VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMSavedState.cpp@ 27549

Last change on this file since 27549 was 27543, checked in by vboxsync, 15 years ago

Balloon updates; make ballooned pages as such

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 115.1 KB
Line 
1/* $Id: PGMSavedState.cpp 27543 2010-03-19 15:47:14Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, The Saved State Part.
4 */
5
6/*
7 * Copyright (C) 2006-2009 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_PGM
27#include <VBox/pgm.h>
28#include <VBox/stam.h>
29#include <VBox/ssm.h>
30#include <VBox/pdmdrv.h>
31#include <VBox/pdmdev.h>
32#include "PGMInternal.h"
33#include <VBox/vm.h>
34#include "PGMInline.h"
35
36#include <VBox/param.h>
37#include <VBox/err.h>
38
39#include <iprt/asm.h>
40#include <iprt/assert.h>
41#include <iprt/crc32.h>
42#include <iprt/mem.h>
43#include <iprt/sha.h>
44#include <iprt/string.h>
45#include <iprt/thread.h>
46
47
48/*******************************************************************************
49* Defined Constants And Macros *
50*******************************************************************************/
51/** Saved state data unit version.
52 * @todo remove the guest mappings from the saved state at next version change! */
53#define PGM_SAVED_STATE_VERSION 12
54/** Saved state before the balloon change. */
55#define PGM_SAVED_STATE_VERSION_PRE_BALLOON 11
56/** Saved state data unit version used during 3.1 development, misses the RAM
57 * config. */
58#define PGM_SAVED_STATE_VERSION_NO_RAM_CFG 10
59/** Saved state data unit version for 3.0 (pre teleportation). */
60#define PGM_SAVED_STATE_VERSION_3_0_0 9
61/** Saved state data unit version for 2.2.2 and later. */
62#define PGM_SAVED_STATE_VERSION_2_2_2 8
63/** Saved state data unit version for 2.2.0. */
64#define PGM_SAVED_STATE_VERSION_RR_DESC 7
65/** Saved state data unit version. */
66#define PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE 6
67
68
69/** @name Sparse state record types
70 * @{ */
71/** Zero page. No data. */
72#define PGM_STATE_REC_RAM_ZERO UINT8_C(0x00)
73/** Raw page. */
74#define PGM_STATE_REC_RAM_RAW UINT8_C(0x01)
75/** Raw MMIO2 page. */
76#define PGM_STATE_REC_MMIO2_RAW UINT8_C(0x02)
77/** Zero MMIO2 page. */
78#define PGM_STATE_REC_MMIO2_ZERO UINT8_C(0x03)
79/** Virgin ROM page. Followed by protection (8-bit) and the raw bits. */
80#define PGM_STATE_REC_ROM_VIRGIN UINT8_C(0x04)
81/** Raw shadowed ROM page. The protection (8-bit) preceeds the raw bits. */
82#define PGM_STATE_REC_ROM_SHW_RAW UINT8_C(0x05)
83/** Zero shadowed ROM page. The protection (8-bit) is the only payload. */
84#define PGM_STATE_REC_ROM_SHW_ZERO UINT8_C(0x06)
85/** ROM protection (8-bit). */
86#define PGM_STATE_REC_ROM_PROT UINT8_C(0x07)
87/** The last record type. */
88#define PGM_STATE_REC_LAST PGM_STATE_REC_ROM_PROT
89/** End marker. */
90#define PGM_STATE_REC_END UINT8_C(0xff)
91/** Flag indicating that the data is preceeded by the page address.
92 * For RAW pages this is a RTGCPHYS. For MMIO2 and ROM pages this is a 8-bit
93 * range ID and a 32-bit page index.
94 */
95#define PGM_STATE_REC_FLAG_ADDR UINT8_C(0x80)
96/** @} */
97
98/** The CRC-32 for a zero page. */
99#define PGM_STATE_CRC32_ZERO_PAGE UINT32_C(0xc71c0011)
100/** The CRC-32 for a zero half page. */
101#define PGM_STATE_CRC32_ZERO_HALF_PAGE UINT32_C(0xf1e8ba9e)
102
103
104/*******************************************************************************
105* Structures and Typedefs *
106*******************************************************************************/
107/** For loading old saved states. (pre-smp) */
108typedef struct
109{
110 /** If set no conflict checks are required. (boolean) */
111 bool fMappingsFixed;
112 /** Size of fixed mapping */
113 uint32_t cbMappingFixed;
114 /** Base address (GC) of fixed mapping */
115 RTGCPTR GCPtrMappingFixed;
116 /** A20 gate mask.
117 * Our current approach to A20 emulation is to let REM do it and don't bother
118 * anywhere else. The interesting guests will be operating with it enabled anyway.
119 * But should the need arise, we'll subject physical addresses to this mask. */
120 RTGCPHYS GCPhysA20Mask;
121 /** A20 gate state - boolean! */
122 bool fA20Enabled;
123 /** The guest paging mode. */
124 PGMMODE enmGuestMode;
125} PGMOLD;
126
127
128/*******************************************************************************
129* Global Variables *
130*******************************************************************************/
131/** PGM fields to save/load. */
132
133static const SSMFIELD s_aPGMFields[] =
134{
135 SSMFIELD_ENTRY( PGM, fMappingsFixed),
136 SSMFIELD_ENTRY_GCPTR( PGM, GCPtrMappingFixed),
137 SSMFIELD_ENTRY( PGM, cbMappingFixed),
138 SSMFIELD_ENTRY( PGM, cBalloonedPages),
139 SSMFIELD_ENTRY_TERM()
140};
141
142static const SSMFIELD s_aPGMFieldsPreBalloon[] =
143{
144 SSMFIELD_ENTRY( PGM, fMappingsFixed),
145 SSMFIELD_ENTRY_GCPTR( PGM, GCPtrMappingFixed),
146 SSMFIELD_ENTRY( PGM, cbMappingFixed),
147 SSMFIELD_ENTRY_TERM()
148};
149
150static const SSMFIELD s_aPGMCpuFields[] =
151{
152 SSMFIELD_ENTRY( PGMCPU, fA20Enabled),
153 SSMFIELD_ENTRY_GCPHYS( PGMCPU, GCPhysA20Mask),
154 SSMFIELD_ENTRY( PGMCPU, enmGuestMode),
155 SSMFIELD_ENTRY_TERM()
156};
157
158static const SSMFIELD s_aPGMFields_Old[] =
159{
160 SSMFIELD_ENTRY( PGMOLD, fMappingsFixed),
161 SSMFIELD_ENTRY_GCPTR( PGMOLD, GCPtrMappingFixed),
162 SSMFIELD_ENTRY( PGMOLD, cbMappingFixed),
163 SSMFIELD_ENTRY( PGMOLD, fA20Enabled),
164 SSMFIELD_ENTRY_GCPHYS( PGMOLD, GCPhysA20Mask),
165 SSMFIELD_ENTRY( PGMOLD, enmGuestMode),
166 SSMFIELD_ENTRY_TERM()
167};
168
169
170/**
171 * Find the ROM tracking structure for the given page.
172 *
173 * @returns Pointer to the ROM page structure. NULL if the caller didn't check
174 * that it's a ROM page.
175 * @param pVM The VM handle.
176 * @param GCPhys The address of the ROM page.
177 */
178static PPGMROMPAGE pgmR3GetRomPage(PVM pVM, RTGCPHYS GCPhys) /** @todo change this to take a hint. */
179{
180 for (PPGMROMRANGE pRomRange = pVM->pgm.s.CTX_SUFF(pRomRanges);
181 pRomRange;
182 pRomRange = pRomRange->CTX_SUFF(pNext))
183 {
184 RTGCPHYS off = GCPhys - pRomRange->GCPhys;
185 if (GCPhys - pRomRange->GCPhys < pRomRange->cb)
186 return &pRomRange->aPages[off >> PAGE_SHIFT];
187 }
188 return NULL;
189}
190
191
192/**
193 * Prepares the ROM pages for a live save.
194 *
195 * @returns VBox status code.
196 * @param pVM The VM handle.
197 */
198static int pgmR3PrepRomPages(PVM pVM)
199{
200 /*
201 * Initialize the live save tracking in the ROM page descriptors.
202 */
203 pgmLock(pVM);
204 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
205 {
206 PPGMRAMRANGE pRamHint = NULL;;
207 uint32_t const cPages = pRom->cb >> PAGE_SHIFT;
208
209 for (uint32_t iPage = 0; iPage < cPages; iPage++)
210 {
211 pRom->aPages[iPage].LiveSave.u8Prot = (uint8_t)PGMROMPROT_INVALID;
212 pRom->aPages[iPage].LiveSave.fWrittenTo = false;
213 pRom->aPages[iPage].LiveSave.fDirty = true;
214 pRom->aPages[iPage].LiveSave.fDirtiedRecently = true;
215 if (!(pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
216 {
217 if (PGMROMPROT_IS_ROM(pRom->aPages[iPage].enmProt))
218 pRom->aPages[iPage].LiveSave.fWrittenTo = !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow) && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow);
219 else
220 {
221 RTGCPHYS GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
222 PPGMPAGE pPage;
223 int rc = pgmPhysGetPageWithHintEx(&pVM->pgm.s, GCPhys, &pPage, &pRamHint);
224 AssertLogRelMsgRC(rc, ("%Rrc GCPhys=%RGp\n", rc, GCPhys));
225 if (RT_SUCCESS(rc))
226 pRom->aPages[iPage].LiveSave.fWrittenTo = !PGM_PAGE_IS_ZERO(pPage) && !PGM_PAGE_IS_BALLOONED(pPage);
227 else
228 pRom->aPages[iPage].LiveSave.fWrittenTo = !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow) && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow);
229 }
230 }
231 }
232
233 pVM->pgm.s.LiveSave.Rom.cDirtyPages += cPages;
234 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
235 pVM->pgm.s.LiveSave.Rom.cDirtyPages += cPages;
236 }
237 pgmUnlock(pVM);
238
239 return VINF_SUCCESS;
240}
241
242
243/**
244 * Assigns IDs to the ROM ranges and saves them.
245 *
246 * @returns VBox status code.
247 * @param pVM The VM handle.
248 * @param pSSM Saved state handle.
249 */
250static int pgmR3SaveRomRanges(PVM pVM, PSSMHANDLE pSSM)
251{
252 pgmLock(pVM);
253 uint8_t id = 1;
254 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3, id++)
255 {
256 pRom->idSavedState = id;
257 SSMR3PutU8(pSSM, id);
258 SSMR3PutStrZ(pSSM, ""); /* device name */
259 SSMR3PutU32(pSSM, 0); /* device instance */
260 SSMR3PutU8(pSSM, 0); /* region */
261 SSMR3PutStrZ(pSSM, pRom->pszDesc);
262 SSMR3PutGCPhys(pSSM, pRom->GCPhys);
263 int rc = SSMR3PutGCPhys(pSSM, pRom->cb);
264 if (RT_FAILURE(rc))
265 break;
266 }
267 pgmUnlock(pVM);
268 return SSMR3PutU8(pSSM, UINT8_MAX);
269}
270
271
272/**
273 * Loads the ROM range ID assignments.
274 *
275 * @returns VBox status code.
276 *
277 * @param pVM The VM handle.
278 * @param pSSM The saved state handle.
279 */
280static int pgmR3LoadRomRanges(PVM pVM, PSSMHANDLE pSSM)
281{
282 Assert(PGMIsLockOwner(pVM));
283
284 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
285 pRom->idSavedState = UINT8_MAX;
286
287 for (;;)
288 {
289 /*
290 * Read the data.
291 */
292 uint8_t id;
293 int rc = SSMR3GetU8(pSSM, &id);
294 if (RT_FAILURE(rc))
295 return rc;
296 if (id == UINT8_MAX)
297 {
298 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
299 AssertLogRelMsg(pRom->idSavedState != UINT8_MAX, ("%s\n", pRom->pszDesc));
300 return VINF_SUCCESS; /* the end */
301 }
302 AssertLogRelReturn(id != 0, VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
303
304 char szDevName[RT_SIZEOFMEMB(PDMDEVREG, szName)];
305 rc = SSMR3GetStrZ(pSSM, szDevName, sizeof(szDevName));
306 AssertLogRelRCReturn(rc, rc);
307
308 uint32_t uInstance;
309 SSMR3GetU32(pSSM, &uInstance);
310 uint8_t iRegion;
311 SSMR3GetU8(pSSM, &iRegion);
312
313 char szDesc[64];
314 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
315 AssertLogRelRCReturn(rc, rc);
316
317 RTGCPHYS GCPhys;
318 SSMR3GetGCPhys(pSSM, &GCPhys);
319 RTGCPHYS cb;
320 rc = SSMR3GetGCPhys(pSSM, &cb);
321 if (RT_FAILURE(rc))
322 return rc;
323 AssertLogRelMsgReturn(!(GCPhys & PAGE_OFFSET_MASK), ("GCPhys=%RGp %s\n", GCPhys, szDesc), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
324 AssertLogRelMsgReturn(!(cb & PAGE_OFFSET_MASK), ("cb=%RGp %s\n", cb, szDesc), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
325
326 /*
327 * Locate a matching ROM range.
328 */
329 AssertLogRelMsgReturn( uInstance == 0
330 && iRegion == 0
331 && szDevName[0] == '\0',
332 ("GCPhys=%RGp %s\n", GCPhys, szDesc),
333 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
334 PPGMROMRANGE pRom;
335 for (pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
336 {
337 if ( pRom->idSavedState == UINT8_MAX
338 && !strcmp(pRom->pszDesc, szDesc))
339 {
340 pRom->idSavedState = id;
341 break;
342 }
343 }
344 if (!pRom)
345 return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("ROM at %RGp by the name '%s' was not found"), GCPhys, szDesc);
346 } /* forever */
347}
348
349
350/**
351 * Scan ROM pages.
352 *
353 * @param pVM The VM handle.
354 */
355static void pgmR3ScanRomPages(PVM pVM)
356{
357 /*
358 * The shadow ROMs.
359 */
360 pgmLock(pVM);
361 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
362 {
363 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
364 {
365 uint32_t const cPages = pRom->cb >> PAGE_SHIFT;
366 for (uint32_t iPage = 0; iPage < cPages; iPage++)
367 {
368 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
369 if (pRomPage->LiveSave.fWrittenTo)
370 {
371 pRomPage->LiveSave.fWrittenTo = false;
372 if (!pRomPage->LiveSave.fDirty)
373 {
374 pRomPage->LiveSave.fDirty = true;
375 pVM->pgm.s.LiveSave.Rom.cReadyPages--;
376 pVM->pgm.s.LiveSave.Rom.cDirtyPages++;
377 }
378 pRomPage->LiveSave.fDirtiedRecently = true;
379 }
380 else
381 pRomPage->LiveSave.fDirtiedRecently = false;
382 }
383 }
384 }
385 pgmUnlock(pVM);
386}
387
388
389/**
390 * Takes care of the virgin ROM pages in the first pass.
391 *
392 * This is an attempt at simplifying the handling of ROM pages a little bit.
393 * This ASSUMES that no new ROM ranges will be added and that they won't be
394 * relinked in any way.
395 *
396 * @param pVM The VM handle.
397 * @param pSSM The SSM handle.
398 * @param fLiveSave Whether we're in a live save or not.
399 */
400static int pgmR3SaveRomVirginPages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave)
401{
402 pgmLock(pVM);
403 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
404 {
405 uint32_t const cPages = pRom->cb >> PAGE_SHIFT;
406 for (uint32_t iPage = 0; iPage < cPages; iPage++)
407 {
408 RTGCPHYS GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
409 PGMROMPROT enmProt = pRom->aPages[iPage].enmProt;
410
411 /* Get the virgin page descriptor. */
412 PPGMPAGE pPage;
413 if (PGMROMPROT_IS_ROM(enmProt))
414 pPage = pgmPhysGetPage(&pVM->pgm.s, GCPhys);
415 else
416 pPage = &pRom->aPages[iPage].Virgin;
417
418 /* Get the page bits. (Cannot use pgmPhysGCPhys2CCPtrInternalReadOnly here!) */
419 int rc = VINF_SUCCESS;
420 char abPage[PAGE_SIZE];
421 if ( !PGM_PAGE_IS_ZERO(pPage)
422 && !PGM_PAGE_IS_BALLOONED(pPage))
423 {
424 void const *pvPage;
425 rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhys, &pvPage);
426 if (RT_SUCCESS(rc))
427 memcpy(abPage, pvPage, PAGE_SIZE);
428 }
429 else
430 ASMMemZeroPage(abPage);
431 pgmUnlock(pVM);
432 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc GCPhys=%RGp\n", rc, GCPhys), rc);
433
434 /* Save it. */
435 if (iPage > 0)
436 SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_VIRGIN);
437 else
438 {
439 SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_VIRGIN | PGM_STATE_REC_FLAG_ADDR);
440 SSMR3PutU8(pSSM, pRom->idSavedState);
441 SSMR3PutU32(pSSM, iPage);
442 }
443 SSMR3PutU8(pSSM, (uint8_t)enmProt);
444 rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
445 if (RT_FAILURE(rc))
446 return rc;
447
448 /* Update state. */
449 pgmLock(pVM);
450 pRom->aPages[iPage].LiveSave.u8Prot = (uint8_t)enmProt;
451 if (fLiveSave)
452 {
453 pVM->pgm.s.LiveSave.Rom.cDirtyPages--;
454 pVM->pgm.s.LiveSave.Rom.cReadyPages++;
455 pVM->pgm.s.LiveSave.cSavedPages++;
456 }
457 }
458 }
459 pgmUnlock(pVM);
460 return VINF_SUCCESS;
461}
462
463
464/**
465 * Saves dirty pages in the shadowed ROM ranges.
466 *
467 * Used by pgmR3LiveExecPart2 and pgmR3SaveExecMemory.
468 *
469 * @returns VBox status code.
470 * @param pVM The VM handle.
471 * @param pSSM The SSM handle.
472 * @param fLiveSave Whether it's a live save or not.
473 * @param fFinalPass Whether this is the final pass or not.
474 */
475static int pgmR3SaveShadowedRomPages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave, bool fFinalPass)
476{
477 /*
478 * The Shadowed ROMs.
479 *
480 * ASSUMES that the ROM ranges are fixed.
481 * ASSUMES that all the ROM ranges are mapped.
482 */
483 pgmLock(pVM);
484 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
485 {
486 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
487 {
488 uint32_t const cPages = pRom->cb >> PAGE_SHIFT;
489 uint32_t iPrevPage = cPages;
490 for (uint32_t iPage = 0; iPage < cPages; iPage++)
491 {
492 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
493 if ( !fLiveSave
494 || ( pRomPage->LiveSave.fDirty
495 && ( ( !pRomPage->LiveSave.fDirtiedRecently
496 && !pRomPage->LiveSave.fWrittenTo)
497 || fFinalPass
498 )
499 )
500 )
501 {
502 uint8_t abPage[PAGE_SIZE];
503 PGMROMPROT enmProt = pRomPage->enmProt;
504 RTGCPHYS GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
505 PPGMPAGE pPage = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Shadow : pgmPhysGetPage(&pVM->pgm.s, GCPhys);
506 bool fZero = PGM_PAGE_IS_ZERO(pPage) || PGM_PAGE_IS_BALLOONED(pPage);
507 int rc = VINF_SUCCESS;
508 if (!fZero)
509 {
510 void const *pvPage;
511 rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhys, &pvPage);
512 if (RT_SUCCESS(rc))
513 memcpy(abPage, pvPage, PAGE_SIZE);
514 }
515 if (fLiveSave && RT_SUCCESS(rc))
516 {
517 pRomPage->LiveSave.u8Prot = (uint8_t)enmProt;
518 pRomPage->LiveSave.fDirty = false;
519 pVM->pgm.s.LiveSave.Rom.cReadyPages++;
520 pVM->pgm.s.LiveSave.Rom.cDirtyPages--;
521 pVM->pgm.s.LiveSave.cSavedPages++;
522 }
523 pgmUnlock(pVM);
524 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc GCPhys=%RGp\n", rc, GCPhys), rc);
525
526 if (iPage - 1U == iPrevPage && iPage > 0)
527 SSMR3PutU8(pSSM, (fZero ? PGM_STATE_REC_ROM_SHW_ZERO : PGM_STATE_REC_ROM_SHW_RAW));
528 else
529 {
530 SSMR3PutU8(pSSM, (fZero ? PGM_STATE_REC_ROM_SHW_ZERO : PGM_STATE_REC_ROM_SHW_RAW) | PGM_STATE_REC_FLAG_ADDR);
531 SSMR3PutU8(pSSM, pRom->idSavedState);
532 SSMR3PutU32(pSSM, iPage);
533 }
534 rc = SSMR3PutU8(pSSM, (uint8_t)enmProt);
535 if (!fZero)
536 rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
537 if (RT_FAILURE(rc))
538 return rc;
539
540 pgmLock(pVM);
541 iPrevPage = iPage;
542 }
543 /*
544 * In the final pass, make sure the protection is in sync.
545 */
546 else if ( fFinalPass
547 && pRomPage->LiveSave.u8Prot != pRomPage->enmProt)
548 {
549 PGMROMPROT enmProt = pRomPage->enmProt;
550 pRomPage->LiveSave.u8Prot = (uint8_t)enmProt;
551 pgmUnlock(pVM);
552
553 if (iPage - 1U == iPrevPage && iPage > 0)
554 SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_PROT);
555 else
556 {
557 SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_PROT | PGM_STATE_REC_FLAG_ADDR);
558 SSMR3PutU8(pSSM, pRom->idSavedState);
559 SSMR3PutU32(pSSM, iPage);
560 }
561 int rc = SSMR3PutU8(pSSM, (uint8_t)enmProt);
562 if (RT_FAILURE(rc))
563 return rc;
564
565 pgmLock(pVM);
566 iPrevPage = iPage;
567 }
568 }
569 }
570 }
571 pgmUnlock(pVM);
572 return VINF_SUCCESS;
573}
574
575
576/**
577 * Cleans up ROM pages after a live save.
578 *
579 * @param pVM The VM handle.
580 */
581static void pgmR3DoneRomPages(PVM pVM)
582{
583 NOREF(pVM);
584}
585
586
587/**
588 * Prepares the MMIO2 pages for a live save.
589 *
590 * @returns VBox status code.
591 * @param pVM The VM handle.
592 */
593static int pgmR3PrepMmio2Pages(PVM pVM)
594{
595 /*
596 * Initialize the live save tracking in the MMIO2 ranges.
597 * ASSUME nothing changes here.
598 */
599 pgmLock(pVM);
600 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
601 {
602 uint32_t const cPages = pMmio2->RamRange.cb >> PAGE_SHIFT;
603 pgmUnlock(pVM);
604
605 PPGMLIVESAVEMMIO2PAGE paLSPages = (PPGMLIVESAVEMMIO2PAGE)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMLIVESAVEMMIO2PAGE) * cPages);
606 if (!paLSPages)
607 return VERR_NO_MEMORY;
608 for (uint32_t iPage = 0; iPage < cPages; iPage++)
609 {
610 /* Initialize it as a dirty zero page. */
611 paLSPages[iPage].fDirty = true;
612 paLSPages[iPage].cUnchangedScans = 0;
613 paLSPages[iPage].fZero = true;
614 paLSPages[iPage].u32CrcH1 = PGM_STATE_CRC32_ZERO_HALF_PAGE;
615 paLSPages[iPage].u32CrcH2 = PGM_STATE_CRC32_ZERO_HALF_PAGE;
616 }
617
618 pgmLock(pVM);
619 pMmio2->paLSPages = paLSPages;
620 pVM->pgm.s.LiveSave.Mmio2.cDirtyPages += cPages;
621 }
622 pgmUnlock(pVM);
623 return VINF_SUCCESS;
624}
625
626
627/**
628 * Assigns IDs to the MMIO2 ranges and saves them.
629 *
630 * @returns VBox status code.
631 * @param pVM The VM handle.
632 * @param pSSM Saved state handle.
633 */
634static int pgmR3SaveMmio2Ranges(PVM pVM, PSSMHANDLE pSSM)
635{
636 pgmLock(pVM);
637 uint8_t id = 1;
638 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3, id++)
639 {
640 pMmio2->idSavedState = id;
641 SSMR3PutU8(pSSM, id);
642 SSMR3PutStrZ(pSSM, pMmio2->pDevInsR3->pReg->szName);
643 SSMR3PutU32(pSSM, pMmio2->pDevInsR3->iInstance);
644 SSMR3PutU8(pSSM, pMmio2->iRegion);
645 SSMR3PutStrZ(pSSM, pMmio2->RamRange.pszDesc);
646 int rc = SSMR3PutGCPhys(pSSM, pMmio2->RamRange.cb);
647 if (RT_FAILURE(rc))
648 break;
649 }
650 pgmUnlock(pVM);
651 return SSMR3PutU8(pSSM, UINT8_MAX);
652}
653
654
655/**
656 * Loads the MMIO2 range ID assignments.
657 *
658 * @returns VBox status code.
659 *
660 * @param pVM The VM handle.
661 * @param pSSM The saved state handle.
662 */
663static int pgmR3LoadMmio2Ranges(PVM pVM, PSSMHANDLE pSSM)
664{
665 Assert(PGMIsLockOwner(pVM));
666
667 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
668 pMmio2->idSavedState = UINT8_MAX;
669
670 for (;;)
671 {
672 /*
673 * Read the data.
674 */
675 uint8_t id;
676 int rc = SSMR3GetU8(pSSM, &id);
677 if (RT_FAILURE(rc))
678 return rc;
679 if (id == UINT8_MAX)
680 {
681 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
682 AssertLogRelMsg(pMmio2->idSavedState != UINT8_MAX, ("%s\n", pMmio2->RamRange.pszDesc));
683 return VINF_SUCCESS; /* the end */
684 }
685 AssertLogRelReturn(id != 0, VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
686
687 char szDevName[RT_SIZEOFMEMB(PDMDEVREG, szName)];
688 rc = SSMR3GetStrZ(pSSM, szDevName, sizeof(szDevName));
689 AssertLogRelRCReturn(rc, rc);
690
691 uint32_t uInstance;
692 SSMR3GetU32(pSSM, &uInstance);
693 uint8_t iRegion;
694 SSMR3GetU8(pSSM, &iRegion);
695
696 char szDesc[64];
697 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
698 AssertLogRelRCReturn(rc, rc);
699
700 RTGCPHYS cb;
701 rc = SSMR3GetGCPhys(pSSM, &cb);
702 AssertLogRelMsgReturn(!(cb & PAGE_OFFSET_MASK), ("cb=%RGp %s\n", cb, szDesc), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
703
704 /*
705 * Locate a matching MMIO2 range.
706 */
707 PPGMMMIO2RANGE pMmio2;
708 for (pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
709 {
710 if ( pMmio2->idSavedState == UINT8_MAX
711 && pMmio2->iRegion == iRegion
712 && pMmio2->pDevInsR3->iInstance == uInstance
713 && !strcmp(pMmio2->pDevInsR3->pReg->szName, szDevName))
714 {
715 pMmio2->idSavedState = id;
716 break;
717 }
718 }
719 if (!pMmio2)
720 return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("Failed to locate a MMIO2 range called '%s' owned by %s/%u, region %d"),
721 szDesc, szDevName, uInstance, iRegion);
722
723 /*
724 * Validate the configuration, the size of the MMIO2 region should be
725 * the same.
726 */
727 if (cb != pMmio2->RamRange.cb)
728 {
729 LogRel(("PGM: MMIO2 region \"%s\" size mismatch: saved=%RGp config=%RGp\n",
730 pMmio2->RamRange.pszDesc, cb, pMmio2->RamRange.cb));
731 if (cb > pMmio2->RamRange.cb) /* bad idea? */
732 return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("MMIO2 region \"%s\" size mismatch: saved=%RGp config=%RGp"),
733 pMmio2->RamRange.pszDesc, cb, pMmio2->RamRange.cb);
734 }
735 } /* forever */
736}
737
738
739/**
740 * Scans one MMIO2 page.
741 *
742 * @returns True if changed, false if unchanged.
743 *
744 * @param pVM The VM handle
745 * @param pbPage The page bits.
746 * @param pLSPage The live save tracking structure for the page.
747 *
748 */
749DECLINLINE(bool) pgmR3ScanMmio2Page(PVM pVM, uint8_t const *pbPage, PPGMLIVESAVEMMIO2PAGE pLSPage)
750{
751 /*
752 * Special handling of zero pages.
753 */
754 bool const fZero = pLSPage->fZero;
755 if (fZero)
756 {
757 if (ASMMemIsZeroPage(pbPage))
758 {
759 /* Not modified. */
760 if (pLSPage->fDirty)
761 pLSPage->cUnchangedScans++;
762 return false;
763 }
764
765 pLSPage->fZero = false;
766 pLSPage->u32CrcH1 = RTCrc32(pbPage, PAGE_SIZE / 2);
767 }
768 else
769 {
770 /*
771 * CRC the first half, if it doesn't match the page is dirty and
772 * we won't check the 2nd half (we'll do that next time).
773 */
774 uint32_t u32CrcH1 = RTCrc32(pbPage, PAGE_SIZE / 2);
775 if (u32CrcH1 == pLSPage->u32CrcH1)
776 {
777 uint32_t u32CrcH2 = RTCrc32(pbPage + PAGE_SIZE / 2, PAGE_SIZE / 2);
778 if (u32CrcH2 == pLSPage->u32CrcH2)
779 {
780 /* Probably not modified. */
781 if (pLSPage->fDirty)
782 pLSPage->cUnchangedScans++;
783 return false;
784 }
785
786 pLSPage->u32CrcH2 = u32CrcH2;
787 }
788 else
789 {
790 pLSPage->u32CrcH1 = u32CrcH1;
791 if ( u32CrcH1 == PGM_STATE_CRC32_ZERO_HALF_PAGE
792 && ASMMemIsZeroPage(pbPage))
793 {
794 pLSPage->u32CrcH2 = PGM_STATE_CRC32_ZERO_HALF_PAGE;
795 pLSPage->fZero = true;
796 }
797 }
798 }
799
800 /* dirty page path */
801 pLSPage->cUnchangedScans = 0;
802 if (!pLSPage->fDirty)
803 {
804 pLSPage->fDirty = true;
805 pVM->pgm.s.LiveSave.Mmio2.cReadyPages--;
806 pVM->pgm.s.LiveSave.Mmio2.cDirtyPages++;
807 if (fZero)
808 pVM->pgm.s.LiveSave.Mmio2.cZeroPages--;
809 }
810 return true;
811}
812
813
814/**
815 * Scan for MMIO2 page modifications.
816 *
817 * @param pVM The VM handle.
818 * @param uPass The pass number.
819 */
820static void pgmR3ScanMmio2Pages(PVM pVM, uint32_t uPass)
821{
822 /*
823 * Since this is a bit expensive we lower the scan rate after a little while.
824 */
825 if ( ( (uPass & 3) != 0
826 && uPass > 10)
827 || uPass == SSM_PASS_FINAL)
828 return;
829
830 pgmLock(pVM); /* paranoia */
831 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
832 {
833 PPGMLIVESAVEMMIO2PAGE paLSPages = pMmio2->paLSPages;
834 uint32_t cPages = pMmio2->RamRange.cb >> PAGE_SHIFT;
835 pgmUnlock(pVM);
836
837 for (uint32_t iPage = 0; iPage < cPages; iPage++)
838 {
839 uint8_t const *pbPage = (uint8_t const *)pMmio2->pvR3 + iPage * PAGE_SIZE;
840 pgmR3ScanMmio2Page(pVM, pbPage, &paLSPages[iPage]);
841 }
842
843 pgmLock(pVM);
844 }
845 pgmUnlock(pVM);
846
847}
848
849
850/**
851 * Save quiescent MMIO2 pages.
852 *
853 * @returns VBox status code.
854 * @param pVM The VM handle.
855 * @param pSSM The SSM handle.
856 * @param fLiveSave Whether it's a live save or not.
857 * @param uPass The pass number.
858 */
859static int pgmR3SaveMmio2Pages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave, uint32_t uPass)
860{
861 /** @todo implement live saving of MMIO2 pages. (Need some way of telling the
862 * device that we wish to know about changes.) */
863
864 int rc = VINF_SUCCESS;
865 if (uPass == SSM_PASS_FINAL)
866 {
867 /*
868 * The mop up round.
869 */
870 pgmLock(pVM);
871 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3;
872 pMmio2 && RT_SUCCESS(rc);
873 pMmio2 = pMmio2->pNextR3)
874 {
875 PPGMLIVESAVEMMIO2PAGE paLSPages = pMmio2->paLSPages;
876 uint8_t const *pbPage = (uint8_t const *)pMmio2->RamRange.pvR3;
877 uint32_t cPages = pMmio2->RamRange.cb >> PAGE_SHIFT;
878 uint32_t iPageLast = cPages;
879 for (uint32_t iPage = 0; iPage < cPages; iPage++, pbPage += PAGE_SIZE)
880 {
881 uint8_t u8Type;
882 if (!fLiveSave)
883 u8Type = ASMMemIsZeroPage(pbPage) ? PGM_STATE_REC_MMIO2_ZERO : PGM_STATE_REC_MMIO2_RAW;
884 else
885 {
886 /* Try figure if it's a clean page, compare the SHA-1 to be really sure. */
887 if ( !paLSPages[iPage].fDirty
888 && !pgmR3ScanMmio2Page(pVM, pbPage, &paLSPages[iPage]))
889 {
890 if (paLSPages[iPage].fZero)
891 continue;
892
893 uint8_t abSha1Hash[RTSHA1_HASH_SIZE];
894 RTSha1(pbPage, PAGE_SIZE, abSha1Hash);
895 if (!memcmp(abSha1Hash, paLSPages[iPage].abSha1Saved, sizeof(abSha1Hash)))
896 continue;
897 }
898 u8Type = paLSPages[iPage].fZero ? PGM_STATE_REC_MMIO2_ZERO : PGM_STATE_REC_MMIO2_RAW;
899 pVM->pgm.s.LiveSave.cSavedPages++;
900 }
901
902 if (iPage != 0 && iPage == iPageLast + 1)
903 rc = SSMR3PutU8(pSSM, u8Type);
904 else
905 {
906 SSMR3PutU8(pSSM, u8Type | PGM_STATE_REC_FLAG_ADDR);
907 SSMR3PutU8(pSSM, pMmio2->idSavedState);
908 rc = SSMR3PutU32(pSSM, iPage);
909 }
910 if (u8Type == PGM_STATE_REC_MMIO2_RAW)
911 rc = SSMR3PutMem(pSSM, pbPage, PAGE_SIZE);
912 if (RT_FAILURE(rc))
913 break;
914 iPageLast = iPage;
915 }
916 }
917 pgmUnlock(pVM);
918 }
919 /*
920 * Reduce the rate after a little while since the current MMIO2 approach is
921 * a bit expensive.
922 * We position it two passes after the scan pass to avoid saving busy pages.
923 */
924 else if ( uPass <= 10
925 || (uPass & 3) == 2)
926 {
927 pgmLock(pVM);
928 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3;
929 pMmio2 && RT_SUCCESS(rc);
930 pMmio2 = pMmio2->pNextR3)
931 {
932 PPGMLIVESAVEMMIO2PAGE paLSPages = pMmio2->paLSPages;
933 uint8_t const *pbPage = (uint8_t const *)pMmio2->RamRange.pvR3;
934 uint32_t cPages = pMmio2->RamRange.cb >> PAGE_SHIFT;
935 uint32_t iPageLast = cPages;
936 pgmUnlock(pVM);
937
938 for (uint32_t iPage = 0; iPage < cPages; iPage++, pbPage += PAGE_SIZE)
939 {
940 /* Skip clean pages and pages which hasn't quiesced. */
941 if (!paLSPages[iPage].fDirty)
942 continue;
943 if (paLSPages[iPage].cUnchangedScans < 3)
944 continue;
945 if (pgmR3ScanMmio2Page(pVM, pbPage, &paLSPages[iPage]))
946 continue;
947
948 /* Save it. */
949 bool const fZero = paLSPages[iPage].fZero;
950 uint8_t abPage[PAGE_SIZE];
951 if (!fZero)
952 {
953 memcpy(abPage, pbPage, PAGE_SIZE);
954 RTSha1(abPage, PAGE_SIZE, paLSPages[iPage].abSha1Saved);
955 }
956
957 uint8_t u8Type = paLSPages[iPage].fZero ? PGM_STATE_REC_MMIO2_ZERO : PGM_STATE_REC_MMIO2_RAW;
958 if (iPage != 0 && iPage == iPageLast + 1)
959 rc = SSMR3PutU8(pSSM, u8Type);
960 else
961 {
962 SSMR3PutU8(pSSM, u8Type | PGM_STATE_REC_FLAG_ADDR);
963 SSMR3PutU8(pSSM, pMmio2->idSavedState);
964 rc = SSMR3PutU32(pSSM, iPage);
965 }
966 if (u8Type == PGM_STATE_REC_MMIO2_RAW)
967 rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
968 if (RT_FAILURE(rc))
969 break;
970
971 /* Housekeeping. */
972 paLSPages[iPage].fDirty = false;
973 pVM->pgm.s.LiveSave.Mmio2.cDirtyPages--;
974 pVM->pgm.s.LiveSave.Mmio2.cReadyPages++;
975 if (u8Type == PGM_STATE_REC_MMIO2_ZERO)
976 pVM->pgm.s.LiveSave.Mmio2.cZeroPages++;
977 pVM->pgm.s.LiveSave.cSavedPages++;
978 iPageLast = iPage;
979 }
980
981 pgmLock(pVM);
982 }
983 pgmUnlock(pVM);
984 }
985
986 return rc;
987}
988
989
990/**
991 * Cleans up MMIO2 pages after a live save.
992 *
993 * @param pVM The VM handle.
994 */
995static void pgmR3DoneMmio2Pages(PVM pVM)
996{
997 /*
998 * Free the tracking structures for the MMIO2 pages.
999 * We do the freeing outside the lock in case the VM is running.
1000 */
1001 pgmLock(pVM);
1002 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
1003 {
1004 void *pvMmio2ToFree = pMmio2->paLSPages;
1005 if (pvMmio2ToFree)
1006 {
1007 pMmio2->paLSPages = NULL;
1008 pgmUnlock(pVM);
1009 MMR3HeapFree(pvMmio2ToFree);
1010 pgmLock(pVM);
1011 }
1012 }
1013 pgmUnlock(pVM);
1014}
1015
1016
1017/**
1018 * Prepares the RAM pages for a live save.
1019 *
1020 * @returns VBox status code.
1021 * @param pVM The VM handle.
1022 */
1023static int pgmR3PrepRamPages(PVM pVM)
1024{
1025
1026 /*
1027 * Try allocating tracking structures for the ram ranges.
1028 *
1029 * To avoid lock contention, we leave the lock every time we're allocating
1030 * a new array. This means we'll have to ditch the allocation and start
1031 * all over again if the RAM range list changes in-between.
1032 *
1033 * Note! pgmR3SaveDone will always be called and it is therefore responsible
1034 * for cleaning up.
1035 */
1036 PPGMRAMRANGE pCur;
1037 pgmLock(pVM);
1038 do
1039 {
1040 for (pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
1041 {
1042 if ( !pCur->paLSPages
1043 && !PGM_RAM_RANGE_IS_AD_HOC(pCur))
1044 {
1045 uint32_t const idRamRangesGen = pVM->pgm.s.idRamRangesGen;
1046 uint32_t const cPages = pCur->cb >> PAGE_SHIFT;
1047 pgmUnlock(pVM);
1048 PPGMLIVESAVERAMPAGE paLSPages = (PPGMLIVESAVERAMPAGE)MMR3HeapAllocZ(pVM, MM_TAG_PGM, cPages * sizeof(PGMLIVESAVERAMPAGE));
1049 if (!paLSPages)
1050 return VERR_NO_MEMORY;
1051 pgmLock(pVM);
1052 if (pVM->pgm.s.idRamRangesGen != idRamRangesGen)
1053 {
1054 pgmUnlock(pVM);
1055 MMR3HeapFree(paLSPages);
1056 pgmLock(pVM);
1057 break; /* try again */
1058 }
1059 pCur->paLSPages = paLSPages;
1060
1061 /*
1062 * Initialize the array.
1063 */
1064 uint32_t iPage = cPages;
1065 while (iPage-- > 0)
1066 {
1067 /** @todo yield critsect! (after moving this away from EMT0) */
1068 PCPGMPAGE pPage = &pCur->aPages[iPage];
1069 paLSPages[iPage].cDirtied = 0;
1070 paLSPages[iPage].fDirty = 1; /* everything is dirty at this time */
1071 paLSPages[iPage].fWriteMonitored = 0;
1072 paLSPages[iPage].fWriteMonitoredJustNow = 0;
1073 paLSPages[iPage].u2Reserved = 0;
1074 switch (PGM_PAGE_GET_TYPE(pPage))
1075 {
1076 case PGMPAGETYPE_RAM:
1077 if ( PGM_PAGE_IS_ZERO(pPage)
1078 || PGM_PAGE_IS_BALLOONED(pPage))
1079 {
1080 paLSPages[iPage].fZero = 1;
1081 paLSPages[iPage].fShared = 0;
1082#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1083 paLSPages[iPage].u32Crc = PGM_STATE_CRC32_ZERO_PAGE;
1084#endif
1085 }
1086 else if (PGM_PAGE_IS_SHARED(pPage))
1087 {
1088 paLSPages[iPage].fZero = 0;
1089 paLSPages[iPage].fShared = 1;
1090#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1091 paLSPages[iPage].u32Crc = UINT32_MAX;
1092#endif
1093 }
1094 else
1095 {
1096 paLSPages[iPage].fZero = 0;
1097 paLSPages[iPage].fShared = 0;
1098#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1099 paLSPages[iPage].u32Crc = UINT32_MAX;
1100#endif
1101 }
1102 paLSPages[iPage].fIgnore = 0;
1103 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1104 break;
1105
1106 case PGMPAGETYPE_ROM_SHADOW:
1107 case PGMPAGETYPE_ROM:
1108 {
1109 paLSPages[iPage].fZero = 0;
1110 paLSPages[iPage].fShared = 0;
1111 paLSPages[iPage].fDirty = 0;
1112 paLSPages[iPage].fIgnore = 1;
1113#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1114 paLSPages[iPage].u32Crc = UINT32_MAX;
1115#endif
1116 pVM->pgm.s.LiveSave.cIgnoredPages++;
1117 break;
1118 }
1119
1120 default:
1121 AssertMsgFailed(("%R[pgmpage]", pPage));
1122 case PGMPAGETYPE_MMIO2:
1123 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1124 paLSPages[iPage].fZero = 0;
1125 paLSPages[iPage].fShared = 0;
1126 paLSPages[iPage].fDirty = 0;
1127 paLSPages[iPage].fIgnore = 1;
1128#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1129 paLSPages[iPage].u32Crc = UINT32_MAX;
1130#endif
1131 pVM->pgm.s.LiveSave.cIgnoredPages++;
1132 break;
1133
1134 case PGMPAGETYPE_MMIO:
1135 paLSPages[iPage].fZero = 0;
1136 paLSPages[iPage].fShared = 0;
1137 paLSPages[iPage].fDirty = 0;
1138 paLSPages[iPage].fIgnore = 1;
1139#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1140 paLSPages[iPage].u32Crc = UINT32_MAX;
1141#endif
1142 pVM->pgm.s.LiveSave.cIgnoredPages++;
1143 break;
1144 }
1145 }
1146 }
1147 }
1148 } while (pCur);
1149 pgmUnlock(pVM);
1150
1151 return VINF_SUCCESS;
1152}
1153
1154
1155/**
1156 * Saves the RAM configuration.
1157 *
1158 * @returns VBox status code.
1159 * @param pVM The VM handle.
1160 * @param pSSM The saved state handle.
1161 */
1162static int pgmR3SaveRamConfig(PVM pVM, PSSMHANDLE pSSM)
1163{
1164 uint32_t cbRamHole = 0;
1165 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
1166 AssertRCReturn(rc, rc);
1167
1168 uint64_t cbRam = 0;
1169 rc = CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0);
1170 AssertRCReturn(rc, rc);
1171
1172 SSMR3PutU32(pSSM, cbRamHole);
1173 return SSMR3PutU64(pSSM, cbRam);
1174}
1175
1176
1177/**
1178 * Loads and verifies the RAM configuration.
1179 *
1180 * @returns VBox status code.
1181 * @param pVM The VM handle.
1182 * @param pSSM The saved state handle.
1183 */
1184static int pgmR3LoadRamConfig(PVM pVM, PSSMHANDLE pSSM)
1185{
1186 uint32_t cbRamHoleCfg = 0;
1187 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHoleCfg, MM_RAM_HOLE_SIZE_DEFAULT);
1188 AssertRCReturn(rc, rc);
1189
1190 uint64_t cbRamCfg = 0;
1191 rc = CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRamCfg, 0);
1192 AssertRCReturn(rc, rc);
1193
1194 uint32_t cbRamHoleSaved;
1195 SSMR3GetU32(pSSM, &cbRamHoleSaved);
1196
1197 uint64_t cbRamSaved;
1198 rc = SSMR3GetU64(pSSM, &cbRamSaved);
1199 AssertRCReturn(rc, rc);
1200
1201 if ( cbRamHoleCfg != cbRamHoleSaved
1202 || cbRamCfg != cbRamSaved)
1203 return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("Ram config mismatch: saved=%RX64/%RX32 config=%RX64/%RX32 (RAM/Hole)"),
1204 cbRamSaved, cbRamHoleSaved, cbRamCfg, cbRamHoleCfg);
1205 return VINF_SUCCESS;
1206}
1207
1208#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1209
1210/**
1211 * Calculates the CRC-32 for a RAM page and updates the live save page tracking
1212 * info with it.
1213 *
1214 * @param pVM The VM handle.
1215 * @param pCur The current RAM range.
1216 * @param paLSPages The current array of live save page tracking
1217 * structures.
1218 * @param iPage The page index.
1219 */
1220static void pgmR3StateCalcCrc32ForRamPage(PVM pVM, PPGMRAMRANGE pCur, PPGMLIVESAVERAMPAGE paLSPages, uint32_t iPage)
1221{
1222 RTGCPHYS GCPhys = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1223 void const *pvPage;
1224 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, &pCur->aPages[iPage], GCPhys, &pvPage);
1225 if (RT_SUCCESS(rc))
1226 paLSPages[iPage].u32Crc = RTCrc32(pvPage, PAGE_SIZE);
1227 else
1228 paLSPages[iPage].u32Crc = UINT32_MAX; /* Invalid */
1229}
1230
1231
1232/**
1233 * Verifies the CRC-32 for a page given it's raw bits.
1234 *
1235 * @param pvPage The page bits.
1236 * @param pCur The current RAM range.
1237 * @param paLSPages The current array of live save page tracking
1238 * structures.
1239 * @param iPage The page index.
1240 */
1241static void pgmR3StateVerifyCrc32ForPage(void const *pvPage, PPGMRAMRANGE pCur, PPGMLIVESAVERAMPAGE paLSPages, uint32_t iPage)
1242{
1243 if (paLSPages[iPage].u32Crc != UINT32_MAX)
1244 {
1245 uint32_t u32Crc = RTCrc32(pvPage, PAGE_SIZE);
1246 Assert((!PGM_PAGE_IS_ZERO(&pCur->aPages[iPage]) && !PGM_PAGE_IS_BALLOONED(&pCur->aPages[iPage])) || u32Crc == PGM_STATE_CRC32_ZERO_PAGE);
1247 AssertMsg(paLSPages[iPage].u32Crc == u32Crc,
1248 ("%08x != %08x for %RGp %R[pgmpage]\n", paLSPages[iPage].u32Crc, u32Crc,
1249 pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pCur->aPages[iPage]));
1250 }
1251}
1252
1253
1254/**
1255 * Verfies the CRC-32 for a RAM page.
1256 *
1257 * @param pVM The VM handle.
1258 * @param pCur The current RAM range.
1259 * @param paLSPages The current array of live save page tracking
1260 * structures.
1261 * @param iPage The page index.
1262 */
1263static void pgmR3StateVerifyCrc32ForRamPage(PVM pVM, PPGMRAMRANGE pCur, PPGMLIVESAVERAMPAGE paLSPages, uint32_t iPage)
1264{
1265 if (paLSPages[iPage].u32Crc != UINT32_MAX)
1266 {
1267 RTGCPHYS GCPhys = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1268 void const *pvPage;
1269 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, &pCur->aPages[iPage], GCPhys, &pvPage);
1270 if (RT_SUCCESS(rc))
1271 pgmR3StateVerifyCrc32ForPage(pvPage, pCur, paLSPages, iPage);
1272 }
1273}
1274
1275#endif /* PGMLIVESAVERAMPAGE_WITH_CRC32 */
1276
1277/**
1278 * Scan for RAM page modifications and reprotect them.
1279 *
1280 * @param pVM The VM handle.
1281 * @param fFinalPass Whether this is the final pass or not.
1282 */
1283static void pgmR3ScanRamPages(PVM pVM, bool fFinalPass)
1284{
1285 /*
1286 * The RAM.
1287 */
1288 RTGCPHYS GCPhysCur = 0;
1289 PPGMRAMRANGE pCur;
1290 pgmLock(pVM);
1291 do
1292 {
1293 uint32_t const idRamRangesGen = pVM->pgm.s.idRamRangesGen;
1294 for (pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
1295 {
1296 if ( pCur->GCPhysLast > GCPhysCur
1297 && !PGM_RAM_RANGE_IS_AD_HOC(pCur))
1298 {
1299 PPGMLIVESAVERAMPAGE paLSPages = pCur->paLSPages;
1300 uint32_t cPages = pCur->cb >> PAGE_SHIFT;
1301 uint32_t iPage = GCPhysCur <= pCur->GCPhys ? 0 : (GCPhysCur - pCur->GCPhys) >> PAGE_SHIFT;
1302 GCPhysCur = 0;
1303 for (; iPage < cPages; iPage++)
1304 {
1305 /* Do yield first. */
1306 if ( !fFinalPass
1307#ifndef PGMLIVESAVERAMPAGE_WITH_CRC32
1308 && (iPage & 0x7ff) == 0x100
1309#endif
1310 && PDMR3CritSectYield(&pVM->pgm.s.CritSect)
1311 && pVM->pgm.s.idRamRangesGen != idRamRangesGen)
1312 {
1313 GCPhysCur = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1314 break; /* restart */
1315 }
1316
1317 /* Skip already ignored pages. */
1318 if (paLSPages[iPage].fIgnore)
1319 continue;
1320
1321 if (RT_LIKELY(PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]) == PGMPAGETYPE_RAM))
1322 {
1323 /*
1324 * A RAM page.
1325 */
1326 switch (PGM_PAGE_GET_STATE(&pCur->aPages[iPage]))
1327 {
1328 case PGM_PAGE_STATE_ALLOCATED:
1329 /** @todo Optimize this: Don't always re-enable write
1330 * monitoring if the page is known to be very busy. */
1331 if (PGM_PAGE_IS_WRITTEN_TO(&pCur->aPages[iPage]))
1332 {
1333 Assert(paLSPages[iPage].fWriteMonitored);
1334 PGM_PAGE_CLEAR_WRITTEN_TO(&pCur->aPages[iPage]);
1335 Assert(pVM->pgm.s.cWrittenToPages > 0);
1336 pVM->pgm.s.cWrittenToPages--;
1337 }
1338 else
1339 {
1340 Assert(!paLSPages[iPage].fWriteMonitored);
1341 pVM->pgm.s.LiveSave.Ram.cMonitoredPages++;
1342 }
1343
1344 if (!paLSPages[iPage].fDirty)
1345 {
1346 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1347 if (paLSPages[iPage].fZero)
1348 pVM->pgm.s.LiveSave.Ram.cZeroPages--;
1349 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1350 if (++paLSPages[iPage].cDirtied > PGMLIVSAVEPAGE_MAX_DIRTIED)
1351 paLSPages[iPage].cDirtied = PGMLIVSAVEPAGE_MAX_DIRTIED;
1352 }
1353
1354 PGM_PAGE_SET_STATE(&pCur->aPages[iPage], PGM_PAGE_STATE_WRITE_MONITORED);
1355 pVM->pgm.s.cMonitoredPages++;
1356 paLSPages[iPage].fWriteMonitored = 1;
1357 paLSPages[iPage].fWriteMonitoredJustNow = 1;
1358 paLSPages[iPage].fDirty = 1;
1359 paLSPages[iPage].fZero = 0;
1360 paLSPages[iPage].fShared = 0;
1361#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1362 paLSPages[iPage].u32Crc = UINT32_MAX; /* invalid */
1363#endif
1364 break;
1365
1366 case PGM_PAGE_STATE_WRITE_MONITORED:
1367 Assert(paLSPages[iPage].fWriteMonitored);
1368 if (PGM_PAGE_GET_WRITE_LOCKS(&pCur->aPages[iPage]) == 0)
1369 {
1370#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1371 if (paLSPages[iPage].fWriteMonitoredJustNow)
1372 pgmR3StateCalcCrc32ForRamPage(pVM, pCur, paLSPages, iPage);
1373 else
1374 pgmR3StateVerifyCrc32ForRamPage(pVM, pCur, paLSPages, iPage);
1375#endif
1376 paLSPages[iPage].fWriteMonitoredJustNow = 0;
1377 }
1378 else
1379 {
1380 paLSPages[iPage].fWriteMonitoredJustNow = 1;
1381#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1382 paLSPages[iPage].u32Crc = UINT32_MAX; /* invalid */
1383#endif
1384 if (!paLSPages[iPage].fDirty)
1385 {
1386 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1387 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1388 if (++paLSPages[iPage].cDirtied > PGMLIVSAVEPAGE_MAX_DIRTIED)
1389 paLSPages[iPage].cDirtied = PGMLIVSAVEPAGE_MAX_DIRTIED;
1390 }
1391 }
1392 break;
1393
1394 case PGM_PAGE_STATE_ZERO:
1395 if (!paLSPages[iPage].fZero)
1396 {
1397 if (!paLSPages[iPage].fDirty)
1398 {
1399 paLSPages[iPage].fDirty = 1;
1400 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1401 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1402 }
1403 paLSPages[iPage].fZero = 1;
1404 paLSPages[iPage].fShared = 0;
1405#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1406 paLSPages[iPage].u32Crc = PGM_STATE_CRC32_ZERO_PAGE;
1407#endif
1408 }
1409 break;
1410
1411 case PGM_PAGE_STATE_BALLOONED:
1412 if (!paLSPages[iPage].fZero)
1413 {
1414 if (!paLSPages[iPage].fDirty)
1415 {
1416 paLSPages[iPage].fDirty = 1;
1417 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1418 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1419 }
1420 paLSPages[iPage].fZero = 1;
1421 paLSPages[iPage].fShared = 0;
1422#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1423 paLSPages[iPage].u32Crc = PGM_STATE_CRC32_ZERO_PAGE;
1424#endif
1425 }
1426 break;
1427
1428 case PGM_PAGE_STATE_SHARED:
1429 if (!paLSPages[iPage].fShared)
1430 {
1431 if (!paLSPages[iPage].fDirty)
1432 {
1433 paLSPages[iPage].fDirty = 1;
1434 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1435 if (paLSPages[iPage].fZero)
1436 pVM->pgm.s.LiveSave.Ram.cZeroPages--;
1437 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1438 }
1439 paLSPages[iPage].fZero = 0;
1440 paLSPages[iPage].fShared = 1;
1441#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1442 pgmR3StateCalcCrc32ForRamPage(pVM, pCur, paLSPages, iPage);
1443#endif
1444 }
1445 break;
1446 }
1447 }
1448 else
1449 {
1450 /*
1451 * All other types => Ignore the page.
1452 */
1453 Assert(!paLSPages[iPage].fIgnore); /* skipped before switch */
1454 paLSPages[iPage].fIgnore = 1;
1455 if (paLSPages[iPage].fWriteMonitored)
1456 {
1457 /** @todo this doesn't hold water when we start monitoring MMIO2 and ROM shadow
1458 * pages! */
1459 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(&pCur->aPages[iPage]) == PGM_PAGE_STATE_WRITE_MONITORED))
1460 {
1461 AssertMsgFailed(("%R[pgmpage]", &pCur->aPages[iPage])); /* shouldn't happen. */
1462 PGM_PAGE_SET_STATE(&pCur->aPages[iPage], PGM_PAGE_STATE_ALLOCATED);
1463 Assert(pVM->pgm.s.cMonitoredPages > 0);
1464 pVM->pgm.s.cMonitoredPages--;
1465 }
1466 if (PGM_PAGE_IS_WRITTEN_TO(&pCur->aPages[iPage]))
1467 {
1468 PGM_PAGE_CLEAR_WRITTEN_TO(&pCur->aPages[iPage]);
1469 Assert(pVM->pgm.s.cWrittenToPages > 0);
1470 pVM->pgm.s.cWrittenToPages--;
1471 }
1472 pVM->pgm.s.LiveSave.Ram.cMonitoredPages--;
1473 }
1474
1475 /** @todo the counting doesn't quite work out here. fix later? */
1476 if (paLSPages[iPage].fDirty)
1477 pVM->pgm.s.LiveSave.Ram.cDirtyPages--;
1478 else
1479 {
1480 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1481 if (paLSPages[iPage].fZero)
1482 pVM->pgm.s.LiveSave.Ram.cZeroPages--;
1483 }
1484 pVM->pgm.s.LiveSave.cIgnoredPages++;
1485 }
1486 } /* for each page in range */
1487
1488 if (GCPhysCur != 0)
1489 break; /* Yield + ramrange change */
1490 GCPhysCur = pCur->GCPhysLast;
1491 }
1492 } /* for each range */
1493 } while (pCur);
1494 pgmUnlock(pVM);
1495}
1496
1497
1498/**
1499 * Save quiescent RAM pages.
1500 *
1501 * @returns VBox status code.
1502 * @param pVM The VM handle.
1503 * @param pSSM The SSM handle.
1504 * @param fLiveSave Whether it's a live save or not.
1505 * @param uPass The pass number.
1506 */
1507static int pgmR3SaveRamPages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave, uint32_t uPass)
1508{
1509 /*
1510 * The RAM.
1511 */
1512 RTGCPHYS GCPhysLast = NIL_RTGCPHYS;
1513 RTGCPHYS GCPhysCur = 0;
1514 PPGMRAMRANGE pCur;
1515 pgmLock(pVM);
1516 do
1517 {
1518 uint32_t const idRamRangesGen = pVM->pgm.s.idRamRangesGen;
1519 for (pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
1520 {
1521 if ( pCur->GCPhysLast > GCPhysCur
1522 && !PGM_RAM_RANGE_IS_AD_HOC(pCur))
1523 {
1524 PPGMLIVESAVERAMPAGE paLSPages = pCur->paLSPages;
1525 uint32_t cPages = pCur->cb >> PAGE_SHIFT;
1526 uint32_t iPage = GCPhysCur <= pCur->GCPhys ? 0 : (GCPhysCur - pCur->GCPhys) >> PAGE_SHIFT;
1527 GCPhysCur = 0;
1528 for (; iPage < cPages; iPage++)
1529 {
1530 /* Do yield first. */
1531 if ( uPass != SSM_PASS_FINAL
1532 && (iPage & 0x7ff) == 0x100
1533 && PDMR3CritSectYield(&pVM->pgm.s.CritSect)
1534 && pVM->pgm.s.idRamRangesGen != idRamRangesGen)
1535 {
1536 GCPhysCur = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1537 break; /* restart */
1538 }
1539
1540 /*
1541 * Only save pages that haven't changed since last scan and are dirty.
1542 */
1543 if ( uPass != SSM_PASS_FINAL
1544 && paLSPages)
1545 {
1546 if (!paLSPages[iPage].fDirty)
1547 continue;
1548 if (paLSPages[iPage].fWriteMonitoredJustNow)
1549 continue;
1550 if (paLSPages[iPage].fIgnore)
1551 continue;
1552 if (PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]) != PGMPAGETYPE_RAM) /* in case of recent ramppings */
1553 continue;
1554 if ( PGM_PAGE_GET_STATE(&pCur->aPages[iPage])
1555 != ( paLSPages[iPage].fZero
1556 ? PGM_PAGE_STATE_ZERO
1557 : paLSPages[iPage].fShared
1558 ? PGM_PAGE_STATE_SHARED
1559 : PGM_PAGE_STATE_WRITE_MONITORED))
1560 continue;
1561 if (PGM_PAGE_GET_WRITE_LOCKS(&pCur->aPages[iPage]) > 0)
1562 continue;
1563 }
1564 else
1565 {
1566 if ( paLSPages
1567 && !paLSPages[iPage].fDirty
1568 && !paLSPages[iPage].fIgnore)
1569 {
1570#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1571 if (PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]) != PGMPAGETYPE_RAM)
1572 pgmR3StateVerifyCrc32ForRamPage(pVM, pCur, paLSPages, iPage);
1573#endif
1574 continue;
1575 }
1576 if (PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]) != PGMPAGETYPE_RAM)
1577 continue;
1578 }
1579
1580 /*
1581 * Do the saving outside the PGM critsect since SSM may block on I/O.
1582 */
1583 int rc;
1584 RTGCPHYS GCPhys = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1585 bool fZero = PGM_PAGE_IS_ZERO(&pCur->aPages[iPage]) || PGM_PAGE_IS_BALLOONED(&pCur->aPages[iPage]);
1586
1587 if (!fZero)
1588 {
1589 /*
1590 * Copy the page and then save it outside the lock (since any
1591 * SSM call may block).
1592 */
1593 uint8_t abPage[PAGE_SIZE];
1594 void const *pvPage;
1595 rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, &pCur->aPages[iPage], GCPhys, &pvPage);
1596 if (RT_SUCCESS(rc))
1597 {
1598 memcpy(abPage, pvPage, PAGE_SIZE);
1599#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1600 if (paLSPages)
1601 pgmR3StateVerifyCrc32ForPage(abPage, pCur, paLSPages, iPage);
1602#endif
1603 }
1604 pgmUnlock(pVM);
1605 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc GCPhys=%RGp\n", rc, GCPhys), rc);
1606
1607 if (GCPhys == GCPhysLast + PAGE_SIZE)
1608 SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_RAW);
1609 else
1610 {
1611 SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_RAW | PGM_STATE_REC_FLAG_ADDR);
1612 SSMR3PutGCPhys(pSSM, GCPhys);
1613 }
1614 rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
1615 }
1616 else
1617 {
1618 /*
1619 * Dirty zero page.
1620 */
1621#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1622 if (paLSPages)
1623 pgmR3StateVerifyCrc32ForRamPage(pVM, pCur, paLSPages, iPage);
1624#endif
1625 pgmUnlock(pVM);
1626
1627 if (GCPhys == GCPhysLast + PAGE_SIZE)
1628 rc = SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_ZERO);
1629 else
1630 {
1631 SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_ZERO | PGM_STATE_REC_FLAG_ADDR);
1632 rc = SSMR3PutGCPhys(pSSM, GCPhys);
1633 }
1634 }
1635 if (RT_FAILURE(rc))
1636 return rc;
1637
1638 pgmLock(pVM);
1639 GCPhysLast = GCPhys;
1640 if (paLSPages)
1641 {
1642 paLSPages[iPage].fDirty = 0;
1643 pVM->pgm.s.LiveSave.Ram.cReadyPages++;
1644 if (fZero)
1645 pVM->pgm.s.LiveSave.Ram.cZeroPages++;
1646 pVM->pgm.s.LiveSave.Ram.cDirtyPages--;
1647 pVM->pgm.s.LiveSave.cSavedPages++;
1648 }
1649 if (idRamRangesGen != pVM->pgm.s.idRamRangesGen)
1650 {
1651 GCPhysCur = GCPhys | PAGE_OFFSET_MASK;
1652 break; /* restart */
1653 }
1654
1655 } /* for each page in range */
1656
1657 if (GCPhysCur != 0)
1658 break; /* Yield + ramrange change */
1659 GCPhysCur = pCur->GCPhysLast;
1660 }
1661 } /* for each range */
1662 } while (pCur);
1663 pgmUnlock(pVM);
1664
1665 return VINF_SUCCESS;
1666}
1667
1668
1669/**
1670 * Cleans up RAM pages after a live save.
1671 *
1672 * @param pVM The VM handle.
1673 */
1674static void pgmR3DoneRamPages(PVM pVM)
1675{
1676 /*
1677 * Free the tracking arrays and disable write monitoring.
1678 *
1679 * Play nice with the PGM lock in case we're called while the VM is still
1680 * running. This means we have to delay the freeing since we wish to use
1681 * paLSPages as an indicator of which RAM ranges which we need to scan for
1682 * write monitored pages.
1683 */
1684 void *pvToFree = NULL;
1685 PPGMRAMRANGE pCur;
1686 uint32_t cMonitoredPages = 0;
1687 pgmLock(pVM);
1688 do
1689 {
1690 for (pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
1691 {
1692 if (pCur->paLSPages)
1693 {
1694 if (pvToFree)
1695 {
1696 uint32_t idRamRangesGen = pVM->pgm.s.idRamRangesGen;
1697 pgmUnlock(pVM);
1698 MMR3HeapFree(pvToFree);
1699 pvToFree = NULL;
1700 pgmLock(pVM);
1701 if (idRamRangesGen != pVM->pgm.s.idRamRangesGen)
1702 break; /* start over again. */
1703 }
1704
1705 pvToFree = pCur->paLSPages;
1706 pCur->paLSPages = NULL;
1707
1708 uint32_t iPage = pCur->cb >> PAGE_SHIFT;
1709 while (iPage--)
1710 {
1711 PPGMPAGE pPage = &pCur->aPages[iPage];
1712 PGM_PAGE_CLEAR_WRITTEN_TO(pPage);
1713 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
1714 {
1715 PGM_PAGE_SET_STATE(pPage, PGM_PAGE_STATE_ALLOCATED);
1716 cMonitoredPages++;
1717 }
1718 }
1719 }
1720 }
1721 } while (pCur);
1722
1723 Assert(pVM->pgm.s.cMonitoredPages >= cMonitoredPages);
1724 if (pVM->pgm.s.cMonitoredPages < cMonitoredPages)
1725 pVM->pgm.s.cMonitoredPages = 0;
1726 else
1727 pVM->pgm.s.cMonitoredPages -= cMonitoredPages;
1728
1729 pgmUnlock(pVM);
1730
1731 MMR3HeapFree(pvToFree);
1732 pvToFree = NULL;
1733}
1734
1735
1736/**
1737 * Execute a live save pass.
1738 *
1739 * @returns VBox status code.
1740 *
1741 * @param pVM The VM handle.
1742 * @param pSSM The SSM handle.
1743 */
1744static DECLCALLBACK(int) pgmR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
1745{
1746 int rc;
1747
1748 /*
1749 * Save the MMIO2 and ROM range IDs in pass 0.
1750 */
1751 if (uPass == 0)
1752 {
1753 rc = pgmR3SaveRamConfig(pVM, pSSM);
1754 if (RT_FAILURE(rc))
1755 return rc;
1756 rc = pgmR3SaveRomRanges(pVM, pSSM);
1757 if (RT_FAILURE(rc))
1758 return rc;
1759 rc = pgmR3SaveMmio2Ranges(pVM, pSSM);
1760 if (RT_FAILURE(rc))
1761 return rc;
1762 }
1763 /*
1764 * Reset the page-per-second estimate to avoid inflation by the initial
1765 * load of zero pages. pgmR3LiveVote ASSUMES this is done at pass 7.
1766 */
1767 else if (uPass == 7)
1768 {
1769 pVM->pgm.s.LiveSave.cSavedPages = 0;
1770 pVM->pgm.s.LiveSave.uSaveStartNS = RTTimeNanoTS();
1771 }
1772
1773 /*
1774 * Do the scanning.
1775 */
1776 pgmR3ScanRomPages(pVM);
1777 pgmR3ScanMmio2Pages(pVM, uPass);
1778 pgmR3ScanRamPages(pVM, false /*fFinalPass*/);
1779 pgmR3PoolClearAll(pVM); /** @todo this could perhaps be optimized a bit. */
1780
1781 /*
1782 * Save the pages.
1783 */
1784 if (uPass == 0)
1785 rc = pgmR3SaveRomVirginPages( pVM, pSSM, true /*fLiveSave*/);
1786 else
1787 rc = VINF_SUCCESS;
1788 if (RT_SUCCESS(rc))
1789 rc = pgmR3SaveShadowedRomPages(pVM, pSSM, true /*fLiveSave*/, false /*fFinalPass*/);
1790 if (RT_SUCCESS(rc))
1791 rc = pgmR3SaveMmio2Pages( pVM, pSSM, true /*fLiveSave*/, uPass);
1792 if (RT_SUCCESS(rc))
1793 rc = pgmR3SaveRamPages( pVM, pSSM, true /*fLiveSave*/, uPass);
1794 SSMR3PutU8(pSSM, PGM_STATE_REC_END); /* (Ignore the rc, SSM takes of it.) */
1795
1796 return rc;
1797}
1798
1799
1800/**
1801 * Votes on whether the live save phase is done or not.
1802 *
1803 * @returns VBox status code.
1804 *
1805 * @param pVM The VM handle.
1806 * @param pSSM The SSM handle.
1807 * @param uPass The data pass.
1808 */
1809static DECLCALLBACK(int) pgmR3LiveVote(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
1810{
1811 /*
1812 * Update and calculate parameters used in the decision making.
1813 */
1814 const uint32_t cHistoryEntries = RT_ELEMENTS(pVM->pgm.s.LiveSave.acDirtyPagesHistory);
1815
1816 /* update history. */
1817 pgmLock(pVM);
1818 uint32_t const cWrittenToPages = pVM->pgm.s.cWrittenToPages;
1819 pgmUnlock(pVM);
1820 uint32_t const cDirtyNow = pVM->pgm.s.LiveSave.Rom.cDirtyPages
1821 + pVM->pgm.s.LiveSave.Mmio2.cDirtyPages
1822 + pVM->pgm.s.LiveSave.Ram.cDirtyPages
1823 + cWrittenToPages;
1824 uint32_t i = pVM->pgm.s.LiveSave.iDirtyPagesHistory;
1825 pVM->pgm.s.LiveSave.acDirtyPagesHistory[i] = cDirtyNow;
1826 pVM->pgm.s.LiveSave.iDirtyPagesHistory = (i + 1) % cHistoryEntries;
1827
1828 /* calc shortterm average (4 passes). */
1829 AssertCompile(RT_ELEMENTS(pVM->pgm.s.LiveSave.acDirtyPagesHistory) > 4);
1830 uint64_t cTotal = pVM->pgm.s.LiveSave.acDirtyPagesHistory[i];
1831 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[(i + cHistoryEntries - 1) % cHistoryEntries];
1832 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[(i + cHistoryEntries - 2) % cHistoryEntries];
1833 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[(i + cHistoryEntries - 3) % cHistoryEntries];
1834 uint32_t const cDirtyPagesShort = cTotal / 4;
1835 pVM->pgm.s.LiveSave.cDirtyPagesShort = cDirtyPagesShort;
1836
1837 /* calc longterm average. */
1838 cTotal = 0;
1839 if (uPass < cHistoryEntries)
1840 for (i = 0; i < cHistoryEntries && i <= uPass; i++)
1841 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[i];
1842 else
1843 for (i = 0; i < cHistoryEntries; i++)
1844 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[i];
1845 uint32_t const cDirtyPagesLong = cTotal / cHistoryEntries;
1846 pVM->pgm.s.LiveSave.cDirtyPagesLong = cDirtyPagesLong;
1847
1848 /* estimate the speed */
1849 uint64_t cNsElapsed = RTTimeNanoTS() - pVM->pgm.s.LiveSave.uSaveStartNS;
1850 uint32_t cPagesPerSecond = (uint32_t)( pVM->pgm.s.LiveSave.cSavedPages
1851 / ((long double)cNsElapsed / 1000000000.0) );
1852 pVM->pgm.s.LiveSave.cPagesPerSecond = cPagesPerSecond;
1853
1854 /*
1855 * Try make a decision.
1856 */
1857 if ( cDirtyPagesShort <= cDirtyPagesLong
1858 && ( cDirtyNow <= cDirtyPagesShort
1859 || cDirtyNow - cDirtyPagesShort < RT_MIN(cDirtyPagesShort / 8, 16)
1860 )
1861 )
1862 {
1863 if (uPass > 10)
1864 {
1865 uint32_t cMsLeftShort = (uint32_t)(cDirtyPagesShort / (long double)cPagesPerSecond * 1000.0);
1866 uint32_t cMsLeftLong = (uint32_t)(cDirtyPagesLong / (long double)cPagesPerSecond * 1000.0);
1867 uint32_t cMsMaxDowntime = SSMR3HandleMaxDowntime(pSSM);
1868 if (cMsMaxDowntime < 32)
1869 cMsMaxDowntime = 32;
1870 if ( ( cMsLeftLong <= cMsMaxDowntime
1871 && cMsLeftShort < cMsMaxDowntime)
1872 || cMsLeftShort < cMsMaxDowntime / 2
1873 )
1874 {
1875 Log(("pgmR3LiveVote: VINF_SUCCESS - pass=%d cDirtyPagesShort=%u|%ums cDirtyPagesLong=%u|%ums cMsMaxDowntime=%u\n",
1876 uPass, cDirtyPagesShort, cMsLeftShort, cDirtyPagesLong, cMsLeftLong, cMsMaxDowntime));
1877 return VINF_SUCCESS;
1878 }
1879 }
1880 else
1881 {
1882 if ( ( cDirtyPagesShort <= 128
1883 && cDirtyPagesLong <= 1024)
1884 || cDirtyPagesLong <= 256
1885 )
1886 {
1887 Log(("pgmR3LiveVote: VINF_SUCCESS - pass=%d cDirtyPagesShort=%u cDirtyPagesLong=%u\n", uPass, cDirtyPagesShort, cDirtyPagesLong));
1888 return VINF_SUCCESS;
1889 }
1890 }
1891 }
1892 return VINF_SSM_VOTE_FOR_ANOTHER_PASS;
1893}
1894
1895
1896/**
1897 * Prepare for a live save operation.
1898 *
1899 * This will attempt to allocate and initialize the tracking structures. It
1900 * will also prepare for write monitoring of pages and initialize PGM::LiveSave.
1901 * pgmR3SaveDone will do the cleanups.
1902 *
1903 * @returns VBox status code.
1904 *
1905 * @param pVM The VM handle.
1906 * @param pSSM The SSM handle.
1907 */
1908static DECLCALLBACK(int) pgmR3LivePrep(PVM pVM, PSSMHANDLE pSSM)
1909{
1910 /*
1911 * Indicate that we will be using the write monitoring.
1912 */
1913 pgmLock(pVM);
1914 /** @todo find a way of mediating this when more users are added. */
1915 if (pVM->pgm.s.fPhysWriteMonitoringEngaged)
1916 {
1917 pgmUnlock(pVM);
1918 AssertLogRelFailedReturn(VERR_INTERNAL_ERROR_2);
1919 }
1920 pVM->pgm.s.fPhysWriteMonitoringEngaged = true;
1921 pgmUnlock(pVM);
1922
1923 /*
1924 * Initialize the statistics.
1925 */
1926 pVM->pgm.s.LiveSave.Rom.cReadyPages = 0;
1927 pVM->pgm.s.LiveSave.Rom.cDirtyPages = 0;
1928 pVM->pgm.s.LiveSave.Mmio2.cReadyPages = 0;
1929 pVM->pgm.s.LiveSave.Mmio2.cDirtyPages = 0;
1930 pVM->pgm.s.LiveSave.Ram.cReadyPages = 0;
1931 pVM->pgm.s.LiveSave.Ram.cDirtyPages = 0;
1932 pVM->pgm.s.LiveSave.cIgnoredPages = 0;
1933 pVM->pgm.s.LiveSave.fActive = true;
1934 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.LiveSave.acDirtyPagesHistory); i++)
1935 pVM->pgm.s.LiveSave.acDirtyPagesHistory[i] = UINT32_MAX / 2;
1936 pVM->pgm.s.LiveSave.iDirtyPagesHistory = 0;
1937 pVM->pgm.s.LiveSave.cSavedPages = 0;
1938 pVM->pgm.s.LiveSave.uSaveStartNS = RTTimeNanoTS();
1939 pVM->pgm.s.LiveSave.cPagesPerSecond = 8192;
1940
1941 /*
1942 * Per page type.
1943 */
1944 int rc = pgmR3PrepRomPages(pVM);
1945 if (RT_SUCCESS(rc))
1946 rc = pgmR3PrepMmio2Pages(pVM);
1947 if (RT_SUCCESS(rc))
1948 rc = pgmR3PrepRamPages(pVM);
1949 return rc;
1950}
1951
1952
1953/**
1954 * Execute state save operation.
1955 *
1956 * @returns VBox status code.
1957 * @param pVM VM Handle.
1958 * @param pSSM SSM operation handle.
1959 */
1960static DECLCALLBACK(int) pgmR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
1961{
1962 int rc;
1963 unsigned i;
1964 PPGM pPGM = &pVM->pgm.s;
1965
1966 /*
1967 * Lock PGM and set the no-more-writes indicator.
1968 */
1969 pgmLock(pVM);
1970 pVM->pgm.s.fNoMorePhysWrites = true;
1971
1972 /*
1973 * Save basic data (required / unaffected by relocation).
1974 */
1975 bool const fMappingsFixed = pVM->pgm.s.fMappingsFixed;
1976 pVM->pgm.s.fMappingsFixed |= pVM->pgm.s.fMappingsFixedRestored;
1977 SSMR3PutStruct(pSSM, pPGM, &s_aPGMFields[0]);
1978 pVM->pgm.s.fMappingsFixed = fMappingsFixed;
1979
1980 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1981 SSMR3PutStruct(pSSM, &pVM->aCpus[idCpu].pgm.s, &s_aPGMCpuFields[0]);
1982
1983 /*
1984 * The guest mappings.
1985 */
1986 i = 0;
1987 for (PPGMMAPPING pMapping = pPGM->pMappingsR3; pMapping; pMapping = pMapping->pNextR3, i++)
1988 {
1989 SSMR3PutU32( pSSM, i);
1990 SSMR3PutStrZ( pSSM, pMapping->pszDesc); /* This is the best unique id we have... */
1991 SSMR3PutGCPtr( pSSM, pMapping->GCPtr);
1992 SSMR3PutGCUIntPtr(pSSM, pMapping->cPTs);
1993 }
1994 rc = SSMR3PutU32(pSSM, ~0); /* terminator. */
1995
1996 /*
1997 * Save the (remainder of the) memory.
1998 */
1999 if (RT_SUCCESS(rc))
2000 {
2001 if (pVM->pgm.s.LiveSave.fActive)
2002 {
2003 pgmR3ScanRomPages(pVM);
2004 pgmR3ScanMmio2Pages(pVM, SSM_PASS_FINAL);
2005 pgmR3ScanRamPages(pVM, true /*fFinalPass*/);
2006
2007 rc = pgmR3SaveShadowedRomPages( pVM, pSSM, true /*fLiveSave*/, true /*fFinalPass*/);
2008 if (RT_SUCCESS(rc))
2009 rc = pgmR3SaveMmio2Pages( pVM, pSSM, true /*fLiveSave*/, SSM_PASS_FINAL);
2010 if (RT_SUCCESS(rc))
2011 rc = pgmR3SaveRamPages( pVM, pSSM, true /*fLiveSave*/, SSM_PASS_FINAL);
2012 }
2013 else
2014 {
2015 rc = pgmR3SaveRamConfig(pVM, pSSM);
2016 if (RT_SUCCESS(rc))
2017 rc = pgmR3SaveRomRanges(pVM, pSSM);
2018 if (RT_SUCCESS(rc))
2019 rc = pgmR3SaveMmio2Ranges(pVM, pSSM);
2020 if (RT_SUCCESS(rc))
2021 rc = pgmR3SaveRomVirginPages( pVM, pSSM, false /*fLiveSave*/);
2022 if (RT_SUCCESS(rc))
2023 rc = pgmR3SaveShadowedRomPages(pVM, pSSM, false /*fLiveSave*/, true /*fFinalPass*/);
2024 if (RT_SUCCESS(rc))
2025 rc = pgmR3SaveMmio2Pages( pVM, pSSM, false /*fLiveSave*/, SSM_PASS_FINAL);
2026 if (RT_SUCCESS(rc))
2027 rc = pgmR3SaveRamPages( pVM, pSSM, false /*fLiveSave*/, SSM_PASS_FINAL);
2028 }
2029 SSMR3PutU8(pSSM, PGM_STATE_REC_END); /* (Ignore the rc, SSM takes of it.) */
2030 }
2031
2032 pgmUnlock(pVM);
2033 return rc;
2034}
2035
2036
2037/**
2038 * Cleans up after an save state operation.
2039 *
2040 * @returns VBox status code.
2041 * @param pVM VM Handle.
2042 * @param pSSM SSM operation handle.
2043 */
2044static DECLCALLBACK(int) pgmR3SaveDone(PVM pVM, PSSMHANDLE pSSM)
2045{
2046 /*
2047 * Do per page type cleanups first.
2048 */
2049 if (pVM->pgm.s.LiveSave.fActive)
2050 {
2051 pgmR3DoneRomPages(pVM);
2052 pgmR3DoneMmio2Pages(pVM);
2053 pgmR3DoneRamPages(pVM);
2054 }
2055
2056 /*
2057 * Clear the live save indicator and disengage write monitoring.
2058 */
2059 pgmLock(pVM);
2060 pVM->pgm.s.LiveSave.fActive = false;
2061 /** @todo this is blindly assuming that we're the only user of write
2062 * monitoring. Fix this when more users are added. */
2063 pVM->pgm.s.fPhysWriteMonitoringEngaged = false;
2064 pgmUnlock(pVM);
2065
2066 return VINF_SUCCESS;
2067}
2068
2069
2070/**
2071 * Prepare state load operation.
2072 *
2073 * @returns VBox status code.
2074 * @param pVM VM Handle.
2075 * @param pSSM SSM operation handle.
2076 */
2077static DECLCALLBACK(int) pgmR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
2078{
2079 /*
2080 * Call the reset function to make sure all the memory is cleared.
2081 */
2082 PGMR3Reset(pVM);
2083 pVM->pgm.s.LiveSave.fActive = false;
2084 NOREF(pSSM);
2085 return VINF_SUCCESS;
2086}
2087
2088
2089/**
2090 * Load an ignored page.
2091 *
2092 * @returns VBox status code.
2093 * @param pSSM The saved state handle.
2094 */
2095static int pgmR3LoadPageToDevNullOld(PSSMHANDLE pSSM)
2096{
2097 uint8_t abPage[PAGE_SIZE];
2098 return SSMR3GetMem(pSSM, &abPage[0], sizeof(abPage));
2099}
2100
2101
2102/**
2103 * Loads a page without any bits in the saved state, i.e. making sure it's
2104 * really zero.
2105 *
2106 * @returns VBox status code.
2107 * @param pVM The VM handle.
2108 * @param uType The page type or PGMPAGETYPE_INVALID (old saved
2109 * state).
2110 * @param pPage The guest page tracking structure.
2111 * @param GCPhys The page address.
2112 * @param pRam The ram range (logging).
2113 */
2114static int pgmR3LoadPageZeroOld(PVM pVM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2115{
2116 if ( PGM_PAGE_GET_TYPE(pPage) != uType
2117 && uType != PGMPAGETYPE_INVALID)
2118 return VERR_SSM_UNEXPECTED_DATA;
2119
2120 /* I think this should be sufficient. */
2121 if ( !PGM_PAGE_IS_ZERO(pPage)
2122 && !PGM_PAGE_IS_BALLOONED(pPage))
2123 return VERR_SSM_UNEXPECTED_DATA;
2124
2125 NOREF(pVM);
2126 NOREF(GCPhys);
2127 NOREF(pRam);
2128 return VINF_SUCCESS;
2129}
2130
2131
2132/**
2133 * Loads a page from the saved state.
2134 *
2135 * @returns VBox status code.
2136 * @param pVM The VM handle.
2137 * @param pSSM The SSM handle.
2138 * @param uType The page type or PGMPAGETYEP_INVALID (old saved
2139 * state).
2140 * @param pPage The guest page tracking structure.
2141 * @param GCPhys The page address.
2142 * @param pRam The ram range (logging).
2143 */
2144static int pgmR3LoadPageBitsOld(PVM pVM, PSSMHANDLE pSSM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2145{
2146 /*
2147 * Match up the type, dealing with MMIO2 aliases (dropped).
2148 */
2149 AssertLogRelMsgReturn( PGM_PAGE_GET_TYPE(pPage) == uType
2150 || uType == PGMPAGETYPE_INVALID,
2151 ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc),
2152 VERR_SSM_UNEXPECTED_DATA);
2153
2154 /*
2155 * Load the page.
2156 */
2157 void *pvPage;
2158 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvPage);
2159 if (RT_SUCCESS(rc))
2160 rc = SSMR3GetMem(pSSM, pvPage, PAGE_SIZE);
2161
2162 return rc;
2163}
2164
2165
2166/**
2167 * Loads a page (counter part to pgmR3SavePage).
2168 *
2169 * @returns VBox status code, fully bitched errors.
2170 * @param pVM The VM handle.
2171 * @param pSSM The SSM handle.
2172 * @param uType The page type.
2173 * @param pPage The page.
2174 * @param GCPhys The page address.
2175 * @param pRam The RAM range (for error messages).
2176 */
2177static int pgmR3LoadPageOld(PVM pVM, PSSMHANDLE pSSM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2178{
2179 uint8_t uState;
2180 int rc = SSMR3GetU8(pSSM, &uState);
2181 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s rc=%Rrc\n", pPage, GCPhys, pRam->pszDesc, rc), rc);
2182 if (uState == 0 /* zero */)
2183 rc = pgmR3LoadPageZeroOld(pVM, uType, pPage, GCPhys, pRam);
2184 else if (uState == 1)
2185 rc = pgmR3LoadPageBitsOld(pVM, pSSM, uType, pPage, GCPhys, pRam);
2186 else
2187 rc = VERR_INTERNAL_ERROR;
2188 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] uState=%d uType=%d GCPhys=%RGp %s rc=%Rrc\n",
2189 pPage, uState, uType, GCPhys, pRam->pszDesc, rc),
2190 rc);
2191 return VINF_SUCCESS;
2192}
2193
2194
2195/**
2196 * Loads a shadowed ROM page.
2197 *
2198 * @returns VBox status code, errors are fully bitched.
2199 * @param pVM The VM handle.
2200 * @param pSSM The saved state handle.
2201 * @param pPage The page.
2202 * @param GCPhys The page address.
2203 * @param pRam The RAM range (for error messages).
2204 */
2205static int pgmR3LoadShadowedRomPageOld(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2206{
2207 /*
2208 * Load and set the protection first, then load the two pages, the first
2209 * one is the active the other is the passive.
2210 */
2211 PPGMROMPAGE pRomPage = pgmR3GetRomPage(pVM, GCPhys);
2212 AssertLogRelMsgReturn(pRomPage, ("GCPhys=%RGp %s\n", GCPhys, pRam->pszDesc), VERR_INTERNAL_ERROR);
2213
2214 uint8_t uProt;
2215 int rc = SSMR3GetU8(pSSM, &uProt);
2216 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc), rc);
2217 PGMROMPROT enmProt = (PGMROMPROT)uProt;
2218 AssertLogRelMsgReturn( enmProt >= PGMROMPROT_INVALID
2219 && enmProt < PGMROMPROT_END,
2220 ("enmProt=%d pPage=%R[pgmpage] GCPhys=%#x %s\n", enmProt, pPage, GCPhys, pRam->pszDesc),
2221 VERR_SSM_UNEXPECTED_DATA);
2222
2223 if (pRomPage->enmProt != enmProt)
2224 {
2225 rc = PGMR3PhysRomProtect(pVM, GCPhys, PAGE_SIZE, enmProt);
2226 AssertLogRelRCReturn(rc, rc);
2227 AssertLogRelReturn(pRomPage->enmProt == enmProt, VERR_INTERNAL_ERROR);
2228 }
2229
2230 PPGMPAGE pPageActive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
2231 PPGMPAGE pPagePassive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2232 uint8_t u8ActiveType = PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM : PGMPAGETYPE_ROM_SHADOW;
2233 uint8_t u8PassiveType= PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM_SHADOW : PGMPAGETYPE_ROM;
2234
2235 /** @todo this isn't entirely correct as long as pgmPhysGCPhys2CCPtrInternal is
2236 * used down the line (will the 2nd page will be written to the first
2237 * one because of a false TLB hit since the TLB is using GCPhys and
2238 * doesn't check the HCPhys of the desired page). */
2239 rc = pgmR3LoadPageOld(pVM, pSSM, u8ActiveType, pPage, GCPhys, pRam);
2240 if (RT_SUCCESS(rc))
2241 {
2242 *pPageActive = *pPage;
2243 rc = pgmR3LoadPageOld(pVM, pSSM, u8PassiveType, pPagePassive, GCPhys, pRam);
2244 }
2245 return rc;
2246}
2247
2248/**
2249 * Ram range flags and bits for older versions of the saved state.
2250 *
2251 * @returns VBox status code.
2252 *
2253 * @param pVM The VM handle
2254 * @param pSSM The SSM handle.
2255 * @param uVersion The saved state version.
2256 */
2257static int pgmR3LoadMemoryOld(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
2258{
2259 PPGM pPGM = &pVM->pgm.s;
2260
2261 /*
2262 * Ram range flags and bits.
2263 */
2264 uint32_t i = 0;
2265 for (PPGMRAMRANGE pRam = pPGM->pRamRangesR3; ; pRam = pRam->pNextR3, i++)
2266 {
2267 /* Check the seqence number / separator. */
2268 uint32_t u32Sep;
2269 int rc = SSMR3GetU32(pSSM, &u32Sep);
2270 if (RT_FAILURE(rc))
2271 return rc;
2272 if (u32Sep == ~0U)
2273 break;
2274 if (u32Sep != i)
2275 {
2276 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2277 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2278 }
2279 AssertLogRelReturn(pRam, VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2280
2281 /* Get the range details. */
2282 RTGCPHYS GCPhys;
2283 SSMR3GetGCPhys(pSSM, &GCPhys);
2284 RTGCPHYS GCPhysLast;
2285 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2286 RTGCPHYS cb;
2287 SSMR3GetGCPhys(pSSM, &cb);
2288 uint8_t fHaveBits;
2289 rc = SSMR3GetU8(pSSM, &fHaveBits);
2290 if (RT_FAILURE(rc))
2291 return rc;
2292 if (fHaveBits & ~1)
2293 {
2294 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2295 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2296 }
2297 size_t cchDesc = 0;
2298 char szDesc[256];
2299 szDesc[0] = '\0';
2300 if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
2301 {
2302 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2303 if (RT_FAILURE(rc))
2304 return rc;
2305 /* Since we've modified the description strings in r45878, only compare
2306 them if the saved state is more recent. */
2307 if (uVersion != PGM_SAVED_STATE_VERSION_RR_DESC)
2308 cchDesc = strlen(szDesc);
2309 }
2310
2311 /*
2312 * Match it up with the current range.
2313 *
2314 * Note there is a hack for dealing with the high BIOS mapping
2315 * in the old saved state format, this means we might not have
2316 * a 1:1 match on success.
2317 */
2318 if ( ( GCPhys != pRam->GCPhys
2319 || GCPhysLast != pRam->GCPhysLast
2320 || cb != pRam->cb
2321 || ( cchDesc
2322 && strcmp(szDesc, pRam->pszDesc)) )
2323 /* Hack for PDMDevHlpPhysReserve(pDevIns, 0xfff80000, 0x80000, "High ROM Region"); */
2324 && ( uVersion != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE
2325 || GCPhys != UINT32_C(0xfff80000)
2326 || GCPhysLast != UINT32_C(0xffffffff)
2327 || pRam->GCPhysLast != GCPhysLast
2328 || pRam->GCPhys < GCPhys
2329 || !fHaveBits)
2330 )
2331 {
2332 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s %s\n"
2333 "State : %RGp-%RGp %RGp bytes %s %s\n",
2334 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits", pRam->pszDesc,
2335 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits", szDesc));
2336 /*
2337 * If we're loading a state for debugging purpose, don't make a fuss if
2338 * the MMIO and ROM stuff isn't 100% right, just skip the mismatches.
2339 */
2340 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2341 || GCPhys < 8 * _1M)
2342 return SSMR3SetCfgError(pSSM, RT_SRC_POS,
2343 N_("RAM range mismatch; saved={%RGp-%RGp %RGp bytes %s %s} config={%RGp-%RGp %RGp bytes %s %s}"),
2344 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits", szDesc,
2345 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits", pRam->pszDesc);
2346
2347 AssertMsgFailed(("debug skipping not implemented, sorry\n"));
2348 continue;
2349 }
2350
2351 uint32_t cPages = (GCPhysLast - GCPhys + 1) >> PAGE_SHIFT;
2352 if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
2353 {
2354 /*
2355 * Load the pages one by one.
2356 */
2357 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2358 {
2359 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2360 PPGMPAGE pPage = &pRam->aPages[iPage];
2361 uint8_t uType;
2362 rc = SSMR3GetU8(pSSM, &uType);
2363 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] iPage=%#x GCPhysPage=%#x %s\n", pPage, iPage, GCPhysPage, pRam->pszDesc), rc);
2364 if (uType == PGMPAGETYPE_ROM_SHADOW)
2365 rc = pgmR3LoadShadowedRomPageOld(pVM, pSSM, pPage, GCPhysPage, pRam);
2366 else
2367 rc = pgmR3LoadPageOld(pVM, pSSM, uType, pPage, GCPhysPage, pRam);
2368 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2369 }
2370 }
2371 else
2372 {
2373 /*
2374 * Old format.
2375 */
2376
2377 /* Of the page flags, pick up MMIO2 and ROM/RESERVED for the !fHaveBits case.
2378 The rest is generally irrelevant and wrong since the stuff have to match registrations. */
2379 uint32_t fFlags = 0;
2380 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2381 {
2382 uint16_t u16Flags;
2383 rc = SSMR3GetU16(pSSM, &u16Flags);
2384 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2385 fFlags |= u16Flags;
2386 }
2387
2388 /* Load the bits */
2389 if ( !fHaveBits
2390 && GCPhysLast < UINT32_C(0xe0000000))
2391 {
2392 /*
2393 * Dynamic chunks.
2394 */
2395 const uint32_t cPagesInChunk = (1*1024*1024) >> PAGE_SHIFT;
2396 AssertLogRelMsgReturn(cPages % cPagesInChunk == 0,
2397 ("cPages=%#x cPagesInChunk=%#x\n", cPages, cPagesInChunk, pRam->GCPhys, pRam->pszDesc),
2398 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2399
2400 for (uint32_t iPage = 0; iPage < cPages; /* incremented by inner loop */ )
2401 {
2402 uint8_t fPresent;
2403 rc = SSMR3GetU8(pSSM, &fPresent);
2404 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2405 AssertLogRelMsgReturn(fPresent == (uint8_t)true || fPresent == (uint8_t)false,
2406 ("fPresent=%#x iPage=%#x GCPhys=%#x %s\n", fPresent, iPage, pRam->GCPhys, pRam->pszDesc),
2407 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2408
2409 for (uint32_t iChunkPage = 0; iChunkPage < cPagesInChunk; iChunkPage++, iPage++)
2410 {
2411 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2412 PPGMPAGE pPage = &pRam->aPages[iPage];
2413 if (fPresent)
2414 {
2415 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO)
2416 rc = pgmR3LoadPageToDevNullOld(pSSM);
2417 else
2418 rc = pgmR3LoadPageBitsOld(pVM, pSSM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2419 }
2420 else
2421 rc = pgmR3LoadPageZeroOld(pVM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2422 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2423 }
2424 }
2425 }
2426 else if (pRam->pvR3)
2427 {
2428 /*
2429 * MMIO2.
2430 */
2431 AssertLogRelMsgReturn((fFlags & 0x0f) == RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/,
2432 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2433 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2434 AssertLogRelMsgReturn(pRam->pvR3,
2435 ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc),
2436 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2437
2438 rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2439 AssertLogRelMsgRCReturn(rc, ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc), rc);
2440 }
2441 else if (GCPhysLast < UINT32_C(0xfff80000))
2442 {
2443 /*
2444 * PCI MMIO, no pages saved.
2445 */
2446 }
2447 else
2448 {
2449 /*
2450 * Load the 0xfff80000..0xffffffff BIOS range.
2451 * It starts with X reserved pages that we have to skip over since
2452 * the RAMRANGE create by the new code won't include those.
2453 */
2454 AssertLogRelMsgReturn( !(fFlags & RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/)
2455 && (fFlags & RT_BIT(0) /*MM_RAM_FLAGS_RESERVED*/),
2456 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2457 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2458 AssertLogRelMsgReturn(GCPhys == UINT32_C(0xfff80000),
2459 ("GCPhys=%RGp pRamRange{GCPhys=%#x %s}\n", GCPhys, pRam->GCPhys, pRam->pszDesc),
2460 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2461
2462 /* Skip wasted reserved pages before the ROM. */
2463 while (GCPhys < pRam->GCPhys)
2464 {
2465 rc = pgmR3LoadPageToDevNullOld(pSSM);
2466 GCPhys += PAGE_SIZE;
2467 }
2468
2469 /* Load the bios pages. */
2470 cPages = pRam->cb >> PAGE_SHIFT;
2471 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2472 {
2473 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2474 PPGMPAGE pPage = &pRam->aPages[iPage];
2475
2476 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM,
2477 ("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, GCPhys),
2478 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2479 rc = pgmR3LoadPageBitsOld(pVM, pSSM, PGMPAGETYPE_ROM, pPage, GCPhysPage, pRam);
2480 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2481 }
2482 }
2483 }
2484 }
2485
2486 return VINF_SUCCESS;
2487}
2488
2489
2490/**
2491 * Worker for pgmR3Load and pgmR3LoadLocked.
2492 *
2493 * @returns VBox status code.
2494 *
2495 * @param pVM The VM handle.
2496 * @param pSSM The SSM handle.
2497 * @param uVersion The saved state version.
2498 *
2499 * @todo This needs splitting up if more record types or code twists are
2500 * added...
2501 */
2502static int pgmR3LoadMemory(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
2503{
2504 /*
2505 * Process page records until we hit the terminator.
2506 */
2507 RTGCPHYS GCPhys = NIL_RTGCPHYS;
2508 PPGMRAMRANGE pRamHint = NULL;
2509 uint8_t id = UINT8_MAX;
2510 uint32_t iPage = UINT32_MAX - 10;
2511 PPGMROMRANGE pRom = NULL;
2512 PPGMMMIO2RANGE pMmio2 = NULL;
2513 for (;;)
2514 {
2515 /*
2516 * Get the record type and flags.
2517 */
2518 uint8_t u8;
2519 int rc = SSMR3GetU8(pSSM, &u8);
2520 if (RT_FAILURE(rc))
2521 return rc;
2522 if (u8 == PGM_STATE_REC_END)
2523 return VINF_SUCCESS;
2524 AssertLogRelMsgReturn((u8 & ~PGM_STATE_REC_FLAG_ADDR) <= PGM_STATE_REC_LAST, ("%#x\n", u8), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2525 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2526 {
2527 /*
2528 * RAM page.
2529 */
2530 case PGM_STATE_REC_RAM_ZERO:
2531 case PGM_STATE_REC_RAM_RAW:
2532 {
2533 /*
2534 * Get the address and resolve it into a page descriptor.
2535 */
2536 if (!(u8 & PGM_STATE_REC_FLAG_ADDR))
2537 GCPhys += PAGE_SIZE;
2538 else
2539 {
2540 rc = SSMR3GetGCPhys(pSSM, &GCPhys);
2541 if (RT_FAILURE(rc))
2542 return rc;
2543 }
2544 AssertLogRelMsgReturn(!(GCPhys & PAGE_OFFSET_MASK), ("%RGp\n", GCPhys), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2545
2546 PPGMPAGE pPage;
2547 rc = pgmPhysGetPageWithHintEx(&pVM->pgm.s, GCPhys, &pPage, &pRamHint);
2548 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc %RGp\n", rc, GCPhys), rc);
2549
2550 /*
2551 * Take action according to the record type.
2552 */
2553 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2554 {
2555 case PGM_STATE_REC_RAM_ZERO:
2556 {
2557 if ( PGM_PAGE_IS_ZERO(pPage)
2558 || PGM_PAGE_IS_BALLOONED(pPage))
2559 break;
2560 /** @todo implement zero page replacing. */
2561 AssertLogRelMsgReturn(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED, ("GCPhys=%RGp %R[pgmpage]\n", GCPhys, pPage), VERR_INTERNAL_ERROR_5);
2562 void *pvDstPage;
2563 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDstPage);
2564 AssertLogRelMsgRCReturn(rc, ("GCPhys=%RGp %R[pgmpage] rc=%Rrc\n", GCPhys, pPage, rc), rc);
2565 ASMMemZeroPage(pvDstPage);
2566 break;
2567 }
2568
2569 case PGM_STATE_REC_RAM_RAW:
2570 {
2571 void *pvDstPage;
2572 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDstPage);
2573 AssertLogRelMsgRCReturn(rc, ("GCPhys=%RGp %R[pgmpage] rc=%Rrc\n", GCPhys, pPage, rc), rc);
2574 rc = SSMR3GetMem(pSSM, pvDstPage, PAGE_SIZE);
2575 if (RT_FAILURE(rc))
2576 return rc;
2577 break;
2578 }
2579
2580 default:
2581 AssertMsgFailedReturn(("%#x\n", u8), VERR_INTERNAL_ERROR);
2582 }
2583 id = UINT8_MAX;
2584 break;
2585 }
2586
2587 /*
2588 * MMIO2 page.
2589 */
2590 case PGM_STATE_REC_MMIO2_RAW:
2591 case PGM_STATE_REC_MMIO2_ZERO:
2592 {
2593 /*
2594 * Get the ID + page number and resolved that into a MMIO2 page.
2595 */
2596 if (!(u8 & PGM_STATE_REC_FLAG_ADDR))
2597 iPage++;
2598 else
2599 {
2600 SSMR3GetU8(pSSM, &id);
2601 rc = SSMR3GetU32(pSSM, &iPage);
2602 if (RT_FAILURE(rc))
2603 return rc;
2604 }
2605 if ( !pMmio2
2606 || pMmio2->idSavedState != id)
2607 {
2608 for (pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
2609 if (pMmio2->idSavedState == id)
2610 break;
2611 AssertLogRelMsgReturn(pMmio2, ("id=%#u iPage=%#x\n", id, iPage), VERR_INTERNAL_ERROR);
2612 }
2613 AssertLogRelMsgReturn(iPage < (pMmio2->RamRange.cb >> PAGE_SHIFT), ("iPage=%#x cb=%RGp %s\n", iPage, pMmio2->RamRange.cb, pMmio2->RamRange.pszDesc), VERR_INTERNAL_ERROR);
2614 void *pvDstPage = (uint8_t *)pMmio2->RamRange.pvR3 + ((size_t)iPage << PAGE_SHIFT);
2615
2616 /*
2617 * Load the page bits.
2618 */
2619 if ((u8 & ~PGM_STATE_REC_FLAG_ADDR) == PGM_STATE_REC_MMIO2_ZERO)
2620 ASMMemZeroPage(pvDstPage);
2621 else
2622 {
2623 rc = SSMR3GetMem(pSSM, pvDstPage, PAGE_SIZE);
2624 if (RT_FAILURE(rc))
2625 return rc;
2626 }
2627 GCPhys = NIL_RTGCPHYS;
2628 break;
2629 }
2630
2631 /*
2632 * ROM pages.
2633 */
2634 case PGM_STATE_REC_ROM_VIRGIN:
2635 case PGM_STATE_REC_ROM_SHW_RAW:
2636 case PGM_STATE_REC_ROM_SHW_ZERO:
2637 case PGM_STATE_REC_ROM_PROT:
2638 {
2639 /*
2640 * Get the ID + page number and resolved that into a ROM page descriptor.
2641 */
2642 if (!(u8 & PGM_STATE_REC_FLAG_ADDR))
2643 iPage++;
2644 else
2645 {
2646 SSMR3GetU8(pSSM, &id);
2647 rc = SSMR3GetU32(pSSM, &iPage);
2648 if (RT_FAILURE(rc))
2649 return rc;
2650 }
2651 if ( !pRom
2652 || pRom->idSavedState != id)
2653 {
2654 for (pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
2655 if (pRom->idSavedState == id)
2656 break;
2657 AssertLogRelMsgReturn(pRom, ("id=%#u iPage=%#x\n", id, iPage), VERR_INTERNAL_ERROR);
2658 }
2659 AssertLogRelMsgReturn(iPage < (pRom->cb >> PAGE_SHIFT), ("iPage=%#x cb=%RGp %s\n", iPage, pRom->cb, pRom->pszDesc), VERR_INTERNAL_ERROR);
2660 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
2661 GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
2662
2663 /*
2664 * Get and set the protection.
2665 */
2666 uint8_t u8Prot;
2667 rc = SSMR3GetU8(pSSM, &u8Prot);
2668 if (RT_FAILURE(rc))
2669 return rc;
2670 PGMROMPROT enmProt = (PGMROMPROT)u8Prot;
2671 AssertLogRelMsgReturn(enmProt > PGMROMPROT_INVALID && enmProt < PGMROMPROT_END, ("GCPhys=%RGp enmProt=%d\n", GCPhys, enmProt), VERR_INTERNAL_ERROR);
2672
2673 if (enmProt != pRomPage->enmProt)
2674 {
2675 if (RT_UNLIKELY(!(pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)))
2676 return SSMR3SetCfgError(pSSM, RT_SRC_POS,
2677 N_("Protection change of unshadowed ROM page: GCPhys=%RGp enmProt=%d %s"),
2678 GCPhys, enmProt, pRom->pszDesc);
2679 rc = PGMR3PhysRomProtect(pVM, GCPhys, PAGE_SIZE, enmProt);
2680 AssertLogRelMsgRCReturn(rc, ("GCPhys=%RGp rc=%Rrc\n", GCPhys, rc), rc);
2681 AssertLogRelReturn(pRomPage->enmProt == enmProt, VERR_INTERNAL_ERROR);
2682 }
2683 if ((u8 & ~PGM_STATE_REC_FLAG_ADDR) == PGM_STATE_REC_ROM_PROT)
2684 break; /* done */
2685
2686 /*
2687 * Get the right page descriptor.
2688 */
2689 PPGMPAGE pRealPage;
2690 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2691 {
2692 case PGM_STATE_REC_ROM_VIRGIN:
2693 if (!PGMROMPROT_IS_ROM(enmProt))
2694 pRealPage = &pRomPage->Virgin;
2695 else
2696 pRealPage = NULL;
2697 break;
2698
2699 case PGM_STATE_REC_ROM_SHW_RAW:
2700 case PGM_STATE_REC_ROM_SHW_ZERO:
2701 if (RT_UNLIKELY(!(pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)))
2702 return SSMR3SetCfgError(pSSM, RT_SRC_POS,
2703 N_("Shadowed / non-shadowed page type mismatch: GCPhys=%RGp enmProt=%d %s"),
2704 GCPhys, enmProt, pRom->pszDesc);
2705 if (PGMROMPROT_IS_ROM(enmProt))
2706 pRealPage = &pRomPage->Shadow;
2707 else
2708 pRealPage = NULL;
2709 break;
2710
2711 default: AssertLogRelFailedReturn(VERR_INTERNAL_ERROR); /* shut up gcc */
2712 }
2713 if (!pRealPage)
2714 {
2715 rc = pgmPhysGetPageWithHintEx(&pVM->pgm.s, GCPhys, &pRealPage, &pRamHint);
2716 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc %RGp\n", rc, GCPhys), rc);
2717 }
2718
2719 /*
2720 * Make it writable and map it (if necessary).
2721 */
2722 void *pvDstPage = NULL;
2723 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2724 {
2725 case PGM_STATE_REC_ROM_SHW_ZERO:
2726 if ( PGM_PAGE_IS_ZERO(pRealPage)
2727 || PGM_PAGE_IS_BALLOONED(pRealPage))
2728 break;
2729 /** @todo implement zero page replacing. */
2730 /* fall thru */
2731 case PGM_STATE_REC_ROM_VIRGIN:
2732 case PGM_STATE_REC_ROM_SHW_RAW:
2733 {
2734 rc = pgmPhysPageMakeWritableAndMap(pVM, pRealPage, GCPhys, &pvDstPage);
2735 AssertLogRelMsgRCReturn(rc, ("GCPhys=%RGp rc=%Rrc\n", GCPhys, rc), rc);
2736 break;
2737 }
2738 }
2739
2740 /*
2741 * Load the bits.
2742 */
2743 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2744 {
2745 case PGM_STATE_REC_ROM_SHW_ZERO:
2746 if (pvDstPage)
2747 ASMMemZeroPage(pvDstPage);
2748 break;
2749
2750 case PGM_STATE_REC_ROM_VIRGIN:
2751 case PGM_STATE_REC_ROM_SHW_RAW:
2752 rc = SSMR3GetMem(pSSM, pvDstPage, PAGE_SIZE);
2753 if (RT_FAILURE(rc))
2754 return rc;
2755 break;
2756 }
2757 GCPhys = NIL_RTGCPHYS;
2758 break;
2759 }
2760
2761 /*
2762 * Unknown type.
2763 */
2764 default:
2765 AssertLogRelMsgFailedReturn(("%#x\n", u8), VERR_INTERNAL_ERROR);
2766 }
2767 } /* forever */
2768}
2769
2770
2771/**
2772 * Worker for pgmR3Load.
2773 *
2774 * @returns VBox status code.
2775 *
2776 * @param pVM The VM handle.
2777 * @param pSSM The SSM handle.
2778 * @param uVersion The saved state version.
2779 */
2780static int pgmR3LoadFinalLocked(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
2781{
2782 PPGM pPGM = &pVM->pgm.s;
2783 int rc;
2784 uint32_t u32Sep;
2785
2786 /*
2787 * Load basic data (required / unaffected by relocation).
2788 */
2789 if (uVersion >= PGM_SAVED_STATE_VERSION_3_0_0)
2790 {
2791 if (uVersion > PGM_SAVED_STATE_VERSION_PRE_BALLOON)
2792 rc = SSMR3GetStruct(pSSM, pPGM, &s_aPGMFields[0]);
2793 else
2794 rc = SSMR3GetStruct(pSSM, pPGM, &s_aPGMFieldsPreBalloon[0]);
2795
2796 AssertLogRelRCReturn(rc, rc);
2797
2798 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2799 {
2800 rc = SSMR3GetStruct(pSSM, &pVM->aCpus[i].pgm.s, &s_aPGMCpuFields[0]);
2801 AssertLogRelRCReturn(rc, rc);
2802 }
2803 }
2804 else if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
2805 {
2806 AssertRelease(pVM->cCpus == 1);
2807
2808 PGMOLD pgmOld;
2809 rc = SSMR3GetStruct(pSSM, &pgmOld, &s_aPGMFields_Old[0]);
2810 AssertLogRelRCReturn(rc, rc);
2811
2812 pPGM->fMappingsFixed = pgmOld.fMappingsFixed;
2813 pPGM->GCPtrMappingFixed = pgmOld.GCPtrMappingFixed;
2814 pPGM->cbMappingFixed = pgmOld.cbMappingFixed;
2815
2816 pVM->aCpus[0].pgm.s.fA20Enabled = pgmOld.fA20Enabled;
2817 pVM->aCpus[0].pgm.s.GCPhysA20Mask = pgmOld.GCPhysA20Mask;
2818 pVM->aCpus[0].pgm.s.enmGuestMode = pgmOld.enmGuestMode;
2819 }
2820 else
2821 {
2822 AssertRelease(pVM->cCpus == 1);
2823
2824 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2825 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2826 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2827
2828 uint32_t cbRamSizeIgnored;
2829 rc = SSMR3GetU32(pSSM, &cbRamSizeIgnored);
2830 if (RT_FAILURE(rc))
2831 return rc;
2832 SSMR3GetGCPhys(pSSM, &pVM->aCpus[0].pgm.s.GCPhysA20Mask);
2833
2834 uint32_t u32 = 0;
2835 SSMR3GetUInt(pSSM, &u32);
2836 pVM->aCpus[0].pgm.s.fA20Enabled = !!u32;
2837 SSMR3GetUInt(pSSM, &pVM->aCpus[0].pgm.s.fSyncFlags);
2838 RTUINT uGuestMode;
2839 SSMR3GetUInt(pSSM, &uGuestMode);
2840 pVM->aCpus[0].pgm.s.enmGuestMode = (PGMMODE)uGuestMode;
2841
2842 /* check separator. */
2843 SSMR3GetU32(pSSM, &u32Sep);
2844 if (RT_FAILURE(rc))
2845 return rc;
2846 if (u32Sep != (uint32_t)~0)
2847 {
2848 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
2849 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2850 }
2851 }
2852
2853 /*
2854 * The guest mappings - skipped now, see re-fixation in the caller.
2855 */
2856 uint32_t i = 0;
2857 for (;; i++)
2858 {
2859 rc = SSMR3GetU32(pSSM, &u32Sep); /* seqence number */
2860 if (RT_FAILURE(rc))
2861 return rc;
2862 if (u32Sep == ~0U)
2863 break;
2864 AssertMsgReturn(u32Sep == i, ("u32Sep=%#x i=%#x\n", u32Sep, i), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2865
2866 char szDesc[256];
2867 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2868 if (RT_FAILURE(rc))
2869 return rc;
2870 RTGCPTR GCPtrIgnore;
2871 SSMR3GetGCPtr(pSSM, &GCPtrIgnore); /* GCPtr */
2872 rc = SSMR3GetGCPtr(pSSM, &GCPtrIgnore); /* cPTs */
2873 if (RT_FAILURE(rc))
2874 return rc;
2875 }
2876
2877 /*
2878 * Load the RAM contents.
2879 */
2880 if (uVersion > PGM_SAVED_STATE_VERSION_3_0_0)
2881 {
2882 if (!pVM->pgm.s.LiveSave.fActive)
2883 {
2884 if (uVersion > PGM_SAVED_STATE_VERSION_NO_RAM_CFG)
2885 {
2886 rc = pgmR3LoadRamConfig(pVM, pSSM);
2887 if (RT_FAILURE(rc))
2888 return rc;
2889 }
2890 rc = pgmR3LoadRomRanges(pVM, pSSM);
2891 if (RT_FAILURE(rc))
2892 return rc;
2893 rc = pgmR3LoadMmio2Ranges(pVM, pSSM);
2894 if (RT_FAILURE(rc))
2895 return rc;
2896 }
2897
2898 rc = pgmR3LoadMemory(pVM, pSSM, SSM_PASS_FINAL);
2899 }
2900 else
2901 rc = pgmR3LoadMemoryOld(pVM, pSSM, uVersion);
2902
2903 /* Refresh balloon accounting. */
2904 if (pVM->pgm.s.cBalloonedPages)
2905 {
2906 rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_INFLATE, pVM->pgm.s.cBalloonedPages);
2907 AssertRC(rc);
2908 }
2909 return rc;
2910}
2911
2912
2913/**
2914 * Execute state load operation.
2915 *
2916 * @returns VBox status code.
2917 * @param pVM VM Handle.
2918 * @param pSSM SSM operation handle.
2919 * @param uVersion Data layout version.
2920 * @param uPass The data pass.
2921 */
2922static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
2923{
2924 int rc;
2925 PPGM pPGM = &pVM->pgm.s;
2926
2927 /*
2928 * Validate version.
2929 */
2930 if ( ( uPass != SSM_PASS_FINAL
2931 && uVersion != PGM_SAVED_STATE_VERSION
2932 && uVersion != PGM_SAVED_STATE_VERSION_PRE_BALLOON
2933 && uVersion != PGM_SAVED_STATE_VERSION_NO_RAM_CFG)
2934 || ( uVersion != PGM_SAVED_STATE_VERSION
2935 && uVersion != PGM_SAVED_STATE_VERSION_PRE_BALLOON
2936 && uVersion != PGM_SAVED_STATE_VERSION_NO_RAM_CFG
2937 && uVersion != PGM_SAVED_STATE_VERSION_3_0_0
2938 && uVersion != PGM_SAVED_STATE_VERSION_2_2_2
2939 && uVersion != PGM_SAVED_STATE_VERSION_RR_DESC
2940 && uVersion != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE)
2941 )
2942 {
2943 AssertMsgFailed(("pgmR3Load: Invalid version uVersion=%d (current %d)!\n", uVersion, PGM_SAVED_STATE_VERSION));
2944 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2945 }
2946
2947 /*
2948 * Do the loading while owning the lock because a bunch of the functions
2949 * we're using requires this.
2950 */
2951 if (uPass != SSM_PASS_FINAL)
2952 {
2953 pgmLock(pVM);
2954 if (uPass != 0)
2955 rc = pgmR3LoadMemory(pVM, pSSM, uPass);
2956 else
2957 {
2958 pVM->pgm.s.LiveSave.fActive = true;
2959 if (uVersion > PGM_SAVED_STATE_VERSION_NO_RAM_CFG)
2960 rc = pgmR3LoadRamConfig(pVM, pSSM);
2961 else
2962 rc = VINF_SUCCESS;
2963 if (RT_SUCCESS(rc))
2964 rc = pgmR3LoadRomRanges(pVM, pSSM);
2965 if (RT_SUCCESS(rc))
2966 rc = pgmR3LoadMmio2Ranges(pVM, pSSM);
2967 if (RT_SUCCESS(rc))
2968 rc = pgmR3LoadMemory(pVM, pSSM, uPass);
2969 }
2970 pgmUnlock(pVM);
2971 }
2972 else
2973 {
2974 pgmLock(pVM);
2975 rc = pgmR3LoadFinalLocked(pVM, pSSM, uVersion);
2976 pVM->pgm.s.LiveSave.fActive = false;
2977 pgmUnlock(pVM);
2978 if (RT_SUCCESS(rc))
2979 {
2980 /*
2981 * We require a full resync now.
2982 */
2983 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2984 {
2985 PVMCPU pVCpu = &pVM->aCpus[i];
2986 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2987 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2988 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2989 }
2990
2991 pgmR3HandlerPhysicalUpdateAll(pVM);
2992
2993 /*
2994 * Change the paging mode and restore PGMCPU::GCPhysCR3.
2995 * (The latter requires the CPUM state to be restored already.)
2996 */
2997 if (CPUMR3IsStateRestorePending(pVM))
2998 return SSMR3SetLoadError(pSSM, VERR_WRONG_ORDER, RT_SRC_POS,
2999 N_("PGM was unexpectedly restored before CPUM"));
3000
3001 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3002 {
3003 PVMCPU pVCpu = &pVM->aCpus[i];
3004
3005 rc = PGMR3ChangeMode(pVM, pVCpu, pVCpu->pgm.s.enmGuestMode);
3006 AssertLogRelRCReturn(rc, rc);
3007
3008 /* Restore pVM->pgm.s.GCPhysCR3. */
3009 Assert(pVCpu->pgm.s.GCPhysCR3 == NIL_RTGCPHYS);
3010 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVCpu);
3011 if ( pVCpu->pgm.s.enmGuestMode == PGMMODE_PAE
3012 || pVCpu->pgm.s.enmGuestMode == PGMMODE_PAE_NX
3013 || pVCpu->pgm.s.enmGuestMode == PGMMODE_AMD64
3014 || pVCpu->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
3015 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
3016 else
3017 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
3018 pVCpu->pgm.s.GCPhysCR3 = GCPhysCR3;
3019 }
3020
3021 /*
3022 * Try re-fixate the guest mappings.
3023 */
3024 pVM->pgm.s.fMappingsFixedRestored = false;
3025 if ( pVM->pgm.s.fMappingsFixed
3026 && pgmMapAreMappingsEnabled(&pVM->pgm.s))
3027 {
3028 RTGCPTR GCPtrFixed = pVM->pgm.s.GCPtrMappingFixed;
3029 uint32_t cbFixed = pVM->pgm.s.cbMappingFixed;
3030 pVM->pgm.s.fMappingsFixed = false;
3031
3032 uint32_t cbRequired;
3033 int rc2 = PGMR3MappingsSize(pVM, &cbRequired); AssertRC(rc2);
3034 if ( RT_SUCCESS(rc2)
3035 && cbRequired > cbFixed)
3036 rc2 = VERR_OUT_OF_RANGE;
3037 if (RT_SUCCESS(rc2))
3038 rc2 = pgmR3MappingsFixInternal(pVM, GCPtrFixed, cbFixed);
3039 if (RT_FAILURE(rc2))
3040 {
3041 LogRel(("PGM: Unable to re-fixate the guest mappings at %RGv-%RGv: rc=%Rrc (cbRequired=%#x)\n",
3042 GCPtrFixed, GCPtrFixed + cbFixed, rc2, cbRequired));
3043 pVM->pgm.s.fMappingsFixed = false;
3044 pVM->pgm.s.fMappingsFixedRestored = true;
3045 pVM->pgm.s.GCPtrMappingFixed = GCPtrFixed;
3046 pVM->pgm.s.cbMappingFixed = cbFixed;
3047 }
3048 }
3049 else
3050 {
3051 /* We used to set fixed + disabled while we only use disabled now,
3052 so wipe the state to avoid any confusion. */
3053 pVM->pgm.s.fMappingsFixed = false;
3054 pVM->pgm.s.GCPtrMappingFixed = NIL_RTGCPTR;
3055 pVM->pgm.s.cbMappingFixed = 0;
3056 }
3057
3058 /*
3059 * If we have floating mappings, do a CR3 sync now to make sure the HMA
3060 * doesn't conflict with guest code / data and thereby cause trouble
3061 * when restoring other components like PATM.
3062 */
3063 if (pgmMapAreMappingsFloating(&pVM->pgm.s))
3064 {
3065 PVMCPU pVCpu = &pVM->aCpus[0];
3066 rc = PGMSyncCR3(pVCpu, CPUMGetGuestCR0(pVCpu), CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu), true);
3067 if (RT_FAILURE(rc))
3068 return SSMR3SetLoadError(pSSM, VERR_WRONG_ORDER, RT_SRC_POS,
3069 N_("PGMSyncCR3 failed unexpectedly with rc=%Rrc"), rc);
3070
3071 /* Make sure to re-sync before executing code. */
3072 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
3073 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3074 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
3075 }
3076 }
3077 }
3078
3079 return rc;
3080}
3081
3082
3083/**
3084 * Registers the saved state callbacks with SSM.
3085 *
3086 * @returns VBox status code.
3087 * @param pVM Pointer to VM structure.
3088 * @param cbRam The RAM size.
3089 */
3090int pgmR3InitSavedState(PVM pVM, uint64_t cbRam)
3091{
3092 return SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
3093 pgmR3LivePrep, pgmR3LiveExec, pgmR3LiveVote,
3094 NULL, pgmR3SaveExec, pgmR3SaveDone,
3095 pgmR3LoadPrep, pgmR3Load, NULL);
3096}
3097
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette