VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMPool.cpp@ 34079

Last change on this file since 34079 was 33676, checked in by vboxsync, 14 years ago

scm cleanup run.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 53.5 KB
Line 
1/* $Id: PGMPool.cpp 33676 2010-11-02 09:48:24Z vboxsync $ */
2/** @file
3 * PGM Shadow Page Pool.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_pgm_pool PGM Shadow Page Pool
19 *
20 * Motivations:
21 * -# Relationship between shadow page tables and physical guest pages. This
22 * should allow us to skip most of the global flushes now following access
23 * handler changes. The main expense is flushing shadow pages.
24 * -# Limit the pool size if necessary (default is kind of limitless).
25 * -# Allocate shadow pages from RC. We use to only do this in SyncCR3.
26 * -# Required for 64-bit guests.
27 * -# Combining the PD cache and page pool in order to simplify caching.
28 *
29 *
30 * @section sec_pgm_pool_outline Design Outline
31 *
32 * The shadow page pool tracks pages used for shadowing paging structures (i.e.
33 * page tables, page directory, page directory pointer table and page map
34 * level-4). Each page in the pool has an unique identifier. This identifier is
35 * used to link a guest physical page to a shadow PT. The identifier is a
36 * non-zero value and has a relativly low max value - say 14 bits. This makes it
37 * possible to fit it into the upper bits of the of the aHCPhys entries in the
38 * ram range.
39 *
40 * By restricting host physical memory to the first 48 bits (which is the
41 * announced physical memory range of the K8L chip (scheduled for 2008)), we
42 * can safely use the upper 16 bits for shadow page ID and reference counting.
43 *
44 * Update: The 48 bit assumption will be lifted with the new physical memory
45 * management (PGMPAGE), so we won't have any trouble when someone stuffs 2TB
46 * into a box in some years.
47 *
48 * Now, it's possible for a page to be aliased, i.e. mapped by more than one PT
49 * or PD. This is solved by creating a list of physical cross reference extents
50 * when ever this happens. Each node in the list (extent) is can contain 3 page
51 * pool indexes. The list it self is chained using indexes into the paPhysExt
52 * array.
53 *
54 *
55 * @section sec_pgm_pool_life Life Cycle of a Shadow Page
56 *
57 * -# The SyncPT function requests a page from the pool.
58 * The request includes the kind of page it is (PT/PD, PAE/legacy), the
59 * address of the page it's shadowing, and more.
60 * -# The pool responds to the request by allocating a new page.
61 * When the cache is enabled, it will first check if it's in the cache.
62 * Should the pool be exhausted, one of two things can be done:
63 * -# Flush the whole pool and current CR3.
64 * -# Use the cache to find a page which can be flushed (~age).
65 * -# The SyncPT function will sync one or more pages and insert it into the
66 * shadow PD.
67 * -# The SyncPage function may sync more pages on a later \#PFs.
68 * -# The page is freed / flushed in SyncCR3 (perhaps) and some other cases.
69 * When caching is enabled, the page isn't flush but remains in the cache.
70 *
71 *
72 * @section sec_pgm_pool_impl Monitoring
73 *
74 * We always monitor PAGE_SIZE chunks of memory. When we've got multiple shadow
75 * pages for the same PAGE_SIZE of guest memory (PAE and mixed PD/PT) the pages
76 * sharing the monitor get linked using the iMonitoredNext/Prev. The head page
77 * is the pvUser to the access handlers.
78 *
79 *
80 * @section sec_pgm_pool_impl Implementation
81 *
82 * The pool will take pages from the MM page pool. The tracking data
83 * (attributes, bitmaps and so on) are allocated from the hypervisor heap. The
84 * pool content can be accessed both by using the page id and the physical
85 * address (HC). The former is managed by means of an array, the latter by an
86 * offset based AVL tree.
87 *
88 * Flushing of a pool page means that we iterate the content (we know what kind
89 * it is) and updates the link information in the ram range.
90 *
91 * ...
92 */
93
94
95/*******************************************************************************
96* Header Files *
97*******************************************************************************/
98#define LOG_GROUP LOG_GROUP_PGM_POOL
99#include <VBox/pgm.h>
100#include <VBox/mm.h>
101#include "PGMInternal.h"
102#include <VBox/vm.h>
103#include "PGMInline.h"
104
105#include <VBox/log.h>
106#include <VBox/err.h>
107#include <iprt/asm.h>
108#include <iprt/string.h>
109#include <VBox/dbg.h>
110
111
112/*******************************************************************************
113* Internal Functions *
114*******************************************************************************/
115static DECLCALLBACK(int) pgmR3PoolAccessHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
116#ifdef VBOX_WITH_DEBUGGER
117static DECLCALLBACK(int) pgmR3PoolCmdCheck(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
118#endif
119
120#ifdef VBOX_WITH_DEBUGGER
121/** Command descriptors. */
122static const DBGCCMD g_aCmds[] =
123{
124 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
125 { "pgmpoolcheck", 0, 0, NULL, 0, NULL, 0, pgmR3PoolCmdCheck, "", "Check the pgm pool pages." },
126};
127#endif
128
129/**
130 * Initializes the pool
131 *
132 * @returns VBox status code.
133 * @param pVM The VM handle.
134 */
135int pgmR3PoolInit(PVM pVM)
136{
137 AssertCompile(NIL_PGMPOOL_IDX == 0);
138 /* pPage->cLocked is an unsigned byte. */
139 AssertCompile(VMM_MAX_CPU_COUNT <= 255);
140
141 /*
142 * Query Pool config.
143 */
144 PCFGMNODE pCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM/Pool");
145
146 /* Default pgm pool size equals 1024 pages. */
147 uint16_t cMaxPages = 4*_1M >> PAGE_SHIFT;
148
149#if HC_ARCH_BITS == 64
150 uint64_t cbRam = 0;
151 CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0);
152
153 /* We should increase the pgm pool size for guests with more than 2 GB of ram */
154 if (cbRam >= UINT64_C(2) * _1G)
155 {
156 /* In the nested paging case we require 2 + 513 * (cbRam/1GB) pages to
157 * store the entire page table descriptors.
158 */
159 uint64_t u64MaxPages = cbRam / (_1G / UINT64_C(512));
160 if (u64MaxPages > PGMPOOL_IDX_LAST)
161 cMaxPages = PGMPOOL_IDX_LAST;
162 else
163 cMaxPages = (uint16_t)u64MaxPages;
164 }
165#endif
166
167 /** @cfgm{/PGM/Pool/MaxPages, uint16_t, #pages, 16, 0x3fff, 1024}
168 * The max size of the shadow page pool in pages. The pool will grow dynamically
169 * up to this limit.
170 */
171 int rc = CFGMR3QueryU16Def(pCfg, "MaxPages", &cMaxPages, cMaxPages);
172 AssertLogRelRCReturn(rc, rc);
173 AssertLogRelMsgReturn(cMaxPages <= PGMPOOL_IDX_LAST && cMaxPages >= RT_ALIGN(PGMPOOL_IDX_FIRST, 16),
174 ("cMaxPages=%u (%#x)\n", cMaxPages, cMaxPages), VERR_INVALID_PARAMETER);
175 cMaxPages = RT_ALIGN(cMaxPages, 16);
176
177 /** todo:
178 * We need to be much more careful with our allocation strategy here.
179 * For nested paging we don't need pool user info nor extents at all, but we can't check for nested paging here (too early during init to get a confirmation it can be used)
180 * The default for large memory configs is a bit large for shadow paging, so I've restricted the extent maximum to 2k (2k * 16 = 32k of hyper heap)
181 *
182 * Also when large page support is enabled, we typically don't need so much,
183 * although that depends on the availability of 2 MB chunks on the host.
184 */
185
186 /** @cfgm{/PGM/Pool/MaxUsers, uint16_t, #users, MaxUsers, 32K, MaxPages*2}
187 * The max number of shadow page user tracking records. Each shadow page has
188 * zero of other shadow pages (or CR3s) that references it, or uses it if you
189 * like. The structures describing these relationships are allocated from a
190 * fixed sized pool. This configuration variable defines the pool size.
191 */
192 uint16_t cMaxUsers;
193 rc = CFGMR3QueryU16Def(pCfg, "MaxUsers", &cMaxUsers, cMaxPages * 2);
194 AssertLogRelRCReturn(rc, rc);
195 AssertLogRelMsgReturn(cMaxUsers >= cMaxPages && cMaxPages <= _32K,
196 ("cMaxUsers=%u (%#x)\n", cMaxUsers, cMaxUsers), VERR_INVALID_PARAMETER);
197
198 /** @cfgm{/PGM/Pool/MaxPhysExts, uint16_t, #extents, 16, MaxPages * 2, MAX(MaxPages*2,0x3fff)}
199 * The max number of extents for tracking aliased guest pages.
200 */
201 uint16_t cMaxPhysExts;
202 rc = CFGMR3QueryU16Def(pCfg, "MaxPhysExts", &cMaxPhysExts, RT_MAX(cMaxPages * 2, 2048 /* 2k max as this eat too much hyper heap */));
203 AssertLogRelRCReturn(rc, rc);
204 AssertLogRelMsgReturn(cMaxPhysExts >= 16 && cMaxPages <= PGMPOOL_IDX_LAST,
205 ("cMaxPhysExts=%u (%#x)\n", cMaxPhysExts, cMaxPhysExts), VERR_INVALID_PARAMETER);
206
207 /** @cfgm{/PGM/Pool/ChacheEnabled, bool, true}
208 * Enables or disabling caching of shadow pages. Caching means that we will try
209 * reuse shadow pages instead of recreating them everything SyncCR3, SyncPT or
210 * SyncPage requests one. When reusing a shadow page, we can save time
211 * reconstructing it and it's children.
212 */
213 bool fCacheEnabled;
214 rc = CFGMR3QueryBoolDef(pCfg, "CacheEnabled", &fCacheEnabled, true);
215 AssertLogRelRCReturn(rc, rc);
216
217 LogRel(("pgmR3PoolInit: cMaxPages=%#RX16 cMaxUsers=%#RX16 cMaxPhysExts=%#RX16 fCacheEnable=%RTbool\n",
218 cMaxPages, cMaxUsers, cMaxPhysExts, fCacheEnabled));
219
220 /*
221 * Allocate the data structures.
222 */
223 uint32_t cb = RT_OFFSETOF(PGMPOOL, aPages[cMaxPages]);
224 cb += cMaxUsers * sizeof(PGMPOOLUSER);
225 cb += cMaxPhysExts * sizeof(PGMPOOLPHYSEXT);
226 PPGMPOOL pPool;
227 rc = MMR3HyperAllocOnceNoRel(pVM, cb, 0, MM_TAG_PGM_POOL, (void **)&pPool);
228 if (RT_FAILURE(rc))
229 return rc;
230 pVM->pgm.s.pPoolR3 = pPool;
231 pVM->pgm.s.pPoolR0 = MMHyperR3ToR0(pVM, pPool);
232 pVM->pgm.s.pPoolRC = MMHyperR3ToRC(pVM, pPool);
233
234 /*
235 * Initialize it.
236 */
237 pPool->pVMR3 = pVM;
238 pPool->pVMR0 = pVM->pVMR0;
239 pPool->pVMRC = pVM->pVMRC;
240 pPool->cMaxPages = cMaxPages;
241 pPool->cCurPages = PGMPOOL_IDX_FIRST;
242 pPool->iUserFreeHead = 0;
243 pPool->cMaxUsers = cMaxUsers;
244 PPGMPOOLUSER paUsers = (PPGMPOOLUSER)&pPool->aPages[pPool->cMaxPages];
245 pPool->paUsersR3 = paUsers;
246 pPool->paUsersR0 = MMHyperR3ToR0(pVM, paUsers);
247 pPool->paUsersRC = MMHyperR3ToRC(pVM, paUsers);
248 for (unsigned i = 0; i < cMaxUsers; i++)
249 {
250 paUsers[i].iNext = i + 1;
251 paUsers[i].iUser = NIL_PGMPOOL_IDX;
252 paUsers[i].iUserTable = 0xfffffffe;
253 }
254 paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX;
255 pPool->iPhysExtFreeHead = 0;
256 pPool->cMaxPhysExts = cMaxPhysExts;
257 PPGMPOOLPHYSEXT paPhysExts = (PPGMPOOLPHYSEXT)&paUsers[cMaxUsers];
258 pPool->paPhysExtsR3 = paPhysExts;
259 pPool->paPhysExtsR0 = MMHyperR3ToR0(pVM, paPhysExts);
260 pPool->paPhysExtsRC = MMHyperR3ToRC(pVM, paPhysExts);
261 for (unsigned i = 0; i < cMaxPhysExts; i++)
262 {
263 paPhysExts[i].iNext = i + 1;
264 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
265 paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
266 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
267 paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
268 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
269 paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
270 }
271 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
272 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++)
273 pPool->aiHash[i] = NIL_PGMPOOL_IDX;
274 pPool->iAgeHead = NIL_PGMPOOL_IDX;
275 pPool->iAgeTail = NIL_PGMPOOL_IDX;
276 pPool->fCacheEnabled = fCacheEnabled;
277 pPool->pfnAccessHandlerR3 = pgmR3PoolAccessHandler;
278 pPool->pszAccessHandler = "Guest Paging Access Handler";
279 pPool->HCPhysTree = 0;
280
281 /* The NIL entry. */
282 Assert(NIL_PGMPOOL_IDX == 0);
283 pPool->aPages[NIL_PGMPOOL_IDX].enmKind = PGMPOOLKIND_INVALID;
284
285 /* The Shadow 32-bit PD. (32 bits guest paging) */
286 pPool->aPages[PGMPOOL_IDX_PD].Core.Key = NIL_RTHCPHYS;
287 pPool->aPages[PGMPOOL_IDX_PD].GCPhys = NIL_RTGCPHYS;
288 pPool->aPages[PGMPOOL_IDX_PD].pvPageR3 = 0;
289 pPool->aPages[PGMPOOL_IDX_PD].enmKind = PGMPOOLKIND_32BIT_PD;
290 pPool->aPages[PGMPOOL_IDX_PD].idx = PGMPOOL_IDX_PD;
291
292 /* The Shadow PDPT. */
293 pPool->aPages[PGMPOOL_IDX_PDPT].Core.Key = NIL_RTHCPHYS;
294 pPool->aPages[PGMPOOL_IDX_PDPT].GCPhys = NIL_RTGCPHYS;
295 pPool->aPages[PGMPOOL_IDX_PDPT].pvPageR3 = 0;
296 pPool->aPages[PGMPOOL_IDX_PDPT].enmKind = PGMPOOLKIND_PAE_PDPT;
297 pPool->aPages[PGMPOOL_IDX_PDPT].idx = PGMPOOL_IDX_PDPT;
298
299 /* The Shadow AMD64 CR3. */
300 pPool->aPages[PGMPOOL_IDX_AMD64_CR3].Core.Key = NIL_RTHCPHYS;
301 pPool->aPages[PGMPOOL_IDX_AMD64_CR3].GCPhys = NIL_RTGCPHYS;
302 pPool->aPages[PGMPOOL_IDX_AMD64_CR3].pvPageR3 = 0;
303 pPool->aPages[PGMPOOL_IDX_AMD64_CR3].enmKind = PGMPOOLKIND_64BIT_PML4;
304 pPool->aPages[PGMPOOL_IDX_AMD64_CR3].idx = PGMPOOL_IDX_AMD64_CR3;
305
306 /* The Nested Paging CR3. */
307 pPool->aPages[PGMPOOL_IDX_NESTED_ROOT].Core.Key = NIL_RTHCPHYS;
308 pPool->aPages[PGMPOOL_IDX_NESTED_ROOT].GCPhys = NIL_RTGCPHYS;
309 pPool->aPages[PGMPOOL_IDX_NESTED_ROOT].pvPageR3 = 0;
310 pPool->aPages[PGMPOOL_IDX_NESTED_ROOT].enmKind = PGMPOOLKIND_ROOT_NESTED;
311 pPool->aPages[PGMPOOL_IDX_NESTED_ROOT].idx = PGMPOOL_IDX_NESTED_ROOT;
312
313 /*
314 * Set common stuff.
315 */
316 for (unsigned iPage = 1; iPage < PGMPOOL_IDX_FIRST; iPage++)
317 {
318 pPool->aPages[iPage].iNext = NIL_PGMPOOL_IDX;
319 pPool->aPages[iPage].iUserHead = NIL_PGMPOOL_USER_INDEX;
320 pPool->aPages[iPage].iModifiedNext = NIL_PGMPOOL_IDX;
321 pPool->aPages[iPage].iModifiedPrev = NIL_PGMPOOL_IDX;
322 pPool->aPages[iPage].iMonitoredNext = NIL_PGMPOOL_IDX;
323 pPool->aPages[iPage].iMonitoredNext = NIL_PGMPOOL_IDX;
324 pPool->aPages[iPage].iAgeNext = NIL_PGMPOOL_IDX;
325 pPool->aPages[iPage].iAgePrev = NIL_PGMPOOL_IDX;
326 Assert(pPool->aPages[iPage].idx == iPage);
327 Assert(pPool->aPages[iPage].GCPhys == NIL_RTGCPHYS);
328 Assert(!pPool->aPages[iPage].fSeenNonGlobal);
329 Assert(!pPool->aPages[iPage].fMonitored);
330 Assert(!pPool->aPages[iPage].fCached);
331 Assert(!pPool->aPages[iPage].fZeroed);
332 Assert(!pPool->aPages[iPage].fReusedFlushPending);
333 }
334
335#ifdef VBOX_WITH_STATISTICS
336 /*
337 * Register statistics.
338 */
339 STAM_REG(pVM, &pPool->cCurPages, STAMTYPE_U16, "/PGM/Pool/cCurPages", STAMUNIT_PAGES, "Current pool size.");
340 STAM_REG(pVM, &pPool->cMaxPages, STAMTYPE_U16, "/PGM/Pool/cMaxPages", STAMUNIT_PAGES, "Max pool size.");
341 STAM_REG(pVM, &pPool->cUsedPages, STAMTYPE_U16, "/PGM/Pool/cUsedPages", STAMUNIT_PAGES, "The number of pages currently in use.");
342 STAM_REG(pVM, &pPool->cUsedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/cUsedPagesHigh", STAMUNIT_PAGES, "The high watermark for cUsedPages.");
343 STAM_REG(pVM, &pPool->StatAlloc, STAMTYPE_PROFILE_ADV, "/PGM/Pool/Alloc", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolAlloc.");
344 STAM_REG(pVM, &pPool->StatClearAll, STAMTYPE_PROFILE, "/PGM/Pool/ClearAll", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmR3PoolClearAll.");
345 STAM_REG(pVM, &pPool->StatR3Reset, STAMTYPE_PROFILE, "/PGM/Pool/R3Reset", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmR3PoolReset.");
346 STAM_REG(pVM, &pPool->StatFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFlushPage.");
347 STAM_REG(pVM, &pPool->StatFree, STAMTYPE_PROFILE, "/PGM/Pool/Free", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolFree.");
348 STAM_REG(pVM, &pPool->StatForceFlushPage, STAMTYPE_COUNTER, "/PGM/Pool/FlushForce", STAMUNIT_OCCURENCES, "Counting explicit flushes by PGMPoolFlushPage().");
349 STAM_REG(pVM, &pPool->StatForceFlushDirtyPage, STAMTYPE_COUNTER, "/PGM/Pool/FlushForceDirty", STAMUNIT_OCCURENCES, "Counting explicit flushes of dirty pages by PGMPoolFlushPage().");
350 STAM_REG(pVM, &pPool->StatForceFlushReused, STAMTYPE_COUNTER, "/PGM/Pool/FlushReused", STAMUNIT_OCCURENCES, "Counting flushes for reused pages.");
351 STAM_REG(pVM, &pPool->StatZeroPage, STAMTYPE_PROFILE, "/PGM/Pool/ZeroPage", STAMUNIT_TICKS_PER_CALL, "Profiling time spent zeroing pages. Overlaps with Alloc.");
352 STAM_REG(pVM, &pPool->cMaxUsers, STAMTYPE_U16, "/PGM/Pool/Track/cMaxUsers", STAMUNIT_COUNT, "Max user tracking records.");
353 STAM_REG(pVM, &pPool->cPresent, STAMTYPE_U32, "/PGM/Pool/Track/cPresent", STAMUNIT_COUNT, "Number of present page table entries.");
354 STAM_REG(pVM, &pPool->StatTrackDeref, STAMTYPE_PROFILE, "/PGM/Pool/Track/Deref", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackDeref.");
355 STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPT, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPT", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPT.");
356 STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTs, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTs", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPTs.");
357 STAM_REG(pVM, &pPool->StatTrackFlushGCPhysPTsSlow, STAMTYPE_PROFILE, "/PGM/Pool/Track/FlushGCPhysPTsSlow", STAMUNIT_TICKS_PER_CALL, "Profiling of pgmPoolTrackFlushGCPhysPTsSlow.");
358 STAM_REG(pVM, &pPool->StatTrackFlushEntry, STAMTYPE_COUNTER, "/PGM/Pool/Track/Entry/Flush", STAMUNIT_COUNT, "Nr of flushed entries.");
359 STAM_REG(pVM, &pPool->StatTrackFlushEntryKeep, STAMTYPE_COUNTER, "/PGM/Pool/Track/Entry/Update", STAMUNIT_COUNT, "Nr of updated entries.");
360 STAM_REG(pVM, &pPool->StatTrackFreeUpOneUser, STAMTYPE_COUNTER, "/PGM/Pool/Track/FreeUpOneUser", STAMUNIT_TICKS_PER_CALL, "The number of times we were out of user tracking records.");
361 STAM_REG(pVM, &pPool->StatTrackDerefGCPhys, STAMTYPE_PROFILE, "/PGM/Pool/Track/DrefGCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling deref activity related tracking GC physical pages.");
362 STAM_REG(pVM, &pPool->StatTrackLinearRamSearches, STAMTYPE_COUNTER, "/PGM/Pool/Track/LinearRamSearches", STAMUNIT_OCCURENCES, "The number of times we had to do linear ram searches.");
363 STAM_REG(pVM, &pPool->StamTrackPhysExtAllocFailures,STAMTYPE_COUNTER, "/PGM/Pool/Track/PhysExtAllocFailures", STAMUNIT_OCCURENCES, "The number of failing pgmPoolTrackPhysExtAlloc calls.");
364 STAM_REG(pVM, &pPool->StatMonitorRZ, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling the RC/R0 access handler.");
365 STAM_REG(pVM, &pPool->StatMonitorRZEmulateInstr, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/EmulateInstr", STAMUNIT_OCCURENCES, "Times we've failed interpreting the instruction.");
366 STAM_REG(pVM, &pPool->StatMonitorRZFlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the RC/R0 access handler.");
367 STAM_REG(pVM, &pPool->StatMonitorRZFlushReinit, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/FlushReinit", STAMUNIT_OCCURENCES, "Times we've detected a page table reinit.");
368 STAM_REG(pVM, &pPool->StatMonitorRZFlushModOverflow,STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/FlushOverflow", STAMUNIT_OCCURENCES, "Counting flushes for pages that are modified too often.");
369 STAM_REG(pVM, &pPool->StatMonitorRZFork, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fork", STAMUNIT_OCCURENCES, "Times we've detected fork().");
370 STAM_REG(pVM, &pPool->StatMonitorRZHandled, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/Handled", STAMUNIT_TICKS_PER_CALL, "Profiling the RC/R0 access we've handled (except REP STOSD).");
371 STAM_REG(pVM, &pPool->StatMonitorRZIntrFailPatch1, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IntrFailPatch1", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction.");
372 STAM_REG(pVM, &pPool->StatMonitorRZIntrFailPatch2, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/IntrFailPatch2", STAMUNIT_OCCURENCES, "Times we've failed interpreting a patch code instruction during flushing.");
373 STAM_REG(pVM, &pPool->StatMonitorRZRepPrefix, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/RepPrefix", STAMUNIT_OCCURENCES, "The number of times we've seen rep prefixes we can't handle.");
374 STAM_REG(pVM, &pPool->StatMonitorRZRepStosd, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/RZ/RepStosd", STAMUNIT_TICKS_PER_CALL, "Profiling the REP STOSD cases we've handled.");
375 STAM_REG(pVM, &pPool->StatMonitorRZFaultPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PT", STAMUNIT_OCCURENCES, "Nr of handled PT faults.");
376 STAM_REG(pVM, &pPool->StatMonitorRZFaultPD, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PD", STAMUNIT_OCCURENCES, "Nr of handled PD faults.");
377 STAM_REG(pVM, &pPool->StatMonitorRZFaultPDPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PDPT", STAMUNIT_OCCURENCES, "Nr of handled PDPT faults.");
378 STAM_REG(pVM, &pPool->StatMonitorRZFaultPML4, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/RZ/Fault/PML4", STAMUNIT_OCCURENCES, "Nr of handled PML4 faults.");
379 STAM_REG(pVM, &pPool->StatMonitorR3, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3", STAMUNIT_TICKS_PER_CALL, "Profiling the R3 access handler.");
380 STAM_REG(pVM, &pPool->StatMonitorR3EmulateInstr, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/EmulateInstr", STAMUNIT_OCCURENCES, "Times we've failed interpreting the instruction.");
381 STAM_REG(pVM, &pPool->StatMonitorR3FlushPage, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/FlushPage", STAMUNIT_TICKS_PER_CALL, "Profiling the pgmPoolFlushPage calls made from the R3 access handler.");
382 STAM_REG(pVM, &pPool->StatMonitorR3FlushReinit, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/FlushReinit", STAMUNIT_OCCURENCES, "Times we've detected a page table reinit.");
383 STAM_REG(pVM, &pPool->StatMonitorR3FlushModOverflow,STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/FlushOverflow", STAMUNIT_OCCURENCES, "Counting flushes for pages that are modified too often.");
384 STAM_REG(pVM, &pPool->StatMonitorR3Fork, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fork", STAMUNIT_OCCURENCES, "Times we've detected fork().");
385 STAM_REG(pVM, &pPool->StatMonitorR3Handled, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/Handled", STAMUNIT_TICKS_PER_CALL, "Profiling the R3 access we've handled (except REP STOSD).");
386 STAM_REG(pVM, &pPool->StatMonitorR3RepPrefix, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/RepPrefix", STAMUNIT_OCCURENCES, "The number of times we've seen rep prefixes we can't handle.");
387 STAM_REG(pVM, &pPool->StatMonitorR3RepStosd, STAMTYPE_PROFILE, "/PGM/Pool/Monitor/R3/RepStosd", STAMUNIT_TICKS_PER_CALL, "Profiling the REP STOSD cases we've handled.");
388 STAM_REG(pVM, &pPool->StatMonitorR3FaultPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PT", STAMUNIT_OCCURENCES, "Nr of handled PT faults.");
389 STAM_REG(pVM, &pPool->StatMonitorR3FaultPD, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PD", STAMUNIT_OCCURENCES, "Nr of handled PD faults.");
390 STAM_REG(pVM, &pPool->StatMonitorR3FaultPDPT, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PDPT", STAMUNIT_OCCURENCES, "Nr of handled PDPT faults.");
391 STAM_REG(pVM, &pPool->StatMonitorR3FaultPML4, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Fault/PML4", STAMUNIT_OCCURENCES, "Nr of handled PML4 faults.");
392 STAM_REG(pVM, &pPool->StatMonitorR3Async, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/R3/Async", STAMUNIT_OCCURENCES, "Times we're called in an async thread and need to flush.");
393 STAM_REG(pVM, &pPool->cModifiedPages, STAMTYPE_U16, "/PGM/Pool/Monitor/cModifiedPages", STAMUNIT_PAGES, "The current cModifiedPages value.");
394 STAM_REG(pVM, &pPool->cModifiedPagesHigh, STAMTYPE_U16_RESET, "/PGM/Pool/Monitor/cModifiedPagesHigh", STAMUNIT_PAGES, "The high watermark for cModifiedPages.");
395 STAM_REG(pVM, &pPool->StatResetDirtyPages, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/Resets", STAMUNIT_OCCURENCES, "Times we've called pgmPoolResetDirtyPages (and there were dirty page).");
396 STAM_REG(pVM, &pPool->StatDirtyPage, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/Pages", STAMUNIT_OCCURENCES, "Times we've called pgmPoolAddDirtyPage.");
397 STAM_REG(pVM, &pPool->StatDirtyPageDupFlush, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/FlushDup", STAMUNIT_OCCURENCES, "Times we've had to flush duplicates for dirty page management.");
398 STAM_REG(pVM, &pPool->StatDirtyPageOverFlowFlush, STAMTYPE_COUNTER, "/PGM/Pool/Monitor/Dirty/FlushOverflow",STAMUNIT_OCCURENCES, "Times we've had to flush because of overflow.");
399 STAM_REG(pVM, &pPool->StatCacheHits, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Hits", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls satisfied by the cache.");
400 STAM_REG(pVM, &pPool->StatCacheMisses, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Misses", STAMUNIT_OCCURENCES, "The number of pgmPoolAlloc calls not statisfied by the cache.");
401 STAM_REG(pVM, &pPool->StatCacheKindMismatches, STAMTYPE_COUNTER, "/PGM/Pool/Cache/KindMismatches", STAMUNIT_OCCURENCES, "The number of shadow page kind mismatches. (Better be low, preferably 0!)");
402 STAM_REG(pVM, &pPool->StatCacheFreeUpOne, STAMTYPE_COUNTER, "/PGM/Pool/Cache/FreeUpOne", STAMUNIT_OCCURENCES, "The number of times the cache was asked to free up a page.");
403 STAM_REG(pVM, &pPool->StatCacheCacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Cacheable", STAMUNIT_OCCURENCES, "The number of cacheable allocations.");
404 STAM_REG(pVM, &pPool->StatCacheUncacheable, STAMTYPE_COUNTER, "/PGM/Pool/Cache/Uncacheable", STAMUNIT_OCCURENCES, "The number of uncacheable allocations.");
405#endif /* VBOX_WITH_STATISTICS */
406
407#ifdef VBOX_WITH_DEBUGGER
408 /*
409 * Debugger commands.
410 */
411 static bool s_fRegisteredCmds = false;
412 if (!s_fRegisteredCmds)
413 {
414 rc = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
415 if (RT_SUCCESS(rc))
416 s_fRegisteredCmds = true;
417 }
418#endif
419
420 return VINF_SUCCESS;
421}
422
423
424/**
425 * Relocate the page pool data.
426 *
427 * @param pVM The VM handle.
428 */
429void pgmR3PoolRelocate(PVM pVM)
430{
431 pVM->pgm.s.pPoolRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3);
432 pVM->pgm.s.pPoolR3->pVMRC = pVM->pVMRC;
433 pVM->pgm.s.pPoolR3->paUsersRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3->paUsersR3);
434 pVM->pgm.s.pPoolR3->paPhysExtsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pPoolR3->paPhysExtsR3);
435 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "pgmPoolAccessHandler", &pVM->pgm.s.pPoolR3->pfnAccessHandlerRC);
436 AssertReleaseRC(rc);
437 /* init order hack. */
438 if (!pVM->pgm.s.pPoolR3->pfnAccessHandlerR0)
439 {
440 rc = PDMR3LdrGetSymbolR0(pVM, NULL, "pgmPoolAccessHandler", &pVM->pgm.s.pPoolR3->pfnAccessHandlerR0);
441 AssertReleaseRC(rc);
442 }
443}
444
445
446/**
447 * Grows the shadow page pool.
448 *
449 * I.e. adds more pages to it, assuming that hasn't reached cMaxPages yet.
450 *
451 * @returns VBox status code.
452 * @param pVM The VM handle.
453 */
454VMMR3DECL(int) PGMR3PoolGrow(PVM pVM)
455{
456 PPGMPOOL pPool = pVM->pgm.s.pPoolR3;
457 AssertReturn(pPool->cCurPages < pPool->cMaxPages, VERR_INTERNAL_ERROR);
458
459 pgmLock(pVM);
460
461 /*
462 * How much to grow it by?
463 */
464 uint32_t cPages = pPool->cMaxPages - pPool->cCurPages;
465 cPages = RT_MIN(PGMPOOL_CFG_MAX_GROW, cPages);
466 LogFlow(("PGMR3PoolGrow: Growing the pool by %d (%#x) pages.\n", cPages, cPages));
467
468 for (unsigned i = pPool->cCurPages; cPages-- > 0; i++)
469 {
470 PPGMPOOLPAGE pPage = &pPool->aPages[i];
471
472 /* Allocate all pages in low (below 4 GB) memory as 32 bits guests need a page table root in low memory. */
473 pPage->pvPageR3 = MMR3PageAllocLow(pVM);
474 if (!pPage->pvPageR3)
475 {
476 Log(("We're out of memory!! i=%d\n", i));
477 pgmUnlock(pVM);
478 return i ? VINF_SUCCESS : VERR_NO_PAGE_MEMORY;
479 }
480 pPage->Core.Key = MMPage2Phys(pVM, pPage->pvPageR3);
481 AssertFatal(pPage->Core.Key < _4G);
482 pPage->GCPhys = NIL_RTGCPHYS;
483 pPage->enmKind = PGMPOOLKIND_FREE;
484 pPage->idx = pPage - &pPool->aPages[0];
485 LogFlow(("PGMR3PoolGrow: insert page #%#x - %RHp\n", pPage->idx, pPage->Core.Key));
486 pPage->iNext = pPool->iFreeHead;
487 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
488 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
489 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
490 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
491 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
492 pPage->iAgeNext = NIL_PGMPOOL_IDX;
493 pPage->iAgePrev = NIL_PGMPOOL_IDX;
494 /* commit it */
495 bool fRc = RTAvloHCPhysInsert(&pPool->HCPhysTree, &pPage->Core); Assert(fRc); NOREF(fRc);
496 pPool->iFreeHead = i;
497 pPool->cCurPages = i + 1;
498 }
499
500 pgmUnlock(pVM);
501 Assert(pPool->cCurPages <= pPool->cMaxPages);
502 return VINF_SUCCESS;
503}
504
505
506
507/**
508 * Worker used by pgmR3PoolAccessHandler when it's invoked by an async thread.
509 *
510 * @param pPool The pool.
511 * @param pPage The page.
512 */
513static DECLCALLBACK(void) pgmR3PoolFlushReusedPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
514{
515 /* for the present this should be safe enough I think... */
516 pgmLock(pPool->pVMR3);
517 if ( pPage->fReusedFlushPending
518 && pPage->enmKind != PGMPOOLKIND_FREE)
519 pgmPoolFlushPage(pPool, pPage);
520 pgmUnlock(pPool->pVMR3);
521}
522
523
524/**
525 * \#PF Handler callback for PT write accesses.
526 *
527 * The handler can not raise any faults, it's mainly for monitoring write access
528 * to certain pages.
529 *
530 * @returns VINF_SUCCESS if the handler has carried out the operation.
531 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
532 * @param pVM VM Handle.
533 * @param GCPhys The physical address the guest is writing to.
534 * @param pvPhys The HC mapping of that address.
535 * @param pvBuf What the guest is reading/writing.
536 * @param cbBuf How much it's reading/writing.
537 * @param enmAccessType The access type.
538 * @param pvUser User argument.
539 */
540static DECLCALLBACK(int) pgmR3PoolAccessHandler(PVM pVM, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser)
541{
542 STAM_PROFILE_START(&pVM->pgm.s.pPoolR3->StatMonitorR3, a);
543 PPGMPOOL pPool = pVM->pgm.s.pPoolR3;
544 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)pvUser;
545 LogFlow(("pgmR3PoolAccessHandler: GCPhys=%RGp %p:{.Core=%RHp, .idx=%d, .GCPhys=%RGp, .enmType=%d}\n",
546 GCPhys, pPage, pPage->Core.Key, pPage->idx, pPage->GCPhys, pPage->enmKind));
547
548 PVMCPU pVCpu = VMMGetCpu(pVM);
549
550 /*
551 * We don't have to be very sophisticated about this since there are relativly few calls here.
552 * However, we must try our best to detect any non-cpu accesses (disk / networking).
553 *
554 * Just to make life more interesting, we'll have to deal with the async threads too.
555 * We cannot flush a page if we're in an async thread because of REM notifications.
556 */
557 pgmLock(pVM);
558 if (PHYS_PAGE_ADDRESS(GCPhys) != PHYS_PAGE_ADDRESS(pPage->GCPhys))
559 {
560 /* Pool page changed while we were waiting for the lock; ignore. */
561 Log(("CPU%d: pgmR3PoolAccessHandler pgm pool page for %RGp changed (to %RGp) while waiting!\n", pVCpu->idCpu, PHYS_PAGE_ADDRESS(GCPhys), PHYS_PAGE_ADDRESS(pPage->GCPhys)));
562 pgmUnlock(pVM);
563 return VINF_PGM_HANDLER_DO_DEFAULT;
564 }
565
566 Assert(pPage->enmKind != PGMPOOLKIND_FREE);
567
568 /* @todo this code doesn't make any sense. remove the if (!pVCpu) block */
569 if (!pVCpu) /** @todo This shouldn't happen any longer, all access handlers will be called on an EMT. All ring-3 handlers, except MMIO, already own the PGM lock. @bugref{3170} */
570 {
571 Log(("pgmR3PoolAccessHandler: async thread, requesting EMT to flush the page: %p:{.Core=%RHp, .idx=%d, .GCPhys=%RGp, .enmType=%d}\n",
572 pPage, pPage->Core.Key, pPage->idx, pPage->GCPhys, pPage->enmKind));
573 STAM_COUNTER_INC(&pPool->StatMonitorR3Async);
574 if (!pPage->fReusedFlushPending)
575 {
576 pgmUnlock(pVM);
577 int rc = VMR3ReqCallVoidNoWait(pPool->pVMR3, VMCPUID_ANY, (PFNRT)pgmR3PoolFlushReusedPage, 2, pPool, pPage);
578 AssertRCReturn(rc, rc);
579 pgmLock(pVM);
580 pPage->fReusedFlushPending = true;
581 pPage->cModifications += 0x1000;
582 }
583
584 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvPhys, 0 /* unknown write size */);
585 /** @todo r=bird: making unsafe assumption about not crossing entries here! */
586 while (cbBuf > 4)
587 {
588 cbBuf -= 4;
589 pvPhys = (uint8_t *)pvPhys + 4;
590 GCPhys += 4;
591 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvPhys, 0 /* unknown write size */);
592 }
593 STAM_PROFILE_STOP(&pPool->StatMonitorR3, a);
594 }
595 else if ( ( pPage->cModifications < 96 /* it's cheaper here. */
596 || pgmPoolIsPageLocked(&pVM->pgm.s, pPage)
597 )
598 && cbBuf <= 4)
599 {
600 /* Clear the shadow entry. */
601 if (!pPage->cModifications++)
602 pgmPoolMonitorModifiedInsert(pPool, pPage);
603 /** @todo r=bird: making unsafe assumption about not crossing entries here! */
604 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvPhys, 0 /* unknown write size */);
605 STAM_PROFILE_STOP(&pPool->StatMonitorR3, a);
606 }
607 else
608 {
609 pgmPoolMonitorChainFlush(pPool, pPage); /* ASSUME that VERR_PGM_POOL_CLEARED can be ignored here and that FFs will deal with it in due time. */
610 STAM_PROFILE_STOP_EX(&pPool->StatMonitorR3, &pPool->StatMonitorR3FlushPage, a);
611 }
612 pgmUnlock(pVM);
613 return VINF_PGM_HANDLER_DO_DEFAULT;
614}
615
616
617/**
618 * Rendezvous callback used by pgmR3PoolClearAll that clears all shadow pages
619 * and all modification counters.
620 *
621 * This is only called on one of the EMTs while the other ones are waiting for
622 * it to complete this function.
623 *
624 * @returns VINF_SUCCESS (VBox strict status code).
625 * @param pVM The VM handle.
626 * @param pVCpu The VMCPU for the EMT we're being called on. Unused.
627 * @param fpvFlushRemTlb When not NULL, we'll flush the REM TLB as well.
628 * (This is the pvUser, so it has to be void *.)
629 *
630 */
631DECLCALLBACK(VBOXSTRICTRC) pgmR3PoolClearAllRendezvous(PVM pVM, PVMCPU pVCpu, void *fpvFlushRemTbl)
632{
633 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
634 STAM_PROFILE_START(&pPool->StatClearAll, c);
635
636 pgmLock(pVM);
637 Log(("pgmR3PoolClearAllRendezvous: cUsedPages=%d fpvFlushRemTbl=%RTbool\n", pPool->cUsedPages, !!fpvFlushRemTbl));
638
639 /*
640 * Iterate all the pages until we've encountered all that are in use.
641 * This is a simple but not quite optimal solution.
642 */
643 unsigned cModifiedPages = 0; NOREF(cModifiedPages);
644 unsigned cLeft = pPool->cUsedPages;
645 unsigned iPage = pPool->cCurPages;
646 while (--iPage >= PGMPOOL_IDX_FIRST)
647 {
648 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
649 if (pPage->GCPhys != NIL_RTGCPHYS)
650 {
651 switch (pPage->enmKind)
652 {
653 /*
654 * We only care about shadow page tables that reference physical memory
655 */
656#ifdef PGM_WITH_LARGE_PAGES
657 case PGMPOOLKIND_EPT_PD_FOR_PHYS: /* Large pages reference 2 MB of physical memory, so we must clear them. */
658 if (pPage->cPresent)
659 {
660 PX86PDPAE pShwPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage);
661 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
662 {
663 if ( pShwPD->a[i].n.u1Present
664 && pShwPD->a[i].b.u1Size)
665 {
666 Assert(!(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING));
667 pShwPD->a[i].u = 0;
668 Assert(pPage->cPresent);
669 pPage->cPresent--;
670 }
671 }
672 if (pPage->cPresent == 0)
673 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
674 }
675 goto default_case;
676
677 case PGMPOOLKIND_PAE_PD_PHYS: /* Large pages reference 2 MB of physical memory, so we must clear them. */
678 if (pPage->cPresent)
679 {
680 PEPTPD pShwPD = (PEPTPD)PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage);
681 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
682 {
683 Assert((pShwPD->a[i].u & UINT64_C(0xfff0000000000f80)) == 0);
684 if ( pShwPD->a[i].n.u1Present
685 && pShwPD->a[i].b.u1Size)
686 {
687 Assert(!(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING));
688 pShwPD->a[i].u = 0;
689 Assert(pPage->cPresent);
690 pPage->cPresent--;
691 }
692 }
693 if (pPage->cPresent == 0)
694 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
695 }
696 goto default_case;
697#endif /* PGM_WITH_LARGE_PAGES */
698
699 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
700 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
701 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
702 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
703 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
704 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
705 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
706 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
707 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
708 {
709 if (pPage->cPresent)
710 {
711 void *pvShw = PGMPOOL_PAGE_2_PTR_V2(pPool->CTX_SUFF(pVM), pVCpu, pPage);
712 STAM_PROFILE_START(&pPool->StatZeroPage, z);
713#if 0
714 /* Useful check for leaking references; *very* expensive though. */
715 switch (pPage->enmKind)
716 {
717 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
718 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
719 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
720 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
721 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
722 {
723 bool fFoundFirst = false;
724 PPGMSHWPTPAE pPT = (PPGMSHWPTPAE)pvShw;
725 for (unsigned ptIndex = 0; ptIndex < RT_ELEMENTS(pPT->a); ptIndex++)
726 {
727 if (pPT->a[ptIndex].u)
728 {
729 if (!fFoundFirst)
730 {
731 AssertFatalMsg(pPage->iFirstPresent <= ptIndex, ("ptIndex = %d first present = %d\n", ptIndex, pPage->iFirstPresent));
732 if (pPage->iFirstPresent != ptIndex)
733 Log(("ptIndex = %d first present = %d\n", ptIndex, pPage->iFirstPresent));
734 fFoundFirst = true;
735 }
736 if (PGMSHWPTEPAE_IS_P(pPT->a[ptIndex]))
737 {
738 pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pPT->a[ptIndex]), NIL_RTGCPHYS);
739 if (pPage->iFirstPresent == ptIndex)
740 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
741 }
742 }
743 }
744 AssertFatalMsg(pPage->cPresent == 0, ("cPresent = %d pPage = %RGv\n", pPage->cPresent, pPage->GCPhys));
745 break;
746 }
747 default:
748 break;
749 }
750#endif
751 ASMMemZeroPage(pvShw);
752 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
753 pPage->cPresent = 0;
754 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
755 }
756 }
757 /* fall thru */
758
759#ifdef PGM_WITH_LARGE_PAGES
760 default_case:
761#endif
762 default:
763 Assert(!pPage->cModifications || ++cModifiedPages);
764 Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
765 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
766 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
767 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
768 pPage->cModifications = 0;
769 break;
770
771 }
772 if (!--cLeft)
773 break;
774 }
775 }
776
777 /* swipe the special pages too. */
778 for (iPage = PGMPOOL_IDX_FIRST_SPECIAL; iPage < PGMPOOL_IDX_FIRST; iPage++)
779 {
780 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
781 if (pPage->GCPhys != NIL_RTGCPHYS)
782 {
783 Assert(!pPage->cModifications || ++cModifiedPages);
784 Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
785 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
786 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
787 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
788 pPage->cModifications = 0;
789 }
790 }
791
792#ifndef DEBUG_michael
793 AssertMsg(cModifiedPages == pPool->cModifiedPages, ("%d != %d\n", cModifiedPages, pPool->cModifiedPages));
794#endif
795 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
796 pPool->cModifiedPages = 0;
797
798 /*
799 * Clear all the GCPhys links and rebuild the phys ext free list.
800 */
801 for (PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
802 pRam;
803 pRam = pRam->CTX_SUFF(pNext))
804 {
805 iPage = pRam->cb >> PAGE_SHIFT;
806 while (iPage-- > 0)
807 PGM_PAGE_SET_TRACKING(&pRam->aPages[iPage], 0);
808 }
809
810 pPool->iPhysExtFreeHead = 0;
811 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
812 const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
813 for (unsigned i = 0; i < cMaxPhysExts; i++)
814 {
815 paPhysExts[i].iNext = i + 1;
816 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
817 paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
818 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
819 paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
820 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
821 paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
822 }
823 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
824
825
826#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
827 /* Reset all dirty pages to reactivate the page monitoring. */
828 /* Note: we must do this *after* clearing all page references and shadow page tables as there might be stale references to
829 * recently removed MMIO ranges around that might otherwise end up asserting in pgmPoolTracDerefGCPhysHint
830 */
831 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
832 {
833 PPGMPOOLPAGE pPage;
834 unsigned idxPage;
835
836 if (pPool->aDirtyPages[i].uIdx == NIL_PGMPOOL_IDX)
837 continue;
838
839 idxPage = pPool->aDirtyPages[i].uIdx;
840 AssertRelease(idxPage != NIL_PGMPOOL_IDX);
841 pPage = &pPool->aPages[idxPage];
842 Assert(pPage->idx == idxPage);
843 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
844
845 AssertMsg(pPage->fDirty, ("Page %RGp (slot=%d) not marked dirty!", pPage->GCPhys, i));
846
847 Log(("Reactivate dirty page %RGp\n", pPage->GCPhys));
848
849 /* First write protect the page again to catch all write accesses. (before checking for changes -> SMP) */
850 int rc = PGMHandlerPhysicalReset(pVM, pPage->GCPhys & PAGE_BASE_GC_MASK);
851 Assert(rc == VINF_SUCCESS);
852 pPage->fDirty = false;
853
854 pPool->aDirtyPages[i].uIdx = NIL_PGMPOOL_IDX;
855 }
856
857 /* Clear all dirty pages. */
858 pPool->idxFreeDirtyPage = 0;
859 pPool->cDirtyPages = 0;
860#endif
861
862 /* Clear the PGM_SYNC_CLEAR_PGM_POOL flag on all VCPUs to prevent redundant flushes. */
863 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
864 pVM->aCpus[idCpu].pgm.s.fSyncFlags &= ~PGM_SYNC_CLEAR_PGM_POOL;
865
866 /* Flush job finished. */
867 VM_FF_CLEAR(pVM, VM_FF_PGM_POOL_FLUSH_PENDING);
868 pPool->cPresent = 0;
869 pgmUnlock(pVM);
870
871 PGM_INVL_ALL_VCPU_TLBS(pVM);
872
873 if (fpvFlushRemTbl)
874 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
875 CPUMSetChangedFlags(&pVM->aCpus[idCpu], CPUM_CHANGED_GLOBAL_TLB_FLUSH);
876
877 STAM_PROFILE_STOP(&pPool->StatClearAll, c);
878 return VINF_SUCCESS;
879}
880
881
882/**
883 * Clears the shadow page pool.
884 *
885 * @param pVM The VM handle.
886 * @param fFlushRemTlb When set, the REM TLB is scheduled for flushing as
887 * well.
888 */
889void pgmR3PoolClearAll(PVM pVM, bool fFlushRemTlb)
890{
891 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmR3PoolClearAllRendezvous, &fFlushRemTlb);
892 AssertRC(rc);
893}
894
895/**
896 * Protect all pgm pool page table entries to monitor writes
897 *
898 * @param pVM The VM handle.
899 *
900 * Remark: assumes the caller will flush all TLBs (!!)
901 */
902void pgmR3PoolWriteProtectPages(PVM pVM)
903{
904 Assert(PGMIsLockOwner(pVM));
905 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
906 unsigned cLeft = pPool->cUsedPages;
907 unsigned iPage = pPool->cCurPages;
908 while (--iPage >= PGMPOOL_IDX_FIRST)
909 {
910 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
911 if ( pPage->GCPhys != NIL_RTGCPHYS
912 && pPage->cPresent)
913 {
914 union
915 {
916 void *pv;
917 PX86PT pPT;
918 PPGMSHWPTPAE pPTPae;
919 PEPTPT pPTEpt;
920 } uShw;
921 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
922
923 switch (pPage->enmKind)
924 {
925 /*
926 * We only care about shadow page tables.
927 */
928 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
929 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
930 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
931 for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPT->a); iShw++)
932 {
933 if (uShw.pPT->a[iShw].n.u1Present)
934 uShw.pPT->a[iShw].n.u1Write = 0;
935 }
936 break;
937
938 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
939 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
940 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
941 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
942 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
943 for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPTPae->a); iShw++)
944 {
945 if (PGMSHWPTEPAE_IS_P(uShw.pPTPae->a[iShw]))
946 PGMSHWPTEPAE_SET_RO(uShw.pPTPae->a[iShw]);
947 }
948 break;
949
950 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
951 for (unsigned iShw = 0; iShw < RT_ELEMENTS(uShw.pPTEpt->a); iShw++)
952 {
953 if (uShw.pPTEpt->a[iShw].n.u1Present)
954 uShw.pPTEpt->a[iShw].n.u1Write = 0;
955 }
956 break;
957
958 default:
959 break;
960 }
961 if (!--cLeft)
962 break;
963 }
964 }
965}
966
967#ifdef VBOX_WITH_DEBUGGER
968/**
969 * The '.pgmpoolcheck' command.
970 *
971 * @returns VBox status.
972 * @param pCmd Pointer to the command descriptor (as registered).
973 * @param pCmdHlp Pointer to command helper functions.
974 * @param pVM Pointer to the current VM (if any).
975 * @param paArgs Pointer to (readonly) array of arguments.
976 * @param cArgs Number of arguments in the array.
977 */
978static DECLCALLBACK(int) pgmR3PoolCmdCheck(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
979{
980 /*
981 * Validate input.
982 */
983 if (!pVM)
984 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
985
986 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
987
988 for (unsigned i = 0; i < pPool->cCurPages; i++)
989 {
990 PPGMPOOLPAGE pPage = &pPool->aPages[i];
991 bool fFirstMsg = true;
992
993 /* Todo: cover other paging modes too. */
994 if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
995 {
996 PPGMSHWPTPAE pShwPT = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage);
997 {
998 PX86PTPAE pGstPT;
999 PGMPAGEMAPLOCK LockPage;
1000 int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, pPage->GCPhys, (const void **)&pGstPT, &LockPage); AssertReleaseRC(rc);
1001
1002 /* Check if any PTEs are out of sync. */
1003 for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++)
1004 {
1005 if (PGMSHWPTEPAE_IS_P(pShwPT->a[j]))
1006 {
1007 RTHCPHYS HCPhys = NIL_RTHCPHYS;
1008 rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[j].u & X86_PTE_PAE_PG_MASK, &HCPhys);
1009 if ( rc != VINF_SUCCESS
1010 || PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[j]) != HCPhys)
1011 {
1012 if (fFirstMsg)
1013 {
1014 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Check pool page %RGp\n", pPage->GCPhys);
1015 fFirstMsg = false;
1016 }
1017 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Mismatch HCPhys: rc=%Rrc idx=%d guest %RX64 shw=%RX64 vs %RHp\n", rc, j, pGstPT->a[j].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), HCPhys);
1018 }
1019 else if ( PGMSHWPTEPAE_IS_RW(pShwPT->a[j])
1020 && !pGstPT->a[j].n.u1Write)
1021 {
1022 if (fFirstMsg)
1023 {
1024 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Check pool page %RGp\n", pPage->GCPhys);
1025 fFirstMsg = false;
1026 }
1027 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Mismatch r/w gst/shw: idx=%d guest %RX64 shw=%RX64 vs %RHp\n", j, pGstPT->a[j].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), HCPhys);
1028 }
1029 }
1030 }
1031 PGMPhysReleasePageMappingLock(pVM, &LockPage);
1032 }
1033
1034 /* Make sure this page table can't be written to from any shadow mapping. */
1035 RTHCPHYS HCPhysPT = NIL_RTHCPHYS;
1036 int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pPage->GCPhys, &HCPhysPT);
1037 AssertMsgRC(rc, ("PGMPhysGCPhys2HCPhys failed with rc=%d for %RGp\n", rc, pPage->GCPhys));
1038 if (rc == VINF_SUCCESS)
1039 {
1040 for (unsigned j = 0; j < pPool->cCurPages; j++)
1041 {
1042 PPGMPOOLPAGE pTempPage = &pPool->aPages[j];
1043
1044 if (pTempPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
1045 {
1046 PPGMSHWPTPAE pShwPT2 = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pTempPage);
1047
1048 for (unsigned k = 0; k < RT_ELEMENTS(pShwPT->a); k++)
1049 {
1050 if ( PGMSHWPTEPAE_IS_P_RW(pShwPT2->a[k])
1051# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1052 && !pPage->fDirty
1053# endif
1054 && PGMSHWPTEPAE_GET_HCPHYS(pShwPT2->a[k]) == HCPhysPT)
1055 {
1056 if (fFirstMsg)
1057 {
1058 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Check pool page %RGp\n", pPage->GCPhys);
1059 fFirstMsg = false;
1060 }
1061 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Mismatch: r/w: GCPhys=%RGp idx=%d shw %RX64 %RX64\n", pTempPage->GCPhys, k, PGMSHWPTEPAE_GET_LOG(pShwPT->a[k]), PGMSHWPTEPAE_GET_LOG(pShwPT2->a[k]));
1062 }
1063 }
1064 }
1065 }
1066 }
1067 }
1068 }
1069 return VINF_SUCCESS;
1070}
1071#endif /* VBOX_WITH_DEBUGGER */
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette