VirtualBox

source: vbox/trunk/src/VBox/VMM/TM.cpp@ 29813

Last change on this file since 29813 was 29250, checked in by vboxsync, 15 years ago

iprt/asm*.h: split out asm-math.h, don't include asm-*.h from asm.h, don't include asm.h from sup.h. Fixed a couple file headers.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 116.2 KB
Line 
1/* $Id: TM.cpp 29250 2010-05-09 17:53:58Z vboxsync $ */
2/** @file
3 * TM - Time Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_tm TM - The Time Manager
19 *
20 * The Time Manager abstracts the CPU clocks and manages timers used by the VMM,
21 * device and drivers.
22 *
23 * @see grp_tm
24 *
25 *
26 * @section sec_tm_clocks Clocks
27 *
28 * There are currently 4 clocks:
29 * - Virtual (guest).
30 * - Synchronous virtual (guest).
31 * - CPU Tick (TSC) (guest). Only current use is rdtsc emulation. Usually a
32 * function of the virtual clock.
33 * - Real (host). This is only used for display updates atm.
34 *
35 * The most important clocks are the three first ones and of these the second is
36 * the most interesting.
37 *
38 *
39 * The synchronous virtual clock is tied to the virtual clock except that it
40 * will take into account timer delivery lag caused by host scheduling. It will
41 * normally never advance beyond the head timer, and when lagging too far behind
42 * it will gradually speed up to catch up with the virtual clock. All devices
43 * implementing time sources accessible to and used by the guest is using this
44 * clock (for timers and other things). This ensures consistency between the
45 * time sources.
46 *
47 * The virtual clock is implemented as an offset to a monotonic, high
48 * resolution, wall clock. The current time source is using the RTTimeNanoTS()
49 * machinery based upon the Global Info Pages (GIP), that is, we're using TSC
50 * deltas (usually 10 ms) to fill the gaps between GIP updates. The result is
51 * a fairly high res clock that works in all contexts and on all hosts. The
52 * virtual clock is paused when the VM isn't in the running state.
53 *
54 * The CPU tick (TSC) is normally virtualized as a function of the synchronous
55 * virtual clock, where the frequency defaults to the host cpu frequency (as we
56 * measure it). In this mode it is possible to configure the frequency. Another
57 * (non-default) option is to use the raw unmodified host TSC values. And yet
58 * another, to tie it to time spent executing guest code. All these things are
59 * configurable should non-default behavior be desirable.
60 *
61 * The real clock is a monotonic clock (when available) with relatively low
62 * resolution, though this a bit host specific. Note that we're currently not
63 * servicing timers using the real clock when the VM is not running, this is
64 * simply because it has not been needed yet therefore not implemented.
65 *
66 *
67 * @subsection subsec_tm_timesync Guest Time Sync / UTC time
68 *
69 * Guest time syncing is primarily taken care of by the VMM device. The
70 * principle is very simple, the guest additions periodically asks the VMM
71 * device what the current UTC time is and makes adjustments accordingly.
72 *
73 * A complicating factor is that the synchronous virtual clock might be doing
74 * catchups and the guest perception is currently a little bit behind the world
75 * but it will (hopefully) be catching up soon as we're feeding timer interrupts
76 * at a slightly higher rate. Adjusting the guest clock to the current wall
77 * time in the real world would be a bad idea then because the guest will be
78 * advancing too fast and run ahead of world time (if the catchup works out).
79 * To solve this problem TM provides the VMM device with an UTC time source that
80 * gets adjusted with the current lag, so that when the guest eventually catches
81 * up the lag it will be showing correct real world time.
82 *
83 *
84 * @section sec_tm_timers Timers
85 *
86 * The timers can use any of the TM clocks described in the previous section.
87 * Each clock has its own scheduling facility, or timer queue if you like.
88 * There are a few factors which makes it a bit complex. First, there is the
89 * usual R0 vs R3 vs. RC thing. Then there are multiple threads, and then there
90 * is the timer thread that periodically checks whether any timers has expired
91 * without EMT noticing. On the API level, all but the create and save APIs
92 * must be mulithreaded. EMT will always run the timers.
93 *
94 * The design is using a doubly linked list of active timers which is ordered
95 * by expire date. This list is only modified by the EMT thread. Updates to
96 * the list are batched in a singly linked list, which is then processed by the
97 * EMT thread at the first opportunity (immediately, next time EMT modifies a
98 * timer on that clock, or next timer timeout). Both lists are offset based and
99 * all the elements are therefore allocated from the hyper heap.
100 *
101 * For figuring out when there is need to schedule and run timers TM will:
102 * - Poll whenever somebody queries the virtual clock.
103 * - Poll the virtual clocks from the EM and REM loops.
104 * - Poll the virtual clocks from trap exit path.
105 * - Poll the virtual clocks and calculate first timeout from the halt loop.
106 * - Employ a thread which periodically (100Hz) polls all the timer queues.
107 *
108 *
109 * @image html TMTIMER-Statechart-Diagram.gif
110 *
111 * @section sec_tm_timer Logging
112 *
113 * Level 2: Logs a most of the timer state transitions and queue servicing.
114 * Level 3: Logs a few oddments.
115 * Level 4: Logs TMCLOCK_VIRTUAL_SYNC catch-up events.
116 *
117 */
118
119/*******************************************************************************
120* Header Files *
121*******************************************************************************/
122#define LOG_GROUP LOG_GROUP_TM
123#include <VBox/tm.h>
124#include <VBox/vmm.h>
125#include <VBox/mm.h>
126#include <VBox/ssm.h>
127#include <VBox/dbgf.h>
128#include <VBox/rem.h>
129#include <VBox/pdmapi.h>
130#include <VBox/iom.h>
131#include "TMInternal.h"
132#include <VBox/vm.h>
133
134#include <VBox/pdmdev.h>
135#include <VBox/param.h>
136#include <VBox/err.h>
137
138#include <VBox/log.h>
139#include <iprt/asm.h>
140#include <iprt/asm-math.h>
141#include <iprt/asm-amd64-x86.h>
142#include <iprt/assert.h>
143#include <iprt/thread.h>
144#include <iprt/time.h>
145#include <iprt/timer.h>
146#include <iprt/semaphore.h>
147#include <iprt/string.h>
148#include <iprt/env.h>
149
150
151/*******************************************************************************
152* Defined Constants And Macros *
153*******************************************************************************/
154/** The current saved state version.*/
155#define TM_SAVED_STATE_VERSION 3
156
157
158/*******************************************************************************
159* Internal Functions *
160*******************************************************************************/
161static bool tmR3HasFixedTSC(PVM pVM);
162static uint64_t tmR3CalibrateTSC(PVM pVM);
163static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM);
164static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
165static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
166static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue);
167static void tmR3TimerQueueRunVirtualSync(PVM pVM);
168static DECLCALLBACK(int) tmR3SetWarpDrive(PVM pVM, uint32_t u32Percent);
169static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
170static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
171static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
172
173
174/**
175 * Initializes the TM.
176 *
177 * @returns VBox status code.
178 * @param pVM The VM to operate on.
179 */
180VMM_INT_DECL(int) TMR3Init(PVM pVM)
181{
182 LogFlow(("TMR3Init:\n"));
183
184 /*
185 * Assert alignment and sizes.
186 */
187 AssertCompileMemberAlignment(VM, tm.s, 32);
188 AssertCompile(sizeof(pVM->tm.s) <= sizeof(pVM->tm.padding));
189 AssertCompileMemberAlignment(TM, TimerCritSect, 8);
190 AssertCompileMemberAlignment(TM, VirtualSyncLock, 8);
191
192 /*
193 * Init the structure.
194 */
195 void *pv;
196 int rc = MMHyperAlloc(pVM, sizeof(pVM->tm.s.paTimerQueuesR3[0]) * TMCLOCK_MAX, 0, MM_TAG_TM, &pv);
197 AssertRCReturn(rc, rc);
198 pVM->tm.s.paTimerQueuesR3 = (PTMTIMERQUEUE)pv;
199 pVM->tm.s.paTimerQueuesR0 = MMHyperR3ToR0(pVM, pv);
200 pVM->tm.s.paTimerQueuesRC = MMHyperR3ToRC(pVM, pv);
201
202 pVM->tm.s.offVM = RT_OFFSETOF(VM, tm.s);
203 pVM->tm.s.idTimerCpu = pVM->cCpus - 1; /* The last CPU. */
204 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].enmClock = TMCLOCK_VIRTUAL;
205 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].u64Expire = INT64_MAX;
206 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].enmClock = TMCLOCK_VIRTUAL_SYNC;
207 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].u64Expire = INT64_MAX;
208 pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].enmClock = TMCLOCK_REAL;
209 pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].u64Expire = INT64_MAX;
210 pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].enmClock = TMCLOCK_TSC;
211 pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].u64Expire = INT64_MAX;
212
213
214 /*
215 * We directly use the GIP to calculate the virtual time. We map the
216 * the GIP into the guest context so we can do this calculation there
217 * as well and save costly world switches.
218 */
219 pVM->tm.s.pvGIPR3 = (void *)g_pSUPGlobalInfoPage;
220 AssertMsgReturn(pVM->tm.s.pvGIPR3, ("GIP support is now required!\n"), VERR_INTERNAL_ERROR);
221 RTHCPHYS HCPhysGIP;
222 rc = SUPR3GipGetPhys(&HCPhysGIP);
223 AssertMsgRCReturn(rc, ("Failed to get GIP physical address!\n"), rc);
224
225 RTGCPTR GCPtr;
226 rc = MMR3HyperMapHCPhys(pVM, pVM->tm.s.pvGIPR3, NIL_RTR0PTR, HCPhysGIP, PAGE_SIZE, "GIP", &GCPtr);
227 if (RT_FAILURE(rc))
228 {
229 AssertMsgFailed(("Failed to map GIP into GC, rc=%Rrc!\n", rc));
230 return rc;
231 }
232 pVM->tm.s.pvGIPRC = GCPtr;
233 LogFlow(("TMR3Init: HCPhysGIP=%RHp at %RRv\n", HCPhysGIP, pVM->tm.s.pvGIPRC));
234 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
235
236 /* Check assumptions made in TMAllVirtual.cpp about the GIP update interval. */
237 if ( g_pSUPGlobalInfoPage->u32Magic == SUPGLOBALINFOPAGE_MAGIC
238 && g_pSUPGlobalInfoPage->u32UpdateIntervalNS >= 250000000 /* 0.25s */)
239 return VMSetError(pVM, VERR_INTERNAL_ERROR, RT_SRC_POS,
240 N_("The GIP update interval is too big. u32UpdateIntervalNS=%RU32 (u32UpdateHz=%RU32)"),
241 g_pSUPGlobalInfoPage->u32UpdateIntervalNS, g_pSUPGlobalInfoPage->u32UpdateHz);
242 LogRel(("TM: GIP - u32Mode=%d (%s) u32UpdateHz=%u\n", g_pSUPGlobalInfoPage->u32Mode,
243 g_pSUPGlobalInfoPage->u32Mode == SUPGIPMODE_SYNC_TSC ? "SyncTSC"
244 : g_pSUPGlobalInfoPage->u32Mode == SUPGIPMODE_ASYNC_TSC ? "AsyncTSC" : "Unknown",
245 g_pSUPGlobalInfoPage->u32UpdateHz));
246
247 /*
248 * Setup the VirtualGetRaw backend.
249 */
250 pVM->tm.s.VirtualGetRawDataR3.pu64Prev = &pVM->tm.s.u64VirtualRawPrev;
251 pVM->tm.s.VirtualGetRawDataR3.pfnBad = tmVirtualNanoTSBad;
252 pVM->tm.s.VirtualGetRawDataR3.pfnRediscover = tmVirtualNanoTSRediscover;
253 if (ASMCpuId_EDX(1) & X86_CPUID_FEATURE_EDX_SSE2)
254 {
255 if (g_pSUPGlobalInfoPage->u32Mode == SUPGIPMODE_SYNC_TSC)
256 pVM->tm.s.pfnVirtualGetRawR3 = RTTimeNanoTSLFenceSync;
257 else
258 pVM->tm.s.pfnVirtualGetRawR3 = RTTimeNanoTSLFenceAsync;
259 }
260 else
261 {
262 if (g_pSUPGlobalInfoPage->u32Mode == SUPGIPMODE_SYNC_TSC)
263 pVM->tm.s.pfnVirtualGetRawR3 = RTTimeNanoTSLegacySync;
264 else
265 pVM->tm.s.pfnVirtualGetRawR3 = RTTimeNanoTSLegacyAsync;
266 }
267
268 pVM->tm.s.VirtualGetRawDataRC.pu64Prev = MMHyperR3ToRC(pVM, (void *)&pVM->tm.s.u64VirtualRawPrev);
269 pVM->tm.s.VirtualGetRawDataR0.pu64Prev = MMHyperR3ToR0(pVM, (void *)&pVM->tm.s.u64VirtualRawPrev);
270 AssertReturn(pVM->tm.s.VirtualGetRawDataR0.pu64Prev, VERR_INTERNAL_ERROR);
271 /* The rest is done in TMR3InitFinalize since it's too early to call PDM. */
272
273 /*
274 * Init the locks.
275 */
276 rc = PDMR3CritSectInit(pVM, &pVM->tm.s.TimerCritSect, RT_SRC_POS, "TM Timer Lock");
277 if (RT_FAILURE(rc))
278 return rc;
279 rc = PDMR3CritSectInit(pVM, &pVM->tm.s.VirtualSyncLock, RT_SRC_POS, "TM VirtualSync Lock");
280 if (RT_FAILURE(rc))
281 return rc;
282
283 /*
284 * Get our CFGM node, create it if necessary.
285 */
286 PCFGMNODE pCfgHandle = CFGMR3GetChild(CFGMR3GetRoot(pVM), "TM");
287 if (!pCfgHandle)
288 {
289 rc = CFGMR3InsertNode(CFGMR3GetRoot(pVM), "TM", &pCfgHandle);
290 AssertRCReturn(rc, rc);
291 }
292
293 /*
294 * Determin the TSC configuration and frequency.
295 */
296 /* mode */
297 /** @cfgm{/TM/TSCVirtualized,bool,true}
298 * Use a virtualize TSC, i.e. trap all TSC access. */
299 rc = CFGMR3QueryBool(pCfgHandle, "TSCVirtualized", &pVM->tm.s.fTSCVirtualized);
300 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
301 pVM->tm.s.fTSCVirtualized = true; /* trap rdtsc */
302 else if (RT_FAILURE(rc))
303 return VMSetError(pVM, rc, RT_SRC_POS,
304 N_("Configuration error: Failed to querying bool value \"UseRealTSC\""));
305
306 /* source */
307 /** @cfgm{/TM/UseRealTSC,bool,false}
308 * Use the real TSC as time source for the TSC instead of the synchronous
309 * virtual clock (false, default). */
310 rc = CFGMR3QueryBool(pCfgHandle, "UseRealTSC", &pVM->tm.s.fTSCUseRealTSC);
311 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
312 pVM->tm.s.fTSCUseRealTSC = false; /* use virtual time */
313 else if (RT_FAILURE(rc))
314 return VMSetError(pVM, rc, RT_SRC_POS,
315 N_("Configuration error: Failed to querying bool value \"UseRealTSC\""));
316 if (!pVM->tm.s.fTSCUseRealTSC)
317 pVM->tm.s.fTSCVirtualized = true;
318
319 /* TSC reliability */
320 /** @cfgm{/TM/MaybeUseOffsettedHostTSC,bool,detect}
321 * Whether the CPU has a fixed TSC rate and may be used in offsetted mode with
322 * VT-x/AMD-V execution. This is autodetected in a very restrictive way by
323 * default. */
324 rc = CFGMR3QueryBool(pCfgHandle, "MaybeUseOffsettedHostTSC", &pVM->tm.s.fMaybeUseOffsettedHostTSC);
325 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
326 {
327 if (!pVM->tm.s.fTSCUseRealTSC)
328 pVM->tm.s.fMaybeUseOffsettedHostTSC = tmR3HasFixedTSC(pVM);
329 else
330 pVM->tm.s.fMaybeUseOffsettedHostTSC = true;
331 }
332
333 /** @cfgm{TM/TSCTicksPerSecond, uint32_t, Current TSC frequency from GIP}
334 * The number of TSC ticks per second (i.e. the TSC frequency). This will
335 * override TSCUseRealTSC, TSCVirtualized and MaybeUseOffsettedHostTSC.
336 */
337 rc = CFGMR3QueryU64(pCfgHandle, "TSCTicksPerSecond", &pVM->tm.s.cTSCTicksPerSecond);
338 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
339 {
340 pVM->tm.s.cTSCTicksPerSecond = tmR3CalibrateTSC(pVM);
341 if ( !pVM->tm.s.fTSCUseRealTSC
342 && pVM->tm.s.cTSCTicksPerSecond >= _4G)
343 {
344 pVM->tm.s.cTSCTicksPerSecond = _4G - 1; /* (A limitation of our math code) */
345 pVM->tm.s.fMaybeUseOffsettedHostTSC = false;
346 }
347 }
348 else if (RT_FAILURE(rc))
349 return VMSetError(pVM, rc, RT_SRC_POS,
350 N_("Configuration error: Failed to querying uint64_t value \"TSCTicksPerSecond\""));
351 else if ( pVM->tm.s.cTSCTicksPerSecond < _1M
352 || pVM->tm.s.cTSCTicksPerSecond >= _4G)
353 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
354 N_("Configuration error: \"TSCTicksPerSecond\" = %RI64 is not in the range 1MHz..4GHz-1"),
355 pVM->tm.s.cTSCTicksPerSecond);
356 else
357 {
358 pVM->tm.s.fTSCUseRealTSC = pVM->tm.s.fMaybeUseOffsettedHostTSC = false;
359 pVM->tm.s.fTSCVirtualized = true;
360 }
361
362 /** @cfgm{TM/TSCTiedToExecution, bool, false}
363 * Whether the TSC should be tied to execution. This will exclude most of the
364 * virtualization overhead, but will by default include the time spent in the
365 * halt state (see TM/TSCNotTiedToHalt). This setting will override all other
366 * TSC settings except for TSCTicksPerSecond and TSCNotTiedToHalt, which should
367 * be used avoided or used with great care. Note that this will only work right
368 * together with VT-x or AMD-V, and with a single virtual CPU. */
369 rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCTiedToExecution", &pVM->tm.s.fTSCTiedToExecution, false);
370 if (RT_FAILURE(rc))
371 return VMSetError(pVM, rc, RT_SRC_POS,
372 N_("Configuration error: Failed to querying bool value \"TSCTiedToExecution\""));
373 if (pVM->tm.s.fTSCTiedToExecution)
374 {
375 /* tied to execution, override all other settings. */
376 pVM->tm.s.fTSCVirtualized = true;
377 pVM->tm.s.fTSCUseRealTSC = true;
378 pVM->tm.s.fMaybeUseOffsettedHostTSC = false;
379 }
380
381 /** @cfgm{TM/TSCNotTiedToHalt, bool, true}
382 * For overriding the default of TM/TSCTiedToExecution, i.e. set this to false
383 * to make the TSC freeze during HLT. */
384 rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCNotTiedToHalt", &pVM->tm.s.fTSCNotTiedToHalt, false);
385 if (RT_FAILURE(rc))
386 return VMSetError(pVM, rc, RT_SRC_POS,
387 N_("Configuration error: Failed to querying bool value \"TSCNotTiedToHalt\""));
388
389 /* setup and report */
390 if (pVM->tm.s.fTSCVirtualized)
391 CPUMR3SetCR4Feature(pVM, X86_CR4_TSD, ~X86_CR4_TSD);
392 else
393 CPUMR3SetCR4Feature(pVM, 0, ~X86_CR4_TSD);
394 LogRel(("TM: cTSCTicksPerSecond=%#RX64 (%'RU64) fTSCVirtualized=%RTbool fTSCUseRealTSC=%RTbool\n"
395 "TM: fMaybeUseOffsettedHostTSC=%RTbool TSCTiedToExecution=%RTbool TSCNotTiedToHalt=%RTbool\n",
396 pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.fTSCVirtualized, pVM->tm.s.fTSCUseRealTSC,
397 pVM->tm.s.fMaybeUseOffsettedHostTSC, pVM->tm.s.fTSCTiedToExecution, pVM->tm.s.fTSCNotTiedToHalt));
398
399 /*
400 * Configure the timer synchronous virtual time.
401 */
402 /** @cfgm{TM/ScheduleSlack, uint32_t, ns, 0, UINT32_MAX, 100000}
403 * Scheduling slack when processing timers. */
404 rc = CFGMR3QueryU32(pCfgHandle, "ScheduleSlack", &pVM->tm.s.u32VirtualSyncScheduleSlack);
405 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
406 pVM->tm.s.u32VirtualSyncScheduleSlack = 100000; /* 0.100ms (ASSUMES virtual time is nanoseconds) */
407 else if (RT_FAILURE(rc))
408 return VMSetError(pVM, rc, RT_SRC_POS,
409 N_("Configuration error: Failed to querying 32-bit integer value \"ScheduleSlack\""));
410
411 /** @cfgm{TM/CatchUpStopThreshold, uint64_t, ns, 0, UINT64_MAX, 500000}
412 * When to stop a catch-up, considering it successful. */
413 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStopThreshold", &pVM->tm.s.u64VirtualSyncCatchUpStopThreshold);
414 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
415 pVM->tm.s.u64VirtualSyncCatchUpStopThreshold = 500000; /* 0.5ms */
416 else if (RT_FAILURE(rc))
417 return VMSetError(pVM, rc, RT_SRC_POS,
418 N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpStopThreshold\""));
419
420 /** @cfgm{TM/CatchUpGiveUpThreshold, uint64_t, ns, 0, UINT64_MAX, 60000000000}
421 * When to give up a catch-up attempt. */
422 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpGiveUpThreshold", &pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold);
423 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
424 pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold = UINT64_C(60000000000); /* 60 sec */
425 else if (RT_FAILURE(rc))
426 return VMSetError(pVM, rc, RT_SRC_POS,
427 N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpGiveUpThreshold\""));
428
429
430 /** @cfgm{TM/CatchUpPrecentage[0..9], uint32_t, %, 1, 2000, various}
431 * The catch-up percent for a given period. */
432 /** @cfgm{TM/CatchUpStartThreshold[0..9], uint64_t, ns, 0, UINT64_MAX,
433 * The catch-up period threshold, or if you like, when a period starts. */
434#define TM_CFG_PERIOD(iPeriod, DefStart, DefPct) \
435 do \
436 { \
437 uint64_t u64; \
438 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStartThreshold" #iPeriod, &u64); \
439 if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
440 u64 = UINT64_C(DefStart); \
441 else if (RT_FAILURE(rc)) \
442 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpThreshold" #iPeriod "\"")); \
443 if ( (iPeriod > 0 && u64 <= pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod - 1].u64Start) \
444 || u64 >= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold) \
445 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("Configuration error: Invalid start of period #" #iPeriod ": %'RU64"), u64); \
446 pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u64Start = u64; \
447 rc = CFGMR3QueryU32(pCfgHandle, "CatchUpPrecentage" #iPeriod, &pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage); \
448 if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
449 pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage = (DefPct); \
450 else if (RT_FAILURE(rc)) \
451 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 32-bit integer value \"CatchUpPrecentage" #iPeriod "\"")); \
452 } while (0)
453 /* This needs more tuning. Not sure if we really need so many period and be so gentle. */
454 TM_CFG_PERIOD(0, 750000, 5); /* 0.75ms at 1.05x */
455 TM_CFG_PERIOD(1, 1500000, 10); /* 1.50ms at 1.10x */
456 TM_CFG_PERIOD(2, 8000000, 25); /* 8ms at 1.25x */
457 TM_CFG_PERIOD(3, 30000000, 50); /* 30ms at 1.50x */
458 TM_CFG_PERIOD(4, 75000000, 75); /* 75ms at 1.75x */
459 TM_CFG_PERIOD(5, 175000000, 100); /* 175ms at 2x */
460 TM_CFG_PERIOD(6, 500000000, 200); /* 500ms at 3x */
461 TM_CFG_PERIOD(7, 3000000000, 300); /* 3s at 4x */
462 TM_CFG_PERIOD(8,30000000000, 400); /* 30s at 5x */
463 TM_CFG_PERIOD(9,55000000000, 500); /* 55s at 6x */
464 AssertCompile(RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods) == 10);
465#undef TM_CFG_PERIOD
466
467 /*
468 * Configure real world time (UTC).
469 */
470 /** @cfgm{TM/UTCOffset, int64_t, ns, INT64_MIN, INT64_MAX, 0}
471 * The UTC offset. This is used to put the guest back or forwards in time. */
472 rc = CFGMR3QueryS64(pCfgHandle, "UTCOffset", &pVM->tm.s.offUTC);
473 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
474 pVM->tm.s.offUTC = 0; /* ns */
475 else if (RT_FAILURE(rc))
476 return VMSetError(pVM, rc, RT_SRC_POS,
477 N_("Configuration error: Failed to querying 64-bit integer value \"UTCOffset\""));
478
479 /*
480 * Setup the warp drive.
481 */
482 /** @cfgm{TM/WarpDrivePercentage, uint32_t, %, 0, 20000, 100}
483 * The warp drive percentage, 100% is normal speed. This is used to speed up
484 * or slow down the virtual clock, which can be useful for fast forwarding
485 * borring periods during tests. */
486 rc = CFGMR3QueryU32(pCfgHandle, "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage);
487 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
488 rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage); /* legacy */
489 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
490 pVM->tm.s.u32VirtualWarpDrivePercentage = 100;
491 else if (RT_FAILURE(rc))
492 return VMSetError(pVM, rc, RT_SRC_POS,
493 N_("Configuration error: Failed to querying uint32_t value \"WarpDrivePercent\""));
494 else if ( pVM->tm.s.u32VirtualWarpDrivePercentage < 2
495 || pVM->tm.s.u32VirtualWarpDrivePercentage > 20000)
496 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
497 N_("Configuration error: \"WarpDrivePercent\" = %RI32 is not in the range 2..20000"),
498 pVM->tm.s.u32VirtualWarpDrivePercentage);
499 pVM->tm.s.fVirtualWarpDrive = pVM->tm.s.u32VirtualWarpDrivePercentage != 100;
500 if (pVM->tm.s.fVirtualWarpDrive)
501 LogRel(("TM: u32VirtualWarpDrivePercentage=%RI32\n", pVM->tm.s.u32VirtualWarpDrivePercentage));
502
503 /*
504 * Start the timer (guard against REM not yielding).
505 */
506 /** @cfgm{TM/TimerMillies, uint32_t, ms, 1, 1000, 10}
507 * The watchdog timer interval. */
508 uint32_t u32Millies;
509 rc = CFGMR3QueryU32(pCfgHandle, "TimerMillies", &u32Millies);
510 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
511 u32Millies = 10;
512 else if (RT_FAILURE(rc))
513 return VMSetError(pVM, rc, RT_SRC_POS,
514 N_("Configuration error: Failed to query uint32_t value \"TimerMillies\""));
515 rc = RTTimerCreate(&pVM->tm.s.pTimer, u32Millies, tmR3TimerCallback, pVM);
516 if (RT_FAILURE(rc))
517 {
518 AssertMsgFailed(("Failed to create timer, u32Millies=%d rc=%Rrc.\n", u32Millies, rc));
519 return rc;
520 }
521 Log(("TM: Created timer %p firing every %d millieseconds\n", pVM->tm.s.pTimer, u32Millies));
522 pVM->tm.s.u32TimerMillies = u32Millies;
523
524 /*
525 * Register saved state.
526 */
527 rc = SSMR3RegisterInternal(pVM, "tm", 1, TM_SAVED_STATE_VERSION, sizeof(uint64_t) * 8,
528 NULL, NULL, NULL,
529 NULL, tmR3Save, NULL,
530 NULL, tmR3Load, NULL);
531 if (RT_FAILURE(rc))
532 return rc;
533
534 /*
535 * Register statistics.
536 */
537 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR3.c1nsSteps,STAMTYPE_U32, "/TM/R3/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
538 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR3.cBadPrev, STAMTYPE_U32, "/TM/R3/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
539 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.c1nsSteps,STAMTYPE_U32, "/TM/R0/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
540 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.cBadPrev, STAMTYPE_U32, "/TM/R0/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
541 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataRC.c1nsSteps,STAMTYPE_U32, "/TM/RC/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
542 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataRC.cBadPrev, STAMTYPE_U32, "/TM/RC/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
543 STAM_REL_REG( pVM,(void*)&pVM->tm.s.offVirtualSync, STAMTYPE_U64, "/TM/VirtualSync/CurrentOffset", STAMUNIT_NS, "The current offset. (subtract GivenUp to get the lag)");
544 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.offVirtualSyncGivenUp, STAMTYPE_U64, "/TM/VirtualSync/GivenUp", STAMUNIT_NS, "Nanoseconds of the 'CurrentOffset' that's been given up and won't ever be attemted caught up with.");
545
546#ifdef VBOX_WITH_STATISTICS
547 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR3.cExpired, STAMTYPE_U32, "/TM/R3/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
548 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR3.cUpdateRaces,STAMTYPE_U32, "/TM/R3/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
549 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cExpired, STAMTYPE_U32, "/TM/R0/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
550 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cUpdateRaces,STAMTYPE_U32, "/TM/R0/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
551 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataRC.cExpired, STAMTYPE_U32, "/TM/RC/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
552 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataRC.cUpdateRaces,STAMTYPE_U32, "/TM/RC/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
553 STAM_REG(pVM, &pVM->tm.s.StatDoQueues, STAMTYPE_PROFILE, "/TM/DoQueues", STAMUNIT_TICKS_PER_CALL, "Profiling timer TMR3TimerQueuesDo.");
554 STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/Virtual", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual clock queue.");
555 STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/VirtualSync", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual sync clock queue.");
556 STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/Real", STAMUNIT_TICKS_PER_CALL, "Time spent on the real clock queue.");
557
558 STAM_REG(pVM, &pVM->tm.s.StatPoll, STAMTYPE_COUNTER, "/TM/Poll", STAMUNIT_OCCURENCES, "TMTimerPoll calls.");
559 STAM_REG(pVM, &pVM->tm.s.StatPollAlreadySet, STAMTYPE_COUNTER, "/TM/Poll/AlreadySet", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the FF was already set.");
560 STAM_REG(pVM, &pVM->tm.s.StatPollELoop, STAMTYPE_COUNTER, "/TM/Poll/ELoop", STAMUNIT_OCCURENCES, "Times TMTimerPoll has given up getting a consistent virtual sync data set.");
561 STAM_REG(pVM, &pVM->tm.s.StatPollMiss, STAMTYPE_COUNTER, "/TM/Poll/Miss", STAMUNIT_OCCURENCES, "TMTimerPoll calls where nothing had expired.");
562 STAM_REG(pVM, &pVM->tm.s.StatPollRunning, STAMTYPE_COUNTER, "/TM/Poll/Running", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the queues were being run.");
563 STAM_REG(pVM, &pVM->tm.s.StatPollSimple, STAMTYPE_COUNTER, "/TM/Poll/Simple", STAMUNIT_OCCURENCES, "TMTimerPoll calls where we could take the simple path.");
564 STAM_REG(pVM, &pVM->tm.s.StatPollVirtual, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtual", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL queue.");
565 STAM_REG(pVM, &pVM->tm.s.StatPollVirtualSync, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtualSync", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL_SYNC queue.");
566
567 STAM_REG(pVM, &pVM->tm.s.StatPostponedR3, STAMTYPE_COUNTER, "/TM/PostponedR3", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-3.");
568 STAM_REG(pVM, &pVM->tm.s.StatPostponedRZ, STAMTYPE_COUNTER, "/TM/PostponedRZ", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-0 / RC.");
569
570 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneR3, STAMTYPE_PROFILE, "/TM/ScheduleOneR3", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
571 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneRZ, STAMTYPE_PROFILE, "/TM/ScheduleOneRZ", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
572 STAM_REG(pVM, &pVM->tm.s.StatScheduleSetFF, STAMTYPE_COUNTER, "/TM/ScheduleSetFF", STAMUNIT_OCCURENCES, "The number of times the timer FF was set instead of doing scheduling.");
573
574 STAM_REG(pVM, &pVM->tm.s.StatTimerSet, STAMTYPE_COUNTER, "/TM/TimerSet", STAMUNIT_OCCURENCES, "Calls");
575 STAM_REG(pVM, &pVM->tm.s.StatTimerSetOpt, STAMTYPE_COUNTER, "/TM/TimerSet/Opt", STAMUNIT_OCCURENCES, "Optimized path taken.");
576 STAM_REG(pVM, &pVM->tm.s.StatTimerSetR3, STAMTYPE_PROFILE, "/TM/TimerSet/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3.");
577 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRZ, STAMTYPE_PROFILE, "/TM/TimerSet/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0 / RC.");
578 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStActive, STAMTYPE_COUNTER, "/TM/TimerSet/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
579 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSet/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
580 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStOther, STAMTYPE_COUNTER, "/TM/TimerSet/StOther", STAMUNIT_OCCURENCES, "Other states");
581 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStop, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP");
582 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStopSched", STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE");
583 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE");
584 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendResched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE");
585 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStStopped, STAMTYPE_COUNTER, "/TM/TimerSet/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
586
587 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelative, STAMTYPE_COUNTER, "/TM/TimerSetRelative", STAMUNIT_OCCURENCES, "Calls");
588 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeOpt, STAMTYPE_COUNTER, "/TM/TimerSetRelative/Opt", STAMUNIT_OCCURENCES, "Optimized path taken.");
589 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeR3, STAMTYPE_PROFILE, "/TM/TimerSetRelative/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetRelative calls made in ring-3.");
590 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeRZ, STAMTYPE_PROFILE, "/TM/TimerSetRelative/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetReltaive calls made in ring-0 / RC.");
591 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeRacyVirtSync, STAMTYPE_COUNTER, "/TM/TimerSetRelative/RacyVirtSync", STAMUNIT_OCCURENCES, "Potentially racy virtual sync timer update.");
592 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStActive, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
593 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
594 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStOther, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StOther", STAMUNIT_OCCURENCES, "Other states");
595 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStop, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP");
596 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStopSched",STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE");
597 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE");
598 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendResched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE");
599 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStStopped, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
600
601 STAM_REG(pVM, &pVM->tm.s.StatTimerStopR3, STAMTYPE_PROFILE, "/TM/TimerStopR3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-3.");
602 STAM_REG(pVM, &pVM->tm.s.StatTimerStopRZ, STAMTYPE_PROFILE, "/TM/TimerStopRZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-0 / RC.");
603
604 STAM_REG(pVM, &pVM->tm.s.StatVirtualGet, STAMTYPE_COUNTER, "/TM/VirtualGet", STAMUNIT_OCCURENCES, "The number of times TMTimerGet was called when the clock was running.");
605 STAM_REG(pVM, &pVM->tm.s.StatVirtualGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualGetSetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling TMTimerGet.");
606 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGet, STAMTYPE_COUNTER, "/TM/VirtualSyncGet", STAMUNIT_OCCURENCES, "The number of times tmVirtualSyncGetEx was called.");
607 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetELoop, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/ELoop", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx has given up getting a consistent virtual sync data set.");
608 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetExpired, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Expired", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx encountered an expired timer stopping the clock.");
609 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLocked, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Locked", STAMUNIT_OCCURENCES, "Times we successfully acquired the lock in tmVirtualSyncGetEx.");
610 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLockless, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Lockless", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx returned without needing to take the lock.");
611 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/SetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling tmVirtualSyncGetEx.");
612 STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/VirtualPause", STAMUNIT_OCCURENCES, "The number of times TMR3TimerPause was called.");
613 STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/VirtualResume", STAMUNIT_OCCURENCES, "The number of times TMR3TimerResume was called.");
614
615 STAM_REG(pVM, &pVM->tm.s.StatTimerCallbackSetFF, STAMTYPE_COUNTER, "/TM/CallbackSetFF", STAMUNIT_OCCURENCES, "The number of times the timer callback set FF.");
616
617 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE010, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE010", STAMUNIT_OCCURENCES, "In catch-up mode, 10% or lower.");
618 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE025, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE025", STAMUNIT_OCCURENCES, "In catch-up mode, 25%-11%.");
619 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE100, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE100", STAMUNIT_OCCURENCES, "In catch-up mode, 100%-26%.");
620 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupOther, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupOther", STAMUNIT_OCCURENCES, "In catch-up mode, > 100%.");
621 STAM_REG(pVM, &pVM->tm.s.StatTSCNotFixed, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotFixed", STAMUNIT_OCCURENCES, "TSC is not fixed, it may run at variable speed.");
622 STAM_REG(pVM, &pVM->tm.s.StatTSCNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotTicking", STAMUNIT_OCCURENCES, "TSC is not ticking.");
623 STAM_REG(pVM, &pVM->tm.s.StatTSCSyncNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/SyncNotTicking", STAMUNIT_OCCURENCES, "VirtualSync isn't ticking.");
624 STAM_REG(pVM, &pVM->tm.s.StatTSCWarp, STAMTYPE_COUNTER, "/TM/TSC/Intercept/Warp", STAMUNIT_OCCURENCES, "Warpdrive is active.");
625 STAM_REG(pVM, &pVM->tm.s.StatTSCSet, STAMTYPE_COUNTER, "/TM/TSC/Sets", STAMUNIT_OCCURENCES, "Calls to TMCpuTickSet.");
626 STAM_REG(pVM, &pVM->tm.s.StatTSCUnderflow, STAMTYPE_COUNTER, "/TM/TSC/Underflow", STAMUNIT_OCCURENCES, "TSC underflow; corrected with last seen value .");
627#endif /* VBOX_WITH_STATISTICS */
628
629 for (VMCPUID i = 0; i < pVM->cCpus; i++)
630 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.offTSCRawSrc, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS, "TSC offset relative the raw source", "/TM/TSC/offCPU%u", i);
631
632#ifdef VBOX_WITH_STATISTICS
633 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncCatchup, STAMTYPE_PROFILE_ADV, "/TM/VirtualSync/CatchUp", STAMUNIT_TICKS_PER_OCCURENCE, "Counting and measuring the times spent catching up.");
634 STAM_REG(pVM, (void *)&pVM->tm.s.fVirtualSyncCatchUp, STAMTYPE_U8, "/TM/VirtualSync/CatchUpActive", STAMUNIT_NONE, "Catch-Up active indicator.");
635 STAM_REG(pVM, (void *)&pVM->tm.s.u32VirtualSyncCatchUpPercentage, STAMTYPE_U32, "/TM/VirtualSync/CatchUpPercentage", STAMUNIT_PCT, "The catch-up percentage. (+100/100 to get clock multiplier)");
636 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncFF, STAMTYPE_PROFILE, "/TM/VirtualSync/FF", STAMUNIT_TICKS_PER_OCCURENCE, "Time spent in TMR3VirtualSyncFF by all but the dedicate timer EMT.");
637 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUp, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUp", STAMUNIT_OCCURENCES, "Times the catch-up was abandoned.");
638 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUpBeforeStarting",STAMUNIT_OCCURENCES, "Times the catch-up was abandoned before even starting. (Typically debugging++.)");
639 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRun, STAMTYPE_COUNTER, "/TM/VirtualSync/Run", STAMUNIT_OCCURENCES, "Times the virtual sync timer queue was considered.");
640 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunRestart, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Restarts", STAMUNIT_OCCURENCES, "Times the clock was restarted after a run.");
641 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStop, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Stop", STAMUNIT_OCCURENCES, "Times the clock was stopped when calculating the current time before examining the timers.");
642 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStoppedAlready, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/StoppedAlready", STAMUNIT_OCCURENCES, "Times the clock was already stopped elsewhere (TMVirtualSyncGet).");
643 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunSlack, STAMTYPE_PROFILE, "/TM/VirtualSync/Run/Slack", STAMUNIT_NS_PER_OCCURENCE, "The scheduling slack. (Catch-up handed out when running timers.)");
644 for (unsigned i = 0; i < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods); i++)
645 {
646 STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "The catch-up percentage.", "/TM/VirtualSync/Periods/%u", i);
647 STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupAdjust[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times adjusted to this period.", "/TM/VirtualSync/Periods/%u/Adjust", i);
648 STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupInitial[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times started in this period.", "/TM/VirtualSync/Periods/%u/Initial", i);
649 STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u64Start, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Start of this period (lag).", "/TM/VirtualSync/Periods/%u/Start", i);
650 }
651#endif /* VBOX_WITH_STATISTICS */
652
653 /*
654 * Register info handlers.
655 */
656 DBGFR3InfoRegisterInternalEx(pVM, "timers", "Dumps all timers. No arguments.", tmR3TimerInfo, DBGFINFO_FLAGS_RUN_ON_EMT);
657 DBGFR3InfoRegisterInternalEx(pVM, "activetimers", "Dumps active all timers. No arguments.", tmR3TimerInfoActive, DBGFINFO_FLAGS_RUN_ON_EMT);
658 DBGFR3InfoRegisterInternalEx(pVM, "clocks", "Display the time of the various clocks.", tmR3InfoClocks, DBGFINFO_FLAGS_RUN_ON_EMT);
659
660 return VINF_SUCCESS;
661}
662
663
664/**
665 * Initializes the per-VCPU TM.
666 *
667 * @returns VBox status code.
668 * @param pVM The VM to operate on.
669 */
670VMM_INT_DECL(int) TMR3InitCPU(PVM pVM)
671{
672 LogFlow(("TMR3InitCPU\n"));
673 return VINF_SUCCESS;
674}
675
676
677/**
678 * Checks if the host CPU has a fixed TSC frequency.
679 *
680 * @returns true if it has, false if it hasn't.
681 *
682 * @remark This test doesn't bother with very old CPUs that don't do power
683 * management or any other stuff that might influence the TSC rate.
684 * This isn't currently relevant.
685 */
686static bool tmR3HasFixedTSC(PVM pVM)
687{
688 if (ASMHasCpuId())
689 {
690 uint32_t uEAX, uEBX, uECX, uEDX;
691
692 if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_AMD)
693 {
694 /*
695 * AuthenticAMD - Check for APM support and that TscInvariant is set.
696 *
697 * This test isn't correct with respect to fixed/non-fixed TSC and
698 * older models, but this isn't relevant since the result is currently
699 * only used for making a descision on AMD-V models.
700 */
701 ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX);
702 if (uEAX >= 0x80000007)
703 {
704 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
705
706 ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX);
707 if ( (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR) /* TscInvariant */
708 && pGip->u32Mode == SUPGIPMODE_SYNC_TSC /* no fixed tsc if the gip timer is in async mode */)
709 return true;
710 }
711 }
712 else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_INTEL)
713 {
714 /*
715 * GenuineIntel - Check the model number.
716 *
717 * This test is lacking in the same way and for the same reasons
718 * as the AMD test above.
719 */
720 ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
721 unsigned uModel = (uEAX >> 4) & 0x0f;
722 unsigned uFamily = (uEAX >> 8) & 0x0f;
723 if (uFamily == 0x0f)
724 uFamily += (uEAX >> 20) & 0xff;
725 if (uFamily >= 0x06)
726 uModel += ((uEAX >> 16) & 0x0f) << 4;
727 if ( (uFamily == 0x0f /*P4*/ && uModel >= 0x03)
728 || (uFamily == 0x06 /*P2/P3*/ && uModel >= 0x0e))
729 return true;
730 }
731 }
732 return false;
733}
734
735
736/**
737 * Calibrate the CPU tick.
738 *
739 * @returns Number of ticks per second.
740 */
741static uint64_t tmR3CalibrateTSC(PVM pVM)
742{
743 /*
744 * Use GIP when available present.
745 */
746 uint64_t u64Hz;
747 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
748 if ( pGip
749 && pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC)
750 {
751 unsigned iCpu = pGip->u32Mode != SUPGIPMODE_ASYNC_TSC ? 0 : ASMGetApicId();
752 if (iCpu >= RT_ELEMENTS(pGip->aCPUs))
753 AssertReleaseMsgFailed(("iCpu=%d - the ApicId is too high. send VBox.log and hardware specs!\n", iCpu));
754 else
755 {
756 if (tmR3HasFixedTSC(pVM))
757 /* Sleep a bit to get a more reliable CpuHz value. */
758 RTThreadSleep(32);
759 else
760 {
761 /* Spin for 40ms to try push up the CPU frequency and get a more reliable CpuHz value. */
762 const uint64_t u64 = RTTimeMilliTS();
763 while ((RTTimeMilliTS() - u64) < 40 /*ms*/)
764 /* nothing */;
765 }
766
767 pGip = g_pSUPGlobalInfoPage;
768 if ( pGip
769 && pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC
770 && (u64Hz = pGip->aCPUs[iCpu].u64CpuHz)
771 && u64Hz != ~(uint64_t)0)
772 return u64Hz;
773 }
774 }
775
776 /* call this once first to make sure it's initialized. */
777 RTTimeNanoTS();
778
779 /*
780 * Yield the CPU to increase our chances of getting
781 * a correct value.
782 */
783 RTThreadYield(); /* Try avoid interruptions between TSC and NanoTS samplings. */
784 static const unsigned s_auSleep[5] = { 50, 30, 30, 40, 40 };
785 uint64_t au64Samples[5];
786 unsigned i;
787 for (i = 0; i < RT_ELEMENTS(au64Samples); i++)
788 {
789 RTMSINTERVAL cMillies;
790 int cTries = 5;
791 uint64_t u64Start = ASMReadTSC();
792 uint64_t u64End;
793 uint64_t StartTS = RTTimeNanoTS();
794 uint64_t EndTS;
795 do
796 {
797 RTThreadSleep(s_auSleep[i]);
798 u64End = ASMReadTSC();
799 EndTS = RTTimeNanoTS();
800 cMillies = (RTMSINTERVAL)((EndTS - StartTS + 500000) / 1000000);
801 } while ( cMillies == 0 /* the sleep may be interrupted... */
802 || (cMillies < 20 && --cTries > 0));
803 uint64_t u64Diff = u64End - u64Start;
804
805 au64Samples[i] = (u64Diff * 1000) / cMillies;
806 AssertMsg(cTries > 0, ("cMillies=%d i=%d\n", cMillies, i));
807 }
808
809 /*
810 * Discard the highest and lowest results and calculate the average.
811 */
812 unsigned iHigh = 0;
813 unsigned iLow = 0;
814 for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
815 {
816 if (au64Samples[i] < au64Samples[iLow])
817 iLow = i;
818 if (au64Samples[i] > au64Samples[iHigh])
819 iHigh = i;
820 }
821 au64Samples[iLow] = 0;
822 au64Samples[iHigh] = 0;
823
824 u64Hz = au64Samples[0];
825 for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
826 u64Hz += au64Samples[i];
827 u64Hz /= RT_ELEMENTS(au64Samples) - 2;
828
829 return u64Hz;
830}
831
832
833/**
834 * Finalizes the TM initialization.
835 *
836 * @returns VBox status code.
837 * @param pVM The VM to operate on.
838 */
839VMM_INT_DECL(int) TMR3InitFinalize(PVM pVM)
840{
841 int rc;
842
843 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "tmVirtualNanoTSBad", &pVM->tm.s.VirtualGetRawDataRC.pfnBad);
844 AssertRCReturn(rc, rc);
845 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "tmVirtualNanoTSRediscover", &pVM->tm.s.VirtualGetRawDataRC.pfnRediscover);
846 AssertRCReturn(rc, rc);
847 if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceSync)
848 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLFenceSync", &pVM->tm.s.pfnVirtualGetRawRC);
849 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceAsync)
850 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLFenceAsync", &pVM->tm.s.pfnVirtualGetRawRC);
851 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacySync)
852 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLegacySync", &pVM->tm.s.pfnVirtualGetRawRC);
853 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacyAsync)
854 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLegacyAsync", &pVM->tm.s.pfnVirtualGetRawRC);
855 else
856 AssertFatalFailed();
857 AssertRCReturn(rc, rc);
858
859 rc = PDMR3LdrGetSymbolR0Lazy(pVM, NULL, "tmVirtualNanoTSBad", &pVM->tm.s.VirtualGetRawDataR0.pfnBad);
860 AssertRCReturn(rc, rc);
861 rc = PDMR3LdrGetSymbolR0Lazy(pVM, NULL, "tmVirtualNanoTSRediscover", &pVM->tm.s.VirtualGetRawDataR0.pfnRediscover);
862 AssertRCReturn(rc, rc);
863 if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceSync)
864 rc = PDMR3LdrGetSymbolR0Lazy(pVM, NULL, "RTTimeNanoTSLFenceSync", &pVM->tm.s.pfnVirtualGetRawR0);
865 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceAsync)
866 rc = PDMR3LdrGetSymbolR0Lazy(pVM, NULL, "RTTimeNanoTSLFenceAsync", &pVM->tm.s.pfnVirtualGetRawR0);
867 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacySync)
868 rc = PDMR3LdrGetSymbolR0Lazy(pVM, NULL, "RTTimeNanoTSLegacySync", &pVM->tm.s.pfnVirtualGetRawR0);
869 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacyAsync)
870 rc = PDMR3LdrGetSymbolR0Lazy(pVM, NULL, "RTTimeNanoTSLegacyAsync", &pVM->tm.s.pfnVirtualGetRawR0);
871 else
872 AssertFatalFailed();
873 AssertRCReturn(rc, rc);
874
875 return VINF_SUCCESS;
876}
877
878
879/**
880 * Applies relocations to data and code managed by this
881 * component. This function will be called at init and
882 * whenever the VMM need to relocate it self inside the GC.
883 *
884 * @param pVM The VM.
885 * @param offDelta Relocation delta relative to old location.
886 */
887VMM_INT_DECL(void) TMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
888{
889 int rc;
890 LogFlow(("TMR3Relocate\n"));
891
892 pVM->tm.s.pvGIPRC = MMHyperR3ToRC(pVM, pVM->tm.s.pvGIPR3);
893 pVM->tm.s.paTimerQueuesRC = MMHyperR3ToRC(pVM, pVM->tm.s.paTimerQueuesR3);
894 pVM->tm.s.paTimerQueuesR0 = MMHyperR3ToR0(pVM, pVM->tm.s.paTimerQueuesR3);
895
896 pVM->tm.s.VirtualGetRawDataRC.pu64Prev = MMHyperR3ToRC(pVM, (void *)&pVM->tm.s.u64VirtualRawPrev);
897 AssertFatal(pVM->tm.s.VirtualGetRawDataRC.pu64Prev);
898 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "tmVirtualNanoTSBad", &pVM->tm.s.VirtualGetRawDataRC.pfnBad);
899 AssertFatalRC(rc);
900 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "tmVirtualNanoTSRediscover", &pVM->tm.s.VirtualGetRawDataRC.pfnRediscover);
901 AssertFatalRC(rc);
902
903 if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceSync)
904 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLFenceSync", &pVM->tm.s.pfnVirtualGetRawRC);
905 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceAsync)
906 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLFenceAsync", &pVM->tm.s.pfnVirtualGetRawRC);
907 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacySync)
908 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLegacySync", &pVM->tm.s.pfnVirtualGetRawRC);
909 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacyAsync)
910 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLegacyAsync", &pVM->tm.s.pfnVirtualGetRawRC);
911 else
912 AssertFatalFailed();
913 AssertFatalRC(rc);
914
915 /*
916 * Iterate the timers updating the pVMRC pointers.
917 */
918 for (PTMTIMER pTimer = pVM->tm.s.pCreated; pTimer; pTimer = pTimer->pBigNext)
919 {
920 pTimer->pVMRC = pVM->pVMRC;
921 pTimer->pVMR0 = pVM->pVMR0;
922 }
923}
924
925
926/**
927 * Terminates the TM.
928 *
929 * Termination means cleaning up and freeing all resources,
930 * the VM it self is at this point powered off or suspended.
931 *
932 * @returns VBox status code.
933 * @param pVM The VM to operate on.
934 */
935VMM_INT_DECL(int) TMR3Term(PVM pVM)
936{
937 AssertMsg(pVM->tm.s.offVM, ("bad init order!\n"));
938 if (pVM->tm.s.pTimer)
939 {
940 int rc = RTTimerDestroy(pVM->tm.s.pTimer);
941 AssertRC(rc);
942 pVM->tm.s.pTimer = NULL;
943 }
944
945 return VINF_SUCCESS;
946}
947
948
949/**
950 * Terminates the per-VCPU TM.
951 *
952 * Termination means cleaning up and freeing all resources,
953 * the VM it self is at this point powered off or suspended.
954 *
955 * @returns VBox status code.
956 * @param pVM The VM to operate on.
957 */
958VMM_INT_DECL(int) TMR3TermCPU(PVM pVM)
959{
960 return VINF_SUCCESS;
961}
962
963
964/**
965 * The VM is being reset.
966 *
967 * For the TM component this means that a rescheduling is preformed,
968 * the FF is cleared and but without running the queues. We'll have to
969 * check if this makes sense or not, but it seems like a good idea now....
970 *
971 * @param pVM VM handle.
972 */
973VMM_INT_DECL(void) TMR3Reset(PVM pVM)
974{
975 LogFlow(("TMR3Reset:\n"));
976 VM_ASSERT_EMT(pVM);
977 tmTimerLock(pVM);
978
979 /*
980 * Abort any pending catch up.
981 * This isn't perfect...
982 */
983 if (pVM->tm.s.fVirtualSyncCatchUp)
984 {
985 const uint64_t offVirtualNow = TMVirtualGetNoCheck(pVM);
986 const uint64_t offVirtualSyncNow = TMVirtualSyncGetNoCheck(pVM);
987 if (pVM->tm.s.fVirtualSyncCatchUp)
988 {
989 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
990
991 const uint64_t offOld = pVM->tm.s.offVirtualSyncGivenUp;
992 const uint64_t offNew = offVirtualNow - offVirtualSyncNow;
993 Assert(offOld <= offNew);
994 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
995 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSync, offNew);
996 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
997 LogRel(("TM: Aborting catch-up attempt on reset with a %'RU64 ns lag on reset; new total: %'RU64 ns\n", offNew - offOld, offNew));
998 }
999 }
1000
1001 /*
1002 * Process the queues.
1003 */
1004 for (int i = 0; i < TMCLOCK_MAX; i++)
1005 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[i]);
1006#ifdef VBOX_STRICT
1007 tmTimerQueuesSanityChecks(pVM, "TMR3Reset");
1008#endif
1009
1010 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
1011 VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /** @todo FIXME: this isn't right. */
1012 tmTimerUnlock(pVM);
1013}
1014
1015
1016/**
1017 * Resolve a builtin RC symbol.
1018 * Called by PDM when loading or relocating GC modules.
1019 *
1020 * @returns VBox status
1021 * @param pVM VM Handle.
1022 * @param pszSymbol Symbol to resolve.
1023 * @param pRCPtrValue Where to store the symbol value.
1024 * @remark This has to work before TMR3Relocate() is called.
1025 */
1026VMM_INT_DECL(int) TMR3GetImportRC(PVM pVM, const char *pszSymbol, PRTRCPTR pRCPtrValue)
1027{
1028 if (!strcmp(pszSymbol, "g_pSUPGlobalInfoPage"))
1029 *pRCPtrValue = MMHyperR3ToRC(pVM, &pVM->tm.s.pvGIPRC);
1030 //else if (..)
1031 else
1032 return VERR_SYMBOL_NOT_FOUND;
1033 return VINF_SUCCESS;
1034}
1035
1036
1037/**
1038 * Execute state save operation.
1039 *
1040 * @returns VBox status code.
1041 * @param pVM VM Handle.
1042 * @param pSSM SSM operation handle.
1043 */
1044static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM)
1045{
1046 LogFlow(("tmR3Save:\n"));
1047#ifdef VBOX_STRICT
1048 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1049 {
1050 PVMCPU pVCpu = &pVM->aCpus[i];
1051 Assert(!pVCpu->tm.s.fTSCTicking);
1052 }
1053 Assert(!pVM->tm.s.cVirtualTicking);
1054 Assert(!pVM->tm.s.fVirtualSyncTicking);
1055#endif
1056
1057 /*
1058 * Save the virtual clocks.
1059 */
1060 /* the virtual clock. */
1061 SSMR3PutU64(pSSM, TMCLOCK_FREQ_VIRTUAL);
1062 SSMR3PutU64(pSSM, pVM->tm.s.u64Virtual);
1063
1064 /* the virtual timer synchronous clock. */
1065 SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSync);
1066 SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSync);
1067 SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSyncGivenUp);
1068 SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSyncCatchUpPrev);
1069 SSMR3PutBool(pSSM, pVM->tm.s.fVirtualSyncCatchUp);
1070
1071 /* real time clock */
1072 SSMR3PutU64(pSSM, TMCLOCK_FREQ_REAL);
1073
1074 /* the cpu tick clock. */
1075 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1076 {
1077 PVMCPU pVCpu = &pVM->aCpus[i];
1078 SSMR3PutU64(pSSM, TMCpuTickGet(pVCpu));
1079 }
1080 return SSMR3PutU64(pSSM, pVM->tm.s.cTSCTicksPerSecond);
1081}
1082
1083
1084/**
1085 * Execute state load operation.
1086 *
1087 * @returns VBox status code.
1088 * @param pVM VM Handle.
1089 * @param pSSM SSM operation handle.
1090 * @param uVersion Data layout version.
1091 * @param uPass The data pass.
1092 */
1093static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1094{
1095 LogFlow(("tmR3Load:\n"));
1096
1097 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
1098#ifdef VBOX_STRICT
1099 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1100 {
1101 PVMCPU pVCpu = &pVM->aCpus[i];
1102 Assert(!pVCpu->tm.s.fTSCTicking);
1103 }
1104 Assert(!pVM->tm.s.cVirtualTicking);
1105 Assert(!pVM->tm.s.fVirtualSyncTicking);
1106#endif
1107
1108 /*
1109 * Validate version.
1110 */
1111 if (uVersion != TM_SAVED_STATE_VERSION)
1112 {
1113 AssertMsgFailed(("tmR3Load: Invalid version uVersion=%d!\n", uVersion));
1114 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1115 }
1116
1117 /*
1118 * Load the virtual clock.
1119 */
1120 pVM->tm.s.cVirtualTicking = 0;
1121 /* the virtual clock. */
1122 uint64_t u64Hz;
1123 int rc = SSMR3GetU64(pSSM, &u64Hz);
1124 if (RT_FAILURE(rc))
1125 return rc;
1126 if (u64Hz != TMCLOCK_FREQ_VIRTUAL)
1127 {
1128 AssertMsgFailed(("The virtual clock frequency differs! Saved: %'RU64 Binary: %'RU64\n",
1129 u64Hz, TMCLOCK_FREQ_VIRTUAL));
1130 return VERR_SSM_VIRTUAL_CLOCK_HZ;
1131 }
1132 SSMR3GetU64(pSSM, &pVM->tm.s.u64Virtual);
1133 pVM->tm.s.u64VirtualOffset = 0;
1134
1135 /* the virtual timer synchronous clock. */
1136 pVM->tm.s.fVirtualSyncTicking = false;
1137 uint64_t u64;
1138 SSMR3GetU64(pSSM, &u64);
1139 pVM->tm.s.u64VirtualSync = u64;
1140 SSMR3GetU64(pSSM, &u64);
1141 pVM->tm.s.offVirtualSync = u64;
1142 SSMR3GetU64(pSSM, &u64);
1143 pVM->tm.s.offVirtualSyncGivenUp = u64;
1144 SSMR3GetU64(pSSM, &u64);
1145 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64;
1146 bool f;
1147 SSMR3GetBool(pSSM, &f);
1148 pVM->tm.s.fVirtualSyncCatchUp = f;
1149
1150 /* the real clock */
1151 rc = SSMR3GetU64(pSSM, &u64Hz);
1152 if (RT_FAILURE(rc))
1153 return rc;
1154 if (u64Hz != TMCLOCK_FREQ_REAL)
1155 {
1156 AssertMsgFailed(("The real clock frequency differs! Saved: %'RU64 Binary: %'RU64\n",
1157 u64Hz, TMCLOCK_FREQ_REAL));
1158 return VERR_SSM_VIRTUAL_CLOCK_HZ; /* missleading... */
1159 }
1160
1161 /* the cpu tick clock. */
1162 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1163 {
1164 PVMCPU pVCpu = &pVM->aCpus[i];
1165
1166 pVCpu->tm.s.fTSCTicking = false;
1167 SSMR3GetU64(pSSM, &pVCpu->tm.s.u64TSC);
1168
1169 if (pVM->tm.s.fTSCUseRealTSC)
1170 pVCpu->tm.s.offTSCRawSrc = 0; /** @todo TSC restore stuff and HWACC. */
1171 }
1172
1173 rc = SSMR3GetU64(pSSM, &u64Hz);
1174 if (RT_FAILURE(rc))
1175 return rc;
1176 if (!pVM->tm.s.fTSCUseRealTSC)
1177 pVM->tm.s.cTSCTicksPerSecond = u64Hz;
1178
1179 LogRel(("TM: cTSCTicksPerSecond=%#RX64 (%'RU64) fTSCVirtualized=%RTbool fTSCUseRealTSC=%RTbool (state load)\n",
1180 pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.fTSCVirtualized, pVM->tm.s.fTSCUseRealTSC));
1181
1182 /*
1183 * Make sure timers get rescheduled immediately.
1184 */
1185 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
1186 VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
1187
1188 return VINF_SUCCESS;
1189}
1190
1191
1192/**
1193 * Internal TMR3TimerCreate worker.
1194 *
1195 * @returns VBox status code.
1196 * @param pVM The VM handle.
1197 * @param enmClock The timer clock.
1198 * @param pszDesc The timer description.
1199 * @param ppTimer Where to store the timer pointer on success.
1200 */
1201static int tmr3TimerCreate(PVM pVM, TMCLOCK enmClock, const char *pszDesc, PPTMTIMERR3 ppTimer)
1202{
1203 VM_ASSERT_EMT(pVM);
1204
1205 /*
1206 * Allocate the timer.
1207 */
1208 PTMTIMERR3 pTimer = NULL;
1209 if (pVM->tm.s.pFree && VM_IS_EMT(pVM))
1210 {
1211 pTimer = pVM->tm.s.pFree;
1212 pVM->tm.s.pFree = pTimer->pBigNext;
1213 Log3(("TM: Recycling timer %p, new free head %p.\n", pTimer, pTimer->pBigNext));
1214 }
1215
1216 if (!pTimer)
1217 {
1218 int rc = MMHyperAlloc(pVM, sizeof(*pTimer), 0, MM_TAG_TM, (void **)&pTimer);
1219 if (RT_FAILURE(rc))
1220 return rc;
1221 Log3(("TM: Allocated new timer %p\n", pTimer));
1222 }
1223
1224 /*
1225 * Initialize it.
1226 */
1227 pTimer->u64Expire = 0;
1228 pTimer->enmClock = enmClock;
1229 pTimer->pVMR3 = pVM;
1230 pTimer->pVMR0 = pVM->pVMR0;
1231 pTimer->pVMRC = pVM->pVMRC;
1232 pTimer->enmState = TMTIMERSTATE_STOPPED;
1233 pTimer->offScheduleNext = 0;
1234 pTimer->offNext = 0;
1235 pTimer->offPrev = 0;
1236 pTimer->pvUser = NULL;
1237 pTimer->pCritSect = NULL;
1238 pTimer->pszDesc = pszDesc;
1239
1240 /* insert into the list of created timers. */
1241 tmTimerLock(pVM);
1242 pTimer->pBigPrev = NULL;
1243 pTimer->pBigNext = pVM->tm.s.pCreated;
1244 pVM->tm.s.pCreated = pTimer;
1245 if (pTimer->pBigNext)
1246 pTimer->pBigNext->pBigPrev = pTimer;
1247#ifdef VBOX_STRICT
1248 tmTimerQueuesSanityChecks(pVM, "tmR3TimerCreate");
1249#endif
1250 tmTimerUnlock(pVM);
1251
1252 *ppTimer = pTimer;
1253 return VINF_SUCCESS;
1254}
1255
1256
1257/**
1258 * Creates a device timer.
1259 *
1260 * @returns VBox status.
1261 * @param pVM The VM to create the timer in.
1262 * @param pDevIns Device instance.
1263 * @param enmClock The clock to use on this timer.
1264 * @param pfnCallback Callback function.
1265 * @param pvUser The user argument to the callback.
1266 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1267 * @param pszDesc Pointer to description string which must stay around
1268 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1269 * @param ppTimer Where to store the timer on success.
1270 */
1271VMM_INT_DECL(int) TMR3TimerCreateDevice(PVM pVM, PPDMDEVINS pDevIns, TMCLOCK enmClock, PFNTMTIMERDEV pfnCallback, void *pvUser, uint32_t fFlags, const char *pszDesc, PPTMTIMERR3 ppTimer)
1272{
1273 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT)), VERR_INVALID_PARAMETER);
1274
1275 /*
1276 * Allocate and init stuff.
1277 */
1278 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
1279 if (RT_SUCCESS(rc))
1280 {
1281 (*ppTimer)->enmType = TMTIMERTYPE_DEV;
1282 (*ppTimer)->u.Dev.pfnTimer = pfnCallback;
1283 (*ppTimer)->u.Dev.pDevIns = pDevIns;
1284 (*ppTimer)->pvUser = pvUser;
1285 if (fFlags & TMTIMER_FLAGS_DEFAULT_CRIT_SECT)
1286 {
1287 if (pDevIns->pCritSectR3)
1288 (*ppTimer)->pCritSect = pDevIns->pCritSectR3;
1289 else
1290 (*ppTimer)->pCritSect = IOMR3GetCritSect(pVM);
1291 }
1292 Log(("TM: Created device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
1293 }
1294
1295 return rc;
1296}
1297
1298
1299/**
1300 * Creates a driver timer.
1301 *
1302 * @returns VBox status.
1303 * @param pVM The VM to create the timer in.
1304 * @param pDrvIns Driver instance.
1305 * @param enmClock The clock to use on this timer.
1306 * @param pfnCallback Callback function.
1307 * @param pvUser The user argument to the callback.
1308 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1309 * @param pszDesc Pointer to description string which must stay around
1310 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1311 * @param ppTimer Where to store the timer on success.
1312 */
1313VMM_INT_DECL(int) TMR3TimerCreateDriver(PVM pVM, PPDMDRVINS pDrvIns, TMCLOCK enmClock, PFNTMTIMERDRV pfnCallback, void *pvUser,
1314 uint32_t fFlags, const char *pszDesc, PPTMTIMERR3 ppTimer)
1315{
1316 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT)), VERR_INVALID_PARAMETER);
1317
1318 /*
1319 * Allocate and init stuff.
1320 */
1321 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
1322 if (RT_SUCCESS(rc))
1323 {
1324 (*ppTimer)->enmType = TMTIMERTYPE_DRV;
1325 (*ppTimer)->u.Drv.pfnTimer = pfnCallback;
1326 (*ppTimer)->u.Drv.pDrvIns = pDrvIns;
1327 (*ppTimer)->pvUser = pvUser;
1328 Log(("TM: Created device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
1329 }
1330
1331 return rc;
1332}
1333
1334
1335/**
1336 * Creates an internal timer.
1337 *
1338 * @returns VBox status.
1339 * @param pVM The VM to create the timer in.
1340 * @param enmClock The clock to use on this timer.
1341 * @param pfnCallback Callback function.
1342 * @param pvUser User argument to be passed to the callback.
1343 * @param pszDesc Pointer to description string which must stay around
1344 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1345 * @param ppTimer Where to store the timer on success.
1346 */
1347VMMR3DECL(int) TMR3TimerCreateInternal(PVM pVM, TMCLOCK enmClock, PFNTMTIMERINT pfnCallback, void *pvUser, const char *pszDesc, PPTMTIMERR3 ppTimer)
1348{
1349 /*
1350 * Allocate and init stuff.
1351 */
1352 PTMTIMER pTimer;
1353 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, &pTimer);
1354 if (RT_SUCCESS(rc))
1355 {
1356 pTimer->enmType = TMTIMERTYPE_INTERNAL;
1357 pTimer->u.Internal.pfnTimer = pfnCallback;
1358 pTimer->pvUser = pvUser;
1359 *ppTimer = pTimer;
1360 Log(("TM: Created internal timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszDesc));
1361 }
1362
1363 return rc;
1364}
1365
1366/**
1367 * Creates an external timer.
1368 *
1369 * @returns Timer handle on success.
1370 * @returns NULL on failure.
1371 * @param pVM The VM to create the timer in.
1372 * @param enmClock The clock to use on this timer.
1373 * @param pfnCallback Callback function.
1374 * @param pvUser User argument.
1375 * @param pszDesc Pointer to description string which must stay around
1376 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1377 */
1378VMMR3DECL(PTMTIMERR3) TMR3TimerCreateExternal(PVM pVM, TMCLOCK enmClock, PFNTMTIMEREXT pfnCallback, void *pvUser, const char *pszDesc)
1379{
1380 /*
1381 * Allocate and init stuff.
1382 */
1383 PTMTIMERR3 pTimer;
1384 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, &pTimer);
1385 if (RT_SUCCESS(rc))
1386 {
1387 pTimer->enmType = TMTIMERTYPE_EXTERNAL;
1388 pTimer->u.External.pfnTimer = pfnCallback;
1389 pTimer->pvUser = pvUser;
1390 Log(("TM: Created external timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszDesc));
1391 return pTimer;
1392 }
1393
1394 return NULL;
1395}
1396
1397
1398/**
1399 * Destroy a timer
1400 *
1401 * @returns VBox status.
1402 * @param pTimer Timer handle as returned by one of the create functions.
1403 */
1404VMMR3DECL(int) TMR3TimerDestroy(PTMTIMER pTimer)
1405{
1406 /*
1407 * Be extra careful here.
1408 */
1409 if (!pTimer)
1410 return VINF_SUCCESS;
1411 AssertPtr(pTimer);
1412 Assert((unsigned)pTimer->enmClock < (unsigned)TMCLOCK_MAX);
1413
1414 PVM pVM = pTimer->CTX_SUFF(pVM);
1415 PTMTIMERQUEUE pQueue = &pVM->tm.s.CTX_SUFF(paTimerQueues)[pTimer->enmClock];
1416 bool fActive = false;
1417 bool fPending = false;
1418
1419 AssertMsg( !pTimer->pCritSect
1420 || VMR3GetState(pVM) != VMSTATE_RUNNING
1421 || PDMCritSectIsOwner(pTimer->pCritSect), ("%s\n", pTimer->pszDesc));
1422
1423 /*
1424 * The rest of the game happens behind the lock, just
1425 * like create does. All the work is done here.
1426 */
1427 tmTimerLock(pVM);
1428 for (int cRetries = 1000;; cRetries--)
1429 {
1430 /*
1431 * Change to the DESTROY state.
1432 */
1433 TMTIMERSTATE enmState = pTimer->enmState;
1434 TMTIMERSTATE enmNewState = enmState;
1435 Log2(("TMTimerDestroy: %p:{.enmState=%s, .pszDesc='%s'} cRetries=%d\n",
1436 pTimer, tmTimerState(enmState), R3STRING(pTimer->pszDesc), cRetries));
1437 switch (enmState)
1438 {
1439 case TMTIMERSTATE_STOPPED:
1440 case TMTIMERSTATE_EXPIRED_DELIVER:
1441 break;
1442
1443 case TMTIMERSTATE_ACTIVE:
1444 fActive = true;
1445 break;
1446
1447 case TMTIMERSTATE_PENDING_STOP:
1448 case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
1449 case TMTIMERSTATE_PENDING_RESCHEDULE:
1450 fActive = true;
1451 fPending = true;
1452 break;
1453
1454 case TMTIMERSTATE_PENDING_SCHEDULE:
1455 fPending = true;
1456 break;
1457
1458 /*
1459 * This shouldn't happen as the caller should make sure there are no races.
1460 */
1461 case TMTIMERSTATE_EXPIRED_GET_UNLINK:
1462 case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
1463 case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
1464 AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->pszDesc));
1465 tmTimerUnlock(pVM);
1466 if (!RTThreadYield())
1467 RTThreadSleep(1);
1468 AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->pszDesc),
1469 VERR_TM_UNSTABLE_STATE);
1470 tmTimerLock(pVM);
1471 continue;
1472
1473 /*
1474 * Invalid states.
1475 */
1476 case TMTIMERSTATE_FREE:
1477 case TMTIMERSTATE_DESTROY:
1478 tmTimerUnlock(pVM);
1479 AssertLogRelMsgFailedReturn(("pTimer=%p %s\n", pTimer, tmTimerState(enmState)), VERR_TM_INVALID_STATE);
1480
1481 default:
1482 AssertMsgFailed(("Unknown timer state %d (%s)\n", enmState, R3STRING(pTimer->pszDesc)));
1483 tmTimerUnlock(pVM);
1484 return VERR_TM_UNKNOWN_STATE;
1485 }
1486
1487 /*
1488 * Try switch to the destroy state.
1489 * This should always succeed as the caller should make sure there are no race.
1490 */
1491 bool fRc;
1492 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_DESTROY, enmState, fRc);
1493 if (fRc)
1494 break;
1495 AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->pszDesc));
1496 tmTimerUnlock(pVM);
1497 AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->pszDesc),
1498 VERR_TM_UNSTABLE_STATE);
1499 tmTimerLock(pVM);
1500 }
1501
1502 /*
1503 * Unlink from the active list.
1504 */
1505 if (fActive)
1506 {
1507 const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
1508 const PTMTIMER pNext = TMTIMER_GET_NEXT(pTimer);
1509 if (pPrev)
1510 TMTIMER_SET_NEXT(pPrev, pNext);
1511 else
1512 {
1513 TMTIMER_SET_HEAD(pQueue, pNext);
1514 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
1515 }
1516 if (pNext)
1517 TMTIMER_SET_PREV(pNext, pPrev);
1518 pTimer->offNext = 0;
1519 pTimer->offPrev = 0;
1520 }
1521
1522 /*
1523 * Unlink from the schedule list by running it.
1524 */
1525 if (fPending)
1526 {
1527 Log3(("TMR3TimerDestroy: tmTimerQueueSchedule\n"));
1528 STAM_PROFILE_START(&pVM->tm.s.CTX_SUFF_Z(StatScheduleOne), a);
1529 Assert(pQueue->offSchedule);
1530 tmTimerQueueSchedule(pVM, pQueue);
1531 }
1532
1533 /*
1534 * Read to move the timer from the created list and onto the free list.
1535 */
1536 Assert(!pTimer->offNext); Assert(!pTimer->offPrev); Assert(!pTimer->offScheduleNext);
1537
1538 /* unlink from created list */
1539 if (pTimer->pBigPrev)
1540 pTimer->pBigPrev->pBigNext = pTimer->pBigNext;
1541 else
1542 pVM->tm.s.pCreated = pTimer->pBigNext;
1543 if (pTimer->pBigNext)
1544 pTimer->pBigNext->pBigPrev = pTimer->pBigPrev;
1545 pTimer->pBigNext = 0;
1546 pTimer->pBigPrev = 0;
1547
1548 /* free */
1549 Log2(("TM: Inserting %p into the free list ahead of %p!\n", pTimer, pVM->tm.s.pFree));
1550 TM_SET_STATE(pTimer, TMTIMERSTATE_FREE);
1551 pTimer->pBigNext = pVM->tm.s.pFree;
1552 pVM->tm.s.pFree = pTimer;
1553
1554#ifdef VBOX_STRICT
1555 tmTimerQueuesSanityChecks(pVM, "TMR3TimerDestroy");
1556#endif
1557 tmTimerUnlock(pVM);
1558 return VINF_SUCCESS;
1559}
1560
1561
1562/**
1563 * Destroy all timers owned by a device.
1564 *
1565 * @returns VBox status.
1566 * @param pVM VM handle.
1567 * @param pDevIns Device which timers should be destroyed.
1568 */
1569VMM_INT_DECL(int) TMR3TimerDestroyDevice(PVM pVM, PPDMDEVINS pDevIns)
1570{
1571 LogFlow(("TMR3TimerDestroyDevice: pDevIns=%p\n", pDevIns));
1572 if (!pDevIns)
1573 return VERR_INVALID_PARAMETER;
1574
1575 tmTimerLock(pVM);
1576 PTMTIMER pCur = pVM->tm.s.pCreated;
1577 while (pCur)
1578 {
1579 PTMTIMER pDestroy = pCur;
1580 pCur = pDestroy->pBigNext;
1581 if ( pDestroy->enmType == TMTIMERTYPE_DEV
1582 && pDestroy->u.Dev.pDevIns == pDevIns)
1583 {
1584 int rc = TMR3TimerDestroy(pDestroy);
1585 AssertRC(rc);
1586 }
1587 }
1588 tmTimerUnlock(pVM);
1589
1590 LogFlow(("TMR3TimerDestroyDevice: returns VINF_SUCCESS\n"));
1591 return VINF_SUCCESS;
1592}
1593
1594
1595/**
1596 * Destroy all timers owned by a driver.
1597 *
1598 * @returns VBox status.
1599 * @param pVM VM handle.
1600 * @param pDrvIns Driver which timers should be destroyed.
1601 */
1602VMM_INT_DECL(int) TMR3TimerDestroyDriver(PVM pVM, PPDMDRVINS pDrvIns)
1603{
1604 LogFlow(("TMR3TimerDestroyDriver: pDrvIns=%p\n", pDrvIns));
1605 if (!pDrvIns)
1606 return VERR_INVALID_PARAMETER;
1607
1608 tmTimerLock(pVM);
1609 PTMTIMER pCur = pVM->tm.s.pCreated;
1610 while (pCur)
1611 {
1612 PTMTIMER pDestroy = pCur;
1613 pCur = pDestroy->pBigNext;
1614 if ( pDestroy->enmType == TMTIMERTYPE_DRV
1615 && pDestroy->u.Drv.pDrvIns == pDrvIns)
1616 {
1617 int rc = TMR3TimerDestroy(pDestroy);
1618 AssertRC(rc);
1619 }
1620 }
1621 tmTimerUnlock(pVM);
1622
1623 LogFlow(("TMR3TimerDestroyDriver: returns VINF_SUCCESS\n"));
1624 return VINF_SUCCESS;
1625}
1626
1627
1628/**
1629 * Internal function for getting the clock time.
1630 *
1631 * @returns clock time.
1632 * @param pVM The VM handle.
1633 * @param enmClock The clock.
1634 */
1635DECLINLINE(uint64_t) tmClock(PVM pVM, TMCLOCK enmClock)
1636{
1637 switch (enmClock)
1638 {
1639 case TMCLOCK_VIRTUAL: return TMVirtualGet(pVM);
1640 case TMCLOCK_VIRTUAL_SYNC: return TMVirtualSyncGet(pVM);
1641 case TMCLOCK_REAL: return TMRealGet(pVM);
1642 case TMCLOCK_TSC: return TMCpuTickGet(&pVM->aCpus[0] /* just take VCPU 0 */);
1643 default:
1644 AssertMsgFailed(("enmClock=%d\n", enmClock));
1645 return ~(uint64_t)0;
1646 }
1647}
1648
1649
1650/**
1651 * Checks if the sync queue has one or more expired timers.
1652 *
1653 * @returns true / false.
1654 *
1655 * @param pVM The VM handle.
1656 * @param enmClock The queue.
1657 */
1658DECLINLINE(bool) tmR3HasExpiredTimer(PVM pVM, TMCLOCK enmClock)
1659{
1660 const uint64_t u64Expire = pVM->tm.s.CTX_SUFF(paTimerQueues)[enmClock].u64Expire;
1661 return u64Expire != INT64_MAX && u64Expire <= tmClock(pVM, enmClock);
1662}
1663
1664
1665/**
1666 * Checks for expired timers in all the queues.
1667 *
1668 * @returns true / false.
1669 * @param pVM The VM handle.
1670 */
1671DECLINLINE(bool) tmR3AnyExpiredTimers(PVM pVM)
1672{
1673 /*
1674 * Combine the time calculation for the first two since we're not on EMT
1675 * TMVirtualSyncGet only permits EMT.
1676 */
1677 uint64_t u64Now = TMVirtualGetNoCheck(pVM);
1678 if (pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL].u64Expire <= u64Now)
1679 return true;
1680 u64Now = pVM->tm.s.fVirtualSyncTicking
1681 ? u64Now - pVM->tm.s.offVirtualSync
1682 : pVM->tm.s.u64VirtualSync;
1683 if (pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL_SYNC].u64Expire <= u64Now)
1684 return true;
1685
1686 /*
1687 * The remaining timers.
1688 */
1689 if (tmR3HasExpiredTimer(pVM, TMCLOCK_REAL))
1690 return true;
1691 if (tmR3HasExpiredTimer(pVM, TMCLOCK_TSC))
1692 return true;
1693 return false;
1694}
1695
1696
1697/**
1698 * Schedulation timer callback.
1699 *
1700 * @param pTimer Timer handle.
1701 * @param pvUser VM handle.
1702 * @thread Timer thread.
1703 *
1704 * @remark We cannot do the scheduling and queues running from a timer handler
1705 * since it's not executing in EMT, and even if it was it would be async
1706 * and we wouldn't know the state of the affairs.
1707 * So, we'll just raise the timer FF and force any REM execution to exit.
1708 */
1709static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t /*iTick*/)
1710{
1711 PVM pVM = (PVM)pvUser;
1712 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
1713
1714 AssertCompile(TMCLOCK_MAX == 4);
1715#ifdef DEBUG_Sander /* very annoying, keep it private. */
1716 if (VMCPU_FF_ISSET(pVCpuDst, VMCPU_FF_TIMER))
1717 Log(("tmR3TimerCallback: timer event still pending!!\n"));
1718#endif
1719 if ( !VMCPU_FF_ISSET(pVCpuDst, VMCPU_FF_TIMER)
1720 && ( pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule /** @todo FIXME - reconsider offSchedule as a reason for running the timer queues. */
1721 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].offSchedule
1722 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].offSchedule
1723 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].offSchedule
1724 || tmR3AnyExpiredTimers(pVM)
1725 )
1726 && !VMCPU_FF_ISSET(pVCpuDst, VMCPU_FF_TIMER)
1727 && !pVM->tm.s.fRunningQueues
1728 )
1729 {
1730 Log5(("TM(%u): FF: 0 -> 1\n", __LINE__));
1731 VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
1732 REMR3NotifyTimerPending(pVM, pVCpuDst);
1733 VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM /** @todo | VMNOTIFYFF_FLAGS_POKE ?*/);
1734 STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallbackSetFF);
1735 }
1736}
1737
1738
1739/**
1740 * Schedules and runs any pending timers.
1741 *
1742 * This is normally called from a forced action handler in EMT.
1743 *
1744 * @param pVM The VM to run the timers for.
1745 *
1746 * @thread EMT (actually EMT0, but we fend off the others)
1747 */
1748VMMR3DECL(void) TMR3TimerQueuesDo(PVM pVM)
1749{
1750 /*
1751 * Only the dedicated timer EMT should do stuff here.
1752 * (fRunningQueues is only used as an indicator.)
1753 */
1754 Assert(pVM->tm.s.idTimerCpu < pVM->cCpus);
1755 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
1756 if (VMMGetCpu(pVM) != pVCpuDst)
1757 {
1758 Assert(pVM->cCpus > 1);
1759 return;
1760 }
1761 STAM_PROFILE_START(&pVM->tm.s.StatDoQueues, a);
1762 Log2(("TMR3TimerQueuesDo:\n"));
1763 Assert(!pVM->tm.s.fRunningQueues);
1764 ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, true);
1765 tmTimerLock(pVM);
1766
1767 /*
1768 * Process the queues.
1769 */
1770 AssertCompile(TMCLOCK_MAX == 4);
1771
1772 /* TMCLOCK_VIRTUAL_SYNC (see also TMR3VirtualSyncFF) */
1773 STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], s1);
1774 tmVirtualSyncLock(pVM);
1775 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
1776 VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /* Clear the FF once we started working for real. */
1777
1778 if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule)
1779 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC]);
1780 tmR3TimerQueueRunVirtualSync(pVM);
1781 if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
1782 VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
1783
1784 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
1785 tmVirtualSyncUnlock(pVM);
1786 STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], s1);
1787
1788 /* TMCLOCK_VIRTUAL */
1789 STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], s2);
1790 if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].offSchedule)
1791 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL]);
1792 tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL]);
1793 STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], s2);
1794
1795 /* TMCLOCK_TSC */
1796 Assert(!pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].offActive); /* not used */
1797
1798 /* TMCLOCK_REAL */
1799 STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], s3);
1800 if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].offSchedule)
1801 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL]);
1802 tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL]);
1803 STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], s3);
1804
1805#ifdef VBOX_STRICT
1806 /* check that we didn't screwup. */
1807 tmTimerQueuesSanityChecks(pVM, "TMR3TimerQueuesDo");
1808#endif
1809
1810 /* done */
1811 Log2(("TMR3TimerQueuesDo: returns void\n"));
1812 ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, false);
1813 tmTimerUnlock(pVM);
1814 STAM_PROFILE_STOP(&pVM->tm.s.StatDoQueues, a);
1815}
1816
1817//RT_C_DECLS_BEGIN
1818//int iomLock(PVM pVM);
1819//void iomUnlock(PVM pVM);
1820//RT_C_DECLS_END
1821
1822
1823/**
1824 * Schedules and runs any pending times in the specified queue.
1825 *
1826 * This is normally called from a forced action handler in EMT.
1827 *
1828 * @param pVM The VM to run the timers for.
1829 * @param pQueue The queue to run.
1830 */
1831static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue)
1832{
1833 VM_ASSERT_EMT(pVM);
1834
1835 /*
1836 * Run timers.
1837 *
1838 * We check the clock once and run all timers which are ACTIVE
1839 * and have an expire time less or equal to the time we read.
1840 *
1841 * N.B. A generic unlink must be applied since other threads
1842 * are allowed to mess with any active timer at any time.
1843 * However, we only allow EMT to handle EXPIRED_PENDING
1844 * timers, thus enabling the timer handler function to
1845 * arm the timer again.
1846 */
1847 PTMTIMER pNext = TMTIMER_GET_HEAD(pQueue);
1848 if (!pNext)
1849 return;
1850 const uint64_t u64Now = tmClock(pVM, pQueue->enmClock);
1851 while (pNext && pNext->u64Expire <= u64Now)
1852 {
1853 PTMTIMER pTimer = pNext;
1854 pNext = TMTIMER_GET_NEXT(pTimer);
1855 PPDMCRITSECT pCritSect = pTimer->pCritSect;
1856 if (pCritSect)
1857 PDMCritSectEnter(pCritSect, VERR_INTERNAL_ERROR);
1858 Log2(("tmR3TimerQueueRun: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .pszDesc=%s}\n",
1859 pTimer, tmTimerState(pTimer->enmState), pTimer->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->pszDesc));
1860 bool fRc;
1861 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_GET_UNLINK, TMTIMERSTATE_ACTIVE, fRc);
1862 if (fRc)
1863 {
1864 Assert(!pTimer->offScheduleNext); /* this can trigger falsely */
1865
1866 /* unlink */
1867 const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
1868 if (pPrev)
1869 TMTIMER_SET_NEXT(pPrev, pNext);
1870 else
1871 {
1872 TMTIMER_SET_HEAD(pQueue, pNext);
1873 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
1874 }
1875 if (pNext)
1876 TMTIMER_SET_PREV(pNext, pPrev);
1877 pTimer->offNext = 0;
1878 pTimer->offPrev = 0;
1879
1880 /* fire */
1881 TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER);
1882 switch (pTimer->enmType)
1883 {
1884 case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer, pTimer->pvUser); break;
1885 case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer, pTimer->pvUser); break;
1886 case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer, pTimer->pvUser); break;
1887 case TMTIMERTYPE_EXTERNAL: pTimer->u.External.pfnTimer(pTimer->pvUser); break;
1888 default:
1889 AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->pszDesc));
1890 break;
1891 }
1892
1893 /* change the state if it wasn't changed already in the handler. */
1894 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc);
1895 Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
1896 }
1897 if (pCritSect)
1898 PDMCritSectLeave(pCritSect);
1899 } /* run loop */
1900}
1901
1902
1903/**
1904 * Schedules and runs any pending times in the timer queue for the
1905 * synchronous virtual clock.
1906 *
1907 * This scheduling is a bit different from the other queues as it need
1908 * to implement the special requirements of the timer synchronous virtual
1909 * clock, thus this 2nd queue run funcion.
1910 *
1911 * @param pVM The VM to run the timers for.
1912 *
1913 * @remarks The caller must own both the TM/EMT and the Virtual Sync locks.
1914 */
1915static void tmR3TimerQueueRunVirtualSync(PVM pVM)
1916{
1917 PTMTIMERQUEUE const pQueue = &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC];
1918 VM_ASSERT_EMT(pVM);
1919
1920 /*
1921 * Any timers?
1922 */
1923 PTMTIMER pNext = TMTIMER_GET_HEAD(pQueue);
1924 if (RT_UNLIKELY(!pNext))
1925 {
1926 Assert(pVM->tm.s.fVirtualSyncTicking || !pVM->tm.s.cVirtualTicking);
1927 return;
1928 }
1929 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRun);
1930
1931 /*
1932 * Calculate the time frame for which we will dispatch timers.
1933 *
1934 * We use a time frame ranging from the current sync time (which is most likely the
1935 * same as the head timer) and some configurable period (100000ns) up towards the
1936 * current virtual time. This period might also need to be restricted by the catch-up
1937 * rate so frequent calls to this function won't accelerate the time too much, however
1938 * this will be implemented at a later point if neccessary.
1939 *
1940 * Without this frame we would 1) having to run timers much more frequently
1941 * and 2) lag behind at a steady rate.
1942 */
1943 const uint64_t u64VirtualNow = TMVirtualGetNoCheck(pVM);
1944 uint64_t const offSyncGivenUp = pVM->tm.s.offVirtualSyncGivenUp;
1945 uint64_t u64Now;
1946 if (!pVM->tm.s.fVirtualSyncTicking)
1947 {
1948 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStoppedAlready);
1949 u64Now = pVM->tm.s.u64VirtualSync;
1950#ifdef DEBUG_bird
1951 Assert(u64Now <= pNext->u64Expire);
1952#endif
1953 }
1954 else
1955 {
1956 /* Calc 'now'. */
1957 bool fStopCatchup = false;
1958 bool fUpdateStuff = false;
1959 uint64_t off = pVM->tm.s.offVirtualSync;
1960 if (pVM->tm.s.fVirtualSyncCatchUp)
1961 {
1962 uint64_t u64Delta = u64VirtualNow - pVM->tm.s.u64VirtualSyncCatchUpPrev;
1963 if (RT_LIKELY(!(u64Delta >> 32)))
1964 {
1965 uint64_t u64Sub = ASMMultU64ByU32DivByU32(u64Delta, pVM->tm.s.u32VirtualSyncCatchUpPercentage, 100);
1966 if (off > u64Sub + offSyncGivenUp)
1967 {
1968 off -= u64Sub;
1969 Log4(("TM: %'RU64/-%'8RU64: sub %'RU64 [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow - off, off - offSyncGivenUp, u64Sub));
1970 }
1971 else
1972 {
1973 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
1974 fStopCatchup = true;
1975 off = offSyncGivenUp;
1976 }
1977 fUpdateStuff = true;
1978 }
1979 }
1980 u64Now = u64VirtualNow - off;
1981
1982 /* Check if stopped by expired timer. */
1983 uint64_t u64Expire = pNext->u64Expire;
1984 if (u64Now >= pNext->u64Expire)
1985 {
1986 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStop);
1987 u64Now = pNext->u64Expire;
1988 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
1989 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
1990 Log4(("TM: %'RU64/-%'8RU64: exp tmr [tmR3TimerQueueRunVirtualSync]\n", u64Now, u64VirtualNow - u64Now - offSyncGivenUp));
1991 }
1992 else if (fUpdateStuff)
1993 {
1994 ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, off);
1995 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSyncCatchUpPrev, u64VirtualNow);
1996 if (fStopCatchup)
1997 {
1998 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
1999 Log4(("TM: %'RU64/0: caught up [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow));
2000 }
2001 }
2002 }
2003
2004 /* calc end of frame. */
2005 uint64_t u64Max = u64Now + pVM->tm.s.u32VirtualSyncScheduleSlack;
2006 if (u64Max > u64VirtualNow - offSyncGivenUp)
2007 u64Max = u64VirtualNow - offSyncGivenUp;
2008
2009 /* assert sanity */
2010#ifdef DEBUG_bird
2011 Assert(u64Now <= u64VirtualNow - offSyncGivenUp);
2012 Assert(u64Max <= u64VirtualNow - offSyncGivenUp);
2013 Assert(u64Now <= u64Max);
2014 Assert(offSyncGivenUp == pVM->tm.s.offVirtualSyncGivenUp);
2015#endif
2016
2017 /*
2018 * Process the expired timers moving the clock along as we progress.
2019 */
2020#ifdef DEBUG_bird
2021#ifdef VBOX_STRICT
2022 uint64_t u64Prev = u64Now; NOREF(u64Prev);
2023#endif
2024#endif
2025 while (pNext && pNext->u64Expire <= u64Max)
2026 {
2027 PTMTIMER pTimer = pNext;
2028 pNext = TMTIMER_GET_NEXT(pTimer);
2029 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2030 if (pCritSect)
2031 PDMCritSectEnter(pCritSect, VERR_INTERNAL_ERROR);
2032 Log2(("tmR3TimerQueueRun: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .pszDesc=%s}\n",
2033 pTimer, tmTimerState(pTimer->enmState), pTimer->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->pszDesc));
2034 bool fRc;
2035 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_GET_UNLINK, TMTIMERSTATE_ACTIVE, fRc);
2036 if (fRc)
2037 {
2038 /* unlink */
2039 const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
2040 if (pPrev)
2041 TMTIMER_SET_NEXT(pPrev, pNext);
2042 else
2043 {
2044 TMTIMER_SET_HEAD(pQueue, pNext);
2045 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
2046 }
2047 if (pNext)
2048 TMTIMER_SET_PREV(pNext, pPrev);
2049 pTimer->offNext = 0;
2050 pTimer->offPrev = 0;
2051
2052 /* advance the clock - don't permit timers to be out of order or armed in the 'past'. */
2053#ifdef DEBUG_bird
2054#ifdef VBOX_STRICT
2055 AssertMsg(pTimer->u64Expire >= u64Prev, ("%'RU64 < %'RU64 %s\n", pTimer->u64Expire, u64Prev, pTimer->pszDesc));
2056 u64Prev = pTimer->u64Expire;
2057#endif
2058#endif
2059 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, pTimer->u64Expire);
2060 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
2061
2062 /* fire */
2063 TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER);
2064 switch (pTimer->enmType)
2065 {
2066 case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer, pTimer->pvUser); break;
2067 case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer, pTimer->pvUser); break;
2068 case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer, pTimer->pvUser); break;
2069 case TMTIMERTYPE_EXTERNAL: pTimer->u.External.pfnTimer(pTimer->pvUser); break;
2070 default:
2071 AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->pszDesc));
2072 break;
2073 }
2074
2075 /* change the state if it wasn't changed already in the handler. */
2076 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc);
2077 Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
2078 }
2079 if (pCritSect)
2080 PDMCritSectLeave(pCritSect);
2081 } /* run loop */
2082
2083 /*
2084 * Restart the clock if it was stopped to serve any timers,
2085 * and start/adjust catch-up if necessary.
2086 */
2087 if ( !pVM->tm.s.fVirtualSyncTicking
2088 && pVM->tm.s.cVirtualTicking)
2089 {
2090 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunRestart);
2091
2092 /* calc the slack we've handed out. */
2093 const uint64_t u64VirtualNow2 = TMVirtualGetNoCheck(pVM);
2094 Assert(u64VirtualNow2 >= u64VirtualNow);
2095#ifdef DEBUG_bird
2096 AssertMsg(pVM->tm.s.u64VirtualSync >= u64Now, ("%'RU64 < %'RU64\n", pVM->tm.s.u64VirtualSync, u64Now));
2097#endif
2098 const uint64_t offSlack = pVM->tm.s.u64VirtualSync - u64Now;
2099 STAM_STATS({
2100 if (offSlack)
2101 {
2102 PSTAMPROFILE p = &pVM->tm.s.StatVirtualSyncRunSlack;
2103 p->cPeriods++;
2104 p->cTicks += offSlack;
2105 if (p->cTicksMax < offSlack) p->cTicksMax = offSlack;
2106 if (p->cTicksMin > offSlack) p->cTicksMin = offSlack;
2107 }
2108 });
2109
2110 /* Let the time run a little bit while we were busy running timers(?). */
2111 uint64_t u64Elapsed;
2112#define MAX_ELAPSED 30000U /* ns */
2113 if (offSlack > MAX_ELAPSED)
2114 u64Elapsed = 0;
2115 else
2116 {
2117 u64Elapsed = u64VirtualNow2 - u64VirtualNow;
2118 if (u64Elapsed > MAX_ELAPSED)
2119 u64Elapsed = MAX_ELAPSED;
2120 u64Elapsed = u64Elapsed > offSlack ? u64Elapsed - offSlack : 0;
2121 }
2122#undef MAX_ELAPSED
2123
2124 /* Calc the current offset. */
2125 uint64_t offNew = u64VirtualNow2 - pVM->tm.s.u64VirtualSync - u64Elapsed;
2126 Assert(!(offNew & RT_BIT_64(63)));
2127 uint64_t offLag = offNew - pVM->tm.s.offVirtualSyncGivenUp;
2128 Assert(!(offLag & RT_BIT_64(63)));
2129
2130 /*
2131 * Deal with starting, adjusting and stopping catchup.
2132 */
2133 if (pVM->tm.s.fVirtualSyncCatchUp)
2134 {
2135 if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpStopThreshold)
2136 {
2137 /* stop */
2138 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2139 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2140 Log4(("TM: %'RU64/-%'8RU64: caught up [pt]\n", u64VirtualNow2 - offNew, offLag));
2141 }
2142 else if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
2143 {
2144 /* adjust */
2145 unsigned i = 0;
2146 while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
2147 && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
2148 i++;
2149 if (pVM->tm.s.u32VirtualSyncCatchUpPercentage < pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage)
2150 {
2151 STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupAdjust[i]);
2152 ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
2153 Log4(("TM: %'RU64/%'8RU64: adj %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2154 }
2155 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64VirtualNow2;
2156 }
2157 else
2158 {
2159 /* give up */
2160 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUp);
2161 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2162 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
2163 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2164 Log4(("TM: %'RU64/%'8RU64: give up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2165 LogRel(("TM: Giving up catch-up attempt at a %'RU64 ns lag; new total: %'RU64 ns\n", offLag, offNew));
2166 }
2167 }
2168 else if (offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[0].u64Start)
2169 {
2170 if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
2171 {
2172 /* start */
2173 STAM_PROFILE_ADV_START(&pVM->tm.s.StatVirtualSyncCatchup, c);
2174 unsigned i = 0;
2175 while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
2176 && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
2177 i++;
2178 STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupInitial[i]);
2179 ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
2180 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, true);
2181 Log4(("TM: %'RU64/%'8RU64: catch-up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2182 }
2183 else
2184 {
2185 /* don't bother */
2186 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting);
2187 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
2188 Log4(("TM: %'RU64/%'8RU64: give up\n", u64VirtualNow2 - offNew, offLag));
2189 LogRel(("TM: Not bothering to attempt catching up a %'RU64 ns lag; new total: %'RU64\n", offLag, offNew));
2190 }
2191 }
2192
2193 /*
2194 * Update the offset and restart the clock.
2195 */
2196 Assert(!(offNew & RT_BIT_64(63)));
2197 ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, offNew);
2198 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, true);
2199 }
2200}
2201
2202
2203/**
2204 * Deals with stopped Virtual Sync clock.
2205 *
2206 * This is called by the forced action flag handling code in EM when it
2207 * encounters the VM_FF_TM_VIRTUAL_SYNC flag. It is called by all VCPUs and they
2208 * will block on the VirtualSyncLock until the pending timers has been executed
2209 * and the clock restarted.
2210 *
2211 * @param pVM The VM to run the timers for.
2212 * @param pVCpu The virtual CPU we're running at.
2213 *
2214 * @thread EMTs
2215 */
2216VMM_INT_DECL(void) TMR3VirtualSyncFF(PVM pVM, PVMCPU pVCpu)
2217{
2218 Log2(("TMR3VirtualSyncFF:\n"));
2219
2220 /*
2221 * The EMT doing the timers is diverted to them.
2222 */
2223 if (pVCpu->idCpu == pVM->tm.s.idTimerCpu)
2224 TMR3TimerQueuesDo(pVM);
2225 /*
2226 * The other EMTs will block on the virtual sync lock and the first owner
2227 * will run the queue and thus restarting the clock.
2228 *
2229 * Note! This is very suboptimal code wrt to resuming execution when there
2230 * are more than two Virtual CPUs, since they will all have to enter
2231 * the critical section one by one. But it's a very simple solution
2232 * which will have to do the job for now.
2233 */
2234 else
2235 {
2236 STAM_PROFILE_START(&pVM->tm.s.StatVirtualSyncFF, a);
2237 tmVirtualSyncLock(pVM);
2238 if (pVM->tm.s.fVirtualSyncTicking)
2239 {
2240 STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
2241 tmVirtualSyncUnlock(pVM);
2242 Log2(("TMR3VirtualSyncFF: ticking\n"));
2243 }
2244 else
2245 {
2246 tmVirtualSyncUnlock(pVM);
2247
2248 /* try run it. */
2249 tmTimerLock(pVM);
2250 tmVirtualSyncLock(pVM);
2251 if (pVM->tm.s.fVirtualSyncTicking)
2252 Log2(("TMR3VirtualSyncFF: ticking (2)\n"));
2253 else
2254 {
2255 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
2256 Log2(("TMR3VirtualSyncFF: running queue\n"));
2257
2258 if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule)
2259 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC]);
2260 tmR3TimerQueueRunVirtualSync(pVM);
2261 if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
2262 VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
2263
2264 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
2265 }
2266 STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
2267 tmVirtualSyncUnlock(pVM);
2268 tmTimerUnlock(pVM);
2269 }
2270 }
2271}
2272
2273
2274/** @name Saved state values
2275 * @{ */
2276#define TMTIMERSTATE_SAVED_PENDING_STOP 4
2277#define TMTIMERSTATE_SAVED_PENDING_SCHEDULE 7
2278/** @} */
2279
2280
2281/**
2282 * Saves the state of a timer to a saved state.
2283 *
2284 * @returns VBox status.
2285 * @param pTimer Timer to save.
2286 * @param pSSM Save State Manager handle.
2287 */
2288VMMR3DECL(int) TMR3TimerSave(PTMTIMERR3 pTimer, PSSMHANDLE pSSM)
2289{
2290 LogFlow(("TMR3TimerSave: %p:{enmState=%s, .pszDesc={%s}} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->pszDesc, pSSM));
2291 switch (pTimer->enmState)
2292 {
2293 case TMTIMERSTATE_STOPPED:
2294 case TMTIMERSTATE_PENDING_STOP:
2295 case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
2296 return SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_STOP);
2297
2298 case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
2299 case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
2300 AssertMsgFailed(("u64Expire is being updated! (%s)\n", pTimer->pszDesc));
2301 if (!RTThreadYield())
2302 RTThreadSleep(1);
2303 /* fall thru */
2304 case TMTIMERSTATE_ACTIVE:
2305 case TMTIMERSTATE_PENDING_SCHEDULE:
2306 case TMTIMERSTATE_PENDING_RESCHEDULE:
2307 SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_SCHEDULE);
2308 return SSMR3PutU64(pSSM, pTimer->u64Expire);
2309
2310 case TMTIMERSTATE_EXPIRED_GET_UNLINK:
2311 case TMTIMERSTATE_EXPIRED_DELIVER:
2312 case TMTIMERSTATE_DESTROY:
2313 case TMTIMERSTATE_FREE:
2314 AssertMsgFailed(("Invalid timer state %d %s (%s)\n", pTimer->enmState, tmTimerState(pTimer->enmState), pTimer->pszDesc));
2315 return SSMR3HandleSetStatus(pSSM, VERR_TM_INVALID_STATE);
2316 }
2317
2318 AssertMsgFailed(("Unknown timer state %d (%s)\n", pTimer->enmState, pTimer->pszDesc));
2319 return SSMR3HandleSetStatus(pSSM, VERR_TM_UNKNOWN_STATE);
2320}
2321
2322
2323/**
2324 * Loads the state of a timer from a saved state.
2325 *
2326 * @returns VBox status.
2327 * @param pTimer Timer to restore.
2328 * @param pSSM Save State Manager handle.
2329 */
2330VMMR3DECL(int) TMR3TimerLoad(PTMTIMERR3 pTimer, PSSMHANDLE pSSM)
2331{
2332 Assert(pTimer); Assert(pSSM); VM_ASSERT_EMT(pTimer->pVMR3);
2333 LogFlow(("TMR3TimerLoad: %p:{enmState=%s, .pszDesc={%s}} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->pszDesc, pSSM));
2334
2335 /*
2336 * Load the state and validate it.
2337 */
2338 uint8_t u8State;
2339 int rc = SSMR3GetU8(pSSM, &u8State);
2340 if (RT_FAILURE(rc))
2341 return rc;
2342#if 1 /* Workaround for accidental state shift in r47786 (2009-05-26 19:12:12). */ /** @todo remove this in a few weeks! */
2343 if ( u8State == TMTIMERSTATE_SAVED_PENDING_STOP + 1
2344 || u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE + 1)
2345 u8State--;
2346#endif
2347 if ( u8State != TMTIMERSTATE_SAVED_PENDING_STOP
2348 && u8State != TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
2349 {
2350 AssertLogRelMsgFailed(("u8State=%d\n", u8State));
2351 return SSMR3HandleSetStatus(pSSM, VERR_TM_LOAD_STATE);
2352 }
2353
2354 /* Enter the critical section to make TMTimerSet/Stop happy. */
2355 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2356 if (pCritSect)
2357 PDMCritSectEnter(pCritSect, VERR_INTERNAL_ERROR);
2358
2359 if (u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
2360 {
2361 /*
2362 * Load the expire time.
2363 */
2364 uint64_t u64Expire;
2365 rc = SSMR3GetU64(pSSM, &u64Expire);
2366 if (RT_FAILURE(rc))
2367 return rc;
2368
2369 /*
2370 * Set it.
2371 */
2372 Log(("u8State=%d u64Expire=%llu\n", u8State, u64Expire));
2373 rc = TMTimerSet(pTimer, u64Expire);
2374 }
2375 else
2376 {
2377 /*
2378 * Stop it.
2379 */
2380 Log(("u8State=%d\n", u8State));
2381 rc = TMTimerStop(pTimer);
2382 }
2383
2384 if (pCritSect)
2385 PDMCritSectLeave(pCritSect);
2386
2387 /*
2388 * On failure set SSM status.
2389 */
2390 if (RT_FAILURE(rc))
2391 rc = SSMR3HandleSetStatus(pSSM, rc);
2392 return rc;
2393}
2394
2395
2396/**
2397 * Associates a critical section with a timer.
2398 *
2399 * The critical section will be entered prior to doing the timer call back, thus
2400 * avoiding potential races between the timer thread and other threads trying to
2401 * stop or adjust the timer expiration while it's being delivered. The timer
2402 * thread will leave the critical section when the timer callback returns.
2403 *
2404 * In strict builds, ownership of the critical section will be asserted by
2405 * TMTimerSet, TMTimerStop, TMTimerGetExpire and TMTimerDestroy (when called at
2406 * runtime).
2407 *
2408 * @retval VINF_SUCCESS on success.
2409 * @retval VERR_INVALID_HANDLE if the timer handle is NULL or invalid
2410 * (asserted).
2411 * @retval VERR_INVALID_PARAMETER if pCritSect is NULL or has an invalid magic
2412 * (asserted).
2413 * @retval VERR_ALREADY_EXISTS if a critical section was already associated
2414 * with the timer (asserted).
2415 * @retval VERR_INVALID_STATE if the timer isn't stopped.
2416 *
2417 * @param pTimer The timer handle.
2418 * @param pCritSect The critical section. The caller must make sure this
2419 * is around for the life time of the timer.
2420 *
2421 * @thread Any, but the caller is responsible for making sure the timer is not
2422 * active.
2423 */
2424VMMR3DECL(int) TMR3TimerSetCritSect(PTMTIMERR3 pTimer, PPDMCRITSECT pCritSect)
2425{
2426 AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
2427 AssertPtrReturn(pCritSect, VERR_INVALID_PARAMETER);
2428 const char *pszName = PDMR3CritSectName(pCritSect); /* exploited for validation */
2429 AssertReturn(pszName, VERR_INVALID_PARAMETER);
2430 AssertReturn(!pTimer->pCritSect, VERR_ALREADY_EXISTS);
2431 AssertReturn(pTimer->enmState == TMTIMERSTATE_STOPPED, VERR_INVALID_STATE);
2432 LogFlow(("pTimer=%p (%s) pCritSect=%p (%s)\n", pTimer, pTimer->pszDesc, pCritSect, pszName));
2433
2434 pTimer->pCritSect = pCritSect;
2435 return VINF_SUCCESS;
2436}
2437
2438
2439/**
2440 * Get the real world UTC time adjusted for VM lag.
2441 *
2442 * @returns pTime.
2443 * @param pVM The VM instance.
2444 * @param pTime Where to store the time.
2445 */
2446VMM_INT_DECL(PRTTIMESPEC) TMR3UtcNow(PVM pVM, PRTTIMESPEC pTime)
2447{
2448 RTTimeNow(pTime);
2449 RTTimeSpecSubNano(pTime, ASMAtomicReadU64(&pVM->tm.s.offVirtualSync) - ASMAtomicReadU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp));
2450 RTTimeSpecAddNano(pTime, pVM->tm.s.offUTC);
2451 return pTime;
2452}
2453
2454
2455/**
2456 * Pauses all clocks except TMCLOCK_REAL.
2457 *
2458 * @returns VBox status code, all errors are asserted.
2459 * @param pVM The VM handle.
2460 * @param pVCpu The virtual CPU handle.
2461 * @thread EMT corrsponding to the virtual CPU handle.
2462 */
2463VMMR3DECL(int) TMR3NotifySuspend(PVM pVM, PVMCPU pVCpu)
2464{
2465 VMCPU_ASSERT_EMT(pVCpu);
2466
2467 /*
2468 * The shared virtual clock (includes virtual sync which is tied to it).
2469 */
2470 tmTimerLock(pVM); /* Paranoia: Exploiting the timer lock here. */
2471 int rc = tmVirtualPauseLocked(pVM);
2472 tmTimerUnlock(pVM);
2473 if (RT_FAILURE(rc))
2474 return rc;
2475
2476 /*
2477 * Pause the TSC last since it is normally linked to the virtual
2478 * sync clock, so the above code may actually stop both clock.
2479 */
2480 return tmCpuTickPause(pVM, pVCpu);
2481}
2482
2483
2484/**
2485 * Resumes all clocks except TMCLOCK_REAL.
2486 *
2487 * @returns VBox status code, all errors are asserted.
2488 * @param pVM The VM handle.
2489 * @param pVCpu The virtual CPU handle.
2490 * @thread EMT corrsponding to the virtual CPU handle.
2491 */
2492VMMR3DECL(int) TMR3NotifyResume(PVM pVM, PVMCPU pVCpu)
2493{
2494 VMCPU_ASSERT_EMT(pVCpu);
2495 int rc;
2496
2497 /*
2498 * Resume the TSC first since it is normally linked to the virtual sync
2499 * clock, so it may actually not be resumed until we've executed the code
2500 * below.
2501 */
2502 if (!pVM->tm.s.fTSCTiedToExecution)
2503 {
2504 rc = tmCpuTickResume(pVM, pVCpu);
2505 if (RT_FAILURE(rc))
2506 return rc;
2507 }
2508
2509 /*
2510 * The shared virtual clock (includes virtual sync which is tied to it).
2511 */
2512 tmTimerLock(pVM); /* Paranoia: Exploiting the timer lock here. */
2513 rc = tmVirtualResumeLocked(pVM);
2514 tmTimerUnlock(pVM);
2515
2516 return rc;
2517}
2518
2519
2520/**
2521 * Sets the warp drive percent of the virtual time.
2522 *
2523 * @returns VBox status code.
2524 * @param pVM The VM handle.
2525 * @param u32Percent The new percentage. 100 means normal operation.
2526 *
2527 * @todo Move to Ring-3!
2528 */
2529VMMDECL(int) TMR3SetWarpDrive(PVM pVM, uint32_t u32Percent)
2530{
2531 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)tmR3SetWarpDrive, 2, pVM, u32Percent);
2532}
2533
2534
2535/**
2536 * EMT worker for TMR3SetWarpDrive.
2537 *
2538 * @returns VBox status code.
2539 * @param pVM The VM handle.
2540 * @param u32Percent See TMR3SetWarpDrive().
2541 * @internal
2542 */
2543static DECLCALLBACK(int) tmR3SetWarpDrive(PVM pVM, uint32_t u32Percent)
2544{
2545 PVMCPU pVCpu = VMMGetCpu(pVM);
2546
2547 /*
2548 * Validate it.
2549 */
2550 AssertMsgReturn(u32Percent >= 2 && u32Percent <= 20000,
2551 ("%RX32 is not between 2 and 20000 (inclusive).\n", u32Percent),
2552 VERR_INVALID_PARAMETER);
2553
2554/** @todo This isn't a feature specific to virtual time, move the variables to
2555 * TM level and make it affect TMR3UCTNow as well! */
2556
2557 /*
2558 * If the time is running we'll have to pause it before we can change
2559 * the warp drive settings.
2560 */
2561 tmTimerLock(pVM); /* Paranoia: Exploiting the timer lock here. */
2562 bool fPaused = !!pVM->tm.s.cVirtualTicking;
2563 if (fPaused) /** @todo this isn't really working, but wtf. */
2564 TMR3NotifySuspend(pVM, pVCpu);
2565
2566 pVM->tm.s.u32VirtualWarpDrivePercentage = u32Percent;
2567 pVM->tm.s.fVirtualWarpDrive = u32Percent != 100;
2568 LogRel(("TM: u32VirtualWarpDrivePercentage=%RI32 fVirtualWarpDrive=%RTbool\n",
2569 pVM->tm.s.u32VirtualWarpDrivePercentage, pVM->tm.s.fVirtualWarpDrive));
2570
2571 if (fPaused)
2572 TMR3NotifyResume(pVM, pVCpu);
2573 tmTimerUnlock(pVM);
2574 return VINF_SUCCESS;
2575}
2576
2577
2578/**
2579 * Display all timers.
2580 *
2581 * @param pVM VM Handle.
2582 * @param pHlp The info helpers.
2583 * @param pszArgs Arguments, ignored.
2584 */
2585static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2586{
2587 NOREF(pszArgs);
2588 pHlp->pfnPrintf(pHlp,
2589 "Timers (pVM=%p)\n"
2590 "%.*s %.*s %.*s %.*s Clock %-18s %-18s %-25s Description\n",
2591 pVM,
2592 sizeof(RTR3PTR) * 2, "pTimerR3 ",
2593 sizeof(int32_t) * 2, "offNext ",
2594 sizeof(int32_t) * 2, "offPrev ",
2595 sizeof(int32_t) * 2, "offSched ",
2596 "Time",
2597 "Expire",
2598 "State");
2599 tmTimerLock(pVM);
2600 for (PTMTIMERR3 pTimer = pVM->tm.s.pCreated; pTimer; pTimer = pTimer->pBigNext)
2601 {
2602 pHlp->pfnPrintf(pHlp,
2603 "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %-25s %s\n",
2604 pTimer,
2605 pTimer->offNext,
2606 pTimer->offPrev,
2607 pTimer->offScheduleNext,
2608 pTimer->enmClock == TMCLOCK_REAL ? "Real " : "Virt ",
2609 TMTimerGet(pTimer),
2610 pTimer->u64Expire,
2611 tmTimerState(pTimer->enmState),
2612 pTimer->pszDesc);
2613 }
2614 tmTimerUnlock(pVM);
2615}
2616
2617
2618/**
2619 * Display all active timers.
2620 *
2621 * @param pVM VM Handle.
2622 * @param pHlp The info helpers.
2623 * @param pszArgs Arguments, ignored.
2624 */
2625static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2626{
2627 NOREF(pszArgs);
2628 pHlp->pfnPrintf(pHlp,
2629 "Active Timers (pVM=%p)\n"
2630 "%.*s %.*s %.*s %.*s Clock %-18s %-18s %-25s Description\n",
2631 pVM,
2632 sizeof(RTR3PTR) * 2, "pTimerR3 ",
2633 sizeof(int32_t) * 2, "offNext ",
2634 sizeof(int32_t) * 2, "offPrev ",
2635 sizeof(int32_t) * 2, "offSched ",
2636 "Time",
2637 "Expire",
2638 "State");
2639 for (unsigned iQueue = 0; iQueue < TMCLOCK_MAX; iQueue++)
2640 {
2641 tmTimerLock(pVM);
2642 for (PTMTIMERR3 pTimer = TMTIMER_GET_HEAD(&pVM->tm.s.paTimerQueuesR3[iQueue]);
2643 pTimer;
2644 pTimer = TMTIMER_GET_NEXT(pTimer))
2645 {
2646 pHlp->pfnPrintf(pHlp,
2647 "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %-25s %s\n",
2648 pTimer,
2649 pTimer->offNext,
2650 pTimer->offPrev,
2651 pTimer->offScheduleNext,
2652 pTimer->enmClock == TMCLOCK_REAL
2653 ? "Real "
2654 : pTimer->enmClock == TMCLOCK_VIRTUAL
2655 ? "Virt "
2656 : pTimer->enmClock == TMCLOCK_VIRTUAL_SYNC
2657 ? "VrSy "
2658 : "TSC ",
2659 TMTimerGet(pTimer),
2660 pTimer->u64Expire,
2661 tmTimerState(pTimer->enmState),
2662 pTimer->pszDesc);
2663 }
2664 tmTimerUnlock(pVM);
2665 }
2666}
2667
2668
2669/**
2670 * Display all clocks.
2671 *
2672 * @param pVM VM Handle.
2673 * @param pHlp The info helpers.
2674 * @param pszArgs Arguments, ignored.
2675 */
2676static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2677{
2678 NOREF(pszArgs);
2679
2680 /*
2681 * Read the times first to avoid more than necessary time variation.
2682 */
2683 const uint64_t u64Virtual = TMVirtualGet(pVM);
2684 const uint64_t u64VirtualSync = TMVirtualSyncGet(pVM);
2685 const uint64_t u64Real = TMRealGet(pVM);
2686
2687 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2688 {
2689 PVMCPU pVCpu = &pVM->aCpus[i];
2690 uint64_t u64TSC = TMCpuTickGet(pVCpu);
2691
2692 /*
2693 * TSC
2694 */
2695 pHlp->pfnPrintf(pHlp,
2696 "Cpu Tick: %18RU64 (%#016RX64) %RU64Hz %s%s",
2697 u64TSC, u64TSC, TMCpuTicksPerSecond(pVM),
2698 pVCpu->tm.s.fTSCTicking ? "ticking" : "paused",
2699 pVM->tm.s.fTSCVirtualized ? " - virtualized" : "");
2700 if (pVM->tm.s.fTSCUseRealTSC)
2701 {
2702 pHlp->pfnPrintf(pHlp, " - real tsc");
2703 if (pVCpu->tm.s.offTSCRawSrc)
2704 pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVCpu->tm.s.offTSCRawSrc);
2705 }
2706 else
2707 pHlp->pfnPrintf(pHlp, " - virtual clock");
2708 pHlp->pfnPrintf(pHlp, "\n");
2709 }
2710
2711 /*
2712 * virtual
2713 */
2714 pHlp->pfnPrintf(pHlp,
2715 " Virtual: %18RU64 (%#016RX64) %RU64Hz %s",
2716 u64Virtual, u64Virtual, TMVirtualGetFreq(pVM),
2717 pVM->tm.s.cVirtualTicking ? "ticking" : "paused");
2718 if (pVM->tm.s.fVirtualWarpDrive)
2719 pHlp->pfnPrintf(pHlp, " WarpDrive %RU32 %%", pVM->tm.s.u32VirtualWarpDrivePercentage);
2720 pHlp->pfnPrintf(pHlp, "\n");
2721
2722 /*
2723 * virtual sync
2724 */
2725 pHlp->pfnPrintf(pHlp,
2726 "VirtSync: %18RU64 (%#016RX64) %s%s",
2727 u64VirtualSync, u64VirtualSync,
2728 pVM->tm.s.fVirtualSyncTicking ? "ticking" : "paused",
2729 pVM->tm.s.fVirtualSyncCatchUp ? " - catchup" : "");
2730 if (pVM->tm.s.offVirtualSync)
2731 {
2732 pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVM->tm.s.offVirtualSync);
2733 if (pVM->tm.s.u32VirtualSyncCatchUpPercentage)
2734 pHlp->pfnPrintf(pHlp, " catch-up rate %u %%", pVM->tm.s.u32VirtualSyncCatchUpPercentage);
2735 }
2736 pHlp->pfnPrintf(pHlp, "\n");
2737
2738 /*
2739 * real
2740 */
2741 pHlp->pfnPrintf(pHlp,
2742 " Real: %18RU64 (%#016RX64) %RU64Hz\n",
2743 u64Real, u64Real, TMRealGetFreq(pVM));
2744}
2745
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette