VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMPool.cpp@ 33152

Last change on this file since 33152 was 33008, checked in by vboxsync, 14 years ago

Allocate more pgm pool pages for large guest memory configurations

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 50.6 KB
Line 
1/* $Id: PGMPool.cpp 33008 2010-10-08 12:25:52Z vboxsync $ */
2/** @file
3 * PGM Shadow Page Pool.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_pgm_pool PGM Shadow Page Pool
19 *
20 * Motivations:
21 * -# Relationship between shadow page tables and physical guest pages. This
22 * should allow us to skip most of the global flushes now following access
23 * handler changes. The main expense is flushing shadow pages.
24 * -# Limit the pool size if necessary (default is kind of limitless).
25 * -# Allocate shadow pages from RC. We use to only do this in SyncCR3.
26 * -# Required for 64-bit guests.
27 * -# Combining the PD cache and page pool in order to simplify caching.
28 *
29 *
30 * @section sec_pgm_pool_outline Design Outline
31 *
32 * The shadow page pool tracks pages used for shadowing paging structures (i.e.
33 * page tables, page directory, page directory pointer table and page map
34 * level-4). Each page in the pool has an unique identifier. This identifier is
35 * used to link a guest physical page to a shadow PT. The identifier is a
36 * non-zero value and has a relativly low max value - say 14 bits. This makes it
37 * possible to fit it into the upper bits of the of the aHCPhys entries in the
38 * ram range.
39 *
40 * By restricting host physical memory to the first 48 bits (which is the
41 * announced physical memory range of the K8L chip (scheduled for 2008)), we
42 * can safely use the upper 16 bits for shadow page ID and reference counting.
43 *
44 * Update: The 48 bit assumption will be lifted with the new physical memory
45 * management (PGMPAGE), so we won't have any trouble when someone stuffs 2TB
46 * into a box in some years.
47 *
48 * Now, it's possible for a page to be aliased, i.e. mapped by more than one PT
49 * or PD. This is solved by creating a list of physical cross reference extents
50 * when ever this happens. Each node in the list (extent) is can contain 3 page
51 * pool indexes. The list it self is chained using indexes into the paPhysExt
52 * array.
53 *
54 *
55 * @section sec_pgm_pool_life Life Cycle of a Shadow Page
56 *
57 * -# The SyncPT function requests a page from the pool.
58 * The request includes the kind of page it is (PT/PD, PAE/legacy), the
59 * address of the page it's shadowing, and more.
60 * -# The pool responds to the request by allocating a new page.
61 * When the cache is enabled, it will first check if it's in the cache.
62 * Should the pool be exhausted, one of two things can be done:
63 * -# Flush the whole pool and current CR3.
64 * -# Use the cache to find a page which can be flushed (~age).
65 * -# The SyncPT function will sync one or more pages and insert it into the
66 * shadow PD.
67 * -# The SyncPage function may sync more pages on a later \#PFs.
68 * -# The page is freed / flushed in SyncCR3 (perhaps) and some other cases.
69 * When caching is enabled, the page isn't flush but remains in the cache.
70 *
71 *
72 * @section sec_pgm_pool_impl Monitoring
73 *
74 * We always monitor PAGE_SIZE chunks of memory. When we've got multiple shadow
75 * pages for the same PAGE_SIZE of guest memory (PAE and mixed PD/PT) the pages
76 * sharing the monitor get linked using the iMonitoredNext/Prev. The head page
77 * is the pvUser to the access handlers.
78 *
79 *
80 * @section sec_pgm_pool_impl Implementation
81 *
82 * The pool will take pages from the MM page pool. The tracking data
83 * (attributes, bitmaps and so on) are allocated from the hypervisor heap. The
84 * pool content can be accessed both by using the page id and the physical
85 * address (HC). The former is managed by means of an array, the latter by an
86 * offset based AVL tree.
87 *
88 * Flushing of a pool page means that we iterate the content (we know what kind
89 * it is) and updates the link information in the ram range.
90 *
91 * ...
92 */
93
94
95/*******************************************************************************
96* Header Files *
97*******************************************************************************/
98#define LOG_GROUP LOG_GROUP_PGM_POOL
99#include <VBox/pgm.h>
100#include <VBox/mm.h>
101#include "PGMInternal.h"
102#include <VBox/vm.h>
103#include "PGMInline.h"
104
105#include <VBox/log.h>
106#include <VBox/err.h>
107#include <iprt/asm.h>
108#include <iprt/string.h>
109#include <VBox/dbg.h>
110
111
112/*******************************************************************************
113* Internal Functions *
114*******************************************************************************/
115static DECLCALLBACK(int) pgmR3PoolAccessHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
116#ifdef VBOX_WITH_DEBUGGER
117static DECLCALLBACK(int) pgmR3PoolCmdCheck(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
118#endif
119
120#ifdef VBOX_WITH_DEBUGGER
121/** Command descriptors. */
122static const DBGCCMD g_aCmds[] =
123{
124 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
125 { "pgmpoolcheck", 0, 0, NULL, 0, NULL, 0, pgmR3PoolCmdCheck, "", "Check the pgm pool pages." },
126};
127#endif
128
129/**
130 * Initalizes the pool
131 *
132 * @returns VBox status code.
133 * @param pVM The VM handle.
134 */
135int pgmR3PoolInit(PVM pVM)
136{
137 AssertCompile(NIL_PGMPOOL_IDX == 0);
138 /* pPage->cLocked is an unsigned byte. */
139 AssertCompile(VMM_MAX_CPU_COUNT <= 255);
140
141 /*
142 * Query Pool config.
143 */
144 PCFGMNODE pCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM/Pool");
145
146 /* Default pgm pool size equals 1024 pages. */
147 uint16_t cMaxPages = 4*_1M >> PAGE_SHIFT;
148
149#if HC_ARCH_BITS == 64
150 uint64_t cbRam = 0;
151 CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0);
152
153 /* We should increase the pgm pool size for guests with more than 2 GB of ram */
154 if (cbRam >= UINT64_C(2) * _1G)
155 {
156 /* In the nested paging case we require 2 + 513 * (cbRam/1GB) pages to
157 * store the entire page table descriptors.
158 */
159 uint64_t u64MaxPages = cbRam / (_1G / UINT64_C(512));
160 if (u64MaxPages > PGMPOOL_IDX_LAST)
161 cMaxPages = PGMPOOL_IDX_LAST;
162 else
163 cMaxPages = (uint16_t)u64MaxPages;
164 }
165#endif
166
167 /** @cfgm{/PGM/Pool/MaxPages, uint16_t, #pages, 16, 0x3fff, 1024}
168 * The max size of the shadow page pool in pages. The pool will grow dynamically
169 * up to this limit.
170 */
171 int rc = CFGMR3QueryU16Def(pCfg, "MaxPages", &cMaxPages, cMaxPages);
172 AssertLogRelRCReturn(rc, rc);
173 AssertLogRelMsgReturn(cMaxPages <= PGMPOOL_IDX_LAST && cMaxPages >= RT_ALIGN(PGMPOOL_IDX_FIRST, 16),
174 ("cMaxPages=%u (%#x)\n", cMaxPages, cMaxPages), VERR_INVALID_PARAMETER);
175 cMaxPages = RT_ALIGN(cMaxPages, 16);
176
177 /** @cfgm{/PGM/Pool/MaxUsers, uint16_t, #users, MaxUsers, 32K, MaxPages*2}
178 * The max number of shadow page user tracking records. Each shadow page has
179 * zero of other shadow pages (or CR3s) that references it, or uses it if you
180 * like. The structures describing these relationships are allocated from a
181 * fixed sized pool. This configuration variable defines the pool size.
182 */
183 uint16_t cMaxUsers;
184 rc = CFGMR3QueryU16Def(pCfg, "MaxUsers", &cMaxUsers, cMaxPages * 2);
185 AssertLogRelRCReturn(rc, rc);
186 AssertLogRelMsgReturn(cMaxUsers >= cMaxPages && cMaxPages <= _32K,
187 ("cMaxUsers=%u (%#x)\n", cMaxUsers, cMaxUsers), VERR_INVALID_PARAMETER);
188
189 /** @cfgm{/PGM/Pool/MaxPhysExts, uint16_t, #extents, 16, MaxPages * 2, MAX(MaxPages*2,0x3fff)}
190 * The max number of extents for tracking aliased guest pages.
191 */
192 uint16_t cMaxPhysExts;
193 rc = CFGMR3QueryU16Def(pCfg, "MaxPhysExts", &cMaxPhysExts, RT_MAX(cMaxPages * 2, PGMPOOL_IDX_LAST));
194 AssertLogRelRCReturn(rc, rc);
195 AssertLogRelMsgReturn(cMaxPhysExts >= 16 && cMaxPages <= PGMPOOL_IDX_LAST,
196 ("cMaxPhysExts=%u (%#x)\n", cMaxPhysExts, cMaxPhysExts), VERR_INVALID_PARAMETER);
197
198 /** @cfgm{/PGM/Pool/ChacheEnabled, bool, true}
199 * Enables or disabling caching of shadow pages. Chaching means that we will try
200 * reuse shadow pages instead of recreating them everything SyncCR3, SyncPT or
201 * SyncPage requests one. When reusing a shadow page, we can save time
202 * reconstructing it and it's children.
203 */
204 bool fCacheEnabled;
205 rc = CFGMR3QueryBoolDef(pCfg, "CacheEnabled", &fCacheEnabled, true);
206 AssertLogRelRCReturn(rc, rc);
207
208 LogRel(("pgmR3PoolInit: cMaxPages=%#RX16 cMaxUsers=%#RX16 cMaxPhysExts=%#RX16 fCacheEnable=%RTbool\n",
209 cMaxPages, cMaxUsers, cMaxPhysExts, fCacheEnabled));
210
211 /*
212 * Allocate the data structures.
213 */
214 uint32_t cb = RT_OFFSETOF(PGMPOOL, aPages[cMaxPages]);
215 cb += cMaxUsers * sizeof(PGMPOOLUSER);
216 cb += cMaxPhysExts * sizeof(PGMPOOLPHYSEXT);
217 PPGMPOOL pPool;
218 rc = MMR3HyperAllocOnceNoRel(pVM, cb, 0, MM_TAG_PGM_POOL, (void **)&pPool);
219 if (RT_FAILURE(rc))
220 return rc;
221 pVM->pgm.s.pPoolR3 = pPool;
222 pVM->pgm.s.pPoolR0 = MMHyperR3ToR0(pVM, pPool);
223 pVM->pgm.s.pPoolRC = MMHyperR3ToRC(pVM, pPool);
224
225 /*
226 * Initialize it.
227 */
228 pPool->pVMR3 = pVM;
229 pPool->pVMR0 = pVM->pVMR0;
230 pPool->pVMRC = pVM->pVMRC;
231 pPool->cMaxPages = cMaxPages;
232 pPool->cCurPages = PGMPOOL_IDX_FIRST;
233 pPool->iUserFreeHead = 0;
234 pPool->cMaxUsers = cMaxUsers;
235 PPGMPOOLUSER paUsers = (PPGMPOOLUSER)&pPool->aPages[pPool->cMaxPages];
236 pPool->paUsersR3 = paUsers;
237 pPool->paUsersR0 = MMHyperR3ToR0(pVM, paUsers);
238 pPool->paUsersRC = MMHyperR3ToRC(pVM, paUsers);
239 for (unsigned i = 0; i < cMaxUsers; i++)
240 {
241 paUsers[i].iNext = i + 1;
242 paUsers[i].iUser = NIL_PGMPOOL_IDX;
243 paUsers[i].iUserTable = 0xfffffffe;
244 }
245 paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX;
246 pPool->iPhysExtFreeHead = 0;
247 pPool->cMaxPhysExts = cMaxPhysExts;
248 PPGMPOOLPHYSEXT paPhysExts = (PPGMPOOLPHYSEXT)&paUsers[cMaxUsers];
249 pPool->paPhysExtsR3 = paPhysExts;
250 pPool->paPhysExtsR0 = MMHyperR3ToR0(pVM, paPhysExts);
251 pPool->paPhysExtsRC = MMHyperR3ToRC(pVM, paPhysExts);
252 for (unsigned i = 0; i < cMaxPhysExts; i++)
253 {
254 paPhysExts[i].iNext = i + 1;
255 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
256 paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
257 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
258 paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
259 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
260 paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
261 }
262 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
263 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++)
264 pPool->aiHash[i] = NIL_PGMPOOL_IDX;
265 pPool->iAgeHead = NIL_PGMPOOL_IDX;
266 pPool->iAgeTail = NIL_PGMPOOL_IDX;
267 pPool->fCacheEnabled = fCacheEnabled;
268 pPool->pfnAccessHandlerR3 = pgmR3PoolAccessHandler;
269 pPool->pszAccessHandler = "Guest Paging Access Handler";
270 pPool->HCPhysTree = 0;
271
272 /* The NIL entry. */
273 Assert(NIL_PGMPOOL_IDX == 0);
274 pPool->aPages[NIL_PGMPOOL_IDX].enmKind = PGMPOOLKIND_INVALID;
275
276 /* The Shadow 32-bit PD. (32 bits guest paging) */
277 pPool->aPages[PGMPOOL_IDX_PD].Core.Key = NIL_RTHCPHYS;
278 pPool->aPages[PGMPOOL_IDX_PD].GCPhys = NIL_RTGCPHYS;
279 pPool->aPages[PGMPOOL_IDX_PD].pvPageR3 = 0;
280 pPool->aPages[PGMPOOL_IDX_PD].enmKind = PGMPOOLKIND_32BIT_PD;
281 pPool->aPages[PGMPOOL_IDX_PD].idx = PGMPOOL_IDX_PD;
282
283 /* The Shadow PDPT. */
284 pPool->aPages[PGMPOOL_IDX_PDPT].Core.Key = NIL_RTHCPHYS;
285 pPool->aPages[PGMPOOL_IDX_PDPT].GCPhys = NIL_RTGCPHYS;
286 pPool->aPages[PGMPOOL_IDX_PDPT].pvPageR3 = 0;
287 pPool->aPages[PGMPOOL_IDX_PDPT].enmKind = PGMPOOLKIND_PAE_PDPT;
288 pPool->aPages[PGMPOOL_IDX_PDPT].idx = PGMPOOL_IDX_PDPT;
289
290 /* The Shadow AMD64 CR3. */
291 pPool->aPages[PGMPOOL_IDX_AMD64_CR3].Core.Key = NIL_RTHCPHYS;
292 pPool->aPages[PGMPOOL_IDX_AMD64_CR3].GCPhys = NIL_RTGCPHYS;
293 pPool->aPages[PGMPOOL_IDX_AMD64_CR3].pvPageR3 = 0;
294 pPool->aPages[PGMPOOL_IDX_AMD64_CR3].enmKind = PGMPOOLKIND_64BIT_PML4;
295 pPool->aPages[PGMPOOL_IDX_AMD64_CR3].idx = PGMPOOL_IDX_AMD64_CR3;
296
297 /* The Nested Paging CR3. */
298 pPool->aPages[PGMPOOL_IDX_NESTED_ROOT].Core.Key = NIL_RTHCPHYS;
299 pPool->aPages[PGMPOOL_IDX_NESTED_ROOT].GCPhys = NIL_RTGCPHYS;
300 pPool->aPages[PGMPOOL_IDX_NESTED_ROOT].pvPageR3 = 0;
301 pPool->aPages[PGMPOOL_IDX_NESTED_ROOT].enmKind = PGMPOOLKIND_ROOT_NESTED;
302 pPool->aPages[PGMPOOL_IDX_NESTED_ROOT].idx = PGMPOOL_IDX_NESTED_ROOT;
303
304 /*
305 * Set common stuff.
306 */
307 for (unsigned iPage = 1; iPage < PGMPOOL_IDX_FIRST; iPage++)
308 {
309 pPool->aPages[iPage].iNext = NIL_PGMPOOL_IDX;
310 pPool->aPages[iPage].iUserHead = NIL_PGMPOOL_USER_INDEX;
311 pPool->aPages[iPage].iModifiedNext = NIL_PGMPOOL_IDX;
312 pPool->aPages[iPage].iModifiedPrev = NIL_PGMPOOL_IDX;
313 pPool->aPages[iPage].iMonitoredNext = NIL_PGMPOOL_IDX;
314 pPool->aPages[iPage].iMonitoredNext = NIL_PGMPOOL_IDX;
315 pPool->aPages[iPage].iAgeNext = NIL_PGMPOOL_IDX;
316 pPool->aPages[iPage].iAgePrev = NIL_PGMPOOL_IDX;
317 Assert(pPool->aPages[iPage].idx == iPage);
318 Assert(pPool->aPages[iPage].GCPhys == NIL_RTGCPHYS);
319 Assert(!pPool->aPages[iPage].fSeenNonGlobal);
320 Assert(!pPool->aPages[iPage].fMonitored);
321 Assert(!pPool->aPages[iPage].fCached);
322 Assert(!pPool->aPages[iPage].fZeroed);
323 Assert(!pPool->aPages[iPage].fReusedFlushPending);
324 }
325
326#ifdef VBOX_WITH_STATISTICS
327 /*
328 * Register statistics.
329 */
330 STAM_REG(pVM, &pPool->cCurPages, STAMTYPE_U16, "/PGM/Pool/cCurPages", STAMUNIT_PAGES, "Current pool size.");
331 STAM_REG(pVM, &pPool->cMaxPages, STAMTYPE_U16, "/PGM/Pool/cMaxPages", STAMUNIT_PAGES, "Max pool size.");
332 STAM_REG(pVM, &pPool->cUsedPages, STAMTYPE_U16, "/PGM/Pool/cUsedPages", STAMUNIT_PAGES, "The number of pages currently in use.");
333 STAM_REG(pVM, &pPool->cUsedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/cUsedPagesHigh", STAMUNIT_PAGES, "The high watermark for cUsedPages.");
334 STAM_REG(pVM, &pPool->StatAlloc, STAMTYPE_PROFILE_ADV, "/PGM/Pool/Alloc", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolAlloc.");
335 STAM_REG(pVM, &pPool->StatClearAll, STAMTYPE_PROFILE, "/PGM/Pool/ClearAll", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmR3PoolClearAll.");
336 STAM_REG(pVM, &pPool->StatR3Reset, STAMTYPE_PROFILE, "/PGM/Pool/R3Reset", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmR3PoolReset.");
337 STAM_REG(pVM, &pPool->StatFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFlushPage.");
338 STAM_REG(pVM, &pPool->StatFree, STAMTYPE_PROFILE, "/PGM/Pool/Free", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFree.");
339 STAM_REG(pVM, &pPool->StatForceFlushPage, STAMTYPE_COUNTER, "/PGM/Pool/FlushForce", STAMUNIT_OCCURENCES, "Counting explicit flushes by PGMPoolFlushPage().");
340 STAM_REG(pVM, &pPool->StatForceFlushDirtyPage, STAMTYPE_COUNTER, "/PGM/Pool/FlushForceDirty", STAMUNIT_OCCURENCES, "Counting explicit flushes of dirty pages by PGMPoolFlushPage().");
341 STAM_REG(pVM, &pPool->StatForceFlushReused, STAMTYPE_COUNTER, "/PGM/Pool/FlushReused", STAMUNIT_OCCURENCES, "Counting flushes for reused pages.");
342 STAM_REG(pVM, &pPool->StatZeroPage, STAMTYPE_PROFILE, "/PGM/Pool/ZeroPage", STAMUNIT_TICKS_PER_CALL, "Profiling time spent zeroing pages. Overlaps with Alloc.");
343 STAM_REG(pVM, &pPool->cMaxUsers, STAMTYPE_U16, "/PGM/Pool/Track/cMaxUsers", STAMUNIT_COUNT, "Max user tracking records.");
344 STAM_REG(pVM, &pPool->cPresent, STAMTYPE_U32, "/PGM/Pool/Track/cPresent", STAMUNIT_COUNT, "Number of present page table entries.");
345 STAM_REG(pVM, &pPool->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Pool/Track/Deref", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackDeref.");
346 STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPT, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPT", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPT.");
347 STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTs, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTs", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPTs.");
348 STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTsSlow, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTsSlow", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPTsSlow.");
349 STAM_REG(pVM, &pPool->StatTrackFlushEntry, STAMTYPE_COUNTER, "/PGM/Pool/Track/Entry/Flush", STAMUNIT_COUNT, "Nr of flushed entries.");
350 STAM_REG(pVM, &pPool->StatTrackFlushEntryKeep, STAMTYPE_COUNTER, "/PGM/Pool/Track/Entry/Update", STAMUNIT_COUNT, "Nr of updated entries.");
351 STAM_REG(pVM, &pPool->StatTrackFreeUpOneUser, STAMTYPE_COUNTER, "/PGM/Pool/Track/FreeUpOneUser", STAMUNIT_TICKS_PER_CALL, "The number of times we were out of user tracking records.");
352 STAM_REG(pVM, &pPool->StatTrackDerefGCPhys, STAMTYPE_PROFILE, "/PGM/Pool/Track/DrefGCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling deref activity related tracking GC physical pages.");
353 STAM_REG(pVM, &pPool->StatTrackLinearRamSearches, STAMTYPE_COUNTER, "/PGM/Pool/Track/LinearRamSearches", STAMUNIT_OCCURENCES, "The number of times we had to do linear ram searches.");
354 STAM_REG(pVM, &pPool->StamTrackPhysExtAllocFailures,STAMTYPE_COUNTER, "/PGM/Pool/Track/PhysExtAllocFailures", STAMUNIT_OCCURENCES, "The number of failing pgmPoolTrackPhysExtAlloc calls.");
355 STAM_REG(pVM, &pPool->StatMonitorRZ, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling the RC/R0 access handler.");
356 STAM_REG(pVM, &pPool->StatMonitorRZEmulateInstr, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/EmulateInstr", STAMUNIT_OCCURENCES, "Times we've failed interpreting the instruction.");
357 STAM_REG(pVM, &pPool->StatMonitorRZFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the RC/R0 access handler.");
358 STAM_REG(pVM, &pPool->StatMonitorRZFlushReinit, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/FlushReinit", STAMUNIT_OCCURENCES, "Times we've detected a page table reinit.");
359 STAM_REG(pVM, &pPool->StatMonitorRZFlushModOverflow,STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/FlushOverflow", STAMUNIT_OCCURENCES, "Counting flushes for pages that are modified too often.");
360 STAM_REG(pVM, &pPool->StatMonitorRZFork, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fork", STAMUNIT_OCCURENCES, "Times we've detected fork().");
361 STAM_REG(pVM, &pPool->StatMonitorRZHandled, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/Handled", STAMUNIT_TICKS_PER_CALL, "Profiling the RC/R0 access we've handled (except REP STOSD).");
362 STAM_REG(pVM, &pPool->StatMonitorRZIntrFailPatch1, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IntrFailPatch1", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction.");
363 STAM_REG(pVM, &pPool->StatMonitorRZIntrFailPatch2, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IntrFailPatch2", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction during flushing.");
364 STAM_REG(pVM, &pPool->StatMonitorRZRepPrefix, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/RepPrefix", STAMUNIT_OCCURENCES, "The number of times we've seen rep prefixes we can't handle.");
365 STAM_REG(pVM, &pPool->StatMonitorRZRepStosd, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/RepStosd", STAMUNIT_TICKS_PER_CALL, "Profiling the REP STOSD cases we've handled.");
366 STAM_REG(pVM, &pPool->StatMonitorRZFaultPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PT", STAMUNIT_OCCURENCES, "Nr of handled PT faults.");
367 STAM_REG(pVM, &pPool->StatMonitorRZFaultPD, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PD", STAMUNIT_OCCURENCES, "Nr of handled PD faults.");
368 STAM_REG(pVM, &pPool->StatMonitorRZFaultPDPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PDPT", STAMUNIT_OCCURENCES, "Nr of handled PDPT faults.");
369 STAM_REG(pVM, &pPool->StatMonitorRZFaultPML4, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PML4", STAMUNIT_OCCURENCES, "Nr of handled PML4 faults.");
370 STAM_REG(pVM, &pPool->StatMonitorR3, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3", STAMUNIT_TICKS_PER_CALL, "Profiling the R3 access handler.");
371 STAM_REG(pVM, &pPool->StatMonitorR3EmulateInstr, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/EmulateInstr", STAMUNIT_OCCURENCES, "Times we've failed interpreting the instruction.");
372 STAM_REG(pVM, &pPool->StatMonitorR3FlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the R3 access handler.");
373 STAM_REG(pVM, &pPool->StatMonitorR3FlushReinit, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/FlushReinit", STAMUNIT_OCCURENCES, "Times we've detected a page table reinit.");
374 STAM_REG(pVM, &pPool->StatMonitorR3FlushModOverflow,STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/FlushOverflow", STAMUNIT_OCCURENCES, "Counting flushes for pages that are modified too often.");
375 STAM_REG(pVM, &pPool->StatMonitorR3Fork, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fork", STAMUNIT_OCCURENCES, "Times we've detected fork().");
376 STAM_REG(pVM, &pPool->StatMonitorR3Handled, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Handled", STAMUNIT_TICKS_PER_CALL, "Profiling the R3 access we've handled (except REP STOSD).");
377 STAM_REG(pVM, &pPool->StatMonitorR3RepPrefix, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/RepPrefix", STAMUNIT_OCCURENCES, "The number of times we've seen rep prefixes we can't handle.");
378 STAM_REG(pVM, &pPool->StatMonitorR3RepStosd, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/RepStosd", STAMUNIT_TICKS_PER_CALL, "Profiling the REP STOSD cases we've handled.");
379 STAM_REG(pVM, &pPool->StatMonitorR3FaultPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PT", STAMUNIT_OCCURENCES, "Nr of handled PT faults.");
380 STAM_REG(pVM, &pPool->StatMonitorR3FaultPD, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PD", STAMUNIT_OCCURENCES, "Nr of handled PD faults.");
381 STAM_REG(pVM, &pPool->StatMonitorR3FaultPDPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PDPT", STAMUNIT_OCCURENCES, "Nr of handled PDPT faults.");
382 STAM_REG(pVM, &pPool->StatMonitorR3FaultPML4, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PML4", STAMUNIT_OCCURENCES, "Nr of handled PML4 faults.");
383 STAM_REG(pVM, &pPool->StatMonitorR3Async, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Async", STAMUNIT_OCCURENCES, "Times we're called in an async thread and need to flush.");
384 STAM_REG(pVM, &pPool->cModifiedPages, STAMTYPE_U16, "/PGM/Pool/Monitor/cModifiedPages", STAMUNIT_PAGES, "The current cModifiedPages value.");
385 STAM_REG(pVM, &pPool->cModifiedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/Monitor/cModifiedPagesHigh", STAMUNIT_PAGES, "The high watermark for cModifiedPages.");
386 STAM_REG(pVM, &pPool->StatResetDirtyPages, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/Resets", STAMUNIT_OCCURENCES, "Times we've called pgmPoolResetDirtyPages (and there were dirty page).");
387 STAM_REG(pVM, &pPool->StatDirtyPage, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/Pages", STAMUNIT_OCCURENCES, "Times we've called pgmPoolAddDirtyPage.");
388 STAM_REG(pVM, &pPool->StatDirtyPageDupFlush, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/FlushDup", STAMUNIT_OCCURENCES, "Times we've had to flush duplicates for dirty page management.");
389 STAM_REG(pVM, &pPool->StatDirtyPageOverFlowFlush, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/FlushOverflow",STAMUNIT_OCCURENCES, "Times we've had to flush because of overflow.");
390 STAM_REG(pVM, &pPool->StatCacheHits, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Hits", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls satisfied by the cache.");
391 STAM_REG(pVM, &pPool->StatCacheMisses, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Misses", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls not statisfied by the cache.");
392 STAM_REG(pVM, &pPool->StatCacheKindMismatches, STAMTYPE_COUNTER, "/PGM/Pool/Cache/KindMismatches", STAMUNIT_OCCURENCES, "The number of shadow page kind mismatches. (Better be low, preferably 0!)");
393 STAM_REG(pVM, &pPool->StatCacheFreeUpOne, STAMTYPE_COUNTER, "/PGM/Pool/Cache/FreeUpOne", STAMUNIT_OCCURENCES, "The number of times the cache was asked to free up a page.");
394 STAM_REG(pVM, &pPool->StatCacheCacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Cacheable", STAMUNIT_OCCURENCES, "The number of cacheable allocations.");
395 STAM_REG(pVM, &pPool->StatCacheUncacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Uncacheable", STAMUNIT_OCCURENCES, "The number of uncacheable allocations.");
396#endif /* VBOX_WITH_STATISTICS */
397
398#ifdef VBOX_WITH_DEBUGGER
399 /*
400 * Debugger commands.
401 */
402 static bool s_fRegisteredCmds = false;
403 if (!s_fRegisteredCmds)
404 {
405 rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
406 if (RT_SUCCESS(rc))
407 s_fRegisteredCmds = true;
408 }
409#endif
410
411 return VINF_SUCCESS;
412}
413
414
415/**
416 * Relocate the page pool data.
417 *
418 * @param pVM The VM handle.
419 */
420void pgmR3PoolRelocate(PVM pVM)
421{
422 pVM->pgm.s.pPoolRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3);
423 pVM->pgm.s.pPoolR3->pVMRC = pVM->pVMRC;
424 pVM->pgm.s.pPoolR3->paUsersRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3->paUsersR3);
425 pVM->pgm.s.pPoolR3->paPhysExtsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3->paPhysExtsR3);
426 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "pgmPoolAccessHandler", &pVM->pgm.s.pPoolR3->pfnAccessHandlerRC);
427 AssertReleaseRC(rc);
428 /* init order hack. */
429 if (!pVM->pgm.s.pPoolR3->pfnAccessHandlerR0)
430 {
431 rc = PDMR3LdrGetSymbolR0(pVM, NULL, "pgmPoolAccessHandler", &pVM->pgm.s.pPoolR3->pfnAccessHandlerR0);
432 AssertReleaseRC(rc);
433 }
434}
435
436
437/**
438 * Grows the shadow page pool.
439 *
440 * I.e. adds more pages to it, assuming that hasn't reached cMaxPages yet.
441 *
442 * @returns VBox status code.
443 * @param pVM The VM handle.
444 */
445VMMR3DECL(int) PGMR3PoolGrow(PVM pVM)
446{
447 PPGMPOOL pPool = pVM->pgm.s.pPoolR3;
448 AssertReturn(pPool->cCurPages < pPool->cMaxPages, VERR_INTERNAL_ERROR);
449
450 pgmLock(pVM);
451
452 /*
453 * How much to grow it by?
454 */
455 uint32_t cPages = pPool->cMaxPages - pPool->cCurPages;
456 cPages = RT_MIN(PGMPOOL_CFG_MAX_GROW, cPages);
457 LogFlow(("PGMR3PoolGrow: Growing the pool by %d (%#x) pages.\n", cPages, cPages));
458
459 for (unsigned i = pPool->cCurPages; cPages-- > 0; i++)
460 {
461 PPGMPOOLPAGE pPage = &pPool->aPages[i];
462
463 /* Allocate all pages in low (below 4 GB) memory as 32 bits guests need a page table root in low memory. */
464 pPage->pvPageR3 = MMR3PageAllocLow(pVM);
465 if (!pPage->pvPageR3)
466 {
467 Log(("We're out of memory!! i=%d\n", i));
468 pgmUnlock(pVM);
469 return i ? VINF_SUCCESS : VERR_NO_PAGE_MEMORY;
470 }
471 pPage->Core.Key = MMPage2Phys(pVM, pPage->pvPageR3);
472 AssertFatal(pPage->Core.Key < _4G);
473 pPage->GCPhys = NIL_RTGCPHYS;
474 pPage->enmKind = PGMPOOLKIND_FREE;
475 pPage->idx = pPage - &pPool->aPages[0];
476 LogFlow(("PGMR3PoolGrow: insert page #%#x - %RHp\n", pPage->idx, pPage->Core.Key));
477 pPage->iNext = pPool->iFreeHead;
478 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
479 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
480 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
481 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
482 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
483 pPage->iAgeNext = NIL_PGMPOOL_IDX;
484 pPage->iAgePrev = NIL_PGMPOOL_IDX;
485 /* commit it */
486 bool fRc = RTAvloHCPhysInsert(&pPool->HCPhysTree, &pPage->Core); Assert(fRc); NOREF(fRc);
487 pPool->iFreeHead = i;
488 pPool->cCurPages = i + 1;
489 }
490
491 pgmUnlock(pVM);
492 Assert(pPool->cCurPages <= pPool->cMaxPages);
493 return VINF_SUCCESS;
494}
495
496
497
498/**
499 * Worker used by pgmR3PoolAccessHandler when it's invoked by an async thread.
500 *
501 * @param pPool The pool.
502 * @param pPage The page.
503 */
504static DECLCALLBACK(void) pgmR3PoolFlushReusedPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
505{
506 /* for the present this should be safe enough I think... */
507 pgmLock(pPool->pVMR3);
508 if ( pPage->fReusedFlushPending
509 && pPage->enmKind != PGMPOOLKIND_FREE)
510 pgmPoolFlushPage(pPool, pPage);
511 pgmUnlock(pPool->pVMR3);
512}
513
514
515/**
516 * \#PF Handler callback for PT write accesses.
517 *
518 * The handler can not raise any faults, it's mainly for monitoring write access
519 * to certain pages.
520 *
521 * @returns VINF_SUCCESS if the handler has carried out the operation.
522 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
523 * @param pVM VM Handle.
524 * @param GCPhys The physical address the guest is writing to.
525 * @param pvPhys The HC mapping of that address.
526 * @param pvBuf What the guest is reading/writing.
527 * @param cbBuf How much it's reading/writing.
528 * @param enmAccessType The access type.
529 * @param pvUser User argument.
530 */
531static DECLCALLBACK(int) pgmR3PoolAccessHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser)
532{
533 STAM_PROFILE_START(&pVM->pgm.s.pPoolR3->StatMonitorR3, a);
534 PPGMPOOL pPool = pVM->pgm.s.pPoolR3;
535 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)pvUser;
536 LogFlow(("pgmR3PoolAccessHandler: GCPhys=%RGp %p:{.Core=%RHp, .idx=%d, .GCPhys=%RGp, .enmType=%d}\n",
537 GCPhys, pPage, pPage->Core.Key, pPage->idx, pPage->GCPhys, pPage->enmKind));
538
539 PVMCPU pVCpu = VMMGetCpu(pVM);
540
541 /*
542 * We don't have to be very sophisticated about this since there are relativly few calls here.
543 * However, we must try our best to detect any non-cpu accesses (disk / networking).
544 *
545 * Just to make life more interesting, we'll have to deal with the async threads too.
546 * We cannot flush a page if we're in an async thread because of REM notifications.
547 */
548 pgmLock(pVM);
549 if (PHYS_PAGE_ADDRESS(GCPhys) != PHYS_PAGE_ADDRESS(pPage->GCPhys))
550 {
551 /* Pool page changed while we were waiting for the lock; ignore. */
552 Log(("CPU%d: pgmR3PoolAccessHandler pgm pool page for %RGp changed (to %RGp) while waiting!\n", pVCpu->idCpu, PHYS_PAGE_ADDRESS(GCPhys), PHYS_PAGE_ADDRESS(pPage->GCPhys)));
553 pgmUnlock(pVM);
554 return VINF_PGM_HANDLER_DO_DEFAULT;
555 }
556
557 Assert(pPage->enmKind != PGMPOOLKIND_FREE);
558
559 /* @todo this code doesn't make any sense. remove the if (!pVCpu) block */
560 if (!pVCpu) /** @todo This shouldn't happen any longer, all access handlers will be called on an EMT. All ring-3 handlers, except MMIO, already own the PGM lock. @bugref{3170} */
561 {
562 Log(("pgmR3PoolAccessHandler: async thread, requesting EMT to flush the page: %p:{.Core=%RHp, .idx=%d, .GCPhys=%RGp, .enmType=%d}\n",
563 pPage, pPage->Core.Key, pPage->idx, pPage->GCPhys, pPage->enmKind));
564 STAM_COUNTER_INC(&pPool->StatMonitorR3Async);
565 if (!pPage->fReusedFlushPending)
566 {
567 pgmUnlock(pVM);
568 int rc = VMR3ReqCallVoidNoWait(pPool->pVMR3, VMCPUID_ANY, (PFNRT)pgmR3PoolFlushReusedPage, 2, pPool, pPage);
569 AssertRCReturn(rc, rc);
570 pgmLock(pVM);
571 pPage->fReusedFlushPending = true;
572 pPage->cModifications += 0x1000;
573 }
574
575 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvPhys, 0 /* unknown write size */);
576 /** @todo r=bird: making unsafe assumption about not crossing entries here! */
577 while (cbBuf > 4)
578 {
579 cbBuf -= 4;
580 pvPhys = (uint8_t *)pvPhys + 4;
581 GCPhys += 4;
582 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvPhys, 0 /* unknown write size */);
583 }
584 STAM_PROFILE_STOP(&pPool->StatMonitorR3, a);
585 }
586 else if ( ( pPage->cModifications < 96 /* it's cheaper here. */
587 || pgmPoolIsPageLocked(&pVM->pgm.s, pPage)
588 )
589 && cbBuf <= 4)
590 {
591 /* Clear the shadow entry. */
592 if (!pPage->cModifications++)
593 pgmPoolMonitorModifiedInsert(pPool, pPage);
594 /** @todo r=bird: making unsafe assumption about not crossing entries here! */
595 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvPhys, 0 /* unknown write size */);
596 STAM_PROFILE_STOP(&pPool->StatMonitorR3, a);
597 }
598 else
599 {
600 pgmPoolMonitorChainFlush(pPool, pPage); /* ASSUME that VERR_PGM_POOL_CLEARED can be ignored here and that FFs will deal with it in due time. */
601 STAM_PROFILE_STOP_EX(&pPool->StatMonitorR3, &pPool->StatMonitorR3FlushPage, a);
602 }
603 pgmUnlock(pVM);
604 return VINF_PGM_HANDLER_DO_DEFAULT;
605}
606
607
608/**
609 * Rendezvous callback used by pgmR3PoolClearAll that clears all shadow pages
610 * and all modification counters.
611 *
612 * This is only called on one of the EMTs while the other ones are waiting for
613 * it to complete this function.
614 *
615 * @returns VINF_SUCCESS (VBox strict status code).
616 * @param pVM The VM handle.
617 * @param pVCpu The VMCPU for the EMT we're being called on. Unused.
618 * @param fpvFlushRemTlb When not NULL, we'll flush the REM TLB as well.
619 * (This is the pvUser, so it has to be void *.)
620 *
621 */
622DECLCALLBACK(VBOXSTRICTRC) pgmR3PoolClearAllRendezvous(PVM pVM, PVMCPU pVCpu, void *fpvFlushRemTbl)
623{
624 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
625 STAM_PROFILE_START(&pPool->StatClearAll, c);
626
627 pgmLock(pVM);
628 Log(("pgmR3PoolClearAllRendezvous: cUsedPages=%d fpvFlushRemTbl=%RTbool\n", pPool->cUsedPages, !!fpvFlushRemTbl));
629
630 /*
631 * Iterate all the pages until we've encountered all that are in use.
632 * This is a simple but not quite optimal solution.
633 */
634 unsigned cModifiedPages = 0; NOREF(cModifiedPages);
635 unsigned cLeft = pPool->cUsedPages;
636 unsigned iPage = pPool->cCurPages;
637 while (--iPage >= PGMPOOL_IDX_FIRST)
638 {
639 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
640 if (pPage->GCPhys != NIL_RTGCPHYS)
641 {
642 switch (pPage->enmKind)
643 {
644 /*
645 * We only care about shadow page tables.
646 */
647 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
648 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
649 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
650 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
651 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
652 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
653 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
654 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
655 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
656 {
657 if (pPage->cPresent)
658 {
659 void *pvShw = PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage);
660 STAM_PROFILE_START(&pPool->StatZeroPage, z);
661#if 0
662 /* Useful check for leaking references; *very* expensive though. */
663 switch (pPage->enmKind)
664 {
665 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
666 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
667 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
668 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
669 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
670 {
671 bool fFoundFirst = false;
672 PPGMSHWPTPAE pPT = (PPGMSHWPTPAE)pvShw;
673 for (unsigned ptIndex = 0; ptIndex < RT_ELEMENTS(pPT->a); ptIndex++)
674 {
675 if (pPT->a[ptIndex].u)
676 {
677 if (!fFoundFirst)
678 {
679 AssertFatalMsg(pPage->iFirstPresent <= ptIndex, ("ptIndex = %d first present = %d\n", ptIndex, pPage->iFirstPresent));
680 if (pPage->iFirstPresent != ptIndex)
681 Log(("ptIndex = %d first present = %d\n", ptIndex, pPage->iFirstPresent));
682 fFoundFirst = true;
683 }
684 if (PGMSHWPTEPAE_IS_P(pPT->a[ptIndex]))
685 {
686 pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pPT->a[ptIndex]), NIL_RTGCPHYS);
687 if (pPage->iFirstPresent == ptIndex)
688 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
689 }
690 }
691 }
692 AssertFatalMsg(pPage->cPresent == 0, ("cPresent = %d pPage = %RGv\n", pPage->cPresent, pPage->GCPhys));
693 break;
694 }
695 default:
696 break;
697 }
698#endif
699 ASMMemZeroPage(pvShw);
700 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
701 pPage->cPresent = 0;
702 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
703 }
704 }
705 /* fall thru */
706
707 default:
708 Assert(!pPage->cModifications || ++cModifiedPages);
709 Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
710 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
711 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
712 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
713 pPage->cModifications = 0;
714 break;
715
716 }
717 if (!--cLeft)
718 break;
719 }
720 }
721
722 /* swipe the special pages too. */
723 for (iPage = PGMPOOL_IDX_FIRST_SPECIAL; iPage < PGMPOOL_IDX_FIRST; iPage++)
724 {
725 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
726 if (pPage->GCPhys != NIL_RTGCPHYS)
727 {
728 Assert(!pPage->cModifications || ++cModifiedPages);
729 Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
730 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
731 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
732 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
733 pPage->cModifications = 0;
734 }
735 }
736
737#ifndef DEBUG_michael
738 AssertMsg(cModifiedPages == pPool->cModifiedPages, ("%d != %d\n", cModifiedPages, pPool->cModifiedPages));
739#endif
740 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
741 pPool->cModifiedPages = 0;
742
743 /*
744 * Clear all the GCPhys links and rebuild the phys ext free list.
745 */
746 for (PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
747 pRam;
748 pRam = pRam->CTX_SUFF(pNext))
749 {
750 iPage = pRam->cb >> PAGE_SHIFT;
751 while (iPage-- > 0)
752 PGM_PAGE_SET_TRACKING(&pRam->aPages[iPage], 0);
753 }
754
755 pPool->iPhysExtFreeHead = 0;
756 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
757 const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
758 for (unsigned i = 0; i < cMaxPhysExts; i++)
759 {
760 paPhysExts[i].iNext = i + 1;
761 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
762 paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
763 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
764 paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
765 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
766 paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
767 }
768 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
769
770
771#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
772 /* Reset all dirty pages to reactivate the page monitoring. */
773 /* Note: we must do this *after* clearing all page references and shadow page tables as there might be stale references to
774 * recently removed MMIO ranges around that might otherwise end up asserting in pgmPoolTracDerefGCPhysHint
775 */
776 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
777 {
778 PPGMPOOLPAGE pPage;
779 unsigned idxPage;
780
781 if (pPool->aDirtyPages[i].uIdx == NIL_PGMPOOL_IDX)
782 continue;
783
784 idxPage = pPool->aDirtyPages[i].uIdx;
785 AssertRelease(idxPage != NIL_PGMPOOL_IDX);
786 pPage = &pPool->aPages[idxPage];
787 Assert(pPage->idx == idxPage);
788 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
789
790 AssertMsg(pPage->fDirty, ("Page %RGp (slot=%d) not marked dirty!", pPage->GCPhys, i));
791
792 Log(("Reactivate dirty page %RGp\n", pPage->GCPhys));
793
794 /* First write protect the page again to catch all write accesses. (before checking for changes -> SMP) */
795 int rc = PGMHandlerPhysicalReset(pVM, pPage->GCPhys & PAGE_BASE_GC_MASK);
796 Assert(rc == VINF_SUCCESS);
797 pPage->fDirty = false;
798
799 pPool->aDirtyPages[i].uIdx = NIL_PGMPOOL_IDX;
800 }
801
802 /* Clear all dirty pages. */
803 pPool->idxFreeDirtyPage = 0;
804 pPool->cDirtyPages = 0;
805#endif
806
807 /* Clear the PGM_SYNC_CLEAR_PGM_POOL flag on all VCPUs to prevent redundant flushes. */
808 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
809 pVM->aCpus[idCpu].pgm.s.fSyncFlags &= ~PGM_SYNC_CLEAR_PGM_POOL;
810
811 /* Flush job finished. */
812 VM_FF_CLEAR(pVM, VM_FF_PGM_POOL_FLUSH_PENDING);
813 pPool->cPresent = 0;
814 pgmUnlock(pVM);
815
816 PGM_INVL_ALL_VCPU_TLBS(pVM);
817
818 if (fpvFlushRemTbl)
819 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
820 CPUMSetChangedFlags(&pVM->aCpus[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
821
822 STAM_PROFILE_STOP(&pPool->StatClearAll, c);
823 return VINF_SUCCESS;
824}
825
826
827/**
828 * Clears the shadow page pool.
829 *
830 * @param pVM The VM handle.
831 * @param fFlushRemTlb When set, the REM TLB is scheduled for flushing as
832 * well.
833 */
834void pgmR3PoolClearAll(PVM pVM, bool fFlushRemTlb)
835{
836 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PoolClearAllRendezvous, &fFlushRemTlb);
837 AssertRC(rc);
838}
839
840/**
841 * Protect all pgm pool page table entries to monitor writes
842 *
843 * @param pVM The VM handle.
844 *
845 * Remark: assumes the caller will flush all TLBs (!!)
846 */
847void pgmR3PoolWriteProtectPages(PVM pVM)
848{
849 Assert(PGMIsLockOwner(pVM));
850 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
851 unsigned cLeft = pPool->cUsedPages;
852 unsigned iPage = pPool->cCurPages;
853 while (--iPage >= PGMPOOL_IDX_FIRST)
854 {
855 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
856 if ( pPage->GCPhys != NIL_RTGCPHYS
857 && pPage->cPresent)
858 {
859 union
860 {
861 void *pv;
862 PX86PT pPT;
863 PPGMSHWPTPAE pPTPae;
864 PEPTPT pPTEpt;
865 } uShw;
866 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
867
868 switch (pPage->enmKind)
869 {
870 /*
871 * We only care about shadow page tables.
872 */
873 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
874 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
875 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
876 for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPT->a); iShw++)
877 {
878 if (uShw.pPT->a[iShw].n.u1Present)
879 uShw.pPT->a[iShw].n.u1Write = 0;
880 }
881 break;
882
883 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
884 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
885 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
886 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
887 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
888 for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPTPae->a); iShw++)
889 {
890 if (PGMSHWPTEPAE_IS_P(uShw.pPTPae->a[iShw]))
891 PGMSHWPTEPAE_SET_RO(uShw.pPTPae->a[iShw]);
892 }
893 break;
894
895 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
896 for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPTEpt->a); iShw++)
897 {
898 if (uShw.pPTEpt->a[iShw].n.u1Present)
899 uShw.pPTEpt->a[iShw].n.u1Write = 0;
900 }
901 break;
902
903 default:
904 break;
905 }
906 if (!--cLeft)
907 break;
908 }
909 }
910}
911
912#ifdef VBOX_WITH_DEBUGGER
913/**
914 * The '.pgmpoolcheck' command.
915 *
916 * @returns VBox status.
917 * @param pCmd Pointer to the command descriptor (as registered).
918 * @param pCmdHlp Pointer to command helper functions.
919 * @param pVM Pointer to the current VM (if any).
920 * @param paArgs Pointer to (readonly) array of arguments.
921 * @param cArgs Number of arguments in the array.
922 */
923static DECLCALLBACK(int) pgmR3PoolCmdCheck(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
924{
925 /*
926 * Validate input.
927 */
928 if (!pVM)
929 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
930
931 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
932
933 for (unsigned i = 0; i < pPool->cCurPages; i++)
934 {
935 PPGMPOOLPAGE pPage = &pPool->aPages[i];
936 bool fFirstMsg = true;
937
938 /* Todo: cover other paging modes too. */
939 if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
940 {
941 PPGMSHWPTPAE pShwPT = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage);
942 {
943 PX86PTPAE pGstPT;
944 PGMPAGEMAPLOCK LockPage;
945 int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, pPage->GCPhys, (const void **)&pGstPT, &LockPage); AssertReleaseRC(rc);
946
947 /* Check if any PTEs are out of sync. */
948 for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++)
949 {
950 if (PGMSHWPTEPAE_IS_P(pShwPT->a[j]))
951 {
952 RTHCPHYS HCPhys = NIL_RTHCPHYS;
953 rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[j].u & X86_PTE_PAE_PG_MASK, &HCPhys);
954 if ( rc != VINF_SUCCESS
955 || PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[j]) != HCPhys)
956 {
957 if (fFirstMsg)
958 {
959 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Check pool page %RGp\n", pPage->GCPhys);
960 fFirstMsg = false;
961 }
962 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Mismatch HCPhys: rc=%Rrc idx=%d guest %RX64 shw=%RX64 vs %RHp\n", rc, j, pGstPT->a[j].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), HCPhys);
963 }
964 else if ( PGMSHWPTEPAE_IS_RW(pShwPT->a[j])
965 && !pGstPT->a[j].n.u1Write)
966 {
967 if (fFirstMsg)
968 {
969 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Check pool page %RGp\n", pPage->GCPhys);
970 fFirstMsg = false;
971 }
972 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Mismatch r/w gst/shw: idx=%d guest %RX64 shw=%RX64 vs %RHp\n", j, pGstPT->a[j].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), HCPhys);
973 }
974 }
975 }
976 PGMPhysReleasePageMappingLock(pVM, &LockPage);
977 }
978
979 /* Make sure this page table can't be written to from any shadow mapping. */
980 RTHCPHYS HCPhysPT = NIL_RTHCPHYS;
981 int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pPage->GCPhys, &HCPhysPT);
982 AssertMsgRC(rc, ("PGMPhysGCPhys2HCPhys failed with rc=%d for %RGp\n", rc, pPage->GCPhys));
983 if (rc == VINF_SUCCESS)
984 {
985 for (unsigned j = 0; j < pPool->cCurPages; j++)
986 {
987 PPGMPOOLPAGE pTempPage = &pPool->aPages[j];
988
989 if (pTempPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
990 {
991 PPGMSHWPTPAE pShwPT2 = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pTempPage);
992
993 for (unsigned k = 0; k < RT_ELEMENTS(pShwPT->a); k++)
994 {
995 if ( PGMSHWPTEPAE_IS_P_RW(pShwPT2->a[k])
996# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
997 && !pPage->fDirty
998# endif
999 && PGMSHWPTEPAE_GET_HCPHYS(pShwPT2->a[k]) == HCPhysPT)
1000 {
1001 if (fFirstMsg)
1002 {
1003 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Check pool page %RGp\n", pPage->GCPhys);
1004 fFirstMsg = false;
1005 }
1006 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Mismatch: r/w: GCPhys=%RGp idx=%d shw %RX64 %RX64\n", pTempPage->GCPhys, k, PGMSHWPTEPAE_GET_LOG(pShwPT->a[k]), PGMSHWPTEPAE_GET_LOG(pShwPT2->a[k]));
1007 }
1008 }
1009 }
1010 }
1011 }
1012 }
1013 }
1014 return VINF_SUCCESS;
1015}
1016#endif /* VBOX_WITH_DEBUGGER */
Note: See TracBrowser for help on using the repository browser.

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette