VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMPhys.cpp@ 32963

Last change on this file since 32963 was 32307, checked in by vboxsync, 14 years ago

Include other range types too (FTM)

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 151.8 KB
Line 
1/* $Id: PGMPhys.cpp 32307 2010-09-08 11:34:31Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Header Files *
21*******************************************************************************/
22#define LOG_GROUP LOG_GROUP_PGM_PHYS
23#include <VBox/pgm.h>
24#include <VBox/iom.h>
25#include <VBox/mm.h>
26#include <VBox/stam.h>
27#include <VBox/rem.h>
28#include <VBox/pdmdev.h>
29#include "PGMInternal.h"
30#include <VBox/vm.h>
31#include "PGMInline.h"
32#include <VBox/sup.h>
33#include <VBox/param.h>
34#include <VBox/err.h>
35#include <VBox/log.h>
36#include <iprt/assert.h>
37#include <iprt/alloc.h>
38#include <iprt/asm.h>
39#include <iprt/thread.h>
40#include <iprt/string.h>
41
42
43/*******************************************************************************
44* Defined Constants And Macros *
45*******************************************************************************/
46/** The number of pages to free in one batch. */
47#define PGMPHYS_FREE_PAGE_BATCH_SIZE 128
48
49
50/*******************************************************************************
51* Internal Functions *
52*******************************************************************************/
53static DECLCALLBACK(int) pgmR3PhysRomWriteHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
54
55
56/*
57 * PGMR3PhysReadU8-64
58 * PGMR3PhysWriteU8-64
59 */
60#define PGMPHYSFN_READNAME PGMR3PhysReadU8
61#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU8
62#define PGMPHYS_DATASIZE 1
63#define PGMPHYS_DATATYPE uint8_t
64#include "PGMPhysRWTmpl.h"
65
66#define PGMPHYSFN_READNAME PGMR3PhysReadU16
67#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU16
68#define PGMPHYS_DATASIZE 2
69#define PGMPHYS_DATATYPE uint16_t
70#include "PGMPhysRWTmpl.h"
71
72#define PGMPHYSFN_READNAME PGMR3PhysReadU32
73#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU32
74#define PGMPHYS_DATASIZE 4
75#define PGMPHYS_DATATYPE uint32_t
76#include "PGMPhysRWTmpl.h"
77
78#define PGMPHYSFN_READNAME PGMR3PhysReadU64
79#define PGMPHYSFN_WRITENAME PGMR3PhysWriteU64
80#define PGMPHYS_DATASIZE 8
81#define PGMPHYS_DATATYPE uint64_t
82#include "PGMPhysRWTmpl.h"
83
84
85/**
86 * EMT worker for PGMR3PhysReadExternal.
87 */
88static DECLCALLBACK(int) pgmR3PhysReadExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, void *pvBuf, size_t cbRead)
89{
90 PGMPhysRead(pVM, *pGCPhys, pvBuf, cbRead);
91 return VINF_SUCCESS;
92}
93
94
95/**
96 * Read from physical memory, external users.
97 *
98 * @returns VBox status code.
99 * @retval VINF_SUCCESS.
100 *
101 * @param pVM VM Handle.
102 * @param GCPhys Physical address to read from.
103 * @param pvBuf Where to read into.
104 * @param cbRead How many bytes to read.
105 *
106 * @thread Any but EMTs.
107 */
108VMMR3DECL(int) PGMR3PhysReadExternal(PVM pVM, RTGCPHYS GCPhys, void *pvBuf, size_t cbRead)
109{
110 VM_ASSERT_OTHER_THREAD(pVM);
111
112 AssertMsgReturn(cbRead > 0, ("don't even think about reading zero bytes!\n"), VINF_SUCCESS);
113 LogFlow(("PGMR3PhysReadExternal: %RGp %d\n", GCPhys, cbRead));
114
115 pgmLock(pVM);
116
117 /*
118 * Copy loop on ram ranges.
119 */
120 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
121 for (;;)
122 {
123 /* Find range. */
124 while (pRam && GCPhys > pRam->GCPhysLast)
125 pRam = pRam->CTX_SUFF(pNext);
126 /* Inside range or not? */
127 if (pRam && GCPhys >= pRam->GCPhys)
128 {
129 /*
130 * Must work our way thru this page by page.
131 */
132 RTGCPHYS off = GCPhys - pRam->GCPhys;
133 while (off < pRam->cb)
134 {
135 unsigned iPage = off >> PAGE_SHIFT;
136 PPGMPAGE pPage = &pRam->aPages[iPage];
137
138 /*
139 * If the page has an ALL access handler, we'll have to
140 * delegate the job to EMT.
141 */
142 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
143 {
144 pgmUnlock(pVM);
145
146 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysReadExternalEMT, 4,
147 pVM, &GCPhys, pvBuf, cbRead);
148 }
149 Assert(!PGM_PAGE_IS_MMIO(pPage));
150
151 /*
152 * Simple stuff, go ahead.
153 */
154 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
155 if (cb > cbRead)
156 cb = cbRead;
157 const void *pvSrc;
158 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pPage, pRam->GCPhys + off, &pvSrc);
159 if (RT_SUCCESS(rc))
160 memcpy(pvBuf, pvSrc, cb);
161 else
162 {
163 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternalReadOnly failed on %RGp / %R[pgmpage] -> %Rrc\n",
164 pRam->GCPhys + off, pPage, rc));
165 memset(pvBuf, 0xff, cb);
166 }
167
168 /* next page */
169 if (cb >= cbRead)
170 {
171 pgmUnlock(pVM);
172 return VINF_SUCCESS;
173 }
174 cbRead -= cb;
175 off += cb;
176 GCPhys += cb;
177 pvBuf = (char *)pvBuf + cb;
178 } /* walk pages in ram range. */
179 }
180 else
181 {
182 LogFlow(("PGMPhysRead: Unassigned %RGp size=%u\n", GCPhys, cbRead));
183
184 /*
185 * Unassigned address space.
186 */
187 if (!pRam)
188 break;
189 size_t cb = pRam->GCPhys - GCPhys;
190 if (cb >= cbRead)
191 {
192 memset(pvBuf, 0xff, cbRead);
193 break;
194 }
195 memset(pvBuf, 0xff, cb);
196
197 cbRead -= cb;
198 pvBuf = (char *)pvBuf + cb;
199 GCPhys += cb;
200 }
201 } /* Ram range walk */
202
203 pgmUnlock(pVM);
204
205 return VINF_SUCCESS;
206}
207
208
209/**
210 * EMT worker for PGMR3PhysWriteExternal.
211 */
212static DECLCALLBACK(int) pgmR3PhysWriteExternalEMT(PVM pVM, PRTGCPHYS pGCPhys, const void *pvBuf, size_t cbWrite)
213{
214 /** @todo VERR_EM_NO_MEMORY */
215 PGMPhysWrite(pVM, *pGCPhys, pvBuf, cbWrite);
216 return VINF_SUCCESS;
217}
218
219
220/**
221 * Write to physical memory, external users.
222 *
223 * @returns VBox status code.
224 * @retval VINF_SUCCESS.
225 * @retval VERR_EM_NO_MEMORY.
226 *
227 * @param pVM VM Handle.
228 * @param GCPhys Physical address to write to.
229 * @param pvBuf What to write.
230 * @param cbWrite How many bytes to write.
231 * @param pszWho Who is writing. For tracking down who is writing
232 * after we've saved the state.
233 *
234 * @thread Any but EMTs.
235 */
236VMMDECL(int) PGMR3PhysWriteExternal(PVM pVM, RTGCPHYS GCPhys, const void *pvBuf, size_t cbWrite, const char *pszWho)
237{
238 VM_ASSERT_OTHER_THREAD(pVM);
239
240 AssertMsg(!pVM->pgm.s.fNoMorePhysWrites,
241 ("Calling PGMR3PhysWriteExternal after pgmR3Save()! GCPhys=%RGp cbWrite=%#x pszWho=%s\n",
242 GCPhys, cbWrite, pszWho));
243 AssertMsgReturn(cbWrite > 0, ("don't even think about writing zero bytes!\n"), VINF_SUCCESS);
244 LogFlow(("PGMR3PhysWriteExternal: %RGp %d\n", GCPhys, cbWrite));
245
246 pgmLock(pVM);
247
248 /*
249 * Copy loop on ram ranges, stop when we hit something difficult.
250 */
251 PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
252 for (;;)
253 {
254 /* Find range. */
255 while (pRam && GCPhys > pRam->GCPhysLast)
256 pRam = pRam->CTX_SUFF(pNext);
257 /* Inside range or not? */
258 if (pRam && GCPhys >= pRam->GCPhys)
259 {
260 /*
261 * Must work our way thru this page by page.
262 */
263 RTGCPTR off = GCPhys - pRam->GCPhys;
264 while (off < pRam->cb)
265 {
266 RTGCPTR iPage = off >> PAGE_SHIFT;
267 PPGMPAGE pPage = &pRam->aPages[iPage];
268
269 /*
270 * Is the page problematic, we have to do the work on the EMT.
271 *
272 * Allocating writable pages and access handlers are
273 * problematic, write monitored pages are simple and can be
274 * dealt with here.
275 */
276 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
277 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED)
278 {
279 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
280 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
281 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
282 else
283 {
284 pgmUnlock(pVM);
285
286 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysWriteExternalEMT, 4,
287 pVM, &GCPhys, pvBuf, cbWrite);
288 }
289 }
290 Assert(!PGM_PAGE_IS_MMIO(pPage));
291
292 /*
293 * Simple stuff, go ahead.
294 */
295 size_t cb = PAGE_SIZE - (off & PAGE_OFFSET_MASK);
296 if (cb > cbWrite)
297 cb = cbWrite;
298 void *pvDst;
299 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, pRam->GCPhys + off, &pvDst);
300 if (RT_SUCCESS(rc))
301 memcpy(pvDst, pvBuf, cb);
302 else
303 AssertLogRelMsgFailed(("pgmPhysGCPhys2CCPtrInternal failed on %RGp / %R[pgmpage] -> %Rrc\n",
304 pRam->GCPhys + off, pPage, rc));
305
306 /* next page */
307 if (cb >= cbWrite)
308 {
309 pgmUnlock(pVM);
310 return VINF_SUCCESS;
311 }
312
313 cbWrite -= cb;
314 off += cb;
315 GCPhys += cb;
316 pvBuf = (const char *)pvBuf + cb;
317 } /* walk pages in ram range */
318 }
319 else
320 {
321 /*
322 * Unassigned address space, skip it.
323 */
324 if (!pRam)
325 break;
326 size_t cb = pRam->GCPhys - GCPhys;
327 if (cb >= cbWrite)
328 break;
329 cbWrite -= cb;
330 pvBuf = (const char *)pvBuf + cb;
331 GCPhys += cb;
332 }
333 } /* Ram range walk */
334
335 pgmUnlock(pVM);
336 return VINF_SUCCESS;
337}
338
339
340/**
341 * VMR3ReqCall worker for PGMR3PhysGCPhys2CCPtrExternal to make pages writable.
342 *
343 * @returns see PGMR3PhysGCPhys2CCPtrExternal
344 * @param pVM The VM handle.
345 * @param pGCPhys Pointer to the guest physical address.
346 * @param ppv Where to store the mapping address.
347 * @param pLock Where to store the lock.
348 */
349static DECLCALLBACK(int) pgmR3PhysGCPhys2CCPtrDelegated(PVM pVM, PRTGCPHYS pGCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
350{
351 /*
352 * Just hand it to PGMPhysGCPhys2CCPtr and check that it's not a page with
353 * an access handler after it succeeds.
354 */
355 int rc = pgmLock(pVM);
356 AssertRCReturn(rc, rc);
357
358 rc = PGMPhysGCPhys2CCPtr(pVM, *pGCPhys, ppv, pLock);
359 if (RT_SUCCESS(rc))
360 {
361 PPGMPAGEMAPTLBE pTlbe;
362 int rc2 = pgmPhysPageQueryTlbe(&pVM->pgm.s, *pGCPhys, &pTlbe);
363 AssertFatalRC(rc2);
364 PPGMPAGE pPage = pTlbe->pPage;
365 if (PGM_PAGE_IS_MMIO(pPage))
366 {
367 PGMPhysReleasePageMappingLock(pVM, pLock);
368 rc = VERR_PGM_PHYS_PAGE_RESERVED;
369 }
370 else if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
371#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
372 || pgmPoolIsDirtyPage(pVM, *pGCPhys)
373#endif
374 )
375 {
376 /* We *must* flush any corresponding pgm pool page here, otherwise we'll
377 * not be informed about writes and keep bogus gst->shw mappings around.
378 */
379 pgmPoolFlushPageByGCPhys(pVM, *pGCPhys);
380 Assert(!PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage));
381 /** @todo r=bird: return VERR_PGM_PHYS_PAGE_RESERVED here if it still has
382 * active handlers, see the PGMR3PhysGCPhys2CCPtrExternal docs. */
383 }
384 }
385
386 pgmUnlock(pVM);
387 return rc;
388}
389
390
391/**
392 * Requests the mapping of a guest page into ring-3, external threads.
393 *
394 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
395 * release it.
396 *
397 * This API will assume your intention is to write to the page, and will
398 * therefore replace shared and zero pages. If you do not intend to modify the
399 * page, use the PGMR3PhysGCPhys2CCPtrReadOnlyExternal() API.
400 *
401 * @returns VBox status code.
402 * @retval VINF_SUCCESS on success.
403 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
404 * backing or if the page has any active access handlers. The caller
405 * must fall back on using PGMR3PhysWriteExternal.
406 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
407 *
408 * @param pVM The VM handle.
409 * @param GCPhys The guest physical address of the page that should be mapped.
410 * @param ppv Where to store the address corresponding to GCPhys.
411 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
412 *
413 * @remark Avoid calling this API from within critical sections (other than the
414 * PGM one) because of the deadlock risk when we have to delegating the
415 * task to an EMT.
416 * @thread Any.
417 */
418VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrExternal(PVM pVM, RTGCPHYS GCPhys, void **ppv, PPGMPAGEMAPLOCK pLock)
419{
420 AssertPtr(ppv);
421 AssertPtr(pLock);
422
423 Assert(VM_IS_EMT(pVM) || !PGMIsLockOwner(pVM));
424
425 int rc = pgmLock(pVM);
426 AssertRCReturn(rc, rc);
427
428 /*
429 * Query the Physical TLB entry for the page (may fail).
430 */
431 PPGMPAGEMAPTLBE pTlbe;
432 rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
433 if (RT_SUCCESS(rc))
434 {
435 PPGMPAGE pPage = pTlbe->pPage;
436 if (PGM_PAGE_IS_MMIO(pPage))
437 rc = VERR_PGM_PHYS_PAGE_RESERVED;
438 else
439 {
440 /*
441 * If the page is shared, the zero page, or being write monitored
442 * it must be converted to an page that's writable if possible.
443 * We can only deal with write monitored pages here, the rest have
444 * to be on an EMT.
445 */
446 if ( PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
447 || PGM_PAGE_GET_STATE(pPage) != PGM_PAGE_STATE_ALLOCATED
448#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
449 || pgmPoolIsDirtyPage(pVM, GCPhys)
450#endif
451 )
452 {
453 if ( PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED
454 && !PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage)
455#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
456 && !pgmPoolIsDirtyPage(pVM, GCPhys)
457#endif
458 )
459 pgmPhysPageMakeWriteMonitoredWritable(pVM, pPage);
460 else
461 {
462 pgmUnlock(pVM);
463
464 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)pgmR3PhysGCPhys2CCPtrDelegated, 4,
465 pVM, &GCPhys, ppv, pLock);
466 }
467 }
468
469 /*
470 * Now, just perform the locking and calculate the return address.
471 */
472 PPGMPAGEMAP pMap = pTlbe->pMap;
473 if (pMap)
474 pMap->cRefs++;
475
476 unsigned cLocks = PGM_PAGE_GET_WRITE_LOCKS(pPage);
477 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
478 {
479 if (cLocks == 0)
480 pVM->pgm.s.cWriteLockedPages++;
481 PGM_PAGE_INC_WRITE_LOCKS(pPage);
482 }
483 else if (cLocks != PGM_PAGE_GET_WRITE_LOCKS(pPage))
484 {
485 PGM_PAGE_INC_WRITE_LOCKS(pPage);
486 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent write locked state!\n", GCPhys, pPage));
487 if (pMap)
488 pMap->cRefs++; /* Extra ref to prevent it from going away. */
489 }
490
491 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
492 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_WRITE;
493 pLock->pvMap = pMap;
494 }
495 }
496
497 pgmUnlock(pVM);
498 return rc;
499}
500
501
502/**
503 * Requests the mapping of a guest page into ring-3, external threads.
504 *
505 * When you're done with the page, call PGMPhysReleasePageMappingLock() ASAP to
506 * release it.
507 *
508 * @returns VBox status code.
509 * @retval VINF_SUCCESS on success.
510 * @retval VERR_PGM_PHYS_PAGE_RESERVED it it's a valid page but has no physical
511 * backing or if the page as an active ALL access handler. The caller
512 * must fall back on using PGMPhysRead.
513 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
514 *
515 * @param pVM The VM handle.
516 * @param GCPhys The guest physical address of the page that should be mapped.
517 * @param ppv Where to store the address corresponding to GCPhys.
518 * @param pLock Where to store the lock information that PGMPhysReleasePageMappingLock needs.
519 *
520 * @remark Avoid calling this API from within critical sections (other than
521 * the PGM one) because of the deadlock risk.
522 * @thread Any.
523 */
524VMMR3DECL(int) PGMR3PhysGCPhys2CCPtrReadOnlyExternal(PVM pVM, RTGCPHYS GCPhys, void const **ppv, PPGMPAGEMAPLOCK pLock)
525{
526 int rc = pgmLock(pVM);
527 AssertRCReturn(rc, rc);
528
529 /*
530 * Query the Physical TLB entry for the page (may fail).
531 */
532 PPGMPAGEMAPTLBE pTlbe;
533 rc = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
534 if (RT_SUCCESS(rc))
535 {
536 PPGMPAGE pPage = pTlbe->pPage;
537#if 1
538 /* MMIO pages doesn't have any readable backing. */
539 if (PGM_PAGE_IS_MMIO(pPage))
540 rc = VERR_PGM_PHYS_PAGE_RESERVED;
541#else
542 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage))
543 rc = VERR_PGM_PHYS_PAGE_RESERVED;
544#endif
545 else
546 {
547 /*
548 * Now, just perform the locking and calculate the return address.
549 */
550 PPGMPAGEMAP pMap = pTlbe->pMap;
551 if (pMap)
552 pMap->cRefs++;
553
554 unsigned cLocks = PGM_PAGE_GET_READ_LOCKS(pPage);
555 if (RT_LIKELY(cLocks < PGM_PAGE_MAX_LOCKS - 1))
556 {
557 if (cLocks == 0)
558 pVM->pgm.s.cReadLockedPages++;
559 PGM_PAGE_INC_READ_LOCKS(pPage);
560 }
561 else if (cLocks != PGM_PAGE_GET_READ_LOCKS(pPage))
562 {
563 PGM_PAGE_INC_READ_LOCKS(pPage);
564 AssertMsgFailed(("%RGp / %R[pgmpage] is entering permanent readonly locked state!\n", GCPhys, pPage));
565 if (pMap)
566 pMap->cRefs++; /* Extra ref to prevent it from going away. */
567 }
568
569 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
570 pLock->uPageAndType = (uintptr_t)pPage | PGMPAGEMAPLOCK_TYPE_READ;
571 pLock->pvMap = pMap;
572 }
573 }
574
575 pgmUnlock(pVM);
576 return rc;
577}
578
579
580/**
581 * Relinks the RAM ranges using the pSelfRC and pSelfR0 pointers.
582 *
583 * Called when anything was relocated.
584 *
585 * @param pVM Pointer to the shared VM structure.
586 */
587void pgmR3PhysRelinkRamRanges(PVM pVM)
588{
589 PPGMRAMRANGE pCur;
590
591#ifdef VBOX_STRICT
592 for (pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
593 {
594 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfR0 == MMHyperCCToR0(pVM, pCur));
595 Assert((pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pCur->pSelfRC == MMHyperCCToRC(pVM, pCur));
596 Assert((pCur->GCPhys & PAGE_OFFSET_MASK) == 0);
597 Assert((pCur->GCPhysLast & PAGE_OFFSET_MASK) == PAGE_OFFSET_MASK);
598 Assert((pCur->cb & PAGE_OFFSET_MASK) == 0);
599 Assert(pCur->cb == pCur->GCPhysLast - pCur->GCPhys + 1);
600 for (PPGMRAMRANGE pCur2 = pVM->pgm.s.pRamRangesR3; pCur2; pCur2 = pCur2->pNextR3)
601 Assert( pCur2 == pCur
602 || strcmp(pCur2->pszDesc, pCur->pszDesc)); /** @todo fix MMIO ranges!! */
603 }
604#endif
605
606 pCur = pVM->pgm.s.pRamRangesR3;
607 if (pCur)
608 {
609 pVM->pgm.s.pRamRangesR0 = pCur->pSelfR0;
610 pVM->pgm.s.pRamRangesRC = pCur->pSelfRC;
611
612 for (; pCur->pNextR3; pCur = pCur->pNextR3)
613 {
614 pCur->pNextR0 = pCur->pNextR3->pSelfR0;
615 pCur->pNextRC = pCur->pNextR3->pSelfRC;
616 }
617
618 Assert(pCur->pNextR0 == NIL_RTR0PTR);
619 Assert(pCur->pNextRC == NIL_RTRCPTR);
620 }
621 else
622 {
623 Assert(pVM->pgm.s.pRamRangesR0 == NIL_RTR0PTR);
624 Assert(pVM->pgm.s.pRamRangesRC == NIL_RTRCPTR);
625 }
626 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
627}
628
629
630/**
631 * Links a new RAM range into the list.
632 *
633 * @param pVM Pointer to the shared VM structure.
634 * @param pNew Pointer to the new list entry.
635 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
636 */
637static void pgmR3PhysLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, PPGMRAMRANGE pPrev)
638{
639 AssertMsg(pNew->pszDesc, ("%RGp-%RGp\n", pNew->GCPhys, pNew->GCPhysLast));
640 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfR0 == MMHyperCCToR0(pVM, pNew));
641 Assert((pNew->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pNew->pSelfRC == MMHyperCCToRC(pVM, pNew));
642
643 pgmLock(pVM);
644
645 PPGMRAMRANGE pRam = pPrev ? pPrev->pNextR3 : pVM->pgm.s.pRamRangesR3;
646 pNew->pNextR3 = pRam;
647 pNew->pNextR0 = pRam ? pRam->pSelfR0 : NIL_RTR0PTR;
648 pNew->pNextRC = pRam ? pRam->pSelfRC : NIL_RTRCPTR;
649
650 if (pPrev)
651 {
652 pPrev->pNextR3 = pNew;
653 pPrev->pNextR0 = pNew->pSelfR0;
654 pPrev->pNextRC = pNew->pSelfRC;
655 }
656 else
657 {
658 pVM->pgm.s.pRamRangesR3 = pNew;
659 pVM->pgm.s.pRamRangesR0 = pNew->pSelfR0;
660 pVM->pgm.s.pRamRangesRC = pNew->pSelfRC;
661 }
662 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
663 pgmUnlock(pVM);
664}
665
666
667/**
668 * Unlink an existing RAM range from the list.
669 *
670 * @param pVM Pointer to the shared VM structure.
671 * @param pRam Pointer to the new list entry.
672 * @param pPrev Pointer to the previous list entry. If NULL, insert as head.
673 */
674static void pgmR3PhysUnlinkRamRange2(PVM pVM, PPGMRAMRANGE pRam, PPGMRAMRANGE pPrev)
675{
676 Assert(pPrev ? pPrev->pNextR3 == pRam : pVM->pgm.s.pRamRangesR3 == pRam);
677 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfR0 == MMHyperCCToR0(pVM, pRam));
678 Assert((pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING) || pRam->pSelfRC == MMHyperCCToRC(pVM, pRam));
679
680 pgmLock(pVM);
681
682 PPGMRAMRANGE pNext = pRam->pNextR3;
683 if (pPrev)
684 {
685 pPrev->pNextR3 = pNext;
686 pPrev->pNextR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
687 pPrev->pNextRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
688 }
689 else
690 {
691 Assert(pVM->pgm.s.pRamRangesR3 == pRam);
692 pVM->pgm.s.pRamRangesR3 = pNext;
693 pVM->pgm.s.pRamRangesR0 = pNext ? pNext->pSelfR0 : NIL_RTR0PTR;
694 pVM->pgm.s.pRamRangesRC = pNext ? pNext->pSelfRC : NIL_RTRCPTR;
695 }
696 ASMAtomicIncU32(&pVM->pgm.s.idRamRangesGen);
697 pgmUnlock(pVM);
698}
699
700
701/**
702 * Unlink an existing RAM range from the list.
703 *
704 * @param pVM Pointer to the shared VM structure.
705 * @param pRam Pointer to the new list entry.
706 */
707static void pgmR3PhysUnlinkRamRange(PVM pVM, PPGMRAMRANGE pRam)
708{
709 pgmLock(pVM);
710
711 /* find prev. */
712 PPGMRAMRANGE pPrev = NULL;
713 PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3;
714 while (pCur != pRam)
715 {
716 pPrev = pCur;
717 pCur = pCur->pNextR3;
718 }
719 AssertFatal(pCur);
720
721 pgmR3PhysUnlinkRamRange2(pVM, pRam, pPrev);
722 pgmUnlock(pVM);
723}
724
725
726/**
727 * Frees a range of pages, replacing them with ZERO pages of the specified type.
728 *
729 * @returns VBox status code.
730 * @param pVM The VM handle.
731 * @param pRam The RAM range in which the pages resides.
732 * @param GCPhys The address of the first page.
733 * @param GCPhysLast The address of the last page.
734 * @param uType The page type to replace then with.
735 */
736static int pgmR3PhysFreePageRange(PVM pVM, PPGMRAMRANGE pRam, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast, uint8_t uType)
737{
738 Assert(PGMIsLockOwner(pVM));
739 uint32_t cPendingPages = 0;
740 PGMMFREEPAGESREQ pReq;
741 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
742 AssertLogRelRCReturn(rc, rc);
743
744 /* Iterate the pages. */
745 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
746 uint32_t cPagesLeft = ((GCPhysLast - GCPhys) >> PAGE_SHIFT) + 1;
747 while (cPagesLeft-- > 0)
748 {
749 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
750 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
751
752 PGM_PAGE_SET_TYPE(pPageDst, uType);
753
754 GCPhys += PAGE_SIZE;
755 pPageDst++;
756 }
757
758 if (cPendingPages)
759 {
760 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
761 AssertLogRelRCReturn(rc, rc);
762 }
763 GMMR3FreePagesCleanup(pReq);
764
765 return rc;
766}
767
768#if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
769/**
770 * Rendezvous callback used by PGMR3ChangeMemBalloon that changes the memory balloon size
771 *
772 * This is only called on one of the EMTs while the other ones are waiting for
773 * it to complete this function.
774 *
775 * @returns VINF_SUCCESS (VBox strict status code).
776 * @param pVM The VM handle.
777 * @param pVCpu The VMCPU for the EMT we're being called on. Unused.
778 * @param pvUser User parameter
779 */
780static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysChangeMemBalloonRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
781{
782 uintptr_t *paUser = (uintptr_t *)pvUser;
783 bool fInflate = !!paUser[0];
784 unsigned cPages = paUser[1];
785 RTGCPHYS *paPhysPage = (RTGCPHYS *)paUser[2];
786 uint32_t cPendingPages = 0;
787 PGMMFREEPAGESREQ pReq;
788 int rc;
789
790 Log(("pgmR3PhysChangeMemBalloonRendezvous: %s %x pages\n", (fInflate) ? "inflate" : "deflate", cPages));
791 pgmLock(pVM);
792
793 if (fInflate)
794 {
795 /* Flush the PGM pool cache as we might have stale references to pages that we just freed. */
796 pgmR3PoolClearAllRendezvous(pVM, pVCpu, NULL);
797
798 /* Replace pages with ZERO pages. */
799 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
800 if (RT_FAILURE(rc))
801 {
802 pgmUnlock(pVM);
803 AssertLogRelRC(rc);
804 return rc;
805 }
806
807 /* Iterate the pages. */
808 for (unsigned i = 0; i < cPages; i++)
809 {
810 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, paPhysPage[i]);
811 if ( pPage == NULL
812 || pPage->uTypeY != PGMPAGETYPE_RAM)
813 {
814 Log(("pgmR3PhysChangeMemBalloonRendezvous: invalid physical page %RGp pPage->u3Type=%d\n", paPhysPage[i], (pPage) ? pPage->uTypeY : 0));
815 break;
816 }
817
818 LogFlow(("balloon page: %RGp\n", paPhysPage[i]));
819
820 /* Flush the shadow PT if this page was previously used as a guest page table. */
821 pgmPoolFlushPageByGCPhys(pVM, paPhysPage[i]);
822
823 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, paPhysPage[i]);
824 if (RT_FAILURE(rc))
825 {
826 pgmUnlock(pVM);
827 AssertLogRelRC(rc);
828 return rc;
829 }
830 Assert(PGM_PAGE_IS_ZERO(pPage));
831 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_BALLOONED);
832 }
833
834 if (cPendingPages)
835 {
836 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
837 if (RT_FAILURE(rc))
838 {
839 pgmUnlock(pVM);
840 AssertLogRelRC(rc);
841 return rc;
842 }
843 }
844 GMMR3FreePagesCleanup(pReq);
845 }
846 else
847 {
848 /* Iterate the pages. */
849 for (unsigned i = 0; i < cPages; i++)
850 {
851 PPGMPAGE pPage = pgmPhysGetPage(&pVM->pgm.s, paPhysPage[i]);
852 AssertBreak(pPage && pPage->uTypeY == PGMPAGETYPE_RAM);
853
854 LogFlow(("Free ballooned page: %RGp\n", paPhysPage[i]));
855
856 Assert(PGM_PAGE_IS_BALLOONED(pPage));
857
858 /* Change back to zero page. */
859 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
860 }
861
862 /* Note that we currently do not map any ballooned pages in our shadow page tables, so no need to flush the pgm pool. */
863 }
864
865 /* Notify GMM about the balloon change. */
866 rc = GMMR3BalloonedPages(pVM, (fInflate) ? GMMBALLOONACTION_INFLATE : GMMBALLOONACTION_DEFLATE, cPages);
867 if (RT_SUCCESS(rc))
868 {
869 if (!fInflate)
870 {
871 Assert(pVM->pgm.s.cBalloonedPages >= cPages);
872 pVM->pgm.s.cBalloonedPages -= cPages;
873 }
874 else
875 pVM->pgm.s.cBalloonedPages += cPages;
876 }
877
878 pgmUnlock(pVM);
879
880 /* Flush the recompiler's TLB as well. */
881 for (VMCPUID i = 0; i < pVM->cCpus; i++)
882 CPUMSetChangedFlags(&pVM->aCpus[i], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
883
884 AssertLogRelRC(rc);
885 return rc;
886}
887
888/**
889 * Frees a range of ram pages, replacing them with ZERO pages; helper for PGMR3PhysFreeRamPages
890 *
891 * @returns VBox status code.
892 * @param pVM The VM handle.
893 * @param fInflate Inflate or deflate memory balloon
894 * @param cPages Number of pages to free
895 * @param paPhysPage Array of guest physical addresses
896 */
897static DECLCALLBACK(void) pgmR3PhysChangeMemBalloonHelper(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
898{
899 uintptr_t paUser[3];
900
901 paUser[0] = fInflate;
902 paUser[1] = cPages;
903 paUser[2] = (uintptr_t)paPhysPage;
904 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
905 AssertRC(rc);
906
907 /* Made a copy in PGMR3PhysFreeRamPages; free it here. */
908 RTMemFree(paPhysPage);
909}
910#endif
911
912/**
913 * Inflate or deflate a memory balloon
914 *
915 * @returns VBox status code.
916 * @param pVM The VM handle.
917 * @param fInflate Inflate or deflate memory balloon
918 * @param cPages Number of pages to free
919 * @param paPhysPage Array of guest physical addresses
920 */
921VMMR3DECL(int) PGMR3PhysChangeMemBalloon(PVM pVM, bool fInflate, unsigned cPages, RTGCPHYS *paPhysPage)
922{
923 /* This must match GMMR0Init; currently we only support memory ballooning on all 64-bit hosts except Mac OS X */
924#if HC_ARCH_BITS == 64 && (defined(RT_OS_WINDOWS) || defined(RT_OS_SOLARIS) || defined(RT_OS_LINUX) || defined(RT_OS_FREEBSD))
925 int rc;
926
927 /* Older additions (ancient non-functioning balloon code) pass wrong physical addresses. */
928 AssertReturn(!(paPhysPage[0] & 0xfff), VERR_INVALID_PARAMETER);
929
930 /* We own the IOM lock here and could cause a deadlock by waiting for another VCPU that is blocking on the IOM lock.
931 * In the SMP case we post a request packet to postpone the job.
932 */
933 if (pVM->cCpus > 1)
934 {
935 unsigned cbPhysPage = cPages * sizeof(paPhysPage[0]);
936 RTGCPHYS *paPhysPageCopy = (RTGCPHYS *)RTMemAlloc(cbPhysPage);
937 AssertReturn(paPhysPageCopy, VERR_NO_MEMORY);
938
939 memcpy(paPhysPageCopy, paPhysPage, cbPhysPage);
940
941 rc = VMR3ReqCallNoWait(pVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysChangeMemBalloonHelper, 4, pVM, fInflate, cPages, paPhysPageCopy);
942 AssertRC(rc);
943 }
944 else
945 {
946 uintptr_t paUser[3];
947
948 paUser[0] = fInflate;
949 paUser[1] = cPages;
950 paUser[2] = (uintptr_t)paPhysPage;
951 rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysChangeMemBalloonRendezvous, (void *)paUser);
952 AssertRC(rc);
953 }
954 return rc;
955#else
956 return VERR_NOT_IMPLEMENTED;
957#endif
958}
959
960/**
961 * Rendezvous callback used by PGMR3WriteProtectRAM that write protects all physical RAM
962 *
963 * This is only called on one of the EMTs while the other ones are waiting for
964 * it to complete this function.
965 *
966 * @returns VINF_SUCCESS (VBox strict status code).
967 * @param pVM The VM handle.
968 * @param pVCpu The VMCPU for the EMT we're being called on. Unused.
969 * @param pvUser User parameter
970 */
971static DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysWriteProtectRAMRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
972{
973 int rc = VINF_SUCCESS;
974
975 pgmLock(pVM);
976#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
977 pgmPoolResetDirtyPages(pVM);
978#endif
979
980 /** @todo pointless to write protect the physical page pointed to by RSP. */
981
982 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
983 pRam;
984 pRam = pRam->CTX_SUFF(pNext))
985 {
986 unsigned cPages = pRam->cb >> PAGE_SHIFT;
987 for (unsigned iPage = 0; iPage < cPages; iPage++)
988 {
989 PPGMPAGE pPage = &pRam->aPages[iPage];
990 PGMPAGETYPE enmPageType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage);
991
992 if ( RT_LIKELY(enmPageType == PGMPAGETYPE_RAM)
993 || enmPageType == PGMPAGETYPE_MMIO2)
994 {
995 /*
996 * A RAM page.
997 */
998 switch (PGM_PAGE_GET_STATE(pPage))
999 {
1000 case PGM_PAGE_STATE_ALLOCATED:
1001 /** @todo Optimize this: Don't always re-enable write
1002 * monitoring if the page is known to be very busy. */
1003 if (PGM_PAGE_IS_WRITTEN_TO(pPage))
1004 {
1005 PGM_PAGE_CLEAR_WRITTEN_TO(pPage);
1006 /* Remember this dirty page for the next (memory) sync. */
1007 PGM_PAGE_SET_FT_DIRTY(pPage);
1008 }
1009
1010 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_WRITE_MONITORED);
1011 pVM->pgm.s.cMonitoredPages++;
1012 break;
1013
1014 case PGM_PAGE_STATE_SHARED:
1015 AssertFailed();
1016 break;
1017
1018 case PGM_PAGE_STATE_WRITE_MONITORED: /* nothing to change. */
1019 default:
1020 break;
1021 }
1022 }
1023 }
1024 }
1025 pgmR3PoolWriteProtectPages(pVM);
1026 PGM_INVL_ALL_VCPU_TLBS(pVM);
1027 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1028 CPUMSetChangedFlags(&pVM->aCpus[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
1029
1030 pgmUnlock(pVM);
1031 return rc;
1032}
1033
1034/**
1035 * Protect all physical RAM to monitor writes
1036 *
1037 * @returns VBox status code.
1038 * @param pVM The VM handle.
1039 */
1040VMMR3DECL(int) PGMR3PhysWriteProtectRAM(PVM pVM)
1041{
1042 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1043
1044 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysWriteProtectRAMRendezvous, NULL);
1045 AssertRC(rc);
1046 return rc;
1047}
1048
1049/**
1050 * Enumerate all dirty FT pages
1051 *
1052 * @returns VBox status code.
1053 * @param pVM The VM handle.
1054 * @param pfnEnum Enumerate callback handler
1055 * @param pvUser Enumerate callback handler parameter
1056 */
1057VMMR3DECL(int) PGMR3PhysEnumDirtyFTPages(PVM pVM, PFNPGMENUMDIRTYFTPAGES pfnEnum, void *pvUser)
1058{
1059 int rc = VINF_SUCCESS;
1060
1061 pgmLock(pVM);
1062 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
1063 pRam;
1064 pRam = pRam->CTX_SUFF(pNext))
1065 {
1066 unsigned cPages = pRam->cb >> PAGE_SHIFT;
1067 for (unsigned iPage = 0; iPage < cPages; iPage++)
1068 {
1069 PPGMPAGE pPage = &pRam->aPages[iPage];
1070 PGMPAGETYPE enmPageType = (PGMPAGETYPE)PGM_PAGE_GET_TYPE(pPage);
1071
1072 if ( RT_LIKELY(enmPageType == PGMPAGETYPE_RAM)
1073 || enmPageType == PGMPAGETYPE_MMIO2)
1074 {
1075 /*
1076 * A RAM page.
1077 */
1078 switch (PGM_PAGE_GET_STATE(pPage))
1079 {
1080 case PGM_PAGE_STATE_ALLOCATED:
1081 case PGM_PAGE_STATE_WRITE_MONITORED:
1082 if ( !PGM_PAGE_IS_WRITTEN_TO(pPage) /* not very recently updated? */
1083 && PGM_PAGE_IS_FT_DIRTY(pPage))
1084 {
1085 unsigned cbPageRange = PAGE_SIZE;
1086 unsigned iPageClean = iPage + 1;
1087 RTGCPHYS GCPhysPage = pRam->GCPhys + iPage * PAGE_SIZE;
1088 uint8_t *pu8Page = NULL;
1089 PGMPAGEMAPLOCK Lock;
1090
1091 /* Find the next clean page, so we can merge adjacent dirty pages. */
1092 for (; iPageClean < cPages; iPageClean++)
1093 {
1094 PPGMPAGE pPageNext = &pRam->aPages[iPageClean];
1095 if ( RT_UNLIKELY(PGM_PAGE_GET_TYPE(pPageNext) != PGMPAGETYPE_RAM)
1096 || PGM_PAGE_GET_STATE(pPageNext) != PGM_PAGE_STATE_ALLOCATED
1097 || PGM_PAGE_IS_WRITTEN_TO(pPageNext)
1098 || !PGM_PAGE_IS_FT_DIRTY(pPageNext)
1099 /* Crossing a chunk boundary? */
1100 || (GCPhysPage & GMM_PAGEID_IDX_MASK) != ((GCPhysPage + cbPageRange) & GMM_PAGEID_IDX_MASK)
1101 )
1102 break;
1103
1104 cbPageRange += PAGE_SIZE;
1105 }
1106
1107 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhysPage, (const void **)&pu8Page, &Lock);
1108 if (RT_SUCCESS(rc))
1109 {
1110 /** @todo this is risky; the range might be changed, but little choice as the sync costs a lot of time */
1111 pgmUnlock(pVM);
1112 pfnEnum(pVM, GCPhysPage, pu8Page, cbPageRange, pvUser);
1113 pgmLock(pVM);
1114 PGMPhysReleasePageMappingLock(pVM, &Lock);
1115 }
1116
1117 for (iPage; iPage < iPageClean; iPage++)
1118 PGM_PAGE_CLEAR_FT_DIRTY(&pRam->aPages[iPage]);
1119
1120 iPage = iPageClean - 1;
1121 }
1122 break;
1123 }
1124 }
1125 }
1126 }
1127 pgmUnlock(pVM);
1128 return rc;
1129}
1130
1131
1132/**
1133 * Gets the number of ram ranges.
1134 *
1135 * @returns Number of ram ranges. Returns UINT32_MAX if @a pVM is invalid.
1136 * @param pVM The VM handle.
1137 */
1138VMMR3DECL(uint32_t) PGMR3PhysGetRamRangeCount(PVM pVM)
1139{
1140 VM_ASSERT_VALID_EXT_RETURN(pVM, UINT32_MAX);
1141
1142 pgmLock(pVM);
1143 uint32_t cRamRanges = 0;
1144 for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRanges); pCur; pCur = pCur->CTX_SUFF(pNext))
1145 cRamRanges++;
1146 pgmUnlock(pVM);
1147 return cRamRanges;
1148}
1149
1150
1151/**
1152 * Get information about a range.
1153 *
1154 * @returns VINF_SUCCESS or VERR_OUT_OF_RANGE.
1155 * @param pVM The VM handle
1156 * @param iRange The ordinal of the range.
1157 * @param pGCPhysStart Where to return the start of the range. Optional.
1158 * @param pGCPhysLast Where to return the address of the last byte in the
1159 * range. Optional.
1160 * @param pfIsMmio Where to indicate that this is a pure MMIO range.
1161 * Optional.
1162 */
1163VMMR3DECL(int) PGMR3PhysGetRange(PVM pVM, uint32_t iRange, PRTGCPHYS pGCPhysStart, PRTGCPHYS pGCPhysLast,
1164 const char **ppszDesc, bool *pfIsMmio)
1165{
1166 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
1167
1168 pgmLock(pVM);
1169 uint32_t iCurRange = 0;
1170 for (PPGMRAMRANGE pCur = pVM->pgm.s.CTX_SUFF(pRamRanges); pCur; pCur = pCur->CTX_SUFF(pNext), iCurRange++)
1171 if (iCurRange == iRange)
1172 {
1173 if (pGCPhysStart)
1174 *pGCPhysStart = pCur->GCPhys;
1175 if (pGCPhysLast)
1176 *pGCPhysLast = pCur->GCPhysLast;
1177 if (pfIsMmio)
1178 *pfIsMmio = !!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO);
1179
1180 pgmUnlock(pVM);
1181 return VINF_SUCCESS;
1182 }
1183 pgmUnlock(pVM);
1184 return VERR_OUT_OF_RANGE;
1185}
1186
1187
1188/**
1189 * Query the amount of free memory inside VMMR0
1190 *
1191 * @returns VBox status code.
1192 * @param pVM The VM handle.
1193 * @param puTotalAllocSize Pointer to total allocated memory inside VMMR0 (in bytes)
1194 * @param puTotalFreeSize Pointer to total free (allocated but not used yet) memory inside VMMR0 (in bytes)
1195 * @param puTotalBalloonSize Pointer to total ballooned memory inside VMMR0 (in bytes)
1196 * @param puTotalSharedSize Pointer to total shared memory inside VMMR0 (in bytes)
1197 */
1198VMMR3DECL(int) PGMR3QueryVMMMemoryStats(PVM pVM, uint64_t *puTotalAllocSize, uint64_t *puTotalFreeSize, uint64_t *puTotalBalloonSize, uint64_t *puTotalSharedSize)
1199{
1200 int rc;
1201
1202 uint64_t cAllocPages = 0, cFreePages = 0, cBalloonPages = 0, cSharedPages = 0;
1203 rc = GMMR3QueryHypervisorMemoryStats(pVM, &cAllocPages, &cFreePages, &cBalloonPages, &cSharedPages);
1204 AssertRCReturn(rc, rc);
1205
1206 if (puTotalAllocSize)
1207 *puTotalAllocSize = cAllocPages * _4K;
1208
1209 if (puTotalFreeSize)
1210 *puTotalFreeSize = cFreePages * _4K;
1211
1212 if (puTotalBalloonSize)
1213 *puTotalBalloonSize = cBalloonPages * _4K;
1214
1215 if (puTotalSharedSize)
1216 *puTotalSharedSize = cSharedPages * _4K;
1217
1218 Log(("PGMR3QueryVMMMemoryStats: all=%x free=%x ballooned=%x shared=%x\n", cAllocPages, cFreePages, cBalloonPages, cSharedPages));
1219 return VINF_SUCCESS;
1220}
1221
1222/**
1223 * Query memory stats for the VM
1224 *
1225 * @returns VBox status code.
1226 * @param pVM The VM handle.
1227 * @param puTotalAllocSize Pointer to total allocated memory inside the VM (in bytes)
1228 * @param puTotalFreeSize Pointer to total free (allocated but not used yet) memory inside the VM (in bytes)
1229 * @param puTotalBalloonSize Pointer to total ballooned memory inside the VM (in bytes)
1230 * @param puTotalSharedSize Pointer to total shared memory inside the VM (in bytes)
1231 */
1232VMMR3DECL(int) PGMR3QueryMemoryStats(PVM pVM, uint64_t *pulTotalMem, uint64_t *pulPrivateMem, uint64_t *puTotalSharedMem, uint64_t *puTotalZeroMem)
1233{
1234 if (pulTotalMem)
1235 *pulTotalMem = (uint64_t)pVM->pgm.s.cAllPages * _4K;
1236
1237 if (pulPrivateMem)
1238 *pulPrivateMem = (uint64_t)pVM->pgm.s.cPrivatePages * _4K;
1239
1240 if (puTotalSharedMem)
1241 *puTotalSharedMem = (uint64_t)pVM->pgm.s.cReusedSharedPages * _4K;
1242
1243 if (puTotalZeroMem)
1244 *puTotalZeroMem = (uint64_t)pVM->pgm.s.cZeroPages * _4K;
1245
1246 Log(("PGMR3QueryMemoryStats: all=%x private=%x reused=%x zero=%x\n", pVM->pgm.s.cAllPages, pVM->pgm.s.cPrivatePages, pVM->pgm.s.cReusedSharedPages, pVM->pgm.s.cZeroPages));
1247 return VINF_SUCCESS;
1248}
1249
1250/**
1251 * PGMR3PhysRegisterRam worker that initializes and links a RAM range.
1252 *
1253 * @param pVM The VM handle.
1254 * @param pNew The new RAM range.
1255 * @param GCPhys The address of the RAM range.
1256 * @param GCPhysLast The last address of the RAM range.
1257 * @param RCPtrNew The RC address if the range is floating. NIL_RTRCPTR
1258 * if in HMA.
1259 * @param R0PtrNew Ditto for R0.
1260 * @param pszDesc The description.
1261 * @param pPrev The previous RAM range (for linking).
1262 */
1263static void pgmR3PhysInitAndLinkRamRange(PVM pVM, PPGMRAMRANGE pNew, RTGCPHYS GCPhys, RTGCPHYS GCPhysLast,
1264 RTRCPTR RCPtrNew, RTR0PTR R0PtrNew, const char *pszDesc, PPGMRAMRANGE pPrev)
1265{
1266 /*
1267 * Initialize the range.
1268 */
1269 pNew->pSelfR0 = R0PtrNew != NIL_RTR0PTR ? R0PtrNew : MMHyperCCToR0(pVM, pNew);
1270 pNew->pSelfRC = RCPtrNew != NIL_RTRCPTR ? RCPtrNew : MMHyperCCToRC(pVM, pNew);
1271 pNew->GCPhys = GCPhys;
1272 pNew->GCPhysLast = GCPhysLast;
1273 pNew->cb = GCPhysLast - GCPhys + 1;
1274 pNew->pszDesc = pszDesc;
1275 pNew->fFlags = RCPtrNew != NIL_RTRCPTR ? PGM_RAM_RANGE_FLAGS_FLOATING : 0;
1276 pNew->pvR3 = NULL;
1277 pNew->paLSPages = NULL;
1278
1279 uint32_t const cPages = pNew->cb >> PAGE_SHIFT;
1280 RTGCPHYS iPage = cPages;
1281 while (iPage-- > 0)
1282 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_RAM);
1283
1284 /* Update the page count stats. */
1285 pVM->pgm.s.cZeroPages += cPages;
1286 pVM->pgm.s.cAllPages += cPages;
1287
1288 /*
1289 * Link it.
1290 */
1291 pgmR3PhysLinkRamRange(pVM, pNew, pPrev);
1292}
1293
1294
1295/**
1296 * Relocate a floating RAM range.
1297 *
1298 * @copydoc FNPGMRELOCATE.
1299 */
1300static DECLCALLBACK(bool) pgmR3PhysRamRangeRelocate(PVM pVM, RTGCPTR GCPtrOld, RTGCPTR GCPtrNew, PGMRELOCATECALL enmMode, void *pvUser)
1301{
1302 PPGMRAMRANGE pRam = (PPGMRAMRANGE)pvUser;
1303 Assert(pRam->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING);
1304 Assert(pRam->pSelfRC == GCPtrOld + PAGE_SIZE);
1305
1306 switch (enmMode)
1307 {
1308 case PGMRELOCATECALL_SUGGEST:
1309 return true;
1310 case PGMRELOCATECALL_RELOCATE:
1311 {
1312 /* Update myself and then relink all the ranges. */
1313 pgmLock(pVM);
1314 pRam->pSelfRC = (RTRCPTR)(GCPtrNew + PAGE_SIZE);
1315 pgmR3PhysRelinkRamRanges(pVM);
1316 pgmUnlock(pVM);
1317 return true;
1318 }
1319
1320 default:
1321 AssertFailedReturn(false);
1322 }
1323}
1324
1325
1326/**
1327 * PGMR3PhysRegisterRam worker that registers a high chunk.
1328 *
1329 * @returns VBox status code.
1330 * @param pVM The VM handle.
1331 * @param GCPhys The address of the RAM.
1332 * @param cRamPages The number of RAM pages to register.
1333 * @param cbChunk The size of the PGMRAMRANGE guest mapping.
1334 * @param iChunk The chunk number.
1335 * @param pszDesc The RAM range description.
1336 * @param ppPrev Previous RAM range pointer. In/Out.
1337 */
1338static int pgmR3PhysRegisterHighRamChunk(PVM pVM, RTGCPHYS GCPhys, uint32_t cRamPages,
1339 uint32_t cbChunk, uint32_t iChunk, const char *pszDesc,
1340 PPGMRAMRANGE *ppPrev)
1341{
1342 const char *pszDescChunk = iChunk == 0
1343 ? pszDesc
1344 : MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s (#%u)", pszDesc, iChunk + 1);
1345 AssertReturn(pszDescChunk, VERR_NO_MEMORY);
1346
1347 /*
1348 * Allocate memory for the new chunk.
1349 */
1350 size_t const cChunkPages = RT_ALIGN_Z(RT_UOFFSETOF(PGMRAMRANGE, aPages[cRamPages]), PAGE_SIZE) >> PAGE_SHIFT;
1351 PSUPPAGE paChunkPages = (PSUPPAGE)RTMemTmpAllocZ(sizeof(SUPPAGE) * cChunkPages);
1352 AssertReturn(paChunkPages, VERR_NO_TMP_MEMORY);
1353 RTR0PTR R0PtrChunk = NIL_RTR0PTR;
1354 void *pvChunk = NULL;
1355 int rc = SUPR3PageAllocEx(cChunkPages, 0 /*fFlags*/, &pvChunk,
1356#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1357 VMMIsHwVirtExtForced(pVM) ? &R0PtrChunk : NULL,
1358#else
1359 NULL,
1360#endif
1361 paChunkPages);
1362 if (RT_SUCCESS(rc))
1363 {
1364#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1365 if (!VMMIsHwVirtExtForced(pVM))
1366 R0PtrChunk = NIL_RTR0PTR;
1367#else
1368 R0PtrChunk = (uintptr_t)pvChunk;
1369#endif
1370 memset(pvChunk, 0, cChunkPages << PAGE_SHIFT);
1371
1372 PPGMRAMRANGE pNew = (PPGMRAMRANGE)pvChunk;
1373
1374 /*
1375 * Create a mapping and map the pages into it.
1376 * We push these in below the HMA.
1377 */
1378 RTGCPTR GCPtrChunkMap = pVM->pgm.s.GCPtrPrevRamRangeMapping - cbChunk;
1379 rc = PGMR3MapPT(pVM, GCPtrChunkMap, cbChunk, 0 /*fFlags*/, pgmR3PhysRamRangeRelocate, pNew, pszDescChunk);
1380 if (RT_SUCCESS(rc))
1381 {
1382 pVM->pgm.s.GCPtrPrevRamRangeMapping = GCPtrChunkMap;
1383
1384 RTGCPTR const GCPtrChunk = GCPtrChunkMap + PAGE_SIZE;
1385 RTGCPTR GCPtrPage = GCPtrChunk;
1386 for (uint32_t iPage = 0; iPage < cChunkPages && RT_SUCCESS(rc); iPage++, GCPtrPage += PAGE_SIZE)
1387 rc = PGMMap(pVM, GCPtrPage, paChunkPages[iPage].Phys, PAGE_SIZE, 0);
1388 if (RT_SUCCESS(rc))
1389 {
1390 /*
1391 * Ok, init and link the range.
1392 */
1393 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhys + ((RTGCPHYS)cRamPages << PAGE_SHIFT) - 1,
1394 (RTRCPTR)GCPtrChunk, R0PtrChunk, pszDescChunk, *ppPrev);
1395 *ppPrev = pNew;
1396 }
1397 }
1398
1399 if (RT_FAILURE(rc))
1400 SUPR3PageFreeEx(pvChunk, cChunkPages);
1401 }
1402
1403 RTMemTmpFree(paChunkPages);
1404 return rc;
1405}
1406
1407
1408/**
1409 * Sets up a range RAM.
1410 *
1411 * This will check for conflicting registrations, make a resource
1412 * reservation for the memory (with GMM), and setup the per-page
1413 * tracking structures (PGMPAGE).
1414 *
1415 * @returns VBox stutus code.
1416 * @param pVM Pointer to the shared VM structure.
1417 * @param GCPhys The physical address of the RAM.
1418 * @param cb The size of the RAM.
1419 * @param pszDesc The description - not copied, so, don't free or change it.
1420 */
1421VMMR3DECL(int) PGMR3PhysRegisterRam(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, const char *pszDesc)
1422{
1423 /*
1424 * Validate input.
1425 */
1426 Log(("PGMR3PhysRegisterRam: GCPhys=%RGp cb=%RGp pszDesc=%s\n", GCPhys, cb, pszDesc));
1427 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
1428 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
1429 AssertReturn(cb > 0, VERR_INVALID_PARAMETER);
1430 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1431 AssertMsgReturn(GCPhysLast > GCPhys, ("The range wraps! GCPhys=%RGp cb=%RGp\n", GCPhys, cb), VERR_INVALID_PARAMETER);
1432 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1433 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
1434
1435 pgmLock(pVM);
1436
1437 /*
1438 * Find range location and check for conflicts.
1439 * (We don't lock here because the locking by EMT is only required on update.)
1440 */
1441 PPGMRAMRANGE pPrev = NULL;
1442 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1443 while (pRam && GCPhysLast >= pRam->GCPhys)
1444 {
1445 if ( GCPhysLast >= pRam->GCPhys
1446 && GCPhys <= pRam->GCPhysLast)
1447 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
1448 GCPhys, GCPhysLast, pszDesc,
1449 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1450 VERR_PGM_RAM_CONFLICT);
1451
1452 /* next */
1453 pPrev = pRam;
1454 pRam = pRam->pNextR3;
1455 }
1456
1457 /*
1458 * Register it with GMM (the API bitches).
1459 */
1460 const RTGCPHYS cPages = cb >> PAGE_SHIFT;
1461 int rc = MMR3IncreaseBaseReservation(pVM, cPages);
1462 if (RT_FAILURE(rc))
1463 {
1464 pgmUnlock(pVM);
1465 return rc;
1466 }
1467
1468 if ( GCPhys >= _4G
1469 && cPages > 256)
1470 {
1471 /*
1472 * The PGMRAMRANGE structures for the high memory can get very big.
1473 * In order to avoid SUPR3PageAllocEx allocation failures due to the
1474 * allocation size limit there and also to avoid being unable to find
1475 * guest mapping space for them, we split this memory up into 4MB in
1476 * (potential) raw-mode configs and 16MB chunks in forced AMD-V/VT-x
1477 * mode.
1478 *
1479 * The first and last page of each mapping are guard pages and marked
1480 * not-present. So, we've got 4186112 and 16769024 bytes available for
1481 * the PGMRAMRANGE structure.
1482 *
1483 * Note! The sizes used here will influence the saved state.
1484 */
1485 uint32_t cbChunk;
1486 uint32_t cPagesPerChunk;
1487 if (VMMIsHwVirtExtForced(pVM))
1488 {
1489 cbChunk = 16U*_1M;
1490 cPagesPerChunk = 1048048; /* max ~1048059 */
1491 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 1048048 < 16U*_1M - PAGE_SIZE * 2);
1492 }
1493 else
1494 {
1495 cbChunk = 4U*_1M;
1496 cPagesPerChunk = 261616; /* max ~261627 */
1497 AssertCompile(sizeof(PGMRAMRANGE) + sizeof(PGMPAGE) * 261616 < 4U*_1M - PAGE_SIZE * 2);
1498 }
1499 AssertRelease(RT_UOFFSETOF(PGMRAMRANGE, aPages[cPagesPerChunk]) + PAGE_SIZE * 2 <= cbChunk);
1500
1501 RTGCPHYS cPagesLeft = cPages;
1502 RTGCPHYS GCPhysChunk = GCPhys;
1503 uint32_t iChunk = 0;
1504 while (cPagesLeft > 0)
1505 {
1506 uint32_t cPagesInChunk = cPagesLeft;
1507 if (cPagesInChunk > cPagesPerChunk)
1508 cPagesInChunk = cPagesPerChunk;
1509
1510 rc = pgmR3PhysRegisterHighRamChunk(pVM, GCPhysChunk, cPagesInChunk, cbChunk, iChunk, pszDesc, &pPrev);
1511 AssertRCReturn(rc, rc);
1512
1513 /* advance */
1514 GCPhysChunk += (RTGCPHYS)cPagesInChunk << PAGE_SHIFT;
1515 cPagesLeft -= cPagesInChunk;
1516 iChunk++;
1517 }
1518 }
1519 else
1520 {
1521 /*
1522 * Allocate, initialize and link the new RAM range.
1523 */
1524 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
1525 PPGMRAMRANGE pNew;
1526 rc = MMR3HyperAllocOnceNoRel(pVM, cbRamRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
1527 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
1528
1529 pgmR3PhysInitAndLinkRamRange(pVM, pNew, GCPhys, GCPhysLast, NIL_RTRCPTR, NIL_RTR0PTR, pszDesc, pPrev);
1530 }
1531 PGMPhysInvalidatePageMapTLB(pVM);
1532 pgmUnlock(pVM);
1533
1534 /*
1535 * Notify REM.
1536 */
1537 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_RAM);
1538
1539 return VINF_SUCCESS;
1540}
1541
1542
1543/**
1544 * Worker called by PGMR3InitFinalize if we're configured to pre-allocate RAM.
1545 *
1546 * We do this late in the init process so that all the ROM and MMIO ranges have
1547 * been registered already and we don't go wasting memory on them.
1548 *
1549 * @returns VBox status code.
1550 *
1551 * @param pVM Pointer to the shared VM structure.
1552 */
1553int pgmR3PhysRamPreAllocate(PVM pVM)
1554{
1555 Assert(pVM->pgm.s.fRamPreAlloc);
1556 Log(("pgmR3PhysRamPreAllocate: enter\n"));
1557
1558 /*
1559 * Walk the RAM ranges and allocate all RAM pages, halt at
1560 * the first allocation error.
1561 */
1562 uint64_t cPages = 0;
1563 uint64_t NanoTS = RTTimeNanoTS();
1564 pgmLock(pVM);
1565 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
1566 {
1567 PPGMPAGE pPage = &pRam->aPages[0];
1568 RTGCPHYS GCPhys = pRam->GCPhys;
1569 uint32_t cLeft = pRam->cb >> PAGE_SHIFT;
1570 while (cLeft-- > 0)
1571 {
1572 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM)
1573 {
1574 switch (PGM_PAGE_GET_STATE(pPage))
1575 {
1576 case PGM_PAGE_STATE_ZERO:
1577 {
1578 int rc = pgmPhysAllocPage(pVM, pPage, GCPhys);
1579 if (RT_FAILURE(rc))
1580 {
1581 LogRel(("PGM: RAM Pre-allocation failed at %RGp (in %s) with rc=%Rrc\n", GCPhys, pRam->pszDesc, rc));
1582 pgmUnlock(pVM);
1583 return rc;
1584 }
1585 cPages++;
1586 break;
1587 }
1588
1589 case PGM_PAGE_STATE_BALLOONED:
1590 case PGM_PAGE_STATE_ALLOCATED:
1591 case PGM_PAGE_STATE_WRITE_MONITORED:
1592 case PGM_PAGE_STATE_SHARED:
1593 /* nothing to do here. */
1594 break;
1595 }
1596 }
1597
1598 /* next */
1599 pPage++;
1600 GCPhys += PAGE_SIZE;
1601 }
1602 }
1603 pgmUnlock(pVM);
1604 NanoTS = RTTimeNanoTS() - NanoTS;
1605
1606 LogRel(("PGM: Pre-allocated %llu pages in %llu ms\n", cPages, NanoTS / 1000000));
1607 Log(("pgmR3PhysRamPreAllocate: returns VINF_SUCCESS\n"));
1608 return VINF_SUCCESS;
1609}
1610
1611
1612/**
1613 * Resets (zeros) the RAM.
1614 *
1615 * ASSUMES that the caller owns the PGM lock.
1616 *
1617 * @returns VBox status code.
1618 * @param pVM Pointer to the shared VM structure.
1619 */
1620int pgmR3PhysRamReset(PVM pVM)
1621{
1622 Assert(PGMIsLockOwner(pVM));
1623
1624 /* Reset the memory balloon. */
1625 int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
1626 AssertRC(rc);
1627
1628#ifdef VBOX_WITH_PAGE_SHARING
1629 /* Clear all registered shared modules. */
1630 rc = GMMR3ResetSharedModules(pVM);
1631 AssertRC(rc);
1632#endif
1633 /* Reset counters. */
1634 pVM->pgm.s.cReusedSharedPages = 0;
1635 pVM->pgm.s.cBalloonedPages = 0;
1636
1637 /*
1638 * We batch up pages that should be freed instead of calling GMM for
1639 * each and every one of them.
1640 */
1641 uint32_t cPendingPages = 0;
1642 PGMMFREEPAGESREQ pReq;
1643 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1644 AssertLogRelRCReturn(rc, rc);
1645
1646 /*
1647 * Walk the ram ranges.
1648 */
1649 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
1650 {
1651 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
1652 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
1653
1654 if (!pVM->pgm.s.fRamPreAlloc)
1655 {
1656 /* Replace all RAM pages by ZERO pages. */
1657 while (iPage-- > 0)
1658 {
1659 PPGMPAGE pPage = &pRam->aPages[iPage];
1660 switch (PGM_PAGE_GET_TYPE(pPage))
1661 {
1662 case PGMPAGETYPE_RAM:
1663 /* Do not replace pages part of a 2 MB continuous range with zero pages, but zero them instead. */
1664 if (PGM_PAGE_GET_PDE_TYPE(pPage) == PGM_PAGE_PDE_TYPE_PDE)
1665 {
1666 void *pvPage;
1667 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
1668 AssertLogRelRCReturn(rc, rc);
1669 ASMMemZeroPage(pvPage);
1670 }
1671 else
1672 if (PGM_PAGE_IS_BALLOONED(pPage))
1673 {
1674 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
1675 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
1676 }
1677 else
1678 if (!PGM_PAGE_IS_ZERO(pPage))
1679 {
1680 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1681 AssertLogRelRCReturn(rc, rc);
1682 }
1683 break;
1684
1685 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1686 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
1687 true /*fDoAccounting*/);
1688 break;
1689
1690 case PGMPAGETYPE_MMIO2:
1691 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
1692 case PGMPAGETYPE_ROM:
1693 case PGMPAGETYPE_MMIO:
1694 break;
1695 default:
1696 AssertFailed();
1697 }
1698 } /* for each page */
1699 }
1700 else
1701 {
1702 /* Zero the memory. */
1703 while (iPage-- > 0)
1704 {
1705 PPGMPAGE pPage = &pRam->aPages[iPage];
1706 switch (PGM_PAGE_GET_TYPE(pPage))
1707 {
1708 case PGMPAGETYPE_RAM:
1709 switch (PGM_PAGE_GET_STATE(pPage))
1710 {
1711 case PGM_PAGE_STATE_ZERO:
1712 break;
1713
1714 case PGM_PAGE_STATE_BALLOONED:
1715 /* Turn into a zero page; the balloon status is lost when the VM reboots. */
1716 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
1717 break;
1718
1719 case PGM_PAGE_STATE_SHARED:
1720 case PGM_PAGE_STATE_WRITE_MONITORED:
1721 rc = pgmPhysPageMakeWritable(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1722 AssertLogRelRCReturn(rc, rc);
1723 /* no break */
1724
1725 case PGM_PAGE_STATE_ALLOCATED:
1726 {
1727 void *pvPage;
1728 rc = pgmPhysPageMap(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pvPage);
1729 AssertLogRelRCReturn(rc, rc);
1730 ASMMemZeroPage(pvPage);
1731 break;
1732 }
1733 }
1734 break;
1735
1736 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1737 pgmHandlerPhysicalResetAliasedPage(pVM, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT),
1738 true /*fDoAccounting*/);
1739 break;
1740
1741 case PGMPAGETYPE_MMIO2:
1742 case PGMPAGETYPE_ROM_SHADOW:
1743 case PGMPAGETYPE_ROM:
1744 case PGMPAGETYPE_MMIO:
1745 break;
1746 default:
1747 AssertFailed();
1748
1749 }
1750 } /* for each page */
1751 }
1752
1753 }
1754
1755 /*
1756 * Finish off any pages pending freeing.
1757 */
1758 if (cPendingPages)
1759 {
1760 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
1761 AssertLogRelRCReturn(rc, rc);
1762 }
1763 GMMR3FreePagesCleanup(pReq);
1764
1765 return VINF_SUCCESS;
1766}
1767
1768/**
1769 * Frees all RAM during VM termination
1770 *
1771 * ASSUMES that the caller owns the PGM lock.
1772 *
1773 * @returns VBox status code.
1774 * @param pVM Pointer to the shared VM structure.
1775 */
1776int pgmR3PhysRamTerm(PVM pVM)
1777{
1778 Assert(PGMIsLockOwner(pVM));
1779
1780 /* Reset the memory balloon. */
1781 int rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_RESET, 0);
1782 AssertRC(rc);
1783
1784#ifdef VBOX_WITH_PAGE_SHARING
1785 /* Clear all registered shared modules. */
1786 rc = GMMR3ResetSharedModules(pVM);
1787 AssertRC(rc);
1788#endif
1789
1790 /*
1791 * We batch up pages that should be freed instead of calling GMM for
1792 * each and every one of them.
1793 */
1794 uint32_t cPendingPages = 0;
1795 PGMMFREEPAGESREQ pReq;
1796 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
1797 AssertLogRelRCReturn(rc, rc);
1798
1799 /*
1800 * Walk the ram ranges.
1801 */
1802 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
1803 {
1804 uint32_t iPage = pRam->cb >> PAGE_SHIFT;
1805 AssertMsg(((RTGCPHYS)iPage << PAGE_SHIFT) == pRam->cb, ("%RGp %RGp\n", (RTGCPHYS)iPage << PAGE_SHIFT, pRam->cb));
1806
1807 /* Replace all RAM pages by ZERO pages. */
1808 while (iPage-- > 0)
1809 {
1810 PPGMPAGE pPage = &pRam->aPages[iPage];
1811 switch (PGM_PAGE_GET_TYPE(pPage))
1812 {
1813 case PGMPAGETYPE_RAM:
1814 /* Free all shared pages. Private pages are automatically freed during GMM VM cleanup. */
1815 if (PGM_PAGE_IS_SHARED(pPage))
1816 {
1817 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1818 AssertLogRelRCReturn(rc, rc);
1819 }
1820 break;
1821
1822 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1823 case PGMPAGETYPE_MMIO2:
1824 case PGMPAGETYPE_ROM_SHADOW: /* handled by pgmR3PhysRomReset. */
1825 case PGMPAGETYPE_ROM:
1826 case PGMPAGETYPE_MMIO:
1827 break;
1828 default:
1829 AssertFailed();
1830 }
1831 } /* for each page */
1832 }
1833
1834 /*
1835 * Finish off any pages pending freeing.
1836 */
1837 if (cPendingPages)
1838 {
1839 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
1840 AssertLogRelRCReturn(rc, rc);
1841 }
1842 GMMR3FreePagesCleanup(pReq);
1843 return VINF_SUCCESS;
1844}
1845
1846/**
1847 * This is the interface IOM is using to register an MMIO region.
1848 *
1849 * It will check for conflicts and ensure that a RAM range structure
1850 * is present before calling the PGMR3HandlerPhysicalRegister API to
1851 * register the callbacks.
1852 *
1853 * @returns VBox status code.
1854 *
1855 * @param pVM Pointer to the shared VM structure.
1856 * @param GCPhys The start of the MMIO region.
1857 * @param cb The size of the MMIO region.
1858 * @param pfnHandlerR3 The address of the ring-3 handler. (IOMR3MMIOHandler)
1859 * @param pvUserR3 The user argument for R3.
1860 * @param pfnHandlerR0 The address of the ring-0 handler. (IOMMMIOHandler)
1861 * @param pvUserR0 The user argument for R0.
1862 * @param pfnHandlerRC The address of the RC handler. (IOMMMIOHandler)
1863 * @param pvUserRC The user argument for RC.
1864 * @param pszDesc The description of the MMIO region.
1865 */
1866VMMR3DECL(int) PGMR3PhysMMIORegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb,
1867 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3, RTR3PTR pvUserR3,
1868 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0, RTR0PTR pvUserR0,
1869 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnHandlerRC, RTRCPTR pvUserRC,
1870 R3PTRTYPE(const char *) pszDesc)
1871{
1872 /*
1873 * Assert on some assumption.
1874 */
1875 VM_ASSERT_EMT(pVM);
1876 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1877 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
1878 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
1879 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
1880
1881 /*
1882 * Make sure there's a RAM range structure for the region.
1883 */
1884 int rc;
1885 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
1886 bool fRamExists = false;
1887 PPGMRAMRANGE pRamPrev = NULL;
1888 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
1889 while (pRam && GCPhysLast >= pRam->GCPhys)
1890 {
1891 if ( GCPhysLast >= pRam->GCPhys
1892 && GCPhys <= pRam->GCPhysLast)
1893 {
1894 /* Simplification: all within the same range. */
1895 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
1896 && GCPhysLast <= pRam->GCPhysLast,
1897 ("%RGp-%RGp (MMIO/%s) falls partly outside %RGp-%RGp (%s)\n",
1898 GCPhys, GCPhysLast, pszDesc,
1899 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
1900 VERR_PGM_RAM_CONFLICT);
1901
1902 /* Check that it's all RAM or MMIO pages. */
1903 PCPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
1904 uint32_t cLeft = cb >> PAGE_SHIFT;
1905 while (cLeft-- > 0)
1906 {
1907 AssertLogRelMsgReturn( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM
1908 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO,
1909 ("%RGp-%RGp (MMIO/%s): %RGp is not a RAM or MMIO page - type=%d desc=%s\n",
1910 GCPhys, GCPhysLast, pszDesc, PGM_PAGE_GET_TYPE(pPage), pRam->pszDesc),
1911 VERR_PGM_RAM_CONFLICT);
1912 pPage++;
1913 }
1914
1915 /* Looks good. */
1916 fRamExists = true;
1917 break;
1918 }
1919
1920 /* next */
1921 pRamPrev = pRam;
1922 pRam = pRam->pNextR3;
1923 }
1924 PPGMRAMRANGE pNew;
1925 if (fRamExists)
1926 {
1927 pNew = NULL;
1928
1929 /*
1930 * Make all the pages in the range MMIO/ZERO pages, freeing any
1931 * RAM pages currently mapped here. This might not be 100% correct
1932 * for PCI memory, but we're doing the same thing for MMIO2 pages.
1933 */
1934 rc = pgmLock(pVM);
1935 if (RT_SUCCESS(rc))
1936 {
1937 rc = pgmR3PhysFreePageRange(pVM, pRam, GCPhys, GCPhysLast, PGMPAGETYPE_MMIO);
1938 pgmUnlock(pVM);
1939 }
1940 AssertRCReturn(rc, rc);
1941
1942 /* Force a PGM pool flush as guest ram references have been changed. */
1943 /** todo; not entirely SMP safe; assuming for now the guest takes care of this internally (not touch mapped mmio while changing the mapping). */
1944 PVMCPU pVCpu = VMMGetCpu(pVM);
1945 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
1946 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
1947 }
1948 else
1949 {
1950 pgmLock(pVM);
1951
1952 /*
1953 * No RAM range, insert an ad hoc one.
1954 *
1955 * Note that we don't have to tell REM about this range because
1956 * PGMHandlerPhysicalRegisterEx will do that for us.
1957 */
1958 Log(("PGMR3PhysMMIORegister: Adding ad hoc MMIO range for %RGp-%RGp %s\n", GCPhys, GCPhysLast, pszDesc));
1959
1960 const uint32_t cPages = cb >> PAGE_SHIFT;
1961 const size_t cbRamRange = RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]);
1962 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), 16, MM_TAG_PGM_PHYS, (void **)&pNew);
1963 AssertLogRelMsgRCReturn(rc, ("cbRamRange=%zu\n", cbRamRange), rc);
1964
1965 /* Initialize the range. */
1966 pNew->pSelfR0 = MMHyperCCToR0(pVM, pNew);
1967 pNew->pSelfRC = MMHyperCCToRC(pVM, pNew);
1968 pNew->GCPhys = GCPhys;
1969 pNew->GCPhysLast = GCPhysLast;
1970 pNew->cb = cb;
1971 pNew->pszDesc = pszDesc;
1972 pNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO;
1973 pNew->pvR3 = NULL;
1974 pNew->paLSPages = NULL;
1975
1976 uint32_t iPage = cPages;
1977 while (iPage-- > 0)
1978 PGM_PAGE_INIT_ZERO(&pNew->aPages[iPage], pVM, PGMPAGETYPE_MMIO);
1979 Assert(PGM_PAGE_GET_TYPE(&pNew->aPages[0]) == PGMPAGETYPE_MMIO);
1980
1981 /* update the page count stats. */
1982 pVM->pgm.s.cPureMmioPages += cPages;
1983 pVM->pgm.s.cAllPages += cPages;
1984
1985 /* link it */
1986 pgmR3PhysLinkRamRange(pVM, pNew, pRamPrev);
1987
1988 pgmUnlock(pVM);
1989 }
1990
1991 /*
1992 * Register the access handler.
1993 */
1994 rc = PGMHandlerPhysicalRegisterEx(pVM, PGMPHYSHANDLERTYPE_MMIO, GCPhys, GCPhysLast,
1995 pfnHandlerR3, pvUserR3,
1996 pfnHandlerR0, pvUserR0,
1997 pfnHandlerRC, pvUserRC, pszDesc);
1998 if ( RT_FAILURE(rc)
1999 && !fRamExists)
2000 {
2001 pVM->pgm.s.cPureMmioPages -= cb >> PAGE_SHIFT;
2002 pVM->pgm.s.cAllPages -= cb >> PAGE_SHIFT;
2003
2004 /* remove the ad hoc range. */
2005 pgmR3PhysUnlinkRamRange2(pVM, pNew, pRamPrev);
2006 pNew->cb = pNew->GCPhys = pNew->GCPhysLast = NIL_RTGCPHYS;
2007 MMHyperFree(pVM, pRam);
2008 }
2009 PGMPhysInvalidatePageMapTLB(pVM);
2010
2011 return rc;
2012}
2013
2014
2015/**
2016 * This is the interface IOM is using to register an MMIO region.
2017 *
2018 * It will take care of calling PGMHandlerPhysicalDeregister and clean up
2019 * any ad hoc PGMRAMRANGE left behind.
2020 *
2021 * @returns VBox status code.
2022 * @param pVM Pointer to the shared VM structure.
2023 * @param GCPhys The start of the MMIO region.
2024 * @param cb The size of the MMIO region.
2025 */
2026VMMR3DECL(int) PGMR3PhysMMIODeregister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb)
2027{
2028 VM_ASSERT_EMT(pVM);
2029
2030 /*
2031 * First deregister the handler, then check if we should remove the ram range.
2032 */
2033 int rc = PGMHandlerPhysicalDeregister(pVM, GCPhys);
2034 if (RT_SUCCESS(rc))
2035 {
2036 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2037 PPGMRAMRANGE pRamPrev = NULL;
2038 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
2039 while (pRam && GCPhysLast >= pRam->GCPhys)
2040 {
2041 /** @todo We're being a bit too careful here. rewrite. */
2042 if ( GCPhysLast == pRam->GCPhysLast
2043 && GCPhys == pRam->GCPhys)
2044 {
2045 Assert(pRam->cb == cb);
2046
2047 /*
2048 * See if all the pages are dead MMIO pages.
2049 */
2050 uint32_t const cPages = cb >> PAGE_SHIFT;
2051 bool fAllMMIO = true;
2052 uint32_t iPage = 0;
2053 uint32_t cLeft = cPages;
2054 while (cLeft-- > 0)
2055 {
2056 PPGMPAGE pPage = &pRam->aPages[iPage];
2057 if ( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO
2058 /*|| not-out-of-action later */)
2059 {
2060 fAllMMIO = false;
2061 Assert(PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_MMIO2_ALIAS_MMIO);
2062 AssertMsgFailed(("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
2063 break;
2064 }
2065 Assert(PGM_PAGE_IS_ZERO(pPage));
2066 pPage++;
2067 }
2068 if (fAllMMIO)
2069 {
2070 /*
2071 * Ad-hoc range, unlink and free it.
2072 */
2073 Log(("PGMR3PhysMMIODeregister: Freeing ad hoc MMIO range for %RGp-%RGp %s\n",
2074 GCPhys, GCPhysLast, pRam->pszDesc));
2075
2076 pVM->pgm.s.cAllPages -= cPages;
2077 pVM->pgm.s.cPureMmioPages -= cPages;
2078
2079 pgmR3PhysUnlinkRamRange2(pVM, pRam, pRamPrev);
2080 pRam->cb = pRam->GCPhys = pRam->GCPhysLast = NIL_RTGCPHYS;
2081 MMHyperFree(pVM, pRam);
2082 break;
2083 }
2084 }
2085
2086 /*
2087 * Range match? It will all be within one range (see PGMAllHandler.cpp).
2088 */
2089 if ( GCPhysLast >= pRam->GCPhys
2090 && GCPhys <= pRam->GCPhysLast)
2091 {
2092 Assert(GCPhys >= pRam->GCPhys);
2093 Assert(GCPhysLast <= pRam->GCPhysLast);
2094
2095 /*
2096 * Turn the pages back into RAM pages.
2097 */
2098 uint32_t iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
2099 uint32_t cLeft = cb >> PAGE_SHIFT;
2100 while (cLeft--)
2101 {
2102 PPGMPAGE pPage = &pRam->aPages[iPage];
2103 AssertMsg(PGM_PAGE_IS_MMIO(pPage), ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
2104 AssertMsg(PGM_PAGE_IS_ZERO(pPage), ("%RGp %R[pgmpage]\n", pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), pPage));
2105 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO)
2106 PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_RAM);
2107 }
2108 break;
2109 }
2110
2111 /* next */
2112 pRamPrev = pRam;
2113 pRam = pRam->pNextR3;
2114 }
2115 }
2116
2117 /* Force a PGM pool flush as guest ram references have been changed. */
2118 /** todo; not entirely SMP safe; assuming for now the guest takes care of this internally (not touch mapped mmio while changing the mapping). */
2119 PVMCPU pVCpu = VMMGetCpu(pVM);
2120 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2121 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2122
2123 PGMPhysInvalidatePageMapTLB(pVM);
2124 return rc;
2125}
2126
2127
2128/**
2129 * Locate a MMIO2 range.
2130 *
2131 * @returns Pointer to the MMIO2 range.
2132 * @param pVM Pointer to the shared VM structure.
2133 * @param pDevIns The device instance owning the region.
2134 * @param iRegion The region.
2135 */
2136DECLINLINE(PPGMMMIO2RANGE) pgmR3PhysMMIO2Find(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
2137{
2138 /*
2139 * Search the list.
2140 */
2141 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2142 if ( pCur->pDevInsR3 == pDevIns
2143 && pCur->iRegion == iRegion)
2144 return pCur;
2145 return NULL;
2146}
2147
2148
2149/**
2150 * Allocate and register an MMIO2 region.
2151 *
2152 * As mentioned elsewhere, MMIO2 is just RAM spelled differently. It's RAM
2153 * associated with a device. It is also non-shared memory with a permanent
2154 * ring-3 mapping and page backing (presently).
2155 *
2156 * A MMIO2 range may overlap with base memory if a lot of RAM is configured for
2157 * the VM, in which case we'll drop the base memory pages. Presently we will
2158 * make no attempt to preserve anything that happens to be present in the base
2159 * memory that is replaced, this is of course incorrectly but it's too much
2160 * effort.
2161 *
2162 * @returns VBox status code.
2163 * @retval VINF_SUCCESS on success, *ppv pointing to the R3 mapping of the
2164 * memory.
2165 * @retval VERR_ALREADY_EXISTS if the region already exists.
2166 *
2167 * @param pVM Pointer to the shared VM structure.
2168 * @param pDevIns The device instance owning the region.
2169 * @param iRegion The region number. If the MMIO2 memory is a PCI
2170 * I/O region this number has to be the number of that
2171 * region. Otherwise it can be any number safe
2172 * UINT8_MAX.
2173 * @param cb The size of the region. Must be page aligned.
2174 * @param fFlags Reserved for future use, must be zero.
2175 * @param ppv Where to store the pointer to the ring-3 mapping of
2176 * the memory.
2177 * @param pszDesc The description.
2178 */
2179VMMR3DECL(int) PGMR3PhysMMIO2Register(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS cb, uint32_t fFlags, void **ppv, const char *pszDesc)
2180{
2181 /*
2182 * Validate input.
2183 */
2184 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2185 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2186 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2187 AssertPtrReturn(ppv, VERR_INVALID_POINTER);
2188 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
2189 AssertReturn(*pszDesc, VERR_INVALID_PARAMETER);
2190 AssertReturn(pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion) == NULL, VERR_ALREADY_EXISTS);
2191 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2192 AssertReturn(cb, VERR_INVALID_PARAMETER);
2193 AssertReturn(!fFlags, VERR_INVALID_PARAMETER);
2194
2195 const uint32_t cPages = cb >> PAGE_SHIFT;
2196 AssertLogRelReturn(((RTGCPHYS)cPages << PAGE_SHIFT) == cb, VERR_INVALID_PARAMETER);
2197 AssertLogRelReturn(cPages <= INT32_MAX / 2, VERR_NO_MEMORY);
2198
2199 /*
2200 * For the 2nd+ instance, mangle the description string so it's unique.
2201 */
2202 if (pDevIns->iInstance > 0) /** @todo Move to PDMDevHlp.cpp and use a real string cache. */
2203 {
2204 pszDesc = MMR3HeapAPrintf(pVM, MM_TAG_PGM_PHYS, "%s [%u]", pszDesc, pDevIns->iInstance);
2205 if (!pszDesc)
2206 return VERR_NO_MEMORY;
2207 }
2208
2209 /*
2210 * Try reserve and allocate the backing memory first as this is what is
2211 * most likely to fail.
2212 */
2213 int rc = MMR3AdjustFixedReservation(pVM, cPages, pszDesc);
2214 if (RT_SUCCESS(rc))
2215 {
2216 void *pvPages;
2217 PSUPPAGE paPages = (PSUPPAGE)RTMemTmpAlloc(cPages * sizeof(SUPPAGE));
2218 if (RT_SUCCESS(rc))
2219 rc = SUPR3PageAllocEx(cPages, 0 /*fFlags*/, &pvPages, NULL /*pR0Ptr*/, paPages);
2220 if (RT_SUCCESS(rc))
2221 {
2222 memset(pvPages, 0, cPages * PAGE_SIZE);
2223
2224 /*
2225 * Create the MMIO2 range record for it.
2226 */
2227 const size_t cbRange = RT_OFFSETOF(PGMMMIO2RANGE, RamRange.aPages[cPages]);
2228 PPGMMMIO2RANGE pNew;
2229 rc = MMR3HyperAllocOnceNoRel(pVM, cbRange, 0, MM_TAG_PGM_PHYS, (void **)&pNew);
2230 AssertLogRelMsgRC(rc, ("cbRamRange=%zu\n", cbRange));
2231 if (RT_SUCCESS(rc))
2232 {
2233 pNew->pDevInsR3 = pDevIns;
2234 pNew->pvR3 = pvPages;
2235 //pNew->pNext = NULL;
2236 //pNew->fMapped = false;
2237 //pNew->fOverlapping = false;
2238 pNew->iRegion = iRegion;
2239 pNew->idSavedState = UINT8_MAX;
2240 pNew->RamRange.pSelfR0 = MMHyperCCToR0(pVM, &pNew->RamRange);
2241 pNew->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pNew->RamRange);
2242 pNew->RamRange.GCPhys = NIL_RTGCPHYS;
2243 pNew->RamRange.GCPhysLast = NIL_RTGCPHYS;
2244 pNew->RamRange.pszDesc = pszDesc;
2245 pNew->RamRange.cb = cb;
2246 pNew->RamRange.fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_MMIO2;
2247 pNew->RamRange.pvR3 = pvPages;
2248 //pNew->RamRange.paLSPages = NULL;
2249
2250 uint32_t iPage = cPages;
2251 while (iPage-- > 0)
2252 {
2253 PGM_PAGE_INIT(&pNew->RamRange.aPages[iPage],
2254 paPages[iPage].Phys, NIL_GMM_PAGEID,
2255 PGMPAGETYPE_MMIO2, PGM_PAGE_STATE_ALLOCATED);
2256 }
2257
2258 /* update page count stats */
2259 pVM->pgm.s.cAllPages += cPages;
2260 pVM->pgm.s.cPrivatePages += cPages;
2261
2262 /*
2263 * Link it into the list.
2264 * Since there is no particular order, just push it.
2265 */
2266 pgmLock(pVM);
2267 pNew->pNextR3 = pVM->pgm.s.pMmio2RangesR3;
2268 pVM->pgm.s.pMmio2RangesR3 = pNew;
2269 pgmUnlock(pVM);
2270
2271 *ppv = pvPages;
2272 RTMemTmpFree(paPages);
2273 PGMPhysInvalidatePageMapTLB(pVM);
2274 return VINF_SUCCESS;
2275 }
2276
2277 SUPR3PageFreeEx(pvPages, cPages);
2278 }
2279 RTMemTmpFree(paPages);
2280 MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pszDesc);
2281 }
2282 if (pDevIns->iInstance > 0)
2283 MMR3HeapFree((void *)pszDesc);
2284 return rc;
2285}
2286
2287
2288/**
2289 * Deregisters and frees an MMIO2 region.
2290 *
2291 * Any physical (and virtual) access handlers registered for the region must
2292 * be deregistered before calling this function.
2293 *
2294 * @returns VBox status code.
2295 * @param pVM Pointer to the shared VM structure.
2296 * @param pDevIns The device instance owning the region.
2297 * @param iRegion The region. If it's UINT32_MAX it'll be a wildcard match.
2298 */
2299VMMR3DECL(int) PGMR3PhysMMIO2Deregister(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion)
2300{
2301 /*
2302 * Validate input.
2303 */
2304 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2305 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2306 AssertReturn(iRegion <= UINT8_MAX || iRegion == UINT32_MAX, VERR_INVALID_PARAMETER);
2307
2308 pgmLock(pVM);
2309 int rc = VINF_SUCCESS;
2310 unsigned cFound = 0;
2311 PPGMMMIO2RANGE pPrev = NULL;
2312 PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3;
2313 while (pCur)
2314 {
2315 if ( pCur->pDevInsR3 == pDevIns
2316 && ( iRegion == UINT32_MAX
2317 || pCur->iRegion == iRegion))
2318 {
2319 cFound++;
2320
2321 /*
2322 * Unmap it if it's mapped.
2323 */
2324 if (pCur->fMapped)
2325 {
2326 int rc2 = PGMR3PhysMMIO2Unmap(pVM, pCur->pDevInsR3, pCur->iRegion, pCur->RamRange.GCPhys);
2327 AssertRC(rc2);
2328 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
2329 rc = rc2;
2330 }
2331
2332 /*
2333 * Unlink it
2334 */
2335 PPGMMMIO2RANGE pNext = pCur->pNextR3;
2336 if (pPrev)
2337 pPrev->pNextR3 = pNext;
2338 else
2339 pVM->pgm.s.pMmio2RangesR3 = pNext;
2340 pCur->pNextR3 = NULL;
2341
2342 /*
2343 * Free the memory.
2344 */
2345 int rc2 = SUPR3PageFreeEx(pCur->pvR3, pCur->RamRange.cb >> PAGE_SHIFT);
2346 AssertRC(rc2);
2347 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
2348 rc = rc2;
2349
2350 uint32_t const cPages = pCur->RamRange.cb >> PAGE_SHIFT;
2351 rc2 = MMR3AdjustFixedReservation(pVM, -(int32_t)cPages, pCur->RamRange.pszDesc);
2352 AssertRC(rc2);
2353 if (RT_FAILURE(rc2) && RT_SUCCESS(rc))
2354 rc = rc2;
2355
2356 /* we're leaking hyper memory here if done at runtime. */
2357#ifdef VBOX_STRICT
2358 VMSTATE const enmState = VMR3GetState(pVM);
2359 AssertMsg( enmState == VMSTATE_POWERING_OFF
2360 || enmState == VMSTATE_POWERING_OFF_LS
2361 || enmState == VMSTATE_OFF
2362 || enmState == VMSTATE_OFF_LS
2363 || enmState == VMSTATE_DESTROYING
2364 || enmState == VMSTATE_TERMINATED
2365 || enmState == VMSTATE_CREATING
2366 , ("%s\n", VMR3GetStateName(enmState)));
2367#endif
2368 /*rc = MMHyperFree(pVM, pCur);
2369 AssertRCReturn(rc, rc); - not safe, see the alloc call. */
2370
2371
2372 /* update page count stats */
2373 pVM->pgm.s.cAllPages -= cPages;
2374 pVM->pgm.s.cPrivatePages -= cPages;
2375
2376 /* next */
2377 pCur = pNext;
2378 }
2379 else
2380 {
2381 pPrev = pCur;
2382 pCur = pCur->pNextR3;
2383 }
2384 }
2385 PGMPhysInvalidatePageMapTLB(pVM);
2386 pgmUnlock(pVM);
2387 return !cFound && iRegion != UINT32_MAX ? VERR_NOT_FOUND : rc;
2388}
2389
2390
2391/**
2392 * Maps a MMIO2 region.
2393 *
2394 * This is done when a guest / the bios / state loading changes the
2395 * PCI config. The replacing of base memory has the same restrictions
2396 * as during registration, of course.
2397 *
2398 * @returns VBox status code.
2399 *
2400 * @param pVM Pointer to the shared VM structure.
2401 * @param pDevIns The
2402 */
2403VMMR3DECL(int) PGMR3PhysMMIO2Map(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
2404{
2405 /*
2406 * Validate input
2407 */
2408 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2409 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2410 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2411 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
2412 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
2413 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2414
2415 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2416 AssertReturn(pCur, VERR_NOT_FOUND);
2417 AssertReturn(!pCur->fMapped, VERR_WRONG_ORDER);
2418 Assert(pCur->RamRange.GCPhys == NIL_RTGCPHYS);
2419 Assert(pCur->RamRange.GCPhysLast == NIL_RTGCPHYS);
2420
2421 const RTGCPHYS GCPhysLast = GCPhys + pCur->RamRange.cb - 1;
2422 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
2423
2424 /*
2425 * Find our location in the ram range list, checking for
2426 * restriction we don't bother implementing yet (partially overlapping).
2427 */
2428 bool fRamExists = false;
2429 PPGMRAMRANGE pRamPrev = NULL;
2430 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
2431 while (pRam && GCPhysLast >= pRam->GCPhys)
2432 {
2433 if ( GCPhys <= pRam->GCPhysLast
2434 && GCPhysLast >= pRam->GCPhys)
2435 {
2436 /* completely within? */
2437 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
2438 && GCPhysLast <= pRam->GCPhysLast,
2439 ("%RGp-%RGp (MMIO2/%s) falls partly outside %RGp-%RGp (%s)\n",
2440 GCPhys, GCPhysLast, pCur->RamRange.pszDesc,
2441 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2442 VERR_PGM_RAM_CONFLICT);
2443 fRamExists = true;
2444 break;
2445 }
2446
2447 /* next */
2448 pRamPrev = pRam;
2449 pRam = pRam->pNextR3;
2450 }
2451 if (fRamExists)
2452 {
2453 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2454 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2455 while (cPagesLeft-- > 0)
2456 {
2457 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
2458 ("%RGp isn't a RAM page (%d) - mapping %RGp-%RGp (MMIO2/%s).\n",
2459 GCPhys, PGM_PAGE_GET_TYPE(pPage), GCPhys, GCPhysLast, pCur->RamRange.pszDesc),
2460 VERR_PGM_RAM_CONFLICT);
2461 pPage++;
2462 }
2463 }
2464 Log(("PGMR3PhysMMIO2Map: %RGp-%RGp fRamExists=%RTbool %s\n",
2465 GCPhys, GCPhysLast, fRamExists, pCur->RamRange.pszDesc));
2466
2467 /*
2468 * Make the changes.
2469 */
2470 pgmLock(pVM);
2471
2472 pCur->RamRange.GCPhys = GCPhys;
2473 pCur->RamRange.GCPhysLast = GCPhysLast;
2474 pCur->fMapped = true;
2475 pCur->fOverlapping = fRamExists;
2476
2477 if (fRamExists)
2478 {
2479/** @todo use pgmR3PhysFreePageRange here. */
2480 uint32_t cPendingPages = 0;
2481 PGMMFREEPAGESREQ pReq;
2482 int rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
2483 AssertLogRelRCReturn(rc, rc);
2484
2485 /* replace the pages, freeing all present RAM pages. */
2486 PPGMPAGE pPageSrc = &pCur->RamRange.aPages[0];
2487 PPGMPAGE pPageDst = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2488 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2489 while (cPagesLeft-- > 0)
2490 {
2491 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPageDst, GCPhys);
2492 AssertLogRelRCReturn(rc, rc); /* We're done for if this goes wrong. */
2493
2494 RTHCPHYS const HCPhys = PGM_PAGE_GET_HCPHYS(pPageSrc);
2495 PGM_PAGE_SET_HCPHYS(pPageDst, HCPhys);
2496 PGM_PAGE_SET_TYPE(pPageDst, PGMPAGETYPE_MMIO2);
2497 PGM_PAGE_SET_STATE(pPageDst, PGM_PAGE_STATE_ALLOCATED);
2498 PGM_PAGE_SET_PDE_TYPE(pPageDst, PGM_PAGE_PDE_TYPE_DONTCARE);
2499 PGM_PAGE_SET_PTE_INDEX(pPageDst, 0);
2500 PGM_PAGE_SET_TRACKING(pPageDst, 0);
2501
2502 pVM->pgm.s.cZeroPages--;
2503 GCPhys += PAGE_SIZE;
2504 pPageSrc++;
2505 pPageDst++;
2506 }
2507
2508 /* Flush physical page map TLB. */
2509 PGMPhysInvalidatePageMapTLB(pVM);
2510
2511 if (cPendingPages)
2512 {
2513 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2514 AssertLogRelRCReturn(rc, rc);
2515 }
2516 GMMR3FreePagesCleanup(pReq);
2517
2518 /* Force a PGM pool flush as guest ram references have been changed. */
2519 /** todo; not entirely SMP safe; assuming for now the guest takes care of this internally (not touch mapped mmio while changing the mapping). */
2520 PVMCPU pVCpu = VMMGetCpu(pVM);
2521 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2522 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2523
2524 pgmUnlock(pVM);
2525 }
2526 else
2527 {
2528 RTGCPHYS cb = pCur->RamRange.cb;
2529
2530 /* Clear the tracking data of pages we're going to reactivate. */
2531 PPGMPAGE pPageSrc = &pCur->RamRange.aPages[0];
2532 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2533 while (cPagesLeft-- > 0)
2534 {
2535 PGM_PAGE_SET_TRACKING(pPageSrc, 0);
2536 PGM_PAGE_SET_PTE_INDEX(pPageSrc, 0);
2537 pPageSrc++;
2538 }
2539
2540 /* link in the ram range */
2541 pgmR3PhysLinkRamRange(pVM, &pCur->RamRange, pRamPrev);
2542 pgmUnlock(pVM);
2543
2544 REMR3NotifyPhysRamRegister(pVM, GCPhys, cb, REM_NOTIFY_PHYS_RAM_FLAGS_MMIO2);
2545 }
2546
2547 PGMPhysInvalidatePageMapTLB(pVM);
2548 return VINF_SUCCESS;
2549}
2550
2551
2552/**
2553 * Unmaps a MMIO2 region.
2554 *
2555 * This is done when a guest / the bios / state loading changes the
2556 * PCI config. The replacing of base memory has the same restrictions
2557 * as during registration, of course.
2558 */
2559VMMR3DECL(int) PGMR3PhysMMIO2Unmap(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS GCPhys)
2560{
2561 /*
2562 * Validate input
2563 */
2564 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2565 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2566 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2567 AssertReturn(GCPhys != NIL_RTGCPHYS, VERR_INVALID_PARAMETER);
2568 AssertReturn(GCPhys != 0, VERR_INVALID_PARAMETER);
2569 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
2570
2571 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2572 AssertReturn(pCur, VERR_NOT_FOUND);
2573 AssertReturn(pCur->fMapped, VERR_WRONG_ORDER);
2574 AssertReturn(pCur->RamRange.GCPhys == GCPhys, VERR_INVALID_PARAMETER);
2575 Assert(pCur->RamRange.GCPhysLast != NIL_RTGCPHYS);
2576
2577 Log(("PGMR3PhysMMIO2Unmap: %RGp-%RGp %s\n",
2578 pCur->RamRange.GCPhys, pCur->RamRange.GCPhysLast, pCur->RamRange.pszDesc));
2579
2580 /*
2581 * Unmap it.
2582 */
2583 pgmLock(pVM);
2584
2585 RTGCPHYS GCPhysRangeREM;
2586 RTGCPHYS cbRangeREM;
2587 bool fInformREM;
2588 if (pCur->fOverlapping)
2589 {
2590 /* Restore the RAM pages we've replaced. */
2591 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
2592 while (pRam->GCPhys > pCur->RamRange.GCPhysLast)
2593 pRam = pRam->pNextR3;
2594
2595 PPGMPAGE pPageDst = &pRam->aPages[(pCur->RamRange.GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2596 uint32_t cPagesLeft = pCur->RamRange.cb >> PAGE_SHIFT;
2597 while (cPagesLeft-- > 0)
2598 {
2599 PGM_PAGE_INIT_ZERO(pPageDst, pVM, PGMPAGETYPE_RAM);
2600 pVM->pgm.s.cZeroPages++;
2601 pPageDst++;
2602 }
2603
2604 /* Flush physical page map TLB. */
2605 PGMPhysInvalidatePageMapTLB(pVM);
2606
2607 GCPhysRangeREM = NIL_RTGCPHYS; /* shuts up gcc */
2608 cbRangeREM = RTGCPHYS_MAX; /* ditto */
2609 fInformREM = false;
2610 }
2611 else
2612 {
2613 GCPhysRangeREM = pCur->RamRange.GCPhys;
2614 cbRangeREM = pCur->RamRange.cb;
2615 fInformREM = true;
2616
2617 pgmR3PhysUnlinkRamRange(pVM, &pCur->RamRange);
2618 }
2619
2620 pCur->RamRange.GCPhys = NIL_RTGCPHYS;
2621 pCur->RamRange.GCPhysLast = NIL_RTGCPHYS;
2622 pCur->fOverlapping = false;
2623 pCur->fMapped = false;
2624
2625 /* Force a PGM pool flush as guest ram references have been changed. */
2626 /** todo; not entirely SMP safe; assuming for now the guest takes care of this internally (not touch mapped mmio while changing the mapping). */
2627 PVMCPU pVCpu = VMMGetCpu(pVM);
2628 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
2629 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2630
2631 PGMPhysInvalidatePageMapTLB(pVM);
2632 pgmUnlock(pVM);
2633
2634 if (fInformREM)
2635 REMR3NotifyPhysRamDeregister(pVM, GCPhysRangeREM, cbRangeREM);
2636
2637 return VINF_SUCCESS;
2638}
2639
2640
2641/**
2642 * Checks if the given address is an MMIO2 base address or not.
2643 *
2644 * @returns true/false accordingly.
2645 * @param pVM Pointer to the shared VM structure.
2646 * @param pDevIns The owner of the memory, optional.
2647 * @param GCPhys The address to check.
2648 */
2649VMMR3DECL(bool) PGMR3PhysMMIO2IsBase(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys)
2650{
2651 /*
2652 * Validate input
2653 */
2654 VM_ASSERT_EMT_RETURN(pVM, false);
2655 AssertPtrReturn(pDevIns, false);
2656 AssertReturn(GCPhys != NIL_RTGCPHYS, false);
2657 AssertReturn(GCPhys != 0, false);
2658 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), false);
2659
2660 /*
2661 * Search the list.
2662 */
2663 pgmLock(pVM);
2664 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2665 if (pCur->RamRange.GCPhys == GCPhys)
2666 {
2667 Assert(pCur->fMapped);
2668 pgmUnlock(pVM);
2669 return true;
2670 }
2671 pgmUnlock(pVM);
2672 return false;
2673}
2674
2675
2676/**
2677 * Gets the HC physical address of a page in the MMIO2 region.
2678 *
2679 * This is API is intended for MMHyper and shouldn't be called
2680 * by anyone else...
2681 *
2682 * @returns VBox status code.
2683 * @param pVM Pointer to the shared VM structure.
2684 * @param pDevIns The owner of the memory, optional.
2685 * @param iRegion The region.
2686 * @param off The page expressed an offset into the MMIO2 region.
2687 * @param pHCPhys Where to store the result.
2688 */
2689VMMR3DECL(int) PGMR3PhysMMIO2GetHCPhys(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, PRTHCPHYS pHCPhys)
2690{
2691 /*
2692 * Validate input
2693 */
2694 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2695 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2696 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2697
2698 pgmLock(pVM);
2699 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2700 AssertReturn(pCur, VERR_NOT_FOUND);
2701 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2702
2703 PCPGMPAGE pPage = &pCur->RamRange.aPages[off >> PAGE_SHIFT];
2704 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage);
2705 pgmUnlock(pVM);
2706 return VINF_SUCCESS;
2707}
2708
2709
2710/**
2711 * Maps a portion of an MMIO2 region into kernel space (host).
2712 *
2713 * The kernel mapping will become invalid when the MMIO2 memory is deregistered
2714 * or the VM is terminated.
2715 *
2716 * @return VBox status code.
2717 *
2718 * @param pVM Pointer to the shared VM structure.
2719 * @param pDevIns The device owning the MMIO2 memory.
2720 * @param iRegion The region.
2721 * @param off The offset into the region. Must be page aligned.
2722 * @param cb The number of bytes to map. Must be page aligned.
2723 * @param pszDesc Mapping description.
2724 * @param pR0Ptr Where to store the R0 address.
2725 */
2726VMMR3DECL(int) PGMR3PhysMMIO2MapKernel(PVM pVM, PPDMDEVINS pDevIns, uint32_t iRegion, RTGCPHYS off, RTGCPHYS cb,
2727 const char *pszDesc, PRTR0PTR pR0Ptr)
2728{
2729 /*
2730 * Validate input.
2731 */
2732 VM_ASSERT_EMT_RETURN(pVM, VERR_VM_THREAD_NOT_EMT);
2733 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2734 AssertReturn(iRegion <= UINT8_MAX, VERR_INVALID_PARAMETER);
2735
2736 PPGMMMIO2RANGE pCur = pgmR3PhysMMIO2Find(pVM, pDevIns, iRegion);
2737 AssertReturn(pCur, VERR_NOT_FOUND);
2738 AssertReturn(off < pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2739 AssertReturn(cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2740 AssertReturn(off + cb <= pCur->RamRange.cb, VERR_INVALID_PARAMETER);
2741
2742 /*
2743 * Pass the request on to the support library/driver.
2744 */
2745 int rc = SUPR3PageMapKernel(pCur->pvR3, off, cb, 0, pR0Ptr);
2746
2747 return rc;
2748}
2749
2750
2751/**
2752 * Registers a ROM image.
2753 *
2754 * Shadowed ROM images requires double the amount of backing memory, so,
2755 * don't use that unless you have to. Shadowing of ROM images is process
2756 * where we can select where the reads go and where the writes go. On real
2757 * hardware the chipset provides means to configure this. We provide
2758 * PGMR3PhysProtectROM() for this purpose.
2759 *
2760 * A read-only copy of the ROM image will always be kept around while we
2761 * will allocate RAM pages for the changes on demand (unless all memory
2762 * is configured to be preallocated).
2763 *
2764 * @returns VBox status.
2765 * @param pVM VM Handle.
2766 * @param pDevIns The device instance owning the ROM.
2767 * @param GCPhys First physical address in the range.
2768 * Must be page aligned!
2769 * @param cbRange The size of the range (in bytes).
2770 * Must be page aligned!
2771 * @param pvBinary Pointer to the binary data backing the ROM image.
2772 * This must be exactly \a cbRange in size.
2773 * @param fFlags Mask of flags. PGMPHYS_ROM_FLAGS_SHADOWED
2774 * and/or PGMPHYS_ROM_FLAGS_PERMANENT_BINARY.
2775 * @param pszDesc Pointer to description string. This must not be freed.
2776 *
2777 * @remark There is no way to remove the rom, automatically on device cleanup or
2778 * manually from the device yet. This isn't difficult in any way, it's
2779 * just not something we expect to be necessary for a while.
2780 */
2781VMMR3DECL(int) PGMR3PhysRomRegister(PVM pVM, PPDMDEVINS pDevIns, RTGCPHYS GCPhys, RTGCPHYS cb,
2782 const void *pvBinary, uint32_t fFlags, const char *pszDesc)
2783{
2784 Log(("PGMR3PhysRomRegister: pDevIns=%p GCPhys=%RGp(-%RGp) cb=%RGp pvBinary=%p fFlags=%#x pszDesc=%s\n",
2785 pDevIns, GCPhys, GCPhys + cb, cb, pvBinary, fFlags, pszDesc));
2786
2787 /*
2788 * Validate input.
2789 */
2790 AssertPtrReturn(pDevIns, VERR_INVALID_PARAMETER);
2791 AssertReturn(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys, VERR_INVALID_PARAMETER);
2792 AssertReturn(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb, VERR_INVALID_PARAMETER);
2793 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
2794 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
2795 AssertPtrReturn(pvBinary, VERR_INVALID_PARAMETER);
2796 AssertPtrReturn(pszDesc, VERR_INVALID_POINTER);
2797 AssertReturn(!(fFlags & ~(PGMPHYS_ROM_FLAGS_SHADOWED | PGMPHYS_ROM_FLAGS_PERMANENT_BINARY)), VERR_INVALID_PARAMETER);
2798 VM_ASSERT_STATE_RETURN(pVM, VMSTATE_CREATING, VERR_VM_INVALID_VM_STATE);
2799
2800 const uint32_t cPages = cb >> PAGE_SHIFT;
2801
2802 /*
2803 * Find the ROM location in the ROM list first.
2804 */
2805 PPGMROMRANGE pRomPrev = NULL;
2806 PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3;
2807 while (pRom && GCPhysLast >= pRom->GCPhys)
2808 {
2809 if ( GCPhys <= pRom->GCPhysLast
2810 && GCPhysLast >= pRom->GCPhys)
2811 AssertLogRelMsgFailedReturn(("%RGp-%RGp (%s) conflicts with existing %RGp-%RGp (%s)\n",
2812 GCPhys, GCPhysLast, pszDesc,
2813 pRom->GCPhys, pRom->GCPhysLast, pRom->pszDesc),
2814 VERR_PGM_RAM_CONFLICT);
2815 /* next */
2816 pRomPrev = pRom;
2817 pRom = pRom->pNextR3;
2818 }
2819
2820 /*
2821 * Find the RAM location and check for conflicts.
2822 *
2823 * Conflict detection is a bit different than for RAM
2824 * registration since a ROM can be located within a RAM
2825 * range. So, what we have to check for is other memory
2826 * types (other than RAM that is) and that we don't span
2827 * more than one RAM range (layz).
2828 */
2829 bool fRamExists = false;
2830 PPGMRAMRANGE pRamPrev = NULL;
2831 PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
2832 while (pRam && GCPhysLast >= pRam->GCPhys)
2833 {
2834 if ( GCPhys <= pRam->GCPhysLast
2835 && GCPhysLast >= pRam->GCPhys)
2836 {
2837 /* completely within? */
2838 AssertLogRelMsgReturn( GCPhys >= pRam->GCPhys
2839 && GCPhysLast <= pRam->GCPhysLast,
2840 ("%RGp-%RGp (%s) falls partly outside %RGp-%RGp (%s)\n",
2841 GCPhys, GCPhysLast, pszDesc,
2842 pRam->GCPhys, pRam->GCPhysLast, pRam->pszDesc),
2843 VERR_PGM_RAM_CONFLICT);
2844 fRamExists = true;
2845 break;
2846 }
2847
2848 /* next */
2849 pRamPrev = pRam;
2850 pRam = pRam->pNextR3;
2851 }
2852 if (fRamExists)
2853 {
2854 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2855 uint32_t cPagesLeft = cPages;
2856 while (cPagesLeft-- > 0)
2857 {
2858 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM,
2859 ("%RGp (%R[pgmpage]) isn't a RAM page - registering %RGp-%RGp (%s).\n",
2860 pRam->GCPhys + ((RTGCPHYS)(uintptr_t)(pPage - &pRam->aPages[0]) << PAGE_SHIFT),
2861 pPage, GCPhys, GCPhysLast, pszDesc), VERR_PGM_RAM_CONFLICT);
2862 Assert(PGM_PAGE_IS_ZERO(pPage));
2863 pPage++;
2864 }
2865 }
2866
2867 /*
2868 * Update the base memory reservation if necessary.
2869 */
2870 uint32_t cExtraBaseCost = fRamExists ? 0 : cPages;
2871 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2872 cExtraBaseCost += cPages;
2873 if (cExtraBaseCost)
2874 {
2875 int rc = MMR3IncreaseBaseReservation(pVM, cExtraBaseCost);
2876 if (RT_FAILURE(rc))
2877 return rc;
2878 }
2879
2880 /*
2881 * Allocate memory for the virgin copy of the RAM.
2882 */
2883 PGMMALLOCATEPAGESREQ pReq;
2884 int rc = GMMR3AllocatePagesPrepare(pVM, &pReq, cPages, GMMACCOUNT_BASE);
2885 AssertRCReturn(rc, rc);
2886
2887 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2888 {
2889 pReq->aPages[iPage].HCPhysGCPhys = GCPhys + (iPage << PAGE_SHIFT);
2890 pReq->aPages[iPage].idPage = NIL_GMM_PAGEID;
2891 pReq->aPages[iPage].idSharedPage = NIL_GMM_PAGEID;
2892 }
2893
2894 pgmLock(pVM);
2895 rc = GMMR3AllocatePagesPerform(pVM, pReq);
2896 pgmUnlock(pVM);
2897 if (RT_FAILURE(rc))
2898 {
2899 GMMR3AllocatePagesCleanup(pReq);
2900 return rc;
2901 }
2902
2903 /*
2904 * Allocate the new ROM range and RAM range (if necessary).
2905 */
2906 PPGMROMRANGE pRomNew;
2907 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMROMRANGE, aPages[cPages]), 0, MM_TAG_PGM_PHYS, (void **)&pRomNew);
2908 if (RT_SUCCESS(rc))
2909 {
2910 PPGMRAMRANGE pRamNew = NULL;
2911 if (!fRamExists)
2912 rc = MMHyperAlloc(pVM, RT_OFFSETOF(PGMRAMRANGE, aPages[cPages]), sizeof(PGMPAGE), MM_TAG_PGM_PHYS, (void **)&pRamNew);
2913 if (RT_SUCCESS(rc))
2914 {
2915 pgmLock(pVM);
2916
2917 /*
2918 * Initialize and insert the RAM range (if required).
2919 */
2920 PPGMROMPAGE pRomPage = &pRomNew->aPages[0];
2921 if (!fRamExists)
2922 {
2923 pRamNew->pSelfR0 = MMHyperCCToR0(pVM, pRamNew);
2924 pRamNew->pSelfRC = MMHyperCCToRC(pVM, pRamNew);
2925 pRamNew->GCPhys = GCPhys;
2926 pRamNew->GCPhysLast = GCPhysLast;
2927 pRamNew->cb = cb;
2928 pRamNew->pszDesc = pszDesc;
2929 pRamNew->fFlags = PGM_RAM_RANGE_FLAGS_AD_HOC_ROM;
2930 pRamNew->pvR3 = NULL;
2931 pRamNew->paLSPages = NULL;
2932
2933 PPGMPAGE pPage = &pRamNew->aPages[0];
2934 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
2935 {
2936 PGM_PAGE_INIT(pPage,
2937 pReq->aPages[iPage].HCPhysGCPhys,
2938 pReq->aPages[iPage].idPage,
2939 PGMPAGETYPE_ROM,
2940 PGM_PAGE_STATE_ALLOCATED);
2941
2942 pRomPage->Virgin = *pPage;
2943 }
2944
2945 pVM->pgm.s.cAllPages += cPages;
2946 pgmR3PhysLinkRamRange(pVM, pRamNew, pRamPrev);
2947 }
2948 else
2949 {
2950 PPGMPAGE pPage = &pRam->aPages[(GCPhys - pRam->GCPhys) >> PAGE_SHIFT];
2951 for (uint32_t iPage = 0; iPage < cPages; iPage++, pPage++, pRomPage++)
2952 {
2953 PGM_PAGE_SET_TYPE(pPage, PGMPAGETYPE_ROM);
2954 PGM_PAGE_SET_HCPHYS(pPage, pReq->aPages[iPage].HCPhysGCPhys);
2955 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
2956 PGM_PAGE_SET_PAGEID(pPage, pReq->aPages[iPage].idPage);
2957 PGM_PAGE_SET_PDE_TYPE(pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
2958 PGM_PAGE_SET_PTE_INDEX(pPage, 0);
2959 PGM_PAGE_SET_TRACKING(pPage, 0);
2960
2961 pRomPage->Virgin = *pPage;
2962 }
2963
2964 pRamNew = pRam;
2965
2966 pVM->pgm.s.cZeroPages -= cPages;
2967 }
2968 pVM->pgm.s.cPrivatePages += cPages;
2969
2970 /* Flush physical page map TLB. */
2971 PGMPhysInvalidatePageMapTLB(pVM);
2972
2973 pgmUnlock(pVM);
2974
2975
2976 /*
2977 * !HACK ALERT! REM + (Shadowed) ROM ==> mess.
2978 *
2979 * If it's shadowed we'll register the handler after the ROM notification
2980 * so we get the access handler callbacks that we should. If it isn't
2981 * shadowed we'll do it the other way around to make REM use the built-in
2982 * ROM behavior and not the handler behavior (which is to route all access
2983 * to PGM atm).
2984 */
2985 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
2986 {
2987 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, true /* fShadowed */);
2988 rc = PGMR3HandlerPhysicalRegister(pVM,
2989 fFlags & PGMPHYS_ROM_FLAGS_SHADOWED
2990 ? PGMPHYSHANDLERTYPE_PHYSICAL_ALL
2991 : PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
2992 GCPhys, GCPhysLast,
2993 pgmR3PhysRomWriteHandler, pRomNew,
2994 NULL, "pgmPhysRomWriteHandler", MMHyperCCToR0(pVM, pRomNew),
2995 NULL, "pgmPhysRomWriteHandler", MMHyperCCToRC(pVM, pRomNew), pszDesc);
2996 }
2997 else
2998 {
2999 rc = PGMR3HandlerPhysicalRegister(pVM,
3000 fFlags & PGMPHYS_ROM_FLAGS_SHADOWED
3001 ? PGMPHYSHANDLERTYPE_PHYSICAL_ALL
3002 : PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
3003 GCPhys, GCPhysLast,
3004 pgmR3PhysRomWriteHandler, pRomNew,
3005 NULL, "pgmPhysRomWriteHandler", MMHyperCCToR0(pVM, pRomNew),
3006 NULL, "pgmPhysRomWriteHandler", MMHyperCCToRC(pVM, pRomNew), pszDesc);
3007 REMR3NotifyPhysRomRegister(pVM, GCPhys, cb, NULL, false /* fShadowed */);
3008 }
3009 if (RT_SUCCESS(rc))
3010 {
3011 pgmLock(pVM);
3012
3013 /*
3014 * Copy the image over to the virgin pages.
3015 * This must be done after linking in the RAM range.
3016 */
3017 PPGMPAGE pRamPage = &pRamNew->aPages[(GCPhys - pRamNew->GCPhys) >> PAGE_SHIFT];
3018 for (uint32_t iPage = 0; iPage < cPages; iPage++, pRamPage++)
3019 {
3020 void *pvDstPage;
3021 rc = pgmPhysPageMap(pVM, pRamPage, GCPhys + (iPage << PAGE_SHIFT), &pvDstPage);
3022 if (RT_FAILURE(rc))
3023 {
3024 VMSetError(pVM, rc, RT_SRC_POS, "Failed to map virgin ROM page at %RGp", GCPhys);
3025 break;
3026 }
3027 memcpy(pvDstPage, (const uint8_t *)pvBinary + (iPage << PAGE_SHIFT), PAGE_SIZE);
3028 }
3029 if (RT_SUCCESS(rc))
3030 {
3031 /*
3032 * Initialize the ROM range.
3033 * Note that the Virgin member of the pages has already been initialized above.
3034 */
3035 pRomNew->GCPhys = GCPhys;
3036 pRomNew->GCPhysLast = GCPhysLast;
3037 pRomNew->cb = cb;
3038 pRomNew->fFlags = fFlags;
3039 pRomNew->idSavedState = UINT8_MAX;
3040#ifdef VBOX_STRICT
3041 pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY
3042 ? pvBinary : RTMemDup(pvBinary, cPages * PAGE_SIZE);
3043#else
3044 pRomNew->pvOriginal = fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY ? pvBinary : NULL;
3045#endif
3046 pRomNew->pszDesc = pszDesc;
3047
3048 for (unsigned iPage = 0; iPage < cPages; iPage++)
3049 {
3050 PPGMROMPAGE pPage = &pRomNew->aPages[iPage];
3051 pPage->enmProt = PGMROMPROT_READ_ROM_WRITE_IGNORE;
3052 PGM_PAGE_INIT_ZERO(&pPage->Shadow, pVM, PGMPAGETYPE_ROM_SHADOW);
3053 }
3054
3055 /* update the page count stats for the shadow pages. */
3056 if (fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
3057 {
3058 pVM->pgm.s.cZeroPages += cPages;
3059 pVM->pgm.s.cAllPages += cPages;
3060 }
3061
3062 /*
3063 * Insert the ROM range, tell REM and return successfully.
3064 */
3065 pRomNew->pNextR3 = pRom;
3066 pRomNew->pNextR0 = pRom ? MMHyperCCToR0(pVM, pRom) : NIL_RTR0PTR;
3067 pRomNew->pNextRC = pRom ? MMHyperCCToRC(pVM, pRom) : NIL_RTRCPTR;
3068
3069 if (pRomPrev)
3070 {
3071 pRomPrev->pNextR3 = pRomNew;
3072 pRomPrev->pNextR0 = MMHyperCCToR0(pVM, pRomNew);
3073 pRomPrev->pNextRC = MMHyperCCToRC(pVM, pRomNew);
3074 }
3075 else
3076 {
3077 pVM->pgm.s.pRomRangesR3 = pRomNew;
3078 pVM->pgm.s.pRomRangesR0 = MMHyperCCToR0(pVM, pRomNew);
3079 pVM->pgm.s.pRomRangesRC = MMHyperCCToRC(pVM, pRomNew);
3080 }
3081
3082 PGMPhysInvalidatePageMapTLB(pVM);
3083 GMMR3AllocatePagesCleanup(pReq);
3084 pgmUnlock(pVM);
3085 return VINF_SUCCESS;
3086 }
3087
3088 /* bail out */
3089
3090 pgmUnlock(pVM);
3091 int rc2 = PGMHandlerPhysicalDeregister(pVM, GCPhys);
3092 AssertRC(rc2);
3093 pgmLock(pVM);
3094 }
3095
3096 if (!fRamExists)
3097 {
3098 pgmR3PhysUnlinkRamRange2(pVM, pRamNew, pRamPrev);
3099 MMHyperFree(pVM, pRamNew);
3100 }
3101 }
3102 MMHyperFree(pVM, pRomNew);
3103 }
3104
3105 /** @todo Purge the mapping cache or something... */
3106 GMMR3FreeAllocatedPages(pVM, pReq);
3107 GMMR3AllocatePagesCleanup(pReq);
3108 pgmUnlock(pVM);
3109 return rc;
3110}
3111
3112
3113/**
3114 * \#PF Handler callback for ROM write accesses.
3115 *
3116 * @returns VINF_SUCCESS if the handler have carried out the operation.
3117 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
3118 * @param pVM VM Handle.
3119 * @param GCPhys The physical address the guest is writing to.
3120 * @param pvPhys The HC mapping of that address.
3121 * @param pvBuf What the guest is reading/writing.
3122 * @param cbBuf How much it's reading/writing.
3123 * @param enmAccessType The access type.
3124 * @param pvUser User argument.
3125 */
3126static DECLCALLBACK(int) pgmR3PhysRomWriteHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf,
3127 PGMACCESSTYPE enmAccessType, void *pvUser)
3128{
3129 PPGMROMRANGE pRom = (PPGMROMRANGE)pvUser;
3130 const uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
3131 Assert(iPage < (pRom->cb >> PAGE_SHIFT));
3132 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
3133 Log5(("pgmR3PhysRomWriteHandler: %d %c %#08RGp %#04zx\n", pRomPage->enmProt, enmAccessType == PGMACCESSTYPE_READ ? 'R' : 'W', GCPhys, cbBuf));
3134
3135 if (enmAccessType == PGMACCESSTYPE_READ)
3136 {
3137 switch (pRomPage->enmProt)
3138 {
3139 /*
3140 * Take the default action.
3141 */
3142 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
3143 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
3144 case PGMROMPROT_READ_ROM_WRITE_RAM:
3145 case PGMROMPROT_READ_RAM_WRITE_RAM:
3146 return VINF_PGM_HANDLER_DO_DEFAULT;
3147
3148 default:
3149 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
3150 pRom->aPages[iPage].enmProt, iPage, GCPhys),
3151 VERR_INTERNAL_ERROR);
3152 }
3153 }
3154 else
3155 {
3156 Assert(enmAccessType == PGMACCESSTYPE_WRITE);
3157 switch (pRomPage->enmProt)
3158 {
3159 /*
3160 * Ignore writes.
3161 */
3162 case PGMROMPROT_READ_ROM_WRITE_IGNORE:
3163 case PGMROMPROT_READ_RAM_WRITE_IGNORE:
3164 return VINF_SUCCESS;
3165
3166 /*
3167 * Write to the RAM page.
3168 */
3169 case PGMROMPROT_READ_ROM_WRITE_RAM:
3170 case PGMROMPROT_READ_RAM_WRITE_RAM: /* yes this will get here too, it's *way* simpler that way. */
3171 {
3172 /* This should be impossible now, pvPhys doesn't work cross page anylonger. */
3173 Assert(((GCPhys - pRom->GCPhys + cbBuf - 1) >> PAGE_SHIFT) == iPage);
3174
3175 /*
3176 * Take the lock, do lazy allocation, map the page and copy the data.
3177 *
3178 * Note that we have to bypass the mapping TLB since it works on
3179 * guest physical addresses and entering the shadow page would
3180 * kind of screw things up...
3181 */
3182 int rc = pgmLock(pVM);
3183 AssertRC(rc);
3184
3185 PPGMPAGE pShadowPage = &pRomPage->Shadow;
3186 if (!PGMROMPROT_IS_ROM(pRomPage->enmProt))
3187 {
3188 pShadowPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
3189 AssertLogRelReturn(pShadowPage, VERR_INTERNAL_ERROR);
3190 }
3191
3192 void *pvDstPage;
3193 rc = pgmPhysPageMakeWritableAndMap(pVM, pShadowPage, GCPhys & X86_PTE_PG_MASK, &pvDstPage);
3194 if (RT_SUCCESS(rc))
3195 {
3196 memcpy((uint8_t *)pvDstPage + (GCPhys & PAGE_OFFSET_MASK), pvBuf, cbBuf);
3197 pRomPage->LiveSave.fWrittenTo = true;
3198 }
3199
3200 pgmUnlock(pVM);
3201 return rc;
3202 }
3203
3204 default:
3205 AssertMsgFailedReturn(("enmProt=%d iPage=%d GCPhys=%RGp\n",
3206 pRom->aPages[iPage].enmProt, iPage, GCPhys),
3207 VERR_INTERNAL_ERROR);
3208 }
3209 }
3210}
3211
3212
3213/**
3214 * Called by PGMR3Reset to reset the shadow, switch to the virgin,
3215 * and verify that the virgin part is untouched.
3216 *
3217 * This is done after the normal memory has been cleared.
3218 *
3219 * ASSUMES that the caller owns the PGM lock.
3220 *
3221 * @param pVM The VM handle.
3222 */
3223int pgmR3PhysRomReset(PVM pVM)
3224{
3225 Assert(PGMIsLockOwner(pVM));
3226 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
3227 {
3228 const uint32_t cPages = pRom->cb >> PAGE_SHIFT;
3229
3230 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
3231 {
3232 /*
3233 * Reset the physical handler.
3234 */
3235 int rc = PGMR3PhysRomProtect(pVM, pRom->GCPhys, pRom->cb, PGMROMPROT_READ_ROM_WRITE_IGNORE);
3236 AssertRCReturn(rc, rc);
3237
3238 /*
3239 * What we do with the shadow pages depends on the memory
3240 * preallocation option. If not enabled, we'll just throw
3241 * out all the dirty pages and replace them by the zero page.
3242 */
3243 if (!pVM->pgm.s.fRamPreAlloc)
3244 {
3245 /* Free the dirty pages. */
3246 uint32_t cPendingPages = 0;
3247 PGMMFREEPAGESREQ pReq;
3248 rc = GMMR3FreePagesPrepare(pVM, &pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
3249 AssertRCReturn(rc, rc);
3250
3251 for (uint32_t iPage = 0; iPage < cPages; iPage++)
3252 if ( !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow)
3253 && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow))
3254 {
3255 Assert(PGM_PAGE_GET_STATE(&pRom->aPages[iPage].Shadow) == PGM_PAGE_STATE_ALLOCATED);
3256 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, &pRom->aPages[iPage].Shadow,
3257 pRom->GCPhys + (iPage << PAGE_SHIFT));
3258 AssertLogRelRCReturn(rc, rc);
3259 }
3260
3261 if (cPendingPages)
3262 {
3263 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
3264 AssertLogRelRCReturn(rc, rc);
3265 }
3266 GMMR3FreePagesCleanup(pReq);
3267 }
3268 else
3269 {
3270 /* clear all the shadow pages. */
3271 for (uint32_t iPage = 0; iPage < cPages; iPage++)
3272 {
3273 Assert(!PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow));
3274 Assert(!PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow));
3275 void *pvDstPage;
3276 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
3277 rc = pgmPhysPageMakeWritableAndMap(pVM, &pRom->aPages[iPage].Shadow, GCPhys, &pvDstPage);
3278 if (RT_FAILURE(rc))
3279 break;
3280 ASMMemZeroPage(pvDstPage);
3281 }
3282 AssertRCReturn(rc, rc);
3283 }
3284 }
3285
3286#ifdef VBOX_STRICT
3287 /*
3288 * Verify that the virgin page is unchanged if possible.
3289 */
3290 if (pRom->pvOriginal)
3291 {
3292 uint8_t const *pbSrcPage = (uint8_t const *)pRom->pvOriginal;
3293 for (uint32_t iPage = 0; iPage < cPages; iPage++, pbSrcPage += PAGE_SIZE)
3294 {
3295 const RTGCPHYS GCPhys = pRom->GCPhys + (iPage << PAGE_SHIFT);
3296 void const *pvDstPage;
3297 int rc = pgmPhysPageMapReadOnly(pVM, &pRom->aPages[iPage].Virgin, GCPhys, &pvDstPage);
3298 if (RT_FAILURE(rc))
3299 break;
3300 if (memcmp(pvDstPage, pbSrcPage, PAGE_SIZE))
3301 LogRel(("pgmR3PhysRomReset: %RGp rom page changed (%s) - loaded saved state?\n",
3302 GCPhys, pRom->pszDesc));
3303 }
3304 }
3305#endif
3306 }
3307
3308 return VINF_SUCCESS;
3309}
3310
3311
3312/**
3313 * Called by PGMR3Term to free resources.
3314 *
3315 * ASSUMES that the caller owns the PGM lock.
3316 *
3317 * @param pVM The VM handle.
3318 */
3319void pgmR3PhysRomTerm(PVM pVM)
3320{
3321#ifdef RT_STRICT
3322 /*
3323 * Free the heap copy of the original bits.
3324 */
3325 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
3326 {
3327 if ( pRom->pvOriginal
3328 && !(pRom->fFlags & PGMPHYS_ROM_FLAGS_PERMANENT_BINARY))
3329 {
3330 RTMemFree((void *)pRom->pvOriginal);
3331 pRom->pvOriginal = NULL;
3332 }
3333 }
3334#endif
3335}
3336
3337
3338/**
3339 * Change the shadowing of a range of ROM pages.
3340 *
3341 * This is intended for implementing chipset specific memory registers
3342 * and will not be very strict about the input. It will silently ignore
3343 * any pages that are not the part of a shadowed ROM.
3344 *
3345 * @returns VBox status code.
3346 * @retval VINF_PGM_SYNC_CR3
3347 *
3348 * @param pVM Pointer to the shared VM structure.
3349 * @param GCPhys Where to start. Page aligned.
3350 * @param cb How much to change. Page aligned.
3351 * @param enmProt The new ROM protection.
3352 */
3353VMMR3DECL(int) PGMR3PhysRomProtect(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, PGMROMPROT enmProt)
3354{
3355 /*
3356 * Check input
3357 */
3358 if (!cb)
3359 return VINF_SUCCESS;
3360 AssertReturn(!(GCPhys & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3361 AssertReturn(!(cb & PAGE_OFFSET_MASK), VERR_INVALID_PARAMETER);
3362 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
3363 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
3364 AssertReturn(enmProt >= PGMROMPROT_INVALID && enmProt <= PGMROMPROT_END, VERR_INVALID_PARAMETER);
3365
3366 /*
3367 * Process the request.
3368 */
3369 pgmLock(pVM);
3370 int rc = VINF_SUCCESS;
3371 bool fFlushTLB = false;
3372 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
3373 {
3374 if ( GCPhys <= pRom->GCPhysLast
3375 && GCPhysLast >= pRom->GCPhys
3376 && (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
3377 {
3378 /*
3379 * Iterate the relevant pages and make necessary the changes.
3380 */
3381 bool fChanges = false;
3382 uint32_t const cPages = pRom->GCPhysLast <= GCPhysLast
3383 ? pRom->cb >> PAGE_SHIFT
3384 : (GCPhysLast - pRom->GCPhys + 1) >> PAGE_SHIFT;
3385 for (uint32_t iPage = (GCPhys - pRom->GCPhys) >> PAGE_SHIFT;
3386 iPage < cPages;
3387 iPage++)
3388 {
3389 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
3390 if (PGMROMPROT_IS_ROM(pRomPage->enmProt) != PGMROMPROT_IS_ROM(enmProt))
3391 {
3392 fChanges = true;
3393
3394 /* flush references to the page. */
3395 PPGMPAGE pRamPage = pgmPhysGetPage(&pVM->pgm.s, pRom->GCPhys + (iPage << PAGE_SHIFT));
3396 int rc2 = pgmPoolTrackUpdateGCPhys(pVM, pRom->GCPhys + (iPage << PAGE_SHIFT), pRamPage,
3397 true /*fFlushPTEs*/, &fFlushTLB);
3398 if (rc2 != VINF_SUCCESS && (rc == VINF_SUCCESS || RT_FAILURE(rc2)))
3399 rc = rc2;
3400
3401 PPGMPAGE pOld = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
3402 PPGMPAGE pNew = PGMROMPROT_IS_ROM(pRomPage->enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
3403
3404 *pOld = *pRamPage;
3405 *pRamPage = *pNew;
3406 /** @todo preserve the volatile flags (handlers) when these have been moved out of HCPhys! */
3407 }
3408 pRomPage->enmProt = enmProt;
3409 }
3410
3411 /*
3412 * Reset the access handler if we made changes, no need
3413 * to optimize this.
3414 */
3415 if (fChanges)
3416 {
3417 int rc2 = PGMHandlerPhysicalReset(pVM, pRom->GCPhys);
3418 if (RT_FAILURE(rc2))
3419 {
3420 pgmUnlock(pVM);
3421 AssertRC(rc);
3422 return rc2;
3423 }
3424 }
3425
3426 /* Advance - cb isn't updated. */
3427 GCPhys = pRom->GCPhys + (cPages << PAGE_SHIFT);
3428 }
3429 }
3430 pgmUnlock(pVM);
3431 if (fFlushTLB)
3432 PGM_INVL_ALL_VCPU_TLBS(pVM);
3433
3434 return rc;
3435}
3436
3437
3438/**
3439 * Sets the Address Gate 20 state.
3440 *
3441 * @param pVCpu The VCPU to operate on.
3442 * @param fEnable True if the gate should be enabled.
3443 * False if the gate should be disabled.
3444 */
3445VMMDECL(void) PGMR3PhysSetA20(PVMCPU pVCpu, bool fEnable)
3446{
3447 LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVCpu->pgm.s.fA20Enabled));
3448 if (pVCpu->pgm.s.fA20Enabled != fEnable)
3449 {
3450 pVCpu->pgm.s.fA20Enabled = fEnable;
3451 pVCpu->pgm.s.GCPhysA20Mask = ~(RTGCPHYS)(!fEnable << 20);
3452 REMR3A20Set(pVCpu->pVMR3, pVCpu, fEnable);
3453 /** @todo we're not handling this correctly for VT-x / AMD-V. See #2911 */
3454 }
3455}
3456
3457#ifdef PGM_WITH_LARGE_ADDRESS_SPACE_ON_32_BIT_HOST
3458/**
3459 * Tree enumeration callback for dealing with age rollover.
3460 * It will perform a simple compression of the current age.
3461 */
3462static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
3463{
3464 Assert(PGMIsLockOwner((PVM)pvUser));
3465 /* Age compression - ASSUMES iNow == 4. */
3466 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
3467 if (pChunk->iAge >= UINT32_C(0xffffff00))
3468 pChunk->iAge = 3;
3469 else if (pChunk->iAge >= UINT32_C(0xfffff000))
3470 pChunk->iAge = 2;
3471 else if (pChunk->iAge)
3472 pChunk->iAge = 1;
3473 else /* iAge = 0 */
3474 pChunk->iAge = 4;
3475 return 0;
3476}
3477
3478
3479/**
3480 * Tree enumeration callback that updates the chunks that have
3481 * been used since the last
3482 */
3483static DECLCALLBACK(int) pgmR3PhysChunkAgeingCallback(PAVLU32NODECORE pNode, void *pvUser)
3484{
3485 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
3486 if (!pChunk->iAge)
3487 {
3488 PVM pVM = (PVM)pvUser;
3489 pChunk->iAge = pVM->pgm.s.ChunkR3Map.iNow;
3490 }
3491 return 0;
3492}
3493
3494
3495/**
3496 * Performs ageing of the ring-3 chunk mappings.
3497 *
3498 * @param pVM The VM handle.
3499 */
3500VMMR3DECL(void) PGMR3PhysChunkAgeing(PVM pVM)
3501{
3502 pgmLock(pVM);
3503 pVM->pgm.s.ChunkR3Map.AgeingCountdown = RT_MIN(pVM->pgm.s.ChunkR3Map.cMax / 4, 1024);
3504 pVM->pgm.s.ChunkR3Map.iNow++;
3505 if (pVM->pgm.s.ChunkR3Map.iNow == 0)
3506 {
3507 pVM->pgm.s.ChunkR3Map.iNow = 4;
3508 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, pVM);
3509 }
3510 else
3511 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingCallback, pVM);
3512 pgmUnlock(pVM);
3513}
3514
3515
3516/**
3517 * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
3518 */
3519typedef struct PGMR3PHYSCHUNKUNMAPCB
3520{
3521 PVM pVM; /**< The VM handle. */
3522 PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
3523 uint32_t iLastAge; /**< Highest age found so far. */
3524} PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
3525
3526
3527/**
3528 * Callback used to find the mapping that's been unused for
3529 * the longest time.
3530 */
3531static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLU32NODECORE pNode, void *pvUser)
3532{
3533 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
3534 PPGMR3PHYSCHUNKUNMAPCB pArg = (PPGMR3PHYSCHUNKUNMAPCB)pvUser;
3535
3536 if ( pChunk->iAge
3537 && !pChunk->cRefs
3538 && pArg->iLastAge < pChunk->iAge)
3539 {
3540 /*
3541 * Check that it's not in any of the TLBs.
3542 */
3543 PVM pVM = pArg->pVM;
3544 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
3545 if (pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk == pChunk)
3546 {
3547 pChunk = NULL;
3548 break;
3549 }
3550 if (pChunk)
3551 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
3552 if (pVM->pgm.s.PhysTlbHC.aEntries[i].pMap == pChunk)
3553 {
3554 pChunk = NULL;
3555 break;
3556 }
3557 if (pChunk)
3558 {
3559 pArg->pChunk = pChunk;
3560 pArg->iLastAge = pChunk->iAge;
3561 }
3562 }
3563 return 0;
3564}
3565
3566
3567/**
3568 * Finds a good candidate for unmapping when the ring-3 mapping cache is full.
3569 *
3570 * The candidate will not be part of any TLBs, so no need to flush
3571 * anything afterwards.
3572 *
3573 * @returns Chunk id.
3574 * @param pVM The VM handle.
3575 */
3576static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
3577{
3578 Assert(PGMIsLockOwner(pVM));
3579
3580 /*
3581 * Do tree ageing first?
3582 */
3583 if (pVM->pgm.s.ChunkR3Map.AgeingCountdown-- == 0)
3584 {
3585 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkAging, a);
3586 PGMR3PhysChunkAgeing(pVM);
3587 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkAging, a);
3588 }
3589
3590 /*
3591 * Enumerate the age tree starting with the left most node.
3592 */
3593 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
3594 PGMR3PHYSCHUNKUNMAPCB Args;
3595 Args.pVM = pVM;
3596 Args.pChunk = NULL;
3597 Args.iLastAge = 0;
3598 RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, &Args);
3599 Assert(Args.pChunk);
3600 if (Args.pChunk)
3601 {
3602 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
3603 return Args.pChunk->Core.Key;
3604 }
3605
3606 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkFindCandidate, a);
3607 return INT32_MAX;
3608}
3609
3610/**
3611 * Rendezvous callback used by pgmR3PhysUnmapChunk that unmaps a chunk
3612 *
3613 * This is only called on one of the EMTs while the other ones are waiting for
3614 * it to complete this function.
3615 *
3616 * @returns VINF_SUCCESS (VBox strict status code).
3617 * @param pVM The VM handle.
3618 * @param pVCpu The VMCPU for the EMT we're being called on. Unused.
3619 * @param pvUser User pointer. Unused
3620 *
3621 */
3622DECLCALLBACK(VBOXSTRICTRC) pgmR3PhysUnmapChunkRendezvous(PVM pVM, PVMCPU pVCpu, void *pvUser)
3623{
3624 int rc = VINF_SUCCESS;
3625 pgmLock(pVM);
3626
3627 if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
3628 {
3629 /* Flush the pgm pool cache; call the internal rendezvous handler as we're already in a rendezvous handler here. */
3630 /* todo: also not really efficient to unmap a chunk that contains PD or PT pages. */
3631 pgmR3PoolClearAllRendezvous(pVM, &pVM->aCpus[0], NULL /* no need to flush the REM TLB as we already did that above */);
3632
3633 /*
3634 * Request the ring-0 part to unmap a chunk to make space in the mapping cache.
3635 */
3636 GMMMAPUNMAPCHUNKREQ Req;
3637 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
3638 Req.Hdr.cbReq = sizeof(Req);
3639 Req.pvR3 = NULL;
3640 Req.idChunkMap = NIL_GMM_CHUNKID;
3641 Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
3642
3643 if (Req.idChunkUnmap != INT32_MAX)
3644 {
3645 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkUnmap, a);
3646 rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
3647 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkUnmap, a);
3648 if (RT_SUCCESS(rc))
3649 {
3650 /* remove the unmapped one. */
3651 PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
3652 AssertRelease(pUnmappedChunk);
3653 pUnmappedChunk->pv = NULL;
3654 pUnmappedChunk->Core.Key = UINT32_MAX;
3655#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
3656 MMR3HeapFree(pUnmappedChunk);
3657#else
3658 MMR3UkHeapFree(pVM, pUnmappedChunk, MM_TAG_PGM_CHUNK_MAPPING);
3659#endif
3660 pVM->pgm.s.ChunkR3Map.c--;
3661 pVM->pgm.s.cUnmappedChunks++;
3662
3663 /* Flush dangling PGM pointers (R3 & R0 ptrs to GC physical addresses) */
3664 /* todo: we should not flush chunks which include cr3 mappings. */
3665 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3666 {
3667 PPGMCPU pPGM = &pVM->aCpus[idCpu].pgm.s;
3668
3669 pPGM->pGst32BitPdR3 = NULL;
3670 pPGM->pGstPaePdptR3 = NULL;
3671 pPGM->pGstAmd64Pml4R3 = NULL;
3672#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
3673 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
3674 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
3675 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
3676#endif
3677 for (unsigned i = 0; i < RT_ELEMENTS(pPGM->apGstPaePDsR3); i++)
3678 {
3679 pPGM->apGstPaePDsR3[i] = NULL;
3680#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
3681 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
3682#endif
3683 }
3684
3685 /* Flush REM TLBs. */
3686 CPUMSetChangedFlags(&pVM->aCpus[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
3687 }
3688
3689 /* Flush REM translation blocks. */
3690 REMFlushTBs(pVM);
3691 }
3692 }
3693 }
3694 pgmUnlock(pVM);
3695 return rc;
3696}
3697
3698/**
3699 * Unmap a chunk to free up virtual address space (request packet handler for pgmR3PhysChunkMap)
3700 *
3701 * @returns VBox status code.
3702 * @param pVM The VM to operate on.
3703 */
3704void pgmR3PhysUnmapChunk(PVM pVM)
3705{
3706 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PhysUnmapChunkRendezvous, NULL);
3707 AssertRC(rc);
3708}
3709#endif /* PGM_WITH_LARGE_ADDRESS_SPACE_ON_32_BIT_HOST */
3710
3711/**
3712 * Maps the given chunk into the ring-3 mapping cache.
3713 *
3714 * This will call ring-0.
3715 *
3716 * @returns VBox status code.
3717 * @param pVM The VM handle.
3718 * @param idChunk The chunk in question.
3719 * @param ppChunk Where to store the chunk tracking structure.
3720 *
3721 * @remarks Called from within the PGM critical section.
3722 * @remarks Can be called from any thread!
3723 */
3724int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
3725{
3726 int rc;
3727
3728 Assert(PGMIsLockOwner(pVM));
3729 /*
3730 * Allocate a new tracking structure first.
3731 */
3732#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
3733 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
3734#else
3735 PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3UkHeapAllocZ(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk), NULL);
3736#endif
3737 AssertReturn(pChunk, VERR_NO_MEMORY);
3738 pChunk->Core.Key = idChunk;
3739
3740 /*
3741 * Request the ring-0 part to map the chunk in question.
3742 */
3743 GMMMAPUNMAPCHUNKREQ Req;
3744 Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
3745 Req.Hdr.cbReq = sizeof(Req);
3746 Req.pvR3 = NULL;
3747 Req.idChunkMap = idChunk;
3748 Req.idChunkUnmap = NIL_GMM_CHUNKID;
3749
3750 /* Must be callable from any thread, so can't use VMMR3CallR0. */
3751 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkMap, a);
3752 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, NIL_VMCPUID, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
3753 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatChunkMap, a);
3754 if (RT_SUCCESS(rc))
3755 {
3756 /*
3757 * Update the tree.
3758 */
3759 /* insert the new one. */
3760 AssertPtr(Req.pvR3);
3761 pChunk->pv = Req.pvR3;
3762 bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
3763 AssertRelease(fRc);
3764 pVM->pgm.s.ChunkR3Map.c++;
3765 pVM->pgm.s.cMappedChunks++;
3766
3767 /* If we're running out of virtual address space, then we should unmap another chunk. */
3768 if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
3769 {
3770#ifdef PGM_WITH_LARGE_ADDRESS_SPACE_ON_32_BIT_HOST
3771 /* Postpone the unmap operation (which requires a rendezvous operation) as we own the PGM lock here. */
3772 rc = VMR3ReqCallNoWaitU(pVM->pUVM, VMCPUID_ANY_QUEUE, (PFNRT)pgmR3PhysUnmapChunk, 1, pVM);
3773 AssertRC(rc);
3774#else
3775 AssertFatalFailed(); /* can't happen */
3776#endif
3777 }
3778 }
3779 else
3780 {
3781 AssertRC(rc);
3782#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
3783 MMR3HeapFree(pChunk);
3784#else
3785 MMR3UkHeapFree(pVM, pChunk, MM_TAG_PGM_CHUNK_MAPPING);
3786#endif
3787 pChunk = NULL;
3788 }
3789
3790 *ppChunk = pChunk;
3791 return rc;
3792}
3793
3794
3795/**
3796 * For VMMCALLRING3_PGM_MAP_CHUNK, considered internal.
3797 *
3798 * @returns see pgmR3PhysChunkMap.
3799 * @param pVM The VM handle.
3800 * @param idChunk The chunk to map.
3801 */
3802VMMR3DECL(int) PGMR3PhysChunkMap(PVM pVM, uint32_t idChunk)
3803{
3804 PPGMCHUNKR3MAP pChunk;
3805 int rc;
3806
3807 pgmLock(pVM);
3808 rc = pgmR3PhysChunkMap(pVM, idChunk, &pChunk);
3809 pgmUnlock(pVM);
3810 return rc;
3811}
3812
3813
3814/**
3815 * Invalidates the TLB for the ring-3 mapping cache.
3816 *
3817 * @param pVM The VM handle.
3818 */
3819VMMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM)
3820{
3821 pgmLock(pVM);
3822 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
3823 {
3824 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
3825 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
3826 }
3827 /* The page map TLB references chunks, so invalidate that one too. */
3828 PGMPhysInvalidatePageMapTLB(pVM);
3829 pgmUnlock(pVM);
3830}
3831
3832
3833/**
3834 * Response to VMMCALLRING3_PGM_ALLOCATE_LARGE_PAGE to allocate a large (2MB) page
3835 * for use with a nested paging PDE.
3836 *
3837 * @returns The following VBox status codes.
3838 * @retval VINF_SUCCESS on success.
3839 * @retval VINF_EM_NO_MEMORY if we're out of memory.
3840 *
3841 * @param pVM The VM handle.
3842 * @param GCPhys GC physical start address of the 2 MB range
3843 */
3844VMMR3DECL(int) PGMR3PhysAllocateLargeHandyPage(PVM pVM, RTGCPHYS GCPhys)
3845{
3846 pgmLock(pVM);
3847
3848 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatAllocLargePage, a);
3849 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_LARGE_HANDY_PAGE, 0, NULL);
3850 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatAllocLargePage, a);
3851 if (RT_SUCCESS(rc))
3852 {
3853 Assert(pVM->pgm.s.cLargeHandyPages == 1);
3854
3855 uint32_t idPage = pVM->pgm.s.aLargeHandyPage[0].idPage;
3856 RTHCPHYS HCPhys = pVM->pgm.s.aLargeHandyPage[0].HCPhysGCPhys;
3857
3858 void *pv;
3859
3860 /* Map the large page into our address space.
3861 *
3862 * Note: assuming that within the 2 MB range:
3863 * - GCPhys + PAGE_SIZE = HCPhys + PAGE_SIZE (whole point of this exercise)
3864 * - user space mapping is continuous as well
3865 * - page id (GCPhys) + 1 = page id (GCPhys + PAGE_SIZE)
3866 */
3867 rc = pgmPhysPageMapByPageID(pVM, idPage, HCPhys, &pv);
3868 AssertLogRelMsg(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc\n", idPage, HCPhys, rc));
3869
3870 if (RT_SUCCESS(rc))
3871 {
3872 /*
3873 * Clear the pages.
3874 */
3875 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pStats)->StatClearLargePage, b);
3876 for (unsigned i = 0; i < _2M/PAGE_SIZE; i++)
3877 {
3878 ASMMemZeroPage(pv);
3879
3880 PPGMPAGE pPage;
3881 rc = pgmPhysGetPageEx(&pVM->pgm.s, GCPhys, &pPage);
3882 AssertRC(rc);
3883
3884 Assert(PGM_PAGE_IS_ZERO(pPage));
3885 STAM_COUNTER_INC(&pVM->pgm.s.CTX_SUFF(pStats)->StatRZPageReplaceZero);
3886 pVM->pgm.s.cZeroPages--;
3887
3888 /*
3889 * Do the PGMPAGE modifications.
3890 */
3891 pVM->pgm.s.cPrivatePages++;
3892 PGM_PAGE_SET_HCPHYS(pPage, HCPhys);
3893 PGM_PAGE_SET_PAGEID(pPage, idPage);
3894 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
3895 PGM_PAGE_SET_PDE_TYPE(pPage, PGM_PAGE_PDE_TYPE_PDE);
3896 PGM_PAGE_SET_PTE_INDEX(pPage, 0);
3897 PGM_PAGE_SET_TRACKING(pPage, 0);
3898
3899 /* Somewhat dirty assumption that page ids are increasing. */
3900 idPage++;
3901
3902 HCPhys += PAGE_SIZE;
3903 GCPhys += PAGE_SIZE;
3904
3905 pv = (void *)((uintptr_t)pv + PAGE_SIZE);
3906
3907 Log3(("PGMR3PhysAllocateLargePage: idPage=%#x HCPhys=%RGp\n", idPage, HCPhys));
3908 }
3909 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pStats)->StatClearLargePage, b);
3910
3911 /* Flush all TLBs. */
3912 PGM_INVL_ALL_VCPU_TLBS(pVM);
3913 PGMPhysInvalidatePageMapTLB(pVM);
3914 }
3915 pVM->pgm.s.cLargeHandyPages = 0;
3916 }
3917
3918 pgmUnlock(pVM);
3919 return rc;
3920}
3921
3922
3923/**
3924 * Response to VM_FF_PGM_NEED_HANDY_PAGES and VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES.
3925 *
3926 * This function will also work the VM_FF_PGM_NO_MEMORY force action flag, to
3927 * signal and clear the out of memory condition. When contracted, this API is
3928 * used to try clear the condition when the user wants to resume.
3929 *
3930 * @returns The following VBox status codes.
3931 * @retval VINF_SUCCESS on success. FFs cleared.
3932 * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in
3933 * this case and it gets accompanied by VM_FF_PGM_NO_MEMORY.
3934 *
3935 * @param pVM The VM handle.
3936 *
3937 * @remarks The VINF_EM_NO_MEMORY status is for the benefit of the FF processing
3938 * in EM.cpp and shouldn't be propagated outside TRPM, HWACCM, EM and
3939 * pgmPhysEnsureHandyPage. There is one exception to this in the \#PF
3940 * handler.
3941 */
3942VMMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
3943{
3944 pgmLock(pVM);
3945
3946 /*
3947 * Allocate more pages, noting down the index of the first new page.
3948 */
3949 uint32_t iClear = pVM->pgm.s.cHandyPages;
3950 AssertMsgReturn(iClear <= RT_ELEMENTS(pVM->pgm.s.aHandyPages), ("%d", iClear), VERR_INTERNAL_ERROR);
3951 Log(("PGMR3PhysAllocateHandyPages: %d -> %d\n", iClear, RT_ELEMENTS(pVM->pgm.s.aHandyPages)));
3952 int rcAlloc = VINF_SUCCESS;
3953 int rcSeed = VINF_SUCCESS;
3954 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
3955 while (rc == VERR_GMM_SEED_ME)
3956 {
3957 void *pvChunk;
3958 rcAlloc = rc = SUPR3PageAlloc(GMM_CHUNK_SIZE >> PAGE_SHIFT, &pvChunk);
3959 if (RT_SUCCESS(rc))
3960 {
3961 rcSeed = rc = VMMR3CallR0(pVM, VMMR0_DO_GMM_SEED_CHUNK, (uintptr_t)pvChunk, NULL);
3962 if (RT_FAILURE(rc))
3963 SUPR3PageFree(pvChunk, GMM_CHUNK_SIZE >> PAGE_SHIFT);
3964 }
3965 if (RT_SUCCESS(rc))
3966 rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
3967 }
3968
3969 /* todo: we should split this up into an allocate and flush operation. sometimes you want to flush and not allocate more (which will trigger the vm account limit error) */
3970 if ( rc == VERR_GMM_HIT_VM_ACCOUNT_LIMIT
3971 && pVM->pgm.s.cHandyPages > 0)
3972 {
3973 /* Still handy pages left, so don't panic. */
3974 rc = VINF_SUCCESS;
3975 }
3976
3977 if (RT_SUCCESS(rc))
3978 {
3979 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", rc));
3980 Assert(pVM->pgm.s.cHandyPages > 0);
3981 VM_FF_CLEAR(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
3982 VM_FF_CLEAR(pVM, VM_FF_PGM_NO_MEMORY);
3983
3984 /*
3985 * Clear the pages.
3986 */
3987 while (iClear < pVM->pgm.s.cHandyPages)
3988 {
3989 PGMMPAGEDESC pPage = &pVM->pgm.s.aHandyPages[iClear];
3990 void *pv;
3991 rc = pgmPhysPageMapByPageID(pVM, pPage->idPage, pPage->HCPhysGCPhys, &pv);
3992 AssertLogRelMsgBreak(RT_SUCCESS(rc), ("idPage=%#x HCPhysGCPhys=%RHp rc=%Rrc\n", pPage->idPage, pPage->HCPhysGCPhys, rc));
3993 ASMMemZeroPage(pv);
3994 iClear++;
3995 Log3(("PGMR3PhysAllocateHandyPages: idPage=%#x HCPhys=%RGp\n", pPage->idPage, pPage->HCPhysGCPhys));
3996 }
3997 }
3998 else
3999 {
4000 uint64_t cAllocPages, cMaxPages, cBalloonPages;
4001
4002 /*
4003 * We should never get here unless there is a genuine shortage of
4004 * memory (or some internal error). Flag the error so the VM can be
4005 * suspended ASAP and the user informed. If we're totally out of
4006 * handy pages we will return failure.
4007 */
4008 /* Report the failure. */
4009 LogRel(("PGM: Failed to procure handy pages; rc=%Rrc rcAlloc=%Rrc rcSeed=%Rrc cHandyPages=%#x\n"
4010 " cAllPages=%#x cPrivatePages=%#x cSharedPages=%#x cZeroPages=%#x\n",
4011 rc, rcAlloc, rcSeed,
4012 pVM->pgm.s.cHandyPages,
4013 pVM->pgm.s.cAllPages,
4014 pVM->pgm.s.cPrivatePages,
4015 pVM->pgm.s.cSharedPages,
4016 pVM->pgm.s.cZeroPages));
4017
4018 if (GMMR3QueryMemoryStats(pVM, &cAllocPages, &cMaxPages, &cBalloonPages) == VINF_SUCCESS)
4019 {
4020 LogRel(("GMM: Statistics:\n"
4021 " Allocated pages: %RX64\n"
4022 " Maximum pages: %RX64\n"
4023 " Ballooned pages: %RX64\n", cAllocPages, cMaxPages, cBalloonPages));
4024 }
4025
4026 if ( rc != VERR_NO_MEMORY
4027 && rc != VERR_LOCK_FAILED)
4028 {
4029 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
4030 {
4031 LogRel(("PGM: aHandyPages[#%#04x] = {.HCPhysGCPhys=%RHp, .idPage=%#08x, .idSharedPage=%#08x}\n",
4032 i, pVM->pgm.s.aHandyPages[i].HCPhysGCPhys, pVM->pgm.s.aHandyPages[i].idPage,
4033 pVM->pgm.s.aHandyPages[i].idSharedPage));
4034 uint32_t const idPage = pVM->pgm.s.aHandyPages[i].idPage;
4035 if (idPage != NIL_GMM_PAGEID)
4036 {
4037 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
4038 pRam;
4039 pRam = pRam->pNextR3)
4040 {
4041 uint32_t const cPages = pRam->cb >> PAGE_SHIFT;
4042 for (uint32_t iPage = 0; iPage < cPages; iPage++)
4043 if (PGM_PAGE_GET_PAGEID(&pRam->aPages[iPage]) == idPage)
4044 LogRel(("PGM: Used by %RGp %R[pgmpage] (%s)\n",
4045 pRam->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pRam->aPages[iPage], pRam->pszDesc));
4046 }
4047 }
4048 }
4049 }
4050
4051 /* Set the FFs and adjust rc. */
4052 VM_FF_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES);
4053 VM_FF_SET(pVM, VM_FF_PGM_NO_MEMORY);
4054 if ( rc == VERR_NO_MEMORY
4055 || rc == VERR_LOCK_FAILED)
4056 rc = VINF_EM_NO_MEMORY;
4057 }
4058
4059 pgmUnlock(pVM);
4060 return rc;
4061}
4062
4063
4064/**
4065 * Frees the specified RAM page and replaces it with the ZERO page.
4066 *
4067 * This is used by ballooning, remapping MMIO2 and RAM reset.
4068 *
4069 * @param pVM Pointer to the shared VM structure.
4070 * @param pReq Pointer to the request.
4071 * @param pPage Pointer to the page structure.
4072 * @param GCPhys The guest physical address of the page, if applicable.
4073 *
4074 * @remarks The caller must own the PGM lock.
4075 */
4076int pgmPhysFreePage(PVM pVM, PGMMFREEPAGESREQ pReq, uint32_t *pcPendingPages, PPGMPAGE pPage, RTGCPHYS GCPhys)
4077{
4078 /*
4079 * Assert sanity.
4080 */
4081 Assert(PGMIsLockOwner(pVM));
4082 if (RT_UNLIKELY( PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_RAM
4083 && PGM_PAGE_GET_TYPE(pPage) != PGMPAGETYPE_ROM_SHADOW))
4084 {
4085 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
4086 return VMSetError(pVM, VERR_PGM_PHYS_NOT_RAM, RT_SRC_POS, "GCPhys=%RGp type=%d", GCPhys, PGM_PAGE_GET_TYPE(pPage));
4087 }
4088
4089 if ( PGM_PAGE_IS_ZERO(pPage)
4090 || PGM_PAGE_IS_BALLOONED(pPage))
4091 return VINF_SUCCESS;
4092
4093 const uint32_t idPage = PGM_PAGE_GET_PAGEID(pPage);
4094 Log3(("pgmPhysFreePage: idPage=%#x GCPhys=%RGp pPage=%R[pgmpage]\n", idPage, GCPhys, pPage));
4095 if (RT_UNLIKELY( idPage == NIL_GMM_PAGEID
4096 || idPage > GMM_PAGEID_LAST
4097 || PGM_PAGE_GET_CHUNKID(pPage) == NIL_GMM_CHUNKID))
4098 {
4099 AssertMsgFailed(("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, pPage));
4100 return VMSetError(pVM, VERR_PGM_PHYS_INVALID_PAGE_ID, RT_SRC_POS, "GCPhys=%RGp idPage=%#x", GCPhys, pPage);
4101 }
4102
4103 /* update page count stats. */
4104 if (PGM_PAGE_IS_SHARED(pPage))
4105 pVM->pgm.s.cSharedPages--;
4106 else
4107 pVM->pgm.s.cPrivatePages--;
4108 pVM->pgm.s.cZeroPages++;
4109
4110 /* Deal with write monitored pages. */
4111 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
4112 {
4113 PGM_PAGE_SET_WRITTEN_TO(pPage);
4114 pVM->pgm.s.cWrittenToPages++;
4115 }
4116
4117 /*
4118 * pPage = ZERO page.
4119 */
4120 PGM_PAGE_SET_HCPHYS(pPage, pVM->pgm.s.HCPhysZeroPg);
4121 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ZERO);
4122 PGM_PAGE_SET_PAGEID(pPage, NIL_GMM_PAGEID);
4123 PGM_PAGE_SET_PDE_TYPE(pPage, PGM_PAGE_PDE_TYPE_DONTCARE);
4124 PGM_PAGE_SET_PTE_INDEX(pPage, 0);
4125 PGM_PAGE_SET_TRACKING(pPage, 0);
4126
4127 /* Flush physical page map TLB entry. */
4128 PGMPhysInvalidatePageMapTLBEntry(pVM, GCPhys);
4129
4130 /*
4131 * Make sure it's not in the handy page array.
4132 */
4133 for (uint32_t i = pVM->pgm.s.cHandyPages; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
4134 {
4135 if (pVM->pgm.s.aHandyPages[i].idPage == idPage)
4136 {
4137 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
4138 break;
4139 }
4140 if (pVM->pgm.s.aHandyPages[i].idSharedPage == idPage)
4141 {
4142 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
4143 break;
4144 }
4145 }
4146
4147 /*
4148 * Push it onto the page array.
4149 */
4150 uint32_t iPage = *pcPendingPages;
4151 Assert(iPage < PGMPHYS_FREE_PAGE_BATCH_SIZE);
4152 *pcPendingPages += 1;
4153
4154 pReq->aPages[iPage].idPage = idPage;
4155
4156 if (iPage + 1 < PGMPHYS_FREE_PAGE_BATCH_SIZE)
4157 return VINF_SUCCESS;
4158
4159 /*
4160 * Flush the pages.
4161 */
4162 int rc = GMMR3FreePagesPerform(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE);
4163 if (RT_SUCCESS(rc))
4164 {
4165 GMMR3FreePagesRePrep(pVM, pReq, PGMPHYS_FREE_PAGE_BATCH_SIZE, GMMACCOUNT_BASE);
4166 *pcPendingPages = 0;
4167 }
4168 return rc;
4169}
4170
4171
4172/**
4173 * Converts a GC physical address to a HC ring-3 pointer, with some
4174 * additional checks.
4175 *
4176 * @returns VBox status code.
4177 * @retval VINF_SUCCESS on success.
4178 * @retval VINF_PGM_PHYS_TLB_CATCH_WRITE and *ppv set if the page has a write
4179 * access handler of some kind.
4180 * @retval VERR_PGM_PHYS_TLB_CATCH_ALL if the page has a handler catching all
4181 * accesses or is odd in any way.
4182 * @retval VERR_PGM_PHYS_TLB_UNASSIGNED if the page doesn't exist.
4183 *
4184 * @param pVM The VM handle.
4185 * @param GCPhys The GC physical address to convert.
4186 * @param fWritable Whether write access is required.
4187 * @param ppv Where to store the pointer corresponding to GCPhys on
4188 * success.
4189 */
4190VMMR3DECL(int) PGMR3PhysTlbGCPhys2Ptr(PVM pVM, RTGCPHYS GCPhys, bool fWritable, void **ppv)
4191{
4192 pgmLock(pVM);
4193
4194 PPGMRAMRANGE pRam;
4195 PPGMPAGE pPage;
4196 int rc = pgmPhysGetPageAndRangeEx(&pVM->pgm.s, GCPhys, &pPage, &pRam);
4197 if (RT_SUCCESS(rc))
4198 {
4199 if (PGM_PAGE_IS_BALLOONED(pPage))
4200 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
4201 else if (!PGM_PAGE_HAS_ANY_HANDLERS(pPage))
4202 rc = VINF_SUCCESS;
4203 else
4204 {
4205 if (PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage)) /* catches MMIO */
4206 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
4207 else if (PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage))
4208 {
4209 /** @todo Handle TLB loads of virtual handlers so ./test.sh can be made to work
4210 * in -norawr0 mode. */
4211 if (fWritable)
4212 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
4213 }
4214 else
4215 {
4216 /* Temporarily disabled physical handler(s), since the recompiler
4217 doesn't get notified when it's reset we'll have to pretend it's
4218 operating normally. */
4219 if (pgmHandlerPhysicalIsAll(pVM, GCPhys))
4220 rc = VERR_PGM_PHYS_TLB_CATCH_ALL;
4221 else
4222 rc = VINF_PGM_PHYS_TLB_CATCH_WRITE;
4223 }
4224 }
4225 if (RT_SUCCESS(rc))
4226 {
4227 int rc2;
4228
4229 /* Make sure what we return is writable. */
4230 if (fWritable)
4231 switch (PGM_PAGE_GET_STATE(pPage))
4232 {
4233 case PGM_PAGE_STATE_ALLOCATED:
4234 break;
4235 case PGM_PAGE_STATE_BALLOONED:
4236 AssertFailed();
4237 break;
4238 case PGM_PAGE_STATE_ZERO:
4239 case PGM_PAGE_STATE_SHARED:
4240 if (rc == VINF_PGM_PHYS_TLB_CATCH_WRITE)
4241 break;
4242 case PGM_PAGE_STATE_WRITE_MONITORED:
4243 rc2 = pgmPhysPageMakeWritable(pVM, pPage, GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
4244 AssertLogRelRCReturn(rc2, rc2);
4245 break;
4246 }
4247
4248 /* Get a ring-3 mapping of the address. */
4249 PPGMPAGER3MAPTLBE pTlbe;
4250 rc2 = pgmPhysPageQueryTlbe(&pVM->pgm.s, GCPhys, &pTlbe);
4251 AssertLogRelRCReturn(rc2, rc2);
4252 *ppv = (void *)((uintptr_t)pTlbe->pv | (uintptr_t)(GCPhys & PAGE_OFFSET_MASK));
4253 /** @todo mapping/locking hell; this isn't horribly efficient since
4254 * pgmPhysPageLoadIntoTlb will repeat the lookup we've done here. */
4255
4256 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage] *ppv=%p\n", GCPhys, rc, pPage, *ppv));
4257 }
4258 else
4259 Log6(("PGMR3PhysTlbGCPhys2Ptr: GCPhys=%RGp rc=%Rrc pPage=%R[pgmpage]\n", GCPhys, rc, pPage));
4260
4261 /* else: handler catching all access, no pointer returned. */
4262 }
4263 else
4264 rc = VERR_PGM_PHYS_TLB_UNASSIGNED;
4265
4266 pgmUnlock(pVM);
4267 return rc;
4268}
4269
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette