VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMPhys.cpp@ 4677

Last change on this file since 4677 was 4620, checked in by vboxsync, 17 years ago

The initial PGMRAMRANGE::aHCPhys -> PGMRAMRANGE::aPages (PGMPAGE) conversion.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 20.4 KB
Line 
1/* $Id: PGMPhys.cpp 4620 2007-09-08 00:39:30Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, Physical Memory Addressing.
4 */
5
6/*
7 * Copyright (C) 2006-2007 innotek GmbH
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License as published by the Free Software Foundation,
13 * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
14 * distribution. VirtualBox OSE is distributed in the hope that it will
15 * be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Header Files *
21*******************************************************************************/
22#define LOG_GROUP LOG_GROUP_PGM
23#include <VBox/pgm.h>
24#include <VBox/cpum.h>
25#include <VBox/iom.h>
26#include <VBox/sup.h>
27#include <VBox/mm.h>
28#include <VBox/stam.h>
29#include <VBox/rem.h>
30#include <VBox/csam.h>
31#include "PGMInternal.h"
32#include <VBox/vm.h>
33#include <VBox/dbg.h>
34#include <VBox/param.h>
35#include <VBox/err.h>
36#include <iprt/assert.h>
37#include <iprt/alloc.h>
38#include <iprt/asm.h>
39#include <VBox/log.h>
40#include <iprt/thread.h>
41#include <iprt/string.h>
42
43
44
45
46/**
47 * Interface that the MMR3RamRegister(), MMR3RomRegister() and MMIO handler
48 * registration APIs calls to inform PGM about memory registrations.
49 *
50 * It registers the physical memory range with PGM. MM is responsible
51 * for the toplevel things - allocation and locking - while PGM is taking
52 * care of all the details and implements the physical address space virtualization.
53 *
54 * @returns VBox status.
55 * @param pVM The VM handle.
56 * @param pvRam HC virtual address of the RAM range. (page aligned)
57 * @param GCPhys GC physical address of the RAM range. (page aligned)
58 * @param cb Size of the RAM range. (page aligned)
59 * @param fFlags Flags, MM_RAM_*.
60 * @param paPages Pointer an array of physical page descriptors.
61 * @param pszDesc Description string.
62 */
63PGMR3DECL(int) PGMR3PhysRegister(PVM pVM, void *pvRam, RTGCPHYS GCPhys, size_t cb, unsigned fFlags, const SUPPAGE *paPages, const char *pszDesc)
64{
65 /*
66 * Validate input.
67 * (Not so important because callers are only MMR3PhysRegister()
68 * and PGMR3HandlerPhysicalRegisterEx(), but anyway...)
69 */
70 Log(("PGMR3PhysRegister %08X %x bytes flags %x %s\n", GCPhys, cb, fFlags, pszDesc));
71
72 Assert((fFlags & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_DYNAMIC_ALLOC)) || paPages);
73 /*Assert(!(fFlags & MM_RAM_FLAGS_RESERVED) || !paPages);*/
74 Assert((fFlags == (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO)) || (fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) || pvRam);
75 /*Assert(!(fFlags & MM_RAM_FLAGS_RESERVED) || !pvRam);*/
76 Assert(!(fFlags & ~0xfff));
77 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb && cb);
78 Assert(RT_ALIGN_P(pvRam, PAGE_SIZE) == pvRam);
79 Assert(!(fFlags & ~(MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2 | MM_RAM_FLAGS_DYNAMIC_ALLOC)));
80 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
81 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
82 if (GCPhysLast < GCPhys)
83 {
84 AssertMsgFailed(("The range wraps! GCPhys=%VGp cb=%#x\n", GCPhys, cb));
85 return VERR_INVALID_PARAMETER;
86 }
87
88 /*
89 * Find range location and check for conflicts.
90 */
91 PPGMRAMRANGE pPrev = NULL;
92 PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesHC;
93 while (pCur)
94 {
95 if (GCPhys <= pCur->GCPhysLast && GCPhysLast >= pCur->GCPhys)
96 {
97 AssertMsgFailed(("Conflict! This cannot happen!\n"));
98 return VERR_PGM_RAM_CONFLICT;
99 }
100 if (GCPhysLast < pCur->GCPhys)
101 break;
102
103 /* next */
104 pPrev = pCur;
105 pCur = pCur->pNextHC;
106 }
107
108 /*
109 * Allocate RAM range.
110 * Small ranges are allocated from the heap, big ones have separate mappings.
111 */
112 size_t cbRam = RT_OFFSETOF(PGMRAMRANGE, aPages[cb >> PAGE_SHIFT]);
113 PPGMRAMRANGE pNew;
114 RTGCPTR GCPtrNew;
115 int rc;
116 if (cbRam > PAGE_SIZE / 2)
117 { /* large */
118 cbRam = RT_ALIGN_Z(cbRam, PAGE_SIZE);
119 rc = SUPPageAlloc(cbRam >> PAGE_SHIFT, (void **)&pNew);
120 if (VBOX_SUCCESS(rc))
121 {
122 rc = MMR3HyperMapHCRam(pVM, pNew, cbRam, true, pszDesc, &GCPtrNew);
123 if (VBOX_SUCCESS(rc))
124 {
125 Assert(MMHyperHC2GC(pVM, pNew) == GCPtrNew);
126 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
127 }
128 else
129 {
130 AssertMsgFailed(("MMR3HyperMapHCRam(,,%#x,,,) -> %Vrc\n", cbRam, rc));
131 SUPPageFree(pNew, cbRam >> PAGE_SHIFT);
132 }
133 }
134 else
135 AssertMsgFailed(("SUPPageAlloc(%#x,,) -> %Vrc\n", cbRam >> PAGE_SHIFT, rc));
136 }
137 else
138 { /* small */
139 rc = MMHyperAlloc(pVM, cbRam, 16, MM_TAG_PGM, (void **)&pNew);
140 if (VBOX_SUCCESS(rc))
141 GCPtrNew = MMHyperHC2GC(pVM, pNew);
142 else
143 AssertMsgFailed(("MMHyperAlloc(,%#x,,,) -> %Vrc\n", cbRam, cb));
144 }
145 if (VBOX_SUCCESS(rc))
146 {
147 /*
148 * Initialize the range.
149 */
150 pNew->pvHC = pvRam;
151 pNew->GCPhys = GCPhys;
152 pNew->GCPhysLast = GCPhysLast;
153 pNew->cb = cb;
154 pNew->fFlags = fFlags;
155 pNew->pavHCChunkHC = NULL;
156 pNew->pavHCChunkGC = 0;
157
158 unsigned iPage = cb >> PAGE_SHIFT;
159 if (paPages)
160 {
161 while (iPage-- > 0)
162 {
163 pNew->aPages[iPage].HCPhys = (paPages[iPage].Phys & X86_PTE_PAE_PG_MASK) | fFlags; /** @todo PAGE FLAGS */
164 pNew->aPages[iPage].u32A = 0;
165 pNew->aPages[iPage].u32B = 0;
166 }
167 }
168 else if (fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
169 {
170 /* Allocate memory for chunk to HC ptr lookup array. */
171 rc = MMHyperAlloc(pVM, (cb >> PGM_DYNAMIC_CHUNK_SHIFT) * sizeof(void *), 16, MM_TAG_PGM, (void **)&pNew->pavHCChunkHC);
172 AssertMsgReturn(rc == VINF_SUCCESS, ("MMHyperAlloc(,%#x,,,) -> %Vrc\n", cbRam, cb), rc);
173
174 pNew->pavHCChunkGC = MMHyperHC2GC(pVM, pNew->pavHCChunkHC);
175 Assert(pNew->pavHCChunkGC);
176
177 /* Physical memory will be allocated on demand. */
178 while (iPage-- > 0)
179 {
180 pNew->aPages[iPage].HCPhys = fFlags; /** @todo PAGE FLAGS */
181 pNew->aPages[iPage].u32A = 0;
182 pNew->aPages[iPage].u32B = 0;
183 }
184 }
185 else
186 {
187 Assert(fFlags == (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO));
188 RTHCPHYS HCPhysDummyPage = (MMR3PageDummyHCPhys(pVM) & X86_PTE_PAE_PG_MASK) | fFlags; /** @todo PAGE FLAGS */
189 while (iPage-- > 0)
190 {
191 pNew->aPages[iPage].HCPhys = HCPhysDummyPage; /** @todo PAGE FLAGS */
192 pNew->aPages[iPage].u32A = 0;
193 pNew->aPages[iPage].u32B = 0;
194 }
195 }
196
197 /*
198 * Insert the new RAM range.
199 */
200 pgmLock(pVM);
201 pNew->pNextHC = pCur;
202 pNew->pNextGC = pCur ? MMHyperHC2GC(pVM, pCur) : 0;
203 if (pPrev)
204 {
205 pPrev->pNextHC = pNew;
206 pPrev->pNextGC = GCPtrNew;
207 }
208 else
209 {
210 pVM->pgm.s.pRamRangesHC = pNew;
211 pVM->pgm.s.pRamRangesGC = GCPtrNew;
212 }
213 pgmUnlock(pVM);
214 }
215 return rc;
216}
217
218
219/**
220 * Register a chunk of a the physical memory range with PGM. MM is responsible
221 * for the toplevel things - allocation and locking - while PGM is taking
222 * care of all the details and implements the physical address space virtualization.
223 *
224 *
225 * @returns VBox status.
226 * @param pVM The VM handle.
227 * @param pvRam HC virtual address of the RAM range. (page aligned)
228 * @param GCPhys GC physical address of the RAM range. (page aligned)
229 * @param cb Size of the RAM range. (page aligned)
230 * @param fFlags Flags, MM_RAM_*.
231 * @param paPages Pointer an array of physical page descriptors.
232 * @param pszDesc Description string.
233 */
234PGMR3DECL(int) PGMR3PhysRegisterChunk(PVM pVM, void *pvRam, RTGCPHYS GCPhys, size_t cb, unsigned fFlags, const SUPPAGE *paPages, const char *pszDesc)
235{
236#ifdef PGM_DYNAMIC_RAM_ALLOC
237 NOREF(pszDesc);
238
239 /*
240 * Validate input.
241 * (Not so important because callers are only MMR3PhysRegister()
242 * and PGMR3HandlerPhysicalRegisterEx(), but anyway...)
243 */
244 Log(("PGMR3PhysRegisterChunk %08X %x bytes flags %x %s\n", GCPhys, cb, fFlags, pszDesc));
245
246 Assert(paPages);
247 Assert(pvRam);
248 Assert(!(fFlags & ~0xfff));
249 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb && cb);
250 Assert(RT_ALIGN_P(pvRam, PAGE_SIZE) == pvRam);
251 Assert(!(fFlags & ~(MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2 | MM_RAM_FLAGS_DYNAMIC_ALLOC)));
252 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
253 Assert(VM_IS_EMT(pVM));
254 Assert(!(GCPhys & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
255 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
256
257 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
258 if (GCPhysLast < GCPhys)
259 {
260 AssertMsgFailed(("The range wraps! GCPhys=%VGp cb=%#x\n", GCPhys, cb));
261 return VERR_INVALID_PARAMETER;
262 }
263
264 /*
265 * Find existing range location.
266 */
267 PPGMRAMRANGE pRam = CTXSUFF(pVM->pgm.s.pRamRanges);
268 while (pRam)
269 {
270 RTGCPHYS off = GCPhys - pRam->GCPhys;
271 if ( off < pRam->cb
272 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC))
273 break;
274
275 pRam = CTXSUFF(pRam->pNext);
276 }
277 AssertReturn(pRam, VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS);
278
279 unsigned off = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
280 unsigned iPage = cb >> PAGE_SHIFT;
281 if (paPages)
282 {
283 while (iPage-- > 0)
284 pRam->aPages[off + iPage].HCPhys = (paPages[iPage].Phys & X86_PTE_PAE_PG_MASK) | fFlags; /** @todo PAGE FLAGS */
285 }
286 off >>= (PGM_DYNAMIC_CHUNK_SHIFT - PAGE_SHIFT);
287 pRam->pavHCChunkHC[off] = pvRam;
288
289 /* Notify the recompiler. */
290 REMR3NotifyPhysRamChunkRegister(pVM, GCPhys, PGM_DYNAMIC_CHUNK_SIZE, (RTHCUINTPTR)pvRam, fFlags);
291
292 return VINF_SUCCESS;
293#else /* !PGM_DYNAMIC_RAM_ALLOC */
294 AssertReleaseMsgFailed(("Shouldn't ever get here when PGM_DYNAMIC_RAM_ALLOC isn't defined!\n"));
295 return VERR_INTERNAL_ERROR;
296#endif /* !PGM_DYNAMIC_RAM_ALLOC */
297}
298
299
300/**
301 * Allocate missing physical pages for an existing guest RAM range.
302 *
303 * @returns VBox status.
304 * @param pVM The VM handle.
305 * @param GCPhys GC physical address of the RAM range. (page aligned)
306 */
307PGMR3DECL(int) PGM3PhysGrowRange(PVM pVM, RTGCPHYS GCPhys)
308{
309 /*
310 * Walk range list.
311 */
312 pgmLock(pVM);
313
314 PPGMRAMRANGE pRam = CTXSUFF(pVM->pgm.s.pRamRanges);
315 while (pRam)
316 {
317 RTGCPHYS off = GCPhys - pRam->GCPhys;
318 if ( off < pRam->cb
319 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC))
320 {
321 bool fRangeExists = false;
322 unsigned off = (GCPhys - pRam->GCPhys) >> PGM_DYNAMIC_CHUNK_SHIFT;
323
324 /** @note A request made from another thread may end up in EMT after somebody else has already allocated the range. */
325 if (pRam->pavHCChunkHC[off])
326 fRangeExists = true;
327
328 pgmUnlock(pVM);
329 if (fRangeExists)
330 return VINF_SUCCESS;
331 return pgmr3PhysGrowRange(pVM, GCPhys);
332 }
333
334 pRam = CTXSUFF(pRam->pNext);
335 }
336 pgmUnlock(pVM);
337 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
338}
339
340
341/**
342 * Allocate missing physical pages for an existing guest RAM range.
343 *
344 * @returns VBox status.
345 * @param pVM The VM handle.
346 * @param pRamRange RAM range
347 * @param GCPhys GC physical address of the RAM range. (page aligned)
348 */
349int pgmr3PhysGrowRange(PVM pVM, RTGCPHYS GCPhys)
350{
351 void *pvRam;
352 int rc;
353
354 /* We must execute this function in the EMT thread, otherwise we'll run into problems. */
355 if (!VM_IS_EMT(pVM))
356 {
357 PVMREQ pReq;
358
359 AssertMsg(!PDMCritSectIsOwner(&pVM->pgm.s.CritSect), ("We own the PGM lock -> deadlock danger!!\n"));
360
361 rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)PGM3PhysGrowRange, 2, pVM, GCPhys);
362 if (VBOX_SUCCESS(rc))
363 {
364 rc = pReq->iStatus;
365 VMR3ReqFree(pReq);
366 }
367 return rc;
368 }
369
370 /* Round down to chunk boundary */
371 GCPhys = GCPhys & PGM_DYNAMIC_CHUNK_BASE_MASK;
372
373 STAM_COUNTER_INC(&pVM->pgm.s.StatDynRamGrow);
374 STAM_COUNTER_ADD(&pVM->pgm.s.StatDynRamTotal, PGM_DYNAMIC_CHUNK_SIZE/(1024*1024));
375
376 Log(("pgmr3PhysGrowRange: allocate chunk of size 0x%X at %VGp\n", PGM_DYNAMIC_CHUNK_SIZE, GCPhys));
377
378 unsigned cPages = PGM_DYNAMIC_CHUNK_SIZE >> PAGE_SHIFT;
379 rc = SUPPageAlloc(cPages, &pvRam);
380 if (VBOX_SUCCESS(rc))
381 {
382 VMSTATE enmVMState = VMR3GetState(pVM);
383
384 rc = MMR3PhysRegisterEx(pVM, pvRam, GCPhys, PGM_DYNAMIC_CHUNK_SIZE, 0, MM_PHYS_TYPE_DYNALLOC_CHUNK, "Main Memory");
385 if ( VBOX_SUCCESS(rc)
386 || enmVMState != VMSTATE_RUNNING)
387 {
388 if (VBOX_FAILURE(rc))
389 {
390 AssertMsgFailed(("Out of memory while trying to allocate a guest RAM chunk at %VGp!\n", GCPhys));
391 LogRel(("PGM: Out of memory while trying to allocate a guest RAM chunk at %VGp (VMstate=%s)!\n", GCPhys, VMR3GetStateName(enmVMState)));
392 }
393 return rc;
394 }
395
396 SUPPageFree(pvRam, cPages);
397
398 LogRel(("pgmr3PhysGrowRange: out of memory. pause until the user resumes execution.\n"));
399
400 /* Pause first, then inform Main. */
401 rc = VMR3SuspendNoSave(pVM);
402 AssertRC(rc);
403
404 VMSetRuntimeError(pVM, false, "HostMemoryLow", "Unable to allocate and lock memory. The virtual machine will be paused. Please close applications to free up memory or close the VM.");
405
406 /* Wait for resume event; will only return in that case. If the VM is stopped, the EMT thread will be destroyed. */
407 rc = VMR3WaitForResume(pVM);
408
409 /* Retry */
410 LogRel(("pgmr3PhysGrowRange: VM execution resumed -> retry.\n"));
411 return pgmr3PhysGrowRange(pVM, GCPhys);
412 }
413 return rc;
414}
415
416
417/**
418 * Interface MMIO handler relocation calls.
419 *
420 * It relocates an existing physical memory range with PGM.
421 *
422 * @returns VBox status.
423 * @param pVM The VM handle.
424 * @param GCPhysOld Previous GC physical address of the RAM range. (page aligned)
425 * @param GCPhysNew New GC physical address of the RAM range. (page aligned)
426 * @param cb Size of the RAM range. (page aligned)
427 */
428PGMR3DECL(int) PGMR3PhysRelocate(PVM pVM, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, size_t cb)
429{
430 /*
431 * Validate input.
432 * (Not so important because callers are only MMR3PhysRelocate(),
433 * but anyway...)
434 */
435 Log(("PGMR3PhysRelocate Old %VGp New %VGp (%#x bytes)\n", GCPhysOld, GCPhysNew, cb));
436
437 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb && cb);
438 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
439 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
440 RTGCPHYS GCPhysLast;
441 GCPhysLast = GCPhysOld + (cb - 1);
442 if (GCPhysLast < GCPhysOld)
443 {
444 AssertMsgFailed(("The old range wraps! GCPhys=%VGp cb=%#x\n", GCPhysOld, cb));
445 return VERR_INVALID_PARAMETER;
446 }
447 GCPhysLast = GCPhysNew + (cb - 1);
448 if (GCPhysLast < GCPhysNew)
449 {
450 AssertMsgFailed(("The new range wraps! GCPhys=%VGp cb=%#x\n", GCPhysNew, cb));
451 return VERR_INVALID_PARAMETER;
452 }
453
454 /*
455 * Find and remove old range location.
456 */
457 pgmLock(pVM);
458 PPGMRAMRANGE pPrev = NULL;
459 PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesHC;
460 while (pCur)
461 {
462 if (pCur->GCPhys == GCPhysOld && pCur->cb == cb)
463 break;
464
465 /* next */
466 pPrev = pCur;
467 pCur = pCur->pNextHC;
468 }
469 if (pPrev)
470 {
471 pPrev->pNextHC = pCur->pNextHC;
472 pPrev->pNextGC = pCur->pNextGC;
473 }
474 else
475 {
476 pVM->pgm.s.pRamRangesHC = pCur->pNextHC;
477 pVM->pgm.s.pRamRangesGC = pCur->pNextGC;
478 }
479
480 /*
481 * Update the range.
482 */
483 pCur->GCPhys = GCPhysNew;
484 pCur->GCPhysLast= GCPhysLast;
485 PPGMRAMRANGE pNew = pCur;
486
487 /*
488 * Find range location and check for conflicts.
489 */
490 pPrev = NULL;
491 pCur = pVM->pgm.s.pRamRangesHC;
492 while (pCur)
493 {
494 if (GCPhysNew <= pCur->GCPhysLast && GCPhysLast >= pCur->GCPhys)
495 {
496 AssertMsgFailed(("Conflict! This cannot happen!\n"));
497 pgmUnlock(pVM);
498 return VERR_PGM_RAM_CONFLICT;
499 }
500 if (GCPhysLast < pCur->GCPhys)
501 break;
502
503 /* next */
504 pPrev = pCur;
505 pCur = pCur->pNextHC;
506 }
507
508 /*
509 * Reinsert the RAM range.
510 */
511 pNew->pNextHC = pCur;
512 pNew->pNextGC = pCur ? MMHyperHC2GC(pVM, pCur) : 0;
513 if (pPrev)
514 {
515 pPrev->pNextHC = pNew;
516 pPrev->pNextGC = MMHyperHC2GC(pVM, pNew);
517 }
518 else
519 {
520 pVM->pgm.s.pRamRangesHC = pNew;
521 pVM->pgm.s.pRamRangesGC = MMHyperHC2GC(pVM, pNew);
522 }
523
524 pgmUnlock(pVM);
525 return VINF_SUCCESS;
526}
527
528
529/**
530 * Interface MMR3RomRegister() and MMR3PhysReserve calls to update the
531 * flags of existing RAM ranges.
532 *
533 * @returns VBox status.
534 * @param pVM The VM handle.
535 * @param GCPhys GC physical address of the RAM range. (page aligned)
536 * @param cb Size of the RAM range. (page aligned)
537 * @param fFlags The Or flags, MM_RAM_* \#defines.
538 * @param fMask The and mask for the flags.
539 */
540PGMR3DECL(int) PGMR3PhysSetFlags(PVM pVM, RTGCPHYS GCPhys, size_t cb, unsigned fFlags, unsigned fMask)
541{
542 Log(("PGMR3PhysSetFlags %08X %x %x %x\n", GCPhys, cb, fFlags, fMask));
543
544 /*
545 * Validate input.
546 * (Not so important because caller is always MMR3RomRegister() and MMR3PhysReserve(), but anyway...)
547 */
548 Assert(!(fFlags & ~(MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2)));
549 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb && cb);
550 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
551 RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
552 AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
553
554 /*
555 * Lookup the range.
556 */
557 PPGMRAMRANGE pRam = CTXSUFF(pVM->pgm.s.pRamRanges);
558 while (pRam && GCPhys > pRam->GCPhysLast)
559 pRam = CTXSUFF(pRam->pNext);
560 if ( !pRam
561 || GCPhys > pRam->GCPhysLast
562 || GCPhysLast < pRam->GCPhys)
563 {
564 AssertMsgFailed(("No RAM range for %VGp-%VGp\n", GCPhys, GCPhysLast));
565 return VERR_INVALID_PARAMETER;
566 }
567
568 /*
569 * Update the requested flags.
570 */
571 RTHCPHYS fFullMask = ~(RTHCPHYS)(MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2)
572 | fMask;
573 unsigned iPageEnd = (GCPhysLast - pRam->GCPhys + 1) >> PAGE_SHIFT;
574 unsigned iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
575 for ( ; iPage < iPageEnd; iPage++)
576 pRam->aPages[iPage].HCPhys = (pRam->aPages[iPage].HCPhys & fFullMask) | fFlags; /** @todo PAGE FLAGS */
577
578 return VINF_SUCCESS;
579}
580
581
582/**
583 * Sets the Address Gate 20 state.
584 *
585 * @param pVM VM handle.
586 * @param fEnable True if the gate should be enabled.
587 * False if the gate should be disabled.
588 */
589PGMDECL(void) PGMR3PhysSetA20(PVM pVM, bool fEnable)
590{
591 LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVM->pgm.s.fA20Enabled));
592 if (pVM->pgm.s.fA20Enabled != (RTUINT)fEnable)
593 {
594 pVM->pgm.s.fA20Enabled = fEnable;
595 pVM->pgm.s.GCPhysA20Mask = ~(RTGCPHYS)(!fEnable << 20);
596 REMR3A20Set(pVM, fEnable);
597 }
598}
599
600
601/*
602 * PGMR3PhysReadByte/Word/Dword
603 * PGMR3PhysWriteByte/Word/Dword
604 */
605
606#define PGMPHYSFN_READNAME PGMR3PhysReadByte
607#define PGMPHYSFN_WRITENAME PGMR3PhysWriteByte
608#define PGMPHYS_DATASIZE 1
609#define PGMPHYS_DATATYPE uint8_t
610#include "PGMPhys.h"
611
612#define PGMPHYSFN_READNAME PGMR3PhysReadWord
613#define PGMPHYSFN_WRITENAME PGMR3PhysWriteWord
614#define PGMPHYS_DATASIZE 2
615#define PGMPHYS_DATATYPE uint16_t
616#include "PGMPhys.h"
617
618#define PGMPHYSFN_READNAME PGMR3PhysReadDword
619#define PGMPHYSFN_WRITENAME PGMR3PhysWriteDword
620#define PGMPHYS_DATASIZE 4
621#define PGMPHYS_DATATYPE uint32_t
622#include "PGMPhys.h"
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette