VirtualBox

source: vbox/trunk/src/VBox/VMM/SELM.cpp@ 30328

Last change on this file since 30328 was 30160, checked in by vboxsync, 15 years ago

VMMGetStackRC change

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 101.5 KB
Line 
1/* $Id: SELM.cpp 30160 2010-06-11 13:26:50Z vboxsync $ */
2/** @file
3 * SELM - The Selector Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_selm SELM - The Selector Manager
19 *
20 * SELM takes care of GDT, LDT and TSS shadowing in raw-mode, and the injection
21 * of a few hyper selector for the raw-mode context. In the hardware assisted
22 * virtualization mode its only task is to decode entries in the guest GDT or
23 * LDT once in a while.
24 *
25 * @see grp_selm
26 *
27 *
28 * @section seg_selm_shadowing Shadowing
29 *
30 * SELMR3UpdateFromCPUM() and SELMR3SyncTSS() does the bulk synchronization
31 * work. The three structures (GDT, LDT, TSS) are all shadowed wholesale atm.
32 * The idea is to do it in a more on-demand fashion when we get time. There
33 * also a whole bunch of issues with the current synchronization of all three
34 * tables, see notes and todos in the code.
35 *
36 * When the guest makes changes to the GDT we will try update the shadow copy
37 * without involving SELMR3UpdateFromCPUM(), see selmGCSyncGDTEntry().
38 *
39 * When the guest make LDT changes we'll trigger a full resync of the LDT
40 * (SELMR3UpdateFromCPUM()), which, needless to say, isn't optimal.
41 *
42 * The TSS shadowing is limited to the fields we need to care about, namely SS0
43 * and ESP0. The Patch Manager makes use of these. We monitor updates to the
44 * guest TSS and will try keep our SS0 and ESP0 copies up to date this way
45 * rather than go the SELMR3SyncTSS() route.
46 *
47 * When in raw-mode SELM also injects a few extra GDT selectors which are used
48 * by the raw-mode (hyper) context. These start their life at the high end of
49 * the table and will be relocated when the guest tries to make use of them...
50 * Well, that was that idea at least, only the code isn't quite there yet which
51 * is why we have trouble with guests which actually have a full sized GDT.
52 *
53 * So, the summary of the current GDT, LDT and TSS shadowing is that there is a
54 * lot of relatively simple and enjoyable work to be done, see @bugref{3267}.
55 *
56 */
57
58/*******************************************************************************
59* Header Files *
60*******************************************************************************/
61#define LOG_GROUP LOG_GROUP_SELM
62#include <VBox/selm.h>
63#include <VBox/cpum.h>
64#include <VBox/stam.h>
65#include <VBox/mm.h>
66#include <VBox/ssm.h>
67#include <VBox/pgm.h>
68#include <VBox/trpm.h>
69#include <VBox/dbgf.h>
70#include "SELMInternal.h"
71#include <VBox/vm.h>
72#include <VBox/err.h>
73#include <VBox/param.h>
74
75#include <iprt/assert.h>
76#include <VBox/log.h>
77#include <iprt/asm.h>
78#include <iprt/string.h>
79#include <iprt/thread.h>
80#include <iprt/string.h>
81
82
83/**
84 * Enable or disable tracking of Guest's GDT/LDT/TSS.
85 * @{
86 */
87#define SELM_TRACK_GUEST_GDT_CHANGES
88#define SELM_TRACK_GUEST_LDT_CHANGES
89#define SELM_TRACK_GUEST_TSS_CHANGES
90/** @} */
91
92/**
93 * Enable or disable tracking of Shadow GDT/LDT/TSS.
94 * @{
95 */
96#define SELM_TRACK_SHADOW_GDT_CHANGES
97#define SELM_TRACK_SHADOW_LDT_CHANGES
98#define SELM_TRACK_SHADOW_TSS_CHANGES
99/** @} */
100
101
102/** SELM saved state version. */
103#define SELM_SAVED_STATE_VERSION 5
104
105
106/*******************************************************************************
107* Internal Functions *
108*******************************************************************************/
109static DECLCALLBACK(int) selmR3Save(PVM pVM, PSSMHANDLE pSSM);
110static DECLCALLBACK(int) selmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
111static DECLCALLBACK(int) selmR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
112static DECLCALLBACK(int) selmR3GuestGDTWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
113static DECLCALLBACK(int) selmR3GuestLDTWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
114static DECLCALLBACK(int) selmR3GuestTSSWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
115static DECLCALLBACK(void) selmR3InfoGdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
116static DECLCALLBACK(void) selmR3InfoGdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
117static DECLCALLBACK(void) selmR3InfoLdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
118static DECLCALLBACK(void) selmR3InfoLdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
119//static DECLCALLBACK(void) selmR3InfoTss(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
120//static DECLCALLBACK(void) selmR3InfoTssGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
121
122
123
124/**
125 * Initializes the SELM.
126 *
127 * @returns VBox status code.
128 * @param pVM The VM to operate on.
129 */
130VMMR3DECL(int) SELMR3Init(PVM pVM)
131{
132 LogFlow(("SELMR3Init\n"));
133
134 /*
135 * Assert alignment and sizes.
136 * (The TSS block requires contiguous back.)
137 */
138 AssertCompile(sizeof(pVM->selm.s) <= sizeof(pVM->selm.padding)); AssertRelease(sizeof(pVM->selm.s) <= sizeof(pVM->selm.padding));
139 AssertCompileMemberAlignment(VM, selm.s, 32); AssertRelease(!(RT_OFFSETOF(VM, selm.s) & 31));
140#if 0 /* doesn't work */
141 AssertCompile((RT_OFFSETOF(VM, selm.s.Tss) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.Tss));
142 AssertCompile((RT_OFFSETOF(VM, selm.s.TssTrap08) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.TssTrap08));
143#endif
144 AssertRelease((RT_OFFSETOF(VM, selm.s.Tss) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.Tss));
145 AssertRelease((RT_OFFSETOF(VM, selm.s.TssTrap08) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.TssTrap08));
146 AssertRelease(sizeof(pVM->selm.s.Tss.IntRedirBitmap) == 0x20);
147
148 /*
149 * Init the structure.
150 */
151 pVM->selm.s.offVM = RT_OFFSETOF(VM, selm);
152 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] = (SELM_GDT_ELEMENTS - 0x1) << 3;
153 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] = (SELM_GDT_ELEMENTS - 0x2) << 3;
154 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] = (SELM_GDT_ELEMENTS - 0x3) << 3;
155 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] = (SELM_GDT_ELEMENTS - 0x4) << 3;
156 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = (SELM_GDT_ELEMENTS - 0x5) << 3;
157
158 /*
159 * Allocate GDT table.
160 */
161 int rc = MMR3HyperAllocOnceNoRel(pVM, sizeof(pVM->selm.s.paGdtR3[0]) * SELM_GDT_ELEMENTS,
162 PAGE_SIZE, MM_TAG_SELM, (void **)&pVM->selm.s.paGdtR3);
163 AssertRCReturn(rc, rc);
164
165 /*
166 * Allocate LDT area.
167 */
168 rc = MMR3HyperAllocOnceNoRel(pVM, _64K + PAGE_SIZE, PAGE_SIZE, MM_TAG_SELM, &pVM->selm.s.pvLdtR3);
169 AssertRCReturn(rc, rc);
170
171 /*
172 * Init Guest's and Shadow GDT, LDT, TSS changes control variables.
173 */
174 pVM->selm.s.cbEffGuestGdtLimit = 0;
175 pVM->selm.s.GuestGdtr.pGdt = RTRCPTR_MAX;
176 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
177 pVM->selm.s.GCPtrGuestTss = RTRCPTR_MAX;
178
179 pVM->selm.s.paGdtRC = NIL_RTRCPTR; /* Must be set in SELMR3Relocate because of monitoring. */
180 pVM->selm.s.pvLdtRC = RTRCPTR_MAX;
181 pVM->selm.s.pvMonShwTssRC = RTRCPTR_MAX;
182 pVM->selm.s.GCSelTss = RTSEL_MAX;
183
184 pVM->selm.s.fDisableMonitoring = false;
185 pVM->selm.s.fSyncTSSRing0Stack = false;
186
187 /* The I/O bitmap starts right after the virtual interrupt redirection bitmap. Outside the TSS on purpose; the CPU will not check it
188 * for I/O operations. */
189 pVM->selm.s.Tss.offIoBitmap = sizeof(VBOXTSS);
190 /* bit set to 1 means no redirection */
191 memset(pVM->selm.s.Tss.IntRedirBitmap, 0xff, sizeof(pVM->selm.s.Tss.IntRedirBitmap));
192
193 /*
194 * Register the saved state data unit.
195 */
196 rc = SSMR3RegisterInternal(pVM, "selm", 1, SELM_SAVED_STATE_VERSION, sizeof(SELM),
197 NULL, NULL, NULL,
198 NULL, selmR3Save, NULL,
199 NULL, selmR3Load, selmR3LoadDone);
200 if (RT_FAILURE(rc))
201 return rc;
202
203 /*
204 * Statistics.
205 */
206 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestGDTHandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/GDTInt", STAMUNIT_OCCURENCES, "The number of handled writes to the Guest GDT.");
207 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestGDTUnhandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/GDTEmu", STAMUNIT_OCCURENCES, "The number of unhandled writes to the Guest GDT.");
208 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestLDT, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/LDT", STAMUNIT_OCCURENCES, "The number of writes to the Guest LDT was detected.");
209 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSHandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSInt", STAMUNIT_OCCURENCES, "The number of handled writes to the Guest TSS.");
210 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSRedir, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSRedir",STAMUNIT_OCCURENCES, "The number of handled redir bitmap writes to the Guest TSS.");
211 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSHandledChanged,STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSIntChg", STAMUNIT_OCCURENCES, "The number of handled writes to the Guest TSS where the R0 stack changed.");
212 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSUnhandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSEmu", STAMUNIT_OCCURENCES, "The number of unhandled writes to the Guest TSS.");
213 STAM_REG(pVM, &pVM->selm.s.StatTSSSync, STAMTYPE_PROFILE, "/PROF/SELM/TSSSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the SELMR3SyncTSS() body.");
214 STAM_REG(pVM, &pVM->selm.s.StatUpdateFromCPUM, STAMTYPE_PROFILE, "/PROF/SELM/UpdateFromCPUM", STAMUNIT_TICKS_PER_CALL, "Profiling of the SELMR3UpdateFromCPUM() body.");
215
216 STAM_REG(pVM, &pVM->selm.s.StatHyperSelsChanged, STAMTYPE_COUNTER, "/SELM/HyperSels/Changed", STAMUNIT_OCCURENCES, "The number of times we had to relocate our hypervisor selectors.");
217 STAM_REG(pVM, &pVM->selm.s.StatScanForHyperSels, STAMTYPE_COUNTER, "/SELM/HyperSels/Scan", STAMUNIT_OCCURENCES, "The number of times we had find free hypervisor selectors.");
218
219 /*
220 * Default action when entering raw mode for the first time
221 */
222 PVMCPU pVCpu = &pVM->aCpus[0]; /* raw mode implies on VCPU */
223 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
224 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
225 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
226
227 /*
228 * Register info handlers.
229 */
230 DBGFR3InfoRegisterInternal(pVM, "gdt", "Displays the shadow GDT. No arguments.", &selmR3InfoGdt);
231 DBGFR3InfoRegisterInternal(pVM, "gdtguest", "Displays the guest GDT. No arguments.", &selmR3InfoGdtGuest);
232 DBGFR3InfoRegisterInternal(pVM, "ldt", "Displays the shadow LDT. No arguments.", &selmR3InfoLdt);
233 DBGFR3InfoRegisterInternal(pVM, "ldtguest", "Displays the guest LDT. No arguments.", &selmR3InfoLdtGuest);
234 //DBGFR3InfoRegisterInternal(pVM, "tss", "Displays the shadow TSS. No arguments.", &selmR3InfoTss);
235 //DBGFR3InfoRegisterInternal(pVM, "tssguest", "Displays the guest TSS. No arguments.", &selmR3InfoTssGuest);
236
237 return rc;
238}
239
240
241/**
242 * Finalizes HMA page attributes.
243 *
244 * @returns VBox status code.
245 * @param pVM The VM handle.
246 */
247VMMR3DECL(int) SELMR3InitFinalize(PVM pVM)
248{
249 /** @cfgm{/DoubleFault,bool,false}
250 * Enables catching of double faults in the raw-mode context VMM code. This can
251 * be used when the tripple faults or hangs occure and one suspect an unhandled
252 * double fault. This is not enabled by default because it means making the
253 * hyper selectors writeable for all supervisor code, including the guest's.
254 * The double fault is a task switch and thus requires write access to the GDT
255 * of the TSS (to set it busy), to the old TSS (to store state), and to the Trap
256 * 8 TSS for the back link.
257 */
258 bool f;
259#if defined(DEBUG_bird)
260 int rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "DoubleFault", &f, true);
261#else
262 int rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "DoubleFault", &f, false);
263#endif
264 AssertLogRelRCReturn(rc, rc);
265 if (f)
266 {
267 PX86DESC paGdt = pVM->selm.s.paGdtR3;
268 rc = PGMMapSetPage(pVM, MMHyperR3ToRC(pVM, &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> 3]), sizeof(paGdt[0]),
269 X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
270 AssertRC(rc);
271 rc = PGMMapSetPage(pVM, MMHyperR3ToRC(pVM, &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] >> 3]), sizeof(paGdt[0]),
272 X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
273 AssertRC(rc);
274 rc = PGMMapSetPage(pVM, VM_RC_ADDR(pVM, &pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]), sizeof(pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]),
275 X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
276 AssertRC(rc);
277 rc = PGMMapSetPage(pVM, VM_RC_ADDR(pVM, &pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08]), sizeof(pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08]),
278 X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
279 AssertRC(rc);
280 }
281 return VINF_SUCCESS;
282}
283
284
285/**
286 * Setup the hypervisor GDT selectors in our shadow table
287 *
288 * @param pVM The VM handle.
289 */
290static void selmR3SetupHyperGDTSelectors(PVM pVM)
291{
292 PX86DESC paGdt = pVM->selm.s.paGdtR3;
293
294 /*
295 * Set up global code and data descriptors for use in the guest context.
296 * Both are wide open (base 0, limit 4GB)
297 */
298 PX86DESC pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] >> 3];
299 pDesc->Gen.u16LimitLow = 0xffff;
300 pDesc->Gen.u4LimitHigh = 0xf;
301 pDesc->Gen.u16BaseLow = 0;
302 pDesc->Gen.u8BaseHigh1 = 0;
303 pDesc->Gen.u8BaseHigh2 = 0;
304 pDesc->Gen.u4Type = X86_SEL_TYPE_ER_ACC;
305 pDesc->Gen.u1DescType = 1; /* not system, but code/data */
306 pDesc->Gen.u2Dpl = 0; /* supervisor */
307 pDesc->Gen.u1Present = 1;
308 pDesc->Gen.u1Available = 0;
309 pDesc->Gen.u1Long = 0;
310 pDesc->Gen.u1DefBig = 1; /* def 32 bit */
311 pDesc->Gen.u1Granularity = 1; /* 4KB limit */
312
313 /* data */
314 pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] >> 3];
315 pDesc->Gen.u16LimitLow = 0xffff;
316 pDesc->Gen.u4LimitHigh = 0xf;
317 pDesc->Gen.u16BaseLow = 0;
318 pDesc->Gen.u8BaseHigh1 = 0;
319 pDesc->Gen.u8BaseHigh2 = 0;
320 pDesc->Gen.u4Type = X86_SEL_TYPE_RW_ACC;
321 pDesc->Gen.u1DescType = 1; /* not system, but code/data */
322 pDesc->Gen.u2Dpl = 0; /* supervisor */
323 pDesc->Gen.u1Present = 1;
324 pDesc->Gen.u1Available = 0;
325 pDesc->Gen.u1Long = 0;
326 pDesc->Gen.u1DefBig = 1; /* big */
327 pDesc->Gen.u1Granularity = 1; /* 4KB limit */
328
329 /* 64-bit mode code (& data?) */
330 pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] >> 3];
331 pDesc->Gen.u16LimitLow = 0xffff;
332 pDesc->Gen.u4LimitHigh = 0xf;
333 pDesc->Gen.u16BaseLow = 0;
334 pDesc->Gen.u8BaseHigh1 = 0;
335 pDesc->Gen.u8BaseHigh2 = 0;
336 pDesc->Gen.u4Type = X86_SEL_TYPE_ER_ACC;
337 pDesc->Gen.u1DescType = 1; /* not system, but code/data */
338 pDesc->Gen.u2Dpl = 0; /* supervisor */
339 pDesc->Gen.u1Present = 1;
340 pDesc->Gen.u1Available = 0;
341 pDesc->Gen.u1Long = 1; /* The Long (L) attribute bit. */
342 pDesc->Gen.u1DefBig = 0; /* With L=1 this must be 0. */
343 pDesc->Gen.u1Granularity = 1; /* 4KB limit */
344
345 /*
346 * TSS descriptor
347 */
348 pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] >> 3];
349 RTRCPTR RCPtrTSS = VM_RC_ADDR(pVM, &pVM->selm.s.Tss);
350 pDesc->Gen.u16BaseLow = RT_LOWORD(RCPtrTSS);
351 pDesc->Gen.u8BaseHigh1 = RT_BYTE3(RCPtrTSS);
352 pDesc->Gen.u8BaseHigh2 = RT_BYTE4(RCPtrTSS);
353 pDesc->Gen.u16LimitLow = sizeof(VBOXTSS) - 1;
354 pDesc->Gen.u4LimitHigh = 0;
355 pDesc->Gen.u4Type = X86_SEL_TYPE_SYS_386_TSS_AVAIL;
356 pDesc->Gen.u1DescType = 0; /* system */
357 pDesc->Gen.u2Dpl = 0; /* supervisor */
358 pDesc->Gen.u1Present = 1;
359 pDesc->Gen.u1Available = 0;
360 pDesc->Gen.u1Long = 0;
361 pDesc->Gen.u1DefBig = 0;
362 pDesc->Gen.u1Granularity = 0; /* byte limit */
363
364 /*
365 * TSS descriptor for trap 08
366 */
367 pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> 3];
368 pDesc->Gen.u16LimitLow = sizeof(VBOXTSS) - 1;
369 pDesc->Gen.u4LimitHigh = 0;
370 RCPtrTSS = VM_RC_ADDR(pVM, &pVM->selm.s.TssTrap08);
371 pDesc->Gen.u16BaseLow = RT_LOWORD(RCPtrTSS);
372 pDesc->Gen.u8BaseHigh1 = RT_BYTE3(RCPtrTSS);
373 pDesc->Gen.u8BaseHigh2 = RT_BYTE4(RCPtrTSS);
374 pDesc->Gen.u4Type = X86_SEL_TYPE_SYS_386_TSS_AVAIL;
375 pDesc->Gen.u1DescType = 0; /* system */
376 pDesc->Gen.u2Dpl = 0; /* supervisor */
377 pDesc->Gen.u1Present = 1;
378 pDesc->Gen.u1Available = 0;
379 pDesc->Gen.u1Long = 0;
380 pDesc->Gen.u1DefBig = 0;
381 pDesc->Gen.u1Granularity = 0; /* byte limit */
382}
383
384/**
385 * Applies relocations to data and code managed by this
386 * component. This function will be called at init and
387 * whenever the VMM need to relocate it self inside the GC.
388 *
389 * @param pVM The VM.
390 */
391VMMR3DECL(void) SELMR3Relocate(PVM pVM)
392{
393 PX86DESC paGdt = pVM->selm.s.paGdtR3;
394 LogFlow(("SELMR3Relocate\n"));
395
396 for (VMCPUID i = 0; i < pVM->cCpus; i++)
397 {
398 PVMCPU pVCpu = &pVM->aCpus[i];
399
400 /*
401 * Update GDTR and selector.
402 */
403 CPUMSetHyperGDTR(pVCpu, MMHyperR3ToRC(pVM, paGdt), SELM_GDT_ELEMENTS * sizeof(paGdt[0]) - 1);
404
405 /** @todo selector relocations should be a seperate operation? */
406 CPUMSetHyperCS(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS]);
407 CPUMSetHyperDS(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]);
408 CPUMSetHyperES(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]);
409 CPUMSetHyperSS(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]);
410 CPUMSetHyperTR(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]);
411 }
412
413 selmR3SetupHyperGDTSelectors(pVM);
414
415/** @todo SELM must be called when any of the CR3s changes during a cpu mode change. */
416/** @todo PGM knows the proper CR3 values these days, not CPUM. */
417 /*
418 * Update the TSSes.
419 */
420 /* Only applies to raw mode which supports only 1 VCPU */
421 PVMCPU pVCpu = &pVM->aCpus[0];
422
423 /* Current TSS */
424 pVM->selm.s.Tss.cr3 = PGMGetHyperCR3(pVCpu);
425 pVM->selm.s.Tss.ss0 = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
426 pVM->selm.s.Tss.esp0 = VMMGetStackRC(pVCpu);
427 pVM->selm.s.Tss.cs = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS];
428 pVM->selm.s.Tss.ds = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
429 pVM->selm.s.Tss.es = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
430 pVM->selm.s.Tss.offIoBitmap = sizeof(VBOXTSS);
431
432 /* trap 08 */
433 pVM->selm.s.TssTrap08.cr3 = PGMGetInterRCCR3(pVM, pVCpu); /* this should give use better survival chances. */
434 pVM->selm.s.TssTrap08.ss0 = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
435 pVM->selm.s.TssTrap08.ss = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
436 pVM->selm.s.TssTrap08.esp0 = VMMGetStackRC(pVCpu) - PAGE_SIZE / 2; /* upper half can be analysed this way. */
437 pVM->selm.s.TssTrap08.esp = pVM->selm.s.TssTrap08.esp0;
438 pVM->selm.s.TssTrap08.ebp = pVM->selm.s.TssTrap08.esp0;
439 pVM->selm.s.TssTrap08.cs = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS];
440 pVM->selm.s.TssTrap08.ds = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
441 pVM->selm.s.TssTrap08.es = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
442 pVM->selm.s.TssTrap08.fs = 0;
443 pVM->selm.s.TssTrap08.gs = 0;
444 pVM->selm.s.TssTrap08.selLdt = 0;
445 pVM->selm.s.TssTrap08.eflags = 0x2; /* all cleared */
446 pVM->selm.s.TssTrap08.ecx = VM_RC_ADDR(pVM, &pVM->selm.s.Tss); /* setup ecx to normal Hypervisor TSS address. */
447 pVM->selm.s.TssTrap08.edi = pVM->selm.s.TssTrap08.ecx;
448 pVM->selm.s.TssTrap08.eax = pVM->selm.s.TssTrap08.ecx;
449 pVM->selm.s.TssTrap08.edx = VM_RC_ADDR(pVM, pVM); /* setup edx VM address. */
450 pVM->selm.s.TssTrap08.edi = pVM->selm.s.TssTrap08.edx;
451 pVM->selm.s.TssTrap08.ebx = pVM->selm.s.TssTrap08.edx;
452 pVM->selm.s.TssTrap08.offIoBitmap = sizeof(VBOXTSS);
453 /* TRPM will be updating the eip */
454
455 if (!pVM->selm.s.fDisableMonitoring)
456 {
457 /*
458 * Update shadow GDT/LDT/TSS write access handlers.
459 */
460 int rc;
461#ifdef SELM_TRACK_SHADOW_GDT_CHANGES
462 if (pVM->selm.s.paGdtRC != NIL_RTRCPTR)
463 {
464 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.paGdtRC);
465 AssertRC(rc);
466 }
467 pVM->selm.s.paGdtRC = MMHyperR3ToRC(pVM, paGdt);
468 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_HYPERVISOR, pVM->selm.s.paGdtRC,
469 pVM->selm.s.paGdtRC + SELM_GDT_ELEMENTS * sizeof(paGdt[0]) - 1,
470 0, 0, "selmRCShadowGDTWriteHandler", 0, "Shadow GDT write access handler");
471 AssertRC(rc);
472#endif
473#ifdef SELM_TRACK_SHADOW_TSS_CHANGES
474 if (pVM->selm.s.pvMonShwTssRC != RTRCPTR_MAX)
475 {
476 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.pvMonShwTssRC);
477 AssertRC(rc);
478 }
479 pVM->selm.s.pvMonShwTssRC = VM_RC_ADDR(pVM, &pVM->selm.s.Tss);
480 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_HYPERVISOR, pVM->selm.s.pvMonShwTssRC,
481 pVM->selm.s.pvMonShwTssRC + sizeof(pVM->selm.s.Tss) - 1,
482 0, 0, "selmRCShadowTSSWriteHandler", 0, "Shadow TSS write access handler");
483 AssertRC(rc);
484#endif
485
486 /*
487 * Update the GC LDT region handler and address.
488 */
489#ifdef SELM_TRACK_SHADOW_LDT_CHANGES
490 if (pVM->selm.s.pvLdtRC != RTRCPTR_MAX)
491 {
492 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.pvLdtRC);
493 AssertRC(rc);
494 }
495#endif
496 pVM->selm.s.pvLdtRC = MMHyperR3ToRC(pVM, pVM->selm.s.pvLdtR3);
497#ifdef SELM_TRACK_SHADOW_LDT_CHANGES
498 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_HYPERVISOR, pVM->selm.s.pvLdtRC,
499 pVM->selm.s.pvLdtRC + _64K + PAGE_SIZE - 1,
500 0, 0, "selmRCShadowLDTWriteHandler", 0, "Shadow LDT write access handler");
501 AssertRC(rc);
502#endif
503 }
504}
505
506
507/**
508 * Terminates the SELM.
509 *
510 * Termination means cleaning up and freeing all resources,
511 * the VM it self is at this point powered off or suspended.
512 *
513 * @returns VBox status code.
514 * @param pVM The VM to operate on.
515 */
516VMMR3DECL(int) SELMR3Term(PVM pVM)
517{
518 return 0;
519}
520
521
522/**
523 * The VM is being reset.
524 *
525 * For the SELM component this means that any GDT/LDT/TSS monitors
526 * needs to be removed.
527 *
528 * @param pVM VM handle.
529 */
530VMMR3DECL(void) SELMR3Reset(PVM pVM)
531{
532 LogFlow(("SELMR3Reset:\n"));
533 VM_ASSERT_EMT(pVM);
534
535 /*
536 * Uninstall guest GDT/LDT/TSS write access handlers.
537 */
538 int rc;
539#ifdef SELM_TRACK_GUEST_GDT_CHANGES
540 if (pVM->selm.s.GuestGdtr.pGdt != RTRCPTR_MAX && pVM->selm.s.fGDTRangeRegistered)
541 {
542 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GuestGdtr.pGdt);
543 AssertRC(rc);
544 pVM->selm.s.GuestGdtr.pGdt = RTRCPTR_MAX;
545 pVM->selm.s.GuestGdtr.cbGdt = 0;
546 }
547 pVM->selm.s.fGDTRangeRegistered = false;
548#endif
549#ifdef SELM_TRACK_GUEST_LDT_CHANGES
550 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
551 {
552 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
553 AssertRC(rc);
554 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
555 }
556#endif
557#ifdef SELM_TRACK_GUEST_TSS_CHANGES
558 if (pVM->selm.s.GCPtrGuestTss != RTRCPTR_MAX)
559 {
560 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestTss);
561 AssertRC(rc);
562 pVM->selm.s.GCPtrGuestTss = RTRCPTR_MAX;
563 pVM->selm.s.GCSelTss = RTSEL_MAX;
564 }
565#endif
566
567 /*
568 * Re-initialize other members.
569 */
570 pVM->selm.s.cbLdtLimit = 0;
571 pVM->selm.s.offLdtHyper = 0;
572 pVM->selm.s.cbMonitoredGuestTss = 0;
573
574 pVM->selm.s.fSyncTSSRing0Stack = false;
575
576 /*
577 * Default action when entering raw mode for the first time
578 */
579 PVMCPU pVCpu = &pVM->aCpus[0]; /* raw mode implies on VCPU */
580 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
581 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
582 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
583}
584
585/**
586 * Disable GDT/LDT/TSS monitoring and syncing
587 *
588 * @param pVM The VM to operate on.
589 */
590VMMR3DECL(void) SELMR3DisableMonitoring(PVM pVM)
591{
592 /*
593 * Uninstall guest GDT/LDT/TSS write access handlers.
594 */
595 int rc;
596#ifdef SELM_TRACK_GUEST_GDT_CHANGES
597 if (pVM->selm.s.GuestGdtr.pGdt != RTRCPTR_MAX && pVM->selm.s.fGDTRangeRegistered)
598 {
599 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GuestGdtr.pGdt);
600 AssertRC(rc);
601 pVM->selm.s.GuestGdtr.pGdt = RTRCPTR_MAX;
602 pVM->selm.s.GuestGdtr.cbGdt = 0;
603 }
604 pVM->selm.s.fGDTRangeRegistered = false;
605#endif
606#ifdef SELM_TRACK_GUEST_LDT_CHANGES
607 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
608 {
609 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
610 AssertRC(rc);
611 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
612 }
613#endif
614#ifdef SELM_TRACK_GUEST_TSS_CHANGES
615 if (pVM->selm.s.GCPtrGuestTss != RTRCPTR_MAX)
616 {
617 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestTss);
618 AssertRC(rc);
619 pVM->selm.s.GCPtrGuestTss = RTRCPTR_MAX;
620 pVM->selm.s.GCSelTss = RTSEL_MAX;
621 }
622#endif
623
624 /*
625 * Unregister shadow GDT/LDT/TSS write access handlers.
626 */
627#ifdef SELM_TRACK_SHADOW_GDT_CHANGES
628 if (pVM->selm.s.paGdtRC != NIL_RTRCPTR)
629 {
630 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.paGdtRC);
631 AssertRC(rc);
632 pVM->selm.s.paGdtRC = NIL_RTRCPTR;
633 }
634#endif
635#ifdef SELM_TRACK_SHADOW_TSS_CHANGES
636 if (pVM->selm.s.pvMonShwTssRC != RTRCPTR_MAX)
637 {
638 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.pvMonShwTssRC);
639 AssertRC(rc);
640 pVM->selm.s.pvMonShwTssRC = RTRCPTR_MAX;
641 }
642#endif
643#ifdef SELM_TRACK_SHADOW_LDT_CHANGES
644 if (pVM->selm.s.pvLdtRC != RTRCPTR_MAX)
645 {
646 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.pvLdtRC);
647 AssertRC(rc);
648 pVM->selm.s.pvLdtRC = RTRCPTR_MAX;
649 }
650#endif
651
652 PVMCPU pVCpu = &pVM->aCpus[0]; /* raw mode implies on VCPU */
653 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
654 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
655 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
656
657 pVM->selm.s.fDisableMonitoring = true;
658}
659
660
661/**
662 * Execute state save operation.
663 *
664 * @returns VBox status code.
665 * @param pVM VM Handle.
666 * @param pSSM SSM operation handle.
667 */
668static DECLCALLBACK(int) selmR3Save(PVM pVM, PSSMHANDLE pSSM)
669{
670 LogFlow(("selmR3Save:\n"));
671
672 /*
673 * Save the basic bits - fortunately all the other things can be resynced on load.
674 */
675 PSELM pSelm = &pVM->selm.s;
676
677 SSMR3PutBool(pSSM, pSelm->fDisableMonitoring);
678 SSMR3PutBool(pSSM, pSelm->fSyncTSSRing0Stack);
679 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_CS]);
680 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_DS]);
681 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_CS64]);
682 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_CS64]); /* reserved for DS64. */
683 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_TSS]);
684 return SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_TSS_TRAP08]);
685}
686
687
688/**
689 * Execute state load operation.
690 *
691 * @returns VBox status code.
692 * @param pVM VM Handle.
693 * @param pSSM SSM operation handle.
694 * @param uVersion Data layout version.
695 * @param uPass The data pass.
696 */
697static DECLCALLBACK(int) selmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
698{
699 LogFlow(("selmR3Load:\n"));
700 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
701
702 /*
703 * Validate version.
704 */
705 if (uVersion != SELM_SAVED_STATE_VERSION)
706 {
707 AssertMsgFailed(("selmR3Load: Invalid version uVersion=%d!\n", uVersion));
708 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
709 }
710
711 /*
712 * Do a reset.
713 */
714 SELMR3Reset(pVM);
715
716 /* Get the monitoring flag. */
717 SSMR3GetBool(pSSM, &pVM->selm.s.fDisableMonitoring);
718
719 /* Get the TSS state flag. */
720 SSMR3GetBool(pSSM, &pVM->selm.s.fSyncTSSRing0Stack);
721
722 /*
723 * Get the selectors.
724 */
725 RTSEL SelCS;
726 SSMR3GetSel(pSSM, &SelCS);
727 RTSEL SelDS;
728 SSMR3GetSel(pSSM, &SelDS);
729 RTSEL SelCS64;
730 SSMR3GetSel(pSSM, &SelCS64);
731 RTSEL SelDS64;
732 SSMR3GetSel(pSSM, &SelDS64);
733 RTSEL SelTSS;
734 SSMR3GetSel(pSSM, &SelTSS);
735 RTSEL SelTSSTrap08;
736 SSMR3GetSel(pSSM, &SelTSSTrap08);
737
738 /* Copy the selectors; they will be checked during relocation. */
739 PSELM pSelm = &pVM->selm.s;
740 pSelm->aHyperSel[SELM_HYPER_SEL_CS] = SelCS;
741 pSelm->aHyperSel[SELM_HYPER_SEL_DS] = SelDS;
742 pSelm->aHyperSel[SELM_HYPER_SEL_CS64] = SelCS64;
743 pSelm->aHyperSel[SELM_HYPER_SEL_TSS] = SelTSS;
744 pSelm->aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = SelTSSTrap08;
745
746 return VINF_SUCCESS;
747}
748
749
750/**
751 * Sync the GDT, LDT and TSS after loading the state.
752 *
753 * Just to play save, we set the FFs to force syncing before
754 * executing GC code.
755 *
756 * @returns VBox status code.
757 * @param pVM VM Handle.
758 * @param pSSM SSM operation handle.
759 */
760static DECLCALLBACK(int) selmR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
761{
762 PVMCPU pVCpu = VMMGetCpu(pVM);
763
764 LogFlow(("selmR3LoadDone:\n"));
765
766 /*
767 * Don't do anything if it's a load failure.
768 */
769 int rc = SSMR3HandleGetStatus(pSSM);
770 if (RT_FAILURE(rc))
771 return VINF_SUCCESS;
772
773 /*
774 * Do the syncing if we're in protected mode.
775 */
776 if (PGMGetGuestMode(pVCpu) != PGMMODE_REAL)
777 {
778 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
779 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
780 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
781 SELMR3UpdateFromCPUM(pVM, pVCpu);
782 }
783
784 /*
785 * Flag everything for resync on next raw mode entry.
786 */
787 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
788 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
789 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
790
791 return VINF_SUCCESS;
792}
793
794
795/**
796 * Updates the Guest GDT & LDT virtualization based on current CPU state.
797 *
798 * @returns VBox status code.
799 * @param pVM The VM to operate on.
800 * @param pVCpu The VMCPU to operate on.
801 */
802VMMR3DECL(int) SELMR3UpdateFromCPUM(PVM pVM, PVMCPU pVCpu)
803{
804 int rc = VINF_SUCCESS;
805
806 if (pVM->selm.s.fDisableMonitoring)
807 {
808 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
809 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
810 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
811
812 return VINF_SUCCESS;
813 }
814
815 STAM_PROFILE_START(&pVM->selm.s.StatUpdateFromCPUM, a);
816
817 /*
818 * GDT sync
819 */
820 if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_SELM_SYNC_GDT))
821 {
822 /*
823 * Always assume the best
824 */
825 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
826
827 /* If the GDT was changed, then make sure the LDT is checked too */
828 /** @todo only do this if the actual ldtr selector was changed; this is a bit excessive */
829 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
830 /* Same goes for the TSS selector */
831 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
832
833 /*
834 * Get the GDTR and check if there is anything to do (there usually is).
835 */
836 VBOXGDTR GDTR;
837 CPUMGetGuestGDTR(pVCpu, &GDTR);
838 if (GDTR.cbGdt < sizeof(X86DESC))
839 {
840 Log(("No GDT entries...\n"));
841 STAM_PROFILE_STOP(&pVM->selm.s.StatUpdateFromCPUM, a);
842 return VINF_SUCCESS;
843 }
844
845 /*
846 * Read the Guest GDT.
847 * ASSUMES that the entire GDT is in memory.
848 */
849 RTUINT cbEffLimit = GDTR.cbGdt;
850 PX86DESC pGDTE = &pVM->selm.s.paGdtR3[1];
851 rc = PGMPhysSimpleReadGCPtr(pVCpu, pGDTE, GDTR.pGdt + sizeof(X86DESC), cbEffLimit + 1 - sizeof(X86DESC));
852 if (RT_FAILURE(rc))
853 {
854 /*
855 * Read it page by page.
856 *
857 * Keep track of the last valid page and delay memsets and
858 * adjust cbEffLimit to reflect the effective size. The latter
859 * is something we do in the belief that the guest will probably
860 * never actually commit the last page, thus allowing us to keep
861 * our selectors in the high end of the GDT.
862 */
863 RTUINT cbLeft = cbEffLimit + 1 - sizeof(X86DESC);
864 RTGCPTR GCPtrSrc = (RTGCPTR)GDTR.pGdt + sizeof(X86DESC);
865 uint8_t *pu8Dst = (uint8_t *)&pVM->selm.s.paGdtR3[1];
866 uint8_t *pu8DstInvalid = pu8Dst;
867
868 while (cbLeft)
869 {
870 RTUINT cb = PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK);
871 cb = RT_MIN(cb, cbLeft);
872 rc = PGMPhysSimpleReadGCPtr(pVCpu, pu8Dst, GCPtrSrc, cb);
873 if (RT_SUCCESS(rc))
874 {
875 if (pu8DstInvalid != pu8Dst)
876 memset(pu8DstInvalid, 0, pu8Dst - pu8DstInvalid);
877 GCPtrSrc += cb;
878 pu8Dst += cb;
879 pu8DstInvalid = pu8Dst;
880 }
881 else if ( rc == VERR_PAGE_NOT_PRESENT
882 || rc == VERR_PAGE_TABLE_NOT_PRESENT)
883 {
884 GCPtrSrc += cb;
885 pu8Dst += cb;
886 }
887 else
888 {
889 AssertReleaseMsgFailed(("Couldn't read GDT at %016RX64, rc=%Rrc!\n", GDTR.pGdt, rc));
890 STAM_PROFILE_STOP(&pVM->selm.s.StatUpdateFromCPUM, a);
891 return VERR_NOT_IMPLEMENTED;
892 }
893 cbLeft -= cb;
894 }
895
896 /* any invalid pages at the end? */
897 if (pu8DstInvalid != pu8Dst)
898 {
899 cbEffLimit = pu8DstInvalid - (uint8_t *)pVM->selm.s.paGdtR3 - 1;
900 /* If any GDTEs was invalidated, zero them. */
901 if (cbEffLimit < pVM->selm.s.cbEffGuestGdtLimit)
902 memset(pu8DstInvalid + cbEffLimit + 1, 0, pVM->selm.s.cbEffGuestGdtLimit - cbEffLimit);
903 }
904
905 /* keep track of the effective limit. */
906 if (cbEffLimit != pVM->selm.s.cbEffGuestGdtLimit)
907 {
908 Log(("SELMR3UpdateFromCPUM: cbEffGuestGdtLimit=%#x -> %#x (actual %#x)\n",
909 pVM->selm.s.cbEffGuestGdtLimit, cbEffLimit, GDTR.cbGdt));
910 pVM->selm.s.cbEffGuestGdtLimit = cbEffLimit;
911 }
912 }
913
914 /*
915 * Check if the Guest GDT intrudes on our GDT entries.
916 */
917 /** @todo we should try to minimize relocations by making sure our current selectors can be reused. */
918 RTSEL aHyperSel[SELM_HYPER_SEL_MAX];
919 if (cbEffLimit >= SELM_HYPER_DEFAULT_BASE)
920 {
921 PX86DESC pGDTEStart = pVM->selm.s.paGdtR3;
922 PX86DESC pGDTECur = (PX86DESC)((char *)pGDTEStart + GDTR.cbGdt + 1 - sizeof(X86DESC));
923 int iGDT = 0;
924
925 Log(("Internal SELM GDT conflict: use non-present entries\n"));
926 STAM_COUNTER_INC(&pVM->selm.s.StatScanForHyperSels);
927 while (pGDTECur > pGDTEStart)
928 {
929 /* We can reuse non-present entries */
930 if (!pGDTECur->Gen.u1Present)
931 {
932 aHyperSel[iGDT] = ((uintptr_t)pGDTECur - (uintptr_t)pVM->selm.s.paGdtR3) / sizeof(X86DESC);
933 aHyperSel[iGDT] = aHyperSel[iGDT] << X86_SEL_SHIFT;
934 Log(("SELM: Found unused GDT %04X\n", aHyperSel[iGDT]));
935 iGDT++;
936 if (iGDT >= SELM_HYPER_SEL_MAX)
937 break;
938 }
939
940 pGDTECur--;
941 }
942 if (iGDT != SELM_HYPER_SEL_MAX)
943 {
944 AssertReleaseMsgFailed(("Internal SELM GDT conflict.\n"));
945 STAM_PROFILE_STOP(&pVM->selm.s.StatUpdateFromCPUM, a);
946 return VERR_NOT_IMPLEMENTED;
947 }
948 }
949 else
950 {
951 aHyperSel[SELM_HYPER_SEL_CS] = SELM_HYPER_DEFAULT_SEL_CS;
952 aHyperSel[SELM_HYPER_SEL_DS] = SELM_HYPER_DEFAULT_SEL_DS;
953 aHyperSel[SELM_HYPER_SEL_CS64] = SELM_HYPER_DEFAULT_SEL_CS64;
954 aHyperSel[SELM_HYPER_SEL_TSS] = SELM_HYPER_DEFAULT_SEL_TSS;
955 aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = SELM_HYPER_DEFAULT_SEL_TSS_TRAP08;
956 }
957
958 /*
959 * Work thru the copied GDT entries adjusting them for correct virtualization.
960 */
961 PX86DESC pGDTEEnd = (PX86DESC)((char *)pGDTE + cbEffLimit + 1 - sizeof(X86DESC));
962 while (pGDTE < pGDTEEnd)
963 {
964 if (pGDTE->Gen.u1Present)
965 {
966 /*
967 * Code and data selectors are generally 1:1, with the
968 * 'little' adjustment we do for DPL 0 selectors.
969 */
970 if (pGDTE->Gen.u1DescType)
971 {
972 /*
973 * Hack for A-bit against Trap E on read-only GDT.
974 */
975 /** @todo Fix this by loading ds and cs before turning off WP. */
976 pGDTE->Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
977
978 /*
979 * All DPL 0 code and data segments are squeezed into DPL 1.
980 *
981 * We're skipping conforming segments here because those
982 * cannot give us any trouble.
983 */
984 if ( pGDTE->Gen.u2Dpl == 0
985 && (pGDTE->Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
986 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF) )
987 pGDTE->Gen.u2Dpl = 1;
988 }
989 else
990 {
991 /*
992 * System type selectors are marked not present.
993 * Recompiler or special handling is required for these.
994 */
995 /** @todo what about interrupt gates and rawr0? */
996 pGDTE->Gen.u1Present = 0;
997 }
998 }
999
1000 /* Next GDT entry. */
1001 pGDTE++;
1002 }
1003
1004 /*
1005 * Check if our hypervisor selectors were changed.
1006 */
1007 if ( aHyperSel[SELM_HYPER_SEL_CS] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS]
1008 || aHyperSel[SELM_HYPER_SEL_DS] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]
1009 || aHyperSel[SELM_HYPER_SEL_CS64] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64]
1010 || aHyperSel[SELM_HYPER_SEL_TSS] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]
1011 || aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08])
1012 {
1013 /* Reinitialize our hypervisor GDTs */
1014 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] = aHyperSel[SELM_HYPER_SEL_CS];
1015 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] = aHyperSel[SELM_HYPER_SEL_DS];
1016 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] = aHyperSel[SELM_HYPER_SEL_CS64];
1017 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] = aHyperSel[SELM_HYPER_SEL_TSS];
1018 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = aHyperSel[SELM_HYPER_SEL_TSS_TRAP08];
1019
1020 STAM_COUNTER_INC(&pVM->selm.s.StatHyperSelsChanged);
1021
1022 /*
1023 * Do the relocation callbacks to let everyone update their hyper selector dependencies.
1024 * (SELMR3Relocate will call selmR3SetupHyperGDTSelectors() for us.)
1025 */
1026 VMR3Relocate(pVM, 0);
1027 }
1028 else if (cbEffLimit >= SELM_HYPER_DEFAULT_BASE)
1029 /* We overwrote all entries above, so we have to save them again. */
1030 selmR3SetupHyperGDTSelectors(pVM);
1031
1032 /*
1033 * Adjust the cached GDT limit.
1034 * Any GDT entries which have been removed must be cleared.
1035 */
1036 if (pVM->selm.s.GuestGdtr.cbGdt != GDTR.cbGdt)
1037 {
1038 if (pVM->selm.s.GuestGdtr.cbGdt > GDTR.cbGdt)
1039 memset(pGDTE, 0, pVM->selm.s.GuestGdtr.cbGdt - GDTR.cbGdt);
1040#ifndef SELM_TRACK_GUEST_GDT_CHANGES
1041 pVM->selm.s.GuestGdtr.cbGdt = GDTR.cbGdt;
1042#endif
1043 }
1044
1045#ifdef SELM_TRACK_GUEST_GDT_CHANGES
1046 /*
1047 * Check if Guest's GDTR is changed.
1048 */
1049 if ( GDTR.pGdt != pVM->selm.s.GuestGdtr.pGdt
1050 || GDTR.cbGdt != pVM->selm.s.GuestGdtr.cbGdt)
1051 {
1052 Log(("SELMR3UpdateFromCPUM: Guest's GDT is changed to pGdt=%016RX64 cbGdt=%08X\n", GDTR.pGdt, GDTR.cbGdt));
1053
1054 /*
1055 * [Re]Register write virtual handler for guest's GDT.
1056 */
1057 if (pVM->selm.s.GuestGdtr.pGdt != RTRCPTR_MAX && pVM->selm.s.fGDTRangeRegistered)
1058 {
1059 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GuestGdtr.pGdt);
1060 AssertRC(rc);
1061 }
1062
1063 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_WRITE, GDTR.pGdt, GDTR.pGdt + GDTR.cbGdt /* already inclusive */,
1064 0, selmR3GuestGDTWriteHandler, "selmRCGuestGDTWriteHandler", 0, "Guest GDT write access handler");
1065 if (RT_FAILURE(rc))
1066 return rc;
1067
1068 /* Update saved Guest GDTR. */
1069 pVM->selm.s.GuestGdtr = GDTR;
1070 pVM->selm.s.fGDTRangeRegistered = true;
1071 }
1072#endif
1073 }
1074
1075 /*
1076 * TSS sync
1077 */
1078 if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_SELM_SYNC_TSS))
1079 {
1080 SELMR3SyncTSS(pVM, pVCpu);
1081 }
1082
1083 /*
1084 * LDT sync
1085 */
1086 if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_SELM_SYNC_LDT))
1087 {
1088 /*
1089 * Always assume the best
1090 */
1091 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
1092
1093 /*
1094 * LDT handling is done similarly to the GDT handling with a shadow
1095 * array. However, since the LDT is expected to be swappable (at least
1096 * some ancient OSes makes it swappable) it must be floating and
1097 * synced on a per-page basis.
1098 *
1099 * Eventually we will change this to be fully on demand. Meaning that
1100 * we will only sync pages containing LDT selectors actually used and
1101 * let the #PF handler lazily sync pages as they are used.
1102 * (This applies to GDT too, when we start making OS/2 fast.)
1103 */
1104
1105 /*
1106 * First, determin the current LDT selector.
1107 */
1108 RTSEL SelLdt = CPUMGetGuestLDTR(pVCpu);
1109 if ((SelLdt & X86_SEL_MASK) == 0)
1110 {
1111 /* ldtr = 0 - update hyper LDTR and deregister any active handler. */
1112 CPUMSetHyperLDTR(pVCpu, 0);
1113#ifdef SELM_TRACK_GUEST_LDT_CHANGES
1114 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
1115 {
1116 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
1117 AssertRC(rc);
1118 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
1119 }
1120#endif
1121 STAM_PROFILE_STOP(&pVM->selm.s.StatUpdateFromCPUM, a);
1122 return VINF_SUCCESS;
1123 }
1124
1125 /*
1126 * Get the LDT selector.
1127 */
1128 PX86DESC pDesc = &pVM->selm.s.paGdtR3[SelLdt >> X86_SEL_SHIFT];
1129 RTGCPTR GCPtrLdt = X86DESC_BASE(*pDesc);
1130 unsigned cbLdt = X86DESC_LIMIT(*pDesc);
1131 if (pDesc->Gen.u1Granularity)
1132 cbLdt = (cbLdt << PAGE_SHIFT) | PAGE_OFFSET_MASK;
1133
1134 /*
1135 * Validate it.
1136 */
1137 if ( !cbLdt
1138 || SelLdt >= pVM->selm.s.GuestGdtr.cbGdt
1139 || pDesc->Gen.u1DescType
1140 || pDesc->Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
1141 {
1142 AssertMsg(!cbLdt, ("Invalid LDT %04x!\n", SelLdt));
1143
1144 /* cbLdt > 0:
1145 * This is quite impossible, so we do as most people do when faced with
1146 * the impossible, we simply ignore it.
1147 */
1148 CPUMSetHyperLDTR(pVCpu, 0);
1149#ifdef SELM_TRACK_GUEST_LDT_CHANGES
1150 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
1151 {
1152 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
1153 AssertRC(rc);
1154 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
1155 }
1156#endif
1157 STAM_PROFILE_STOP(&pVM->selm.s.StatUpdateFromCPUM, a);
1158 return VINF_SUCCESS;
1159 }
1160 /** @todo check what intel does about odd limits. */
1161 AssertMsg(RT_ALIGN(cbLdt + 1, sizeof(X86DESC)) == cbLdt + 1 && cbLdt <= 0xffff, ("cbLdt=%d\n", cbLdt));
1162
1163 /*
1164 * Use the cached guest ldt address if the descriptor has already been modified (see below)
1165 * (this is necessary due to redundant LDT updates; see todo above at GDT sync)
1166 */
1167 if (MMHyperIsInsideArea(pVM, GCPtrLdt))
1168 GCPtrLdt = pVM->selm.s.GCPtrGuestLdt; /* use the old one */
1169
1170
1171#ifdef SELM_TRACK_GUEST_LDT_CHANGES
1172 /** @todo Handle only present LDT segments. */
1173 // if (pDesc->Gen.u1Present)
1174 {
1175 /*
1176 * Check if Guest's LDT address/limit is changed.
1177 */
1178 if ( GCPtrLdt != pVM->selm.s.GCPtrGuestLdt
1179 || cbLdt != pVM->selm.s.cbLdtLimit)
1180 {
1181 Log(("SELMR3UpdateFromCPUM: Guest LDT changed to from %RGv:%04x to %RGv:%04x. (GDTR=%016RX64:%04x)\n",
1182 pVM->selm.s.GCPtrGuestLdt, pVM->selm.s.cbLdtLimit, GCPtrLdt, cbLdt, pVM->selm.s.GuestGdtr.pGdt, pVM->selm.s.GuestGdtr.cbGdt));
1183
1184 /*
1185 * [Re]Register write virtual handler for guest's GDT.
1186 * In the event of LDT overlapping something, don't install it just assume it's being updated.
1187 */
1188 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
1189 {
1190 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
1191 AssertRC(rc);
1192 }
1193#ifdef DEBUG
1194 if (pDesc->Gen.u1Present)
1195 Log(("LDT selector marked not present!!\n"));
1196#endif
1197 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_WRITE, GCPtrLdt, GCPtrLdt + cbLdt /* already inclusive */,
1198 0, selmR3GuestLDTWriteHandler, "selmRCGuestLDTWriteHandler", 0, "Guest LDT write access handler");
1199 if (rc == VERR_PGM_HANDLER_VIRTUAL_CONFLICT)
1200 {
1201 /** @todo investigate the various cases where conflicts happen and try avoid them by enh. the instruction emulation. */
1202 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
1203 Log(("WARNING: Guest LDT (%RGv:%04x) conflicted with existing access range!! Assumes LDT is begin updated. (GDTR=%016RX64:%04x)\n",
1204 GCPtrLdt, cbLdt, pVM->selm.s.GuestGdtr.pGdt, pVM->selm.s.GuestGdtr.cbGdt));
1205 }
1206 else if (RT_SUCCESS(rc))
1207 pVM->selm.s.GCPtrGuestLdt = GCPtrLdt;
1208 else
1209 {
1210 CPUMSetHyperLDTR(pVCpu, 0);
1211 STAM_PROFILE_STOP(&pVM->selm.s.StatUpdateFromCPUM, a);
1212 return rc;
1213 }
1214
1215 pVM->selm.s.cbLdtLimit = cbLdt;
1216 }
1217 }
1218#else
1219 pVM->selm.s.cbLdtLimit = cbLdt;
1220#endif
1221
1222 /*
1223 * Calc Shadow LDT base.
1224 */
1225 unsigned off;
1226 pVM->selm.s.offLdtHyper = off = (GCPtrLdt & PAGE_OFFSET_MASK);
1227 RTGCPTR GCPtrShadowLDT = (RTGCPTR)((RTGCUINTPTR)pVM->selm.s.pvLdtRC + off);
1228 PX86DESC pShadowLDT = (PX86DESC)((uintptr_t)pVM->selm.s.pvLdtR3 + off);
1229
1230 /*
1231 * Enable the LDT selector in the shadow GDT.
1232 */
1233 pDesc->Gen.u1Present = 1;
1234 pDesc->Gen.u16BaseLow = RT_LOWORD(GCPtrShadowLDT);
1235 pDesc->Gen.u8BaseHigh1 = RT_BYTE3(GCPtrShadowLDT);
1236 pDesc->Gen.u8BaseHigh2 = RT_BYTE4(GCPtrShadowLDT);
1237 pDesc->Gen.u1Available = 0;
1238 pDesc->Gen.u1Long = 0;
1239 if (cbLdt > 0xffff)
1240 {
1241 cbLdt = 0xffff;
1242 pDesc->Gen.u4LimitHigh = 0;
1243 pDesc->Gen.u16LimitLow = pDesc->Gen.u1Granularity ? 0xf : 0xffff;
1244 }
1245
1246 /*
1247 * Set Hyper LDTR and notify TRPM.
1248 */
1249 CPUMSetHyperLDTR(pVCpu, SelLdt);
1250
1251 /*
1252 * Loop synchronising the LDT page by page.
1253 */
1254 /** @todo investigate how intel handle various operations on half present cross page entries. */
1255 off = GCPtrLdt & (sizeof(X86DESC) - 1);
1256 AssertMsg(!off, ("LDT is not aligned on entry size! GCPtrLdt=%08x\n", GCPtrLdt));
1257
1258 /* Note: Do not skip the first selector; unlike the GDT, a zero LDT selector is perfectly valid. */
1259 unsigned cbLeft = cbLdt + 1;
1260 PX86DESC pLDTE = pShadowLDT;
1261 while (cbLeft)
1262 {
1263 /*
1264 * Read a chunk.
1265 */
1266 unsigned cbChunk = PAGE_SIZE - ((RTGCUINTPTR)GCPtrLdt & PAGE_OFFSET_MASK);
1267 if (cbChunk > cbLeft)
1268 cbChunk = cbLeft;
1269 rc = PGMPhysSimpleReadGCPtr(pVCpu, pShadowLDT, GCPtrLdt, cbChunk);
1270 if (RT_SUCCESS(rc))
1271 {
1272 /*
1273 * Mark page
1274 */
1275 rc = PGMMapSetPage(pVM, GCPtrShadowLDT & PAGE_BASE_GC_MASK, PAGE_SIZE, X86_PTE_P | X86_PTE_A | X86_PTE_D);
1276 AssertRC(rc);
1277
1278 /*
1279 * Loop thru the available LDT entries.
1280 * Figure out where to start and end and the potential cross pageness of
1281 * things adds a little complexity. pLDTE is updated there and not in the
1282 * 'next' part of the loop. The pLDTEEnd is inclusive.
1283 */
1284 PX86DESC pLDTEEnd = (PX86DESC)((uintptr_t)pShadowLDT + cbChunk) - 1;
1285 if (pLDTE + 1 < pShadowLDT)
1286 pLDTE = (PX86DESC)((uintptr_t)pShadowLDT + off);
1287 while (pLDTE <= pLDTEEnd)
1288 {
1289 if (pLDTE->Gen.u1Present)
1290 {
1291 /*
1292 * Code and data selectors are generally 1:1, with the
1293 * 'little' adjustment we do for DPL 0 selectors.
1294 */
1295 if (pLDTE->Gen.u1DescType)
1296 {
1297 /*
1298 * Hack for A-bit against Trap E on read-only GDT.
1299 */
1300 /** @todo Fix this by loading ds and cs before turning off WP. */
1301 if (!(pLDTE->Gen.u4Type & X86_SEL_TYPE_ACCESSED))
1302 pLDTE->Gen.u4Type |= X86_SEL_TYPE_ACCESSED;
1303
1304 /*
1305 * All DPL 0 code and data segments are squeezed into DPL 1.
1306 *
1307 * We're skipping conforming segments here because those
1308 * cannot give us any trouble.
1309 */
1310 if ( pLDTE->Gen.u2Dpl == 0
1311 && (pLDTE->Gen.u4Type & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF))
1312 != (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF) )
1313 pLDTE->Gen.u2Dpl = 1;
1314 }
1315 else
1316 {
1317 /*
1318 * System type selectors are marked not present.
1319 * Recompiler or special handling is required for these.
1320 */
1321 /** @todo what about interrupt gates and rawr0? */
1322 pLDTE->Gen.u1Present = 0;
1323 }
1324 }
1325
1326 /* Next LDT entry. */
1327 pLDTE++;
1328 }
1329 }
1330 else
1331 {
1332 AssertMsg(rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT, ("rc=%Rrc\n", rc));
1333 rc = PGMMapSetPage(pVM, GCPtrShadowLDT & PAGE_BASE_GC_MASK, PAGE_SIZE, 0);
1334 AssertRC(rc);
1335 }
1336
1337 /*
1338 * Advance to the next page.
1339 */
1340 cbLeft -= cbChunk;
1341 GCPtrShadowLDT += cbChunk;
1342 pShadowLDT = (PX86DESC)((char *)pShadowLDT + cbChunk);
1343 GCPtrLdt += cbChunk;
1344 }
1345 }
1346
1347 STAM_PROFILE_STOP(&pVM->selm.s.StatUpdateFromCPUM, a);
1348 return VINF_SUCCESS;
1349}
1350
1351
1352/**
1353 * \#PF Handler callback for virtual access handler ranges.
1354 *
1355 * Important to realize that a physical page in a range can have aliases, and
1356 * for ALL and WRITE handlers these will also trigger.
1357 *
1358 * @returns VINF_SUCCESS if the handler have carried out the operation.
1359 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
1360 * @param pVM VM Handle.
1361 * @param GCPtr The virtual address the guest is writing to. (not correct if it's an alias!)
1362 * @param pvPtr The HC mapping of that address.
1363 * @param pvBuf What the guest is reading/writing.
1364 * @param cbBuf How much it's reading/writing.
1365 * @param enmAccessType The access type.
1366 * @param pvUser User argument.
1367 */
1368static DECLCALLBACK(int) selmR3GuestGDTWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPtr, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser)
1369{
1370 Assert(enmAccessType == PGMACCESSTYPE_WRITE);
1371 Log(("selmR3GuestGDTWriteHandler: write to %RGv size %d\n", GCPtr, cbBuf));
1372
1373 VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_SELM_SYNC_GDT);
1374 return VINF_PGM_HANDLER_DO_DEFAULT;
1375}
1376
1377
1378/**
1379 * \#PF Handler callback for virtual access handler ranges.
1380 *
1381 * Important to realize that a physical page in a range can have aliases, and
1382 * for ALL and WRITE handlers these will also trigger.
1383 *
1384 * @returns VINF_SUCCESS if the handler have carried out the operation.
1385 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
1386 * @param pVM VM Handle.
1387 * @param GCPtr The virtual address the guest is writing to. (not correct if it's an alias!)
1388 * @param pvPtr The HC mapping of that address.
1389 * @param pvBuf What the guest is reading/writing.
1390 * @param cbBuf How much it's reading/writing.
1391 * @param enmAccessType The access type.
1392 * @param pvUser User argument.
1393 */
1394static DECLCALLBACK(int) selmR3GuestLDTWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPtr, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser)
1395{
1396 Assert(enmAccessType == PGMACCESSTYPE_WRITE);
1397 Log(("selmR3GuestLDTWriteHandler: write to %RGv size %d\n", GCPtr, cbBuf));
1398 VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_SELM_SYNC_LDT);
1399 return VINF_PGM_HANDLER_DO_DEFAULT;
1400}
1401
1402
1403/**
1404 * \#PF Handler callback for virtual access handler ranges.
1405 *
1406 * Important to realize that a physical page in a range can have aliases, and
1407 * for ALL and WRITE handlers these will also trigger.
1408 *
1409 * @returns VINF_SUCCESS if the handler have carried out the operation.
1410 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
1411 * @param pVM VM Handle.
1412 * @param GCPtr The virtual address the guest is writing to. (not correct if it's an alias!)
1413 * @param pvPtr The HC mapping of that address.
1414 * @param pvBuf What the guest is reading/writing.
1415 * @param cbBuf How much it's reading/writing.
1416 * @param enmAccessType The access type.
1417 * @param pvUser User argument.
1418 */
1419static DECLCALLBACK(int) selmR3GuestTSSWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPtr, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser)
1420{
1421 Assert(enmAccessType == PGMACCESSTYPE_WRITE);
1422 Log(("selmR3GuestTSSWriteHandler: write %.*Rhxs to %RGv size %d\n", RT_MIN(8, cbBuf), pvBuf, GCPtr, cbBuf));
1423
1424 /** @todo This can be optimized by checking for the ESP0 offset and tracking TR
1425 * reloads in REM (setting VM_FF_SELM_SYNC_TSS if TR is reloaded). We
1426 * should probably also deregister the virtual handler if TR.base/size
1427 * changes while we're in REM. */
1428
1429 VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_SELM_SYNC_TSS);
1430
1431 return VINF_PGM_HANDLER_DO_DEFAULT;
1432}
1433
1434
1435/**
1436 * Synchronize the shadowed fields in the TSS.
1437 *
1438 * At present we're shadowing the ring-0 stack selector & pointer, and the
1439 * interrupt redirection bitmap (if present). We take the lazy approach wrt to
1440 * REM and this function is called both if REM made any changes to the TSS or
1441 * loaded TR.
1442 *
1443 * @returns VBox status code.
1444 * @param pVM The VM to operate on.
1445 * @param pVCpu The VMCPU to operate on.
1446 */
1447VMMR3DECL(int) SELMR3SyncTSS(PVM pVM, PVMCPU pVCpu)
1448{
1449 int rc;
1450
1451 if (pVM->selm.s.fDisableMonitoring)
1452 {
1453 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1454 return VINF_SUCCESS;
1455 }
1456
1457 STAM_PROFILE_START(&pVM->selm.s.StatTSSSync, a);
1458 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_SELM_SYNC_TSS));
1459
1460 /*
1461 * Get TR and extract and store the basic info.
1462 *
1463 * Note! The TSS limit is not checked by the LTR code, so we
1464 * have to be a bit careful with it. We make sure cbTss
1465 * won't be zero if TR is valid and if it's NULL we'll
1466 * make sure cbTss is 0.
1467 */
1468 CPUMSELREGHID trHid;
1469 RTSEL SelTss = CPUMGetGuestTR(pVCpu, &trHid);
1470 RTGCPTR GCPtrTss = trHid.u64Base;
1471 uint32_t cbTss = trHid.u32Limit;
1472 Assert( (SelTss & X86_SEL_MASK)
1473 || (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
1474 || (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY /* RESET */));
1475 if (SelTss & X86_SEL_MASK)
1476 {
1477 Assert(!(SelTss & X86_SEL_LDT));
1478 Assert(trHid.Attr.n.u1DescType == 0);
1479 Assert( trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY
1480 || trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY);
1481 if (!++cbTss)
1482 cbTss = UINT32_MAX;
1483 }
1484 else
1485 {
1486 Assert( (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
1487 || (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY /* RESET */));
1488 cbTss = 0; /* the reset case. */
1489 }
1490 pVM->selm.s.cbGuestTss = cbTss;
1491 pVM->selm.s.fGuestTss32Bit = trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
1492 || trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY;
1493
1494 /*
1495 * Figure out the size of what need to monitor.
1496 */
1497 /* We're not interested in any 16-bit TSSes. */
1498 uint32_t cbMonitoredTss = cbTss;
1499 if ( trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL
1500 && trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
1501 cbMonitoredTss = 0;
1502
1503 pVM->selm.s.offGuestIoBitmap = 0;
1504 bool fNoRing1Stack = true;
1505 if (cbMonitoredTss)
1506 {
1507 /*
1508 * 32-bit TSS. What we're really keen on is the SS0 and ESP0 fields.
1509 * If VME is enabled we also want to keep an eye on the interrupt
1510 * redirection bitmap.
1511 */
1512 VBOXTSS Tss;
1513 uint32_t cr4 = CPUMGetGuestCR4(pVCpu);
1514 rc = PGMPhysSimpleReadGCPtr(pVCpu, &Tss, GCPtrTss, RT_OFFSETOF(VBOXTSS, IntRedirBitmap));
1515 if ( !(cr4 & X86_CR4_VME)
1516 || ( RT_SUCCESS(rc)
1517 && Tss.offIoBitmap < sizeof(VBOXTSS) /* too small */
1518 && Tss.offIoBitmap > cbTss) /* beyond the end */ /** @todo not sure how the partial case is handled; probably not allowed. */
1519 )
1520 /* No interrupt redirection bitmap, just ESP0 and SS0. */
1521 cbMonitoredTss = RT_UOFFSETOF(VBOXTSS, padding_ss0);
1522 else if (RT_SUCCESS(rc))
1523 {
1524 /*
1525 * Everything up to and including the interrupt redirection bitmap. Unfortunately
1526 * this can be quite a large chunk. We use to skip it earlier and just hope it
1527 * was kind of static...
1528 *
1529 * Update the virtual interrupt redirection bitmap while we're here.
1530 * (It is located in the 32 bytes before TR:offIoBitmap.)
1531 */
1532 cbMonitoredTss = Tss.offIoBitmap;
1533 pVM->selm.s.offGuestIoBitmap = Tss.offIoBitmap;
1534
1535 uint32_t offRedirBitmap = Tss.offIoBitmap - sizeof(Tss.IntRedirBitmap);
1536 rc = PGMPhysSimpleReadGCPtr(pVCpu, &pVM->selm.s.Tss.IntRedirBitmap,
1537 GCPtrTss + offRedirBitmap, sizeof(Tss.IntRedirBitmap));
1538 AssertRC(rc);
1539 /** @todo memset the bitmap on failure? */
1540 Log2(("Redirection bitmap:\n"));
1541 Log2(("%.*Rhxd\n", sizeof(Tss.IntRedirBitmap), &pVM->selm.s.Tss.IntRedirBitmap));
1542 }
1543 else
1544 {
1545 cbMonitoredTss = RT_OFFSETOF(VBOXTSS, IntRedirBitmap);
1546 pVM->selm.s.offGuestIoBitmap = 0;
1547 /** @todo memset the bitmap? */
1548 }
1549
1550 /*
1551 * Update the ring 0 stack selector and base address.
1552 */
1553 if (RT_SUCCESS(rc))
1554 {
1555#ifdef LOG_ENABLED
1556 if (LogIsEnabled())
1557 {
1558 uint32_t ssr0, espr0;
1559 SELMGetRing1Stack(pVM, &ssr0, &espr0);
1560 if ((ssr0 & ~1) != Tss.ss0 || espr0 != Tss.esp0)
1561 {
1562 RTGCPHYS GCPhys = NIL_RTGCPHYS;
1563 rc = PGMGstGetPage(pVCpu, GCPtrTss, NULL, &GCPhys); AssertRC(rc);
1564 Log(("SELMR3SyncTSS: Updating TSS ring 0 stack to %04X:%08X from %04X:%08X; TSS Phys=%RGp)\n",
1565 Tss.ss0, Tss.esp0, (ssr0 & ~1), espr0, GCPhys));
1566 AssertMsg(ssr0 != Tss.ss0,
1567 ("ring-1 leak into TSS.SS0! %04X:%08X from %04X:%08X; TSS Phys=%RGp)\n",
1568 Tss.ss0, Tss.esp0, (ssr0 & ~1), espr0, GCPhys));
1569 }
1570 Log(("offIoBitmap=%#x\n", Tss.offIoBitmap));
1571 }
1572#endif /* LOG_ENABLED */
1573 AssertMsg(!(Tss.ss0 & 3), ("ring-1 leak into TSS.SS0? %04X:%08X\n", Tss.ss0, Tss.esp0));
1574
1575 /* Update our TSS structure for the guest's ring 1 stack */
1576 selmSetRing1Stack(pVM, Tss.ss0 | 1, Tss.esp0);
1577 pVM->selm.s.fSyncTSSRing0Stack = fNoRing1Stack = false;
1578 }
1579 }
1580
1581 /*
1582 * Flush the ring-1 stack and the direct syscall dispatching if we
1583 * cannot obtain SS0:ESP0.
1584 */
1585 if (fNoRing1Stack)
1586 {
1587 selmSetRing1Stack(pVM, 0 /* invalid SS */, 0);
1588 pVM->selm.s.fSyncTSSRing0Stack = cbMonitoredTss != 0;
1589
1590 /** @todo handle these dependencies better! */
1591 TRPMR3SetGuestTrapHandler(pVM, 0x2E, TRPM_INVALID_HANDLER);
1592 TRPMR3SetGuestTrapHandler(pVM, 0x80, TRPM_INVALID_HANDLER);
1593 }
1594
1595 /*
1596 * Check for monitor changes and apply them.
1597 */
1598 if ( GCPtrTss != pVM->selm.s.GCPtrGuestTss
1599 || cbMonitoredTss != pVM->selm.s.cbMonitoredGuestTss)
1600 {
1601 Log(("SELMR3SyncTSS: Guest's TSS is changed to pTss=%RGv cbMonitoredTss=%08X cbGuestTss=%#08x\n",
1602 GCPtrTss, cbMonitoredTss, pVM->selm.s.cbGuestTss));
1603
1604 /* Release the old range first. */
1605 if (pVM->selm.s.GCPtrGuestTss != RTRCPTR_MAX)
1606 {
1607 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestTss);
1608 AssertRC(rc);
1609 }
1610
1611 /* Register the write handler if TS != 0. */
1612 if (cbMonitoredTss != 0)
1613 {
1614 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_WRITE, GCPtrTss, GCPtrTss + cbMonitoredTss - 1,
1615 0, selmR3GuestTSSWriteHandler,
1616 "selmRCGuestTSSWriteHandler", 0, "Guest TSS write access handler");
1617 if (RT_FAILURE(rc))
1618 {
1619 STAM_PROFILE_STOP(&pVM->selm.s.StatUpdateFromCPUM, a);
1620 return rc;
1621 }
1622
1623 /* Update saved Guest TSS info. */
1624 pVM->selm.s.GCPtrGuestTss = GCPtrTss;
1625 pVM->selm.s.cbMonitoredGuestTss = cbMonitoredTss;
1626 pVM->selm.s.GCSelTss = SelTss;
1627 }
1628 else
1629 {
1630 pVM->selm.s.GCPtrGuestTss = RTRCPTR_MAX;
1631 pVM->selm.s.cbMonitoredGuestTss = 0;
1632 pVM->selm.s.GCSelTss = 0;
1633 }
1634 }
1635
1636 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1637
1638 STAM_PROFILE_STOP(&pVM->selm.s.StatTSSSync, a);
1639 return VINF_SUCCESS;
1640}
1641
1642
1643/**
1644 * Compares the Guest GDT and LDT with the shadow tables.
1645 * This is a VBOX_STRICT only function.
1646 *
1647 * @returns VBox status code.
1648 * @param pVM The VM Handle.
1649 */
1650VMMR3DECL(int) SELMR3DebugCheck(PVM pVM)
1651{
1652#ifdef VBOX_STRICT
1653 PVMCPU pVCpu = VMMGetCpu(pVM);
1654
1655 /*
1656 * Get GDTR and check for conflict.
1657 */
1658 VBOXGDTR GDTR;
1659 CPUMGetGuestGDTR(pVCpu, &GDTR);
1660 if (GDTR.cbGdt == 0)
1661 return VINF_SUCCESS;
1662
1663 if (GDTR.cbGdt >= (unsigned)(pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> X86_SEL_SHIFT))
1664 Log(("SELMR3DebugCheck: guest GDT size forced us to look for unused selectors.\n"));
1665
1666 if (GDTR.cbGdt != pVM->selm.s.GuestGdtr.cbGdt)
1667 Log(("SELMR3DebugCheck: limits have changed! new=%d old=%d\n", GDTR.cbGdt, pVM->selm.s.GuestGdtr.cbGdt));
1668
1669 /*
1670 * Loop thru the GDT checking each entry.
1671 */
1672 RTGCPTR GCPtrGDTEGuest = GDTR.pGdt;
1673 PX86DESC pGDTE = pVM->selm.s.paGdtR3;
1674 PX86DESC pGDTEEnd = (PX86DESC)((uintptr_t)pGDTE + GDTR.cbGdt);
1675 while (pGDTE < pGDTEEnd)
1676 {
1677 X86DESC GDTEGuest;
1678 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &GDTEGuest, GCPtrGDTEGuest, sizeof(GDTEGuest));
1679 if (RT_SUCCESS(rc))
1680 {
1681 if (pGDTE->Gen.u1DescType || pGDTE->Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
1682 {
1683 if ( pGDTE->Gen.u16LimitLow != GDTEGuest.Gen.u16LimitLow
1684 || pGDTE->Gen.u4LimitHigh != GDTEGuest.Gen.u4LimitHigh
1685 || pGDTE->Gen.u16BaseLow != GDTEGuest.Gen.u16BaseLow
1686 || pGDTE->Gen.u8BaseHigh1 != GDTEGuest.Gen.u8BaseHigh1
1687 || pGDTE->Gen.u8BaseHigh2 != GDTEGuest.Gen.u8BaseHigh2
1688 || pGDTE->Gen.u1DefBig != GDTEGuest.Gen.u1DefBig
1689 || pGDTE->Gen.u1DescType != GDTEGuest.Gen.u1DescType)
1690 {
1691 unsigned iGDT = pGDTE - pVM->selm.s.paGdtR3;
1692 SELMR3DumpDescriptor(*pGDTE, iGDT << 3, "SELMR3DebugCheck: GDT mismatch, shadow");
1693 SELMR3DumpDescriptor(GDTEGuest, iGDT << 3, "SELMR3DebugCheck: GDT mismatch, guest");
1694 }
1695 }
1696 }
1697
1698 /* Advance to the next descriptor. */
1699 GCPtrGDTEGuest += sizeof(X86DESC);
1700 pGDTE++;
1701 }
1702
1703
1704 /*
1705 * LDT?
1706 */
1707 RTSEL SelLdt = CPUMGetGuestLDTR(pVCpu);
1708 if ((SelLdt & X86_SEL_MASK) == 0)
1709 return VINF_SUCCESS;
1710 if (SelLdt > GDTR.cbGdt)
1711 {
1712 Log(("SELMR3DebugCheck: ldt is out of bound SelLdt=%#x\n", SelLdt));
1713 return VERR_INTERNAL_ERROR;
1714 }
1715 X86DESC LDTDesc;
1716 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &LDTDesc, GDTR.pGdt + (SelLdt & X86_SEL_MASK), sizeof(LDTDesc));
1717 if (RT_FAILURE(rc))
1718 {
1719 Log(("SELMR3DebugCheck: Failed to read LDT descriptor. rc=%d\n", rc));
1720 return rc;
1721 }
1722 RTGCPTR GCPtrLDTEGuest = X86DESC_BASE(LDTDesc);
1723 unsigned cbLdt = X86DESC_LIMIT(LDTDesc);
1724 if (LDTDesc.Gen.u1Granularity)
1725 cbLdt = (cbLdt << PAGE_SHIFT) | PAGE_OFFSET_MASK;
1726
1727 /*
1728 * Validate it.
1729 */
1730 if (!cbLdt)
1731 return VINF_SUCCESS;
1732 /** @todo check what intel does about odd limits. */
1733 AssertMsg(RT_ALIGN(cbLdt + 1, sizeof(X86DESC)) == cbLdt + 1 && cbLdt <= 0xffff, ("cbLdt=%d\n", cbLdt));
1734 if ( LDTDesc.Gen.u1DescType
1735 || LDTDesc.Gen.u4Type != X86_SEL_TYPE_SYS_LDT
1736 || SelLdt >= pVM->selm.s.GuestGdtr.cbGdt)
1737 {
1738 Log(("SELmR3DebugCheck: Invalid LDT %04x!\n", SelLdt));
1739 return VERR_INTERNAL_ERROR;
1740 }
1741
1742 /*
1743 * Loop thru the LDT checking each entry.
1744 */
1745 unsigned off = (GCPtrLDTEGuest & PAGE_OFFSET_MASK);
1746 PX86DESC pLDTE = (PX86DESC)((uintptr_t)pVM->selm.s.pvLdtR3 + off);
1747 PX86DESC pLDTEEnd = (PX86DESC)((uintptr_t)pGDTE + cbLdt);
1748 while (pLDTE < pLDTEEnd)
1749 {
1750 X86DESC LDTEGuest;
1751 rc = PGMPhysSimpleReadGCPtr(pVCpu, &LDTEGuest, GCPtrLDTEGuest, sizeof(LDTEGuest));
1752 if (RT_SUCCESS(rc))
1753 {
1754 if ( pLDTE->Gen.u16LimitLow != LDTEGuest.Gen.u16LimitLow
1755 || pLDTE->Gen.u4LimitHigh != LDTEGuest.Gen.u4LimitHigh
1756 || pLDTE->Gen.u16BaseLow != LDTEGuest.Gen.u16BaseLow
1757 || pLDTE->Gen.u8BaseHigh1 != LDTEGuest.Gen.u8BaseHigh1
1758 || pLDTE->Gen.u8BaseHigh2 != LDTEGuest.Gen.u8BaseHigh2
1759 || pLDTE->Gen.u1DefBig != LDTEGuest.Gen.u1DefBig
1760 || pLDTE->Gen.u1DescType != LDTEGuest.Gen.u1DescType)
1761 {
1762 unsigned iLDT = pLDTE - (PX86DESC)((uintptr_t)pVM->selm.s.pvLdtR3 + off);
1763 SELMR3DumpDescriptor(*pLDTE, iLDT << 3, "SELMR3DebugCheck: LDT mismatch, shadow");
1764 SELMR3DumpDescriptor(LDTEGuest, iLDT << 3, "SELMR3DebugCheck: LDT mismatch, guest");
1765 }
1766 }
1767
1768 /* Advance to the next descriptor. */
1769 GCPtrLDTEGuest += sizeof(X86DESC);
1770 pLDTE++;
1771 }
1772
1773#else /* !VBOX_STRICT */
1774 NOREF(pVM);
1775#endif /* !VBOX_STRICT */
1776
1777 return VINF_SUCCESS;
1778}
1779
1780
1781/**
1782 * Validates the RawR0 TSS values against the one in the Guest TSS.
1783 *
1784 * @returns true if it matches.
1785 * @returns false and assertions on mismatch..
1786 * @param pVM VM Handle.
1787 */
1788VMMR3DECL(bool) SELMR3CheckTSS(PVM pVM)
1789{
1790#ifdef VBOX_STRICT
1791 PVMCPU pVCpu = VMMGetCpu(pVM);
1792
1793 if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_SELM_SYNC_TSS))
1794 return true;
1795
1796 /*
1797 * Get TR and extract the basic info.
1798 */
1799 CPUMSELREGHID trHid;
1800 RTSEL SelTss = CPUMGetGuestTR(pVCpu, &trHid);
1801 RTGCPTR GCPtrTss = trHid.u64Base;
1802 uint32_t cbTss = trHid.u32Limit;
1803 Assert( (SelTss & X86_SEL_MASK)
1804 || (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
1805 || (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY /* RESET */));
1806 if (SelTss & X86_SEL_MASK)
1807 {
1808 AssertReturn(!(SelTss & X86_SEL_LDT), false);
1809 AssertReturn(trHid.Attr.n.u1DescType == 0, false);
1810 AssertReturn( trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY
1811 || trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY,
1812 false);
1813 if (!++cbTss)
1814 cbTss = UINT32_MAX;
1815 }
1816 else
1817 {
1818 AssertReturn( (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
1819 || (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY /* RESET */),
1820 false);
1821 cbTss = 0; /* the reset case. */
1822 }
1823 AssertMsgReturn(pVM->selm.s.cbGuestTss == cbTss, ("%#x %#x\n", pVM->selm.s.cbGuestTss, cbTss), false);
1824 AssertMsgReturn(pVM->selm.s.fGuestTss32Bit == ( trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
1825 || trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY),
1826 ("%RTbool u4Type=%d\n", pVM->selm.s.fGuestTss32Bit, trHid.Attr.n.u4Type),
1827 false);
1828 AssertMsgReturn( pVM->selm.s.GCSelTss == SelTss
1829 || (!pVM->selm.s.GCSelTss && !(SelTss & X86_SEL_LDT)),
1830 ("%#x %#x\n", pVM->selm.s.GCSelTss, SelTss),
1831 false);
1832 AssertMsgReturn( pVM->selm.s.GCPtrGuestTss == GCPtrTss
1833 || (pVM->selm.s.GCPtrGuestTss == RTRCPTR_MAX && !GCPtrTss),
1834 ("%#RGv %#RGv\n", pVM->selm.s.GCPtrGuestTss, GCPtrTss),
1835 false);
1836
1837
1838 /*
1839 * Figure out the size of what need to monitor.
1840 */
1841 bool fNoRing1Stack = true;
1842 /* We're not interested in any 16-bit TSSes. */
1843 uint32_t cbMonitoredTss = cbTss;
1844 if ( trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL
1845 && trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
1846 cbMonitoredTss = 0;
1847 if (cbMonitoredTss)
1848 {
1849 VBOXTSS Tss;
1850 uint32_t cr4 = CPUMGetGuestCR4(pVCpu);
1851 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &Tss, GCPtrTss, RT_OFFSETOF(VBOXTSS, IntRedirBitmap));
1852 AssertReturn( rc == VINF_SUCCESS
1853 /* Happends early in XP boot during page table switching. */
1854 || ( (rc == VERR_PAGE_TABLE_NOT_PRESENT || rc == VERR_PAGE_NOT_PRESENT)
1855 && !(CPUMGetGuestEFlags(pVCpu) & X86_EFL_IF)),
1856 false);
1857 if ( !(cr4 & X86_CR4_VME)
1858 || ( RT_SUCCESS(rc)
1859 && Tss.offIoBitmap < sizeof(VBOXTSS) /* too small */
1860 && Tss.offIoBitmap > cbTss)
1861 )
1862 cbMonitoredTss = RT_UOFFSETOF(VBOXTSS, padding_ss0);
1863 else if (RT_SUCCESS(rc))
1864 {
1865 cbMonitoredTss = Tss.offIoBitmap;
1866 AssertMsgReturn(pVM->selm.s.offGuestIoBitmap == Tss.offIoBitmap,
1867 ("#x %#x\n", pVM->selm.s.offGuestIoBitmap, Tss.offIoBitmap),
1868 false);
1869
1870 /* check the bitmap */
1871 uint32_t offRedirBitmap = Tss.offIoBitmap - sizeof(Tss.IntRedirBitmap);
1872 rc = PGMPhysSimpleReadGCPtr(pVCpu, &Tss.IntRedirBitmap,
1873 GCPtrTss + offRedirBitmap, sizeof(Tss.IntRedirBitmap));
1874 AssertRCReturn(rc, false);
1875 AssertMsgReturn(!memcmp(&Tss.IntRedirBitmap[0], &pVM->selm.s.Tss.IntRedirBitmap[0], sizeof(Tss.IntRedirBitmap)),
1876 ("offIoBitmap=%#x cbTss=%#x\n"
1877 " Guest: %.32Rhxs\n"
1878 "Shadow: %.32Rhxs\n",
1879 Tss.offIoBitmap, cbTss,
1880 &Tss.IntRedirBitmap[0],
1881 &pVM->selm.s.Tss.IntRedirBitmap[0]),
1882 false);
1883 }
1884 else
1885 cbMonitoredTss = RT_OFFSETOF(VBOXTSS, IntRedirBitmap);
1886
1887 /*
1888 * Check SS0 and ESP0.
1889 */
1890 if ( !pVM->selm.s.fSyncTSSRing0Stack
1891 && RT_SUCCESS(rc))
1892 {
1893 if ( Tss.esp0 != pVM->selm.s.Tss.esp1
1894 || Tss.ss0 != (pVM->selm.s.Tss.ss1 & ~1))
1895 {
1896 RTGCPHYS GCPhys;
1897 rc = PGMGstGetPage(pVCpu, GCPtrTss, NULL, &GCPhys); AssertRC(rc);
1898 AssertMsgFailed(("TSS out of sync!! (%04X:%08X vs %04X:%08X (guest)) Tss=%RGv Phys=%RGp\n",
1899 (pVM->selm.s.Tss.ss1 & ~1), pVM->selm.s.Tss.esp1,
1900 Tss.ss1, Tss.esp1, GCPtrTss, GCPhys));
1901 return false;
1902 }
1903 }
1904 AssertMsgReturn(pVM->selm.s.cbMonitoredGuestTss == cbMonitoredTss, ("%#x %#x\n", pVM->selm.s.cbMonitoredGuestTss, cbMonitoredTss), false);
1905 }
1906 else
1907 {
1908 AssertMsgReturn(pVM->selm.s.Tss.ss1 == 0 && pVM->selm.s.Tss.esp1 == 0, ("%04x:%08x\n", pVM->selm.s.Tss.ss1, pVM->selm.s.Tss.esp1), false);
1909 AssertReturn(!pVM->selm.s.fSyncTSSRing0Stack, false);
1910 AssertMsgReturn(pVM->selm.s.cbMonitoredGuestTss == cbMonitoredTss, ("%#x %#x\n", pVM->selm.s.cbMonitoredGuestTss, cbMonitoredTss), false);
1911 }
1912
1913
1914
1915 return true;
1916
1917#else /* !VBOX_STRICT */
1918 NOREF(pVM);
1919 return true;
1920#endif /* !VBOX_STRICT */
1921}
1922
1923
1924/**
1925 * Returns flat address and limit of LDT by LDT selector from guest GDTR.
1926 *
1927 * Fully validate selector.
1928 *
1929 * @returns VBox status.
1930 * @param pVM VM Handle.
1931 * @param SelLdt LDT selector.
1932 * @param ppvLdt Where to store the flat address of LDT.
1933 * @param pcbLimit Where to store LDT limit.
1934 */
1935VMMDECL(int) SELMGetLDTFromSel(PVM pVM, RTSEL SelLdt, PRTGCPTR ppvLdt, unsigned *pcbLimit)
1936{
1937 PVMCPU pVCpu = VMMGetCpu(pVM);
1938
1939 /* Get guest GDTR. */
1940 VBOXGDTR GDTR;
1941 CPUMGetGuestGDTR(pVCpu, &GDTR);
1942
1943 /* Check selector TI and GDT limit. */
1944 if ( (SelLdt & X86_SEL_LDT)
1945 || SelLdt > GDTR.cbGdt)
1946 return VERR_INVALID_SELECTOR;
1947
1948 /* Read descriptor from GC. */
1949 X86DESC Desc;
1950 int rc = PGMPhysSimpleReadGCPtr(pVCpu, (void *)&Desc, (RTGCPTR)(GDTR.pGdt + (SelLdt & X86_SEL_MASK)), sizeof(Desc));
1951 if (RT_FAILURE(rc))
1952 {
1953 /* fatal */
1954 AssertMsgFailed(("Can't read LDT descriptor for selector=%04X\n", SelLdt));
1955 return VERR_SELECTOR_NOT_PRESENT;
1956 }
1957
1958 /* Check if LDT descriptor is not present. */
1959 if (Desc.Gen.u1Present == 0)
1960 return VERR_SELECTOR_NOT_PRESENT;
1961
1962 /* Check LDT descriptor type. */
1963 if ( Desc.Gen.u1DescType == 1
1964 || Desc.Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
1965 return VERR_INVALID_SELECTOR;
1966
1967 /* LDT descriptor is ok. */
1968 if (ppvLdt)
1969 {
1970 *ppvLdt = (RTGCPTR)X86DESC_BASE(Desc);
1971 *pcbLimit = X86DESC_LIMIT(Desc);
1972 }
1973 return VINF_SUCCESS;
1974}
1975
1976
1977/**
1978 * Gets information about a 64-bit selector, SELMR3GetSelectorInfo helper.
1979 *
1980 * See SELMR3GetSelectorInfo for details.
1981 *
1982 * @returns VBox status code, see SELMR3GetSelectorInfo for details.
1983 *
1984 * @param pVM VM handle.
1985 * @param pVCpu VMCPU handle.
1986 * @param Sel The selector to get info about.
1987 * @param pSelInfo Where to store the information.
1988 */
1989static int selmR3GetSelectorInfo64(PVM pVM, PVMCPU pVCpu, RTSEL Sel, PDBGFSELINFO pSelInfo)
1990{
1991 /*
1992 * Read it from the guest descriptor table.
1993 */
1994 X86DESC64 Desc;
1995 VBOXGDTR Gdtr;
1996 RTGCPTR GCPtrDesc;
1997 CPUMGetGuestGDTR(pVCpu, &Gdtr);
1998 if (!(Sel & X86_SEL_LDT))
1999 {
2000 /* GDT */
2001 if ((unsigned)(Sel & X86_SEL_MASK) + sizeof(X86DESC) - 1 > (unsigned)Gdtr.cbGdt)
2002 return VERR_INVALID_SELECTOR;
2003 GCPtrDesc = Gdtr.pGdt + (Sel & X86_SEL_MASK);
2004 }
2005 else
2006 {
2007 /*
2008 * LDT - must locate the LDT first.
2009 */
2010 RTSEL SelLdt = CPUMGetGuestLDTR(pVCpu);
2011 if ( (unsigned)(SelLdt & X86_SEL_MASK) < sizeof(X86DESC) /* the first selector is invalid, right? */ /** @todo r=bird: No, I don't think so */
2012 || (unsigned)(SelLdt & X86_SEL_MASK) + sizeof(X86DESC) - 1 > (unsigned)Gdtr.cbGdt)
2013 return VERR_INVALID_SELECTOR;
2014 GCPtrDesc = Gdtr.pGdt + (SelLdt & X86_SEL_MASK);
2015 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &Desc, GCPtrDesc, sizeof(Desc));
2016 if (RT_FAILURE(rc))
2017 return rc;
2018
2019 /* validate the LDT descriptor. */
2020 if (Desc.Gen.u1Present == 0)
2021 return VERR_SELECTOR_NOT_PRESENT;
2022 if ( Desc.Gen.u1DescType == 1
2023 || Desc.Gen.u4Type != AMD64_SEL_TYPE_SYS_LDT)
2024 return VERR_INVALID_SELECTOR;
2025
2026 uint32_t cbLimit = X86DESC_LIMIT(Desc);
2027 if (Desc.Gen.u1Granularity)
2028 cbLimit = (cbLimit << PAGE_SHIFT) | PAGE_OFFSET_MASK;
2029 if ((uint32_t)(Sel & X86_SEL_MASK) + sizeof(X86DESC) - 1 > cbLimit)
2030 return VERR_INVALID_SELECTOR;
2031
2032 /* calc the descriptor location. */
2033 GCPtrDesc = X86DESC64_BASE(Desc);
2034 GCPtrDesc += (Sel & X86_SEL_MASK);
2035 }
2036
2037 /* read the descriptor. */
2038 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &Desc, GCPtrDesc, sizeof(Desc));
2039 if (RT_FAILURE(rc))
2040 {
2041 rc = PGMPhysSimpleReadGCPtr(pVCpu, &Desc, GCPtrDesc, sizeof(X86DESC));
2042 if (RT_FAILURE(rc))
2043 return rc;
2044 Desc.au64[1] = 0;
2045 }
2046
2047 /*
2048 * Extract the base and limit
2049 * (We ignore the present bit here, which is probably a bit silly...)
2050 */
2051 pSelInfo->Sel = Sel;
2052 pSelInfo->fFlags = DBGFSELINFO_FLAGS_LONG_MODE;
2053 pSelInfo->u.Raw64 = Desc;
2054 if (Desc.Gen.u1DescType)
2055 {
2056 /*
2057 * 64-bit code selectors are wide open, it's not possible to detect
2058 * 64-bit data or stack selectors without also dragging in assumptions
2059 * about current CS (i.e. that's we're executing in 64-bit mode). So,
2060 * the selinfo user needs to deal with this in the context the info is
2061 * used unfortunately.
2062 */
2063 if ( Desc.Gen.u1Long
2064 && !Desc.Gen.u1DefBig
2065 && (Desc.Gen.u4Type & X86_SEL_TYPE_CODE))
2066 {
2067 /* Note! We ignore the segment limit hacks that was added by AMD. */
2068 pSelInfo->GCPtrBase = 0;
2069 pSelInfo->cbLimit = ~(RTGCUINTPTR)0;
2070 }
2071 else
2072 {
2073 pSelInfo->cbLimit = X86DESC_LIMIT(Desc);
2074 if (Desc.Gen.u1Granularity)
2075 pSelInfo->cbLimit = (pSelInfo->cbLimit << PAGE_SHIFT) | PAGE_OFFSET_MASK;
2076 pSelInfo->GCPtrBase = X86DESC_BASE(Desc);
2077 }
2078 pSelInfo->SelGate = 0;
2079 }
2080 else if ( Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_LDT
2081 || Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_TSS_AVAIL
2082 || Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY)
2083 {
2084 /* Note. LDT descriptors are weird in long mode, we ignore the footnote
2085 in the AMD manual here as a simplification. */
2086 pSelInfo->GCPtrBase = X86DESC64_BASE(Desc);
2087 pSelInfo->cbLimit = X86DESC_LIMIT(Desc);
2088 if (Desc.Gen.u1Granularity)
2089 pSelInfo->cbLimit = (pSelInfo->cbLimit << PAGE_SHIFT) | PAGE_OFFSET_MASK;
2090 pSelInfo->SelGate = 0;
2091 }
2092 else if ( Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE
2093 || Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_TRAP_GATE
2094 || Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_INT_GATE)
2095 {
2096 pSelInfo->cbLimit = X86DESC64_BASE(Desc);
2097 pSelInfo->GCPtrBase = Desc.Gate.u16OffsetLow
2098 | ((uint32_t)Desc.Gate.u16OffsetHigh << 16)
2099 | ((uint64_t)Desc.Gate.u32OffsetTop << 32);
2100 pSelInfo->SelGate = Desc.Gate.u16Sel;
2101 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_GATE;
2102 }
2103 else
2104 {
2105 pSelInfo->cbLimit = 0;
2106 pSelInfo->GCPtrBase = 0;
2107 pSelInfo->SelGate = 0;
2108 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_INVALID;
2109 }
2110 if (!Desc.Gen.u1Present)
2111 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_NOT_PRESENT;
2112
2113 return VINF_SUCCESS;
2114}
2115
2116
2117/**
2118 * Worker for selmR3GetSelectorInfo32 and SELMR3GetShadowSelectorInfo that
2119 * interprets a legacy descriptor table entry and fills in the selector info
2120 * structure from it.
2121 *
2122 * @param pSelInfo Where to store the selector info. Only the fFlags and
2123 * Sel members have been initialized.
2124 * @param pDesc The legacy descriptor to parse.
2125 */
2126DECLINLINE(void) selmR3SelInfoFromDesc32(PDBGFSELINFO pSelInfo, PCX86DESC pDesc)
2127{
2128 pSelInfo->u.Raw64.au64[1] = 0;
2129 pSelInfo->u.Raw = *pDesc;
2130 if ( pDesc->Gen.u1DescType
2131 || !(pDesc->Gen.u4Type & 4))
2132 {
2133 pSelInfo->cbLimit = X86DESC_LIMIT(*pDesc);
2134 if (pDesc->Gen.u1Granularity)
2135 pSelInfo->cbLimit = (pSelInfo->cbLimit << PAGE_SHIFT) | PAGE_OFFSET_MASK;
2136 pSelInfo->GCPtrBase = X86DESC_BASE(*pDesc);
2137 pSelInfo->SelGate = 0;
2138 }
2139 else if (pDesc->Gen.u4Type != X86_SEL_TYPE_SYS_UNDEFINED4)
2140 {
2141 pSelInfo->cbLimit = 0;
2142 if (pDesc->Gen.u4Type == X86_SEL_TYPE_SYS_TASK_GATE)
2143 pSelInfo->GCPtrBase = 0;
2144 else
2145 pSelInfo->GCPtrBase = pDesc->Gate.u16OffsetLow
2146 | (uint32_t)pDesc->Gate.u16OffsetHigh << 16;
2147 pSelInfo->SelGate = pDesc->Gate.u16Sel;
2148 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_GATE;
2149 }
2150 else
2151 {
2152 pSelInfo->cbLimit = 0;
2153 pSelInfo->GCPtrBase = 0;
2154 pSelInfo->SelGate = 0;
2155 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_INVALID;
2156 }
2157 if (!pDesc->Gen.u1Present)
2158 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_NOT_PRESENT;
2159}
2160
2161
2162/**
2163 * Gets information about a 64-bit selector, SELMR3GetSelectorInfo helper.
2164 *
2165 * See SELMR3GetSelectorInfo for details.
2166 *
2167 * @returns VBox status code, see SELMR3GetSelectorInfo for details.
2168 *
2169 * @param pVM VM handle.
2170 * @param pVCpu VMCPU handle.
2171 * @param Sel The selector to get info about.
2172 * @param pSelInfo Where to store the information.
2173 */
2174static int selmR3GetSelectorInfo32(PVM pVM, PVMCPU pVCpu, RTSEL Sel, PDBGFSELINFO pSelInfo)
2175{
2176 /*
2177 * Read the descriptor entry
2178 */
2179 pSelInfo->fFlags = 0;
2180 X86DESC Desc;
2181 if ( !(Sel & X86_SEL_LDT)
2182 && ( pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] == (Sel & X86_SEL_MASK)
2183 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] == (Sel & X86_SEL_MASK)
2184 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] == (Sel & X86_SEL_MASK)
2185 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] == (Sel & X86_SEL_MASK)
2186 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] == (Sel & X86_SEL_MASK))
2187 )
2188 {
2189 /*
2190 * Hypervisor descriptor.
2191 */
2192 pSelInfo->fFlags = DBGFSELINFO_FLAGS_HYPER;
2193 if (CPUMIsGuestInProtectedMode(pVCpu))
2194 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_PROT_MODE;
2195 else
2196 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_REAL_MODE;
2197
2198 Desc = pVM->selm.s.paGdtR3[Sel >> X86_SEL_SHIFT];
2199 }
2200 else if (CPUMIsGuestInProtectedMode(pVCpu))
2201 {
2202 /*
2203 * Read it from the guest descriptor table.
2204 */
2205 pSelInfo->fFlags = DBGFSELINFO_FLAGS_PROT_MODE;
2206
2207 VBOXGDTR Gdtr;
2208 RTGCPTR GCPtrDesc;
2209 CPUMGetGuestGDTR(pVCpu, &Gdtr);
2210 if (!(Sel & X86_SEL_LDT))
2211 {
2212 /* GDT */
2213 if ((unsigned)(Sel & X86_SEL_MASK) + sizeof(X86DESC) - 1 > (unsigned)Gdtr.cbGdt)
2214 return VERR_INVALID_SELECTOR;
2215 GCPtrDesc = Gdtr.pGdt + (Sel & X86_SEL_MASK);
2216 }
2217 else
2218 {
2219 /*
2220 * LDT - must locate the LDT first...
2221 */
2222 RTSEL SelLdt = CPUMGetGuestLDTR(pVCpu);
2223 if ( (unsigned)(SelLdt & X86_SEL_MASK) < sizeof(X86DESC) /* the first selector is invalid, right? */ /** @todo r=bird: No, I don't think so */
2224 || (unsigned)(SelLdt & X86_SEL_MASK) + sizeof(X86DESC) - 1 > (unsigned)Gdtr.cbGdt)
2225 return VERR_INVALID_SELECTOR;
2226 GCPtrDesc = Gdtr.pGdt + (SelLdt & X86_SEL_MASK);
2227 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &Desc, GCPtrDesc, sizeof(Desc));
2228 if (RT_FAILURE(rc))
2229 return rc;
2230
2231 /* validate the LDT descriptor. */
2232 if (Desc.Gen.u1Present == 0)
2233 return VERR_SELECTOR_NOT_PRESENT;
2234 if ( Desc.Gen.u1DescType == 1
2235 || Desc.Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
2236 return VERR_INVALID_SELECTOR;
2237
2238 unsigned cbLimit = X86DESC_LIMIT(Desc);
2239 if (Desc.Gen.u1Granularity)
2240 cbLimit = (cbLimit << PAGE_SHIFT) | PAGE_OFFSET_MASK;
2241 if ((unsigned)(Sel & X86_SEL_MASK) + sizeof(X86DESC) - 1 > cbLimit)
2242 return VERR_INVALID_SELECTOR;
2243
2244 /* calc the descriptor location. */
2245 GCPtrDesc = X86DESC_BASE(Desc);
2246 GCPtrDesc += (Sel & X86_SEL_MASK);
2247 }
2248
2249 /* read the descriptor. */
2250 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &Desc, GCPtrDesc, sizeof(Desc));
2251 if (RT_FAILURE(rc))
2252 return rc;
2253 }
2254 else
2255 {
2256 /*
2257 * We're in real mode.
2258 */
2259 pSelInfo->Sel = Sel;
2260 pSelInfo->GCPtrBase = Sel << 4;
2261 pSelInfo->cbLimit = 0xffff;
2262 pSelInfo->fFlags = DBGFSELINFO_FLAGS_REAL_MODE;
2263 pSelInfo->u.Raw64.au64[0] = 0;
2264 pSelInfo->u.Raw64.au64[1] = 0;
2265 pSelInfo->SelGate = 0;
2266 return VINF_SUCCESS;
2267 }
2268
2269 /*
2270 * Extract the base and limit or sel:offset for gates.
2271 */
2272 pSelInfo->Sel = Sel;
2273 selmR3SelInfoFromDesc32(pSelInfo, &Desc);
2274
2275 return VINF_SUCCESS;
2276}
2277
2278
2279/**
2280 * Gets information about a selector.
2281 *
2282 * Intended for the debugger mostly and will prefer the guest descriptor tables
2283 * over the shadow ones.
2284 *
2285 * @retval VINF_SUCCESS on success.
2286 * @retval VERR_INVALID_SELECTOR if the selector isn't fully inside the
2287 * descriptor table.
2288 * @retval VERR_SELECTOR_NOT_PRESENT if the LDT is invalid or not present. This
2289 * is not returned if the selector itself isn't present, you have to
2290 * check that for yourself (see DBGFSELINFO::fFlags).
2291 * @retval VERR_PAGE_TABLE_NOT_PRESENT or VERR_PAGE_NOT_PRESENT if the
2292 * pagetable or page backing the selector table wasn't present.
2293 * @returns Other VBox status code on other errors.
2294 *
2295 * @param pVM VM handle.
2296 * @param pVCpu The virtual CPU handle.
2297 * @param Sel The selector to get info about.
2298 * @param pSelInfo Where to store the information.
2299 */
2300VMMR3DECL(int) SELMR3GetSelectorInfo(PVM pVM, PVMCPU pVCpu, RTSEL Sel, PDBGFSELINFO pSelInfo)
2301{
2302 AssertPtr(pSelInfo);
2303 if (CPUMIsGuestInLongMode(pVCpu))
2304 return selmR3GetSelectorInfo64(pVM, pVCpu, Sel, pSelInfo);
2305 return selmR3GetSelectorInfo32(pVM, pVCpu, Sel, pSelInfo);
2306}
2307
2308
2309/**
2310 * Gets information about a selector from the shadow tables.
2311 *
2312 * This is intended to be faster than the SELMR3GetSelectorInfo() method, but
2313 * requires that the caller ensures that the shadow tables are up to date.
2314 *
2315 * @retval VINF_SUCCESS on success.
2316 * @retval VERR_INVALID_SELECTOR if the selector isn't fully inside the
2317 * descriptor table.
2318 * @retval VERR_SELECTOR_NOT_PRESENT if the LDT is invalid or not present. This
2319 * is not returned if the selector itself isn't present, you have to
2320 * check that for yourself (see DBGFSELINFO::fFlags).
2321 * @retval VERR_PAGE_TABLE_NOT_PRESENT or VERR_PAGE_NOT_PRESENT if the
2322 * pagetable or page backing the selector table wasn't present.
2323 * @returns Other VBox status code on other errors.
2324 *
2325 * @param pVM VM handle.
2326 * @param Sel The selector to get info about.
2327 * @param pSelInfo Where to store the information.
2328 *
2329 * @remarks Don't use this when in hardware assisted virtualization mode.
2330 */
2331VMMR3DECL(int) SELMR3GetShadowSelectorInfo(PVM pVM, RTSEL Sel, PDBGFSELINFO pSelInfo)
2332{
2333 Assert(pSelInfo);
2334
2335 /*
2336 * Read the descriptor entry
2337 */
2338 X86DESC Desc;
2339 if (!(Sel & X86_SEL_LDT))
2340 {
2341 /*
2342 * Global descriptor.
2343 */
2344 Desc = pVM->selm.s.paGdtR3[Sel >> X86_SEL_SHIFT];
2345 pSelInfo->fFlags = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] == (Sel & X86_SEL_MASK)
2346 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] == (Sel & X86_SEL_MASK)
2347 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] == (Sel & X86_SEL_MASK)
2348 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] == (Sel & X86_SEL_MASK)
2349 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] == (Sel & X86_SEL_MASK)
2350 ? DBGFSELINFO_FLAGS_HYPER
2351 : 0;
2352 /** @todo check that the GDT offset is valid. */
2353 }
2354 else
2355 {
2356 /*
2357 * Local Descriptor.
2358 */
2359 PX86DESC paLDT = (PX86DESC)((char *)pVM->selm.s.pvLdtR3 + pVM->selm.s.offLdtHyper);
2360 Desc = paLDT[Sel >> X86_SEL_SHIFT];
2361 /** @todo check if the LDT page is actually available. */
2362 /** @todo check that the LDT offset is valid. */
2363 pSelInfo->fFlags = 0;
2364 }
2365 if (CPUMIsGuestInProtectedMode(VMMGetCpu0(pVM)))
2366 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_PROT_MODE;
2367 else
2368 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_REAL_MODE;
2369
2370 /*
2371 * Extract the base and limit or sel:offset for gates.
2372 */
2373 pSelInfo->Sel = Sel;
2374 selmR3SelInfoFromDesc32(pSelInfo, &Desc);
2375
2376 return VINF_SUCCESS;
2377}
2378
2379
2380/**
2381 * Formats a descriptor.
2382 *
2383 * @param Desc Descriptor to format.
2384 * @param Sel Selector number.
2385 * @param pszOutput Output buffer.
2386 * @param cchOutput Size of output buffer.
2387 */
2388static void selmR3FormatDescriptor(X86DESC Desc, RTSEL Sel, char *pszOutput, size_t cchOutput)
2389{
2390 /*
2391 * Make variable description string.
2392 */
2393 static struct
2394 {
2395 unsigned cch;
2396 const char *psz;
2397 } const aTypes[32] =
2398 {
2399#define STRENTRY(str) { sizeof(str) - 1, str }
2400 /* system */
2401 STRENTRY("Reserved0 "), /* 0x00 */
2402 STRENTRY("TSS16Avail "), /* 0x01 */
2403 STRENTRY("LDT "), /* 0x02 */
2404 STRENTRY("TSS16Busy "), /* 0x03 */
2405 STRENTRY("Call16 "), /* 0x04 */
2406 STRENTRY("Task "), /* 0x05 */
2407 STRENTRY("Int16 "), /* 0x06 */
2408 STRENTRY("Trap16 "), /* 0x07 */
2409 STRENTRY("Reserved8 "), /* 0x08 */
2410 STRENTRY("TSS32Avail "), /* 0x09 */
2411 STRENTRY("ReservedA "), /* 0x0a */
2412 STRENTRY("TSS32Busy "), /* 0x0b */
2413 STRENTRY("Call32 "), /* 0x0c */
2414 STRENTRY("ReservedD "), /* 0x0d */
2415 STRENTRY("Int32 "), /* 0x0e */
2416 STRENTRY("Trap32 "), /* 0x0f */
2417 /* non system */
2418 STRENTRY("DataRO "), /* 0x10 */
2419 STRENTRY("DataRO Accessed "), /* 0x11 */
2420 STRENTRY("DataRW "), /* 0x12 */
2421 STRENTRY("DataRW Accessed "), /* 0x13 */
2422 STRENTRY("DataDownRO "), /* 0x14 */
2423 STRENTRY("DataDownRO Accessed "), /* 0x15 */
2424 STRENTRY("DataDownRW "), /* 0x16 */
2425 STRENTRY("DataDownRW Accessed "), /* 0x17 */
2426 STRENTRY("CodeEO "), /* 0x18 */
2427 STRENTRY("CodeEO Accessed "), /* 0x19 */
2428 STRENTRY("CodeER "), /* 0x1a */
2429 STRENTRY("CodeER Accessed "), /* 0x1b */
2430 STRENTRY("CodeConfEO "), /* 0x1c */
2431 STRENTRY("CodeConfEO Accessed "), /* 0x1d */
2432 STRENTRY("CodeConfER "), /* 0x1e */
2433 STRENTRY("CodeConfER Accessed ") /* 0x1f */
2434#undef SYSENTRY
2435 };
2436#define ADD_STR(psz, pszAdd) do { strcpy(psz, pszAdd); psz += strlen(pszAdd); } while (0)
2437 char szMsg[128];
2438 char *psz = &szMsg[0];
2439 unsigned i = Desc.Gen.u1DescType << 4 | Desc.Gen.u4Type;
2440 memcpy(psz, aTypes[i].psz, aTypes[i].cch);
2441 psz += aTypes[i].cch;
2442
2443 if (Desc.Gen.u1Present)
2444 ADD_STR(psz, "Present ");
2445 else
2446 ADD_STR(psz, "Not-Present ");
2447 if (Desc.Gen.u1Granularity)
2448 ADD_STR(psz, "Page ");
2449 if (Desc.Gen.u1DefBig)
2450 ADD_STR(psz, "32-bit ");
2451 else
2452 ADD_STR(psz, "16-bit ");
2453#undef ADD_STR
2454 *psz = '\0';
2455
2456 /*
2457 * Limit and Base and format the output.
2458 */
2459 uint32_t u32Limit = X86DESC_LIMIT(Desc);
2460 if (Desc.Gen.u1Granularity)
2461 u32Limit = u32Limit << PAGE_SHIFT | PAGE_OFFSET_MASK;
2462 uint32_t u32Base = X86DESC_BASE(Desc);
2463
2464 RTStrPrintf(pszOutput, cchOutput, "%04x - %08x %08x - base=%08x limit=%08x dpl=%d %s",
2465 Sel, Desc.au32[0], Desc.au32[1], u32Base, u32Limit, Desc.Gen.u2Dpl, szMsg);
2466}
2467
2468
2469/**
2470 * Dumps a descriptor.
2471 *
2472 * @param Desc Descriptor to dump.
2473 * @param Sel Selector number.
2474 * @param pszMsg Message to prepend the log entry with.
2475 */
2476VMMR3DECL(void) SELMR3DumpDescriptor(X86DESC Desc, RTSEL Sel, const char *pszMsg)
2477{
2478 char szOutput[128];
2479 selmR3FormatDescriptor(Desc, Sel, &szOutput[0], sizeof(szOutput));
2480 Log(("%s: %s\n", pszMsg, szOutput));
2481 NOREF(szOutput[0]);
2482}
2483
2484
2485/**
2486 * Display the shadow gdt.
2487 *
2488 * @param pVM VM Handle.
2489 * @param pHlp The info helpers.
2490 * @param pszArgs Arguments, ignored.
2491 */
2492static DECLCALLBACK(void) selmR3InfoGdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2493{
2494 pHlp->pfnPrintf(pHlp, "Shadow GDT (GCAddr=%RRv):\n", MMHyperR3ToRC(pVM, pVM->selm.s.paGdtR3));
2495 for (unsigned iGDT = 0; iGDT < SELM_GDT_ELEMENTS; iGDT++)
2496 {
2497 if (pVM->selm.s.paGdtR3[iGDT].Gen.u1Present)
2498 {
2499 char szOutput[128];
2500 selmR3FormatDescriptor(pVM->selm.s.paGdtR3[iGDT], iGDT << X86_SEL_SHIFT, &szOutput[0], sizeof(szOutput));
2501 const char *psz = "";
2502 if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] >> X86_SEL_SHIFT))
2503 psz = " HyperCS";
2504 else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] >> X86_SEL_SHIFT))
2505 psz = " HyperDS";
2506 else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] >> X86_SEL_SHIFT))
2507 psz = " HyperCS64";
2508 else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] >> X86_SEL_SHIFT))
2509 psz = " HyperTSS";
2510 else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> X86_SEL_SHIFT))
2511 psz = " HyperTSSTrap08";
2512 pHlp->pfnPrintf(pHlp, "%s%s\n", szOutput, psz);
2513 }
2514 }
2515}
2516
2517
2518/**
2519 * Display the guest gdt.
2520 *
2521 * @param pVM VM Handle.
2522 * @param pHlp The info helpers.
2523 * @param pszArgs Arguments, ignored.
2524 */
2525static DECLCALLBACK(void) selmR3InfoGdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2526{
2527 /** @todo SMP support! */
2528 PVMCPU pVCpu = &pVM->aCpus[0];
2529
2530 VBOXGDTR GDTR;
2531 CPUMGetGuestGDTR(pVCpu, &GDTR);
2532 RTGCPTR GCPtrGDT = GDTR.pGdt;
2533 unsigned cGDTs = ((unsigned)GDTR.cbGdt + 1) / sizeof(X86DESC);
2534
2535 pHlp->pfnPrintf(pHlp, "Guest GDT (GCAddr=%RGv limit=%x):\n", GCPtrGDT, GDTR.cbGdt);
2536 for (unsigned iGDT = 0; iGDT < cGDTs; iGDT++, GCPtrGDT += sizeof(X86DESC))
2537 {
2538 X86DESC GDTE;
2539 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &GDTE, GCPtrGDT, sizeof(GDTE));
2540 if (RT_SUCCESS(rc))
2541 {
2542 if (GDTE.Gen.u1Present)
2543 {
2544 char szOutput[128];
2545 selmR3FormatDescriptor(GDTE, iGDT << X86_SEL_SHIFT, &szOutput[0], sizeof(szOutput));
2546 pHlp->pfnPrintf(pHlp, "%s\n", szOutput);
2547 }
2548 }
2549 else if (rc == VERR_PAGE_NOT_PRESENT)
2550 {
2551 if ((GCPtrGDT & PAGE_OFFSET_MASK) + sizeof(X86DESC) - 1 < sizeof(X86DESC))
2552 pHlp->pfnPrintf(pHlp, "%04x - page not present (GCAddr=%RGv)\n", iGDT << X86_SEL_SHIFT, GCPtrGDT);
2553 }
2554 else
2555 pHlp->pfnPrintf(pHlp, "%04x - read error rc=%Rrc GCAddr=%RGv\n", iGDT << X86_SEL_SHIFT, rc, GCPtrGDT);
2556 }
2557}
2558
2559
2560/**
2561 * Display the shadow ldt.
2562 *
2563 * @param pVM VM Handle.
2564 * @param pHlp The info helpers.
2565 * @param pszArgs Arguments, ignored.
2566 */
2567static DECLCALLBACK(void) selmR3InfoLdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2568{
2569 unsigned cLDTs = ((unsigned)pVM->selm.s.cbLdtLimit + 1) >> X86_SEL_SHIFT;
2570 PX86DESC paLDT = (PX86DESC)((char *)pVM->selm.s.pvLdtR3 + pVM->selm.s.offLdtHyper);
2571 pHlp->pfnPrintf(pHlp, "Shadow LDT (GCAddr=%RRv limit=%#x):\n", pVM->selm.s.pvLdtRC + pVM->selm.s.offLdtHyper, pVM->selm.s.cbLdtLimit);
2572 for (unsigned iLDT = 0; iLDT < cLDTs; iLDT++)
2573 {
2574 if (paLDT[iLDT].Gen.u1Present)
2575 {
2576 char szOutput[128];
2577 selmR3FormatDescriptor(paLDT[iLDT], (iLDT << X86_SEL_SHIFT) | X86_SEL_LDT, &szOutput[0], sizeof(szOutput));
2578 pHlp->pfnPrintf(pHlp, "%s\n", szOutput);
2579 }
2580 }
2581}
2582
2583
2584/**
2585 * Display the guest ldt.
2586 *
2587 * @param pVM VM Handle.
2588 * @param pHlp The info helpers.
2589 * @param pszArgs Arguments, ignored.
2590 */
2591static DECLCALLBACK(void) selmR3InfoLdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2592{
2593 /** @todo SMP support! */
2594 PVMCPU pVCpu = &pVM->aCpus[0];
2595
2596 RTSEL SelLdt = CPUMGetGuestLDTR(pVCpu);
2597 if (!(SelLdt & X86_SEL_MASK))
2598 {
2599 pHlp->pfnPrintf(pHlp, "Guest LDT (Sel=%x): Null-Selector\n", SelLdt);
2600 return;
2601 }
2602
2603 RTGCPTR GCPtrLdt;
2604 unsigned cbLdt;
2605 int rc = SELMGetLDTFromSel(pVM, SelLdt, &GCPtrLdt, &cbLdt);
2606 if (RT_FAILURE(rc))
2607 {
2608 pHlp->pfnPrintf(pHlp, "Guest LDT (Sel=%x): rc=%Rrc\n", SelLdt, rc);
2609 return;
2610 }
2611
2612 pHlp->pfnPrintf(pHlp, "Guest LDT (Sel=%x GCAddr=%RGv limit=%x):\n", SelLdt, GCPtrLdt, cbLdt);
2613 unsigned cLdts = (cbLdt + 1) >> X86_SEL_SHIFT;
2614 for (unsigned iLdt = 0; iLdt < cLdts; iLdt++, GCPtrLdt += sizeof(X86DESC))
2615 {
2616 X86DESC LdtE;
2617 rc = PGMPhysSimpleReadGCPtr(pVCpu, &LdtE, GCPtrLdt, sizeof(LdtE));
2618 if (RT_SUCCESS(rc))
2619 {
2620 if (LdtE.Gen.u1Present)
2621 {
2622 char szOutput[128];
2623 selmR3FormatDescriptor(LdtE, (iLdt << X86_SEL_SHIFT) | X86_SEL_LDT, &szOutput[0], sizeof(szOutput));
2624 pHlp->pfnPrintf(pHlp, "%s\n", szOutput);
2625 }
2626 }
2627 else if (rc == VERR_PAGE_NOT_PRESENT)
2628 {
2629 if ((GCPtrLdt & PAGE_OFFSET_MASK) + sizeof(X86DESC) - 1 < sizeof(X86DESC))
2630 pHlp->pfnPrintf(pHlp, "%04x - page not present (GCAddr=%RGv)\n", (iLdt << X86_SEL_SHIFT) | X86_SEL_LDT, GCPtrLdt);
2631 }
2632 else
2633 pHlp->pfnPrintf(pHlp, "%04x - read error rc=%Rrc GCAddr=%RGv\n", (iLdt << X86_SEL_SHIFT) | X86_SEL_LDT, rc, GCPtrLdt);
2634 }
2635}
2636
2637
2638/**
2639 * Dumps the hypervisor GDT
2640 *
2641 * @param pVM VM handle.
2642 */
2643VMMR3DECL(void) SELMR3DumpHyperGDT(PVM pVM)
2644{
2645 DBGFR3Info(pVM, "gdt", NULL, NULL);
2646}
2647
2648
2649/**
2650 * Dumps the hypervisor LDT
2651 *
2652 * @param pVM VM handle.
2653 */
2654VMMR3DECL(void) SELMR3DumpHyperLDT(PVM pVM)
2655{
2656 DBGFR3Info(pVM, "ldt", NULL, NULL);
2657}
2658
2659
2660/**
2661 * Dumps the guest GDT
2662 *
2663 * @param pVM VM handle.
2664 */
2665VMMR3DECL(void) SELMR3DumpGuestGDT(PVM pVM)
2666{
2667 DBGFR3Info(pVM, "gdtguest", NULL, NULL);
2668}
2669
2670
2671/**
2672 * Dumps the guest LDT
2673 *
2674 * @param pVM VM handle.
2675 */
2676VMMR3DECL(void) SELMR3DumpGuestLDT(PVM pVM)
2677{
2678 DBGFR3Info(pVM, "ldtguest", NULL, NULL);
2679}
2680
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette