VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMPool.cpp@ 19702

Last change on this file since 19702 was 19690, checked in by vboxsync, 16 years ago

More pgm pool locking.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 28.8 KB
Line 
1/* $Id: PGMPool.cpp 19690 2009-05-14 11:49:00Z vboxsync $ */
2/** @file
3 * PGM Shadow Page Pool.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22/** @page pg_pgm_pool PGM Shadow Page Pool
23 *
24 * Motivations:
25 * -# Relationship between shadow page tables and physical guest pages. This
26 * should allow us to skip most of the global flushes now following access
27 * handler changes. The main expense is flushing shadow pages.
28 * -# Limit the pool size if necessary (default is kind of limitless).
29 * -# Allocate shadow pages from RC. We use to only do this in SyncCR3.
30 * -# Required for 64-bit guests.
31 * -# Combining the PD cache and page pool in order to simplify caching.
32 *
33 *
34 * @section sec_pgm_pool_outline Design Outline
35 *
36 * The shadow page pool tracks pages used for shadowing paging structures (i.e.
37 * page tables, page directory, page directory pointer table and page map
38 * level-4). Each page in the pool has an unique identifier. This identifier is
39 * used to link a guest physical page to a shadow PT. The identifier is a
40 * non-zero value and has a relativly low max value - say 14 bits. This makes it
41 * possible to fit it into the upper bits of the of the aHCPhys entries in the
42 * ram range.
43 *
44 * By restricting host physical memory to the first 48 bits (which is the
45 * announced physical memory range of the K8L chip (scheduled for 2008)), we
46 * can safely use the upper 16 bits for shadow page ID and reference counting.
47 *
48 * Update: The 48 bit assumption will be lifted with the new physical memory
49 * management (PGMPAGE), so we won't have any trouble when someone stuffs 2TB
50 * into a box in some years.
51 *
52 * Now, it's possible for a page to be aliased, i.e. mapped by more than one PT
53 * or PD. This is solved by creating a list of physical cross reference extents
54 * when ever this happens. Each node in the list (extent) is can contain 3 page
55 * pool indexes. The list it self is chained using indexes into the paPhysExt
56 * array.
57 *
58 *
59 * @section sec_pgm_pool_life Life Cycle of a Shadow Page
60 *
61 * -# The SyncPT function requests a page from the pool.
62 * The request includes the kind of page it is (PT/PD, PAE/legacy), the
63 * address of the page it's shadowing, and more.
64 * -# The pool responds to the request by allocating a new page.
65 * When the cache is enabled, it will first check if it's in the cache.
66 * Should the pool be exhausted, one of two things can be done:
67 * -# Flush the whole pool and current CR3.
68 * -# Use the cache to find a page which can be flushed (~age).
69 * -# The SyncPT function will sync one or more pages and insert it into the
70 * shadow PD.
71 * -# The SyncPage function may sync more pages on a later \#PFs.
72 * -# The page is freed / flushed in SyncCR3 (perhaps) and some other cases.
73 * When caching is enabled, the page isn't flush but remains in the cache.
74 *
75 *
76 * @section sec_pgm_pool_impl Monitoring
77 *
78 * We always monitor PAGE_SIZE chunks of memory. When we've got multiple shadow
79 * pages for the same PAGE_SIZE of guest memory (PAE and mixed PD/PT) the pages
80 * sharing the monitor get linked using the iMonitoredNext/Prev. The head page
81 * is the pvUser to the access handlers.
82 *
83 *
84 * @section sec_pgm_pool_impl Implementation
85 *
86 * The pool will take pages from the MM page pool. The tracking data
87 * (attributes, bitmaps and so on) are allocated from the hypervisor heap. The
88 * pool content can be accessed both by using the page id and the physical
89 * address (HC). The former is managed by means of an array, the latter by an
90 * offset based AVL tree.
91 *
92 * Flushing of a pool page means that we iterate the content (we know what kind
93 * it is) and updates the link information in the ram range.
94 *
95 * ...
96 */
97
98
99/*******************************************************************************
100* Header Files *
101*******************************************************************************/
102#define LOG_GROUP LOG_GROUP_PGM_POOL
103#include <VBox/pgm.h>
104#include <VBox/mm.h>
105#include "PGMInternal.h"
106#include <VBox/vm.h>
107
108#include <VBox/log.h>
109#include <VBox/err.h>
110#include <iprt/asm.h>
111#include <iprt/string.h>
112
113
114/*******************************************************************************
115* Internal Functions *
116*******************************************************************************/
117#ifdef PGMPOOL_WITH_MONITORING
118static DECLCALLBACK(int) pgmR3PoolAccessHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
119#endif /* PGMPOOL_WITH_MONITORING */
120
121
122/**
123 * Initalizes the pool
124 *
125 * @returns VBox status code.
126 * @param pVM The VM handle.
127 */
128int pgmR3PoolInit(PVM pVM)
129{
130 AssertCompile(NIL_PGMPOOL_IDX == 0);
131 /* pPage->cLocked is an unsigned byte. */
132 AssertCompile(VMM_MAX_CPU_COUNT <= 255);
133
134 /*
135 * Query Pool config.
136 */
137 PCFGMNODE pCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM/Pool");
138
139 /** @cfgm{/PGM/Pool/MaxPages, uint16_t, #pages, 16, 0x3fff, 1024}
140 * The max size of the shadow page pool in pages. The pool will grow dynamically
141 * up to this limit.
142 */
143 uint16_t cMaxPages;
144 int rc = CFGMR3QueryU16Def(pCfg, "MaxPages", &cMaxPages, 4*_1M >> PAGE_SHIFT);
145 AssertLogRelRCReturn(rc, rc);
146 AssertLogRelMsgReturn(cMaxPages <= PGMPOOL_IDX_LAST && cMaxPages >= RT_ALIGN(PGMPOOL_IDX_FIRST, 16),
147 ("cMaxPages=%u (%#x)\n", cMaxPages, cMaxPages), VERR_INVALID_PARAMETER);
148 cMaxPages = RT_ALIGN(cMaxPages, 16);
149
150 /** @cfgm{/PGM/Pool/MaxUsers, uint16_t, #users, MaxUsers, 32K, MaxPages*2}
151 * The max number of shadow page user tracking records. Each shadow page has
152 * zero of other shadow pages (or CR3s) that references it, or uses it if you
153 * like. The structures describing these relationships are allocated from a
154 * fixed sized pool. This configuration variable defines the pool size.
155 */
156 uint16_t cMaxUsers;
157 rc = CFGMR3QueryU16Def(pCfg, "MaxUsers", &cMaxUsers, cMaxPages * 2);
158 AssertLogRelRCReturn(rc, rc);
159 AssertLogRelMsgReturn(cMaxUsers >= cMaxPages && cMaxPages <= _32K,
160 ("cMaxUsers=%u (%#x)\n", cMaxUsers, cMaxUsers), VERR_INVALID_PARAMETER);
161
162 /** @cfgm{/PGM/Pool/MaxPhysExts, uint16_t, #extents, 16, MaxPages * 2, MAX(MaxPages*2,0x3fff)}
163 * The max number of extents for tracking aliased guest pages.
164 */
165 uint16_t cMaxPhysExts;
166 rc = CFGMR3QueryU16Def(pCfg, "MaxPhysExts", &cMaxPhysExts, RT_MAX(cMaxPages * 2, PGMPOOL_IDX_LAST));
167 AssertLogRelRCReturn(rc, rc);
168 AssertLogRelMsgReturn(cMaxPhysExts >= 16 && cMaxPages <= PGMPOOL_IDX_LAST,
169 ("cMaxPhysExts=%u (%#x)\n", cMaxPhysExts, cMaxPhysExts), VERR_INVALID_PARAMETER);
170
171 /** @cfgm{/PGM/Pool/ChacheEnabled, bool, true}
172 * Enables or disabling caching of shadow pages. Chaching means that we will try
173 * reuse shadow pages instead of recreating them everything SyncCR3, SyncPT or
174 * SyncPage requests one. When reusing a shadow page, we can save time
175 * reconstructing it and it's children.
176 */
177 bool fCacheEnabled;
178 rc = CFGMR3QueryBoolDef(pCfg, "CacheEnabled", &fCacheEnabled, true);
179 AssertLogRelRCReturn(rc, rc);
180
181 Log(("pgmR3PoolInit: cMaxPages=%#RX16 cMaxUsers=%#RX16 cMaxPhysExts=%#RX16 fCacheEnable=%RTbool\n",
182 cMaxPages, cMaxUsers, cMaxPhysExts, fCacheEnabled));
183
184 /*
185 * Allocate the data structures.
186 */
187 uint32_t cb = RT_OFFSETOF(PGMPOOL, aPages[cMaxPages]);
188#ifdef PGMPOOL_WITH_USER_TRACKING
189 cb += cMaxUsers * sizeof(PGMPOOLUSER);
190#endif
191#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
192 cb += cMaxPhysExts * sizeof(PGMPOOLPHYSEXT);
193#endif
194 PPGMPOOL pPool;
195 rc = MMR3HyperAllocOnceNoRel(pVM, cb, 0, MM_TAG_PGM_POOL, (void **)&pPool);
196 if (RT_FAILURE(rc))
197 return rc;
198 pVM->pgm.s.pPoolR3 = pPool;
199 pVM->pgm.s.pPoolR0 = MMHyperR3ToR0(pVM, pPool);
200 pVM->pgm.s.pPoolRC = MMHyperR3ToRC(pVM, pPool);
201
202 /*
203 * Initialize it.
204 */
205 pPool->pVMR3 = pVM;
206 pPool->pVMR0 = pVM->pVMR0;
207 pPool->pVMRC = pVM->pVMRC;
208 pPool->cMaxPages = cMaxPages;
209 pPool->cCurPages = PGMPOOL_IDX_FIRST;
210#ifdef PGMPOOL_WITH_USER_TRACKING
211 pPool->iUserFreeHead = 0;
212 pPool->cMaxUsers = cMaxUsers;
213 PPGMPOOLUSER paUsers = (PPGMPOOLUSER)&pPool->aPages[pPool->cMaxPages];
214 pPool->paUsersR3 = paUsers;
215 pPool->paUsersR0 = MMHyperR3ToR0(pVM, paUsers);
216 pPool->paUsersRC = MMHyperR3ToRC(pVM, paUsers);
217 for (unsigned i = 0; i < cMaxUsers; i++)
218 {
219 paUsers[i].iNext = i + 1;
220 paUsers[i].iUser = NIL_PGMPOOL_IDX;
221 paUsers[i].iUserTable = 0xfffffffe;
222 }
223 paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX;
224#endif
225#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
226 pPool->iPhysExtFreeHead = 0;
227 pPool->cMaxPhysExts = cMaxPhysExts;
228 PPGMPOOLPHYSEXT paPhysExts = (PPGMPOOLPHYSEXT)&paUsers[cMaxUsers];
229 pPool->paPhysExtsR3 = paPhysExts;
230 pPool->paPhysExtsR0 = MMHyperR3ToR0(pVM, paPhysExts);
231 pPool->paPhysExtsRC = MMHyperR3ToRC(pVM, paPhysExts);
232 for (unsigned i = 0; i < cMaxPhysExts; i++)
233 {
234 paPhysExts[i].iNext = i + 1;
235 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
236 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
237 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
238 }
239 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
240#endif
241#ifdef PGMPOOL_WITH_CACHE
242 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++)
243 pPool->aiHash[i] = NIL_PGMPOOL_IDX;
244 pPool->iAgeHead = NIL_PGMPOOL_IDX;
245 pPool->iAgeTail = NIL_PGMPOOL_IDX;
246 pPool->fCacheEnabled = fCacheEnabled;
247#endif
248#ifdef PGMPOOL_WITH_MONITORING
249 pPool->pfnAccessHandlerR3 = pgmR3PoolAccessHandler;
250 pPool->pszAccessHandler = "Guest Paging Access Handler";
251#endif
252 pPool->HCPhysTree = 0;
253
254 /* The NIL entry. */
255 Assert(NIL_PGMPOOL_IDX == 0);
256 pPool->aPages[NIL_PGMPOOL_IDX].enmKind = PGMPOOLKIND_INVALID;
257
258 /* The Shadow 32-bit PD. (32 bits guest paging) */
259 pPool->aPages[PGMPOOL_IDX_PD].Core.Key = NIL_RTHCPHYS;
260 pPool->aPages[PGMPOOL_IDX_PD].GCPhys = NIL_RTGCPHYS;
261 pPool->aPages[PGMPOOL_IDX_PD].pvPageR3 = 0;
262 pPool->aPages[PGMPOOL_IDX_PD].enmKind = PGMPOOLKIND_32BIT_PD;
263 pPool->aPages[PGMPOOL_IDX_PD].idx = PGMPOOL_IDX_PD;
264
265 /* The Shadow PDPT. */
266 pPool->aPages[PGMPOOL_IDX_PDPT].Core.Key = NIL_RTHCPHYS;
267 pPool->aPages[PGMPOOL_IDX_PDPT].GCPhys = NIL_RTGCPHYS;
268 pPool->aPages[PGMPOOL_IDX_PDPT].pvPageR3 = 0;
269 pPool->aPages[PGMPOOL_IDX_PDPT].enmKind = PGMPOOLKIND_PAE_PDPT;
270 pPool->aPages[PGMPOOL_IDX_PDPT].idx = PGMPOOL_IDX_PDPT;
271
272 /* The Shadow AMD64 CR3. */
273 pPool->aPages[PGMPOOL_IDX_AMD64_CR3].Core.Key = NIL_RTHCPHYS;
274 pPool->aPages[PGMPOOL_IDX_AMD64_CR3].GCPhys = NIL_RTGCPHYS;
275 pPool->aPages[PGMPOOL_IDX_AMD64_CR3].pvPageR3 = 0;
276 pPool->aPages[PGMPOOL_IDX_AMD64_CR3].enmKind = PGMPOOLKIND_64BIT_PML4;
277 pPool->aPages[PGMPOOL_IDX_AMD64_CR3].idx = PGMPOOL_IDX_AMD64_CR3;
278
279 /* The Nested Paging CR3. */
280 pPool->aPages[PGMPOOL_IDX_NESTED_ROOT].Core.Key = NIL_RTHCPHYS;
281 pPool->aPages[PGMPOOL_IDX_NESTED_ROOT].GCPhys = NIL_RTGCPHYS;
282 pPool->aPages[PGMPOOL_IDX_NESTED_ROOT].pvPageR3 = 0;
283 pPool->aPages[PGMPOOL_IDX_NESTED_ROOT].enmKind = PGMPOOLKIND_ROOT_NESTED;
284 pPool->aPages[PGMPOOL_IDX_NESTED_ROOT].idx = PGMPOOL_IDX_NESTED_ROOT;
285
286 /*
287 * Set common stuff.
288 */
289 for (unsigned iPage = 1; iPage < PGMPOOL_IDX_FIRST; iPage++)
290 {
291 pPool->aPages[iPage].iNext = NIL_PGMPOOL_IDX;
292#ifdef PGMPOOL_WITH_USER_TRACKING
293 pPool->aPages[iPage].iUserHead = NIL_PGMPOOL_USER_INDEX;
294#endif
295#ifdef PGMPOOL_WITH_MONITORING
296 pPool->aPages[iPage].iModifiedNext = NIL_PGMPOOL_IDX;
297 pPool->aPages[iPage].iModifiedPrev = NIL_PGMPOOL_IDX;
298 pPool->aPages[iPage].iMonitoredNext = NIL_PGMPOOL_IDX;
299 pPool->aPages[iPage].iMonitoredNext = NIL_PGMPOOL_IDX;
300#endif
301#ifdef PGMPOOL_WITH_CACHE
302 pPool->aPages[iPage].iAgeNext = NIL_PGMPOOL_IDX;
303 pPool->aPages[iPage].iAgePrev = NIL_PGMPOOL_IDX;
304#endif
305 Assert(pPool->aPages[iPage].idx == iPage);
306 Assert(pPool->aPages[iPage].GCPhys == NIL_RTGCPHYS);
307 Assert(!pPool->aPages[iPage].fSeenNonGlobal);
308 Assert(!pPool->aPages[iPage].fMonitored);
309 Assert(!pPool->aPages[iPage].fCached);
310 Assert(!pPool->aPages[iPage].fZeroed);
311 Assert(!pPool->aPages[iPage].fReusedFlushPending);
312 }
313
314#ifdef VBOX_WITH_STATISTICS
315 /*
316 * Register statistics.
317 */
318 STAM_REG(pVM, &pPool->cCurPages, STAMTYPE_U16, "/PGM/Pool/cCurPages", STAMUNIT_PAGES, "Current pool size.");
319 STAM_REG(pVM, &pPool->cMaxPages, STAMTYPE_U16, "/PGM/Pool/cMaxPages", STAMUNIT_PAGES, "Max pool size.");
320 STAM_REG(pVM, &pPool->cUsedPages, STAMTYPE_U16, "/PGM/Pool/cUsedPages", STAMUNIT_PAGES, "The number of pages currently in use.");
321 STAM_REG(pVM, &pPool->cUsedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/cUsedPagesHigh", STAMUNIT_PAGES, "The high watermark for cUsedPages.");
322 STAM_REG(pVM, &pPool->StatAlloc, STAMTYPE_PROFILE_ADV, "/PGM/Pool/Alloc", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolAlloc.");
323 STAM_REG(pVM, &pPool->StatClearAll, STAMTYPE_PROFILE, "/PGM/Pool/ClearAll", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolClearAll.");
324 STAM_REG(pVM, &pPool->StatFlushAllInt, STAMTYPE_PROFILE, "/PGM/Pool/FlushAllInt", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFlushAllInt.");
325 STAM_REG(pVM, &pPool->StatFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFlushPage.");
326 STAM_REG(pVM, &pPool->StatFree, STAMTYPE_PROFILE, "/PGM/Pool/Free", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFree.");
327 STAM_REG(pVM, &pPool->StatZeroPage, STAMTYPE_PROFILE, "/PGM/Pool/ZeroPage", STAMUNIT_TICKS_PER_CALL, "Profiling time spent zeroing pages. Overlaps with Alloc.");
328# ifdef PGMPOOL_WITH_USER_TRACKING
329 STAM_REG(pVM, &pPool->cMaxUsers, STAMTYPE_U16, "/PGM/Pool/Track/cMaxUsers", STAMUNIT_COUNT, "Max user tracking records.");
330 STAM_REG(pVM, &pPool->cPresent, STAMTYPE_U32, "/PGM/Pool/Track/cPresent", STAMUNIT_COUNT, "Number of present page table entries.");
331 STAM_REG(pVM, &pPool->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Pool/Track/Deref", STAMUNIT_OCCURENCES, "Profiling of pgmPoolTrackDeref.");
332 STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPT, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPT", STAMUNIT_OCCURENCES, "Profiling of pgmPoolTrackFlushGCPhysPT.");
333 STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTs, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTs", STAMUNIT_OCCURENCES, "Profiling of pgmPoolTrackFlushGCPhysPTs.");
334 STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTsSlow, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTsSlow", STAMUNIT_OCCURENCES, "Profiling of pgmPoolTrackFlushGCPhysPTsSlow.");
335 STAM_REG(pVM, &pPool->StatTrackFreeUpOneUser, STAMTYPE_COUNTER, "/PGM/Pool/Track/FreeUpOneUser", STAMUNIT_OCCURENCES, "The number of times we were out of user tracking records.");
336# endif
337# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
338 STAM_REG(pVM, &pPool->StatTrackDerefGCPhys, STAMTYPE_PROFILE, "/PGM/Pool/Track/DrefGCPhys", STAMUNIT_OCCURENCES, "Profiling deref activity related tracking GC physical pages.");
339 STAM_REG(pVM, &pPool->StatTrackLinearRamSearches, STAMTYPE_COUNTER, "/PGM/Pool/Track/LinearRamSearches", STAMUNIT_OCCURENCES, "The number of times we had to do linear ram searches.");
340 STAM_REG(pVM, &pPool->StamTrackPhysExtAllocFailures,STAMTYPE_COUNTER, "/PGM/Pool/Track/PhysExtAllocFailures", STAMUNIT_OCCURENCES, "The number of failing pgmPoolTrackPhysExtAlloc calls.");
341# endif
342# ifdef PGMPOOL_WITH_MONITORING
343 STAM_REG(pVM, &pPool->StatMonitorRZ, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling the RC/R0 access handler.");
344 STAM_REG(pVM, &pPool->StatMonitorRZEmulateInstr, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/EmulateInstr", STAMUNIT_OCCURENCES, "Times we've failed interpreting the instruction.");
345 STAM_REG(pVM, &pPool->StatMonitorRZFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the RC/R0 access handler.");
346 STAM_REG(pVM, &pPool->StatMonitorRZFork, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fork", STAMUNIT_OCCURENCES, "Times we've detected fork().");
347 STAM_REG(pVM, &pPool->StatMonitorRZHandled, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/Handled", STAMUNIT_TICKS_PER_CALL, "Profiling the RC/R0 access we've handled (except REP STOSD).");
348 STAM_REG(pVM, &pPool->StatMonitorRZIntrFailPatch1, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IntrFailPatch1", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction.");
349 STAM_REG(pVM, &pPool->StatMonitorRZIntrFailPatch2, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IntrFailPatch2", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction during flushing.");
350 STAM_REG(pVM, &pPool->StatMonitorRZRepPrefix, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/RepPrefix", STAMUNIT_OCCURENCES, "The number of times we've seen rep prefixes we can't handle.");
351 STAM_REG(pVM, &pPool->StatMonitorRZRepStosd, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/RepStosd", STAMUNIT_TICKS_PER_CALL, "Profiling the REP STOSD cases we've handled.");
352 STAM_REG(pVM, &pPool->StatMonitorR3, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3", STAMUNIT_TICKS_PER_CALL, "Profiling the R3 access handler.");
353 STAM_REG(pVM, &pPool->StatMonitorR3EmulateInstr, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/EmulateInstr", STAMUNIT_OCCURENCES, "Times we've failed interpreting the instruction.");
354 STAM_REG(pVM, &pPool->StatMonitorR3FlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the R3 access handler.");
355 STAM_REG(pVM, &pPool->StatMonitorR3Fork, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fork", STAMUNIT_OCCURENCES, "Times we've detected fork().");
356 STAM_REG(pVM, &pPool->StatMonitorR3Handled, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Handled", STAMUNIT_TICKS_PER_CALL, "Profiling the R3 access we've handled (except REP STOSD).");
357 STAM_REG(pVM, &pPool->StatMonitorR3RepPrefix, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/RepPrefix", STAMUNIT_OCCURENCES, "The number of times we've seen rep prefixes we can't handle.");
358 STAM_REG(pVM, &pPool->StatMonitorR3RepStosd, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/RepStosd", STAMUNIT_TICKS_PER_CALL, "Profiling the REP STOSD cases we've handled.");
359 STAM_REG(pVM, &pPool->StatMonitorR3Async, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Async", STAMUNIT_OCCURENCES, "Times we're called in an async thread and need to flush.");
360 STAM_REG(pVM, &pPool->cModifiedPages, STAMTYPE_U16, "/PGM/Pool/Monitor/cModifiedPages", STAMUNIT_PAGES, "The current cModifiedPages value.");
361 STAM_REG(pVM, &pPool->cModifiedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/Monitor/cModifiedPagesHigh", STAMUNIT_PAGES, "The high watermark for cModifiedPages.");
362# endif
363# ifdef PGMPOOL_WITH_CACHE
364 STAM_REG(pVM, &pPool->StatCacheHits, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Hits", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls satisfied by the cache.");
365 STAM_REG(pVM, &pPool->StatCacheMisses, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Misses", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls not statisfied by the cache.");
366 STAM_REG(pVM, &pPool->StatCacheKindMismatches, STAMTYPE_COUNTER, "/PGM/Pool/Cache/KindMismatches", STAMUNIT_OCCURENCES, "The number of shadow page kind mismatches. (Better be low, preferably 0!)");
367 STAM_REG(pVM, &pPool->StatCacheFreeUpOne, STAMTYPE_COUNTER, "/PGM/Pool/Cache/FreeUpOne", STAMUNIT_OCCURENCES, "The number of times the cache was asked to free up a page.");
368 STAM_REG(pVM, &pPool->StatCacheCacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Cacheable", STAMUNIT_OCCURENCES, "The number of cacheable allocations.");
369 STAM_REG(pVM, &pPool->StatCacheUncacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Uncacheable", STAMUNIT_OCCURENCES, "The number of uncacheable allocations.");
370# endif
371#endif /* VBOX_WITH_STATISTICS */
372
373 return VINF_SUCCESS;
374}
375
376
377/**
378 * Relocate the page pool data.
379 *
380 * @param pVM The VM handle.
381 */
382void pgmR3PoolRelocate(PVM pVM)
383{
384 pVM->pgm.s.pPoolRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3);
385 pVM->pgm.s.pPoolR3->pVMRC = pVM->pVMRC;
386#ifdef PGMPOOL_WITH_USER_TRACKING
387 pVM->pgm.s.pPoolR3->paUsersRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3->paUsersR3);
388#endif
389#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
390 pVM->pgm.s.pPoolR3->paPhysExtsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3->paPhysExtsR3);
391#endif
392#ifdef PGMPOOL_WITH_MONITORING
393 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "pgmPoolAccessHandler", &pVM->pgm.s.pPoolR3->pfnAccessHandlerRC);
394 AssertReleaseRC(rc);
395 /* init order hack. */
396 if (!pVM->pgm.s.pPoolR3->pfnAccessHandlerR0)
397 {
398 rc = PDMR3LdrGetSymbolR0(pVM, NULL, "pgmPoolAccessHandler", &pVM->pgm.s.pPoolR3->pfnAccessHandlerR0);
399 AssertReleaseRC(rc);
400 }
401#endif
402}
403
404
405/**
406 * Reset notification.
407 *
408 * This will flush the pool.
409 * @param pVM The VM handle.
410 */
411void pgmR3PoolReset(PVM pVM)
412{
413 pgmPoolFlushAll(pVM);
414}
415
416
417/**
418 * Grows the shadow page pool.
419 *
420 * I.e. adds more pages to it, assuming that hasn't reached cMaxPages yet.
421 *
422 * @returns VBox status code.
423 * @param pVM The VM handle.
424 */
425VMMR3DECL(int) PGMR3PoolGrow(PVM pVM)
426{
427 PPGMPOOL pPool = pVM->pgm.s.pPoolR3;
428 AssertReturn(pPool->cCurPages < pPool->cMaxPages, VERR_INTERNAL_ERROR);
429
430 pgmLock(pVM);
431
432 /*
433 * How much to grow it by?
434 */
435 uint32_t cPages = pPool->cMaxPages - pPool->cCurPages;
436 cPages = RT_MIN(PGMPOOL_CFG_MAX_GROW, cPages);
437 LogFlow(("PGMR3PoolGrow: Growing the pool by %d (%#x) pages.\n", cPages, cPages));
438
439 for (unsigned i = pPool->cCurPages; cPages-- > 0; i++)
440 {
441 PPGMPOOLPAGE pPage = &pPool->aPages[i];
442
443 /* Allocate all pages in low (below 4 GB) memory as 32 bits guests need a page table root in low memory. */
444 pPage->pvPageR3 = MMR3PageAllocLow(pVM);
445 if (!pPage->pvPageR3)
446 {
447 Log(("We're out of memory!! i=%d\n", i));
448 pgmUnlock(pVM);
449 return i ? VINF_SUCCESS : VERR_NO_PAGE_MEMORY;
450 }
451 pPage->Core.Key = MMPage2Phys(pVM, pPage->pvPageR3);
452 pPage->GCPhys = NIL_RTGCPHYS;
453 pPage->enmKind = PGMPOOLKIND_FREE;
454 pPage->idx = pPage - &pPool->aPages[0];
455 LogFlow(("PGMR3PoolGrow: insert page #%#x - %RHp\n", pPage->idx, pPage->Core.Key));
456 pPage->iNext = pPool->iFreeHead;
457#ifdef PGMPOOL_WITH_USER_TRACKING
458 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
459#endif
460#ifdef PGMPOOL_WITH_MONITORING
461 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
462 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
463 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
464 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
465#endif
466#ifdef PGMPOOL_WITH_CACHE
467 pPage->iAgeNext = NIL_PGMPOOL_IDX;
468 pPage->iAgePrev = NIL_PGMPOOL_IDX;
469#endif
470 /* commit it */
471 bool fRc = RTAvloHCPhysInsert(&pPool->HCPhysTree, &pPage->Core); Assert(fRc); NOREF(fRc);
472 pPool->iFreeHead = i;
473 pPool->cCurPages = i + 1;
474 }
475
476 pgmUnlock(pVM);
477 Assert(pPool->cCurPages <= pPool->cMaxPages);
478 return VINF_SUCCESS;
479}
480
481
482#ifdef PGMPOOL_WITH_MONITORING
483
484/**
485 * Worker used by pgmR3PoolAccessHandler when it's invoked by an async thread.
486 *
487 * @param pPool The pool.
488 * @param pPage The page.
489 */
490static DECLCALLBACK(void) pgmR3PoolFlushReusedPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
491{
492 /* for the present this should be safe enough I think... */
493 pgmLock(pPool->pVMR3);
494 if ( pPage->fReusedFlushPending
495 && pPage->enmKind != PGMPOOLKIND_FREE)
496 pgmPoolFlushPage(pPool, pPage);
497 pgmUnlock(pPool->pVMR3);
498}
499
500
501/**
502 * \#PF Handler callback for PT write accesses.
503 *
504 * The handler can not raise any faults, it's mainly for monitoring write access
505 * to certain pages.
506 *
507 * @returns VINF_SUCCESS if the handler have carried out the operation.
508 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
509 * @param pVM VM Handle.
510 * @param GCPhys The physical address the guest is writing to.
511 * @param pvPhys The HC mapping of that address.
512 * @param pvBuf What the guest is reading/writing.
513 * @param cbBuf How much it's reading/writing.
514 * @param enmAccessType The access type.
515 * @param pvUser User argument.
516 */
517static DECLCALLBACK(int) pgmR3PoolAccessHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser)
518{
519 STAM_PROFILE_START(&pVM->pgm.s.pPoolR3->StatMonitorR3, a);
520 PPGMPOOL pPool = pVM->pgm.s.pPoolR3;
521 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)pvUser;
522 LogFlow(("pgmR3PoolAccessHandler: GCPhys=%RGp %p:{.Core=%RHp, .idx=%d, .GCPhys=%RGp, .enmType=%d}\n",
523 GCPhys, pPage, pPage->Core.Key, pPage->idx, pPage->GCPhys, pPage->enmKind));
524
525 PVMCPU pVCpu = VMMGetCpu(pVM);
526
527 /*
528 * We don't have to be very sophisticated about this since there are relativly few calls here.
529 * However, we must try our best to detect any non-cpu accesses (disk / networking).
530 *
531 * Just to make life more interesting, we'll have to deal with the async threads too.
532 * We cannot flush a page if we're in an async thread because of REM notifications.
533 */
534 pgmLock(pVM);
535 if (!pVCpu)
536 {
537 Log(("pgmR3PoolAccessHandler: async thread, requesting EMT to flush the page: %p:{.Core=%RHp, .idx=%d, .GCPhys=%RGp, .enmType=%d}\n",
538 pPage, pPage->Core.Key, pPage->idx, pPage->GCPhys, pPage->enmKind));
539 STAM_COUNTER_INC(&pPool->StatMonitorR3Async);
540 if (!pPage->fReusedFlushPending)
541 {
542 pgmUnlock(pVM);
543 int rc = VMR3ReqCallEx(pPool->pVMR3, VMCPUID_ANY, NULL, 0, VMREQFLAGS_NO_WAIT | VMREQFLAGS_VOID, (PFNRT)pgmR3PoolFlushReusedPage, 2, pPool, pPage);
544 AssertRCReturn(rc, rc);
545 pgmLock(pVM);
546 pPage->fReusedFlushPending = true;
547 pPage->cModifications += 0x1000;
548 }
549
550 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvPhys, NULL);
551 /** @todo r=bird: making unsafe assumption about not crossing entries here! */
552 while (cbBuf > 4)
553 {
554 cbBuf -= 4;
555 pvPhys = (uint8_t *)pvPhys + 4;
556 GCPhys += 4;
557 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvPhys, NULL);
558 }
559 STAM_PROFILE_STOP(&pPool->StatMonitorR3, a);
560 }
561 else if ( ( pPage->cModifications < 96 /* it's cheaper here. */
562 || pgmPoolIsPageLocked(&pVM->pgm.s, pPage)
563 )
564 && cbBuf <= 4)
565 {
566 /* Clear the shadow entry. */
567 if (!pPage->cModifications++)
568 pgmPoolMonitorModifiedInsert(pPool, pPage);
569 /** @todo r=bird: making unsafe assumption about not crossing entries here! */
570 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvPhys, NULL);
571 STAM_PROFILE_STOP(&pPool->StatMonitorR3, a);
572 }
573 else
574 {
575 pgmPoolMonitorChainFlush(pPool, pPage); /* ASSUME that VERR_PGM_POOL_CLEARED can be ignored here and that FFs will deal with it in due time. */
576 STAM_PROFILE_STOP_EX(&pPool->StatMonitorR3, &pPool->StatMonitorR3FlushPage, a);
577 }
578 pgmUnlock(pVM);
579 return VINF_PGM_HANDLER_DO_DEFAULT;
580}
581
582#endif /* PGMPOOL_WITH_MONITORING */
583
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette