns, false);
2286 AssertReturn(GCPhys != NIL_RTGCPHYS, false);
2287 AssertReturn(GCPhys != 0, false);
2288 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), false);
2289
2290 /*
2291 * Search the list.
2292 */
2293 pgmLock(pVM);
2294 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2295 if (pCur->RamRange.GCPhys == GCPhys)
2296 {
2297 Assert(pCur->fMapped);
2298 pgmUnlock(pVM);
2299 return true;
2300 }
2301 pgmUnlock(pVM);
2302 return false;
2303}
2304
2305
2306/**
2307 * Gets the HC physical address of a page in the MMIO2 region.
2308 *
2309 * This is API is intended for MMHyper and shouldn't be called
2310 * by anyone else...
2311 *
2312 * @returns VBox status code.
2313 * @param pVM Pointer to the shared VM structure.
2314 * @param pDevIns The owner of the memory, optional.
2315 * @param iRegion The region.
2316 * @param off The page expressed an offset into the MMIO2 region.
2317 * @param pHCPhys Where to store the result.
2318 */
2319VMMR3DECL(int) PGMR3PhysMMIO2GetHCPhys(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, PRTHCPHYS pHCPhys)
2320{
2321 /*
2322 * Validate input
2323 */
2324 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2325 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2326 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2327
2328 pgmLock(pVM);
2329 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2330 AssertReturn(pCur, VERR_NOT_FOUND);
2331 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2332
2333 PCPGMPAGE pPage = &pCur->RamRange.aPages[off >> PAGE_SHIFT];
2334 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage);
2335 pgmUnlock(pVM);
2336 return VINF_SUCCESS;
2337}
2338
2339
2340/**
2341 * Maps a portion of an MMIO2 region into kernel space (host).
2342 *
2343 * The kernel mapping will become invalid when the MMIO2 memory is deregistered
2344 * or the VM is terminated.
2345 *
2346 * @return VBox status code.
2347 *
2348 * @param pVM Pointer to the shared VM structure.
2349 * @param pDevIns The device owning the MMIO2 memory.
2350 * @param iRegion The region.
2351 * @param off The offset into the region. Must be page aligned.
2352 * @param cb The number of bytes to map. Must be page aligned.
2353 * @param pszDesc Mapping description.
2354 * @param pR0Ptr Where to store the R0 address.
2355 */
2356VMMR3DECL(int) PGMR3PhysMMIO2MapKernel(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, RTGCPHYS cb,
2357 const char *pszDesc, PRTR0PTR pR0Ptr)
2358{
2359 /*
2360 * Validate input.
2361 */
2362 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2363 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2364 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2365
2366 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2367 AssertReturn(pCur, VERR_NOT_FOUND);
2368 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2369 AssertReturn(cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2370 AssertReturn(off + cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2371
2372 /*
2373 * Pass the request on to the support library/driver.
2374 */
2375 int rc = SUPR3PageMapKernel(pCur->pvR3, off, cb, 0, pR0Ptr);
2376
2377 return rc;
2378}
2379
2380
2381/**
2382 * Registers a ROM image.
2383 *
2384 * Shadowed ROM images requires double the amount of backing memory, so,
2385 * don't use that unless you have to. Shadowing of ROM images is process
2386 * where we can select where the reads go and where the writes go. On real
2387 * hardware the chipset provides means to configure this. We provide
2388 * PGMR3PhysProtectROM() for this purpose.
2389 *
2390 * A read-only copy of the ROM image will always be kept around while we
2391 * will allocate RAM pages for the changes on demand (unless all memory
2392 * is configured to be preallocated).
2393 *
2394 * @returns VBox status.
2395 * @param pVM VM Handle.
2396 * @param pDevIns The device instance owning the ROM.
2397 * @param GCPhys First physical address in the range.
2398 * Must be page aligned!
2399 * @param cbRange The size of the range (in bytes).
2400 * Must be page aligned!
2401 * @param pvBinary Pointer to the binary data backing the ROM image.
2402 * This must be exactly \a cbRange in size.
2403 * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
2404 * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
2405 * @param pszDesc Pointer to description string. This must not be freed.
2406 *
2407 * @remark There is no way to remove the rom, automatically on device cleanup or
2408 * manually from the device yet. This isn't difficult in any way, it's
2409 * just not something we expect to be necessary for a while.
2410 */
2411VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
2412 const void *pvBinary, uint32_t fFlags, const char *pszDesc)
2413{
2414 Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p fFlags=%#x pszDesc=%s\n",
2415 pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, fFlags, pszDesc));
2416
2417 /*
2418 * Validate input.
2419 */
2420 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2421 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
2422 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
2423 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2424 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
2425 AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER);
2426 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
2427 AssertReturn(!(fFlags & ~(PGMPHYS_ROM_FLAGS_SHADOWED | PGMPHYS_ROM_FLAGS_PERMANENT_BINARY)), VERR_INVALID_PARAMETER);
2428 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE);
2429
2430 const uint32_t cPages = cb >> PAGE_SHIFT;
2431
2432 /*
2433 * Find the ROM location in the ROM list first.
2434 */
2435 PPGMROMRANGE pRomPrev = NULL;
2436 PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
2437 while (pRom && GCPhysLast >= pRom->GCPhys)
2438 {
2439 if ( GCPhys <= pRom->GCPhysLast
2440 && GCPhysLast >= pRom->GCPhys)
2441 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
2442 GCPhys, GCPhysLast, pszDesc,
2443 pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc),
2444 VERR_PGM_RAM_CONFLICT);
2445 /* next */
2446 pRomPrev = pRom;
2447 pRom = pRom->pNextR3;
2448 }
2449
2450 /*
2451 * Find the RAM location and check for conflicts.
2452 *
2453 * Conflict detection is a bit different than for RAM
2454 * registration since a ROM can be located within a RAM
2455 * range. So, what we have to check for is other memory
2456 * types (other than RAM that is) and that we don't span
2457 * more than one RAM range (layz).
2458 */
2459 bool fRamExists = false;
2460 PPGMRAMRANGE pRamPrev = NULL;
2461 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
2462 while (pRam && GCPhysLast >= pRam->GCPhys)
2463 {
2464 if ( GCPhys <= pRam->GCPhysLast
2465 && GCPhysLast >= pRam->GCPhys)
2466 {
2467 /* completely within? */
2468 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
2469 && GCPhysLast <= pRam->GCPhysLast,
2470 ("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n",
2471 GCPhys, GCPhysLast, pszDesc,
2472 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2473 VERR_PGM_RAM_CONFLICT);
2474 fRamExists = true;
2475 break;
2476 }
2477
2478 /* next */
2479 pRamPrev = pRam;
2480 pRam = pRam->pNextR3;
2481 }
2482 if (fRamExists)
2483 {
2484 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2485 uint32_t cPagesLeft = cPages;
2486 while (cPagesLeft-- > 0)
2487 {
2488 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
2489 ("%RGp (%R[pgmpage]) isn't a RAM page - registering %RGp-%RGp (%s).\n",
2490 pRam->GCPhys + ((RTGCPHYS)(uintptr_t)(pPage - &pRam->aPages[0]) << PAGE_SHIFT),
2491 pPage, GCPhys, GCPhysLast, pszDesc), VERR_PGM_RAM_CONFLICT);
2492 Assert(PGM_PAGE_IS_ZERO(pPage));
2493 pPage++;
2494 }
2495 }
2496
2497 /*
2498 * Update the base memory reservation if necessary.
2499 */
2500 uint32_t cExtraBaseCost = fRamExists ? 0 : cPages;
2501 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2502 cExtraBaseCost += cPages;
2503 if (cExtraBaseCost)
2504 {
2505 int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost);
2506 if (RT_FAILURE(rc))
2507 return rc;
2508 }
2509
2510 /*
2511 * Allocate memory for the virgin copy of the RAM.
2512 */
2513 PGMMALLOCATEPAGESREQ pReq;
2514 int rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cPages, GMMACCOUNT_BASE);
2515 AssertRCReturn(rc, rc);
2516
2517 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2518 {
2519 pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << PAGE_SHIFT);
2520 pReq->aPages[iPage].idPage = NIL_GMM_PAGEID;
2521 pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID;
2522 }
2523
2524 pgmLock(pVM);
2525 rc = GMMR3AllocatePagesPerform(pVM, pReq);
2526 pgmUnlock(pVM);
2527 if (RT_FAILURE(rc))
2528 {
2529 GMMR3AllocatePagesCleanup(pReq);
2530 return rc;
2531 }
2532
2533 /*
2534 * Allocate the new ROM range and RAM range (if necessary).
2535 */
2536 PPGMROMRANGE pRomNew;
2537 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMROMRANGE, aPages[cPages]), 0, MM_TAG_PGM_PHYS, (void **)&pRomNew);
2538 if (RT_SUCCESS(rc))
2539 {
2540 PPGMRAMRANGE pRamNew = NULL;
2541 if (!fRamExists)
2542 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), sizeof(PGMPAGE), MM_TAG_PGM_PHYS, (void **)&pRamNew);
2543 if (RT_SUCCESS(rc))
2544 {
2545 pgmLock(pVM);
2546
2547 /*
2548 * Initialize and insert the RAM range (if required).
2549 */
2550 PPGMROMPAGE pRomPage = &pRomNew->aPages[0];
2551 if (!fRamExists)
2552 {
2553 pRamNew->pSelfR0 = MMHyperCCToR0(pVM, pRamNew);
2554 pRamNew->pSelfRC = MMHyperCCToRC(pVM, pRamNew);
2555 pRamNew->GCPhys = GCPhys;
2556 pRamNew->GCPhysLast = GCPhysLast;
2557 pRamNew->cb = cb;
2558 pRamNew->pszDesc = pszDesc;
2559 pRamNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_ROM;
2560 pRamNew->pvR3 = NULL;
2561 pRamNew->paLSPages = NULL;
2562
2563 PPGMPAGE pPage = &pRamNew->aPages[0];
2564 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
2565 {
2566 PGM_PAGE_INIT(pPage,
2567 pReq->aPages[iPage].HCPhysGCPhys,
2568 pReq->aPages[iPage].idPage,
2569 PGMPAGETYPE_ROM,
2570 PGM_PAGE_STATE_ALLOCATED);
2571
2572 pRomPage->Virgin = *pPage;
2573 }
2574
2575 pVM->pgm.s.cAllPages += cPages;
2576 pgmR3PhysLinkRamRange(pVM, pRamNew, pRamPrev);
2577 }
2578 else
2579 {
2580 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2581 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
2582 {
2583 PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_ROM);
2584 PGM_PAGE_SET_HCPHYS(pPage, pReq->aPages[iPage].HCPhysGCPhys);
2585 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
2586 PGM_PAGE_SET_PAGEID(pPage, pReq->aPages[iPage].idPage);
2587
2588 pRomPage->Virgin = *pPage;
2589 }
2590
2591 pRamNew = pRam;
2592
2593 pVM->pgm.s.cZeroPages -= cPages;
2594 }
2595 pVM->pgm.s.cPrivatePages += cPages;
2596
2597 /* Flush physical page map TLB. */
2598 PGMPhysInvalidatePageMapTLB(pVM);
2599
2600 pgmUnlock(pVM);
2601
2602
2603 /*
2604 * !HACK ALERT! REM + (Shadowed) ROM ==> mess.
2605 *
2606 * If it's shadowed we'll register the handler after the ROM notification
2607 * so we get the access handler callbacks that we should. If it isn't
2608 * shadowed we'll do it the other way around to make REM use the built-in
2609 * ROM behavior and not the handler behavior (which is to route all access
2610 * to PGM atm).
2611 */
2612 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2613 {
2614 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, true /* fShadowed */);
2615 rc = PGMR3HandlerPhysicalRegister(pVM,
2616 fFlags & PGMPHYS_ROM_FLAGS_SHADOWED
2617 ? PGMPHYSHANDLERTYPE_PHYSICAL_ALL
2618 : PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
2619 GCPhys, GCPhysLast,
2620 pgmR3PhysRomWriteHandler, pRomNew,
2621 NULL, "pgmPhysRomWriteHandler", MMHyperCCToR0(pVM, pRomNew),
2622 NULL, "pgmPhysRomWriteHandler", MMHyperCCToRC(pVM, pRomNew), pszDesc);
2623 }
2624 else
2625 {
2626 rc = PGMR3HandlerPhysicalRegister(pVM,
2627 fFlags & PGMPHYS_ROM_FLAGS_SHADOWED
2628 ? PGMPHYSHANDLERTYPE_PHYSICAL_ALL
2629 : PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
2630 GCPhys, GCPhysLast,
2631 pgmR3PhysRomWriteHandler, pRomNew,
2632 NULL, "pgmPhysRomWriteHandler", MMHyperCCToR0(pVM, pRomNew),
2633 NULL, "pgmPhysRomWriteHandler", MMHyperCCToRC(pVM, pRomNew), pszDesc);
2634 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, false /* fShadowed */);
2635 }
2636 if (RT_SUCCESS(rc))
2637 {
2638 pgmLock(pVM);
2639
2640 /*
2641 * Copy the image over to the virgin pages.
2642 * This must be done after linking in the RAM range.
2643 */
2644 PPGMPAGE pRamPage = &pRamNew->aPages[(GCPhys - pRamNew->GCPhys) >> PAGE_SHIFT];
2645 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++)
2646 {
2647 void *pvDstPage;
2648 rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << PAGE_SHIFT), &pvDstPage);
2649 if (RT_FAILURE(rc))
2650 {
2651 VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys);
2652 break;
2653 }
2654 memcpy(pvDstPage, (const uint8_t *)pvBinary + (iPage << PAGE_SHIFT), PAGE_SIZE);
2655 }
2656 if (RT_SUCCESS(rc))
2657 {
2658 /*
2659 * Initialize the ROM range.
2660 * Note that the Virgin member of the pages has already been initialized above.
2661 */
2662 pRomNew->GCPhys = GCPhys;
2663 pRomNew->GCPhysLast = GCPhysLast;
2664 pRomNew->cb = cb;
2665 pRomNew->fFlags = fFlags;
2666 pRomNew->idSavedState = UINT8_MAX;
2667 pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY ? pvBinary : NULL;
2668 pRomNew->pszDesc = pszDesc;
2669
2670 for (unsigned iPage = 0; iPage < cPages; iPage++)
2671 {
2672 PPGMROMPAGE pPage = &pRomNew->aPages[iPage];
2673 pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE;
2674 PGM_PAGE_INIT_ZERO(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW);
2675 }
2676
2677 /* update the page count stats for the shadow pages. */
2678 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2679 {
2680 pVM->pgm.s.cZeroPages += cPages;
2681 pVM->pgm.s.cAllPages += cPages;
2682 }
2683
2684 /*
2685 * Insert the ROM range, tell REM and return successfully.
2686 */
2687 pRomNew->pNextR3 = pRom;
2688 pRomNew->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
2689 pRomNew->pNextRC = pRom ? MMHyperCCToRC(pVM, pRom) : NIL_RTRCPTR;
2690
2691 if (pRomPrev)
2692 {
2693 pRomPrev->pNextR3 = pRomNew;
2694 pRomPrev->pNextR0 = MMHyperCCToR0(pVM, pRomNew);
2695 pRomPrev->pNextRC = MMHyperCCToRC(pVM, pRomNew);
2696 }
2697 else
2698 {
2699 pVM->pgm.s.pRomRangesR3 = pRomNew;
2700 pVM->pgm.s.pRomRangesR0 = MMHyperCCToR0(pVM, pRomNew);
2701 pVM->pgm.s.pRomRangesRC = MMHyperCCToRC(pVM, pRomNew);
2702 }
2703
2704 PGMPhysInvalidatePageMapTLB(pVM);
2705 GMMR3AllocatePagesCleanup(pReq);
2706 pgmUnlock(pVM);
2707 return VINF_SUCCESS;
2708 }
2709
2710 /* bail out */
2711
2712 pgmUnlock(pVM);
2713 int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys);
2714 AssertRC(rc2);
2715 pgmLock(pVM);
2716 }
2717
2718 if (!fRamExists)
2719 {
2720 pgmR3PhysUnlinkRamRange2(pVM, pRamNew, pRamPrev);
2721 MMHyperFree(pVM, pRamNew);
2722 }
2723 }
2724 MMHyperFree(pVM, pRomNew);
2725 }
2726
2727 /** @todo Purge the mapping cache or something... */
2728 GMMR3FreeAllocatedPages(pVM, pReq);
2729 GMMR3AllocatePagesCleanup(pReq);
2730 pgmUnlock(pVM);
2731 return rc;
2732}
2733
2734
2735/**
2736 * \#PF Handler callback for ROM write accesses.
2737 *
2738 * @returns VINF_SUCCESS if the handler have carried out the operation.
2739 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
2740 * @param pVM VM Handle.
2741 * @param GCPhys The physical address the guest is writing to.
2742 * @param pvPhys The HC mapping of that address.
2743 * @param pvBuf What the guest is reading/writing.
2744 * @param cbBuf How much it's reading/writing.
2745 * @param enmAccessType The access type.
2746 * @param pvUser User argument.
2747 */
2748static DECLCALLBACK(int) pgmR3PhysRomWriteHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser)
2749{
2750 PPGMROMRANGE pRom = (PPGMROMRANGE)pvUser;
2751 const uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
2752 Assert(iPage < (pRom->cb >> PAGE_SHIFT));
2753 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
2754 Log5(("pgmR3PhysRomWriteHandler: %d %c %#08RGp %#04zx\n", pRomPage->enmProt, enmAccessType == PGMACCESSTYPE_READ ? 'R' : 'W', GCPhys, cbBuf));
2755
2756 if (enmAccessType == PGMACCESSTYPE_READ)
2757 {
2758 switch (pRomPage->enmProt)
2759 {
2760 /*
2761 * Take the default action.
2762 */
2763 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
2764 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
2765 case PGMROMPROT_READ_ROM_WRITE_RAM:
2766 case PGMROMPROT_READ_RAM_WRITE_RAM:
2767 return VINF_PGM_HANDLER_DO_DEFAULT;
2768
2769 default:
2770 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
2771 pRom->aPages[iPage].enmProt, iPage, GCPhys),
2772 VERR_INTERNAL_ERROR);
2773 }
2774 }
2775 else
2776 {
2777 Assert(enmAccessType == PGMACCESSTYPE_WRITE);
2778 switch (pRomPage->enmProt)
2779 {
2780 /*
2781 * Ignore writes.
2782 */
2783 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
2784 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
2785 return VINF_SUCCESS;
2786
2787 /*
2788 * Write to the ram page.
2789 */
2790 case PGMROMPROT_READ_ROM_WRITE_RAM:
2791 case PGMROMPROT_READ_RAM_WRITE_RAM: /* yes this will get here too, it's *way* simpler that way. */
2792 {
2793 /* This should be impossible now, pvPhys doesn't work cross page anylonger. */
2794 Assert(((GCPhys - pRom->GCPhys + cbBuf - 1) >> PAGE_SHIFT) == iPage);
2795
2796 /*
2797 * Take the lock, do lazy allocation, map the page and copy the data.
2798 *
2799 * Note that we have to bypass the mapping TLB since it works on
2800 * guest physical addresses and entering the shadow page would
2801 * kind of screw things up...
2802 */
2803 int rc = pgmLock(pVM);
2804 AssertRC(rc);
2805
2806 PPGMPAGE pShadowPage = &pRomPage->Shadow;
2807 if (!PGMROMPROT_IS_ROM(pRomPage->enmProt))
2808 {
2809 pShadowPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
2810 AssertLogRelReturn(pShadowPage, VERR_INTERNAL_ERROR);
2811 }
2812
2813 void *pvDstPage;
2814 rc = pgmPhysPageMakeWritableAndMap(pVM, pShadowPage, GCPhys & X86_PTE_PG_MASK, &pvDstPage);
2815 if (RT_SUCCESS(rc))
2816 {
2817 memcpy((uint8_t *)pvDstPage + (GCPhys & PAGE_OFFSET_MASK), pvBuf, cbBuf);
2818 pRomPage->LiveSave.fWrittenTo = true;
2819 }
2820
2821 pgmUnlock(pVM);
2822 return rc;
2823 }
2824
2825 default:
2826 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
2827 pRom->aPages[iPage].enmProt, iPage, GCPhys),
2828 VERR_INTERNAL_ERROR);
2829 }
2830 }
2831}
2832
2833
2834/**
2835 * Called by PGMR3Reset to reset the shadow, switch to the virgin,
2836 * and verify that the virgin part is untouched.
2837 *
2838 * This is done after the normal memory has been cleared.
2839 *
2840 * ASSUMES that the caller owns the PGM lock.
2841 *
2842 * @param pVM The VM handle.
2843 */
2844int pgmR3PhysRomReset(PVM pVM)
2845{
2846 Assert(PGMIsLockOwner(pVM));
2847 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
2848 {
2849 const uint32_t cPages = pRom->cb >> PAGE_SHIFT;
2850
2851 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2852 {
2853 /*
2854 * Reset the physical handler.
2855 */
2856 int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE);
2857 AssertRCReturn(rc, rc);
2858
2859 /*
2860 * What we do with the shadow pages depends on the memory
2861 * preallocation option. If not enabled, we'll just throw
2862 * out all the dirty pages and replace them by the zero page.
2863 */
2864 if (!pVM->pgm.s.fRamPreAlloc)
2865 {
2866 /* Free the dirty pages. */
2867 uint32_t cPendingPages = 0;
2868 PGMMFREEPAGESREQ pReq;
2869 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2870 AssertRCReturn(rc, rc);
2871
2872 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2873 if ( !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow)
2874 && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow))
2875 {
2876 Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) == PGM_PAGE_STATE_ALLOCATED);
2877 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, &pRom->aPages[iPage].Shadow, pRom->GCPhys + (iPage << PAGE_SHIFT));
2878 AssertLogRelRCReturn(rc, rc);
2879 }
2880
2881 if (cPendingPages)
2882 {
2883 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2884 AssertLogRelRCReturn(rc, rc);
2885 }
2886 GMMR3FreePagesCleanup(pReq);
2887 }
2888 else
2889 {
2890 /* clear all the shadow pages. */
2891 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2892 {
2893 Assert(!PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow) && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow));
2894 void *pvDstPage;
2895 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
2896 rc = pgmPhysPageMakeWritableAndMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pvDstPage);
2897 if (RT_FAILURE(rc))
2898 break;
2899 ASMMemZeroPage(pvDstPage);
2900 }
2901 AssertRCReturn(rc, rc);
2902 }
2903 }
2904
2905#ifdef VBOX_STRICT
2906 /*
2907 * Verify that the virgin page is unchanged if possible.
2908 */
2909 if (pRom->pvOriginal)
2910 {
2911 uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal;
2912 for (uint32_t iPage = 0; iPage < cPages; iPage++, pbSrcPage += PAGE_SIZE)
2913 {
2914 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
2915 void const *pvDstPage;
2916 int rc = pgmPhysPageMapReadOnly(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPage);
2917 if (RT_FAILURE(rc))
2918 break;
2919 if (memcmp(pvDstPage, pbSrcPage, PAGE_SIZE))
2920 LogRel(("pgmR3PhysRomReset: %RGp rom page changed (%s) - loaded saved state?\n",
2921 GCPhys, pRom->pszDesc));
2922 }
2923 }
2924#endif
2925 }
2926
2927 return VINF_SUCCESS;
2928}
2929
2930
2931/**
2932 * Change the shadowing of a range of ROM pages.
2933 *
2934 * This is intended for implementing chipset specific memory registers
2935 * and will not be very strict about the input. It will silently ignore
2936 * any pages that are not the part of a shadowed ROM.
2937 *
2938 * @returns VBox status code.
2939 * @retval VINF_PGM_SYNC_CR3
2940 *
2941 * @param pVM Pointer to the shared VM structure.
2942 * @param GCPhys Where to start. Page aligned.
2943 * @param cb How much to change. Page aligned.
2944 * @param enmProt The new ROM protection.
2945 */
2946VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt)
2947{
2948 /*
2949 * Check input
2950 */
2951 if (!cb)
2952 return VINF_SUCCESS;
2953 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2954 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2955 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2956 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
2957 AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER);
2958
2959 /*
2960 * Process the request.
2961 */
2962 pgmLock(pVM);
2963 int rc = VINF_SUCCESS;
2964 bool fFlushTLB = false;
2965 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
2966 {
2967 if ( GCPhys <= pRom->GCPhysLast
2968 && GCPhysLast >= pRom->GCPhys
2969 && (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
2970 {
2971 /*
2972 * Iterate the relevant pages and make necessary the changes.
2973 */
2974 bool fChanges = false;
2975 uint32_t const cPages = pRom->GCPhysLast <= GCPhysLast
2976 ? pRom->cb >> PAGE_SHIFT
2977 : (GCPhysLast - pRom->GCPhys + 1) >> PAGE_SHIFT;
2978 for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
2979 iPage < cPages;
2980 iPage++)
2981 {
2982 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
2983 if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt))
2984 {
2985 fChanges = true;
2986
2987 /* flush references to the page. */
2988 PPGMPAGE pRamPage = pgmPhysGetPage(&pVM->pgm.s, pRom->GCPhys + (iPage << PAGE_SHIFT));
2989 int rc2 = pgmPoolTrackFlushGCPhys(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT), pRamPage, &fFlushTLB);
2990 if (rc2 != VINF_SUCCESS && (rc == VINF_SUCCESS || RT_FAILURE(rc2)))
2991 rc = rc2;
2992
2993 PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
2994 PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2995
2996 *pOld = *pRamPage;
2997 *pRamPage = *pNew;
2998 /** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */
2999 }
3000 pRomPage->enmProt = enmProt;
3001 }
3002
3003 /*
3004 * Reset the access handler if we made changes, no need
3005 * to optimize this.
3006 */
3007 if (fChanges)
3008 {
3009 int rc2 = PGMHandlerPhysicalReset(pVM, pRom->GCPhys);
3010 if (RT_FAILURE(rc2))
3011 {
3012 pgmUnlock(pVM);
3013 AssertRC(rc);
3014 return rc2;
3015 }
3016 }
3017
3018 /* Advance - cb isn't updated. */
3019 GCPhys = pRom->GCPhys + (cPages << PAGE_SHIFT);
3020 }
3021 }
3022 pgmUnlock(pVM);
3023 if (fFlushTLB)
3024 PGM_INVL_ALL_VCPU_TLBS(pVM);
3025
3026 return rc;
3027}
3028
3029
3030/**
3031 * Sets the Address Gate 20 state.
3032 *
3033 * @param pVCpu The VCPU to operate on.
3034 * @param fEnable True if the gate should be enabled.
3035 * False if the gate should be disabled.
3036 */
3037VMMDECL(void) PGMR3PhysSetA20(PVMCPU pVCpu, bool fEnable)
3038{
3039 LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVCpu->pgm.s.fA20Enabled));
3040 if (pVCpu->pgm.s.fA20Enabled != fEnable)
3041 {
3042 pVCpu->pgm.s.fA20Enabled = fEnable;
3043 pVCpu->pgm.s.GCPhysA20Mask = ~(RTGCPHYS)(!fEnable << 20);
3044 REMR3A20Set(pVCpu->pVMR3, pVCpu, fEnable);
3045 /** @todo we're not handling this correctly for VT-x / AMD-V. See #2911 */
3046 }
3047}
3048
3049
3050/**
3051 * Tree enumeration callback for dealing with age rollover.
3052 * It will perform a simple compression of the current age.
3053 */
3054static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
3055{
3056 Assert(PGMIsLockOwner((PVM)pvUser));
3057 /* Age compression - ASSUMES iNow == 4. */
3058 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
3059 if (pChunk->iAge >= UINT32_C(0xffffff00))
3060 pChunk->iAge = 3;
3061 else if (pChunk->iAge >= UINT32_C(0xfffff000))
3062 pChunk->iAge = 2;
3063 else if (pChunk->iAge)
3064 pChunk->iAge = 1;
3065 else /* iAge = 0 */
3066 pChunk->iAge = 4;
3067
3068 /* reinsert */
3069 PVM pVM = (PVM)pvUser;
3070 RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
3071 pChunk->AgeCore.Key = pChunk->iAge;
3072 RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
3073 return 0;
3074}
3075
3076
3077/**
3078 * Tree enumeration callback that updates the chunks that have
3079 * been used since the last
3080 */
3081static DECLCALLBACK(int) pgmR3PhysChunkAgeingCallback(PAVLU32NODECORE pNode, void *pvUser)
3082{
3083 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
3084 if (!pChunk->iAge)
3085 {
3086 PVM pVM = (PVM)pvUser;
3087 RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
3088 pChunk->AgeCore.Key = pChunk->iAge = pVM->pgm.s.ChunkR3Map.iNow;
3089 RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
3090 }
3091
3092 return 0;
3093}
3094
3095
3096/**
3097 * Performs ageing of the ring-3 chunk mappings.
3098 *
3099 * @param pVM The VM handle.
3100 */
3101VMMR3DECL(void) PGMR3PhysChunkAgeing(PVM pVM)
3102{
3103 pgmLock(pVM);
3104 pVM->pgm.s.ChunkR3Map.AgeingCountdown = RT_MIN(pVM->pgm.s.ChunkR3Map.cMax / 4, 1024);
3105 pVM->pgm.s.ChunkR3Map.iNow++;
3106 if (pVM->pgm.s.ChunkR3Map.iNow == 0)
3107 {
3108 pVM->pgm.s.ChunkR3Map.iNow = 4;
3109 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, pVM);
3110 }
3111 else
3112 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingCallback, pVM);
3113 pgmUnlock(pVM);
3114}
3115
3116
3117/**
3118 * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
3119 */
3120typedef struct PGMR3PHYSCHUNKUNMAPCB
3121{
3122 PVM pVM; /**< The VM handle. */
3123 PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
3124} PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
3125
3126
3127/**
3128 * Callback used to find the mapping that's been unused for
3129 * the longest time.
3130 */
3131static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLLU32NODECORE pNode, void *pvUser)
3132{
3133 do
3134 {
3135 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)((uint8_t *)pNode - RT_OFFSETOF(PGMCHUNKR3MAP, AgeCore));
3136 if ( pChunk->iAge
3137 && !pChunk->cRefs)
3138 {
3139 /*
3140 * Check that it's not in any of the TLBs.
3141 */
3142 PVM pVM = ((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pVM;
3143 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
3144 if (pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk == pChunk)
3145 {
3146 pChunk = NULL;
3147 break;
3148 }
3149 if (pChunk)
3150 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
3151 if (pVM->pgm.s.PhysTlbHC.aEntries[i].pMap == pChunk)
3152 {
3153 pChunk = NULL;
3154 break;
3155 }
3156 if (pChunk)
3157 {
3158 ((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pChunk = pChunk;
3159 return 1; /* done */
3160 }
3161 }
3162
3163 /* next with the same age - this version of the AVL API doesn't enumerate the list, so we have to do it. */
3164 pNode = pNode->pList;
3165 } while (pNode);
3166 return 0;
3167}
3168
3169
3170/**
3171 * Finds a good candidate for unmapping when the ring-3 mapping cache is full.
3172 *
3173 * The candidate will not be part of any TLBs, so no need to flush
3174 * anything afterwards.
3175 *
3176 * @returns Chunk id.
3177 * @param pVM The VM handle.
3178 */
3179static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
3180{
3181 Assert(PGMIsLockOwner(pVM));
3182
3183 /*
3184 * Do tree ageing first?
3185 */
3186 if (pVM->pgm.s.ChunkR3Map.AgeingCountdown-- == 0)
3187 PGMR3PhysChunkAgeing(pVM);
3188
3189 /*
3190 * Enumerate the age tree starting with the left most node.
3191 */
3192 PGMR3PHYSCHUNKUNMAPCB Args;
3193 Args.pVM = pVM;
3194 Args.pChunk = NULL;
3195 if (RTAvllU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pAgeTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, pVM))
3196 return Args.pChunk->Core.Key;
3197 return INT32_MAX;
3198}
3199
3200
3201/**
3202 * Maps the given chunk into the ring-3 mapping cache.
3203 *
3204 * This will call ring-0.
3205 *
3206 * @returns VBox status code.
3207 * @param pVM The VM handle.
3208 * @param idChunk The chunk in question.
3209 * @param ppChunk Where to store the chunk tracking structure.
3210 *
3211 * @remarks Called from within the PGM critical section.
3212 */
3213int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
3214{
3215 int rc;
3216
3217 Assert(PGMIsLockOwner(pVM));
3218 /*
3219 * Allocate a new tracking structure first.
3220 */
3221#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
3222 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAlloc(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
3223#else
3224 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3UkHeapAlloc(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk), NULL);
3225#endif
3226 AssertReturn(pChunk, VERR_NO_MEMORY);
3227 pChunk->Core.Key = idChunk;
3228 pChunk->AgeCore.Key = pVM->pgm.s.ChunkR3Map.iNow;
3229 pChunk->iAge = 0;
3230 pChunk->cRefs = 0;
3231 pChunk->cPermRefs = 0;
3232 pChunk->pv = NULL;
3233
3234 /*
3235 * Request the ring-0 part to map the chunk in question and if
3236 * necessary unmap another one to make space in the mapping cache.
3237 */
3238 GMMMAPUNMAPCHUNKREQ Req;
3239 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
3240 Req.Hdr.cbReq = sizeof(Req);
3241 Req.pvR3 = NULL;
3242 Req.idChunkMap = idChunk;
3243 Req.idChunkUnmap = NIL_GMM_CHUNKID;
3244 if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
3245 Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
3246/** @todo This is wrong. Any thread in the VM process should be able to do this,
3247 * there are depenenecies on this. What currently saves the day is that
3248 * we don't unmap anything and that all non-zero memory will therefore
3249 * be present when non-EMTs tries to access it. */
3250 rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
3251 if (RT_SUCCESS(rc))
3252 {
3253 /*
3254 * Update the tree.
3255 */
3256 /* insert the new one. */
3257 AssertPtr(Req.pvR3);
3258 pChunk->pv = Req.pvR3;
3259 bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
3260 AssertRelease(fRc);
3261 pVM->pgm.s.ChunkR3Map.c++;
3262
3263 fRc = RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
3264 AssertRelease(fRc);
3265
3266 /* remove the unmapped one. */
3267 if (Req.idChunkUnmap != NIL_GMM_CHUNKID)
3268 {
3269 PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
3270 AssertRelease(pUnmappedChunk);
3271 pUnmappedChunk->pv = NULL;
3272 pUnmappedChunk->Core.Key = UINT32_MAX;
3273#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
3274 MMR3HeapFree(pUnmappedChunk);
3275#else
3276 MMR3UkHeapFree(pVM, pUnmappedChunk, MM_TAG_PGM_CHUNK_MAPPING);
3277#endif
3278 pVM->pgm.s.ChunkR3Map.c--;
3279
3280 /* Chunk removed, so clear the page map TBL as well (might still be referenced). */
3281 PGMPhysInvalidatePageMapTLB(pVM);
3282 }
3283 }
3284 else
3285 {
3286 AssertRC(rc);
3287#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
3288 MMR3HeapFree(pChunk);
3289#else
3290 MMR3UkHeapFree(pVM, pChunk, MM_TAG_PGM_CHUNK_MAPPING);
3291#endif
3292 pChunk = NULL;
3293 }
3294
3295 *ppChunk = pChunk;
3296 return rc;
3297}
3298
3299
3300/**
3301 * For VMMCALLRING3_PGM_MAP_CHUNK, considered internal.
3302 *
3303 * @returns see pgmR3PhysChunkMap.
3304 * @param pVM The VM handle.
3305 * @param idChunk The chunk to map.
3306 */
3307VMMR3DECL(int) PGMR3PhysChunkMap(PVM pVM, uint32_t idChunk)
3308{
3309 PPGMCHUNKR3MAP pChunk;
3310 int rc;
3311
3312 pgmLock(pVM);
3313 rc = pgmR3PhysChunkMap(pVM, idChunk, &pChunk);
3314 pgmUnlock(pVM);
3315 return rc;
3316}
3317
3318
3319/**
3320 * Invalidates the TLB for the ring-3 mapping cache.
3321 *
3322 * @param pVM The VM handle.
3323 */
3324VMMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM)
3325{
3326 pgmLock(pVM);
3327 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
3328 {
3329 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
3330 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
3331 }
3332 /* The page map TLB references chunks, so invalidate that one too. */
3333 PGMPhysInvalidatePageMapTLB(pVM);
3334 pgmUnlock(pVM);
3335}
3336
3337
3338/**
3339 * Response to VMMCALLRING3_PGM_ALLOCATE_LARGE_PAGE to allocate a large (2MB) page
3340 * for use with a nested paging PDE.
3341 *
3342 * @returns The following VBox status codes.
3343 * @retval VINF_SUCCESS on success.
3344 * @retval VINF_EM_NO_MEMORY if we're out of memory.
3345 *
3346 * @param pVM The VM handle.
3347 * @param GCPhys GC physical start address of the 2 MB range
3348 */
3349VMMR3DECL(int) PGMR3PhysAllocateLargeHandyPage(PVM pVM, RTGCPHYS GCPhys)
3350{
3351 pgmLock(pVM);
3352
3353 STAM_PROFILE_START(&pVM->pgm.s.StatAllocLargePage, a);
3354 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_LARGE_HANDY_PAGE, 0, NULL);
3355 STAM_PROFILE_STOP(&pVM->pgm.s.StatAllocLargePage, a);
3356 if (RT_SUCCESS(rc))
3357 {
3358 Assert(pVM->pgm.s.cLargeHandyPages == 1);
3359
3360 uint32_t idPage = pVM->pgm.s.aLargeHandyPage[0].idPage;
3361 RTHCPHYS HCPhys = pVM->pgm.s.aLargeHandyPage[0].HCPhysGCPhys;
3362
3363 void *pv;
3364
3365 /* Map the large page into our address space.
3366 *
3367 * Note: assuming that within the 2 MB range:
3368 * - GCPhys + PAGE_SIZE = HCPhys + PAGE_SIZE (whole point of this exercise)
3369 * - user space mapping is continuous as well
3370 * - page id (GCPhys) + 1 = page id (GCPhys + PAGE_SIZE)
3371 */
3372 rc = pgmPhysPageMapByPageID(pVM, idPage, HCPhys, &pv);
3373 AssertLogRelMsg(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc", idPage, HCPhys, rc));
3374
3375 if (RT_SUCCESS(rc))
3376 {
3377 /*
3378 * Clear the pages.
3379 */
3380 STAM_PROFILE_START(&pVM->pgm.s.StatClearLargePage, b);
3381 for (unsigned i = 0; i < _2M/PAGE_SIZE; i++)
3382 {
3383 ASMMemZeroPage(pv);
3384
3385 PPGMPAGE pPage;
3386 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
3387 AssertRC(rc);
3388
3389 Assert(PGM_PAGE_IS_ZERO(pPage));
3390 STAM_COUNTER_INC(&pVM->pgm.s.StatRZPageReplaceZero);
3391 pVM->pgm.s.cZeroPages--;
3392
3393 /*
3394 * Do the PGMPAGE modifications.
3395 */
3396 pVM->pgm.s.cPrivatePages++;
3397 PGM_PAGE_SET_HCPHYS(pPage, HCPhys);
3398 PGM_PAGE_SET_PAGEID(pPage, idPage);
3399 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
3400 PGM_PAGE_SET_PDE_TYPE(pPage, PGM_PAGE_PDE_TYPE_PDE);
3401
3402 /* Somewhat dirty assumption that page ids are increasing. */
3403 idPage++;
3404
3405 HCPhys += PAGE_SIZE;
3406 GCPhys += PAGE_SIZE;
3407
3408 pv = (void *)((uintptr_t)pv + PAGE_SIZE);
3409
3410 Log3(("PGMR3PhysAllocateLargePage: idPage=%#x HCPhys=%RGp\n", idPage, HCPhys));
3411 }
3412 STAM_PROFILE_STOP(&pVM->pgm.s.StatClearLargePage, b);
3413
3414 /* Flush all TLBs. */
3415 PGM_INVL_ALL_VCPU_TLBS(pVM);
3416 PGMPhysInvalidatePageMapTLB(pVM);
3417 }
3418 pVM->pgm.s.cLargeHandyPages = 0;
3419 }
3420
3421 pgmUnlock(pVM);
3422 return rc;
3423}
3424
3425
3426/**
3427 * Response to VM_FF_PGM_NEED_HANDY_PAGES and VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES.
3428 *
3429 * This function will also work the VM_FF_PGM_NO_MEMORY force action flag, to
3430 * signal and clear the out of memory condition. When contracted, this API is
3431 * used to try clear the condition when the user wants to resume.
3432 *
3433 * @returns The following VBox status codes.
3434 * @retval VINF_SUCCESS on success. FFs cleared.
3435 * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in
3436 * this case and it gets accompanied by VM_FF_PGM_NO_MEMORY.
3437 *
3438 * @param pVM The VM handle.
3439 *
3440 * @remarks The VINF_EM_NO_MEMORY status is for the benefit of the FF processing
3441 * in EM.cpp and shouldn't be propagated outside TRPM, HWACCM, EM and
3442 * pgmPhysEnsureHandyPage. There is one exception to this in the \#PF
3443 * handler.
3444 */
3445VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
3446{
3447 pgmLock(pVM);
3448
3449 /*
3450 * Allocate more pages, noting down the index of the first new page.
3451 */
3452 uint32_t iClear = pVM->pgm.s.cHandyPages;
3453 AssertMsgReturn(iClear <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d", iClear), VERR_INTERNAL_ERROR);
3454 Log(("PGMR3PhysAllocateHandyPages: %d -> %d\n", iClear, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
3455 int rcAlloc = VINF_SUCCESS;
3456 int rcSeed = VINF_SUCCESS;
3457 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
3458 while (rc == VERR_GMM_SEED_ME)
3459 {
3460 void *pvChunk;
3461 rcAlloc = rc = SUPR3PageAlloc(GMM_CHUNK_SIZE >> PAGE_SHIFT, &pvChunk);
3462 if (RT_SUCCESS(rc))
3463 {
3464 rcSeed = rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_SEED_CHUNK, (uintptr_t)pvChunk, NULL);
3465 if (RT_FAILURE(rc))
3466 SUPR3PageFree(pvChunk, GMM_CHUNK_SIZE >> PAGE_SHIFT);
3467 }
3468 if (RT_SUCCESS(rc))
3469 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
3470 }
3471
3472 if (RT_SUCCESS(rc))
3473 {
3474 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
3475 Assert(pVM->pgm.s.cHandyPages > 0);
3476 VM_FF_CLEAR(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
3477 VM_FF_CLEAR(pVM, VM_FF_PGM_NO_MEMORY);
3478
3479 /*
3480 * Clear the pages.
3481 */
3482 while (iClear < pVM->pgm.s.cHandyPages)
3483 {
3484 PGMMPAGEDESC pPage = &pVM->pgm.s.aHandyPages[iClear];
3485 void *pv;
3486 rc = pgmPhysPageMapByPageID(pVM, pPage->idPage, pPage->HCPhysGCPhys, &pv);
3487 AssertLogRelMsgBreak(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc", pPage->idPage, pPage->HCPhysGCPhys, rc));
3488 ASMMemZeroPage(pv);
3489 iClear++;
3490 Log3(("PGMR3PhysAllocateHandyPages: idPage=%#x HCPhys=%RGp\n", pPage->idPage, pPage->HCPhysGCPhys));
3491 }
3492 }
3493 else
3494 {
3495 uint64_t cAllocPages, cMaxPages, cBalloonPages;
3496
3497 /*
3498 * We should never get here unless there is a genuine shortage of
3499 * memory (or some internal error). Flag the error so the VM can be
3500 * suspended ASAP and the user informed. If we're totally out of
3501 * handy pages we will return failure.
3502 */
3503 /* Report the failure. */
3504 LogRel(("PGM: Failed to procure handy pages; rc=%Rrc rcAlloc=%Rrc rcSeed=%Rrc cHandyPages=%#x\n"
3505 " cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n",
3506 rc, rcAlloc, rcSeed,
3507 pVM->pgm.s.cHandyPages,
3508 pVM->pgm.s.cAllPages,
3509 pVM->pgm.s.cPrivatePages,
3510 pVM->pgm.s.cSharedPages,
3511 pVM->pgm.s.cZeroPages));
3512
3513 if (GMMR3QueryMemoryStats(pVM, &cAllocPages, &cMaxPages, &cBalloonPages) == VINF_SUCCESS)
3514 {
3515 LogRel(("GMM: Statistics:\n"
3516 " Allocated pages: %RX64\n"
3517 " Maximum pages: %RX64\n"
3518 " Ballooned pages: %RX64\n", cAllocPages, cMaxPages, cBalloonPages));
3519 }
3520
3521 if ( rc != VERR_NO_MEMORY
3522 && rc != VERR_LOCK_FAILED)
3523 {
3524 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
3525 {
3526 LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n",
3527 i, pVM->pgm.s.aHandyPages[i].HCPhysGCPhys, pVM->pgm.s.aHandyPages[i].idPage,
3528 pVM->pgm.s.aHandyPages[i].idSharedPage));
3529 uint32_t const idPage = pVM->pgm.s.aHandyPages[i].idPage;
3530 if (idPage != NIL_GMM_PAGEID)
3531 {
3532 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
3533 pRam;
3534 pRam = pRam->pNextR3)
3535 {
3536 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
3537 for (uint32_t iPage = 0; iPage < cPages; iPage++)
3538 if (PGM_PAGE_GET_PAGEID(&pRam->aPages[iPage]) == idPage)
3539 LogRel(("PGM: Used by %RGp %R[pgmpage] (%s)\n",
3540 pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pRam->aPages[iPage], pRam->pszDesc));
3541 }
3542 }
3543 }
3544 }
3545
3546 /* Set the FFs and adjust rc. */
3547 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
3548 VM_FF_SET(pVM, VM_FF_PGM_NO_MEMORY);
3549 if ( rc == VERR_NO_MEMORY
3550 || rc == VERR_LOCK_FAILED)
3551 rc = VINF_EM_NO_MEMORY;
3552 }
3553
3554 pgmUnlock(pVM);
3555 return rc;
3556}
3557
3558
3559/**
3560 * Frees the specified RAM page and replaces it with the ZERO page.
3561 *
3562 * This is used by ballooning, remapping MMIO2 and RAM reset.
3563 *
3564 * @param pVM Pointer to the shared VM structure.
3565 * @param pReq Pointer to the request.
3566 * @param pPage Pointer to the page structure.
3567 * @param GCPhys The guest physical address of the page, if applicable.
3568 *
3569 * @remarks The caller must own the PGM lock.
3570 */
3571static int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys)
3572{
3573 /*
3574 * Assert sanity.
3575 */
3576 Assert(PGMIsLockOwner(pVM));
3577 if (RT_UNLIKELY( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
3578 && PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW))
3579 {
3580 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
3581 return VMSetError(pVM, VERR_PGM_PHYS_NOT_RAM, RT_SRC_POS, "GCPhys=%RGp type=%d", GCPhys, PGM_PAGE_GET_TYPE(pPage));
3582 }
3583
3584 if ( PGM_PAGE_IS_ZERO(pPage)
3585 || PGM_PAGE_IS_BALLOONED(pPage))
3586 return VINF_SUCCESS;
3587
3588 const uint32_t idPage = PGM_PAGE_GET_PAGEID(pPage);
3589 Log3(("pgmPhysFreePage: idPage=%#x HCPhys=%RGp pPage=%R[pgmpage]\n", idPage, pPage));
3590 if (RT_UNLIKELY( idPage == NIL_GMM_PAGEID
3591 || idPage > GMM_PAGEID_LAST
3592 || PGM_PAGE_GET_CHUNKID(pPage) == NIL_GMM_CHUNKID))
3593 {
3594 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
3595 return VMSetError(pVM, VERR_PGM_PHYS_INVALID_PAGE_ID, RT_SRC_POS, "GCPhys=%RGp idPage=%#x", GCPhys, pPage);
3596 }
3597
3598 /* update page count stats. */
3599 if (PGM_PAGE_IS_SHARED(pPage))
3600 pVM->pgm.s.cSharedPages--;
3601 else
3602 pVM->pgm.s.cPrivatePages--;
3603 pVM->pgm.s.cZeroPages++;
3604
3605 /* Deal with write monitored pages. */
3606 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
3607 {
3608 PGM_PAGE_SET_WRITTEN_TO(pPage);
3609 pVM->pgm.s.cWrittenToPages++;
3610 }
3611
3612 /*
3613 * pPage = ZERO page.
3614 */
3615 PGM_PAGE_SET_HCPHYS(pPage, pVM->pgm.s.HCPhysZeroPg);
3616 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
3617 PGM_PAGE_SET_PAGEID(pPage, NIL_GMM_PAGEID);
3618 PGM_PAGE_SET_PDE_TYPE(pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
3619
3620 /* Flush physical page map TLB entry. */
3621 PGMPhysInvalidatePageMapTLBEntry(pVM, GCPhys);
3622
3623 /*
3624 * Make sure it's not in the handy page array.
3625 */
3626 for (uint32_t i = pVM->pgm.s.cHandyPages; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
3627 {
3628 if (pVM->pgm.s.aHandyPages[i].idPage == idPage)
3629 {
3630 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
3631 break;
3632 }
3633 if (pVM->pgm.s.aHandyPages[i].idSharedPage == idPage)
3634 {
3635 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
3636 break;
3637 }
3638 }
3639
3640 /*
3641 * Push it onto the page array.
3642 */
3643 uint32_t iPage = *pcPendingPages;
3644 Assert(iPage < PGMPHYS_FREE_PAGE_BATCH_SIZE);
3645 *pcPendingPages += 1;
3646
3647 pReq->aPages[iPage].idPage = idPage;
3648
3649 if (iPage + 1 < PGMPHYS_FREE_PAGE_BATCH_SIZE)
3650 return VINF_SUCCESS;
3651
3652 /*
3653 * Flush the pages.
3654 */
3655 int rc = GMMR3FreePagesPerform(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE);
3656 if (RT_SUCCESS(rc))
3657 {
3658 GMMR3FreePagesRePrep(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
3659 *pcPendingPages = 0;
3660 }
3661 return rc;
3662}
3663
3664
3665/**
3666 * Converts a GC physical address to a HC ring-3 pointer, with some
3667 * additional checks.
3668 *
3669 * @returns VBox status code.
3670 * @retval VINF_SUCCESS on success.
3671 * @retval VINF_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
3672 * access handler of some kind.
3673 * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
3674 * accesses or is odd in any way.
3675 * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
3676 *
3677 * @param pVM The VM handle.
3678 * @param GCPhys The GC physical address to convert.
3679 * @param fWritable Whether write access is required.
3680 * @param ppv Where to store the pointer corresponding to GCPhys on
3681 * success.
3682 */
3683VMMR3DECL(int) PGMR3PhysTlbGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, void **ppv)
3684{
3685 pgmLock(pVM);
3686
3687 PPGMRAMRANGE pRam;
3688 PPGMPAGE pPage;
3689 int rc = pgmPhysGetPageAndRangeEx(&pVM->pgm.s, GCPhys, &pPage, &pRam);
3690 if (RT_SUCCESS(rc))
3691 {
3692 if (PGM_PAGE_IS_BALLOONED(pPage))
3693 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
3694 else if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage))
3695 rc = VINF_SUCCESS;
3696 else
3697 {
3698 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
3699 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
3700 else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
3701 {
3702 /** @todo Handle TLB loads of virtual handlers so ./test.sh can be made to work
3703 * in -norawr0 mode. */
3704 if (fWritable)
3705 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
3706 }
3707 else
3708 {
3709 /* Temporarily disabled physical handler(s), since the recompiler
3710 doesn't get notified when it's reset we'll have to pretend it's
3711 operating normally. */
3712 if (pgmHandlerPhysicalIsAll(pVM, GCPhys))
3713 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
3714 else
3715 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
3716 }
3717 }
3718 if (RT_SUCCESS(rc))
3719 {
3720 int rc2;
3721
3722 /* Make sure what we return is writable. */
3723 if (fWritable && rc != VINF_PGM_PHYS_TLB_CATCH_WRITE)
3724 switch (PGM_PAGE_GET_STATE(pPage))
3725 {
3726 case PGM_PAGE_STATE_ALLOCATED:
3727 break;
3728 case PGM_PAGE_STATE_BALLOONED:
3729 AssertFailed();
3730 break;
3731 case PGM_PAGE_STATE_ZERO:
3732 case PGM_PAGE_STATE_SHARED:
3733 case PGM_PAGE_STATE_WRITE_MONITORED:
3734 rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
3735 AssertLogRelRCReturn(rc2, rc2);
3736 break;
3737 }
3738
3739 /* Get a ring-3 mapping of the address. */
3740 PPGMPAGER3MAPTLBE pTlbe;
3741 rc2 = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
3742 AssertLogRelRCReturn(rc2, rc2);
3743 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
3744 /** @todo mapping/locking hell; this isn't horribly efficient since
3745 * pgmPhysPageLoadIntoTlb will repeat the lookup we've done here. */
3746
3747 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
3748 }
3749 else
3750 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));
3751
3752 /* else: handler catching all access, no pointer returned. */
3753 }
3754 else
3755 rc = VERR_PGM_PHYS_TLB_UNASSIGNED;
3756
3757 pgmUnlock(pVM);
3758 return rc;
3759}
3760
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette