1 | /* $Id: PGMPhys.cpp 6534 2008-01-28 18:44:36Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * PGM - Page Manager and Monitor, Physical Memory Addressing.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2006-2007 innotek GmbH
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | /*******************************************************************************
|
---|
20 | * Header Files *
|
---|
21 | *******************************************************************************/
|
---|
22 | #define LOG_GROUP LOG_GROUP_PGM
|
---|
23 | #include <VBox/pgm.h>
|
---|
24 | #include <VBox/cpum.h>
|
---|
25 | #include <VBox/iom.h>
|
---|
26 | #include <VBox/sup.h>
|
---|
27 | #include <VBox/mm.h>
|
---|
28 | #include <VBox/stam.h>
|
---|
29 | #include <VBox/rem.h>
|
---|
30 | #include <VBox/csam.h>
|
---|
31 | #include "PGMInternal.h"
|
---|
32 | #include <VBox/vm.h>
|
---|
33 | #include <VBox/dbg.h>
|
---|
34 | #include <VBox/param.h>
|
---|
35 | #include <VBox/err.h>
|
---|
36 | #include <iprt/assert.h>
|
---|
37 | #include <iprt/alloc.h>
|
---|
38 | #include <iprt/asm.h>
|
---|
39 | #include <VBox/log.h>
|
---|
40 | #include <iprt/thread.h>
|
---|
41 | #include <iprt/string.h>
|
---|
42 |
|
---|
43 |
|
---|
44 |
|
---|
45 | /*
|
---|
46 | * PGMR3PhysReadByte/Word/Dword
|
---|
47 | * PGMR3PhysWriteByte/Word/Dword
|
---|
48 | */
|
---|
49 |
|
---|
50 | #define PGMPHYSFN_READNAME PGMR3PhysReadByte
|
---|
51 | #define PGMPHYSFN_WRITENAME PGMR3PhysWriteByte
|
---|
52 | #define PGMPHYS_DATASIZE 1
|
---|
53 | #define PGMPHYS_DATATYPE uint8_t
|
---|
54 | #include "PGMPhys.h"
|
---|
55 |
|
---|
56 | #define PGMPHYSFN_READNAME PGMR3PhysReadWord
|
---|
57 | #define PGMPHYSFN_WRITENAME PGMR3PhysWriteWord
|
---|
58 | #define PGMPHYS_DATASIZE 2
|
---|
59 | #define PGMPHYS_DATATYPE uint16_t
|
---|
60 | #include "PGMPhys.h"
|
---|
61 |
|
---|
62 | #define PGMPHYSFN_READNAME PGMR3PhysReadDword
|
---|
63 | #define PGMPHYSFN_WRITENAME PGMR3PhysWriteDword
|
---|
64 | #define PGMPHYS_DATASIZE 4
|
---|
65 | #define PGMPHYS_DATATYPE uint32_t
|
---|
66 | #include "PGMPhys.h"
|
---|
67 |
|
---|
68 |
|
---|
69 |
|
---|
70 |
|
---|
71 | /**
|
---|
72 | * Interface that the MMR3RamRegister(), MMR3RomRegister() and MMIO handler
|
---|
73 | * registration APIs calls to inform PGM about memory registrations.
|
---|
74 | *
|
---|
75 | * It registers the physical memory range with PGM. MM is responsible
|
---|
76 | * for the toplevel things - allocation and locking - while PGM is taking
|
---|
77 | * care of all the details and implements the physical address space virtualization.
|
---|
78 | *
|
---|
79 | * @returns VBox status.
|
---|
80 | * @param pVM The VM handle.
|
---|
81 | * @param pvRam HC virtual address of the RAM range. (page aligned)
|
---|
82 | * @param GCPhys GC physical address of the RAM range. (page aligned)
|
---|
83 | * @param cb Size of the RAM range. (page aligned)
|
---|
84 | * @param fFlags Flags, MM_RAM_*.
|
---|
85 | * @param paPages Pointer an array of physical page descriptors.
|
---|
86 | * @param pszDesc Description string.
|
---|
87 | */
|
---|
88 | PGMR3DECL(int) PGMR3PhysRegister(PVM pVM, void *pvRam, RTGCPHYS GCPhys, size_t cb, unsigned fFlags, const SUPPAGE *paPages, const char *pszDesc)
|
---|
89 | {
|
---|
90 | /*
|
---|
91 | * Validate input.
|
---|
92 | * (Not so important because callers are only MMR3PhysRegister()
|
---|
93 | * and PGMR3HandlerPhysicalRegisterEx(), but anyway...)
|
---|
94 | */
|
---|
95 | Log(("PGMR3PhysRegister %08X %x bytes flags %x %s\n", GCPhys, cb, fFlags, pszDesc));
|
---|
96 |
|
---|
97 | Assert((fFlags & (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_DYNAMIC_ALLOC)) || paPages);
|
---|
98 | /*Assert(!(fFlags & MM_RAM_FLAGS_RESERVED) || !paPages);*/
|
---|
99 | Assert((fFlags == (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO)) || (fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) || pvRam);
|
---|
100 | /*Assert(!(fFlags & MM_RAM_FLAGS_RESERVED) || !pvRam);*/
|
---|
101 | Assert(!(fFlags & ~0xfff));
|
---|
102 | Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb && cb);
|
---|
103 | Assert(RT_ALIGN_P(pvRam, PAGE_SIZE) == pvRam);
|
---|
104 | Assert(!(fFlags & ~(MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2 | MM_RAM_FLAGS_DYNAMIC_ALLOC)));
|
---|
105 | Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
|
---|
106 | RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
|
---|
107 | if (GCPhysLast < GCPhys)
|
---|
108 | {
|
---|
109 | AssertMsgFailed(("The range wraps! GCPhys=%VGp cb=%#x\n", GCPhys, cb));
|
---|
110 | return VERR_INVALID_PARAMETER;
|
---|
111 | }
|
---|
112 |
|
---|
113 | /*
|
---|
114 | * Find range location and check for conflicts.
|
---|
115 | */
|
---|
116 | PPGMRAMRANGE pPrev = NULL;
|
---|
117 | PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesHC;
|
---|
118 | while (pCur)
|
---|
119 | {
|
---|
120 | if (GCPhys <= pCur->GCPhysLast && GCPhysLast >= pCur->GCPhys)
|
---|
121 | {
|
---|
122 | AssertMsgFailed(("Conflict! This cannot happen!\n"));
|
---|
123 | return VERR_PGM_RAM_CONFLICT;
|
---|
124 | }
|
---|
125 | if (GCPhysLast < pCur->GCPhys)
|
---|
126 | break;
|
---|
127 |
|
---|
128 | /* next */
|
---|
129 | pPrev = pCur;
|
---|
130 | pCur = pCur->pNextHC;
|
---|
131 | }
|
---|
132 |
|
---|
133 | /*
|
---|
134 | * Allocate RAM range.
|
---|
135 | * Small ranges are allocated from the heap, big ones have separate mappings.
|
---|
136 | */
|
---|
137 | size_t cbRam = RT_OFFSETOF(PGMRAMRANGE, aPages[cb >> PAGE_SHIFT]);
|
---|
138 | PPGMRAMRANGE pNew;
|
---|
139 | RTGCPTR GCPtrNew;
|
---|
140 | int rc = VERR_NO_MEMORY;
|
---|
141 | if (cbRam > PAGE_SIZE / 2)
|
---|
142 | { /* large */
|
---|
143 | cbRam = RT_ALIGN_Z(cbRam, PAGE_SIZE);
|
---|
144 | rc = SUPPageAlloc(cbRam >> PAGE_SHIFT, (void **)&pNew);
|
---|
145 | if (VBOX_SUCCESS(rc))
|
---|
146 | {
|
---|
147 | rc = MMR3HyperMapHCRam(pVM, pNew, cbRam, true, pszDesc, &GCPtrNew);
|
---|
148 | if (VBOX_SUCCESS(rc))
|
---|
149 | {
|
---|
150 | Assert(MMHyperHC2GC(pVM, pNew) == GCPtrNew);
|
---|
151 | rc = MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
|
---|
152 | }
|
---|
153 | else
|
---|
154 | {
|
---|
155 | AssertMsgFailed(("MMR3HyperMapHCRam(,,%#x,,,) -> %Vrc\n", cbRam, rc));
|
---|
156 | SUPPageFree(pNew, cbRam >> PAGE_SHIFT);
|
---|
157 | }
|
---|
158 | }
|
---|
159 | else
|
---|
160 | AssertMsgFailed(("SUPPageAlloc(%#x,,) -> %Vrc\n", cbRam >> PAGE_SHIFT, rc));
|
---|
161 |
|
---|
162 | }
|
---|
163 | if (RT_FAILURE(rc))
|
---|
164 | { /* small + fallback (vga) */
|
---|
165 | rc = MMHyperAlloc(pVM, cbRam, 16, MM_TAG_PGM, (void **)&pNew);
|
---|
166 | if (VBOX_SUCCESS(rc))
|
---|
167 | GCPtrNew = MMHyperHC2GC(pVM, pNew);
|
---|
168 | else
|
---|
169 | AssertMsgFailed(("MMHyperAlloc(,%#x,,,) -> %Vrc\n", cbRam, cb));
|
---|
170 | }
|
---|
171 | if (VBOX_SUCCESS(rc))
|
---|
172 | {
|
---|
173 | /*
|
---|
174 | * Initialize the range.
|
---|
175 | */
|
---|
176 | pNew->pvHC = pvRam;
|
---|
177 | pNew->GCPhys = GCPhys;
|
---|
178 | pNew->GCPhysLast = GCPhysLast;
|
---|
179 | pNew->cb = cb;
|
---|
180 | pNew->fFlags = fFlags;
|
---|
181 | pNew->pavHCChunkHC = NULL;
|
---|
182 | pNew->pavHCChunkGC = 0;
|
---|
183 |
|
---|
184 | unsigned iPage = cb >> PAGE_SHIFT;
|
---|
185 | if (paPages)
|
---|
186 | {
|
---|
187 | while (iPage-- > 0)
|
---|
188 | {
|
---|
189 | pNew->aPages[iPage].HCPhys = (paPages[iPage].Phys & X86_PTE_PAE_PG_MASK) | fFlags; /** @todo PAGE FLAGS */
|
---|
190 | pNew->aPages[iPage].u2State = PGM_PAGE_STATE_ALLOCATED;
|
---|
191 | pNew->aPages[iPage].fWrittenTo = 0;
|
---|
192 | pNew->aPages[iPage].fSomethingElse = 0;
|
---|
193 | pNew->aPages[iPage].idPage = 0;
|
---|
194 | pNew->aPages[iPage].u32B = 0;
|
---|
195 | }
|
---|
196 | }
|
---|
197 | else if (fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
|
---|
198 | {
|
---|
199 | /* Allocate memory for chunk to HC ptr lookup array. */
|
---|
200 | rc = MMHyperAlloc(pVM, (cb >> PGM_DYNAMIC_CHUNK_SHIFT) * sizeof(void *), 16, MM_TAG_PGM, (void **)&pNew->pavHCChunkHC);
|
---|
201 | AssertMsgReturn(rc == VINF_SUCCESS, ("MMHyperAlloc(,%#x,,,) -> %Vrc\n", cbRam, cb), rc);
|
---|
202 |
|
---|
203 | pNew->pavHCChunkGC = MMHyperHC2GC(pVM, pNew->pavHCChunkHC);
|
---|
204 | Assert(pNew->pavHCChunkGC);
|
---|
205 |
|
---|
206 | /* Physical memory will be allocated on demand. */
|
---|
207 | while (iPage-- > 0)
|
---|
208 | {
|
---|
209 | pNew->aPages[iPage].HCPhys = fFlags; /** @todo PAGE FLAGS */
|
---|
210 | pNew->aPages[iPage].u2State = PGM_PAGE_STATE_ZERO;
|
---|
211 | pNew->aPages[iPage].fWrittenTo = 0;
|
---|
212 | pNew->aPages[iPage].fSomethingElse = 0;
|
---|
213 | pNew->aPages[iPage].idPage = 0;
|
---|
214 | pNew->aPages[iPage].u32B = 0;
|
---|
215 | }
|
---|
216 | }
|
---|
217 | else
|
---|
218 | {
|
---|
219 | Assert(fFlags == (MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_MMIO));
|
---|
220 | RTHCPHYS HCPhysDummyPage = (MMR3PageDummyHCPhys(pVM) & X86_PTE_PAE_PG_MASK) | fFlags; /** @todo PAGE FLAGS */
|
---|
221 | while (iPage-- > 0)
|
---|
222 | {
|
---|
223 | pNew->aPages[iPage].HCPhys = HCPhysDummyPage; /** @todo PAGE FLAGS */
|
---|
224 | pNew->aPages[iPage].u2State = PGM_PAGE_STATE_ZERO;
|
---|
225 | pNew->aPages[iPage].fWrittenTo = 0;
|
---|
226 | pNew->aPages[iPage].fSomethingElse = 0;
|
---|
227 | pNew->aPages[iPage].idPage = 0;
|
---|
228 | pNew->aPages[iPage].u32B = 0;
|
---|
229 | }
|
---|
230 | }
|
---|
231 |
|
---|
232 | /*
|
---|
233 | * Insert the new RAM range.
|
---|
234 | */
|
---|
235 | pgmLock(pVM);
|
---|
236 | pNew->pNextHC = pCur;
|
---|
237 | pNew->pNextGC = pCur ? MMHyperHC2GC(pVM, pCur) : 0;
|
---|
238 | if (pPrev)
|
---|
239 | {
|
---|
240 | pPrev->pNextHC = pNew;
|
---|
241 | pPrev->pNextGC = GCPtrNew;
|
---|
242 | }
|
---|
243 | else
|
---|
244 | {
|
---|
245 | pVM->pgm.s.pRamRangesHC = pNew;
|
---|
246 | pVM->pgm.s.pRamRangesGC = GCPtrNew;
|
---|
247 | }
|
---|
248 | pgmUnlock(pVM);
|
---|
249 | }
|
---|
250 | return rc;
|
---|
251 | }
|
---|
252 |
|
---|
253 |
|
---|
254 | /**
|
---|
255 | * Register a chunk of a the physical memory range with PGM. MM is responsible
|
---|
256 | * for the toplevel things - allocation and locking - while PGM is taking
|
---|
257 | * care of all the details and implements the physical address space virtualization.
|
---|
258 | *
|
---|
259 | *
|
---|
260 | * @returns VBox status.
|
---|
261 | * @param pVM The VM handle.
|
---|
262 | * @param pvRam HC virtual address of the RAM range. (page aligned)
|
---|
263 | * @param GCPhys GC physical address of the RAM range. (page aligned)
|
---|
264 | * @param cb Size of the RAM range. (page aligned)
|
---|
265 | * @param fFlags Flags, MM_RAM_*.
|
---|
266 | * @param paPages Pointer an array of physical page descriptors.
|
---|
267 | * @param pszDesc Description string.
|
---|
268 | */
|
---|
269 | PGMR3DECL(int) PGMR3PhysRegisterChunk(PVM pVM, void *pvRam, RTGCPHYS GCPhys, size_t cb, unsigned fFlags, const SUPPAGE *paPages, const char *pszDesc)
|
---|
270 | {
|
---|
271 | NOREF(pszDesc);
|
---|
272 |
|
---|
273 | /*
|
---|
274 | * Validate input.
|
---|
275 | * (Not so important because callers are only MMR3PhysRegister()
|
---|
276 | * and PGMR3HandlerPhysicalRegisterEx(), but anyway...)
|
---|
277 | */
|
---|
278 | Log(("PGMR3PhysRegisterChunk %08X %x bytes flags %x %s\n", GCPhys, cb, fFlags, pszDesc));
|
---|
279 |
|
---|
280 | Assert(paPages);
|
---|
281 | Assert(pvRam);
|
---|
282 | Assert(!(fFlags & ~0xfff));
|
---|
283 | Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb && cb);
|
---|
284 | Assert(RT_ALIGN_P(pvRam, PAGE_SIZE) == pvRam);
|
---|
285 | Assert(!(fFlags & ~(MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2 | MM_RAM_FLAGS_DYNAMIC_ALLOC)));
|
---|
286 | Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
|
---|
287 | Assert(VM_IS_EMT(pVM));
|
---|
288 | Assert(!(GCPhys & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
|
---|
289 | Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
|
---|
290 |
|
---|
291 | RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
|
---|
292 | if (GCPhysLast < GCPhys)
|
---|
293 | {
|
---|
294 | AssertMsgFailed(("The range wraps! GCPhys=%VGp cb=%#x\n", GCPhys, cb));
|
---|
295 | return VERR_INVALID_PARAMETER;
|
---|
296 | }
|
---|
297 |
|
---|
298 | /*
|
---|
299 | * Find existing range location.
|
---|
300 | */
|
---|
301 | PPGMRAMRANGE pRam = CTXSUFF(pVM->pgm.s.pRamRanges);
|
---|
302 | while (pRam)
|
---|
303 | {
|
---|
304 | RTGCPHYS off = GCPhys - pRam->GCPhys;
|
---|
305 | if ( off < pRam->cb
|
---|
306 | && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC))
|
---|
307 | break;
|
---|
308 |
|
---|
309 | pRam = CTXSUFF(pRam->pNext);
|
---|
310 | }
|
---|
311 | AssertReturn(pRam, VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS);
|
---|
312 |
|
---|
313 | unsigned off = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
|
---|
314 | unsigned iPage = cb >> PAGE_SHIFT;
|
---|
315 | if (paPages)
|
---|
316 | {
|
---|
317 | while (iPage-- > 0)
|
---|
318 | pRam->aPages[off + iPage].HCPhys = (paPages[iPage].Phys & X86_PTE_PAE_PG_MASK) | fFlags; /** @todo PAGE FLAGS */
|
---|
319 | }
|
---|
320 | off >>= (PGM_DYNAMIC_CHUNK_SHIFT - PAGE_SHIFT);
|
---|
321 | pRam->pavHCChunkHC[off] = pvRam;
|
---|
322 |
|
---|
323 | /* Notify the recompiler. */
|
---|
324 | REMR3NotifyPhysRamChunkRegister(pVM, GCPhys, PGM_DYNAMIC_CHUNK_SIZE, (RTHCUINTPTR)pvRam, fFlags);
|
---|
325 |
|
---|
326 | return VINF_SUCCESS;
|
---|
327 | }
|
---|
328 |
|
---|
329 |
|
---|
330 | /**
|
---|
331 | * Allocate missing physical pages for an existing guest RAM range.
|
---|
332 | *
|
---|
333 | * @returns VBox status.
|
---|
334 | * @param pVM The VM handle.
|
---|
335 | * @param GCPhys GC physical address of the RAM range. (page aligned)
|
---|
336 | */
|
---|
337 | PGMR3DECL(int) PGM3PhysGrowRange(PVM pVM, RTGCPHYS GCPhys)
|
---|
338 | {
|
---|
339 | /*
|
---|
340 | * Walk range list.
|
---|
341 | */
|
---|
342 | pgmLock(pVM);
|
---|
343 |
|
---|
344 | PPGMRAMRANGE pRam = CTXSUFF(pVM->pgm.s.pRamRanges);
|
---|
345 | while (pRam)
|
---|
346 | {
|
---|
347 | RTGCPHYS off = GCPhys - pRam->GCPhys;
|
---|
348 | if ( off < pRam->cb
|
---|
349 | && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC))
|
---|
350 | {
|
---|
351 | bool fRangeExists = false;
|
---|
352 | unsigned off = (GCPhys - pRam->GCPhys) >> PGM_DYNAMIC_CHUNK_SHIFT;
|
---|
353 |
|
---|
354 | /** @note A request made from another thread may end up in EMT after somebody else has already allocated the range. */
|
---|
355 | if (pRam->pavHCChunkHC[off])
|
---|
356 | fRangeExists = true;
|
---|
357 |
|
---|
358 | pgmUnlock(pVM);
|
---|
359 | if (fRangeExists)
|
---|
360 | return VINF_SUCCESS;
|
---|
361 | return pgmr3PhysGrowRange(pVM, GCPhys);
|
---|
362 | }
|
---|
363 |
|
---|
364 | pRam = CTXSUFF(pRam->pNext);
|
---|
365 | }
|
---|
366 | pgmUnlock(pVM);
|
---|
367 | return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
|
---|
368 | }
|
---|
369 |
|
---|
370 | #ifndef VBOX_WITH_NEW_PHYS_CODE
|
---|
371 |
|
---|
372 | /**
|
---|
373 | * Allocate missing physical pages for an existing guest RAM range.
|
---|
374 | *
|
---|
375 | * @returns VBox status.
|
---|
376 | * @param pVM The VM handle.
|
---|
377 | * @param pRamRange RAM range
|
---|
378 | * @param GCPhys GC physical address of the RAM range. (page aligned)
|
---|
379 | */
|
---|
380 | int pgmr3PhysGrowRange(PVM pVM, RTGCPHYS GCPhys)
|
---|
381 | {
|
---|
382 | void *pvRam;
|
---|
383 | int rc;
|
---|
384 |
|
---|
385 | /* We must execute this function in the EMT thread, otherwise we'll run into problems. */
|
---|
386 | if (!VM_IS_EMT(pVM))
|
---|
387 | {
|
---|
388 | PVMREQ pReq;
|
---|
389 |
|
---|
390 | AssertMsg(!PDMCritSectIsOwner(&pVM->pgm.s.CritSect), ("We own the PGM lock -> deadlock danger!!\n"));
|
---|
391 |
|
---|
392 | rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)PGM3PhysGrowRange, 2, pVM, GCPhys);
|
---|
393 | if (VBOX_SUCCESS(rc))
|
---|
394 | {
|
---|
395 | rc = pReq->iStatus;
|
---|
396 | VMR3ReqFree(pReq);
|
---|
397 | }
|
---|
398 | return rc;
|
---|
399 | }
|
---|
400 |
|
---|
401 | /* Round down to chunk boundary */
|
---|
402 | GCPhys = GCPhys & PGM_DYNAMIC_CHUNK_BASE_MASK;
|
---|
403 |
|
---|
404 | STAM_COUNTER_INC(&pVM->pgm.s.StatDynRamGrow);
|
---|
405 | STAM_COUNTER_ADD(&pVM->pgm.s.StatDynRamTotal, PGM_DYNAMIC_CHUNK_SIZE/(1024*1024));
|
---|
406 |
|
---|
407 | Log(("pgmr3PhysGrowRange: allocate chunk of size 0x%X at %VGp\n", PGM_DYNAMIC_CHUNK_SIZE, GCPhys));
|
---|
408 |
|
---|
409 | unsigned cPages = PGM_DYNAMIC_CHUNK_SIZE >> PAGE_SHIFT;
|
---|
410 |
|
---|
411 | for (;;)
|
---|
412 | {
|
---|
413 | rc = SUPPageAlloc(cPages, &pvRam);
|
---|
414 | if (VBOX_SUCCESS(rc))
|
---|
415 | {
|
---|
416 |
|
---|
417 | rc = MMR3PhysRegisterEx(pVM, pvRam, GCPhys, PGM_DYNAMIC_CHUNK_SIZE, 0, MM_PHYS_TYPE_DYNALLOC_CHUNK, "Main Memory");
|
---|
418 | if (VBOX_SUCCESS(rc))
|
---|
419 | return rc;
|
---|
420 |
|
---|
421 | SUPPageFree(pvRam, cPages);
|
---|
422 | }
|
---|
423 |
|
---|
424 | VMSTATE enmVMState = VMR3GetState(pVM);
|
---|
425 | if (enmVMState != VMSTATE_RUNNING)
|
---|
426 | {
|
---|
427 | AssertMsgFailed(("Out of memory while trying to allocate a guest RAM chunk at %VGp!\n", GCPhys));
|
---|
428 | LogRel(("PGM: Out of memory while trying to allocate a guest RAM chunk at %VGp (VMstate=%s)!\n", GCPhys, VMR3GetStateName(enmVMState)));
|
---|
429 | return rc;
|
---|
430 | }
|
---|
431 |
|
---|
432 | LogRel(("pgmr3PhysGrowRange: out of memory. pause until the user resumes execution.\n"));
|
---|
433 |
|
---|
434 | /* Pause first, then inform Main. */
|
---|
435 | rc = VMR3SuspendNoSave(pVM);
|
---|
436 | AssertRC(rc);
|
---|
437 |
|
---|
438 | VMSetRuntimeError(pVM, false, "HostMemoryLow", "Unable to allocate and lock memory. The virtual machine will be paused. Please close applications to free up memory or close the VM.");
|
---|
439 |
|
---|
440 | /* Wait for resume event; will only return in that case. If the VM is stopped, the EMT thread will be destroyed. */
|
---|
441 | rc = VMR3WaitForResume(pVM);
|
---|
442 |
|
---|
443 | /* Retry */
|
---|
444 | LogRel(("pgmr3PhysGrowRange: VM execution resumed -> retry.\n"));
|
---|
445 | }
|
---|
446 | }
|
---|
447 |
|
---|
448 | #endif /* !VBOX_WITH_NEW_PHYS_CODE */
|
---|
449 |
|
---|
450 | /**
|
---|
451 | * Interface MMIO handler relocation calls.
|
---|
452 | *
|
---|
453 | * It relocates an existing physical memory range with PGM.
|
---|
454 | *
|
---|
455 | * @returns VBox status.
|
---|
456 | * @param pVM The VM handle.
|
---|
457 | * @param GCPhysOld Previous GC physical address of the RAM range. (page aligned)
|
---|
458 | * @param GCPhysNew New GC physical address of the RAM range. (page aligned)
|
---|
459 | * @param cb Size of the RAM range. (page aligned)
|
---|
460 | */
|
---|
461 | PGMR3DECL(int) PGMR3PhysRelocate(PVM pVM, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, size_t cb)
|
---|
462 | {
|
---|
463 | /*
|
---|
464 | * Validate input.
|
---|
465 | * (Not so important because callers are only MMR3PhysRelocate(),
|
---|
466 | * but anyway...)
|
---|
467 | */
|
---|
468 | Log(("PGMR3PhysRelocate Old %VGp New %VGp (%#x bytes)\n", GCPhysOld, GCPhysNew, cb));
|
---|
469 |
|
---|
470 | Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb && cb);
|
---|
471 | Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
|
---|
472 | Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
|
---|
473 | RTGCPHYS GCPhysLast;
|
---|
474 | GCPhysLast = GCPhysOld + (cb - 1);
|
---|
475 | if (GCPhysLast < GCPhysOld)
|
---|
476 | {
|
---|
477 | AssertMsgFailed(("The old range wraps! GCPhys=%VGp cb=%#x\n", GCPhysOld, cb));
|
---|
478 | return VERR_INVALID_PARAMETER;
|
---|
479 | }
|
---|
480 | GCPhysLast = GCPhysNew + (cb - 1);
|
---|
481 | if (GCPhysLast < GCPhysNew)
|
---|
482 | {
|
---|
483 | AssertMsgFailed(("The new range wraps! GCPhys=%VGp cb=%#x\n", GCPhysNew, cb));
|
---|
484 | return VERR_INVALID_PARAMETER;
|
---|
485 | }
|
---|
486 |
|
---|
487 | /*
|
---|
488 | * Find and remove old range location.
|
---|
489 | */
|
---|
490 | pgmLock(pVM);
|
---|
491 | PPGMRAMRANGE pPrev = NULL;
|
---|
492 | PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesHC;
|
---|
493 | while (pCur)
|
---|
494 | {
|
---|
495 | if (pCur->GCPhys == GCPhysOld && pCur->cb == cb)
|
---|
496 | break;
|
---|
497 |
|
---|
498 | /* next */
|
---|
499 | pPrev = pCur;
|
---|
500 | pCur = pCur->pNextHC;
|
---|
501 | }
|
---|
502 | if (pPrev)
|
---|
503 | {
|
---|
504 | pPrev->pNextHC = pCur->pNextHC;
|
---|
505 | pPrev->pNextGC = pCur->pNextGC;
|
---|
506 | }
|
---|
507 | else
|
---|
508 | {
|
---|
509 | pVM->pgm.s.pRamRangesHC = pCur->pNextHC;
|
---|
510 | pVM->pgm.s.pRamRangesGC = pCur->pNextGC;
|
---|
511 | }
|
---|
512 |
|
---|
513 | /*
|
---|
514 | * Update the range.
|
---|
515 | */
|
---|
516 | pCur->GCPhys = GCPhysNew;
|
---|
517 | pCur->GCPhysLast= GCPhysLast;
|
---|
518 | PPGMRAMRANGE pNew = pCur;
|
---|
519 |
|
---|
520 | /*
|
---|
521 | * Find range location and check for conflicts.
|
---|
522 | */
|
---|
523 | pPrev = NULL;
|
---|
524 | pCur = pVM->pgm.s.pRamRangesHC;
|
---|
525 | while (pCur)
|
---|
526 | {
|
---|
527 | if (GCPhysNew <= pCur->GCPhysLast && GCPhysLast >= pCur->GCPhys)
|
---|
528 | {
|
---|
529 | AssertMsgFailed(("Conflict! This cannot happen!\n"));
|
---|
530 | pgmUnlock(pVM);
|
---|
531 | return VERR_PGM_RAM_CONFLICT;
|
---|
532 | }
|
---|
533 | if (GCPhysLast < pCur->GCPhys)
|
---|
534 | break;
|
---|
535 |
|
---|
536 | /* next */
|
---|
537 | pPrev = pCur;
|
---|
538 | pCur = pCur->pNextHC;
|
---|
539 | }
|
---|
540 |
|
---|
541 | /*
|
---|
542 | * Reinsert the RAM range.
|
---|
543 | */
|
---|
544 | pNew->pNextHC = pCur;
|
---|
545 | pNew->pNextGC = pCur ? MMHyperHC2GC(pVM, pCur) : 0;
|
---|
546 | if (pPrev)
|
---|
547 | {
|
---|
548 | pPrev->pNextHC = pNew;
|
---|
549 | pPrev->pNextGC = MMHyperHC2GC(pVM, pNew);
|
---|
550 | }
|
---|
551 | else
|
---|
552 | {
|
---|
553 | pVM->pgm.s.pRamRangesHC = pNew;
|
---|
554 | pVM->pgm.s.pRamRangesGC = MMHyperHC2GC(pVM, pNew);
|
---|
555 | }
|
---|
556 |
|
---|
557 | pgmUnlock(pVM);
|
---|
558 | return VINF_SUCCESS;
|
---|
559 | }
|
---|
560 |
|
---|
561 |
|
---|
562 | /**
|
---|
563 | * Interface MMR3RomRegister() and MMR3PhysReserve calls to update the
|
---|
564 | * flags of existing RAM ranges.
|
---|
565 | *
|
---|
566 | * @returns VBox status.
|
---|
567 | * @param pVM The VM handle.
|
---|
568 | * @param GCPhys GC physical address of the RAM range. (page aligned)
|
---|
569 | * @param cb Size of the RAM range. (page aligned)
|
---|
570 | * @param fFlags The Or flags, MM_RAM_* \#defines.
|
---|
571 | * @param fMask The and mask for the flags.
|
---|
572 | */
|
---|
573 | PGMR3DECL(int) PGMR3PhysSetFlags(PVM pVM, RTGCPHYS GCPhys, size_t cb, unsigned fFlags, unsigned fMask)
|
---|
574 | {
|
---|
575 | Log(("PGMR3PhysSetFlags %08X %x %x %x\n", GCPhys, cb, fFlags, fMask));
|
---|
576 |
|
---|
577 | /*
|
---|
578 | * Validate input.
|
---|
579 | * (Not so important because caller is always MMR3RomRegister() and MMR3PhysReserve(), but anyway...)
|
---|
580 | */
|
---|
581 | Assert(!(fFlags & ~(MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2)));
|
---|
582 | Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb && cb);
|
---|
583 | Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
|
---|
584 | RTGCPHYS GCPhysLast = GCPhys + (cb - 1);
|
---|
585 | AssertReturn(GCPhysLast > GCPhys, VERR_INVALID_PARAMETER);
|
---|
586 |
|
---|
587 | /*
|
---|
588 | * Lookup the range.
|
---|
589 | */
|
---|
590 | PPGMRAMRANGE pRam = CTXSUFF(pVM->pgm.s.pRamRanges);
|
---|
591 | while (pRam && GCPhys > pRam->GCPhysLast)
|
---|
592 | pRam = CTXSUFF(pRam->pNext);
|
---|
593 | if ( !pRam
|
---|
594 | || GCPhys > pRam->GCPhysLast
|
---|
595 | || GCPhysLast < pRam->GCPhys)
|
---|
596 | {
|
---|
597 | AssertMsgFailed(("No RAM range for %VGp-%VGp\n", GCPhys, GCPhysLast));
|
---|
598 | return VERR_INVALID_PARAMETER;
|
---|
599 | }
|
---|
600 |
|
---|
601 | /*
|
---|
602 | * Update the requested flags.
|
---|
603 | */
|
---|
604 | RTHCPHYS fFullMask = ~(RTHCPHYS)(MM_RAM_FLAGS_RESERVED | MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO | MM_RAM_FLAGS_MMIO2)
|
---|
605 | | fMask;
|
---|
606 | unsigned iPageEnd = (GCPhysLast - pRam->GCPhys + 1) >> PAGE_SHIFT;
|
---|
607 | unsigned iPage = (GCPhys - pRam->GCPhys) >> PAGE_SHIFT;
|
---|
608 | for ( ; iPage < iPageEnd; iPage++)
|
---|
609 | pRam->aPages[iPage].HCPhys = (pRam->aPages[iPage].HCPhys & fFullMask) | fFlags; /** @todo PAGE FLAGS */
|
---|
610 |
|
---|
611 | return VINF_SUCCESS;
|
---|
612 | }
|
---|
613 |
|
---|
614 |
|
---|
615 | /**
|
---|
616 | * Sets the Address Gate 20 state.
|
---|
617 | *
|
---|
618 | * @param pVM VM handle.
|
---|
619 | * @param fEnable True if the gate should be enabled.
|
---|
620 | * False if the gate should be disabled.
|
---|
621 | */
|
---|
622 | PGMDECL(void) PGMR3PhysSetA20(PVM pVM, bool fEnable)
|
---|
623 | {
|
---|
624 | LogFlow(("PGMR3PhysSetA20 %d (was %d)\n", fEnable, pVM->pgm.s.fA20Enabled));
|
---|
625 | if (pVM->pgm.s.fA20Enabled != (RTUINT)fEnable)
|
---|
626 | {
|
---|
627 | pVM->pgm.s.fA20Enabled = fEnable;
|
---|
628 | pVM->pgm.s.GCPhysA20Mask = ~(RTGCPHYS)(!fEnable << 20);
|
---|
629 | REMR3A20Set(pVM, fEnable);
|
---|
630 | }
|
---|
631 | }
|
---|
632 |
|
---|
633 |
|
---|
634 | /**
|
---|
635 | * Tree enumeration callback for dealing with age rollover.
|
---|
636 | * It will perform a simple compression of the current age.
|
---|
637 | */
|
---|
638 | static DECLCALLBACK(int) pgmR3PhysChunkAgeingRolloverCallback(PAVLU32NODECORE pNode, void *pvUser)
|
---|
639 | {
|
---|
640 | /* Age compression - ASSUMES iNow == 4. */
|
---|
641 | PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
|
---|
642 | if (pChunk->iAge >= UINT32_C(0xffffff00))
|
---|
643 | pChunk->iAge = 3;
|
---|
644 | else if (pChunk->iAge >= UINT32_C(0xfffff000))
|
---|
645 | pChunk->iAge = 2;
|
---|
646 | else if (pChunk->iAge)
|
---|
647 | pChunk->iAge = 1;
|
---|
648 | else /* iAge = 0 */
|
---|
649 | pChunk->iAge = 4;
|
---|
650 |
|
---|
651 | /* reinsert */
|
---|
652 | PVM pVM = (PVM)pvUser;
|
---|
653 | RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
|
---|
654 | pChunk->AgeCore.Key = pChunk->iAge;
|
---|
655 | RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
|
---|
656 | return 0;
|
---|
657 | }
|
---|
658 |
|
---|
659 |
|
---|
660 | /**
|
---|
661 | * Tree enumeration callback that updates the chunks that have
|
---|
662 | * been used since the last
|
---|
663 | */
|
---|
664 | static DECLCALLBACK(int) pgmR3PhysChunkAgeingCallback(PAVLU32NODECORE pNode, void *pvUser)
|
---|
665 | {
|
---|
666 | PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)pNode;
|
---|
667 | if (!pChunk->iAge)
|
---|
668 | {
|
---|
669 | PVM pVM = (PVM)pvUser;
|
---|
670 | RTAvllU32Remove(&pVM->pgm.s.ChunkR3Map.pAgeTree, pChunk->AgeCore.Key);
|
---|
671 | pChunk->AgeCore.Key = pChunk->iAge = pVM->pgm.s.ChunkR3Map.iNow;
|
---|
672 | RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
|
---|
673 | }
|
---|
674 |
|
---|
675 | return 0;
|
---|
676 | }
|
---|
677 |
|
---|
678 |
|
---|
679 | /**
|
---|
680 | * Performs ageing of the ring-3 chunk mappings.
|
---|
681 | *
|
---|
682 | * @param pVM The VM handle.
|
---|
683 | */
|
---|
684 | PGMR3DECL(void) PGMR3PhysChunkAgeing(PVM pVM)
|
---|
685 | {
|
---|
686 | pVM->pgm.s.ChunkR3Map.AgeingCountdown = RT_MIN(pVM->pgm.s.ChunkR3Map.cMax / 4, 1024);
|
---|
687 | pVM->pgm.s.ChunkR3Map.iNow++;
|
---|
688 | if (pVM->pgm.s.ChunkR3Map.iNow == 0)
|
---|
689 | {
|
---|
690 | pVM->pgm.s.ChunkR3Map.iNow = 4;
|
---|
691 | RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingRolloverCallback, pVM);
|
---|
692 | }
|
---|
693 | else
|
---|
694 | RTAvlU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pTree, true /*fFromLeft*/, pgmR3PhysChunkAgeingCallback, pVM);
|
---|
695 | }
|
---|
696 |
|
---|
697 |
|
---|
698 | /**
|
---|
699 | * The structure passed in the pvUser argument of pgmR3PhysChunkUnmapCandidateCallback().
|
---|
700 | */
|
---|
701 | typedef struct PGMR3PHYSCHUNKUNMAPCB
|
---|
702 | {
|
---|
703 | PVM pVM; /**< The VM handle. */
|
---|
704 | PPGMCHUNKR3MAP pChunk; /**< The chunk to unmap. */
|
---|
705 | } PGMR3PHYSCHUNKUNMAPCB, *PPGMR3PHYSCHUNKUNMAPCB;
|
---|
706 |
|
---|
707 |
|
---|
708 | /**
|
---|
709 | * Callback used to find the mapping that's been unused for
|
---|
710 | * the longest time.
|
---|
711 | */
|
---|
712 | static DECLCALLBACK(int) pgmR3PhysChunkUnmapCandidateCallback(PAVLLU32NODECORE pNode, void *pvUser)
|
---|
713 | {
|
---|
714 | do
|
---|
715 | {
|
---|
716 | PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)((uint8_t *)pNode - RT_OFFSETOF(PGMCHUNKR3MAP, AgeCore));
|
---|
717 | if ( pChunk->iAge
|
---|
718 | && !pChunk->cRefs)
|
---|
719 | {
|
---|
720 | /*
|
---|
721 | * Check that it's not in any of the TLBs.
|
---|
722 | */
|
---|
723 | PVM pVM = ((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pVM;
|
---|
724 | for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
|
---|
725 | if (pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk == pChunk)
|
---|
726 | {
|
---|
727 | pChunk = NULL;
|
---|
728 | break;
|
---|
729 | }
|
---|
730 | if (pChunk)
|
---|
731 | for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.PhysTlbHC.aEntries); i++)
|
---|
732 | if (pVM->pgm.s.PhysTlbHC.aEntries[i].pMap == pChunk)
|
---|
733 | {
|
---|
734 | pChunk = NULL;
|
---|
735 | break;
|
---|
736 | }
|
---|
737 | if (pChunk)
|
---|
738 | {
|
---|
739 | ((PPGMR3PHYSCHUNKUNMAPCB)pvUser)->pChunk = pChunk;
|
---|
740 | return 1; /* done */
|
---|
741 | }
|
---|
742 | }
|
---|
743 |
|
---|
744 | /* next with the same age - this version of the AVL API doesn't enumerate the list, so we have to do it. */
|
---|
745 | pNode = pNode->pList;
|
---|
746 | } while (pNode);
|
---|
747 | return 0;
|
---|
748 | }
|
---|
749 |
|
---|
750 |
|
---|
751 | /**
|
---|
752 | * Finds a good candidate for unmapping when the ring-3 mapping cache is full.
|
---|
753 | *
|
---|
754 | * The candidate will not be part of any TLBs, so no need to flush
|
---|
755 | * anything afterwards.
|
---|
756 | *
|
---|
757 | * @returns Chunk id.
|
---|
758 | * @param pVM The VM handle.
|
---|
759 | */
|
---|
760 | static int32_t pgmR3PhysChunkFindUnmapCandidate(PVM pVM)
|
---|
761 | {
|
---|
762 | /*
|
---|
763 | * Do tree ageing first?
|
---|
764 | */
|
---|
765 | if (pVM->pgm.s.ChunkR3Map.AgeingCountdown-- == 0)
|
---|
766 | PGMR3PhysChunkAgeing(pVM);
|
---|
767 |
|
---|
768 | /*
|
---|
769 | * Enumerate the age tree starting with the left most node.
|
---|
770 | */
|
---|
771 | PGMR3PHYSCHUNKUNMAPCB Args;
|
---|
772 | Args.pVM = pVM;
|
---|
773 | Args.pChunk = NULL;
|
---|
774 | if (RTAvllU32DoWithAll(&pVM->pgm.s.ChunkR3Map.pAgeTree, true /*fFromLeft*/, pgmR3PhysChunkUnmapCandidateCallback, pVM))
|
---|
775 | return Args.pChunk->Core.Key;
|
---|
776 | return INT32_MAX;
|
---|
777 | }
|
---|
778 |
|
---|
779 |
|
---|
780 | /**
|
---|
781 | * Maps the given chunk into the ring-3 mapping cache.
|
---|
782 | *
|
---|
783 | * This will call ring-0.
|
---|
784 | *
|
---|
785 | * @returns VBox status code.
|
---|
786 | * @param pVM The VM handle.
|
---|
787 | * @param idChunk The chunk in question.
|
---|
788 | * @param ppChunk Where to store the chunk tracking structure.
|
---|
789 | *
|
---|
790 | * @remarks Called from within the PGM critical section.
|
---|
791 | */
|
---|
792 | int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk)
|
---|
793 | {
|
---|
794 | int rc;
|
---|
795 | /*
|
---|
796 | * Allocate a new tracking structure first.
|
---|
797 | */
|
---|
798 | #if 0 /* for later when we've got a separate mapping method for ring-0. */
|
---|
799 | PPGMCHUNKR3MAP pChunk = (PPGMCHUNKR3MAP)MMR3HeapAlloc(pVM, MM_TAG_PGM_CHUNK_MAPPING, sizeof(*pChunk));
|
---|
800 | AssertReturn(pChunk, VERR_NO_MEMORY);
|
---|
801 | #else
|
---|
802 | PPGMCHUNKR3MAP pChunk;
|
---|
803 | rc = MMHyperAlloc(pVM, sizeof(*pChunk), 0, MM_TAG_PGM_CHUNK_MAPPING, (void **)&pChunk);
|
---|
804 | AssertRCReturn(rc, rc);
|
---|
805 | #endif
|
---|
806 | pChunk->Core.Key = idChunk;
|
---|
807 | pChunk->AgeCore.Key = pVM->pgm.s.ChunkR3Map.iNow;
|
---|
808 | pChunk->iAge = 0;
|
---|
809 | pChunk->cRefs = 0;
|
---|
810 | pChunk->cPermRefs = 0;
|
---|
811 | pChunk->pv = NULL;
|
---|
812 |
|
---|
813 | /*
|
---|
814 | * Request the ring-0 part to map the chunk in question and if
|
---|
815 | * necessary unmap another one to make space in the mapping cache.
|
---|
816 | */
|
---|
817 | GMMMAPUNMAPCHUNKREQ Req;
|
---|
818 | Req.Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
|
---|
819 | Req.Hdr.cbReq = sizeof(Req);
|
---|
820 | Req.pvR3 = NULL;
|
---|
821 | Req.idChunkMap = idChunk;
|
---|
822 | Req.idChunkUnmap = INT32_MAX;
|
---|
823 | if (pVM->pgm.s.ChunkR3Map.c >= pVM->pgm.s.ChunkR3Map.cMax)
|
---|
824 | Req.idChunkUnmap = pgmR3PhysChunkFindUnmapCandidate(pVM);
|
---|
825 | rc = SUPCallVMMR0Ex(pVM->pVMR0, VMMR0_DO_GMM_MAP_UNMAP_CHUNK, 0, &Req.Hdr);
|
---|
826 | if (VBOX_SUCCESS(rc))
|
---|
827 | {
|
---|
828 | /*
|
---|
829 | * Update the tree.
|
---|
830 | */
|
---|
831 | /* insert the new one. */
|
---|
832 | AssertPtr(Req.pvR3);
|
---|
833 | pChunk->pv = Req.pvR3;
|
---|
834 | bool fRc = RTAvlU32Insert(&pVM->pgm.s.ChunkR3Map.pTree, &pChunk->Core);
|
---|
835 | AssertRelease(fRc);
|
---|
836 | pVM->pgm.s.ChunkR3Map.c++;
|
---|
837 |
|
---|
838 | fRc = RTAvllU32Insert(&pVM->pgm.s.ChunkR3Map.pAgeTree, &pChunk->AgeCore);
|
---|
839 | AssertRelease(fRc);
|
---|
840 |
|
---|
841 | /* remove the unmapped one. */
|
---|
842 | if (Req.idChunkUnmap != INT32_MAX)
|
---|
843 | {
|
---|
844 | PPGMCHUNKR3MAP pUnmappedChunk = (PPGMCHUNKR3MAP)RTAvlU32Remove(&pVM->pgm.s.ChunkR3Map.pTree, Req.idChunkUnmap);
|
---|
845 | AssertRelease(pUnmappedChunk);
|
---|
846 | pUnmappedChunk->pv = NULL;
|
---|
847 | pUnmappedChunk->Core.Key = UINT32_MAX;
|
---|
848 | #if 0 /* for later when we've got a separate mapping method for ring-0. */
|
---|
849 | MMR3HeapFree(pUnmappedChunk);
|
---|
850 | #else
|
---|
851 | MMHyperFree(pVM, pUnmappedChunk);
|
---|
852 | #endif
|
---|
853 | pVM->pgm.s.ChunkR3Map.c--;
|
---|
854 | }
|
---|
855 | }
|
---|
856 | else
|
---|
857 | {
|
---|
858 | AssertRC(rc);
|
---|
859 | #if 0 /* for later when we've got a separate mapping method for ring-0. */
|
---|
860 | MMR3HeapFree(pChunk);
|
---|
861 | #else
|
---|
862 | MMHyperFree(pVM, pChunk);
|
---|
863 | #endif
|
---|
864 | pChunk = NULL;
|
---|
865 | }
|
---|
866 |
|
---|
867 | *ppChunk = pChunk;
|
---|
868 | return rc;
|
---|
869 | }
|
---|
870 |
|
---|
871 |
|
---|
872 | /**
|
---|
873 | * For VMMCALLHOST_PGM_MAP_CHUNK, considered internal.
|
---|
874 | *
|
---|
875 | * @returns see pgmR3PhysChunkMap.
|
---|
876 | * @param pVM The VM handle.
|
---|
877 | * @param idChunk The chunk to map.
|
---|
878 | */
|
---|
879 | PDMR3DECL(int) PGMR3PhysChunkMap(PVM pVM, uint32_t idChunk)
|
---|
880 | {
|
---|
881 | PPGMCHUNKR3MAP pChunk;
|
---|
882 | return pgmR3PhysChunkMap(pVM, idChunk, &pChunk);
|
---|
883 | }
|
---|
884 |
|
---|
885 |
|
---|
886 | /**
|
---|
887 | * Invalidates the TLB for the ring-3 mapping cache.
|
---|
888 | *
|
---|
889 | * @param pVM The VM handle.
|
---|
890 | */
|
---|
891 | PGMR3DECL(void) PGMR3PhysChunkInvalidateTLB(PVM pVM)
|
---|
892 | {
|
---|
893 | pgmLock(pVM);
|
---|
894 | for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
|
---|
895 | {
|
---|
896 | pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
|
---|
897 | pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].pChunk = NULL;
|
---|
898 | }
|
---|
899 | pgmUnlock(pVM);
|
---|
900 | }
|
---|
901 |
|
---|
902 |
|
---|
903 | /**
|
---|
904 | * Response to VM_FF_PGM_NEED_HANDY_PAGES and VMMCALLHOST_PGM_ALLOCATE_HANDY_PAGES.
|
---|
905 | *
|
---|
906 | * @returns The following VBox status codes.
|
---|
907 | * @retval VINF_SUCCESS on success. FF cleared.
|
---|
908 | * @retval VINF_EM_NO_MEMORY if we're out of memory. The FF is not cleared in this case.
|
---|
909 | *
|
---|
910 | * @param pVM The VM handle.
|
---|
911 | */
|
---|
912 | PDMR3DECL(int) PGMR3PhysAllocateHandyPages(PVM pVM)
|
---|
913 | {
|
---|
914 | pgmLock(pVM);
|
---|
915 | int rc = SUPCallVMMR0Ex(pVM->pVMR0, VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES, 0, NULL);
|
---|
916 | if (rc == VERR_GMM_SEED_ME)
|
---|
917 | {
|
---|
918 | void *pvChunk;
|
---|
919 | rc = SUPPageAlloc(GMM_CHUNK_SIZE >> PAGE_SHIFT, &pvChunk);
|
---|
920 | if (VBOX_SUCCESS(rc))
|
---|
921 | rc = SUPCallVMMR0Ex(pVM->pVMR0, VMMR0_DO_GMM_SEED_CHUNK, (uintptr_t)pvChunk, NULL);
|
---|
922 | if (VBOX_FAILURE(rc))
|
---|
923 | {
|
---|
924 | LogRel(("PGM: GMM Seeding failed, rc=%Vrc\n", rc));
|
---|
925 | rc = VINF_EM_NO_MEMORY;
|
---|
926 | }
|
---|
927 | }
|
---|
928 | pgmUnlock(pVM);
|
---|
929 | Assert(rc == VINF_SUCCESS || rc == VINF_EM_NO_MEMORY);
|
---|
930 | return rc;
|
---|
931 | }
|
---|
932 |
|
---|