VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMSavedState.cpp@ 26175

Last change on this file since 26175 was 26165, checked in by vboxsync, 15 years ago

PDM: s/szDeviceName/szName/g - PDMDEVREG & PDMUSBREG.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 112.8 KB
Line 
1/* $Id: PGMSavedState.cpp 26165 2010-02-02 19:50:31Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, The Saved State Part.
4 */
5
6/*
7 * Copyright (C) 2006-2009 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_PGM
27#include <VBox/pgm.h>
28#include <VBox/stam.h>
29#include <VBox/ssm.h>
30#include <VBox/pdmdrv.h>
31#include <VBox/pdmdev.h>
32#include "PGMInternal.h"
33#include <VBox/vm.h>
34#include "PGMInline.h"
35
36#include <VBox/param.h>
37#include <VBox/err.h>
38
39#include <iprt/asm.h>
40#include <iprt/assert.h>
41#include <iprt/crc32.h>
42#include <iprt/mem.h>
43#include <iprt/sha.h>
44#include <iprt/string.h>
45#include <iprt/thread.h>
46
47
48/*******************************************************************************
49* Defined Constants And Macros *
50*******************************************************************************/
51/** Saved state data unit version.
52 * @todo remove the guest mappings from the saved state at next version change! */
53#define PGM_SAVED_STATE_VERSION 11
54/** Saved state data unit version used during 3.1 development, misses the RAM
55 * config. */
56#define PGM_SAVED_STATE_VERSION_NO_RAM_CFG 10
57/** Saved state data unit version for 3.0 (pre teleportation). */
58#define PGM_SAVED_STATE_VERSION_3_0_0 9
59/** Saved state data unit version for 2.2.2 and later. */
60#define PGM_SAVED_STATE_VERSION_2_2_2 8
61/** Saved state data unit version for 2.2.0. */
62#define PGM_SAVED_STATE_VERSION_RR_DESC 7
63/** Saved state data unit version. */
64#define PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE 6
65
66
67/** @name Sparse state record types
68 * @{ */
69/** Zero page. No data. */
70#define PGM_STATE_REC_RAM_ZERO UINT8_C(0x00)
71/** Raw page. */
72#define PGM_STATE_REC_RAM_RAW UINT8_C(0x01)
73/** Raw MMIO2 page. */
74#define PGM_STATE_REC_MMIO2_RAW UINT8_C(0x02)
75/** Zero MMIO2 page. */
76#define PGM_STATE_REC_MMIO2_ZERO UINT8_C(0x03)
77/** Virgin ROM page. Followed by protection (8-bit) and the raw bits. */
78#define PGM_STATE_REC_ROM_VIRGIN UINT8_C(0x04)
79/** Raw shadowed ROM page. The protection (8-bit) preceeds the raw bits. */
80#define PGM_STATE_REC_ROM_SHW_RAW UINT8_C(0x05)
81/** Zero shadowed ROM page. The protection (8-bit) is the only payload. */
82#define PGM_STATE_REC_ROM_SHW_ZERO UINT8_C(0x06)
83/** ROM protection (8-bit). */
84#define PGM_STATE_REC_ROM_PROT UINT8_C(0x07)
85/** The last record type. */
86#define PGM_STATE_REC_LAST PGM_STATE_REC_ROM_PROT
87/** End marker. */
88#define PGM_STATE_REC_END UINT8_C(0xff)
89/** Flag indicating that the data is preceeded by the page address.
90 * For RAW pages this is a RTGCPHYS. For MMIO2 and ROM pages this is a 8-bit
91 * range ID and a 32-bit page index.
92 */
93#define PGM_STATE_REC_FLAG_ADDR UINT8_C(0x80)
94/** @} */
95
96/** The CRC-32 for a zero page. */
97#define PGM_STATE_CRC32_ZERO_PAGE UINT32_C(0xc71c0011)
98/** The CRC-32 for a zero half page. */
99#define PGM_STATE_CRC32_ZERO_HALF_PAGE UINT32_C(0xf1e8ba9e)
100
101
102/*******************************************************************************
103* Structures and Typedefs *
104*******************************************************************************/
105/** For loading old saved states. (pre-smp) */
106typedef struct
107{
108 /** If set no conflict checks are required. (boolean) */
109 bool fMappingsFixed;
110 /** Size of fixed mapping */
111 uint32_t cbMappingFixed;
112 /** Base address (GC) of fixed mapping */
113 RTGCPTR GCPtrMappingFixed;
114 /** A20 gate mask.
115 * Our current approach to A20 emulation is to let REM do it and don't bother
116 * anywhere else. The interesting Guests will be operating with it enabled anyway.
117 * But whould need arrise, we'll subject physical addresses to this mask. */
118 RTGCPHYS GCPhysA20Mask;
119 /** A20 gate state - boolean! */
120 bool fA20Enabled;
121 /** The guest paging mode. */
122 PGMMODE enmGuestMode;
123} PGMOLD;
124
125
126/*******************************************************************************
127* Global Variables *
128*******************************************************************************/
129/** PGM fields to save/load. */
130static const SSMFIELD s_aPGMFields[] =
131{
132 SSMFIELD_ENTRY( PGM, fMappingsFixed),
133 SSMFIELD_ENTRY_GCPTR( PGM, GCPtrMappingFixed),
134 SSMFIELD_ENTRY( PGM, cbMappingFixed),
135 SSMFIELD_ENTRY_TERM()
136};
137
138static const SSMFIELD s_aPGMCpuFields[] =
139{
140 SSMFIELD_ENTRY( PGMCPU, fA20Enabled),
141 SSMFIELD_ENTRY_GCPHYS( PGMCPU, GCPhysA20Mask),
142 SSMFIELD_ENTRY( PGMCPU, enmGuestMode),
143 SSMFIELD_ENTRY_TERM()
144};
145
146static const SSMFIELD s_aPGMFields_Old[] =
147{
148 SSMFIELD_ENTRY( PGMOLD, fMappingsFixed),
149 SSMFIELD_ENTRY_GCPTR( PGMOLD, GCPtrMappingFixed),
150 SSMFIELD_ENTRY( PGMOLD, cbMappingFixed),
151 SSMFIELD_ENTRY( PGMOLD, fA20Enabled),
152 SSMFIELD_ENTRY_GCPHYS( PGMOLD, GCPhysA20Mask),
153 SSMFIELD_ENTRY( PGMOLD, enmGuestMode),
154 SSMFIELD_ENTRY_TERM()
155};
156
157
158/**
159 * Find the ROM tracking structure for the given page.
160 *
161 * @returns Pointer to the ROM page structure. NULL if the caller didn't check
162 * that it's a ROM page.
163 * @param pVM The VM handle.
164 * @param GCPhys The address of the ROM page.
165 */
166static PPGMROMPAGE pgmR3GetRomPage(PVM pVM, RTGCPHYS GCPhys) /** @todo change this to take a hint. */
167{
168 for (PPGMROMRANGE pRomRange = pVM->pgm.s.CTX_SUFF(pRomRanges);
169 pRomRange;
170 pRomRange = pRomRange->CTX_SUFF(pNext))
171 {
172 RTGCPHYS off = GCPhys - pRomRange->GCPhys;
173 if (GCPhys - pRomRange->GCPhys < pRomRange->cb)
174 return &pRomRange->aPages[off >> PAGE_SHIFT];
175 }
176 return NULL;
177}
178
179
180/**
181 * Prepares the ROM pages for a live save.
182 *
183 * @returns VBox status code.
184 * @param pVM The VM handle.
185 */
186static int pgmR3PrepRomPages(PVM pVM)
187{
188 /*
189 * Initialize the live save tracking in the ROM page descriptors.
190 */
191 pgmLock(pVM);
192 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
193 {
194 PPGMRAMRANGE pRamHint = NULL;;
195 uint32_t const cPages = pRom->cb >> PAGE_SHIFT;
196
197 for (uint32_t iPage = 0; iPage < cPages; iPage++)
198 {
199 pRom->aPages[iPage].LiveSave.u8Prot = (uint8_t)PGMROMPROT_INVALID;
200 pRom->aPages[iPage].LiveSave.fWrittenTo = false;
201 pRom->aPages[iPage].LiveSave.fDirty = true;
202 pRom->aPages[iPage].LiveSave.fDirtiedRecently = true;
203 if (!(pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
204 {
205 if (PGMROMPROT_IS_ROM(pRom->aPages[iPage].enmProt))
206 pRom->aPages[iPage].LiveSave.fWrittenTo = !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow);
207 else
208 {
209 RTGCPHYS GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
210 PPGMPAGE pPage;
211 int rc = pgmPhysGetPageWithHintEx(&pVM->pgm.s, GCPhys, &pPage, &pRamHint);
212 AssertLogRelMsgRC(rc, ("%Rrc GCPhys=%RGp\n", rc, GCPhys));
213 if (RT_SUCCESS(rc))
214 pRom->aPages[iPage].LiveSave.fWrittenTo = !PGM_PAGE_IS_ZERO(pPage);
215 else
216 pRom->aPages[iPage].LiveSave.fWrittenTo = !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow);
217 }
218 }
219 }
220
221 pVM->pgm.s.LiveSave.Rom.cDirtyPages += cPages;
222 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
223 pVM->pgm.s.LiveSave.Rom.cDirtyPages += cPages;
224 }
225 pgmUnlock(pVM);
226
227 return VINF_SUCCESS;
228}
229
230
231/**
232 * Assigns IDs to the ROM ranges and saves them.
233 *
234 * @returns VBox status code.
235 * @param pVM The VM handle.
236 * @param pSSM Saved state handle.
237 */
238static int pgmR3SaveRomRanges(PVM pVM, PSSMHANDLE pSSM)
239{
240 pgmLock(pVM);
241 uint8_t id = 1;
242 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3, id++)
243 {
244 pRom->idSavedState = id;
245 SSMR3PutU8(pSSM, id);
246 SSMR3PutStrZ(pSSM, ""); /* device name */
247 SSMR3PutU32(pSSM, 0); /* device instance */
248 SSMR3PutU8(pSSM, 0); /* region */
249 SSMR3PutStrZ(pSSM, pRom->pszDesc);
250 SSMR3PutGCPhys(pSSM, pRom->GCPhys);
251 int rc = SSMR3PutGCPhys(pSSM, pRom->cb);
252 if (RT_FAILURE(rc))
253 break;
254 }
255 pgmUnlock(pVM);
256 return SSMR3PutU8(pSSM, UINT8_MAX);
257}
258
259
260/**
261 * Loads the ROM range ID assignments.
262 *
263 * @returns VBox status code.
264 *
265 * @param pVM The VM handle.
266 * @param pSSM The saved state handle.
267 */
268static int pgmR3LoadRomRanges(PVM pVM, PSSMHANDLE pSSM)
269{
270 Assert(PGMIsLockOwner(pVM));
271
272 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
273 pRom->idSavedState = UINT8_MAX;
274
275 for (;;)
276 {
277 /*
278 * Read the data.
279 */
280 uint8_t id;
281 int rc = SSMR3GetU8(pSSM, &id);
282 if (RT_FAILURE(rc))
283 return rc;
284 if (id == UINT8_MAX)
285 {
286 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
287 AssertLogRelMsg(pRom->idSavedState != UINT8_MAX, ("%s\n", pRom->pszDesc));
288 return VINF_SUCCESS; /* the end */
289 }
290 AssertLogRelReturn(id != 0, VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
291
292 char szDevName[RT_SIZEOFMEMB(PDMDEVREG, szName)];
293 rc = SSMR3GetStrZ(pSSM, szDevName, sizeof(szDevName));
294 AssertLogRelRCReturn(rc, rc);
295
296 uint32_t uInstance;
297 SSMR3GetU32(pSSM, &uInstance);
298 uint8_t iRegion;
299 SSMR3GetU8(pSSM, &iRegion);
300
301 char szDesc[64];
302 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
303 AssertLogRelRCReturn(rc, rc);
304
305 RTGCPHYS GCPhys;
306 SSMR3GetGCPhys(pSSM, &GCPhys);
307 RTGCPHYS cb;
308 rc = SSMR3GetGCPhys(pSSM, &cb);
309 if (RT_FAILURE(rc))
310 return rc;
311 AssertLogRelMsgReturn(!(GCPhys & PAGE_OFFSET_MASK), ("GCPhys=%RGp %s\n", GCPhys, szDesc), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
312 AssertLogRelMsgReturn(!(cb & PAGE_OFFSET_MASK), ("cb=%RGp %s\n", cb, szDesc), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
313
314 /*
315 * Locate a matching ROM range.
316 */
317 AssertLogRelMsgReturn( uInstance == 0
318 && iRegion == 0
319 && szDevName[0] == '\0',
320 ("GCPhys=%RGp %s\n", GCPhys, szDesc),
321 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
322 PPGMROMRANGE pRom;
323 for (pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
324 {
325 if ( pRom->idSavedState == UINT8_MAX
326 && !strcmp(pRom->pszDesc, szDesc))
327 {
328 pRom->idSavedState = id;
329 break;
330 }
331 }
332 if (!pRom)
333 return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("ROM at %RGp by the name '%s' was not found"), GCPhys, szDesc);
334 } /* forever */
335}
336
337
338/**
339 * Scan ROM pages.
340 *
341 * @param pVM The VM handle.
342 */
343static void pgmR3ScanRomPages(PVM pVM)
344{
345 /*
346 * The shadow ROMs.
347 */
348 pgmLock(pVM);
349 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
350 {
351 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
352 {
353 uint32_t const cPages = pRom->cb >> PAGE_SHIFT;
354 for (uint32_t iPage = 0; iPage < cPages; iPage++)
355 {
356 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
357 if (pRomPage->LiveSave.fWrittenTo)
358 {
359 pRomPage->LiveSave.fWrittenTo = false;
360 if (!pRomPage->LiveSave.fDirty)
361 {
362 pRomPage->LiveSave.fDirty = true;
363 pVM->pgm.s.LiveSave.Rom.cReadyPages--;
364 pVM->pgm.s.LiveSave.Rom.cDirtyPages++;
365 }
366 pRomPage->LiveSave.fDirtiedRecently = true;
367 }
368 else
369 pRomPage->LiveSave.fDirtiedRecently = false;
370 }
371 }
372 }
373 pgmUnlock(pVM);
374}
375
376
377/**
378 * Takes care of the virgin ROM pages in the first pass.
379 *
380 * This is an attempt at simplifying the handling of ROM pages a little bit.
381 * This ASSUMES that no new ROM ranges will be added and that they won't be
382 * relinked in any way.
383 *
384 * @param pVM The VM handle.
385 * @param pSSM The SSM handle.
386 * @param fLiveSave Whether we're in a live save or not.
387 */
388static int pgmR3SaveRomVirginPages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave)
389{
390 pgmLock(pVM);
391 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
392 {
393 uint32_t const cPages = pRom->cb >> PAGE_SHIFT;
394 for (uint32_t iPage = 0; iPage < cPages; iPage++)
395 {
396 RTGCPHYS GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
397 PGMROMPROT enmProt = pRom->aPages[iPage].enmProt;
398
399 /* Get the virgin page descriptor. */
400 PPGMPAGE pPage;
401 if (PGMROMPROT_IS_ROM(enmProt))
402 pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
403 else
404 pPage = &pRom->aPages[iPage].Virgin;
405
406 /* Get the page bits. (Cannot use pgmPhysGCPhys2CCPtrInternalReadOnly here!) */
407 int rc = VINF_SUCCESS;
408 char abPage[PAGE_SIZE];
409 if (!PGM_PAGE_IS_ZERO(pPage))
410 {
411 void const *pvPage;
412 rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhys, &pvPage);
413 if (RT_SUCCESS(rc))
414 memcpy(abPage, pvPage, PAGE_SIZE);
415 }
416 else
417 ASMMemZeroPage(abPage);
418 pgmUnlock(pVM);
419 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc GCPhys=%RGp\n", rc, GCPhys), rc);
420
421 /* Save it. */
422 if (iPage > 0)
423 SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_VIRGIN);
424 else
425 {
426 SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_VIRGIN | PGM_STATE_REC_FLAG_ADDR);
427 SSMR3PutU8(pSSM, pRom->idSavedState);
428 SSMR3PutU32(pSSM, iPage);
429 }
430 SSMR3PutU8(pSSM, (uint8_t)enmProt);
431 rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
432 if (RT_FAILURE(rc))
433 return rc;
434
435 /* Update state. */
436 pgmLock(pVM);
437 pRom->aPages[iPage].LiveSave.u8Prot = (uint8_t)enmProt;
438 if (fLiveSave)
439 {
440 pVM->pgm.s.LiveSave.Rom.cDirtyPages--;
441 pVM->pgm.s.LiveSave.Rom.cReadyPages++;
442 pVM->pgm.s.LiveSave.cSavedPages++;
443 }
444 }
445 }
446 pgmUnlock(pVM);
447 return VINF_SUCCESS;
448}
449
450
451/**
452 * Saves dirty pages in the shadowed ROM ranges.
453 *
454 * Used by pgmR3LiveExecPart2 and pgmR3SaveExecMemory.
455 *
456 * @returns VBox status code.
457 * @param pVM The VM handle.
458 * @param pSSM The SSM handle.
459 * @param fLiveSave Whether it's a live save or not.
460 * @param fFinalPass Whether this is the final pass or not.
461 */
462static int pgmR3SaveShadowedRomPages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave, bool fFinalPass)
463{
464 /*
465 * The Shadowed ROMs.
466 *
467 * ASSUMES that the ROM ranges are fixed.
468 * ASSUMES that all the ROM ranges are mapped.
469 */
470 pgmLock(pVM);
471 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
472 {
473 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
474 {
475 uint32_t const cPages = pRom->cb >> PAGE_SHIFT;
476 uint32_t iPrevPage = cPages;
477 for (uint32_t iPage = 0; iPage < cPages; iPage++)
478 {
479 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
480 if ( !fLiveSave
481 || ( pRomPage->LiveSave.fDirty
482 && ( ( !pRomPage->LiveSave.fDirtiedRecently
483 && !pRomPage->LiveSave.fWrittenTo)
484 || fFinalPass
485 )
486 )
487 )
488 {
489 uint8_t abPage[PAGE_SIZE];
490 PGMROMPROT enmProt = pRomPage->enmProt;
491 RTGCPHYS GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
492 PPGMPAGE pPage = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Shadow : pgmPhysGetPage(&pVM->pgm.s, GCPhys);
493 bool fZero = PGM_PAGE_IS_ZERO(pPage);
494 int rc = VINF_SUCCESS;
495 if (!fZero)
496 {
497 void const *pvPage;
498 rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhys, &pvPage);
499 if (RT_SUCCESS(rc))
500 memcpy(abPage, pvPage, PAGE_SIZE);
501 }
502 if (fLiveSave && RT_SUCCESS(rc))
503 {
504 pRomPage->LiveSave.u8Prot = (uint8_t)enmProt;
505 pRomPage->LiveSave.fDirty = false;
506 pVM->pgm.s.LiveSave.Rom.cReadyPages++;
507 pVM->pgm.s.LiveSave.Rom.cDirtyPages--;
508 pVM->pgm.s.LiveSave.cSavedPages++;
509 }
510 pgmUnlock(pVM);
511 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc GCPhys=%RGp\n", rc, GCPhys), rc);
512
513 if (iPage - 1U == iPrevPage && iPage > 0)
514 SSMR3PutU8(pSSM, (fZero ? PGM_STATE_REC_ROM_SHW_ZERO : PGM_STATE_REC_ROM_SHW_RAW));
515 else
516 {
517 SSMR3PutU8(pSSM, (fZero ? PGM_STATE_REC_ROM_SHW_ZERO : PGM_STATE_REC_ROM_SHW_RAW) | PGM_STATE_REC_FLAG_ADDR);
518 SSMR3PutU8(pSSM, pRom->idSavedState);
519 SSMR3PutU32(pSSM, iPage);
520 }
521 rc = SSMR3PutU8(pSSM, (uint8_t)enmProt);
522 if (!fZero)
523 rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
524 if (RT_FAILURE(rc))
525 return rc;
526
527 pgmLock(pVM);
528 iPrevPage = iPage;
529 }
530 /*
531 * In the final pass, make sure the protection is in sync.
532 */
533 else if ( fFinalPass
534 && pRomPage->LiveSave.u8Prot != pRomPage->enmProt)
535 {
536 PGMROMPROT enmProt = pRomPage->enmProt;
537 pRomPage->LiveSave.u8Prot = (uint8_t)enmProt;
538 pgmUnlock(pVM);
539
540 if (iPage - 1U == iPrevPage && iPage > 0)
541 SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_PROT);
542 else
543 {
544 SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_PROT | PGM_STATE_REC_FLAG_ADDR);
545 SSMR3PutU8(pSSM, pRom->idSavedState);
546 SSMR3PutU32(pSSM, iPage);
547 }
548 int rc = SSMR3PutU8(pSSM, (uint8_t)enmProt);
549 if (RT_FAILURE(rc))
550 return rc;
551
552 pgmLock(pVM);
553 iPrevPage = iPage;
554 }
555 }
556 }
557 }
558 pgmUnlock(pVM);
559 return VINF_SUCCESS;
560}
561
562
563/**
564 * Cleans up ROM pages after a live save.
565 *
566 * @param pVM The VM handle.
567 */
568static void pgmR3DoneRomPages(PVM pVM)
569{
570 NOREF(pVM);
571}
572
573
574/**
575 * Prepares the MMIO2 pages for a live save.
576 *
577 * @returns VBox status code.
578 * @param pVM The VM handle.
579 */
580static int pgmR3PrepMmio2Pages(PVM pVM)
581{
582 /*
583 * Initialize the live save tracking in the MMIO2 ranges.
584 * ASSUME nothing changes here.
585 */
586 pgmLock(pVM);
587 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
588 {
589 uint32_t const cPages = pMmio2->RamRange.cb >> PAGE_SHIFT;
590 pgmUnlock(pVM);
591
592 PPGMLIVESAVEMMIO2PAGE paLSPages = (PPGMLIVESAVEMMIO2PAGE)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMLIVESAVEMMIO2PAGE) * cPages);
593 if (!paLSPages)
594 return VERR_NO_MEMORY;
595 for (uint32_t iPage = 0; iPage < cPages; iPage++)
596 {
597 /* Initialize it as a dirty zero page. */
598 paLSPages[iPage].fDirty = true;
599 paLSPages[iPage].cUnchangedScans = 0;
600 paLSPages[iPage].fZero = true;
601 paLSPages[iPage].u32CrcH1 = PGM_STATE_CRC32_ZERO_HALF_PAGE;
602 paLSPages[iPage].u32CrcH2 = PGM_STATE_CRC32_ZERO_HALF_PAGE;
603 }
604
605 pgmLock(pVM);
606 pMmio2->paLSPages = paLSPages;
607 pVM->pgm.s.LiveSave.Mmio2.cDirtyPages += cPages;
608 }
609 pgmUnlock(pVM);
610 return VINF_SUCCESS;
611}
612
613
614/**
615 * Assigns IDs to the MMIO2 ranges and saves them.
616 *
617 * @returns VBox status code.
618 * @param pVM The VM handle.
619 * @param pSSM Saved state handle.
620 */
621static int pgmR3SaveMmio2Ranges(PVM pVM, PSSMHANDLE pSSM)
622{
623 pgmLock(pVM);
624 uint8_t id = 1;
625 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3, id++)
626 {
627 pMmio2->idSavedState = id;
628 SSMR3PutU8(pSSM, id);
629 SSMR3PutStrZ(pSSM, pMmio2->pDevInsR3->pReg->szName);
630 SSMR3PutU32(pSSM, pMmio2->pDevInsR3->iInstance);
631 SSMR3PutU8(pSSM, pMmio2->iRegion);
632 SSMR3PutStrZ(pSSM, pMmio2->RamRange.pszDesc);
633 int rc = SSMR3PutGCPhys(pSSM, pMmio2->RamRange.cb);
634 if (RT_FAILURE(rc))
635 break;
636 }
637 pgmUnlock(pVM);
638 return SSMR3PutU8(pSSM, UINT8_MAX);
639}
640
641
642/**
643 * Loads the MMIO2 range ID assignments.
644 *
645 * @returns VBox status code.
646 *
647 * @param pVM The VM handle.
648 * @param pSSM The saved state handle.
649 */
650static int pgmR3LoadMmio2Ranges(PVM pVM, PSSMHANDLE pSSM)
651{
652 Assert(PGMIsLockOwner(pVM));
653
654 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
655 pMmio2->idSavedState = UINT8_MAX;
656
657 for (;;)
658 {
659 /*
660 * Read the data.
661 */
662 uint8_t id;
663 int rc = SSMR3GetU8(pSSM, &id);
664 if (RT_FAILURE(rc))
665 return rc;
666 if (id == UINT8_MAX)
667 {
668 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
669 AssertLogRelMsg(pMmio2->idSavedState != UINT8_MAX, ("%s\n", pMmio2->RamRange.pszDesc));
670 return VINF_SUCCESS; /* the end */
671 }
672 AssertLogRelReturn(id != 0, VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
673
674 char szDevName[RT_SIZEOFMEMB(PDMDEVREG, szName)];
675 rc = SSMR3GetStrZ(pSSM, szDevName, sizeof(szDevName));
676 AssertLogRelRCReturn(rc, rc);
677
678 uint32_t uInstance;
679 SSMR3GetU32(pSSM, &uInstance);
680 uint8_t iRegion;
681 SSMR3GetU8(pSSM, &iRegion);
682
683 char szDesc[64];
684 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
685 AssertLogRelRCReturn(rc, rc);
686
687 RTGCPHYS cb;
688 rc = SSMR3GetGCPhys(pSSM, &cb);
689 AssertLogRelMsgReturn(!(cb & PAGE_OFFSET_MASK), ("cb=%RGp %s\n", cb, szDesc), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
690
691 /*
692 * Locate a matching MMIO2 range.
693 */
694 PPGMMMIO2RANGE pMmio2;
695 for (pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
696 {
697 if ( pMmio2->idSavedState == UINT8_MAX
698 && pMmio2->iRegion == iRegion
699 && pMmio2->pDevInsR3->iInstance == uInstance
700 && !strcmp(pMmio2->pDevInsR3->pReg->szName, szDevName))
701 {
702 pMmio2->idSavedState = id;
703 break;
704 }
705 }
706 if (!pMmio2)
707 return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("Failed to locate a MMIO2 range called '%s' owned by %s/%u, region %d"),
708 szDesc, szDevName, uInstance, iRegion);
709
710 /*
711 * Validate the configuration, the size of the MMIO2 region should be
712 * the same.
713 */
714 if (cb != pMmio2->RamRange.cb)
715 {
716 LogRel(("PGM: MMIO2 region \"%s\" size mismatch: saved=%RGp config=%RGp\n",
717 pMmio2->RamRange.pszDesc, cb, pMmio2->RamRange.cb));
718 if (cb > pMmio2->RamRange.cb) /* bad idea? */
719 return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("MMIO2 region \"%s\" size mismatch: saved=%RGp config=%RGp"),
720 pMmio2->RamRange.pszDesc, cb, pMmio2->RamRange.cb);
721 }
722 } /* forever */
723}
724
725
726/**
727 * Scans one MMIO2 page.
728 *
729 * @returns True if changed, false if unchanged.
730 *
731 * @param pVM The VM handle
732 * @param pbPage The page bits.
733 * @param pLSPage The live save tracking structure for the page.
734 *
735 */
736DECLINLINE(bool) pgmR3ScanMmio2Page(PVM pVM, uint8_t const *pbPage, PPGMLIVESAVEMMIO2PAGE pLSPage)
737{
738 /*
739 * Special handling of zero pages.
740 */
741 bool const fZero = pLSPage->fZero;
742 if (fZero)
743 {
744 if (ASMMemIsZeroPage(pbPage))
745 {
746 /* Not modified. */
747 if (pLSPage->fDirty)
748 pLSPage->cUnchangedScans++;
749 return false;
750 }
751
752 pLSPage->fZero = false;
753 pLSPage->u32CrcH1 = RTCrc32(pbPage, PAGE_SIZE / 2);
754 }
755 else
756 {
757 /*
758 * CRC the first half, if it doesn't match the page is dirty and
759 * we won't check the 2nd half (we'll do that next time).
760 */
761 uint32_t u32CrcH1 = RTCrc32(pbPage, PAGE_SIZE / 2);
762 if (u32CrcH1 == pLSPage->u32CrcH1)
763 {
764 uint32_t u32CrcH2 = RTCrc32(pbPage + PAGE_SIZE / 2, PAGE_SIZE / 2);
765 if (u32CrcH2 == pLSPage->u32CrcH2)
766 {
767 /* Probably not modified. */
768 if (pLSPage->fDirty)
769 pLSPage->cUnchangedScans++;
770 return false;
771 }
772
773 pLSPage->u32CrcH2 = u32CrcH2;
774 }
775 else
776 {
777 pLSPage->u32CrcH1 = u32CrcH1;
778 if ( u32CrcH1 == PGM_STATE_CRC32_ZERO_HALF_PAGE
779 && ASMMemIsZeroPage(pbPage))
780 {
781 pLSPage->u32CrcH2 = PGM_STATE_CRC32_ZERO_HALF_PAGE;
782 pLSPage->fZero = true;
783 }
784 }
785 }
786
787 /* dirty page path */
788 pLSPage->cUnchangedScans = 0;
789 if (!pLSPage->fDirty)
790 {
791 pLSPage->fDirty = true;
792 pVM->pgm.s.LiveSave.Mmio2.cReadyPages--;
793 pVM->pgm.s.LiveSave.Mmio2.cDirtyPages++;
794 if (fZero)
795 pVM->pgm.s.LiveSave.Mmio2.cZeroPages--;
796 }
797 return true;
798}
799
800
801/**
802 * Scan for MMIO2 page modifications.
803 *
804 * @param pVM The VM handle.
805 * @param uPass The pass number.
806 */
807static void pgmR3ScanMmio2Pages(PVM pVM, uint32_t uPass)
808{
809 /*
810 * Since this is a bit expensive we lower the scan rate after a little while.
811 */
812 if ( ( (uPass & 3) != 0
813 && uPass > 10)
814 || uPass == SSM_PASS_FINAL)
815 return;
816
817 pgmLock(pVM); /* paranoia */
818 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
819 {
820 PPGMLIVESAVEMMIO2PAGE paLSPages = pMmio2->paLSPages;
821 uint32_t cPages = pMmio2->RamRange.cb >> PAGE_SHIFT;
822 pgmUnlock(pVM);
823
824 for (uint32_t iPage = 0; iPage < cPages; iPage++)
825 {
826 uint8_t const *pbPage = (uint8_t const *)pMmio2->pvR3 + iPage * PAGE_SIZE;
827 pgmR3ScanMmio2Page(pVM, pbPage, &paLSPages[iPage]);
828 }
829
830 pgmLock(pVM);
831 }
832 pgmUnlock(pVM);
833
834}
835
836
837/**
838 * Save quiescent MMIO2 pages.
839 *
840 * @returns VBox status code.
841 * @param pVM The VM handle.
842 * @param pSSM The SSM handle.
843 * @param fLiveSave Whether it's a live save or not.
844 * @param uPass The pass number.
845 */
846static int pgmR3SaveMmio2Pages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave, uint32_t uPass)
847{
848 /** @todo implement live saving of MMIO2 pages. (Need some way of telling the
849 * device that we wish to know about changes.) */
850
851 int rc = VINF_SUCCESS;
852 if (uPass == SSM_PASS_FINAL)
853 {
854 /*
855 * The mop up round.
856 */
857 pgmLock(pVM);
858 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3;
859 pMmio2 && RT_SUCCESS(rc);
860 pMmio2 = pMmio2->pNextR3)
861 {
862 PPGMLIVESAVEMMIO2PAGE paLSPages = pMmio2->paLSPages;
863 uint8_t const *pbPage = (uint8_t const *)pMmio2->RamRange.pvR3;
864 uint32_t cPages = pMmio2->RamRange.cb >> PAGE_SHIFT;
865 uint32_t iPageLast = cPages;
866 for (uint32_t iPage = 0; iPage < cPages; iPage++, pbPage += PAGE_SIZE)
867 {
868 uint8_t u8Type;
869 if (!fLiveSave)
870 u8Type = ASMMemIsZeroPage(pbPage) ? PGM_STATE_REC_MMIO2_ZERO : PGM_STATE_REC_MMIO2_RAW;
871 else
872 {
873 /* Try figure if it's a clean page, compare the SHA-1 to be really sure. */
874 if ( !paLSPages[iPage].fDirty
875 && !pgmR3ScanMmio2Page(pVM, pbPage, &paLSPages[iPage]))
876 {
877 if (paLSPages[iPage].fZero)
878 continue;
879
880 uint8_t abSha1Hash[RTSHA1_HASH_SIZE];
881 RTSha1(pbPage, PAGE_SIZE, abSha1Hash);
882 if (!memcmp(abSha1Hash, paLSPages[iPage].abSha1Saved, sizeof(abSha1Hash)))
883 continue;
884 }
885 u8Type = paLSPages[iPage].fZero ? PGM_STATE_REC_MMIO2_ZERO : PGM_STATE_REC_MMIO2_RAW;
886 pVM->pgm.s.LiveSave.cSavedPages++;
887 }
888
889 if (iPage != 0 && iPage == iPageLast + 1)
890 rc = SSMR3PutU8(pSSM, u8Type);
891 else
892 {
893 SSMR3PutU8(pSSM, u8Type | PGM_STATE_REC_FLAG_ADDR);
894 SSMR3PutU8(pSSM, pMmio2->idSavedState);
895 rc = SSMR3PutU32(pSSM, iPage);
896 }
897 if (u8Type == PGM_STATE_REC_MMIO2_RAW)
898 rc = SSMR3PutMem(pSSM, pbPage, PAGE_SIZE);
899 if (RT_FAILURE(rc))
900 break;
901 iPageLast = iPage;
902 }
903 }
904 pgmUnlock(pVM);
905 }
906 /*
907 * Reduce the rate after a little while since the current MMIO2 approach is
908 * a bit expensive.
909 * We position it two passes after the scan pass to avoid saving busy pages.
910 */
911 else if ( uPass <= 10
912 || (uPass & 3) == 2)
913 {
914 pgmLock(pVM);
915 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3;
916 pMmio2 && RT_SUCCESS(rc);
917 pMmio2 = pMmio2->pNextR3)
918 {
919 PPGMLIVESAVEMMIO2PAGE paLSPages = pMmio2->paLSPages;
920 uint8_t const *pbPage = (uint8_t const *)pMmio2->RamRange.pvR3;
921 uint32_t cPages = pMmio2->RamRange.cb >> PAGE_SHIFT;
922 uint32_t iPageLast = cPages;
923 pgmUnlock(pVM);
924
925 for (uint32_t iPage = 0; iPage < cPages; iPage++, pbPage += PAGE_SIZE)
926 {
927 /* Skip clean pages and pages which hasn't quiesced. */
928 if (!paLSPages[iPage].fDirty)
929 continue;
930 if (paLSPages[iPage].cUnchangedScans < 3)
931 continue;
932 if (pgmR3ScanMmio2Page(pVM, pbPage, &paLSPages[iPage]))
933 continue;
934
935 /* Save it. */
936 bool const fZero = paLSPages[iPage].fZero;
937 uint8_t abPage[PAGE_SIZE];
938 if (!fZero)
939 {
940 memcpy(abPage, pbPage, PAGE_SIZE);
941 RTSha1(abPage, PAGE_SIZE, paLSPages[iPage].abSha1Saved);
942 }
943
944 uint8_t u8Type = paLSPages[iPage].fZero ? PGM_STATE_REC_MMIO2_ZERO : PGM_STATE_REC_MMIO2_RAW;
945 if (iPage != 0 && iPage == iPageLast + 1)
946 rc = SSMR3PutU8(pSSM, u8Type);
947 else
948 {
949 SSMR3PutU8(pSSM, u8Type | PGM_STATE_REC_FLAG_ADDR);
950 SSMR3PutU8(pSSM, pMmio2->idSavedState);
951 rc = SSMR3PutU32(pSSM, iPage);
952 }
953 if (u8Type == PGM_STATE_REC_MMIO2_RAW)
954 rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
955 if (RT_FAILURE(rc))
956 break;
957
958 /* Housekeeping. */
959 paLSPages[iPage].fDirty = false;
960 pVM->pgm.s.LiveSave.Mmio2.cDirtyPages--;
961 pVM->pgm.s.LiveSave.Mmio2.cReadyPages++;
962 if (u8Type == PGM_STATE_REC_MMIO2_ZERO)
963 pVM->pgm.s.LiveSave.Mmio2.cZeroPages++;
964 pVM->pgm.s.LiveSave.cSavedPages++;
965 iPageLast = iPage;
966 }
967
968 pgmLock(pVM);
969 }
970 pgmUnlock(pVM);
971 }
972
973 return rc;
974}
975
976
977/**
978 * Cleans up MMIO2 pages after a live save.
979 *
980 * @param pVM The VM handle.
981 */
982static void pgmR3DoneMmio2Pages(PVM pVM)
983{
984 /*
985 * Free the tracking structures for the MMIO2 pages.
986 * We do the freeing outside the lock in case the VM is running.
987 */
988 pgmLock(pVM);
989 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
990 {
991 void *pvMmio2ToFree = pMmio2->paLSPages;
992 if (pvMmio2ToFree)
993 {
994 pMmio2->paLSPages = NULL;
995 pgmUnlock(pVM);
996 MMR3HeapFree(pvMmio2ToFree);
997 pgmLock(pVM);
998 }
999 }
1000 pgmUnlock(pVM);
1001}
1002
1003
1004/**
1005 * Prepares the RAM pages for a live save.
1006 *
1007 * @returns VBox status code.
1008 * @param pVM The VM handle.
1009 */
1010static int pgmR3PrepRamPages(PVM pVM)
1011{
1012
1013 /*
1014 * Try allocating tracking structures for the ram ranges.
1015 *
1016 * To avoid lock contention, we leave the lock every time we're allocating
1017 * a new array. This means we'll have to ditch the allocation and start
1018 * all over again if the RAM range list changes in-between.
1019 *
1020 * Note! pgmR3SaveDone will always be called and it is therefore responsible
1021 * for cleaning up.
1022 */
1023 PPGMRAMRANGE pCur;
1024 pgmLock(pVM);
1025 do
1026 {
1027 for (pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
1028 {
1029 if ( !pCur->paLSPages
1030 && !PGM_RAM_RANGE_IS_AD_HOC(pCur))
1031 {
1032 uint32_t const idRamRangesGen = pVM->pgm.s.idRamRangesGen;
1033 uint32_t const cPages = pCur->cb >> PAGE_SHIFT;
1034 pgmUnlock(pVM);
1035 PPGMLIVESAVERAMPAGE paLSPages = (PPGMLIVESAVERAMPAGE)MMR3HeapAllocZ(pVM, MM_TAG_PGM, cPages * sizeof(PGMLIVESAVERAMPAGE));
1036 if (!paLSPages)
1037 return VERR_NO_MEMORY;
1038 pgmLock(pVM);
1039 if (pVM->pgm.s.idRamRangesGen != idRamRangesGen)
1040 {
1041 pgmUnlock(pVM);
1042 MMR3HeapFree(paLSPages);
1043 pgmLock(pVM);
1044 break; /* try again */
1045 }
1046 pCur->paLSPages = paLSPages;
1047
1048 /*
1049 * Initialize the array.
1050 */
1051 uint32_t iPage = cPages;
1052 while (iPage-- > 0)
1053 {
1054 /** @todo yield critsect! (after moving this away from EMT0) */
1055 PCPGMPAGE pPage = &pCur->aPages[iPage];
1056 paLSPages[iPage].cDirtied = 0;
1057 paLSPages[iPage].fDirty = 1; /* everything is dirty at this time */
1058 paLSPages[iPage].fWriteMonitored = 0;
1059 paLSPages[iPage].fWriteMonitoredJustNow = 0;
1060 paLSPages[iPage].u2Reserved = 0;
1061 switch (PGM_PAGE_GET_TYPE(pPage))
1062 {
1063 case PGMPAGETYPE_RAM:
1064 if (PGM_PAGE_IS_ZERO(pPage))
1065 {
1066 paLSPages[iPage].fZero = 1;
1067 paLSPages[iPage].fShared = 0;
1068#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1069 paLSPages[iPage].u32Crc = PGM_STATE_CRC32_ZERO_PAGE;
1070#endif
1071 }
1072 else if (PGM_PAGE_IS_SHARED(pPage))
1073 {
1074 paLSPages[iPage].fZero = 0;
1075 paLSPages[iPage].fShared = 1;
1076#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1077 paLSPages[iPage].u32Crc = UINT32_MAX;
1078#endif
1079 }
1080 else
1081 {
1082 paLSPages[iPage].fZero = 0;
1083 paLSPages[iPage].fShared = 0;
1084#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1085 paLSPages[iPage].u32Crc = UINT32_MAX;
1086#endif
1087 }
1088 paLSPages[iPage].fIgnore = 0;
1089 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1090 break;
1091
1092 case PGMPAGETYPE_ROM_SHADOW:
1093 case PGMPAGETYPE_ROM:
1094 {
1095 paLSPages[iPage].fZero = 0;
1096 paLSPages[iPage].fShared = 0;
1097 paLSPages[iPage].fDirty = 0;
1098 paLSPages[iPage].fIgnore = 1;
1099#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1100 paLSPages[iPage].u32Crc = UINT32_MAX;
1101#endif
1102 pVM->pgm.s.LiveSave.cIgnoredPages++;
1103 break;
1104 }
1105
1106 default:
1107 AssertMsgFailed(("%R[pgmpage]", pPage));
1108 case PGMPAGETYPE_MMIO2:
1109 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1110 paLSPages[iPage].fZero = 0;
1111 paLSPages[iPage].fShared = 0;
1112 paLSPages[iPage].fDirty = 0;
1113 paLSPages[iPage].fIgnore = 1;
1114#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1115 paLSPages[iPage].u32Crc = UINT32_MAX;
1116#endif
1117 pVM->pgm.s.LiveSave.cIgnoredPages++;
1118 break;
1119
1120 case PGMPAGETYPE_MMIO:
1121 paLSPages[iPage].fZero = 0;
1122 paLSPages[iPage].fShared = 0;
1123 paLSPages[iPage].fDirty = 0;
1124 paLSPages[iPage].fIgnore = 1;
1125#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1126 paLSPages[iPage].u32Crc = UINT32_MAX;
1127#endif
1128 pVM->pgm.s.LiveSave.cIgnoredPages++;
1129 break;
1130 }
1131 }
1132 }
1133 }
1134 } while (pCur);
1135 pgmUnlock(pVM);
1136
1137 return VINF_SUCCESS;
1138}
1139
1140
1141/**
1142 * Saves the RAM configuration.
1143 *
1144 * @returns VBox status code.
1145 * @param pVM The VM handle.
1146 * @param pSSM The saved state handle.
1147 */
1148static int pgmR3SaveRamConfig(PVM pVM, PSSMHANDLE pSSM)
1149{
1150 uint32_t cbRamHole = 0;
1151 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
1152 AssertRCReturn(rc, rc);
1153
1154 uint64_t cbRam = 0;
1155 rc = CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0);
1156 AssertRCReturn(rc, rc);
1157
1158 SSMR3PutU32(pSSM, cbRamHole);
1159 return SSMR3PutU64(pSSM, cbRam);
1160}
1161
1162
1163/**
1164 * Loads and verifies the RAM configuration.
1165 *
1166 * @returns VBox status code.
1167 * @param pVM The VM handle.
1168 * @param pSSM The saved state handle.
1169 */
1170static int pgmR3LoadRamConfig(PVM pVM, PSSMHANDLE pSSM)
1171{
1172 uint32_t cbRamHoleCfg = 0;
1173 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHoleCfg, MM_RAM_HOLE_SIZE_DEFAULT);
1174 AssertRCReturn(rc, rc);
1175
1176 uint64_t cbRamCfg = 0;
1177 rc = CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRamCfg, 0);
1178 AssertRCReturn(rc, rc);
1179
1180 uint32_t cbRamHoleSaved;
1181 SSMR3GetU32(pSSM, &cbRamHoleSaved);
1182
1183 uint64_t cbRamSaved;
1184 rc = SSMR3GetU64(pSSM, &cbRamSaved);
1185 AssertRCReturn(rc, rc);
1186
1187 if ( cbRamHoleCfg != cbRamHoleSaved
1188 || cbRamCfg != cbRamSaved)
1189 return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("Ram config mismatch: saved=%RX64/%RX32 config=%RX64/%RX32 (RAM/Hole)"),
1190 cbRamSaved, cbRamHoleSaved, cbRamCfg, cbRamHoleCfg);
1191 return VINF_SUCCESS;
1192}
1193
1194#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1195
1196/**
1197 * Calculates the CRC-32 for a RAM page and updates the live save page tracking
1198 * info with it.
1199 *
1200 * @param pVM The VM handle.
1201 * @param pCur The current RAM range.
1202 * @param paLSPages The current array of live save page tracking
1203 * structures.
1204 * @param iPage The page index.
1205 */
1206static void pgmR3StateCalcCrc32ForRamPage(PVM pVM, PPGMRAMRANGE pCur, PPGMLIVESAVERAMPAGE paLSPages, uint32_t iPage)
1207{
1208 RTGCPHYS GCPhys = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1209 void const *pvPage;
1210 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, &pCur->aPages[iPage], GCPhys, &pvPage);
1211 if (RT_SUCCESS(rc))
1212 paLSPages[iPage].u32Crc = RTCrc32(pvPage, PAGE_SIZE);
1213 else
1214 paLSPages[iPage].u32Crc = UINT32_MAX; /* Invalid */
1215}
1216
1217
1218/**
1219 * Verifies the CRC-32 for a page given it's raw bits.
1220 *
1221 * @param pvPage The page bits.
1222 * @param pCur The current RAM range.
1223 * @param paLSPages The current array of live save page tracking
1224 * structures.
1225 * @param iPage The page index.
1226 */
1227static void pgmR3StateVerifyCrc32ForPage(void const *pvPage, PPGMRAMRANGE pCur, PPGMLIVESAVERAMPAGE paLSPages, uint32_t iPage)
1228{
1229 if (paLSPages[iPage].u32Crc != UINT32_MAX)
1230 {
1231 uint32_t u32Crc = RTCrc32(pvPage, PAGE_SIZE);
1232 Assert(!PGM_PAGE_IS_ZERO(&pCur->aPages[iPage]) || u32Crc == PGM_STATE_CRC32_ZERO_PAGE);
1233 AssertMsg(paLSPages[iPage].u32Crc == u32Crc,
1234 ("%08x != %08x for %RGp %R[pgmpage]\n", paLSPages[iPage].u32Crc, u32Crc,
1235 pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pCur->aPages[iPage]));
1236 }
1237}
1238
1239
1240/**
1241 * Verfies the CRC-32 for a RAM page.
1242 *
1243 * @param pVM The VM handle.
1244 * @param pCur The current RAM range.
1245 * @param paLSPages The current array of live save page tracking
1246 * structures.
1247 * @param iPage The page index.
1248 */
1249static void pgmR3StateVerifyCrc32ForRamPage(PVM pVM, PPGMRAMRANGE pCur, PPGMLIVESAVERAMPAGE paLSPages, uint32_t iPage)
1250{
1251 if (paLSPages[iPage].u32Crc != UINT32_MAX)
1252 {
1253 RTGCPHYS GCPhys = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1254 void const *pvPage;
1255 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, &pCur->aPages[iPage], GCPhys, &pvPage);
1256 if (RT_SUCCESS(rc))
1257 pgmR3StateVerifyCrc32ForPage(pvPage, pCur, paLSPages, iPage);
1258 }
1259}
1260
1261#endif /* PGMLIVESAVERAMPAGE_WITH_CRC32 */
1262
1263/**
1264 * Scan for RAM page modifications and reprotect them.
1265 *
1266 * @param pVM The VM handle.
1267 * @param fFinalPass Whether this is the final pass or not.
1268 */
1269static void pgmR3ScanRamPages(PVM pVM, bool fFinalPass)
1270{
1271 /*
1272 * The RAM.
1273 */
1274 RTGCPHYS GCPhysCur = 0;
1275 PPGMRAMRANGE pCur;
1276 pgmLock(pVM);
1277 do
1278 {
1279 uint32_t const idRamRangesGen = pVM->pgm.s.idRamRangesGen;
1280 for (pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
1281 {
1282 if ( pCur->GCPhysLast > GCPhysCur
1283 && !PGM_RAM_RANGE_IS_AD_HOC(pCur))
1284 {
1285 PPGMLIVESAVERAMPAGE paLSPages = pCur->paLSPages;
1286 uint32_t cPages = pCur->cb >> PAGE_SHIFT;
1287 uint32_t iPage = GCPhysCur <= pCur->GCPhys ? 0 : (GCPhysCur - pCur->GCPhys) >> PAGE_SHIFT;
1288 GCPhysCur = 0;
1289 for (; iPage < cPages; iPage++)
1290 {
1291 /* Do yield first. */
1292 if ( !fFinalPass
1293#ifndef PGMLIVESAVERAMPAGE_WITH_CRC32
1294 && (iPage & 0x7ff) == 0x100
1295#endif
1296 && PDMR3CritSectYield(&pVM->pgm.s.CritSect)
1297 && pVM->pgm.s.idRamRangesGen != idRamRangesGen)
1298 {
1299 GCPhysCur = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1300 break; /* restart */
1301 }
1302
1303 /* Skip already ignored pages. */
1304 if (paLSPages[iPage].fIgnore)
1305 continue;
1306
1307 if (RT_LIKELY(PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]) == PGMPAGETYPE_RAM))
1308 {
1309 /*
1310 * A RAM page.
1311 */
1312 switch (PGM_PAGE_GET_STATE(&pCur->aPages[iPage]))
1313 {
1314 case PGM_PAGE_STATE_ALLOCATED:
1315 /** @todo Optimize this: Don't always re-enable write
1316 * monitoring if the page is known to be very busy. */
1317 if (PGM_PAGE_IS_WRITTEN_TO(&pCur->aPages[iPage]))
1318 {
1319 Assert(paLSPages[iPage].fWriteMonitored);
1320 PGM_PAGE_CLEAR_WRITTEN_TO(&pCur->aPages[iPage]);
1321 Assert(pVM->pgm.s.cWrittenToPages > 0);
1322 pVM->pgm.s.cWrittenToPages--;
1323 }
1324 else
1325 {
1326 Assert(!paLSPages[iPage].fWriteMonitored);
1327 pVM->pgm.s.LiveSave.Ram.cMonitoredPages++;
1328 }
1329
1330 if (!paLSPages[iPage].fDirty)
1331 {
1332 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1333 if (paLSPages[iPage].fZero)
1334 pVM->pgm.s.LiveSave.Ram.cZeroPages--;
1335 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1336 if (++paLSPages[iPage].cDirtied > PGMLIVSAVEPAGE_MAX_DIRTIED)
1337 paLSPages[iPage].cDirtied = PGMLIVSAVEPAGE_MAX_DIRTIED;
1338 }
1339
1340 PGM_PAGE_SET_STATE(&pCur->aPages[iPage], PGM_PAGE_STATE_WRITE_MONITORED);
1341 pVM->pgm.s.cMonitoredPages++;
1342 paLSPages[iPage].fWriteMonitored = 1;
1343 paLSPages[iPage].fWriteMonitoredJustNow = 1;
1344 paLSPages[iPage].fDirty = 1;
1345 paLSPages[iPage].fZero = 0;
1346 paLSPages[iPage].fShared = 0;
1347#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1348 paLSPages[iPage].u32Crc = UINT32_MAX; /* invalid */
1349#endif
1350 break;
1351
1352 case PGM_PAGE_STATE_WRITE_MONITORED:
1353 Assert(paLSPages[iPage].fWriteMonitored);
1354 if (PGM_PAGE_GET_WRITE_LOCKS(&pCur->aPages[iPage]) == 0)
1355 {
1356#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1357 if (paLSPages[iPage].fWriteMonitoredJustNow)
1358 pgmR3StateCalcCrc32ForRamPage(pVM, pCur, paLSPages, iPage);
1359 else
1360 pgmR3StateVerifyCrc32ForRamPage(pVM, pCur, paLSPages, iPage);
1361#endif
1362 paLSPages[iPage].fWriteMonitoredJustNow = 0;
1363 }
1364 else
1365 {
1366 paLSPages[iPage].fWriteMonitoredJustNow = 1;
1367#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1368 paLSPages[iPage].u32Crc = UINT32_MAX; /* invalid */
1369#endif
1370 if (!paLSPages[iPage].fDirty)
1371 {
1372 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1373 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1374 if (++paLSPages[iPage].cDirtied > PGMLIVSAVEPAGE_MAX_DIRTIED)
1375 paLSPages[iPage].cDirtied = PGMLIVSAVEPAGE_MAX_DIRTIED;
1376 }
1377 }
1378 break;
1379
1380 case PGM_PAGE_STATE_ZERO:
1381 if (!paLSPages[iPage].fZero)
1382 {
1383 if (!paLSPages[iPage].fDirty)
1384 {
1385 paLSPages[iPage].fDirty = 1;
1386 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1387 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1388 }
1389 paLSPages[iPage].fZero = 1;
1390 paLSPages[iPage].fShared = 0;
1391#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1392 paLSPages[iPage].u32Crc = PGM_STATE_CRC32_ZERO_PAGE;
1393#endif
1394 }
1395 break;
1396
1397 case PGM_PAGE_STATE_SHARED:
1398 if (!paLSPages[iPage].fShared)
1399 {
1400 if (!paLSPages[iPage].fDirty)
1401 {
1402 paLSPages[iPage].fDirty = 1;
1403 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1404 if (paLSPages[iPage].fZero)
1405 pVM->pgm.s.LiveSave.Ram.cZeroPages--;
1406 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1407 }
1408 paLSPages[iPage].fZero = 0;
1409 paLSPages[iPage].fShared = 1;
1410#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1411 pgmR3StateCalcCrc32ForRamPage(pVM, pCur, paLSPages, iPage);
1412#endif
1413 }
1414 break;
1415 }
1416 }
1417 else
1418 {
1419 /*
1420 * All other types => Ignore the page.
1421 */
1422 Assert(!paLSPages[iPage].fIgnore); /* skipped before switch */
1423 paLSPages[iPage].fIgnore = 1;
1424 if (paLSPages[iPage].fWriteMonitored)
1425 {
1426 /** @todo this doesn't hold water when we start monitoring MMIO2 and ROM shadow
1427 * pages! */
1428 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(&pCur->aPages[iPage]) == PGM_PAGE_STATE_WRITE_MONITORED))
1429 {
1430 AssertMsgFailed(("%R[pgmpage]", &pCur->aPages[iPage])); /* shouldn't happen. */
1431 PGM_PAGE_SET_STATE(&pCur->aPages[iPage], PGM_PAGE_STATE_ALLOCATED);
1432 Assert(pVM->pgm.s.cMonitoredPages > 0);
1433 pVM->pgm.s.cMonitoredPages--;
1434 }
1435 if (PGM_PAGE_IS_WRITTEN_TO(&pCur->aPages[iPage]))
1436 {
1437 PGM_PAGE_CLEAR_WRITTEN_TO(&pCur->aPages[iPage]);
1438 Assert(pVM->pgm.s.cWrittenToPages > 0);
1439 pVM->pgm.s.cWrittenToPages--;
1440 }
1441 pVM->pgm.s.LiveSave.Ram.cMonitoredPages--;
1442 }
1443
1444 /** @todo the counting doesn't quite work out here. fix later? */
1445 if (paLSPages[iPage].fDirty)
1446 pVM->pgm.s.LiveSave.Ram.cDirtyPages--;
1447 else
1448 {
1449 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1450 if (paLSPages[iPage].fZero)
1451 pVM->pgm.s.LiveSave.Ram.cZeroPages--;
1452 }
1453 pVM->pgm.s.LiveSave.cIgnoredPages++;
1454 }
1455 } /* for each page in range */
1456
1457 if (GCPhysCur != 0)
1458 break; /* Yield + ramrange change */
1459 GCPhysCur = pCur->GCPhysLast;
1460 }
1461 } /* for each range */
1462 } while (pCur);
1463 pgmUnlock(pVM);
1464}
1465
1466
1467/**
1468 * Save quiescent RAM pages.
1469 *
1470 * @returns VBox status code.
1471 * @param pVM The VM handle.
1472 * @param pSSM The SSM handle.
1473 * @param fLiveSave Whether it's a live save or not.
1474 * @param uPass The pass number.
1475 */
1476static int pgmR3SaveRamPages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave, uint32_t uPass)
1477{
1478 /*
1479 * The RAM.
1480 */
1481 RTGCPHYS GCPhysLast = NIL_RTGCPHYS;
1482 RTGCPHYS GCPhysCur = 0;
1483 PPGMRAMRANGE pCur;
1484 pgmLock(pVM);
1485 do
1486 {
1487 uint32_t const idRamRangesGen = pVM->pgm.s.idRamRangesGen;
1488 for (pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
1489 {
1490 if ( pCur->GCPhysLast > GCPhysCur
1491 && !PGM_RAM_RANGE_IS_AD_HOC(pCur))
1492 {
1493 PPGMLIVESAVERAMPAGE paLSPages = pCur->paLSPages;
1494 uint32_t cPages = pCur->cb >> PAGE_SHIFT;
1495 uint32_t iPage = GCPhysCur <= pCur->GCPhys ? 0 : (GCPhysCur - pCur->GCPhys) >> PAGE_SHIFT;
1496 GCPhysCur = 0;
1497 for (; iPage < cPages; iPage++)
1498 {
1499 /* Do yield first. */
1500 if ( uPass != SSM_PASS_FINAL
1501 && (iPage & 0x7ff) == 0x100
1502 && PDMR3CritSectYield(&pVM->pgm.s.CritSect)
1503 && pVM->pgm.s.idRamRangesGen != idRamRangesGen)
1504 {
1505 GCPhysCur = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1506 break; /* restart */
1507 }
1508
1509 /*
1510 * Only save pages that hasn't changed since last scan and are dirty.
1511 */
1512 if ( uPass != SSM_PASS_FINAL
1513 && paLSPages)
1514 {
1515 if (!paLSPages[iPage].fDirty)
1516 continue;
1517 if (paLSPages[iPage].fWriteMonitoredJustNow)
1518 continue;
1519 if (paLSPages[iPage].fIgnore)
1520 continue;
1521 if (PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]) != PGMPAGETYPE_RAM) /* in case of recent ramppings */
1522 continue;
1523 if ( PGM_PAGE_GET_STATE(&pCur->aPages[iPage])
1524 != ( paLSPages[iPage].fZero
1525 ? PGM_PAGE_STATE_ZERO
1526 : paLSPages[iPage].fShared
1527 ? PGM_PAGE_STATE_SHARED
1528 : PGM_PAGE_STATE_WRITE_MONITORED))
1529 continue;
1530 if (PGM_PAGE_GET_WRITE_LOCKS(&pCur->aPages[iPage]) > 0)
1531 continue;
1532 }
1533 else
1534 {
1535 if ( paLSPages
1536 && !paLSPages[iPage].fDirty
1537 && !paLSPages[iPage].fIgnore)
1538 {
1539#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1540 if (PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]) != PGMPAGETYPE_RAM)
1541 pgmR3StateVerifyCrc32ForRamPage(pVM, pCur, paLSPages, iPage);
1542#endif
1543 continue;
1544 }
1545 if (PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]) != PGMPAGETYPE_RAM)
1546 continue;
1547 }
1548
1549 /*
1550 * Do the saving outside the PGM critsect since SSM may block on I/O.
1551 */
1552 int rc;
1553 RTGCPHYS GCPhys = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1554 bool fZero = PGM_PAGE_IS_ZERO(&pCur->aPages[iPage]);
1555
1556 if (!fZero)
1557 {
1558 /*
1559 * Copy the page and then save it outside the lock (since any
1560 * SSM call may block).
1561 */
1562 uint8_t abPage[PAGE_SIZE];
1563 void const *pvPage;
1564 rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, &pCur->aPages[iPage], GCPhys, &pvPage);
1565 if (RT_SUCCESS(rc))
1566 {
1567 memcpy(abPage, pvPage, PAGE_SIZE);
1568#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1569 if (paLSPages)
1570 pgmR3StateVerifyCrc32ForPage(abPage, pCur, paLSPages, iPage);
1571#endif
1572 }
1573 pgmUnlock(pVM);
1574 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc GCPhys=%RGp\n", rc, GCPhys), rc);
1575
1576 if (GCPhys == GCPhysLast + PAGE_SIZE)
1577 SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_RAW);
1578 else
1579 {
1580 SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_RAW | PGM_STATE_REC_FLAG_ADDR);
1581 SSMR3PutGCPhys(pSSM, GCPhys);
1582 }
1583 rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
1584 }
1585 else
1586 {
1587 /*
1588 * Dirty zero page.
1589 */
1590#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1591 if (paLSPages)
1592 pgmR3StateVerifyCrc32ForRamPage(pVM, pCur, paLSPages, iPage);
1593#endif
1594 pgmUnlock(pVM);
1595
1596 if (GCPhys == GCPhysLast + PAGE_SIZE)
1597 rc = SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_ZERO);
1598 else
1599 {
1600 SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_ZERO | PGM_STATE_REC_FLAG_ADDR);
1601 rc = SSMR3PutGCPhys(pSSM, GCPhys);
1602 }
1603 }
1604 if (RT_FAILURE(rc))
1605 return rc;
1606
1607 pgmLock(pVM);
1608 GCPhysLast = GCPhys;
1609 if (paLSPages)
1610 {
1611 paLSPages[iPage].fDirty = 0;
1612 pVM->pgm.s.LiveSave.Ram.cReadyPages++;
1613 if (fZero)
1614 pVM->pgm.s.LiveSave.Ram.cZeroPages++;
1615 pVM->pgm.s.LiveSave.Ram.cDirtyPages--;
1616 pVM->pgm.s.LiveSave.cSavedPages++;
1617 }
1618 if (idRamRangesGen != pVM->pgm.s.idRamRangesGen)
1619 {
1620 GCPhysCur = GCPhys | PAGE_OFFSET_MASK;
1621 break; /* restart */
1622 }
1623
1624 } /* for each page in range */
1625
1626 if (GCPhysCur != 0)
1627 break; /* Yield + ramrange change */
1628 GCPhysCur = pCur->GCPhysLast;
1629 }
1630 } /* for each range */
1631 } while (pCur);
1632 pgmUnlock(pVM);
1633
1634 return VINF_SUCCESS;
1635}
1636
1637
1638/**
1639 * Cleans up RAM pages after a live save.
1640 *
1641 * @param pVM The VM handle.
1642 */
1643static void pgmR3DoneRamPages(PVM pVM)
1644{
1645 /*
1646 * Free the tracking arrays and disable write monitoring.
1647 *
1648 * Play nice with the PGM lock in case we're called while the VM is still
1649 * running. This means we have to delay the freeing since we wish to use
1650 * paLSPages as an indicator of which RAM ranges which we need to scan for
1651 * write monitored pages.
1652 */
1653 void *pvToFree = NULL;
1654 PPGMRAMRANGE pCur;
1655 uint32_t cMonitoredPages = 0;
1656 pgmLock(pVM);
1657 do
1658 {
1659 for (pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
1660 {
1661 if (pCur->paLSPages)
1662 {
1663 if (pvToFree)
1664 {
1665 uint32_t idRamRangesGen = pVM->pgm.s.idRamRangesGen;
1666 pgmUnlock(pVM);
1667 MMR3HeapFree(pvToFree);
1668 pvToFree = NULL;
1669 pgmLock(pVM);
1670 if (idRamRangesGen != pVM->pgm.s.idRamRangesGen)
1671 break; /* start over again. */
1672 }
1673
1674 pvToFree = pCur->paLSPages;
1675 pCur->paLSPages = NULL;
1676
1677 uint32_t iPage = pCur->cb >> PAGE_SHIFT;
1678 while (iPage--)
1679 {
1680 PPGMPAGE pPage = &pCur->aPages[iPage];
1681 PGM_PAGE_CLEAR_WRITTEN_TO(pPage);
1682 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
1683 {
1684 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
1685 cMonitoredPages++;
1686 }
1687 }
1688 }
1689 }
1690 } while (pCur);
1691
1692 Assert(pVM->pgm.s.cMonitoredPages >= cMonitoredPages);
1693 if (pVM->pgm.s.cMonitoredPages < cMonitoredPages)
1694 pVM->pgm.s.cMonitoredPages = 0;
1695 else
1696 pVM->pgm.s.cMonitoredPages -= cMonitoredPages;
1697
1698 pgmUnlock(pVM);
1699
1700 MMR3HeapFree(pvToFree);
1701 pvToFree = NULL;
1702}
1703
1704
1705/**
1706 * Execute a live save pass.
1707 *
1708 * @returns VBox status code.
1709 *
1710 * @param pVM The VM handle.
1711 * @param pSSM The SSM handle.
1712 */
1713static DECLCALLBACK(int) pgmR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
1714{
1715 int rc;
1716
1717 /*
1718 * Save the MMIO2 and ROM range IDs in pass 0.
1719 */
1720 if (uPass == 0)
1721 {
1722 rc = pgmR3SaveRamConfig(pVM, pSSM);
1723 if (RT_FAILURE(rc))
1724 return rc;
1725 rc = pgmR3SaveRomRanges(pVM, pSSM);
1726 if (RT_FAILURE(rc))
1727 return rc;
1728 rc = pgmR3SaveMmio2Ranges(pVM, pSSM);
1729 if (RT_FAILURE(rc))
1730 return rc;
1731 }
1732 /*
1733 * Reset the page-per-second estimate to avoid inflation by the initial
1734 * load of zero pages. pgmR3LiveVote ASSUMES this is done at pass 7.
1735 */
1736 else if (uPass == 7)
1737 {
1738 pVM->pgm.s.LiveSave.cSavedPages = 0;
1739 pVM->pgm.s.LiveSave.uSaveStartNS = RTTimeNanoTS();
1740 }
1741
1742 /*
1743 * Do the scanning.
1744 */
1745 pgmR3ScanRomPages(pVM);
1746 pgmR3ScanMmio2Pages(pVM, uPass);
1747 pgmR3ScanRamPages(pVM, false /*fFinalPass*/);
1748 pgmR3PoolClearAll(pVM); /** @todo this could perhaps be optimized a bit. */
1749
1750 /*
1751 * Save the pages.
1752 */
1753 if (uPass == 0)
1754 rc = pgmR3SaveRomVirginPages( pVM, pSSM, true /*fLiveSave*/);
1755 else
1756 rc = VINF_SUCCESS;
1757 if (RT_SUCCESS(rc))
1758 rc = pgmR3SaveShadowedRomPages(pVM, pSSM, true /*fLiveSave*/, false /*fFinalPass*/);
1759 if (RT_SUCCESS(rc))
1760 rc = pgmR3SaveMmio2Pages( pVM, pSSM, true /*fLiveSave*/, uPass);
1761 if (RT_SUCCESS(rc))
1762 rc = pgmR3SaveRamPages( pVM, pSSM, true /*fLiveSave*/, uPass);
1763 SSMR3PutU8(pSSM, PGM_STATE_REC_END); /* (Ignore the rc, SSM takes of it.) */
1764
1765 return rc;
1766}
1767
1768
1769/**
1770 * Votes on whether the live save phase is done or not.
1771 *
1772 * @returns VBox status code.
1773 *
1774 * @param pVM The VM handle.
1775 * @param pSSM The SSM handle.
1776 * @param uPass The data pass.
1777 */
1778static DECLCALLBACK(int) pgmR3LiveVote(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
1779{
1780 /*
1781 * Update and calculate parameters used in the decision making.
1782 */
1783 const uint32_t cHistoryEntries = RT_ELEMENTS(pVM->pgm.s.LiveSave.acDirtyPagesHistory);
1784
1785 /* update history. */
1786 pgmLock(pVM);
1787 uint32_t const cWrittenToPages = pVM->pgm.s.cWrittenToPages;
1788 pgmUnlock(pVM);
1789 uint32_t const cDirtyNow = pVM->pgm.s.LiveSave.Rom.cDirtyPages
1790 + pVM->pgm.s.LiveSave.Mmio2.cDirtyPages
1791 + pVM->pgm.s.LiveSave.Ram.cDirtyPages
1792 + cWrittenToPages;
1793 uint32_t i = pVM->pgm.s.LiveSave.iDirtyPagesHistory;
1794 pVM->pgm.s.LiveSave.acDirtyPagesHistory[i] = cDirtyNow;
1795 pVM->pgm.s.LiveSave.iDirtyPagesHistory = (i + 1) % cHistoryEntries;
1796
1797 /* calc shortterm average (4 passes). */
1798 AssertCompile(RT_ELEMENTS(pVM->pgm.s.LiveSave.acDirtyPagesHistory) > 4);
1799 uint64_t cTotal = pVM->pgm.s.LiveSave.acDirtyPagesHistory[i];
1800 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[(i + cHistoryEntries - 1) % cHistoryEntries];
1801 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[(i + cHistoryEntries - 2) % cHistoryEntries];
1802 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[(i + cHistoryEntries - 3) % cHistoryEntries];
1803 uint32_t const cDirtyPagesShort = cTotal / 4;
1804 pVM->pgm.s.LiveSave.cDirtyPagesShort = cDirtyPagesShort;
1805
1806 /* calc longterm average. */
1807 cTotal = 0;
1808 if (uPass < cHistoryEntries)
1809 for (i = 0; i < cHistoryEntries && i <= uPass; i++)
1810 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[i];
1811 else
1812 for (i = 0; i < cHistoryEntries; i++)
1813 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[i];
1814 uint32_t const cDirtyPagesLong = cTotal / cHistoryEntries;
1815 pVM->pgm.s.LiveSave.cDirtyPagesLong = cDirtyPagesLong;
1816
1817 /* estimate the speed */
1818 uint64_t cNsElapsed = RTTimeNanoTS() - pVM->pgm.s.LiveSave.uSaveStartNS;
1819 uint32_t cPagesPerSecond = (uint32_t)( pVM->pgm.s.LiveSave.cSavedPages
1820 / ((long double)cNsElapsed / 1000000000.0) );
1821 pVM->pgm.s.LiveSave.cPagesPerSecond = cPagesPerSecond;
1822
1823 /*
1824 * Try make a decision.
1825 */
1826 if ( cDirtyPagesShort <= cDirtyPagesLong
1827 && ( cDirtyNow <= cDirtyPagesShort
1828 || cDirtyNow - cDirtyPagesShort < RT_MIN(cDirtyPagesShort / 8, 16)
1829 )
1830 )
1831 {
1832 if (uPass > 10)
1833 {
1834 uint32_t cMsLeftShort = (uint32_t)(cDirtyPagesShort / (long double)cPagesPerSecond * 1000.0);
1835 uint32_t cMsLeftLong = (uint32_t)(cDirtyPagesLong / (long double)cPagesPerSecond * 1000.0);
1836 uint32_t cMsMaxDowntime = SSMR3HandleMaxDowntime(pSSM);
1837 if (cMsMaxDowntime < 32)
1838 cMsMaxDowntime = 32;
1839 if ( ( cMsLeftLong <= cMsMaxDowntime
1840 && cMsLeftShort < cMsMaxDowntime)
1841 || cMsLeftShort < cMsMaxDowntime / 2
1842 )
1843 {
1844 Log(("pgmR3LiveVote: VINF_SUCCESS - pass=%d cDirtyPagesShort=%u|%ums cDirtyPagesLong=%u|%ums cMsMaxDowntime=%u\n",
1845 uPass, cDirtyPagesShort, cMsLeftShort, cDirtyPagesLong, cMsLeftLong, cMsMaxDowntime));
1846 return VINF_SUCCESS;
1847 }
1848 }
1849 else
1850 {
1851 if ( ( cDirtyPagesShort <= 128
1852 && cDirtyPagesLong <= 1024)
1853 || cDirtyPagesLong <= 256
1854 )
1855 {
1856 Log(("pgmR3LiveVote: VINF_SUCCESS - pass=%d cDirtyPagesShort=%u cDirtyPagesLong=%u\n", uPass, cDirtyPagesShort, cDirtyPagesLong));
1857 return VINF_SUCCESS;
1858 }
1859 }
1860 }
1861 return VINF_SSM_VOTE_FOR_ANOTHER_PASS;
1862}
1863
1864
1865/**
1866 * Prepare for a live save operation.
1867 *
1868 * This will attempt to allocate and initialize the tracking structures. It
1869 * will also prepare for write monitoring of pages and initialize PGM::LiveSave.
1870 * pgmR3SaveDone will do the cleanups.
1871 *
1872 * @returns VBox status code.
1873 *
1874 * @param pVM The VM handle.
1875 * @param pSSM The SSM handle.
1876 */
1877static DECLCALLBACK(int) pgmR3LivePrep(PVM pVM, PSSMHANDLE pSSM)
1878{
1879 /*
1880 * Indicate that we will be using the write monitoring.
1881 */
1882 pgmLock(pVM);
1883 /** @todo find a way of mediating this when more users are added. */
1884 if (pVM->pgm.s.fPhysWriteMonitoringEngaged)
1885 {
1886 pgmUnlock(pVM);
1887 AssertLogRelFailedReturn(VERR_INTERNAL_ERROR_2);
1888 }
1889 pVM->pgm.s.fPhysWriteMonitoringEngaged = true;
1890 pgmUnlock(pVM);
1891
1892 /*
1893 * Initialize the statistics.
1894 */
1895 pVM->pgm.s.LiveSave.Rom.cReadyPages = 0;
1896 pVM->pgm.s.LiveSave.Rom.cDirtyPages = 0;
1897 pVM->pgm.s.LiveSave.Mmio2.cReadyPages = 0;
1898 pVM->pgm.s.LiveSave.Mmio2.cDirtyPages = 0;
1899 pVM->pgm.s.LiveSave.Ram.cReadyPages = 0;
1900 pVM->pgm.s.LiveSave.Ram.cDirtyPages = 0;
1901 pVM->pgm.s.LiveSave.cIgnoredPages = 0;
1902 pVM->pgm.s.LiveSave.fActive = true;
1903 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.LiveSave.acDirtyPagesHistory); i++)
1904 pVM->pgm.s.LiveSave.acDirtyPagesHistory[i] = UINT32_MAX / 2;
1905 pVM->pgm.s.LiveSave.iDirtyPagesHistory = 0;
1906 pVM->pgm.s.LiveSave.cSavedPages = 0;
1907 pVM->pgm.s.LiveSave.uSaveStartNS = RTTimeNanoTS();
1908 pVM->pgm.s.LiveSave.cPagesPerSecond = 8192;
1909
1910 /*
1911 * Per page type.
1912 */
1913 int rc = pgmR3PrepRomPages(pVM);
1914 if (RT_SUCCESS(rc))
1915 rc = pgmR3PrepMmio2Pages(pVM);
1916 if (RT_SUCCESS(rc))
1917 rc = pgmR3PrepRamPages(pVM);
1918 return rc;
1919}
1920
1921
1922/**
1923 * Execute state save operation.
1924 *
1925 * @returns VBox status code.
1926 * @param pVM VM Handle.
1927 * @param pSSM SSM operation handle.
1928 */
1929static DECLCALLBACK(int) pgmR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
1930{
1931 int rc;
1932 unsigned i;
1933 PPGM pPGM = &pVM->pgm.s;
1934
1935 /*
1936 * Lock PGM and set the no-more-writes indicator.
1937 */
1938 pgmLock(pVM);
1939 pVM->pgm.s.fNoMorePhysWrites = true;
1940
1941 /*
1942 * Save basic data (required / unaffected by relocation).
1943 */
1944 bool const fMappingsFixed = pVM->pgm.s.fMappingsFixed;
1945 pVM->pgm.s.fMappingsFixed |= pVM->pgm.s.fMappingsFixedRestored;
1946 SSMR3PutStruct(pSSM, pPGM, &s_aPGMFields[0]);
1947 pVM->pgm.s.fMappingsFixed = fMappingsFixed;
1948
1949 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1950 SSMR3PutStruct(pSSM, &pVM->aCpus[idCpu].pgm.s, &s_aPGMCpuFields[0]);
1951
1952 /*
1953 * The guest mappings.
1954 */
1955 i = 0;
1956 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
1957 {
1958 SSMR3PutU32( pSSM, i);
1959 SSMR3PutStrZ( pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
1960 SSMR3PutGCPtr( pSSM, pMapping->GCPtr);
1961 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
1962 }
1963 rc = SSMR3PutU32(pSSM, ~0); /* terminator. */
1964
1965 /*
1966 * Save the (remainder of the) memory.
1967 */
1968 if (RT_SUCCESS(rc))
1969 {
1970 if (pVM->pgm.s.LiveSave.fActive)
1971 {
1972 pgmR3ScanRomPages(pVM);
1973 pgmR3ScanMmio2Pages(pVM, SSM_PASS_FINAL);
1974 pgmR3ScanRamPages(pVM, true /*fFinalPass*/);
1975
1976 rc = pgmR3SaveShadowedRomPages( pVM, pSSM, true /*fLiveSave*/, true /*fFinalPass*/);
1977 if (RT_SUCCESS(rc))
1978 rc = pgmR3SaveMmio2Pages( pVM, pSSM, true /*fLiveSave*/, SSM_PASS_FINAL);
1979 if (RT_SUCCESS(rc))
1980 rc = pgmR3SaveRamPages( pVM, pSSM, true /*fLiveSave*/, SSM_PASS_FINAL);
1981 }
1982 else
1983 {
1984 rc = pgmR3SaveRamConfig(pVM, pSSM);
1985 if (RT_SUCCESS(rc))
1986 rc = pgmR3SaveRomRanges(pVM, pSSM);
1987 if (RT_SUCCESS(rc))
1988 rc = pgmR3SaveMmio2Ranges(pVM, pSSM);
1989 if (RT_SUCCESS(rc))
1990 rc = pgmR3SaveRomVirginPages( pVM, pSSM, false /*fLiveSave*/);
1991 if (RT_SUCCESS(rc))
1992 rc = pgmR3SaveShadowedRomPages(pVM, pSSM, false /*fLiveSave*/, true /*fFinalPass*/);
1993 if (RT_SUCCESS(rc))
1994 rc = pgmR3SaveMmio2Pages( pVM, pSSM, false /*fLiveSave*/, SSM_PASS_FINAL);
1995 if (RT_SUCCESS(rc))
1996 rc = pgmR3SaveRamPages( pVM, pSSM, false /*fLiveSave*/, SSM_PASS_FINAL);
1997 }
1998 SSMR3PutU8(pSSM, PGM_STATE_REC_END); /* (Ignore the rc, SSM takes of it.) */
1999 }
2000
2001 pgmUnlock(pVM);
2002 return rc;
2003}
2004
2005
2006/**
2007 * Cleans up after an save state operation.
2008 *
2009 * @returns VBox status code.
2010 * @param pVM VM Handle.
2011 * @param pSSM SSM operation handle.
2012 */
2013static DECLCALLBACK(int) pgmR3SaveDone(PVM pVM, PSSMHANDLE pSSM)
2014{
2015 /*
2016 * Do per page type cleanups first.
2017 */
2018 if (pVM->pgm.s.LiveSave.fActive)
2019 {
2020 pgmR3DoneRomPages(pVM);
2021 pgmR3DoneMmio2Pages(pVM);
2022 pgmR3DoneRamPages(pVM);
2023 }
2024
2025 /*
2026 * Clear the live save indicator and disengage write monitoring.
2027 */
2028 pgmLock(pVM);
2029 pVM->pgm.s.LiveSave.fActive = false;
2030 /** @todo this is blindly assuming that we're the only user of write
2031 * monitoring. Fix this when more users are added. */
2032 pVM->pgm.s.fPhysWriteMonitoringEngaged = false;
2033 pgmUnlock(pVM);
2034
2035 return VINF_SUCCESS;
2036}
2037
2038
2039/**
2040 * Prepare state load operation.
2041 *
2042 * @returns VBox status code.
2043 * @param pVM VM Handle.
2044 * @param pSSM SSM operation handle.
2045 */
2046static DECLCALLBACK(int) pgmR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
2047{
2048 /*
2049 * Call the reset function to make sure all the memory is cleared.
2050 */
2051 PGMR3Reset(pVM);
2052 pVM->pgm.s.LiveSave.fActive = false;
2053 NOREF(pSSM);
2054 return VINF_SUCCESS;
2055}
2056
2057
2058/**
2059 * Load an ignored page.
2060 *
2061 * @returns VBox status code.
2062 * @param pSSM The saved state handle.
2063 */
2064static int pgmR3LoadPageToDevNullOld(PSSMHANDLE pSSM)
2065{
2066 uint8_t abPage[PAGE_SIZE];
2067 return SSMR3GetMem(pSSM, &abPage[0], sizeof(abPage));
2068}
2069
2070
2071/**
2072 * Loads a page without any bits in the saved state, i.e. making sure it's
2073 * really zero.
2074 *
2075 * @returns VBox status code.
2076 * @param pVM The VM handle.
2077 * @param uType The page type or PGMPAGETYPE_INVALID (old saved
2078 * state).
2079 * @param pPage The guest page tracking structure.
2080 * @param GCPhys The page address.
2081 * @param pRam The ram range (logging).
2082 */
2083static int pgmR3LoadPageZeroOld(PVM pVM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2084{
2085 if ( PGM_PAGE_GET_TYPE(pPage) != uType
2086 && uType != PGMPAGETYPE_INVALID)
2087 return VERR_SSM_UNEXPECTED_DATA;
2088
2089 /* I think this should be sufficient. */
2090 if (!PGM_PAGE_IS_ZERO(pPage))
2091 return VERR_SSM_UNEXPECTED_DATA;
2092
2093 NOREF(pVM);
2094 NOREF(GCPhys);
2095 NOREF(pRam);
2096 return VINF_SUCCESS;
2097}
2098
2099
2100/**
2101 * Loads a page from the saved state.
2102 *
2103 * @returns VBox status code.
2104 * @param pVM The VM handle.
2105 * @param pSSM The SSM handle.
2106 * @param uType The page type or PGMPAGETYEP_INVALID (old saved
2107 * state).
2108 * @param pPage The guest page tracking structure.
2109 * @param GCPhys The page address.
2110 * @param pRam The ram range (logging).
2111 */
2112static int pgmR3LoadPageBitsOld(PVM pVM, PSSMHANDLE pSSM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2113{
2114 /*
2115 * Match up the type, dealing with MMIO2 aliases (dropped).
2116 */
2117 AssertLogRelMsgReturn( PGM_PAGE_GET_TYPE(pPage) == uType
2118 || uType == PGMPAGETYPE_INVALID,
2119 ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc),
2120 VERR_SSM_UNEXPECTED_DATA);
2121
2122 /*
2123 * Load the page.
2124 */
2125 void *pvPage;
2126 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvPage);
2127 if (RT_SUCCESS(rc))
2128 rc = SSMR3GetMem(pSSM, pvPage, PAGE_SIZE);
2129
2130 return rc;
2131}
2132
2133
2134/**
2135 * Loads a page (counter part to pgmR3SavePage).
2136 *
2137 * @returns VBox status code, fully bitched errors.
2138 * @param pVM The VM handle.
2139 * @param pSSM The SSM handle.
2140 * @param uType The page type.
2141 * @param pPage The page.
2142 * @param GCPhys The page address.
2143 * @param pRam The RAM range (for error messages).
2144 */
2145static int pgmR3LoadPageOld(PVM pVM, PSSMHANDLE pSSM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2146{
2147 uint8_t uState;
2148 int rc = SSMR3GetU8(pSSM, &uState);
2149 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s rc=%Rrc\n", pPage, GCPhys, pRam->pszDesc, rc), rc);
2150 if (uState == 0 /* zero */)
2151 rc = pgmR3LoadPageZeroOld(pVM, uType, pPage, GCPhys, pRam);
2152 else if (uState == 1)
2153 rc = pgmR3LoadPageBitsOld(pVM, pSSM, uType, pPage, GCPhys, pRam);
2154 else
2155 rc = VERR_INTERNAL_ERROR;
2156 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] uState=%d uType=%d GCPhys=%RGp %s rc=%Rrc\n",
2157 pPage, uState, uType, GCPhys, pRam->pszDesc, rc),
2158 rc);
2159 return VINF_SUCCESS;
2160}
2161
2162
2163/**
2164 * Loads a shadowed ROM page.
2165 *
2166 * @returns VBox status code, errors are fully bitched.
2167 * @param pVM The VM handle.
2168 * @param pSSM The saved state handle.
2169 * @param pPage The page.
2170 * @param GCPhys The page address.
2171 * @param pRam The RAM range (for error messages).
2172 */
2173static int pgmR3LoadShadowedRomPageOld(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2174{
2175 /*
2176 * Load and set the protection first, then load the two pages, the first
2177 * one is the active the other is the passive.
2178 */
2179 PPGMROMPAGE pRomPage = pgmR3GetRomPage(pVM, GCPhys);
2180 AssertLogRelMsgReturn(pRomPage, ("GCPhys=%RGp %s\n", GCPhys, pRam->pszDesc), VERR_INTERNAL_ERROR);
2181
2182 uint8_t uProt;
2183 int rc = SSMR3GetU8(pSSM, &uProt);
2184 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc), rc);
2185 PGMROMPROT enmProt = (PGMROMPROT)uProt;
2186 AssertLogRelMsgReturn( enmProt >= PGMROMPROT_INVALID
2187 && enmProt < PGMROMPROT_END,
2188 ("enmProt=%d pPage=%R[pgmpage] GCPhys=%#x %s\n", enmProt, pPage, GCPhys, pRam->pszDesc),
2189 VERR_SSM_UNEXPECTED_DATA);
2190
2191 if (pRomPage->enmProt != enmProt)
2192 {
2193 rc = PGMR3PhysRomProtect(pVM, GCPhys, PAGE_SIZE, enmProt);
2194 AssertLogRelRCReturn(rc, rc);
2195 AssertLogRelReturn(pRomPage->enmProt == enmProt, VERR_INTERNAL_ERROR);
2196 }
2197
2198 PPGMPAGE pPageActive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
2199 PPGMPAGE pPagePassive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2200 uint8_t u8ActiveType = PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM : PGMPAGETYPE_ROM_SHADOW;
2201 uint8_t u8PassiveType= PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM_SHADOW : PGMPAGETYPE_ROM;
2202
2203 /** @todo this isn't entirely correct as long as pgmPhysGCPhys2CCPtrInternal is
2204 * used down the line (will the 2nd page will be written to the first
2205 * one because of a false TLB hit since the TLB is using GCPhys and
2206 * doesn't check the HCPhys of the desired page). */
2207 rc = pgmR3LoadPageOld(pVM, pSSM, u8ActiveType, pPage, GCPhys, pRam);
2208 if (RT_SUCCESS(rc))
2209 {
2210 *pPageActive = *pPage;
2211 rc = pgmR3LoadPageOld(pVM, pSSM, u8PassiveType, pPagePassive, GCPhys, pRam);
2212 }
2213 return rc;
2214}
2215
2216/**
2217 * Ram range flags and bits for older versions of the saved state.
2218 *
2219 * @returns VBox status code.
2220 *
2221 * @param pVM The VM handle
2222 * @param pSSM The SSM handle.
2223 * @param uVersion The saved state version.
2224 */
2225static int pgmR3LoadMemoryOld(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
2226{
2227 PPGM pPGM = &pVM->pgm.s;
2228
2229 /*
2230 * Ram range flags and bits.
2231 */
2232 uint32_t i = 0;
2233 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; ; pRam = pRam->pNextR3, i++)
2234 {
2235 /* Check the seqence number / separator. */
2236 uint32_t u32Sep;
2237 int rc = SSMR3GetU32(pSSM, &u32Sep);
2238 if (RT_FAILURE(rc))
2239 return rc;
2240 if (u32Sep == ~0U)
2241 break;
2242 if (u32Sep != i)
2243 {
2244 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2245 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2246 }
2247 AssertLogRelReturn(pRam, VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2248
2249 /* Get the range details. */
2250 RTGCPHYS GCPhys;
2251 SSMR3GetGCPhys(pSSM, &GCPhys);
2252 RTGCPHYS GCPhysLast;
2253 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2254 RTGCPHYS cb;
2255 SSMR3GetGCPhys(pSSM, &cb);
2256 uint8_t fHaveBits;
2257 rc = SSMR3GetU8(pSSM, &fHaveBits);
2258 if (RT_FAILURE(rc))
2259 return rc;
2260 if (fHaveBits & ~1)
2261 {
2262 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2263 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2264 }
2265 size_t cchDesc = 0;
2266 char szDesc[256];
2267 szDesc[0] = '\0';
2268 if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
2269 {
2270 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2271 if (RT_FAILURE(rc))
2272 return rc;
2273 /* Since we've modified the description strings in r45878, only compare
2274 them if the saved state is more recent. */
2275 if (uVersion != PGM_SAVED_STATE_VERSION_RR_DESC)
2276 cchDesc = strlen(szDesc);
2277 }
2278
2279 /*
2280 * Match it up with the current range.
2281 *
2282 * Note there is a hack for dealing with the high BIOS mapping
2283 * in the old saved state format, this means we might not have
2284 * a 1:1 match on success.
2285 */
2286 if ( ( GCPhys != pRam->GCPhys
2287 || GCPhysLast != pRam->GCPhysLast
2288 || cb != pRam->cb
2289 || ( cchDesc
2290 && strcmp(szDesc, pRam->pszDesc)) )
2291 /* Hack for PDMDevHlpPhysReserve(pDevIns, 0xfff80000, 0x80000, "High ROM Region"); */
2292 && ( uVersion != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE
2293 || GCPhys != UINT32_C(0xfff80000)
2294 || GCPhysLast != UINT32_C(0xffffffff)
2295 || pRam->GCPhysLast != GCPhysLast
2296 || pRam->GCPhys < GCPhys
2297 || !fHaveBits)
2298 )
2299 {
2300 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s %s\n"
2301 "State : %RGp-%RGp %RGp bytes %s %s\n",
2302 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits", pRam->pszDesc,
2303 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits", szDesc));
2304 /*
2305 * If we're loading a state for debugging purpose, don't make a fuss if
2306 * the MMIO and ROM stuff isn't 100% right, just skip the mismatches.
2307 */
2308 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2309 || GCPhys < 8 * _1M)
2310 return SSMR3SetCfgError(pSSM, RT_SRC_POS,
2311 N_("RAM range mismatch; saved={%RGp-%RGp %RGp bytes %s %s} config={%RGp-%RGp %RGp bytes %s %s}"),
2312 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits", szDesc,
2313 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits", pRam->pszDesc);
2314
2315 AssertMsgFailed(("debug skipping not implemented, sorry\n"));
2316 continue;
2317 }
2318
2319 uint32_t cPages = (GCPhysLast - GCPhys + 1) >> PAGE_SHIFT;
2320 if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
2321 {
2322 /*
2323 * Load the pages one by one.
2324 */
2325 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2326 {
2327 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2328 PPGMPAGE pPage = &pRam->aPages[iPage];
2329 uint8_t uType;
2330 rc = SSMR3GetU8(pSSM, &uType);
2331 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] iPage=%#x GCPhysPage=%#x %s\n", pPage, iPage, GCPhysPage, pRam->pszDesc), rc);
2332 if (uType == PGMPAGETYPE_ROM_SHADOW)
2333 rc = pgmR3LoadShadowedRomPageOld(pVM, pSSM, pPage, GCPhysPage, pRam);
2334 else
2335 rc = pgmR3LoadPageOld(pVM, pSSM, uType, pPage, GCPhysPage, pRam);
2336 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2337 }
2338 }
2339 else
2340 {
2341 /*
2342 * Old format.
2343 */
2344
2345 /* Of the page flags, pick up MMIO2 and ROM/RESERVED for the !fHaveBits case.
2346 The rest is generally irrelevant and wrong since the stuff have to match registrations. */
2347 uint32_t fFlags = 0;
2348 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2349 {
2350 uint16_t u16Flags;
2351 rc = SSMR3GetU16(pSSM, &u16Flags);
2352 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2353 fFlags |= u16Flags;
2354 }
2355
2356 /* Load the bits */
2357 if ( !fHaveBits
2358 && GCPhysLast < UINT32_C(0xe0000000))
2359 {
2360 /*
2361 * Dynamic chunks.
2362 */
2363 const uint32_t cPagesInChunk = (1*1024*1024) >> PAGE_SHIFT;
2364 AssertLogRelMsgReturn(cPages % cPagesInChunk == 0,
2365 ("cPages=%#x cPagesInChunk=%#x\n", cPages, cPagesInChunk, pRam->GCPhys, pRam->pszDesc),
2366 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2367
2368 for (uint32_t iPage = 0; iPage < cPages; /* incremented by inner loop */ )
2369 {
2370 uint8_t fPresent;
2371 rc = SSMR3GetU8(pSSM, &fPresent);
2372 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2373 AssertLogRelMsgReturn(fPresent == (uint8_t)true || fPresent == (uint8_t)false,
2374 ("fPresent=%#x iPage=%#x GCPhys=%#x %s\n", fPresent, iPage, pRam->GCPhys, pRam->pszDesc),
2375 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2376
2377 for (uint32_t iChunkPage = 0; iChunkPage < cPagesInChunk; iChunkPage++, iPage++)
2378 {
2379 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2380 PPGMPAGE pPage = &pRam->aPages[iPage];
2381 if (fPresent)
2382 {
2383 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO)
2384 rc = pgmR3LoadPageToDevNullOld(pSSM);
2385 else
2386 rc = pgmR3LoadPageBitsOld(pVM, pSSM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2387 }
2388 else
2389 rc = pgmR3LoadPageZeroOld(pVM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2390 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2391 }
2392 }
2393 }
2394 else if (pRam->pvR3)
2395 {
2396 /*
2397 * MMIO2.
2398 */
2399 AssertLogRelMsgReturn((fFlags & 0x0f) == RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/,
2400 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2401 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2402 AssertLogRelMsgReturn(pRam->pvR3,
2403 ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc),
2404 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2405
2406 rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2407 AssertLogRelMsgRCReturn(rc, ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc), rc);
2408 }
2409 else if (GCPhysLast < UINT32_C(0xfff80000))
2410 {
2411 /*
2412 * PCI MMIO, no pages saved.
2413 */
2414 }
2415 else
2416 {
2417 /*
2418 * Load the 0xfff80000..0xffffffff BIOS range.
2419 * It starts with X reserved pages that we have to skip over since
2420 * the RAMRANGE create by the new code won't include those.
2421 */
2422 AssertLogRelMsgReturn( !(fFlags & RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/)
2423 && (fFlags & RT_BIT(0) /*MM_RAM_FLAGS_RESERVED*/),
2424 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2425 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2426 AssertLogRelMsgReturn(GCPhys == UINT32_C(0xfff80000),
2427 ("GCPhys=%RGp pRamRange{GCPhys=%#x %s}\n", GCPhys, pRam->GCPhys, pRam->pszDesc),
2428 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2429
2430 /* Skip wasted reserved pages before the ROM. */
2431 while (GCPhys < pRam->GCPhys)
2432 {
2433 rc = pgmR3LoadPageToDevNullOld(pSSM);
2434 GCPhys += PAGE_SIZE;
2435 }
2436
2437 /* Load the bios pages. */
2438 cPages = pRam->cb >> PAGE_SHIFT;
2439 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2440 {
2441 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2442 PPGMPAGE pPage = &pRam->aPages[iPage];
2443
2444 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM,
2445 ("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, GCPhys),
2446 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2447 rc = pgmR3LoadPageBitsOld(pVM, pSSM, PGMPAGETYPE_ROM, pPage, GCPhysPage, pRam);
2448 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2449 }
2450 }
2451 }
2452 }
2453
2454 return VINF_SUCCESS;
2455}
2456
2457
2458/**
2459 * Worker for pgmR3Load and pgmR3LoadLocked.
2460 *
2461 * @returns VBox status code.
2462 *
2463 * @param pVM The VM handle.
2464 * @param pSSM The SSM handle.
2465 * @param uVersion The saved state version.
2466 *
2467 * @todo This needs splitting up if more record types or code twists are
2468 * added...
2469 */
2470static int pgmR3LoadMemory(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
2471{
2472 /*
2473 * Process page records until we hit the terminator.
2474 */
2475 RTGCPHYS GCPhys = NIL_RTGCPHYS;
2476 PPGMRAMRANGE pRamHint = NULL;
2477 uint8_t id = UINT8_MAX;
2478 uint32_t iPage = UINT32_MAX - 10;
2479 PPGMROMRANGE pRom = NULL;
2480 PPGMMMIO2RANGE pMmio2 = NULL;
2481 for (;;)
2482 {
2483 /*
2484 * Get the record type and flags.
2485 */
2486 uint8_t u8;
2487 int rc = SSMR3GetU8(pSSM, &u8);
2488 if (RT_FAILURE(rc))
2489 return rc;
2490 if (u8 == PGM_STATE_REC_END)
2491 return VINF_SUCCESS;
2492 AssertLogRelMsgReturn((u8 & ~PGM_STATE_REC_FLAG_ADDR) <= PGM_STATE_REC_LAST, ("%#x\n", u8), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2493 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2494 {
2495 /*
2496 * RAM page.
2497 */
2498 case PGM_STATE_REC_RAM_ZERO:
2499 case PGM_STATE_REC_RAM_RAW:
2500 {
2501 /*
2502 * Get the address and resolve it into a page descriptor.
2503 */
2504 if (!(u8 & PGM_STATE_REC_FLAG_ADDR))
2505 GCPhys += PAGE_SIZE;
2506 else
2507 {
2508 rc = SSMR3GetGCPhys(pSSM, &GCPhys);
2509 if (RT_FAILURE(rc))
2510 return rc;
2511 }
2512 AssertLogRelMsgReturn(!(GCPhys & PAGE_OFFSET_MASK), ("%RGp\n", GCPhys), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2513
2514 PPGMPAGE pPage;
2515 rc = pgmPhysGetPageWithHintEx(&pVM->pgm.s, GCPhys, &pPage, &pRamHint);
2516 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc %RGp\n", rc, GCPhys), rc);
2517
2518 /*
2519 * Take action according to the record type.
2520 */
2521 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2522 {
2523 case PGM_STATE_REC_RAM_ZERO:
2524 {
2525 if (PGM_PAGE_IS_ZERO(pPage))
2526 break;
2527 /** @todo implement zero page replacing. */
2528 AssertLogRelMsgReturn(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED, ("GCPhys=%RGp %R[pgmpage]\n", GCPhys, pPage), VERR_INTERNAL_ERROR_5);
2529 void *pvDstPage;
2530 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDstPage);
2531 AssertLogRelMsgRCReturn(rc, ("GCPhys=%RGp %R[pgmpage] rc=%Rrc\n", GCPhys, pPage, rc), rc);
2532 ASMMemZeroPage(pvDstPage);
2533 break;
2534 }
2535
2536 case PGM_STATE_REC_RAM_RAW:
2537 {
2538 void *pvDstPage;
2539 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDstPage);
2540 AssertLogRelMsgRCReturn(rc, ("GCPhys=%RGp %R[pgmpage] rc=%Rrc\n", GCPhys, pPage, rc), rc);
2541 rc = SSMR3GetMem(pSSM, pvDstPage, PAGE_SIZE);
2542 if (RT_FAILURE(rc))
2543 return rc;
2544 break;
2545 }
2546
2547 default:
2548 AssertMsgFailedReturn(("%#x\n", u8), VERR_INTERNAL_ERROR);
2549 }
2550 id = UINT8_MAX;
2551 break;
2552 }
2553
2554 /*
2555 * MMIO2 page.
2556 */
2557 case PGM_STATE_REC_MMIO2_RAW:
2558 case PGM_STATE_REC_MMIO2_ZERO:
2559 {
2560 /*
2561 * Get the ID + page number and resolved that into a MMIO2 page.
2562 */
2563 if (!(u8 & PGM_STATE_REC_FLAG_ADDR))
2564 iPage++;
2565 else
2566 {
2567 SSMR3GetU8(pSSM, &id);
2568 rc = SSMR3GetU32(pSSM, &iPage);
2569 if (RT_FAILURE(rc))
2570 return rc;
2571 }
2572 if ( !pMmio2
2573 || pMmio2->idSavedState != id)
2574 {
2575 for (pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
2576 if (pMmio2->idSavedState == id)
2577 break;
2578 AssertLogRelMsgReturn(pMmio2, ("id=%#u iPage=%#x\n", id, iPage), VERR_INTERNAL_ERROR);
2579 }
2580 AssertLogRelMsgReturn(iPage < (pMmio2->RamRange.cb >> PAGE_SHIFT), ("iPage=%#x cb=%RGp %s\n", iPage, pMmio2->RamRange.cb, pMmio2->RamRange.pszDesc), VERR_INTERNAL_ERROR);
2581 void *pvDstPage = (uint8_t *)pMmio2->RamRange.pvR3 + ((size_t)iPage << PAGE_SHIFT);
2582
2583 /*
2584 * Load the page bits.
2585 */
2586 if ((u8 & ~PGM_STATE_REC_FLAG_ADDR) == PGM_STATE_REC_MMIO2_ZERO)
2587 ASMMemZeroPage(pvDstPage);
2588 else
2589 {
2590 rc = SSMR3GetMem(pSSM, pvDstPage, PAGE_SIZE);
2591 if (RT_FAILURE(rc))
2592 return rc;
2593 }
2594 GCPhys = NIL_RTGCPHYS;
2595 break;
2596 }
2597
2598 /*
2599 * ROM pages.
2600 */
2601 case PGM_STATE_REC_ROM_VIRGIN:
2602 case PGM_STATE_REC_ROM_SHW_RAW:
2603 case PGM_STATE_REC_ROM_SHW_ZERO:
2604 case PGM_STATE_REC_ROM_PROT:
2605 {
2606 /*
2607 * Get the ID + page number and resolved that into a ROM page descriptor.
2608 */
2609 if (!(u8 & PGM_STATE_REC_FLAG_ADDR))
2610 iPage++;
2611 else
2612 {
2613 SSMR3GetU8(pSSM, &id);
2614 rc = SSMR3GetU32(pSSM, &iPage);
2615 if (RT_FAILURE(rc))
2616 return rc;
2617 }
2618 if ( !pRom
2619 || pRom->idSavedState != id)
2620 {
2621 for (pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
2622 if (pRom->idSavedState == id)
2623 break;
2624 AssertLogRelMsgReturn(pRom, ("id=%#u iPage=%#x\n", id, iPage), VERR_INTERNAL_ERROR);
2625 }
2626 AssertLogRelMsgReturn(iPage < (pRom->cb >> PAGE_SHIFT), ("iPage=%#x cb=%RGp %s\n", iPage, pRom->cb, pRom->pszDesc), VERR_INTERNAL_ERROR);
2627 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
2628 GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
2629
2630 /*
2631 * Get and set the protection.
2632 */
2633 uint8_t u8Prot;
2634 rc = SSMR3GetU8(pSSM, &u8Prot);
2635 if (RT_FAILURE(rc))
2636 return rc;
2637 PGMROMPROT enmProt = (PGMROMPROT)u8Prot;
2638 AssertLogRelMsgReturn(enmProt > PGMROMPROT_INVALID && enmProt < PGMROMPROT_END, ("GCPhys=%RGp enmProt=%d\n", GCPhys, enmProt), VERR_INTERNAL_ERROR);
2639
2640 if (enmProt != pRomPage->enmProt)
2641 {
2642 if (RT_UNLIKELY(!(pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)))
2643 return SSMR3SetCfgError(pSSM, RT_SRC_POS,
2644 N_("Protection change of unshadowed ROM page: GCPhys=%RGp enmProt=%d %s"),
2645 GCPhys, enmProt, pRom->pszDesc);
2646 rc = PGMR3PhysRomProtect(pVM, GCPhys, PAGE_SIZE, enmProt);
2647 AssertLogRelMsgRCReturn(rc, ("GCPhys=%RGp rc=%Rrc\n", GCPhys, rc), rc);
2648 AssertLogRelReturn(pRomPage->enmProt == enmProt, VERR_INTERNAL_ERROR);
2649 }
2650 if ((u8 & ~PGM_STATE_REC_FLAG_ADDR) == PGM_STATE_REC_ROM_PROT)
2651 break; /* done */
2652
2653 /*
2654 * Get the right page descriptor.
2655 */
2656 PPGMPAGE pRealPage;
2657 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2658 {
2659 case PGM_STATE_REC_ROM_VIRGIN:
2660 if (!PGMROMPROT_IS_ROM(enmProt))
2661 pRealPage = &pRomPage->Virgin;
2662 else
2663 pRealPage = NULL;
2664 break;
2665
2666 case PGM_STATE_REC_ROM_SHW_RAW:
2667 case PGM_STATE_REC_ROM_SHW_ZERO:
2668 if (RT_UNLIKELY(!(pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)))
2669 return SSMR3SetCfgError(pSSM, RT_SRC_POS,
2670 N_("Shadowed / non-shadowed page type mismatch: GCPhys=%RGp enmProt=%d %s"),
2671 GCPhys, enmProt, pRom->pszDesc);
2672 if (PGMROMPROT_IS_ROM(enmProt))
2673 pRealPage = &pRomPage->Shadow;
2674 else
2675 pRealPage = NULL;
2676 break;
2677
2678 default: AssertLogRelFailedReturn(VERR_INTERNAL_ERROR); /* shut up gcc */
2679 }
2680 if (!pRealPage)
2681 {
2682 rc = pgmPhysGetPageWithHintEx(&pVM->pgm.s, GCPhys, &pRealPage, &pRamHint);
2683 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc %RGp\n", rc, GCPhys), rc);
2684 }
2685
2686 /*
2687 * Make it writable and map it (if necessary).
2688 */
2689 void *pvDstPage = NULL;
2690 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2691 {
2692 case PGM_STATE_REC_ROM_SHW_ZERO:
2693 if (PGM_PAGE_IS_ZERO(pRealPage))
2694 break;
2695 /** @todo implement zero page replacing. */
2696 /* fall thru */
2697 case PGM_STATE_REC_ROM_VIRGIN:
2698 case PGM_STATE_REC_ROM_SHW_RAW:
2699 {
2700 rc = pgmPhysPageMakeWritableAndMap(pVM, pRealPage, GCPhys, &pvDstPage);
2701 AssertLogRelMsgRCReturn(rc, ("GCPhys=%RGp rc=%Rrc\n", GCPhys, rc), rc);
2702 break;
2703 }
2704 }
2705
2706 /*
2707 * Load the bits.
2708 */
2709 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2710 {
2711 case PGM_STATE_REC_ROM_SHW_ZERO:
2712 if (pvDstPage)
2713 ASMMemZeroPage(pvDstPage);
2714 break;
2715
2716 case PGM_STATE_REC_ROM_VIRGIN:
2717 case PGM_STATE_REC_ROM_SHW_RAW:
2718 rc = SSMR3GetMem(pSSM, pvDstPage, PAGE_SIZE);
2719 if (RT_FAILURE(rc))
2720 return rc;
2721 break;
2722 }
2723 GCPhys = NIL_RTGCPHYS;
2724 break;
2725 }
2726
2727 /*
2728 * Unknown type.
2729 */
2730 default:
2731 AssertLogRelMsgFailedReturn(("%#x\n", u8), VERR_INTERNAL_ERROR);
2732 }
2733 } /* forever */
2734}
2735
2736
2737/**
2738 * Worker for pgmR3Load.
2739 *
2740 * @returns VBox status code.
2741 *
2742 * @param pVM The VM handle.
2743 * @param pSSM The SSM handle.
2744 * @param uVersion The saved state version.
2745 */
2746static int pgmR3LoadFinalLocked(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
2747{
2748 PPGM pPGM = &pVM->pgm.s;
2749 int rc;
2750 uint32_t u32Sep;
2751
2752 /*
2753 * Load basic data (required / unaffected by relocation).
2754 */
2755 if (uVersion >= PGM_SAVED_STATE_VERSION_3_0_0)
2756 {
2757 rc = SSMR3GetStruct(pSSM, pPGM, &s_aPGMFields[0]);
2758 AssertLogRelRCReturn(rc, rc);
2759
2760 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2761 {
2762 rc = SSMR3GetStruct(pSSM, &pVM->aCpus[i].pgm.s, &s_aPGMCpuFields[0]);
2763 AssertLogRelRCReturn(rc, rc);
2764 }
2765 }
2766 else if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
2767 {
2768 AssertRelease(pVM->cCpus == 1);
2769
2770 PGMOLD pgmOld;
2771 rc = SSMR3GetStruct(pSSM, &pgmOld, &s_aPGMFields_Old[0]);
2772 AssertLogRelRCReturn(rc, rc);
2773
2774 pPGM->fMappingsFixed = pgmOld.fMappingsFixed;
2775 pPGM->GCPtrMappingFixed = pgmOld.GCPtrMappingFixed;
2776 pPGM->cbMappingFixed = pgmOld.cbMappingFixed;
2777
2778 pVM->aCpus[0].pgm.s.fA20Enabled = pgmOld.fA20Enabled;
2779 pVM->aCpus[0].pgm.s.GCPhysA20Mask = pgmOld.GCPhysA20Mask;
2780 pVM->aCpus[0].pgm.s.enmGuestMode = pgmOld.enmGuestMode;
2781 }
2782 else
2783 {
2784 AssertRelease(pVM->cCpus == 1);
2785
2786 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2787 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2788 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2789
2790 uint32_t cbRamSizeIgnored;
2791 rc = SSMR3GetU32(pSSM, &cbRamSizeIgnored);
2792 if (RT_FAILURE(rc))
2793 return rc;
2794 SSMR3GetGCPhys(pSSM, &pVM->aCpus[0].pgm.s.GCPhysA20Mask);
2795
2796 uint32_t u32 = 0;
2797 SSMR3GetUInt(pSSM, &u32);
2798 pVM->aCpus[0].pgm.s.fA20Enabled = !!u32;
2799 SSMR3GetUInt(pSSM, &pVM->aCpus[0].pgm.s.fSyncFlags);
2800 RTUINT uGuestMode;
2801 SSMR3GetUInt(pSSM, &uGuestMode);
2802 pVM->aCpus[0].pgm.s.enmGuestMode = (PGMMODE)uGuestMode;
2803
2804 /* check separator. */
2805 SSMR3GetU32(pSSM, &u32Sep);
2806 if (RT_FAILURE(rc))
2807 return rc;
2808 if (u32Sep != (uint32_t)~0)
2809 {
2810 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2811 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2812 }
2813 }
2814
2815 /*
2816 * The guest mappings - skipped now, see re-fixation in the caller.
2817 */
2818 uint32_t i = 0;
2819 for (;; i++)
2820 {
2821 rc = SSMR3GetU32(pSSM, &u32Sep); /* seqence number */
2822 if (RT_FAILURE(rc))
2823 return rc;
2824 if (u32Sep == ~0U)
2825 break;
2826 AssertMsgReturn(u32Sep == i, ("u32Sep=%#x i=%#x\n", u32Sep, i), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2827
2828 char szDesc[256];
2829 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2830 if (RT_FAILURE(rc))
2831 return rc;
2832 RTGCPTR GCPtrIgnore;
2833 SSMR3GetGCPtr(pSSM, &GCPtrIgnore); /* GCPtr */
2834 rc = SSMR3GetGCPtr(pSSM, &GCPtrIgnore); /* cPTs */
2835 if (RT_FAILURE(rc))
2836 return rc;
2837 }
2838
2839 /*
2840 * Load the RAM contents.
2841 */
2842 if (uVersion > PGM_SAVED_STATE_VERSION_3_0_0)
2843 {
2844 if (!pVM->pgm.s.LiveSave.fActive)
2845 {
2846 if (uVersion > PGM_SAVED_STATE_VERSION_NO_RAM_CFG)
2847 {
2848 rc = pgmR3LoadRamConfig(pVM, pSSM);
2849 if (RT_FAILURE(rc))
2850 return rc;
2851 }
2852 rc = pgmR3LoadRomRanges(pVM, pSSM);
2853 if (RT_FAILURE(rc))
2854 return rc;
2855 rc = pgmR3LoadMmio2Ranges(pVM, pSSM);
2856 if (RT_FAILURE(rc))
2857 return rc;
2858 }
2859
2860 rc = pgmR3LoadMemory(pVM, pSSM, SSM_PASS_FINAL);
2861 }
2862 else
2863 rc = pgmR3LoadMemoryOld(pVM, pSSM, uVersion);
2864 return rc;
2865}
2866
2867
2868/**
2869 * Execute state load operation.
2870 *
2871 * @returns VBox status code.
2872 * @param pVM VM Handle.
2873 * @param pSSM SSM operation handle.
2874 * @param uVersion Data layout version.
2875 * @param uPass The data pass.
2876 */
2877static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
2878{
2879 int rc;
2880 PPGM pPGM = &pVM->pgm.s;
2881
2882 /*
2883 * Validate version.
2884 */
2885 if ( ( uPass != SSM_PASS_FINAL
2886 && uVersion != PGM_SAVED_STATE_VERSION
2887 && uVersion != PGM_SAVED_STATE_VERSION_NO_RAM_CFG)
2888 || ( uVersion != PGM_SAVED_STATE_VERSION
2889 && uVersion != PGM_SAVED_STATE_VERSION_NO_RAM_CFG
2890 && uVersion != PGM_SAVED_STATE_VERSION_3_0_0
2891 && uVersion != PGM_SAVED_STATE_VERSION_2_2_2
2892 && uVersion != PGM_SAVED_STATE_VERSION_RR_DESC
2893 && uVersion != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE)
2894 )
2895 {
2896 AssertMsgFailed(("pgmR3Load: Invalid version uVersion=%d (current %d)!\n", uVersion, PGM_SAVED_STATE_VERSION));
2897 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2898 }
2899
2900 /*
2901 * Do the loading while owning the lock because a bunch of the functions
2902 * we're using requires this.
2903 */
2904 if (uPass != SSM_PASS_FINAL)
2905 {
2906 pgmLock(pVM);
2907 if (uPass != 0)
2908 rc = pgmR3LoadMemory(pVM, pSSM, uPass);
2909 else
2910 {
2911 pVM->pgm.s.LiveSave.fActive = true;
2912 if (uVersion > PGM_SAVED_STATE_VERSION_NO_RAM_CFG)
2913 rc = pgmR3LoadRamConfig(pVM, pSSM);
2914 else
2915 rc = VINF_SUCCESS;
2916 if (RT_SUCCESS(rc))
2917 rc = pgmR3LoadRomRanges(pVM, pSSM);
2918 if (RT_SUCCESS(rc))
2919 rc = pgmR3LoadMmio2Ranges(pVM, pSSM);
2920 if (RT_SUCCESS(rc))
2921 rc = pgmR3LoadMemory(pVM, pSSM, uPass);
2922 }
2923 pgmUnlock(pVM);
2924 }
2925 else
2926 {
2927 pgmLock(pVM);
2928 rc = pgmR3LoadFinalLocked(pVM, pSSM, uVersion);
2929 pVM->pgm.s.LiveSave.fActive = false;
2930 pgmUnlock(pVM);
2931 if (RT_SUCCESS(rc))
2932 {
2933 /*
2934 * We require a full resync now.
2935 */
2936 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2937 {
2938 PVMCPU pVCpu = &pVM->aCpus[i];
2939 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2940 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2941 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2942 }
2943
2944 pgmR3HandlerPhysicalUpdateAll(pVM);
2945
2946 /*
2947 * Change the paging mode and restore PGMCPU::GCPhysCR3.
2948 * (The latter requires the CPUM state to be restored already.)
2949 */
2950 if (CPUMR3IsStateRestorePending(pVM))
2951 return SSMR3SetLoadError(pSSM, VERR_WRONG_ORDER, RT_SRC_POS,
2952 N_("PGM was unexpectedly restored before CPUM"));
2953
2954 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2955 {
2956 PVMCPU pVCpu = &pVM->aCpus[i];
2957
2958 rc = PGMR3ChangeMode(pVM, pVCpu, pVCpu->pgm.s.enmGuestMode);
2959 AssertLogRelRCReturn(rc, rc);
2960
2961 /* Restore pVM->pgm.s.GCPhysCR3. */
2962 Assert(pVCpu->pgm.s.GCPhysCR3 == NIL_RTGCPHYS);
2963 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVCpu);
2964 if ( pVCpu->pgm.s.enmGuestMode == PGMMODE_PAE
2965 || pVCpu->pgm.s.enmGuestMode == PGMMODE_PAE_NX
2966 || pVCpu->pgm.s.enmGuestMode == PGMMODE_AMD64
2967 || pVCpu->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
2968 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
2969 else
2970 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
2971 pVCpu->pgm.s.GCPhysCR3 = GCPhysCR3;
2972 }
2973
2974 /*
2975 * Try re-fixate the guest mappings.
2976 */
2977 pVM->pgm.s.fMappingsFixedRestored = false;
2978 if ( pVM->pgm.s.fMappingsFixed
2979 && pgmMapAreMappingsEnabled(&pVM->pgm.s))
2980 {
2981 RTGCPTR GCPtrFixed = pVM->pgm.s.GCPtrMappingFixed;
2982 uint32_t cbFixed = pVM->pgm.s.cbMappingFixed;
2983 pVM->pgm.s.fMappingsFixed = false;
2984
2985 uint32_t cbRequired;
2986 int rc2 = PGMR3MappingsSize(pVM, &cbRequired); AssertRC(rc2);
2987 if ( RT_SUCCESS(rc2)
2988 && cbRequired > cbFixed)
2989 rc2 = VERR_OUT_OF_RANGE;
2990 if (RT_SUCCESS(rc2))
2991 rc2 = pgmR3MappingsFixInternal(pVM, GCPtrFixed, cbFixed);
2992 if (RT_FAILURE(rc2))
2993 {
2994 LogRel(("PGM: Unable to re-fixate the guest mappings at %RGv-%RGv: rc=%Rrc (cbRequired=%#x)\n",
2995 GCPtrFixed, GCPtrFixed + cbFixed, rc2, cbRequired));
2996 pVM->pgm.s.fMappingsFixed = false;
2997 pVM->pgm.s.fMappingsFixedRestored = true;
2998 pVM->pgm.s.GCPtrMappingFixed = GCPtrFixed;
2999 pVM->pgm.s.cbMappingFixed = cbFixed;
3000 }
3001 }
3002 else
3003 {
3004 /* We used to set fixed + disabled while we only use disabled now,
3005 so wipe the state to avoid any confusion. */
3006 pVM->pgm.s.fMappingsFixed = false;
3007 pVM->pgm.s.GCPtrMappingFixed = NIL_RTGCPTR;
3008 pVM->pgm.s.cbMappingFixed = 0;
3009 }
3010
3011 /*
3012 * If we have floating mappings, do a CR3 sync now to make sure the HMA
3013 * doesn't conflict with guest code / data and thereby cause trouble
3014 * when restoring other components like PATM.
3015 */
3016 if (pgmMapAreMappingsFloating(&pVM->pgm.s))
3017 {
3018 PVMCPU pVCpu = &pVM->aCpus[0];
3019 rc = PGMSyncCR3(pVCpu, CPUMGetGuestCR0(pVCpu), CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu), true);
3020 if (RT_FAILURE(rc))
3021 return SSMR3SetLoadError(pSSM, VERR_WRONG_ORDER, RT_SRC_POS,
3022 N_("PGMSyncCR3 failed unexpectedly with rc=%Rrc"), rc);
3023
3024 /* Make sure to re-sync before executing code. */
3025 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
3026 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3027 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
3028 }
3029 }
3030 }
3031
3032 return rc;
3033}
3034
3035
3036/**
3037 * Registers the saved state callbacks with SSM.
3038 *
3039 * @returns VBox status code.
3040 * @param pVM Pointer to VM structure.
3041 * @param cbRam The RAM size.
3042 */
3043int pgmR3InitSavedState(PVM pVM, uint64_t cbRam)
3044{
3045 return SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
3046 pgmR3LivePrep, pgmR3LiveExec, pgmR3LiveVote,
3047 NULL, pgmR3SaveExec, pgmR3SaveDone,
3048 pgmR3LoadPrep, pgmR3Load, NULL);
3049}
3050
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette