VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMPool.cpp@ 33192

Last change on this file since 33192 was 33192, checked in by vboxsync, 14 years ago

Need more space for the hypervisor heap for large memory guests

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 51.0 KB
Line 
1/* $Id: PGMPool.cpp 33192 2010-10-18 11:54:33Z vboxsync $ */
2/** @file
3 * PGM Shadow Page Pool.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_pgm_pool PGM Shadow Page Pool
19 *
20 * Motivations:
21 * -# Relationship between shadow page tables and physical guest pages. This
22 * should allow us to skip most of the global flushes now following access
23 * handler changes. The main expense is flushing shadow pages.
24 * -# Limit the pool size if necessary (default is kind of limitless).
25 * -# Allocate shadow pages from RC. We use to only do this in SyncCR3.
26 * -# Required for 64-bit guests.
27 * -# Combining the PD cache and page pool in order to simplify caching.
28 *
29 *
30 * @section sec_pgm_pool_outline Design Outline
31 *
32 * The shadow page pool tracks pages used for shadowing paging structures (i.e.
33 * page tables, page directory, page directory pointer table and page map
34 * level-4). Each page in the pool has an unique identifier. This identifier is
35 * used to link a guest physical page to a shadow PT. The identifier is a
36 * non-zero value and has a relativly low max value - say 14 bits. This makes it
37 * possible to fit it into the upper bits of the of the aHCPhys entries in the
38 * ram range.
39 *
40 * By restricting host physical memory to the first 48 bits (which is the
41 * announced physical memory range of the K8L chip (scheduled for 2008)), we
42 * can safely use the upper 16 bits for shadow page ID and reference counting.
43 *
44 * Update: The 48 bit assumption will be lifted with the new physical memory
45 * management (PGMPAGE), so we won't have any trouble when someone stuffs 2TB
46 * into a box in some years.
47 *
48 * Now, it's possible for a page to be aliased, i.e. mapped by more than one PT
49 * or PD. This is solved by creating a list of physical cross reference extents
50 * when ever this happens. Each node in the list (extent) is can contain 3 page
51 * pool indexes. The list it self is chained using indexes into the paPhysExt
52 * array.
53 *
54 *
55 * @section sec_pgm_pool_life Life Cycle of a Shadow Page
56 *
57 * -# The SyncPT function requests a page from the pool.
58 * The request includes the kind of page it is (PT/PD, PAE/legacy), the
59 * address of the page it's shadowing, and more.
60 * -# The pool responds to the request by allocating a new page.
61 * When the cache is enabled, it will first check if it's in the cache.
62 * Should the pool be exhausted, one of two things can be done:
63 * -# Flush the whole pool and current CR3.
64 * -# Use the cache to find a page which can be flushed (~age).
65 * -# The SyncPT function will sync one or more pages and insert it into the
66 * shadow PD.
67 * -# The SyncPage function may sync more pages on a later \#PFs.
68 * -# The page is freed / flushed in SyncCR3 (perhaps) and some other cases.
69 * When caching is enabled, the page isn't flush but remains in the cache.
70 *
71 *
72 * @section sec_pgm_pool_impl Monitoring
73 *
74 * We always monitor PAGE_SIZE chunks of memory. When we've got multiple shadow
75 * pages for the same PAGE_SIZE of guest memory (PAE and mixed PD/PT) the pages
76 * sharing the monitor get linked using the iMonitoredNext/Prev. The head page
77 * is the pvUser to the access handlers.
78 *
79 *
80 * @section sec_pgm_pool_impl Implementation
81 *
82 * The pool will take pages from the MM page pool. The tracking data
83 * (attributes, bitmaps and so on) are allocated from the hypervisor heap. The
84 * pool content can be accessed both by using the page id and the physical
85 * address (HC). The former is managed by means of an array, the latter by an
86 * offset based AVL tree.
87 *
88 * Flushing of a pool page means that we iterate the content (we know what kind
89 * it is) and updates the link information in the ram range.
90 *
91 * ...
92 */
93
94
95/*******************************************************************************
96* Header Files *
97*******************************************************************************/
98#define LOG_GROUP LOG_GROUP_PGM_POOL
99#include <VBox/pgm.h>
100#include <VBox/mm.h>
101#include "PGMInternal.h"
102#include <VBox/vm.h>
103#include "PGMInline.h"
104
105#include <VBox/log.h>
106#include <VBox/err.h>
107#include <iprt/asm.h>
108#include <iprt/string.h>
109#include <VBox/dbg.h>
110
111
112/*******************************************************************************
113* Internal Functions *
114*******************************************************************************/
115static DECLCALLBACK(int) pgmR3PoolAccessHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
116#ifdef VBOX_WITH_DEBUGGER
117static DECLCALLBACK(int) pgmR3PoolCmdCheck(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
118#endif
119
120#ifdef VBOX_WITH_DEBUGGER
121/** Command descriptors. */
122static const DBGCCMD g_aCmds[] =
123{
124 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
125 { "pgmpoolcheck", 0, 0, NULL, 0, NULL, 0, pgmR3PoolCmdCheck, "", "Check the pgm pool pages." },
126};
127#endif
128
129/**
130 * Initalizes the pool
131 *
132 * @returns VBox status code.
133 * @param pVM The VM handle.
134 */
135int pgmR3PoolInit(PVM pVM)
136{
137 AssertCompile(NIL_PGMPOOL_IDX == 0);
138 /* pPage->cLocked is an unsigned byte. */
139 AssertCompile(VMM_MAX_CPU_COUNT <= 255);
140
141 /*
142 * Query Pool config.
143 */
144 PCFGMNODE pCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM/Pool");
145
146 /* Default pgm pool size equals 1024 pages. */
147 uint16_t cMaxPages = 4*_1M >> PAGE_SHIFT;
148
149#if HC_ARCH_BITS == 64
150 uint64_t cbRam = 0;
151 CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0);
152
153 /* We should increase the pgm pool size for guests with more than 2 GB of ram */
154 if (cbRam >= UINT64_C(2) * _1G)
155 {
156 /* In the nested paging case we require 2 + 513 * (cbRam/1GB) pages to
157 * store the entire page table descriptors.
158 */
159 uint64_t u64MaxPages = cbRam / (_1G / UINT64_C(512));
160 if (u64MaxPages > PGMPOOL_IDX_LAST)
161 cMaxPages = PGMPOOL_IDX_LAST;
162 else
163 cMaxPages = (uint16_t)u64MaxPages;
164 }
165#endif
166
167 /** @cfgm{/PGM/Pool/MaxPages, uint16_t, #pages, 16, 0x3fff, 1024}
168 * The max size of the shadow page pool in pages. The pool will grow dynamically
169 * up to this limit.
170 */
171 int rc = CFGMR3QueryU16Def(pCfg, "MaxPages", &cMaxPages, cMaxPages);
172 AssertLogRelRCReturn(rc, rc);
173 AssertLogRelMsgReturn(cMaxPages <= PGMPOOL_IDX_LAST && cMaxPages >= RT_ALIGN(PGMPOOL_IDX_FIRST, 16),
174 ("cMaxPages=%u (%#x)\n", cMaxPages, cMaxPages), VERR_INVALID_PARAMETER);
175 cMaxPages = RT_ALIGN(cMaxPages, 16);
176
177 /** todo:
178 * We need to be much more careful with our allocation strategy here.
179 * For nested paging we don't need pool user info nor extents at all, but we can't check for nested paging here (too early during init to get a confirmation it can be used)
180 * The default for large memory configs is a bit large for shadow paging, so I've restricted the extent maximum to 2k (2k * 16 = 32k of hyper heap)
181 */
182
183 /** @cfgm{/PGM/Pool/MaxUsers, uint16_t, #users, MaxUsers, 32K, MaxPages*2}
184 * The max number of shadow page user tracking records. Each shadow page has
185 * zero of other shadow pages (or CR3s) that references it, or uses it if you
186 * like. The structures describing these relationships are allocated from a
187 * fixed sized pool. This configuration variable defines the pool size.
188 */
189 uint16_t cMaxUsers;
190 rc = CFGMR3QueryU16Def(pCfg, "MaxUsers", &cMaxUsers, cMaxPages * 2);
191 AssertLogRelRCReturn(rc, rc);
192 AssertLogRelMsgReturn(cMaxUsers >= cMaxPages && cMaxPages <= _32K,
193 ("cMaxUsers=%u (%#x)\n", cMaxUsers, cMaxUsers), VERR_INVALID_PARAMETER);
194
195 /** @cfgm{/PGM/Pool/MaxPhysExts, uint16_t, #extents, 16, MaxPages * 2, MAX(MaxPages*2,0x3fff)}
196 * The max number of extents for tracking aliased guest pages.
197 */
198 uint16_t cMaxPhysExts;
199 rc = CFGMR3QueryU16Def(pCfg, "MaxPhysExts", &cMaxPhysExts, RT_MAX(cMaxPages * 2, 2048 /* 2k max as this eat too much hyper heap */));
200 AssertLogRelRCReturn(rc, rc);
201 AssertLogRelMsgReturn(cMaxPhysExts >= 16 && cMaxPages <= PGMPOOL_IDX_LAST,
202 ("cMaxPhysExts=%u (%#x)\n", cMaxPhysExts, cMaxPhysExts), VERR_INVALID_PARAMETER);
203
204 /** @cfgm{/PGM/Pool/ChacheEnabled, bool, true}
205 * Enables or disabling caching of shadow pages. Caching means that we will try
206 * reuse shadow pages instead of recreating them everything SyncCR3, SyncPT or
207 * SyncPage requests one. When reusing a shadow page, we can save time
208 * reconstructing it and it's children.
209 */
210 bool fCacheEnabled;
211 rc = CFGMR3QueryBoolDef(pCfg, "CacheEnabled", &fCacheEnabled, true);
212 AssertLogRelRCReturn(rc, rc);
213
214 LogRel(("pgmR3PoolInit: cMaxPages=%#RX16 cMaxUsers=%#RX16 cMaxPhysExts=%#RX16 fCacheEnable=%RTbool\n",
215 cMaxPages, cMaxUsers, cMaxPhysExts, fCacheEnabled));
216
217 /*
218 * Allocate the data structures.
219 */
220 uint32_t cb = RT_OFFSETOF(PGMPOOL, aPages[cMaxPages]);
221 cb += cMaxUsers * sizeof(PGMPOOLUSER);
222 cb += cMaxPhysExts * sizeof(PGMPOOLPHYSEXT);
223 PPGMPOOL pPool;
224 rc = MMR3HyperAllocOnceNoRel(pVM, cb, 0, MM_TAG_PGM_POOL, (void **)&pPool);
225 if (RT_FAILURE(rc))
226 return rc;
227 pVM->pgm.s.pPoolR3 = pPool;
228 pVM->pgm.s.pPoolR0 = MMHyperR3ToR0(pVM, pPool);
229 pVM->pgm.s.pPoolRC = MMHyperR3ToRC(pVM, pPool);
230
231 /*
232 * Initialize it.
233 */
234 pPool->pVMR3 = pVM;
235 pPool->pVMR0 = pVM->pVMR0;
236 pPool->pVMRC = pVM->pVMRC;
237 pPool->cMaxPages = cMaxPages;
238 pPool->cCurPages = PGMPOOL_IDX_FIRST;
239 pPool->iUserFreeHead = 0;
240 pPool->cMaxUsers = cMaxUsers;
241 PPGMPOOLUSER paUsers = (PPGMPOOLUSER)&pPool->aPages[pPool->cMaxPages];
242 pPool->paUsersR3 = paUsers;
243 pPool->paUsersR0 = MMHyperR3ToR0(pVM, paUsers);
244 pPool->paUsersRC = MMHyperR3ToRC(pVM, paUsers);
245 for (unsigned i = 0; i < cMaxUsers; i++)
246 {
247 paUsers[i].iNext = i + 1;
248 paUsers[i].iUser = NIL_PGMPOOL_IDX;
249 paUsers[i].iUserTable = 0xfffffffe;
250 }
251 paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX;
252 pPool->iPhysExtFreeHead = 0;
253 pPool->cMaxPhysExts = cMaxPhysExts;
254 PPGMPOOLPHYSEXT paPhysExts = (PPGMPOOLPHYSEXT)&paUsers[cMaxUsers];
255 pPool->paPhysExtsR3 = paPhysExts;
256 pPool->paPhysExtsR0 = MMHyperR3ToR0(pVM, paPhysExts);
257 pPool->paPhysExtsRC = MMHyperR3ToRC(pVM, paPhysExts);
258 for (unsigned i = 0; i < cMaxPhysExts; i++)
259 {
260 paPhysExts[i].iNext = i + 1;
261 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
262 paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
263 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
264 paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
265 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
266 paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
267 }
268 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
269 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++)
270 pPool->aiHash[i] = NIL_PGMPOOL_IDX;
271 pPool->iAgeHead = NIL_PGMPOOL_IDX;
272 pPool->iAgeTail = NIL_PGMPOOL_IDX;
273 pPool->fCacheEnabled = fCacheEnabled;
274 pPool->pfnAccessHandlerR3 = pgmR3PoolAccessHandler;
275 pPool->pszAccessHandler = "Guest Paging Access Handler";
276 pPool->HCPhysTree = 0;
277
278 /* The NIL entry. */
279 Assert(NIL_PGMPOOL_IDX == 0);
280 pPool->aPages[NIL_PGMPOOL_IDX].enmKind = PGMPOOLKIND_INVALID;
281
282 /* The Shadow 32-bit PD. (32 bits guest paging) */
283 pPool->aPages[PGMPOOL_IDX_PD].Core.Key = NIL_RTHCPHYS;
284 pPool->aPages[PGMPOOL_IDX_PD].GCPhys = NIL_RTGCPHYS;
285 pPool->aPages[PGMPOOL_IDX_PD].pvPageR3 = 0;
286 pPool->aPages[PGMPOOL_IDX_PD].enmKind = PGMPOOLKIND_32BIT_PD;
287 pPool->aPages[PGMPOOL_IDX_PD].idx = PGMPOOL_IDX_PD;
288
289 /* The Shadow PDPT. */
290 pPool->aPages[PGMPOOL_IDX_PDPT].Core.Key = NIL_RTHCPHYS;
291 pPool->aPages[PGMPOOL_IDX_PDPT].GCPhys = NIL_RTGCPHYS;
292 pPool->aPages[PGMPOOL_IDX_PDPT].pvPageR3 = 0;
293 pPool->aPages[PGMPOOL_IDX_PDPT].enmKind = PGMPOOLKIND_PAE_PDPT;
294 pPool->aPages[PGMPOOL_IDX_PDPT].idx = PGMPOOL_IDX_PDPT;
295
296 /* The Shadow AMD64 CR3. */
297 pPool->aPages[PGMPOOL_IDX_AMD64_CR3].Core.Key = NIL_RTHCPHYS;
298 pPool->aPages[PGMPOOL_IDX_AMD64_CR3].GCPhys = NIL_RTGCPHYS;
299 pPool->aPages[PGMPOOL_IDX_AMD64_CR3].pvPageR3 = 0;
300 pPool->aPages[PGMPOOL_IDX_AMD64_CR3].enmKind = PGMPOOLKIND_64BIT_PML4;
301 pPool->aPages[PGMPOOL_IDX_AMD64_CR3].idx = PGMPOOL_IDX_AMD64_CR3;
302
303 /* The Nested Paging CR3. */
304 pPool->aPages[PGMPOOL_IDX_NESTED_ROOT].Core.Key = NIL_RTHCPHYS;
305 pPool->aPages[PGMPOOL_IDX_NESTED_ROOT].GCPhys = NIL_RTGCPHYS;
306 pPool->aPages[PGMPOOL_IDX_NESTED_ROOT].pvPageR3 = 0;
307 pPool->aPages[PGMPOOL_IDX_NESTED_ROOT].enmKind = PGMPOOLKIND_ROOT_NESTED;
308 pPool->aPages[PGMPOOL_IDX_NESTED_ROOT].idx = PGMPOOL_IDX_NESTED_ROOT;
309
310 /*
311 * Set common stuff.
312 */
313 for (unsigned iPage = 1; iPage < PGMPOOL_IDX_FIRST; iPage++)
314 {
315 pPool->aPages[iPage].iNext = NIL_PGMPOOL_IDX;
316 pPool->aPages[iPage].iUserHead = NIL_PGMPOOL_USER_INDEX;
317 pPool->aPages[iPage].iModifiedNext = NIL_PGMPOOL_IDX;
318 pPool->aPages[iPage].iModifiedPrev = NIL_PGMPOOL_IDX;
319 pPool->aPages[iPage].iMonitoredNext = NIL_PGMPOOL_IDX;
320 pPool->aPages[iPage].iMonitoredNext = NIL_PGMPOOL_IDX;
321 pPool->aPages[iPage].iAgeNext = NIL_PGMPOOL_IDX;
322 pPool->aPages[iPage].iAgePrev = NIL_PGMPOOL_IDX;
323 Assert(pPool->aPages[iPage].idx == iPage);
324 Assert(pPool->aPages[iPage].GCPhys == NIL_RTGCPHYS);
325 Assert(!pPool->aPages[iPage].fSeenNonGlobal);
326 Assert(!pPool->aPages[iPage].fMonitored);
327 Assert(!pPool->aPages[iPage].fCached);
328 Assert(!pPool->aPages[iPage].fZeroed);
329 Assert(!pPool->aPages[iPage].fReusedFlushPending);
330 }
331
332#ifdef VBOX_WITH_STATISTICS
333 /*
334 * Register statistics.
335 */
336 STAM_REG(pVM, &pPool->cCurPages, STAMTYPE_U16, "/PGM/Pool/cCurPages", STAMUNIT_PAGES, "Current pool size.");
337 STAM_REG(pVM, &pPool->cMaxPages, STAMTYPE_U16, "/PGM/Pool/cMaxPages", STAMUNIT_PAGES, "Max pool size.");
338 STAM_REG(pVM, &pPool->cUsedPages, STAMTYPE_U16, "/PGM/Pool/cUsedPages", STAMUNIT_PAGES, "The number of pages currently in use.");
339 STAM_REG(pVM, &pPool->cUsedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/cUsedPagesHigh", STAMUNIT_PAGES, "The high watermark for cUsedPages.");
340 STAM_REG(pVM, &pPool->StatAlloc, STAMTYPE_PROFILE_ADV, "/PGM/Pool/Alloc", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolAlloc.");
341 STAM_REG(pVM, &pPool->StatClearAll, STAMTYPE_PROFILE, "/PGM/Pool/ClearAll", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmR3PoolClearAll.");
342 STAM_REG(pVM, &pPool->StatR3Reset, STAMTYPE_PROFILE, "/PGM/Pool/R3Reset", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmR3PoolReset.");
343 STAM_REG(pVM, &pPool->StatFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFlushPage.");
344 STAM_REG(pVM, &pPool->StatFree, STAMTYPE_PROFILE, "/PGM/Pool/Free", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFree.");
345 STAM_REG(pVM, &pPool->StatForceFlushPage, STAMTYPE_COUNTER, "/PGM/Pool/FlushForce", STAMUNIT_OCCURENCES, "Counting explicit flushes by PGMPoolFlushPage().");
346 STAM_REG(pVM, &pPool->StatForceFlushDirtyPage, STAMTYPE_COUNTER, "/PGM/Pool/FlushForceDirty", STAMUNIT_OCCURENCES, "Counting explicit flushes of dirty pages by PGMPoolFlushPage().");
347 STAM_REG(pVM, &pPool->StatForceFlushReused, STAMTYPE_COUNTER, "/PGM/Pool/FlushReused", STAMUNIT_OCCURENCES, "Counting flushes for reused pages.");
348 STAM_REG(pVM, &pPool->StatZeroPage, STAMTYPE_PROFILE, "/PGM/Pool/ZeroPage", STAMUNIT_TICKS_PER_CALL, "Profiling time spent zeroing pages. Overlaps with Alloc.");
349 STAM_REG(pVM, &pPool->cMaxUsers, STAMTYPE_U16, "/PGM/Pool/Track/cMaxUsers", STAMUNIT_COUNT, "Max user tracking records.");
350 STAM_REG(pVM, &pPool->cPresent, STAMTYPE_U32, "/PGM/Pool/Track/cPresent", STAMUNIT_COUNT, "Number of present page table entries.");
351 STAM_REG(pVM, &pPool->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Pool/Track/Deref", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackDeref.");
352 STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPT, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPT", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPT.");
353 STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTs, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTs", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPTs.");
354 STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTsSlow, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTsSlow", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPTsSlow.");
355 STAM_REG(pVM, &pPool->StatTrackFlushEntry, STAMTYPE_COUNTER, "/PGM/Pool/Track/Entry/Flush", STAMUNIT_COUNT, "Nr of flushed entries.");
356 STAM_REG(pVM, &pPool->StatTrackFlushEntryKeep, STAMTYPE_COUNTER, "/PGM/Pool/Track/Entry/Update", STAMUNIT_COUNT, "Nr of updated entries.");
357 STAM_REG(pVM, &pPool->StatTrackFreeUpOneUser, STAMTYPE_COUNTER, "/PGM/Pool/Track/FreeUpOneUser", STAMUNIT_TICKS_PER_CALL, "The number of times we were out of user tracking records.");
358 STAM_REG(pVM, &pPool->StatTrackDerefGCPhys, STAMTYPE_PROFILE, "/PGM/Pool/Track/DrefGCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling deref activity related tracking GC physical pages.");
359 STAM_REG(pVM, &pPool->StatTrackLinearRamSearches, STAMTYPE_COUNTER, "/PGM/Pool/Track/LinearRamSearches", STAMUNIT_OCCURENCES, "The number of times we had to do linear ram searches.");
360 STAM_REG(pVM, &pPool->StamTrackPhysExtAllocFailures,STAMTYPE_COUNTER, "/PGM/Pool/Track/PhysExtAllocFailures", STAMUNIT_OCCURENCES, "The number of failing pgmPoolTrackPhysExtAlloc calls.");
361 STAM_REG(pVM, &pPool->StatMonitorRZ, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling the RC/R0 access handler.");
362 STAM_REG(pVM, &pPool->StatMonitorRZEmulateInstr, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/EmulateInstr", STAMUNIT_OCCURENCES, "Times we've failed interpreting the instruction.");
363 STAM_REG(pVM, &pPool->StatMonitorRZFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the RC/R0 access handler.");
364 STAM_REG(pVM, &pPool->StatMonitorRZFlushReinit, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/FlushReinit", STAMUNIT_OCCURENCES, "Times we've detected a page table reinit.");
365 STAM_REG(pVM, &pPool->StatMonitorRZFlushModOverflow,STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/FlushOverflow", STAMUNIT_OCCURENCES, "Counting flushes for pages that are modified too often.");
366 STAM_REG(pVM, &pPool->StatMonitorRZFork, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fork", STAMUNIT_OCCURENCES, "Times we've detected fork().");
367 STAM_REG(pVM, &pPool->StatMonitorRZHandled, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/Handled", STAMUNIT_TICKS_PER_CALL, "Profiling the RC/R0 access we've handled (except REP STOSD).");
368 STAM_REG(pVM, &pPool->StatMonitorRZIntrFailPatch1, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IntrFailPatch1", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction.");
369 STAM_REG(pVM, &pPool->StatMonitorRZIntrFailPatch2, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IntrFailPatch2", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction during flushing.");
370 STAM_REG(pVM, &pPool->StatMonitorRZRepPrefix, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/RepPrefix", STAMUNIT_OCCURENCES, "The number of times we've seen rep prefixes we can't handle.");
371 STAM_REG(pVM, &pPool->StatMonitorRZRepStosd, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/RepStosd", STAMUNIT_TICKS_PER_CALL, "Profiling the REP STOSD cases we've handled.");
372 STAM_REG(pVM, &pPool->StatMonitorRZFaultPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PT", STAMUNIT_OCCURENCES, "Nr of handled PT faults.");
373 STAM_REG(pVM, &pPool->StatMonitorRZFaultPD, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PD", STAMUNIT_OCCURENCES, "Nr of handled PD faults.");
374 STAM_REG(pVM, &pPool->StatMonitorRZFaultPDPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PDPT", STAMUNIT_OCCURENCES, "Nr of handled PDPT faults.");
375 STAM_REG(pVM, &pPool->StatMonitorRZFaultPML4, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PML4", STAMUNIT_OCCURENCES, "Nr of handled PML4 faults.");
376 STAM_REG(pVM, &pPool->StatMonitorR3, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3", STAMUNIT_TICKS_PER_CALL, "Profiling the R3 access handler.");
377 STAM_REG(pVM, &pPool->StatMonitorR3EmulateInstr, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/EmulateInstr", STAMUNIT_OCCURENCES, "Times we've failed interpreting the instruction.");
378 STAM_REG(pVM, &pPool->StatMonitorR3FlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the R3 access handler.");
379 STAM_REG(pVM, &pPool->StatMonitorR3FlushReinit, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/FlushReinit", STAMUNIT_OCCURENCES, "Times we've detected a page table reinit.");
380 STAM_REG(pVM, &pPool->StatMonitorR3FlushModOverflow,STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/FlushOverflow", STAMUNIT_OCCURENCES, "Counting flushes for pages that are modified too often.");
381 STAM_REG(pVM, &pPool->StatMonitorR3Fork, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fork", STAMUNIT_OCCURENCES, "Times we've detected fork().");
382 STAM_REG(pVM, &pPool->StatMonitorR3Handled, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Handled", STAMUNIT_TICKS_PER_CALL, "Profiling the R3 access we've handled (except REP STOSD).");
383 STAM_REG(pVM, &pPool->StatMonitorR3RepPrefix, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/RepPrefix", STAMUNIT_OCCURENCES, "The number of times we've seen rep prefixes we can't handle.");
384 STAM_REG(pVM, &pPool->StatMonitorR3RepStosd, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/RepStosd", STAMUNIT_TICKS_PER_CALL, "Profiling the REP STOSD cases we've handled.");
385 STAM_REG(pVM, &pPool->StatMonitorR3FaultPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PT", STAMUNIT_OCCURENCES, "Nr of handled PT faults.");
386 STAM_REG(pVM, &pPool->StatMonitorR3FaultPD, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PD", STAMUNIT_OCCURENCES, "Nr of handled PD faults.");
387 STAM_REG(pVM, &pPool->StatMonitorR3FaultPDPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PDPT", STAMUNIT_OCCURENCES, "Nr of handled PDPT faults.");
388 STAM_REG(pVM, &pPool->StatMonitorR3FaultPML4, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PML4", STAMUNIT_OCCURENCES, "Nr of handled PML4 faults.");
389 STAM_REG(pVM, &pPool->StatMonitorR3Async, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Async", STAMUNIT_OCCURENCES, "Times we're called in an async thread and need to flush.");
390 STAM_REG(pVM, &pPool->cModifiedPages, STAMTYPE_U16, "/PGM/Pool/Monitor/cModifiedPages", STAMUNIT_PAGES, "The current cModifiedPages value.");
391 STAM_REG(pVM, &pPool->cModifiedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/Monitor/cModifiedPagesHigh", STAMUNIT_PAGES, "The high watermark for cModifiedPages.");
392 STAM_REG(pVM, &pPool->StatResetDirtyPages, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/Resets", STAMUNIT_OCCURENCES, "Times we've called pgmPoolResetDirtyPages (and there were dirty page).");
393 STAM_REG(pVM, &pPool->StatDirtyPage, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/Pages", STAMUNIT_OCCURENCES, "Times we've called pgmPoolAddDirtyPage.");
394 STAM_REG(pVM, &pPool->StatDirtyPageDupFlush, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/FlushDup", STAMUNIT_OCCURENCES, "Times we've had to flush duplicates for dirty page management.");
395 STAM_REG(pVM, &pPool->StatDirtyPageOverFlowFlush, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/FlushOverflow",STAMUNIT_OCCURENCES, "Times we've had to flush because of overflow.");
396 STAM_REG(pVM, &pPool->StatCacheHits, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Hits", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls satisfied by the cache.");
397 STAM_REG(pVM, &pPool->StatCacheMisses, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Misses", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls not statisfied by the cache.");
398 STAM_REG(pVM, &pPool->StatCacheKindMismatches, STAMTYPE_COUNTER, "/PGM/Pool/Cache/KindMismatches", STAMUNIT_OCCURENCES, "The number of shadow page kind mismatches. (Better be low, preferably 0!)");
399 STAM_REG(pVM, &pPool->StatCacheFreeUpOne, STAMTYPE_COUNTER, "/PGM/Pool/Cache/FreeUpOne", STAMUNIT_OCCURENCES, "The number of times the cache was asked to free up a page.");
400 STAM_REG(pVM, &pPool->StatCacheCacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Cacheable", STAMUNIT_OCCURENCES, "The number of cacheable allocations.");
401 STAM_REG(pVM, &pPool->StatCacheUncacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Uncacheable", STAMUNIT_OCCURENCES, "The number of uncacheable allocations.");
402#endif /* VBOX_WITH_STATISTICS */
403
404#ifdef VBOX_WITH_DEBUGGER
405 /*
406 * Debugger commands.
407 */
408 static bool s_fRegisteredCmds = false;
409 if (!s_fRegisteredCmds)
410 {
411 rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
412 if (RT_SUCCESS(rc))
413 s_fRegisteredCmds = true;
414 }
415#endif
416
417 return VINF_SUCCESS;
418}
419
420
421/**
422 * Relocate the page pool data.
423 *
424 * @param pVM The VM handle.
425 */
426void pgmR3PoolRelocate(PVM pVM)
427{
428 pVM->pgm.s.pPoolRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3);
429 pVM->pgm.s.pPoolR3->pVMRC = pVM->pVMRC;
430 pVM->pgm.s.pPoolR3->paUsersRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3->paUsersR3);
431 pVM->pgm.s.pPoolR3->paPhysExtsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3->paPhysExtsR3);
432 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "pgmPoolAccessHandler", &pVM->pgm.s.pPoolR3->pfnAccessHandlerRC);
433 AssertReleaseRC(rc);
434 /* init order hack. */
435 if (!pVM->pgm.s.pPoolR3->pfnAccessHandlerR0)
436 {
437 rc = PDMR3LdrGetSymbolR0(pVM, NULL, "pgmPoolAccessHandler", &pVM->pgm.s.pPoolR3->pfnAccessHandlerR0);
438 AssertReleaseRC(rc);
439 }
440}
441
442
443/**
444 * Grows the shadow page pool.
445 *
446 * I.e. adds more pages to it, assuming that hasn't reached cMaxPages yet.
447 *
448 * @returns VBox status code.
449 * @param pVM The VM handle.
450 */
451VMMR3DECL(int) PGMR3PoolGrow(PVM pVM)
452{
453 PPGMPOOL pPool = pVM->pgm.s.pPoolR3;
454 AssertReturn(pPool->cCurPages < pPool->cMaxPages, VERR_INTERNAL_ERROR);
455
456 pgmLock(pVM);
457
458 /*
459 * How much to grow it by?
460 */
461 uint32_t cPages = pPool->cMaxPages - pPool->cCurPages;
462 cPages = RT_MIN(PGMPOOL_CFG_MAX_GROW, cPages);
463 LogFlow(("PGMR3PoolGrow: Growing the pool by %d (%#x) pages.\n", cPages, cPages));
464
465 for (unsigned i = pPool->cCurPages; cPages-- > 0; i++)
466 {
467 PPGMPOOLPAGE pPage = &pPool->aPages[i];
468
469 /* Allocate all pages in low (below 4 GB) memory as 32 bits guests need a page table root in low memory. */
470 pPage->pvPageR3 = MMR3PageAllocLow(pVM);
471 if (!pPage->pvPageR3)
472 {
473 Log(("We're out of memory!! i=%d\n", i));
474 pgmUnlock(pVM);
475 return i ? VINF_SUCCESS : VERR_NO_PAGE_MEMORY;
476 }
477 pPage->Core.Key = MMPage2Phys(pVM, pPage->pvPageR3);
478 AssertFatal(pPage->Core.Key < _4G);
479 pPage->GCPhys = NIL_RTGCPHYS;
480 pPage->enmKind = PGMPOOLKIND_FREE;
481 pPage->idx = pPage - &pPool->aPages[0];
482 LogFlow(("PGMR3PoolGrow: insert page #%#x - %RHp\n", pPage->idx, pPage->Core.Key));
483 pPage->iNext = pPool->iFreeHead;
484 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
485 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
486 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
487 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
488 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
489 pPage->iAgeNext = NIL_PGMPOOL_IDX;
490 pPage->iAgePrev = NIL_PGMPOOL_IDX;
491 /* commit it */
492 bool fRc = RTAvloHCPhysInsert(&pPool->HCPhysTree, &pPage->Core); Assert(fRc); NOREF(fRc);
493 pPool->iFreeHead = i;
494 pPool->cCurPages = i + 1;
495 }
496
497 pgmUnlock(pVM);
498 Assert(pPool->cCurPages <= pPool->cMaxPages);
499 return VINF_SUCCESS;
500}
501
502
503
504/**
505 * Worker used by pgmR3PoolAccessHandler when it's invoked by an async thread.
506 *
507 * @param pPool The pool.
508 * @param pPage The page.
509 */
510static DECLCALLBACK(void) pgmR3PoolFlushReusedPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
511{
512 /* for the present this should be safe enough I think... */
513 pgmLock(pPool->pVMR3);
514 if ( pPage->fReusedFlushPending
515 && pPage->enmKind != PGMPOOLKIND_FREE)
516 pgmPoolFlushPage(pPool, pPage);
517 pgmUnlock(pPool->pVMR3);
518}
519
520
521/**
522 * \#PF Handler callback for PT write accesses.
523 *
524 * The handler can not raise any faults, it's mainly for monitoring write access
525 * to certain pages.
526 *
527 * @returns VINF_SUCCESS if the handler has carried out the operation.
528 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
529 * @param pVM VM Handle.
530 * @param GCPhys The physical address the guest is writing to.
531 * @param pvPhys The HC mapping of that address.
532 * @param pvBuf What the guest is reading/writing.
533 * @param cbBuf How much it's reading/writing.
534 * @param enmAccessType The access type.
535 * @param pvUser User argument.
536 */
537static DECLCALLBACK(int) pgmR3PoolAccessHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser)
538{
539 STAM_PROFILE_START(&pVM->pgm.s.pPoolR3->StatMonitorR3, a);
540 PPGMPOOL pPool = pVM->pgm.s.pPoolR3;
541 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)pvUser;
542 LogFlow(("pgmR3PoolAccessHandler: GCPhys=%RGp %p:{.Core=%RHp, .idx=%d, .GCPhys=%RGp, .enmType=%d}\n",
543 GCPhys, pPage, pPage->Core.Key, pPage->idx, pPage->GCPhys, pPage->enmKind));
544
545 PVMCPU pVCpu = VMMGetCpu(pVM);
546
547 /*
548 * We don't have to be very sophisticated about this since there are relativly few calls here.
549 * However, we must try our best to detect any non-cpu accesses (disk / networking).
550 *
551 * Just to make life more interesting, we'll have to deal with the async threads too.
552 * We cannot flush a page if we're in an async thread because of REM notifications.
553 */
554 pgmLock(pVM);
555 if (PHYS_PAGE_ADDRESS(GCPhys) != PHYS_PAGE_ADDRESS(pPage->GCPhys))
556 {
557 /* Pool page changed while we were waiting for the lock; ignore. */
558 Log(("CPU%d: pgmR3PoolAccessHandler pgm pool page for %RGp changed (to %RGp) while waiting!\n", pVCpu->idCpu, PHYS_PAGE_ADDRESS(GCPhys), PHYS_PAGE_ADDRESS(pPage->GCPhys)));
559 pgmUnlock(pVM);
560 return VINF_PGM_HANDLER_DO_DEFAULT;
561 }
562
563 Assert(pPage->enmKind != PGMPOOLKIND_FREE);
564
565 /* @todo this code doesn't make any sense. remove the if (!pVCpu) block */
566 if (!pVCpu) /** @todo This shouldn't happen any longer, all access handlers will be called on an EMT. All ring-3 handlers, except MMIO, already own the PGM lock. @bugref{3170} */
567 {
568 Log(("pgmR3PoolAccessHandler: async thread, requesting EMT to flush the page: %p:{.Core=%RHp, .idx=%d, .GCPhys=%RGp, .enmType=%d}\n",
569 pPage, pPage->Core.Key, pPage->idx, pPage->GCPhys, pPage->enmKind));
570 STAM_COUNTER_INC(&pPool->StatMonitorR3Async);
571 if (!pPage->fReusedFlushPending)
572 {
573 pgmUnlock(pVM);
574 int rc = VMR3ReqCallVoidNoWait(pPool->pVMR3, VMCPUID_ANY, (PFNRT)pgmR3PoolFlushReusedPage, 2, pPool, pPage);
575 AssertRCReturn(rc, rc);
576 pgmLock(pVM);
577 pPage->fReusedFlushPending = true;
578 pPage->cModifications += 0x1000;
579 }
580
581 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvPhys, 0 /* unknown write size */);
582 /** @todo r=bird: making unsafe assumption about not crossing entries here! */
583 while (cbBuf > 4)
584 {
585 cbBuf -= 4;
586 pvPhys = (uint8_t *)pvPhys + 4;
587 GCPhys += 4;
588 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvPhys, 0 /* unknown write size */);
589 }
590 STAM_PROFILE_STOP(&pPool->StatMonitorR3, a);
591 }
592 else if ( ( pPage->cModifications < 96 /* it's cheaper here. */
593 || pgmPoolIsPageLocked(&pVM->pgm.s, pPage)
594 )
595 && cbBuf <= 4)
596 {
597 /* Clear the shadow entry. */
598 if (!pPage->cModifications++)
599 pgmPoolMonitorModifiedInsert(pPool, pPage);
600 /** @todo r=bird: making unsafe assumption about not crossing entries here! */
601 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvPhys, 0 /* unknown write size */);
602 STAM_PROFILE_STOP(&pPool->StatMonitorR3, a);
603 }
604 else
605 {
606 pgmPoolMonitorChainFlush(pPool, pPage); /* ASSUME that VERR_PGM_POOL_CLEARED can be ignored here and that FFs will deal with it in due time. */
607 STAM_PROFILE_STOP_EX(&pPool->StatMonitorR3, &pPool->StatMonitorR3FlushPage, a);
608 }
609 pgmUnlock(pVM);
610 return VINF_PGM_HANDLER_DO_DEFAULT;
611}
612
613
614/**
615 * Rendezvous callback used by pgmR3PoolClearAll that clears all shadow pages
616 * and all modification counters.
617 *
618 * This is only called on one of the EMTs while the other ones are waiting for
619 * it to complete this function.
620 *
621 * @returns VINF_SUCCESS (VBox strict status code).
622 * @param pVM The VM handle.
623 * @param pVCpu The VMCPU for the EMT we're being called on. Unused.
624 * @param fpvFlushRemTlb When not NULL, we'll flush the REM TLB as well.
625 * (This is the pvUser, so it has to be void *.)
626 *
627 */
628DECLCALLBACK(VBOXSTRICTRC) pgmR3PoolClearAllRendezvous(PVM pVM, PVMCPU pVCpu, void *fpvFlushRemTbl)
629{
630 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
631 STAM_PROFILE_START(&pPool->StatClearAll, c);
632
633 pgmLock(pVM);
634 Log(("pgmR3PoolClearAllRendezvous: cUsedPages=%d fpvFlushRemTbl=%RTbool\n", pPool->cUsedPages, !!fpvFlushRemTbl));
635
636 /*
637 * Iterate all the pages until we've encountered all that are in use.
638 * This is a simple but not quite optimal solution.
639 */
640 unsigned cModifiedPages = 0; NOREF(cModifiedPages);
641 unsigned cLeft = pPool->cUsedPages;
642 unsigned iPage = pPool->cCurPages;
643 while (--iPage >= PGMPOOL_IDX_FIRST)
644 {
645 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
646 if (pPage->GCPhys != NIL_RTGCPHYS)
647 {
648 switch (pPage->enmKind)
649 {
650 /*
651 * We only care about shadow page tables.
652 */
653 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
654 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
655 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
656 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
657 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
658 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
659 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
660 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
661 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
662 {
663 if (pPage->cPresent)
664 {
665 void *pvShw = PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage);
666 STAM_PROFILE_START(&pPool->StatZeroPage, z);
667#if 0
668 /* Useful check for leaking references; *very* expensive though. */
669 switch (pPage->enmKind)
670 {
671 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
672 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
673 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
674 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
675 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
676 {
677 bool fFoundFirst = false;
678 PPGMSHWPTPAE pPT = (PPGMSHWPTPAE)pvShw;
679 for (unsigned ptIndex = 0; ptIndex < RT_ELEMENTS(pPT->a); ptIndex++)
680 {
681 if (pPT->a[ptIndex].u)
682 {
683 if (!fFoundFirst)
684 {
685 AssertFatalMsg(pPage->iFirstPresent <= ptIndex, ("ptIndex = %d first present = %d\n", ptIndex, pPage->iFirstPresent));
686 if (pPage->iFirstPresent != ptIndex)
687 Log(("ptIndex = %d first present = %d\n", ptIndex, pPage->iFirstPresent));
688 fFoundFirst = true;
689 }
690 if (PGMSHWPTEPAE_IS_P(pPT->a[ptIndex]))
691 {
692 pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pPT->a[ptIndex]), NIL_RTGCPHYS);
693 if (pPage->iFirstPresent == ptIndex)
694 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
695 }
696 }
697 }
698 AssertFatalMsg(pPage->cPresent == 0, ("cPresent = %d pPage = %RGv\n", pPage->cPresent, pPage->GCPhys));
699 break;
700 }
701 default:
702 break;
703 }
704#endif
705 ASMMemZeroPage(pvShw);
706 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
707 pPage->cPresent = 0;
708 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
709 }
710 }
711 /* fall thru */
712
713 default:
714 Assert(!pPage->cModifications || ++cModifiedPages);
715 Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
716 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
717 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
718 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
719 pPage->cModifications = 0;
720 break;
721
722 }
723 if (!--cLeft)
724 break;
725 }
726 }
727
728 /* swipe the special pages too. */
729 for (iPage = PGMPOOL_IDX_FIRST_SPECIAL; iPage < PGMPOOL_IDX_FIRST; iPage++)
730 {
731 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
732 if (pPage->GCPhys != NIL_RTGCPHYS)
733 {
734 Assert(!pPage->cModifications || ++cModifiedPages);
735 Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
736 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
737 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
738 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
739 pPage->cModifications = 0;
740 }
741 }
742
743#ifndef DEBUG_michael
744 AssertMsg(cModifiedPages == pPool->cModifiedPages, ("%d != %d\n", cModifiedPages, pPool->cModifiedPages));
745#endif
746 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
747 pPool->cModifiedPages = 0;
748
749 /*
750 * Clear all the GCPhys links and rebuild the phys ext free list.
751 */
752 for (PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
753 pRam;
754 pRam = pRam->CTX_SUFF(pNext))
755 {
756 iPage = pRam->cb >> PAGE_SHIFT;
757 while (iPage-- > 0)
758 PGM_PAGE_SET_TRACKING(&pRam->aPages[iPage], 0);
759 }
760
761 pPool->iPhysExtFreeHead = 0;
762 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
763 const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
764 for (unsigned i = 0; i < cMaxPhysExts; i++)
765 {
766 paPhysExts[i].iNext = i + 1;
767 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
768 paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
769 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
770 paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
771 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
772 paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
773 }
774 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
775
776
777#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
778 /* Reset all dirty pages to reactivate the page monitoring. */
779 /* Note: we must do this *after* clearing all page references and shadow page tables as there might be stale references to
780 * recently removed MMIO ranges around that might otherwise end up asserting in pgmPoolTracDerefGCPhysHint
781 */
782 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
783 {
784 PPGMPOOLPAGE pPage;
785 unsigned idxPage;
786
787 if (pPool->aDirtyPages[i].uIdx == NIL_PGMPOOL_IDX)
788 continue;
789
790 idxPage = pPool->aDirtyPages[i].uIdx;
791 AssertRelease(idxPage != NIL_PGMPOOL_IDX);
792 pPage = &pPool->aPages[idxPage];
793 Assert(pPage->idx == idxPage);
794 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
795
796 AssertMsg(pPage->fDirty, ("Page %RGp (slot=%d) not marked dirty!", pPage->GCPhys, i));
797
798 Log(("Reactivate dirty page %RGp\n", pPage->GCPhys));
799
800 /* First write protect the page again to catch all write accesses. (before checking for changes -> SMP) */
801 int rc = PGMHandlerPhysicalReset(pVM, pPage->GCPhys & PAGE_BASE_GC_MASK);
802 Assert(rc == VINF_SUCCESS);
803 pPage->fDirty = false;
804
805 pPool->aDirtyPages[i].uIdx = NIL_PGMPOOL_IDX;
806 }
807
808 /* Clear all dirty pages. */
809 pPool->idxFreeDirtyPage = 0;
810 pPool->cDirtyPages = 0;
811#endif
812
813 /* Clear the PGM_SYNC_CLEAR_PGM_POOL flag on all VCPUs to prevent redundant flushes. */
814 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
815 pVM->aCpus[idCpu].pgm.s.fSyncFlags &= ~PGM_SYNC_CLEAR_PGM_POOL;
816
817 /* Flush job finished. */
818 VM_FF_CLEAR(pVM, VM_FF_PGM_POOL_FLUSH_PENDING);
819 pPool->cPresent = 0;
820 pgmUnlock(pVM);
821
822 PGM_INVL_ALL_VCPU_TLBS(pVM);
823
824 if (fpvFlushRemTbl)
825 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
826 CPUMSetChangedFlags(&pVM->aCpus[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
827
828 STAM_PROFILE_STOP(&pPool->StatClearAll, c);
829 return VINF_SUCCESS;
830}
831
832
833/**
834 * Clears the shadow page pool.
835 *
836 * @param pVM The VM handle.
837 * @param fFlushRemTlb When set, the REM TLB is scheduled for flushing as
838 * well.
839 */
840void pgmR3PoolClearAll(PVM pVM, bool fFlushRemTlb)
841{
842 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PoolClearAllRendezvous, &fFlushRemTlb);
843 AssertRC(rc);
844}
845
846/**
847 * Protect all pgm pool page table entries to monitor writes
848 *
849 * @param pVM The VM handle.
850 *
851 * Remark: assumes the caller will flush all TLBs (!!)
852 */
853void pgmR3PoolWriteProtectPages(PVM pVM)
854{
855 Assert(PGMIsLockOwner(pVM));
856 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
857 unsigned cLeft = pPool->cUsedPages;
858 unsigned iPage = pPool->cCurPages;
859 while (--iPage >= PGMPOOL_IDX_FIRST)
860 {
861 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
862 if ( pPage->GCPhys != NIL_RTGCPHYS
863 && pPage->cPresent)
864 {
865 union
866 {
867 void *pv;
868 PX86PT pPT;
869 PPGMSHWPTPAE pPTPae;
870 PEPTPT pPTEpt;
871 } uShw;
872 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
873
874 switch (pPage->enmKind)
875 {
876 /*
877 * We only care about shadow page tables.
878 */
879 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
880 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
881 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
882 for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPT->a); iShw++)
883 {
884 if (uShw.pPT->a[iShw].n.u1Present)
885 uShw.pPT->a[iShw].n.u1Write = 0;
886 }
887 break;
888
889 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
890 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
891 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
892 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
893 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
894 for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPTPae->a); iShw++)
895 {
896 if (PGMSHWPTEPAE_IS_P(uShw.pPTPae->a[iShw]))
897 PGMSHWPTEPAE_SET_RO(uShw.pPTPae->a[iShw]);
898 }
899 break;
900
901 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
902 for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPTEpt->a); iShw++)
903 {
904 if (uShw.pPTEpt->a[iShw].n.u1Present)
905 uShw.pPTEpt->a[iShw].n.u1Write = 0;
906 }
907 break;
908
909 default:
910 break;
911 }
912 if (!--cLeft)
913 break;
914 }
915 }
916}
917
918#ifdef VBOX_WITH_DEBUGGER
919/**
920 * The '.pgmpoolcheck' command.
921 *
922 * @returns VBox status.
923 * @param pCmd Pointer to the command descriptor (as registered).
924 * @param pCmdHlp Pointer to command helper functions.
925 * @param pVM Pointer to the current VM (if any).
926 * @param paArgs Pointer to (readonly) array of arguments.
927 * @param cArgs Number of arguments in the array.
928 */
929static DECLCALLBACK(int) pgmR3PoolCmdCheck(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
930{
931 /*
932 * Validate input.
933 */
934 if (!pVM)
935 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
936
937 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
938
939 for (unsigned i = 0; i < pPool->cCurPages; i++)
940 {
941 PPGMPOOLPAGE pPage = &pPool->aPages[i];
942 bool fFirstMsg = true;
943
944 /* Todo: cover other paging modes too. */
945 if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
946 {
947 PPGMSHWPTPAE pShwPT = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage);
948 {
949 PX86PTPAE pGstPT;
950 PGMPAGEMAPLOCK LockPage;
951 int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, pPage->GCPhys, (const void **)&pGstPT, &LockPage); AssertReleaseRC(rc);
952
953 /* Check if any PTEs are out of sync. */
954 for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++)
955 {
956 if (PGMSHWPTEPAE_IS_P(pShwPT->a[j]))
957 {
958 RTHCPHYS HCPhys = NIL_RTHCPHYS;
959 rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[j].u & X86_PTE_PAE_PG_MASK, &HCPhys);
960 if ( rc != VINF_SUCCESS
961 || PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[j]) != HCPhys)
962 {
963 if (fFirstMsg)
964 {
965 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Check pool page %RGp\n", pPage->GCPhys);
966 fFirstMsg = false;
967 }
968 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Mismatch HCPhys: rc=%Rrc idx=%d guest %RX64 shw=%RX64 vs %RHp\n", rc, j, pGstPT->a[j].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), HCPhys);
969 }
970 else if ( PGMSHWPTEPAE_IS_RW(pShwPT->a[j])
971 && !pGstPT->a[j].n.u1Write)
972 {
973 if (fFirstMsg)
974 {
975 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Check pool page %RGp\n", pPage->GCPhys);
976 fFirstMsg = false;
977 }
978 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Mismatch r/w gst/shw: idx=%d guest %RX64 shw=%RX64 vs %RHp\n", j, pGstPT->a[j].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), HCPhys);
979 }
980 }
981 }
982 PGMPhysReleasePageMappingLock(pVM, &LockPage);
983 }
984
985 /* Make sure this page table can't be written to from any shadow mapping. */
986 RTHCPHYS HCPhysPT = NIL_RTHCPHYS;
987 int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pPage->GCPhys, &HCPhysPT);
988 AssertMsgRC(rc, ("PGMPhysGCPhys2HCPhys failed with rc=%d for %RGp\n", rc, pPage->GCPhys));
989 if (rc == VINF_SUCCESS)
990 {
991 for (unsigned j = 0; j < pPool->cCurPages; j++)
992 {
993 PPGMPOOLPAGE pTempPage = &pPool->aPages[j];
994
995 if (pTempPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
996 {
997 PPGMSHWPTPAE pShwPT2 = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pTempPage);
998
999 for (unsigned k = 0; k < RT_ELEMENTS(pShwPT->a); k++)
1000 {
1001 if ( PGMSHWPTEPAE_IS_P_RW(pShwPT2->a[k])
1002# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1003 && !pPage->fDirty
1004# endif
1005 && PGMSHWPTEPAE_GET_HCPHYS(pShwPT2->a[k]) == HCPhysPT)
1006 {
1007 if (fFirstMsg)
1008 {
1009 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Check pool page %RGp\n", pPage->GCPhys);
1010 fFirstMsg = false;
1011 }
1012 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Mismatch: r/w: GCPhys=%RGp idx=%d shw %RX64 %RX64\n", pTempPage->GCPhys, k, PGMSHWPTEPAE_GET_LOG(pShwPT->a[k]), PGMSHWPTEPAE_GET_LOG(pShwPT2->a[k]));
1013 }
1014 }
1015 }
1016 }
1017 }
1018 }
1019 }
1020 return VINF_SUCCESS;
1021}
1022#endif /* VBOX_WITH_DEBUGGER */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette