VirtualBox

source: vbox/trunk/src/VBox/VMM/TM.cpp@ 5474

Last change on this file since 5474 was 5398, checked in by vboxsync, 17 years ago

Fixed /TM/UseRealTSC.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 77.1 KB
Line 
1/* $Id: TM.cpp 5398 2007-10-21 04:37:46Z vboxsync $ */
2/** @file
3 * TM - Timeout Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2007 innotek GmbH
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License as published by the Free Software Foundation,
13 * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
14 * distribution. VirtualBox OSE is distributed in the hope that it will
15 * be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/** @page pg_tm TM - The Time Manager
20 *
21 * The Time Manager abstracts the CPU clocks and manages timers used by the VMM,
22 * device and drivers.
23 *
24 *
25 * @section sec_tm_clocks Clocks
26 *
27 * There are currently 4 clocks:
28 * - Virtual (guest).
29 * - Synchronous virtual (guest).
30 * - CPU Tick (TSC) (guest). Only current use is rdtsc emulation. Usually a
31 * function of the virtual clock.
32 * - Real (host). The only current use is display updates for not real
33 * good reason...
34 *
35 * The interesting clocks are two first ones, the virtual and synchronous virtual
36 * clock. The synchronous virtual clock is tied to the virtual clock except that
37 * it will take into account timer delivery lag caused by host scheduling. It will
38 * normally never advance beyond the header timer, and when lagging too far behind
39 * it will gradually speed up to catch up with the virtual clock.
40 *
41 * The CPU tick (TSC) is normally virtualized as a function of the virtual time,
42 * where the frequency defaults to the host cpu frequency (as we measure it). It
43 * can also use the host TSC as source and either present it with an offset or
44 * unmodified. It is of course possible to configure the TSC frequency and mode
45 * of operation.
46 *
47 * @subsection subsec_tm_timesync Guest Time Sync / UTC time
48 *
49 * Guest time syncing is primarily taken care of by the VMM device. The principle
50 * is very simple, the guest additions periodically asks the VMM device what the
51 * current UTC time is and makes adjustments accordingly. Now, because the
52 * synchronous virtual clock might be doing catchups and we would therefore
53 * deliver more than the normal rate for a little while, some adjusting of the
54 * UTC time is required before passing it on to the guest. This is why TM provides
55 * an API for query the current UTC time.
56 *
57 *
58 * @section sec_tm_timers Timers
59 *
60 * The timers can use any of the TM clocks described in the previous section. Each
61 * clock has its own scheduling facility, or timer queue if you like. There are
62 * a few factors which makes it a bit complex. First there is the usual R0 vs R3
63 * vs. GC thing. Then there is multiple threads, and then there is the timer thread
64 * that periodically checks whether any timers has expired without EMT noticing. On
65 * the API level, all but the create and save APIs must be mulithreaded. EMT will
66 * always run the timers.
67 *
68 * The design is using a doubly linked list of active timers which is ordered
69 * by expire date. This list is only modified by the EMT thread. Updates to the
70 * list are are batched in a singly linked list, which is then process by the EMT
71 * thread at the first opportunity (immediately, next time EMT modifies a timer
72 * on that clock, or next timer timeout). Both lists are offset based and all
73 * the elements therefore allocated from the hyper heap.
74 *
75 * For figuring out when there is need to schedule and run timers TM will:
76 * - Poll whenever somebody queries the virtual clock.
77 * - Poll the virtual clocks from the EM and REM loops.
78 * - Poll the virtual clocks from trap exit path.
79 * - Poll the virtual clocks and calculate first timeout from the halt loop.
80 * - Employ a thread which periodically (100Hz) polls all the timer queues.
81 *
82 *
83 * @section sec_tm_timer Logging
84 *
85 * Level 2: Logs a most of the timer state transitions and queue servicing.
86 * Level 3: Logs a few oddments.
87 * Level 4: Logs TMCLOCK_VIRTUAL_SYNC catch-up events.
88 *
89 */
90
91
92
93
94/*******************************************************************************
95* Header Files *
96*******************************************************************************/
97#define LOG_GROUP LOG_GROUP_TM
98#include <VBox/tm.h>
99#include <VBox/vmm.h>
100#include <VBox/mm.h>
101#include <VBox/ssm.h>
102#include <VBox/dbgf.h>
103#include <VBox/rem.h>
104#include "TMInternal.h"
105#include <VBox/vm.h>
106
107#include <VBox/param.h>
108#include <VBox/err.h>
109
110#include <VBox/log.h>
111#include <iprt/asm.h>
112#include <iprt/assert.h>
113#include <iprt/thread.h>
114#include <iprt/time.h>
115#include <iprt/timer.h>
116#include <iprt/semaphore.h>
117#include <iprt/string.h>
118#include <iprt/env.h>
119
120
121/*******************************************************************************
122* Defined Constants And Macros *
123*******************************************************************************/
124/** The current saved state version.*/
125#define TM_SAVED_STATE_VERSION 3
126
127
128/*******************************************************************************
129* Internal Functions *
130*******************************************************************************/
131static bool tmR3HasFixedTSC(void);
132static uint64_t tmR3CalibrateTSC(void);
133static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM);
134static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
135static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser);
136static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue);
137static void tmR3TimerQueueRunVirtualSync(PVM pVM);
138static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
139static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
140static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
141
142
143/**
144 * Internal function for getting the clock time.
145 *
146 * @returns clock time.
147 * @param pVM The VM handle.
148 * @param enmClock The clock.
149 */
150DECLINLINE(uint64_t) tmClock(PVM pVM, TMCLOCK enmClock)
151{
152 switch (enmClock)
153 {
154 case TMCLOCK_VIRTUAL: return TMVirtualGet(pVM);
155 case TMCLOCK_VIRTUAL_SYNC: return TMVirtualSyncGet(pVM);
156 case TMCLOCK_REAL: return TMRealGet(pVM);
157 case TMCLOCK_TSC: return TMCpuTickGet(pVM);
158 default:
159 AssertMsgFailed(("enmClock=%d\n", enmClock));
160 return ~(uint64_t)0;
161 }
162}
163
164
165/**
166 * Initializes the TM.
167 *
168 * @returns VBox status code.
169 * @param pVM The VM to operate on.
170 */
171TMR3DECL(int) TMR3Init(PVM pVM)
172{
173 LogFlow(("TMR3Init:\n"));
174
175 /*
176 * Assert alignment and sizes.
177 */
178 AssertRelease(!(RT_OFFSETOF(VM, tm.s) & 31));
179 AssertRelease(sizeof(pVM->tm.s) <= sizeof(pVM->tm.padding));
180
181 /*
182 * Init the structure.
183 */
184 void *pv;
185 int rc = MMHyperAlloc(pVM, sizeof(pVM->tm.s.paTimerQueuesR3[0]) * TMCLOCK_MAX, 0, MM_TAG_TM, &pv);
186 AssertRCReturn(rc, rc);
187 pVM->tm.s.paTimerQueuesR3 = (PTMTIMERQUEUE)pv;
188
189 pVM->tm.s.offVM = RT_OFFSETOF(VM, tm.s);
190 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].enmClock = TMCLOCK_VIRTUAL;
191 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].u64Expire = INT64_MAX;
192 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].enmClock = TMCLOCK_VIRTUAL_SYNC;
193 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].u64Expire = INT64_MAX;
194 pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].enmClock = TMCLOCK_REAL;
195 pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].u64Expire = INT64_MAX;
196 pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].enmClock = TMCLOCK_TSC;
197 pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].u64Expire = INT64_MAX;
198
199 /*
200 * We directly use the GIP to calculate the virtual time. We map the
201 * the GIP into the guest context so we can do this calculation there
202 * as well and save costly world switches.
203 */
204 pVM->tm.s.pvGIPR3 = (void *)g_pSUPGlobalInfoPage;
205 AssertMsgReturn(pVM->tm.s.pvGIPR3, ("GIP support is now required!\n"), VERR_INTERNAL_ERROR);
206 RTHCPHYS HCPhysGIP;
207 rc = SUPGipGetPhys(&HCPhysGIP);
208 AssertMsgRCReturn(rc, ("Failed to get GIP physical address!\n"), rc);
209
210 rc = MMR3HyperMapHCPhys(pVM, pVM->tm.s.pvGIPR3, HCPhysGIP, PAGE_SIZE, "GIP", &pVM->tm.s.pvGIPGC);
211 if (VBOX_FAILURE(rc))
212 {
213 AssertMsgFailed(("Failed to map GIP into GC, rc=%Vrc!\n", rc));
214 return rc;
215 }
216 LogFlow(("TMR3Init: HCPhysGIP=%RHp at %VGv\n", HCPhysGIP, pVM->tm.s.pvGIPGC));
217 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
218
219 /* Check assumptions made in TMAllVirtual.cpp about the GIP update interval. */
220 if ( g_pSUPGlobalInfoPage->u32Magic == SUPGLOBALINFOPAGE_MAGIC
221 && g_pSUPGlobalInfoPage->u32UpdateIntervalNS >= 250000000 /* 0.25s */)
222 return VMSetError(pVM, VERR_INTERNAL_ERROR, RT_SRC_POS,
223 N_("The GIP update interval is too big. u32UpdateIntervalNS=%RU32 (u32UpdateHz=%RU32)\n"),
224 g_pSUPGlobalInfoPage->u32UpdateIntervalNS, g_pSUPGlobalInfoPage->u32UpdateHz);
225
226 /*
227 * Get our CFGM node, create it if necessary.
228 */
229 PCFGMNODE pCfgHandle = CFGMR3GetChild(CFGMR3GetRoot(pVM), "TM");
230 if (!pCfgHandle)
231 {
232 rc = CFGMR3InsertNode(CFGMR3GetRoot(pVM), "TM", &pCfgHandle);
233 AssertRCReturn(rc, rc);
234 }
235
236 /*
237 * Determin the TSC configuration and frequency.
238 */
239 /* mode */
240 rc = CFGMR3QueryBool(pCfgHandle, "TSCVirtualized", &pVM->tm.s.fTSCVirtualized);
241 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
242 pVM->tm.s.fTSCVirtualized = true; /* trap rdtsc */
243 else if (VBOX_FAILURE(rc))
244 return VMSetError(pVM, rc, RT_SRC_POS,
245 N_("Configuration error: Failed to querying bool value \"UseRealTSC\". (%Vrc)"), rc);
246
247 /* source */
248 rc = CFGMR3QueryBool(pCfgHandle, "UseRealTSC", &pVM->tm.s.fTSCUseRealTSC);
249 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
250 pVM->tm.s.fTSCUseRealTSC = false; /* use virtual time */
251 else if (VBOX_FAILURE(rc))
252 return VMSetError(pVM, rc, RT_SRC_POS,
253 N_("Configuration error: Failed to querying bool value \"UseRealTSC\". (%Vrc)"), rc);
254 if (!pVM->tm.s.fTSCUseRealTSC)
255 pVM->tm.s.fTSCVirtualized = true;
256
257 /* TSC reliability */
258 rc = CFGMR3QueryBool(pCfgHandle, "MaybeUseOffsettedHostTSC", &pVM->tm.s.fMaybeUseOffsettedHostTSC);
259 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
260 {
261 if (!pVM->tm.s.fTSCUseRealTSC)
262 pVM->tm.s.fMaybeUseOffsettedHostTSC = tmR3HasFixedTSC();
263 else
264 pVM->tm.s.fMaybeUseOffsettedHostTSC = true;
265 }
266
267 /* frequency */
268 rc = CFGMR3QueryU64(pCfgHandle, "TSCTicksPerSecond", &pVM->tm.s.cTSCTicksPerSecond);
269 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
270 {
271 pVM->tm.s.cTSCTicksPerSecond = tmR3CalibrateTSC();
272 if ( !pVM->tm.s.fTSCUseRealTSC
273 && pVM->tm.s.cTSCTicksPerSecond >= _4G)
274 {
275 pVM->tm.s.cTSCTicksPerSecond = _4G - 1; /* (A limitation of our math code) */
276 pVM->tm.s.fMaybeUseOffsettedHostTSC = false;
277 }
278 }
279 else if (VBOX_FAILURE(rc))
280 return VMSetError(pVM, rc, RT_SRC_POS,
281 N_("Configuration error: Failed to querying uint64_t value \"TSCTicksPerSecond\". (%Vrc)"), rc);
282 else if ( pVM->tm.s.cTSCTicksPerSecond < _1M
283 || pVM->tm.s.cTSCTicksPerSecond >= _4G)
284 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
285 N_("Configuration error: \"TSCTicksPerSecond\" = %RI64 is not in the range 1MHz..4GHz-1!"),
286 pVM->tm.s.cTSCTicksPerSecond);
287 else
288 {
289 pVM->tm.s.fTSCUseRealTSC = pVM->tm.s.fMaybeUseOffsettedHostTSC = false;
290 pVM->tm.s.fTSCVirtualized = true;
291 }
292
293 /* setup and report */
294 if (pVM->tm.s.fTSCVirtualized)
295 CPUMR3SetCR4Feature(pVM, X86_CR4_TSD, ~X86_CR4_TSD);
296 else
297 CPUMR3SetCR4Feature(pVM, 0, ~X86_CR4_TSD);
298 LogRel(("TM: cTSCTicksPerSecond=%#RX64 (%RU64) fTSCVirtualized=%RTbool fTSCUseRealTSC=%RTbool fMaybeUseOffsettedHostTSC=%RTbool\n",
299 pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.fTSCVirtualized,
300 pVM->tm.s.fTSCUseRealTSC, pVM->tm.s.fMaybeUseOffsettedHostTSC));
301
302 /*
303 * Configure the timer synchronous virtual time.
304 */
305 rc = CFGMR3QueryU32(pCfgHandle, "ScheduleSlack", &pVM->tm.s.u32VirtualSyncScheduleSlack);
306 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
307 pVM->tm.s.u32VirtualSyncScheduleSlack = 100000; /* 0.100ms (ASSUMES virtual time is nanoseconds) */
308 else if (VBOX_FAILURE(rc))
309 return VMSetError(pVM, rc, RT_SRC_POS,
310 N_("Configuration error: Failed to querying 32-bit integer value \"ScheduleSlack\". (%Vrc)"), rc);
311
312 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStopThreshold", &pVM->tm.s.u64VirtualSyncCatchUpStopThreshold);
313 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
314 pVM->tm.s.u64VirtualSyncCatchUpStopThreshold = 500000; /* 0.5ms */
315 else if (VBOX_FAILURE(rc))
316 return VMSetError(pVM, rc, RT_SRC_POS,
317 N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpStopThreshold\". (%Vrc)"), rc);
318
319 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpGiveUpThreshold", &pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold);
320 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
321 pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold = UINT64_C(60000000000); /* 60 sec */
322 else if (VBOX_FAILURE(rc))
323 return VMSetError(pVM, rc, RT_SRC_POS,
324 N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpGiveUpThreshold\". (%Vrc)"), rc);
325
326
327#define TM_CFG_PERIOD(iPeriod, DefStart, DefPct) \
328 do \
329 { \
330 uint64_t u64; \
331 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStartThreshold" #iPeriod, &u64); \
332 if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
333 u64 = UINT64_C(DefStart); \
334 else if (VBOX_FAILURE(rc)) \
335 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpThreshold" #iPeriod "\". (%Vrc)"), rc); \
336 if ( (iPeriod > 0 && u64 <= pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod - 1].u64Start) \
337 || u64 >= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold) \
338 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("Configuration error: Invalid start of period #" #iPeriod ": %RU64"), u64); \
339 pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u64Start = u64; \
340 rc = CFGMR3QueryU32(pCfgHandle, "CatchUpPrecentage" #iPeriod, &pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage); \
341 if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
342 pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage = (DefPct); \
343 else if (VBOX_FAILURE(rc)) \
344 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 32-bit integer value \"CatchUpPrecentage" #iPeriod "\". (%Vrc)"), rc); \
345 } while (0)
346 /* This needs more tuning. Not sure if we really need so many period and be so gentle. */
347 TM_CFG_PERIOD(0, 750000, 5); /* 0.75ms at 1.05x */
348 TM_CFG_PERIOD(1, 1500000, 10); /* 1.50ms at 1.10x */
349 TM_CFG_PERIOD(2, 8000000, 25); /* 8ms at 1.25x */
350 TM_CFG_PERIOD(3, 30000000, 50); /* 30ms at 1.50x */
351 TM_CFG_PERIOD(4, 75000000, 75); /* 75ms at 1.75x */
352 TM_CFG_PERIOD(5, 175000000, 100); /* 175ms at 2x */
353 TM_CFG_PERIOD(6, 500000000, 200); /* 500ms at 3x */
354 TM_CFG_PERIOD(7, 3000000000, 300); /* 3s at 4x */
355 TM_CFG_PERIOD(8,30000000000, 400); /* 30s at 5x */
356 TM_CFG_PERIOD(9,55000000000, 500); /* 55s at 6x */
357 AssertCompile(RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods) == 10);
358#undef TM_CFG_PERIOD
359
360 /*
361 * Configure real world time (UTC).
362 */
363 rc = CFGMR3QueryS64(pCfgHandle, "UTCOffset", &pVM->tm.s.offUTC);
364 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
365 pVM->tm.s.offUTC = 0; /* ns */
366 else if (VBOX_FAILURE(rc))
367 return VMSetError(pVM, rc, RT_SRC_POS,
368 N_("Configuration error: Failed to querying 64-bit integer value \"UTCOffset\". (%Vrc)"), rc);
369
370 /*
371 * Setup the warp drive.
372 */
373 rc = CFGMR3QueryU32(pCfgHandle, "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage);
374 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
375 rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage); /* legacy */
376 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
377 pVM->tm.s.u32VirtualWarpDrivePercentage = 100;
378 else if (VBOX_FAILURE(rc))
379 return VMSetError(pVM, rc, RT_SRC_POS,
380 N_("Configuration error: Failed to querying uint32_t value \"WarpDrivePercent\". (%Vrc)"), rc);
381 else if ( pVM->tm.s.u32VirtualWarpDrivePercentage < 2
382 || pVM->tm.s.u32VirtualWarpDrivePercentage > 20000)
383 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
384 N_("Configuration error: \"WarpDrivePercent\" = %RI32 is not in the range 2..20000!"),
385 pVM->tm.s.u32VirtualWarpDrivePercentage);
386 pVM->tm.s.fVirtualWarpDrive = pVM->tm.s.u32VirtualWarpDrivePercentage != 100;
387 if (pVM->tm.s.fVirtualWarpDrive)
388 LogRel(("TM: u32VirtualWarpDrivePercentage=%RI32\n", pVM->tm.s.u32VirtualWarpDrivePercentage));
389
390 /*
391 * Start the timer (guard against REM not yielding).
392 */
393 uint32_t u32Millies;
394 rc = CFGMR3QueryU32(pCfgHandle, "TimerMillies", &u32Millies);
395 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
396 u32Millies = 10;
397 else if (VBOX_FAILURE(rc))
398 return VMSetError(pVM, rc, RT_SRC_POS,
399 N_("Configuration error: Failed to query uint32_t value \"TimerMillies\", rc=%Vrc.\n"), rc);
400 rc = RTTimerCreate(&pVM->tm.s.pTimer, u32Millies, tmR3TimerCallback, pVM);
401 if (VBOX_FAILURE(rc))
402 {
403 AssertMsgFailed(("Failed to create timer, u32Millies=%d rc=%Vrc.\n", u32Millies, rc));
404 return rc;
405 }
406 Log(("TM: Created timer %p firing every %d millieseconds\n", pVM->tm.s.pTimer, u32Millies));
407 pVM->tm.s.u32TimerMillies = u32Millies;
408
409 /*
410 * Register saved state.
411 */
412 rc = SSMR3RegisterInternal(pVM, "tm", 1, TM_SAVED_STATE_VERSION, sizeof(uint64_t) * 8,
413 NULL, tmR3Save, NULL,
414 NULL, tmR3Load, NULL);
415 if (VBOX_FAILURE(rc))
416 return rc;
417
418 /*
419 * Register statistics.
420 */
421 STAM_REL_REG_USED(pVM, (void *)&pVM->tm.s.c1nsVirtualRawSteps, STAMTYPE_U32, "/TM/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations)");
422 STAM_REL_REG_USED(pVM, (void *)&pVM->tm.s.cVirtualRawBadRawPrev, STAMTYPE_U32, "/TM/BadPrevTime", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
423 STAM_REL_REG( pVM, (void *)&pVM->tm.s.offVirtualSync, STAMTYPE_U64, "/TM/VirtualSync/CurrentOffset", STAMUNIT_NS, "The current offset. (subtract GivenUp to get the lag)");
424 STAM_REL_REG_USED(pVM, (void *)&pVM->tm.s.offVirtualSyncGivenUp, STAMTYPE_U64, "/TM/VirtualSync/GivenUp", STAMUNIT_NS, "Nanoseconds of the 'CurrentOffset' that's been given up and won't ever be attemted caught up with.");
425
426#ifdef VBOX_WITH_STATISTICS
427 STAM_REG(pVM, &pVM->tm.s.StatDoQueues, STAMTYPE_PROFILE, "/TM/DoQueues", STAMUNIT_TICKS_PER_CALL, "Profiling timer TMR3TimerQueuesDo.");
428 STAM_REG(pVM, &pVM->tm.s.StatDoQueuesSchedule, STAMTYPE_PROFILE_ADV, "/TM/DoQueues/Schedule",STAMUNIT_TICKS_PER_CALL, "The scheduling part.");
429 STAM_REG(pVM, &pVM->tm.s.StatDoQueuesRun, STAMTYPE_PROFILE_ADV, "/TM/DoQueues/Run", STAMUNIT_TICKS_PER_CALL, "The run part.");
430
431 STAM_REG(pVM, &pVM->tm.s.StatPollAlreadySet, STAMTYPE_COUNTER, "/TM/PollAlreadySet", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the FF was already set.");
432 STAM_REG(pVM, &pVM->tm.s.StatPollVirtual, STAMTYPE_COUNTER, "/TM/PollHitsVirtual", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL queue.");
433 STAM_REG(pVM, &pVM->tm.s.StatPollVirtualSync, STAMTYPE_COUNTER, "/TM/PollHitsVirtualSync",STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL_SYNC queue.");
434 STAM_REG(pVM, &pVM->tm.s.StatPollMiss, STAMTYPE_COUNTER, "/TM/PollMiss", STAMUNIT_OCCURENCES, "TMTimerPoll calls where nothing had expired.");
435
436 STAM_REG(pVM, &pVM->tm.s.StatPostponedR3, STAMTYPE_COUNTER, "/TM/PostponedR3", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-3.");
437 STAM_REG(pVM, &pVM->tm.s.StatPostponedR0, STAMTYPE_COUNTER, "/TM/PostponedR0", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-0.");
438 STAM_REG(pVM, &pVM->tm.s.StatPostponedGC, STAMTYPE_COUNTER, "/TM/PostponedGC", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in GC.");
439
440 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneGC, STAMTYPE_PROFILE, "/TM/ScheduleOneGC", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.\n");
441 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneR0, STAMTYPE_PROFILE, "/TM/ScheduleOneR0", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.\n");
442 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneR3, STAMTYPE_PROFILE, "/TM/ScheduleOneR3", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.\n");
443 STAM_REG(pVM, &pVM->tm.s.StatScheduleSetFF, STAMTYPE_COUNTER, "/TM/ScheduleSetFF", STAMUNIT_OCCURENCES, "The number of times the timer FF was set instead of doing scheduling.");
444
445 STAM_REG(pVM, &pVM->tm.s.StatTimerSetGC, STAMTYPE_PROFILE, "/TM/TimerSetGC", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in GC.");
446 STAM_REG(pVM, &pVM->tm.s.StatTimerSetR0, STAMTYPE_PROFILE, "/TM/TimerSetR0", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0.");
447 STAM_REG(pVM, &pVM->tm.s.StatTimerSetR3, STAMTYPE_PROFILE, "/TM/TimerSetR3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3.");
448
449 STAM_REG(pVM, &pVM->tm.s.StatTimerStopGC, STAMTYPE_PROFILE, "/TM/TimerStopGC", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in GC.");
450 STAM_REG(pVM, &pVM->tm.s.StatTimerStopR0, STAMTYPE_PROFILE, "/TM/TimerStopR0", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-0.");
451 STAM_REG(pVM, &pVM->tm.s.StatTimerStopR3, STAMTYPE_PROFILE, "/TM/TimerStopR3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-3.");
452
453 STAM_REG(pVM, &pVM->tm.s.StatVirtualGet, STAMTYPE_COUNTER, "/TM/VirtualGet", STAMUNIT_OCCURENCES, "The number of times TMTimerGet was called when the clock was running.");
454 STAM_REG(pVM, &pVM->tm.s.StatVirtualGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualGetSetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling TMTimerGet.");
455 STAM_REG(pVM, &pVM->tm.s.StatVirtualGetSync, STAMTYPE_COUNTER, "/TM/VirtualGetSync", STAMUNIT_OCCURENCES, "The number of times TMTimerGetSync was called when the clock was running.");
456 STAM_REG(pVM, &pVM->tm.s.StatVirtualGetSyncSetFF,STAMTYPE_COUNTER, "/TM/VirtualGetSyncSetFF",STAMUNIT_OCCURENCES, "Times we set the FF when calling TMTimerGetSync.");
457 STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/VirtualPause", STAMUNIT_OCCURENCES, "The number of times TMR3TimerPause was called.");
458 STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/VirtualResume", STAMUNIT_OCCURENCES, "The number of times TMR3TimerResume was called.");
459
460 STAM_REG(pVM, &pVM->tm.s.StatTimerCallbackSetFF,STAMTYPE_COUNTER, "/TM/CallbackSetFF", STAMUNIT_OCCURENCES, "The number of times the timer callback set FF.");
461
462
463 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncCatchup, STAMTYPE_PROFILE_ADV, "/TM/VirtualSync/CatchUp", STAMUNIT_TICKS_PER_OCCURENCE, "Counting and measuring the times spent catching up.");
464 STAM_REG(pVM, (void *)&pVM->tm.s.fVirtualSyncCatchUp, STAMTYPE_U8, "/TM/VirtualSync/CatchUpActive", STAMUNIT_NONE, "Catch-Up active indicator.");
465 STAM_REG(pVM, (void *)&pVM->tm.s.u32VirtualSyncCatchUpPercentage, STAMTYPE_U32, "/TM/VirtualSync/CatchUpPercentage", STAMUNIT_PCT, "The catch-up percentage. (+100/100 to get clock multiplier)");
466 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUp, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUp", STAMUNIT_OCCURENCES, "Times the catch-up was abandoned.");
467 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting,STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUpBeforeStarting", STAMUNIT_OCCURENCES, "Times the catch-up was abandoned before even starting. (Typically debugging++.)");
468 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRun, STAMTYPE_COUNTER, "/TM/VirtualSync/Run", STAMUNIT_OCCURENCES, "Times the virtual sync timer queue was considered.");
469 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunRestart, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Restarts", STAMUNIT_OCCURENCES, "Times the clock was restarted after a run.");
470 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStop, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Stop", STAMUNIT_OCCURENCES, "Times the clock was stopped when calculating the current time before examining the timers.");
471 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStoppedAlready, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/StoppedAlready", STAMUNIT_OCCURENCES, "Times the clock was already stopped elsewhere (TMVirtualSyncGet).");
472 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunSlack, STAMTYPE_PROFILE, "/TM/VirtualSync/Run/Slack", STAMUNIT_NS_PER_OCCURENCE, "The scheduling slack. (Catch-up handed out when running timers.)");
473 for (unsigned i = 0; i < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods); i++)
474 {
475 STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "The catch-up percentage.", "/TM/VirtualSync/Periods/%u", i);
476 STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupAdjust[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times adjusted to this period.", "/TM/VirtualSync/Periods/%u/Adjust", i);
477 STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupInitial[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times started in this period.", "/TM/VirtualSync/Periods/%u/Initial", i);
478 STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u64Start, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Start of this period (lag).", "/TM/VirtualSync/Periods/%u/Start", i);
479 }
480
481#endif /* VBOX_WITH_STATISTICS */
482
483 /*
484 * Register info handlers.
485 */
486 DBGFR3InfoRegisterInternalEx(pVM, "timers", "Dumps all timers. No arguments.", tmR3TimerInfo, DBGFINFO_FLAGS_RUN_ON_EMT);
487 DBGFR3InfoRegisterInternalEx(pVM, "activetimers", "Dumps active all timers. No arguments.", tmR3TimerInfoActive, DBGFINFO_FLAGS_RUN_ON_EMT);
488 DBGFR3InfoRegisterInternalEx(pVM, "clocks", "Display the time of the various clocks.", tmR3InfoClocks, DBGFINFO_FLAGS_RUN_ON_EMT);
489
490 return VINF_SUCCESS;
491}
492
493
494/**
495 * Checks if the host CPU has a fixed TSC frequency.
496 *
497 * @returns true if it has, false if it hasn't.
498 *
499 * @remark This test doesn't bother with very old CPUs that doesn't do power
500 * management or any other stuff that might influence the TSC rate.
501 * This isn't currently relevant.
502 */
503static bool tmR3HasFixedTSC(void)
504{
505 if (ASMHasCpuId())
506 {
507 uint32_t uEAX, uEBX, uECX, uEDX;
508 ASMCpuId(0, &uEAX, &uEBX, &uECX, &uEDX);
509 if ( uEAX >= 1
510 && uEBX == X86_CPUID_VENDOR_AMD_EBX
511 && uECX == X86_CPUID_VENDOR_AMD_ECX
512 && uEDX == X86_CPUID_VENDOR_AMD_EDX)
513 {
514 /*
515 * AuthenticAMD - Check for APM support and that TscInvariant is set.
516 *
517 * This test isn't correct with respect to fixed/non-fixed TSC and
518 * older models, but this isn't relevant since the result is currently
519 * only used for making a descision on AMD-V models.
520 */
521 ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX);
522 if (uEAX >= 0x80000007)
523 {
524 ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX);
525 if (uEDX & BIT(8) /* TscInvariant */)
526 return true;
527 }
528 }
529 else if ( uEAX >= 1
530 && uEBX == X86_CPUID_VENDOR_INTEL_EBX
531 && uECX == X86_CPUID_VENDOR_INTEL_ECX
532 && uEDX == X86_CPUID_VENDOR_INTEL_EDX)
533 {
534 /*
535 * GenuineIntel - Check the model number.
536 *
537 * This test is lacking in the same way and for the same reasons
538 * as the AMD test above.
539 */
540 ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
541 unsigned uModel = (uEAX >> 4) & 0x0f;
542 unsigned uFamily = (uEAX >> 8) & 0x0f;
543 if (uFamily == 0x0f)
544 uFamily += (uEAX >> 20) & 0xff;
545 if (uFamily >= 0x06)
546 uModel += ((uEAX >> 16) & 0x0f) << 4;
547 if ( (uFamily == 0x0f /*P4*/ && uModel >= 0x03)
548 || (uFamily == 0x06 /*P2/P3*/ && uModel >= 0x0e))
549 return true;
550 }
551 }
552 return false;
553}
554
555
556/**
557 * Calibrate the CPU tick.
558 *
559 * @returns Number of ticks per second.
560 */
561static uint64_t tmR3CalibrateTSC(void)
562{
563 /*
564 * Use GIP when available present.
565 */
566 uint64_t u64Hz;
567 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
568 if ( pGip
569 && pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC)
570 {
571 unsigned iCpu = pGip->u32Mode != SUPGIPMODE_ASYNC_TSC ? 0 : ASMGetApicId();
572 if (iCpu >= RT_ELEMENTS(pGip->aCPUs))
573 AssertReleaseMsgFailed(("iCpu=%d - the ApicId is too high. send VBox.log and hardware specs!\n", iCpu));
574 else
575 {
576 if (tmR3HasFixedTSC())
577 /* Sleep a bit to get a more reliable CpuHz value. */
578 RTThreadSleep(32);
579 else
580 {
581 /* Spin for 40ms to try push up the CPU frequency and get a more reliable CpuHz value. */
582 const uint64_t u64 = RTTimeMilliTS();
583 while ((RTTimeMilliTS() - u64) < 40 /*ms*/)
584 /* nothing */;
585 }
586
587 pGip = g_pSUPGlobalInfoPage;
588 if ( pGip
589 && pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC
590 && (u64Hz = pGip->aCPUs[iCpu].u64CpuHz)
591 && u64Hz != ~(uint64_t)0)
592 return u64Hz;
593 }
594 }
595
596 /* call this once first to make sure it's initialized. */
597 RTTimeNanoTS();
598
599 /*
600 * Yield the CPU to increase our chances of getting
601 * a correct value.
602 */
603 RTThreadYield(); /* Try avoid interruptions between TSC and NanoTS samplings. */
604 static const unsigned s_auSleep[5] = { 50, 30, 30, 40, 40 };
605 uint64_t au64Samples[5];
606 unsigned i;
607 for (i = 0; i < ELEMENTS(au64Samples); i++)
608 {
609 unsigned cMillies;
610 int cTries = 5;
611 uint64_t u64Start = ASMReadTSC();
612 uint64_t u64End;
613 uint64_t StartTS = RTTimeNanoTS();
614 uint64_t EndTS;
615 do
616 {
617 RTThreadSleep(s_auSleep[i]);
618 u64End = ASMReadTSC();
619 EndTS = RTTimeNanoTS();
620 cMillies = (unsigned)((EndTS - StartTS + 500000) / 1000000);
621 } while ( cMillies == 0 /* the sleep may be interrupted... */
622 || (cMillies < 20 && --cTries > 0));
623 uint64_t u64Diff = u64End - u64Start;
624
625 au64Samples[i] = (u64Diff * 1000) / cMillies;
626 AssertMsg(cTries > 0, ("cMillies=%d i=%d\n", cMillies, i));
627 }
628
629 /*
630 * Discard the highest and lowest results and calculate the average.
631 */
632 unsigned iHigh = 0;
633 unsigned iLow = 0;
634 for (i = 1; i < ELEMENTS(au64Samples); i++)
635 {
636 if (au64Samples[i] < au64Samples[iLow])
637 iLow = i;
638 if (au64Samples[i] > au64Samples[iHigh])
639 iHigh = i;
640 }
641 au64Samples[iLow] = 0;
642 au64Samples[iHigh] = 0;
643
644 u64Hz = au64Samples[0];
645 for (i = 1; i < ELEMENTS(au64Samples); i++)
646 u64Hz += au64Samples[i];
647 u64Hz /= ELEMENTS(au64Samples) - 2;
648
649 return u64Hz;
650}
651
652
653/**
654 * Applies relocations to data and code managed by this
655 * component. This function will be called at init and
656 * whenever the VMM need to relocate it self inside the GC.
657 *
658 * @param pVM The VM.
659 * @param offDelta Relocation delta relative to old location.
660 */
661TMR3DECL(void) TMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
662{
663 LogFlow(("TMR3Relocate\n"));
664 pVM->tm.s.pvGIPGC = MMHyperR3ToGC(pVM, pVM->tm.s.pvGIPR3);
665 pVM->tm.s.paTimerQueuesGC = MMHyperR3ToGC(pVM, pVM->tm.s.paTimerQueuesR3);
666 pVM->tm.s.paTimerQueuesR0 = MMHyperR3ToR0(pVM, pVM->tm.s.paTimerQueuesR3);
667
668 /*
669 * Iterate the timers updating the pVMGC pointers.
670 */
671 for (PTMTIMER pTimer = pVM->tm.s.pCreated; pTimer; pTimer = pTimer->pBigNext)
672 {
673 pTimer->pVMGC = pVM->pVMGC;
674 pTimer->pVMR0 = pVM->pVMR0;
675 }
676}
677
678
679/**
680 * Terminates the TM.
681 *
682 * Termination means cleaning up and freeing all resources,
683 * the VM it self is at this point powered off or suspended.
684 *
685 * @returns VBox status code.
686 * @param pVM The VM to operate on.
687 */
688TMR3DECL(int) TMR3Term(PVM pVM)
689{
690 AssertMsg(pVM->tm.s.offVM, ("bad init order!\n"));
691 if (pVM->tm.s.pTimer)
692 {
693 int rc = RTTimerDestroy(pVM->tm.s.pTimer);
694 AssertRC(rc);
695 pVM->tm.s.pTimer = NULL;
696 }
697
698 return VINF_SUCCESS;
699}
700
701
702/**
703 * The VM is being reset.
704 *
705 * For the TM component this means that a rescheduling is preformed,
706 * the FF is cleared and but without running the queues. We'll have to
707 * check if this makes sense or not, but it seems like a good idea now....
708 *
709 * @param pVM VM handle.
710 */
711TMR3DECL(void) TMR3Reset(PVM pVM)
712{
713 LogFlow(("TMR3Reset:\n"));
714 VM_ASSERT_EMT(pVM);
715
716 /*
717 * Abort any pending catch up.
718 * This isn't perfect,
719 */
720 if (pVM->tm.s.fVirtualSyncCatchUp)
721 {
722 const uint64_t offVirtualNow = TMVirtualGetEx(pVM, false /* don't check timers */);
723 const uint64_t offVirtualSyncNow = TMVirtualSyncGetEx(pVM, false /* don't check timers */);
724 if (pVM->tm.s.fVirtualSyncCatchUp)
725 {
726 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
727
728 const uint64_t offOld = pVM->tm.s.offVirtualSyncGivenUp;
729 const uint64_t offNew = offVirtualNow - offVirtualSyncNow;
730 Assert(offOld <= offNew);
731 ASMAtomicXchgU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
732 ASMAtomicXchgU64((uint64_t volatile *)&pVM->tm.s.offVirtualSync, offNew);
733 ASMAtomicXchgBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
734 LogRel(("TM: Aborting catch-up attempt on reset with a %RU64 ns lag on reset; new total: %RU64 ns\n", offNew - offOld, offNew));
735 }
736 }
737
738 /*
739 * Process the queues.
740 */
741 for (int i = 0; i < TMCLOCK_MAX; i++)
742 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[i]);
743#ifdef VBOX_STRICT
744 tmTimerQueuesSanityChecks(pVM, "TMR3Reset");
745#endif
746 VM_FF_CLEAR(pVM, VM_FF_TIMER);
747}
748
749
750/**
751 * Resolve a builtin GC symbol.
752 * Called by PDM when loading or relocating GC modules.
753 *
754 * @returns VBox status
755 * @param pVM VM Handle.
756 * @param pszSymbol Symbol to resolv
757 * @param pGCPtrValue Where to store the symbol value.
758 * @remark This has to work before TMR3Relocate() is called.
759 */
760TMR3DECL(int) TMR3GetImportGC(PVM pVM, const char *pszSymbol, PRTGCPTR pGCPtrValue)
761{
762 if (!strcmp(pszSymbol, "g_pSUPGlobalInfoPage"))
763 *pGCPtrValue = MMHyperHC2GC(pVM, &pVM->tm.s.pvGIPGC);
764 //else if (..)
765 else
766 return VERR_SYMBOL_NOT_FOUND;
767 return VINF_SUCCESS;
768}
769
770
771/**
772 * Execute state save operation.
773 *
774 * @returns VBox status code.
775 * @param pVM VM Handle.
776 * @param pSSM SSM operation handle.
777 */
778static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM)
779{
780 LogFlow(("tmR3Save:\n"));
781 Assert(!pVM->tm.s.fTSCTicking);
782 Assert(!pVM->tm.s.fVirtualTicking);
783 Assert(!pVM->tm.s.fVirtualSyncTicking);
784
785 /*
786 * Save the virtual clocks.
787 */
788 /* the virtual clock. */
789 SSMR3PutU64(pSSM, TMCLOCK_FREQ_VIRTUAL);
790 SSMR3PutU64(pSSM, pVM->tm.s.u64Virtual);
791
792 /* the virtual timer synchronous clock. */
793 SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSync);
794 SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSync);
795 SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSyncGivenUp);
796 SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSyncCatchUpPrev);
797 SSMR3PutBool(pSSM, pVM->tm.s.fVirtualSyncCatchUp);
798
799 /* real time clock */
800 SSMR3PutU64(pSSM, TMCLOCK_FREQ_REAL);
801
802 /* the cpu tick clock. */
803 SSMR3PutU64(pSSM, TMCpuTickGet(pVM));
804 return SSMR3PutU64(pSSM, pVM->tm.s.cTSCTicksPerSecond);
805}
806
807
808/**
809 * Execute state load operation.
810 *
811 * @returns VBox status code.
812 * @param pVM VM Handle.
813 * @param pSSM SSM operation handle.
814 * @param u32Version Data layout version.
815 */
816static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
817{
818 LogFlow(("tmR3Load:\n"));
819 Assert(!pVM->tm.s.fTSCTicking);
820 Assert(!pVM->tm.s.fVirtualTicking);
821 Assert(!pVM->tm.s.fVirtualSyncTicking);
822
823 /*
824 * Validate version.
825 */
826 if (u32Version != TM_SAVED_STATE_VERSION)
827 {
828 Log(("tmR3Load: Invalid version u32Version=%d!\n", u32Version));
829 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
830 }
831
832 /*
833 * Load the virtual clock.
834 */
835 pVM->tm.s.fVirtualTicking = false;
836 /* the virtual clock. */
837 uint64_t u64Hz;
838 int rc = SSMR3GetU64(pSSM, &u64Hz);
839 if (VBOX_FAILURE(rc))
840 return rc;
841 if (u64Hz != TMCLOCK_FREQ_VIRTUAL)
842 {
843 AssertMsgFailed(("The virtual clock frequency differs! Saved: %RU64 Binary: %RU64\n",
844 u64Hz, TMCLOCK_FREQ_VIRTUAL));
845 return VERR_SSM_VIRTUAL_CLOCK_HZ;
846 }
847 SSMR3GetU64(pSSM, &pVM->tm.s.u64Virtual);
848 pVM->tm.s.u64VirtualOffset = 0;
849
850 /* the virtual timer synchronous clock. */
851 pVM->tm.s.fVirtualSyncTicking = false;
852 uint64_t u64;
853 SSMR3GetU64(pSSM, &u64);
854 pVM->tm.s.u64VirtualSync = u64;
855 SSMR3GetU64(pSSM, &u64);
856 pVM->tm.s.offVirtualSync = u64;
857 SSMR3GetU64(pSSM, &u64);
858 pVM->tm.s.offVirtualSyncGivenUp = u64;
859 SSMR3GetU64(pSSM, &u64);
860 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64;
861 bool f;
862 SSMR3GetBool(pSSM, &f);
863 pVM->tm.s.fVirtualSyncCatchUp = f;
864
865 /* the real clock */
866 rc = SSMR3GetU64(pSSM, &u64Hz);
867 if (VBOX_FAILURE(rc))
868 return rc;
869 if (u64Hz != TMCLOCK_FREQ_REAL)
870 {
871 AssertMsgFailed(("The real clock frequency differs! Saved: %RU64 Binary: %RU64\n",
872 u64Hz, TMCLOCK_FREQ_REAL));
873 return VERR_SSM_VIRTUAL_CLOCK_HZ; /* missleading... */
874 }
875
876 /* the cpu tick clock. */
877 pVM->tm.s.fTSCTicking = false;
878 SSMR3GetU64(pSSM, &pVM->tm.s.u64TSC);
879 rc = SSMR3GetU64(pSSM, &u64Hz);
880 if (VBOX_FAILURE(rc))
881 return rc;
882 if (pVM->tm.s.fTSCUseRealTSC)
883 pVM->tm.s.u64TSCOffset = 0; /** @todo TSC restore stuff and HWACC. */
884 else
885 pVM->tm.s.cTSCTicksPerSecond = u64Hz;
886 LogRel(("TM: cTSCTicksPerSecond=%#RX64 (%RU64) fTSCVirtualized=%RTbool fTSCUseRealTSC=%RTbool (state load)\n",
887 pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.fTSCVirtualized, pVM->tm.s.fTSCUseRealTSC));
888
889 /*
890 * Make sure timers get rescheduled immediately.
891 */
892 VM_FF_SET(pVM, VM_FF_TIMER);
893
894 return VINF_SUCCESS;
895}
896
897
898/**
899 * Internal TMR3TimerCreate worker.
900 *
901 * @returns VBox status code.
902 * @param pVM The VM handle.
903 * @param enmClock The timer clock.
904 * @param pszDesc The timer description.
905 * @param ppTimer Where to store the timer pointer on success.
906 */
907static int tmr3TimerCreate(PVM pVM, TMCLOCK enmClock, const char *pszDesc, PPTMTIMERR3 ppTimer)
908{
909 VM_ASSERT_EMT(pVM);
910
911 /*
912 * Allocate the timer.
913 */
914 PTMTIMERR3 pTimer = NULL;
915 if (pVM->tm.s.pFree && VM_IS_EMT(pVM))
916 {
917 pTimer = pVM->tm.s.pFree;
918 pVM->tm.s.pFree = pTimer->pBigNext;
919 Log3(("TM: Recycling timer %p, new free head %p.\n", pTimer, pTimer->pBigNext));
920 }
921
922 if (!pTimer)
923 {
924 int rc = MMHyperAlloc(pVM, sizeof(*pTimer), 0, MM_TAG_TM, (void **)&pTimer);
925 if (VBOX_FAILURE(rc))
926 return rc;
927 Log3(("TM: Allocated new timer %p\n", pTimer));
928 }
929
930 /*
931 * Initialize it.
932 */
933 pTimer->u64Expire = 0;
934 pTimer->enmClock = enmClock;
935 pTimer->pVMR3 = pVM;
936 pTimer->pVMR0 = pVM->pVMR0;
937 pTimer->pVMGC = pVM->pVMGC;
938 pTimer->enmState = TMTIMERSTATE_STOPPED;
939 pTimer->offScheduleNext = 0;
940 pTimer->offNext = 0;
941 pTimer->offPrev = 0;
942 pTimer->pszDesc = pszDesc;
943
944 /* insert into the list of created timers. */
945 pTimer->pBigPrev = NULL;
946 pTimer->pBigNext = pVM->tm.s.pCreated;
947 pVM->tm.s.pCreated = pTimer;
948 if (pTimer->pBigNext)
949 pTimer->pBigNext->pBigPrev = pTimer;
950#ifdef VBOX_STRICT
951 tmTimerQueuesSanityChecks(pVM, "tmR3TimerCreate");
952#endif
953
954 *ppTimer = pTimer;
955 return VINF_SUCCESS;
956}
957
958
959/**
960 * Creates a device timer.
961 *
962 * @returns VBox status.
963 * @param pVM The VM to create the timer in.
964 * @param pDevIns Device instance.
965 * @param enmClock The clock to use on this timer.
966 * @param pfnCallback Callback function.
967 * @param pszDesc Pointer to description string which must stay around
968 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
969 * @param ppTimer Where to store the timer on success.
970 */
971TMR3DECL(int) TMR3TimerCreateDevice(PVM pVM, PPDMDEVINS pDevIns, TMCLOCK enmClock, PFNTMTIMERDEV pfnCallback, const char *pszDesc, PPTMTIMERR3 ppTimer)
972{
973 /*
974 * Allocate and init stuff.
975 */
976 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
977 if (VBOX_SUCCESS(rc))
978 {
979 (*ppTimer)->enmType = TMTIMERTYPE_DEV;
980 (*ppTimer)->u.Dev.pfnTimer = pfnCallback;
981 (*ppTimer)->u.Dev.pDevIns = pDevIns;
982 Log(("TM: Created device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
983 }
984
985 return rc;
986}
987
988
989/**
990 * Creates a driver timer.
991 *
992 * @returns VBox status.
993 * @param pVM The VM to create the timer in.
994 * @param pDrvIns Driver instance.
995 * @param enmClock The clock to use on this timer.
996 * @param pfnCallback Callback function.
997 * @param pszDesc Pointer to description string which must stay around
998 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
999 * @param ppTimer Where to store the timer on success.
1000 */
1001TMR3DECL(int) TMR3TimerCreateDriver(PVM pVM, PPDMDRVINS pDrvIns, TMCLOCK enmClock, PFNTMTIMERDRV pfnCallback, const char *pszDesc, PPTMTIMERR3 ppTimer)
1002{
1003 /*
1004 * Allocate and init stuff.
1005 */
1006 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
1007 if (VBOX_SUCCESS(rc))
1008 {
1009 (*ppTimer)->enmType = TMTIMERTYPE_DRV;
1010 (*ppTimer)->u.Drv.pfnTimer = pfnCallback;
1011 (*ppTimer)->u.Drv.pDrvIns = pDrvIns;
1012 Log(("TM: Created device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
1013 }
1014
1015 return rc;
1016}
1017
1018
1019/**
1020 * Creates an internal timer.
1021 *
1022 * @returns VBox status.
1023 * @param pVM The VM to create the timer in.
1024 * @param enmClock The clock to use on this timer.
1025 * @param pfnCallback Callback function.
1026 * @param pvUser User argument to be passed to the callback.
1027 * @param pszDesc Pointer to description string which must stay around
1028 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1029 * @param ppTimer Where to store the timer on success.
1030 */
1031TMR3DECL(int) TMR3TimerCreateInternal(PVM pVM, TMCLOCK enmClock, PFNTMTIMERINT pfnCallback, void *pvUser, const char *pszDesc, PPTMTIMERR3 ppTimer)
1032{
1033 /*
1034 * Allocate and init stuff.
1035 */
1036 PTMTIMER pTimer;
1037 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, &pTimer);
1038 if (VBOX_SUCCESS(rc))
1039 {
1040 pTimer->enmType = TMTIMERTYPE_INTERNAL;
1041 pTimer->u.Internal.pfnTimer = pfnCallback;
1042 pTimer->u.Internal.pvUser = pvUser;
1043 *ppTimer = pTimer;
1044 Log(("TM: Created internal timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszDesc));
1045 }
1046
1047 return rc;
1048}
1049
1050/**
1051 * Creates an external timer.
1052 *
1053 * @returns Timer handle on success.
1054 * @returns NULL on failure.
1055 * @param pVM The VM to create the timer in.
1056 * @param enmClock The clock to use on this timer.
1057 * @param pfnCallback Callback function.
1058 * @param pvUser User argument.
1059 * @param pszDesc Pointer to description string which must stay around
1060 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1061 */
1062TMR3DECL(PTMTIMERR3) TMR3TimerCreateExternal(PVM pVM, TMCLOCK enmClock, PFNTMTIMEREXT pfnCallback, void *pvUser, const char *pszDesc)
1063{
1064 /*
1065 * Allocate and init stuff.
1066 */
1067 PTMTIMERR3 pTimer;
1068 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, &pTimer);
1069 if (VBOX_SUCCESS(rc))
1070 {
1071 pTimer->enmType = TMTIMERTYPE_EXTERNAL;
1072 pTimer->u.External.pfnTimer = pfnCallback;
1073 pTimer->u.External.pvUser = pvUser;
1074 Log(("TM: Created external timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszDesc));
1075 return pTimer;
1076 }
1077
1078 return NULL;
1079}
1080
1081
1082/**
1083 * Destroy all timers owned by a device.
1084 *
1085 * @returns VBox status.
1086 * @param pVM VM handle.
1087 * @param pDevIns Device which timers should be destroyed.
1088 */
1089TMR3DECL(int) TMR3TimerDestroyDevice(PVM pVM, PPDMDEVINS pDevIns)
1090{
1091 LogFlow(("TMR3TimerDestroyDevice: pDevIns=%p\n", pDevIns));
1092 if (!pDevIns)
1093 return VERR_INVALID_PARAMETER;
1094
1095 PTMTIMER pCur = pVM->tm.s.pCreated;
1096 while (pCur)
1097 {
1098 PTMTIMER pDestroy = pCur;
1099 pCur = pDestroy->pBigNext;
1100 if ( pDestroy->enmType == TMTIMERTYPE_DEV
1101 && pDestroy->u.Dev.pDevIns == pDevIns)
1102 {
1103 int rc = TMTimerDestroy(pDestroy);
1104 AssertRC(rc);
1105 }
1106 }
1107 LogFlow(("TMR3TimerDestroyDevice: returns VINF_SUCCESS\n"));
1108 return VINF_SUCCESS;
1109}
1110
1111
1112/**
1113 * Destroy all timers owned by a driver.
1114 *
1115 * @returns VBox status.
1116 * @param pVM VM handle.
1117 * @param pDrvIns Driver which timers should be destroyed.
1118 */
1119TMR3DECL(int) TMR3TimerDestroyDriver(PVM pVM, PPDMDRVINS pDrvIns)
1120{
1121 LogFlow(("TMR3TimerDestroyDriver: pDrvIns=%p\n", pDrvIns));
1122 if (!pDrvIns)
1123 return VERR_INVALID_PARAMETER;
1124
1125 PTMTIMER pCur = pVM->tm.s.pCreated;
1126 while (pCur)
1127 {
1128 PTMTIMER pDestroy = pCur;
1129 pCur = pDestroy->pBigNext;
1130 if ( pDestroy->enmType == TMTIMERTYPE_DRV
1131 && pDestroy->u.Drv.pDrvIns == pDrvIns)
1132 {
1133 int rc = TMTimerDestroy(pDestroy);
1134 AssertRC(rc);
1135 }
1136 }
1137 LogFlow(("TMR3TimerDestroyDriver: returns VINF_SUCCESS\n"));
1138 return VINF_SUCCESS;
1139}
1140
1141
1142/**
1143 * Checks if the sync queue has one or more expired timers.
1144 *
1145 * @returns true / false.
1146 *
1147 * @param pVM The VM handle.
1148 * @param enmClock The queue.
1149 */
1150DECLINLINE(bool) tmR3HasExpiredTimer(PVM pVM, TMCLOCK enmClock)
1151{
1152 const uint64_t u64Expire = pVM->tm.s.CTXALLSUFF(paTimerQueues)[enmClock].u64Expire;
1153 return u64Expire != INT64_MAX && u64Expire <= tmClock(pVM, enmClock);
1154}
1155
1156
1157/**
1158 * Checks for expired timers in all the queues.
1159 *
1160 * @returns true / false.
1161 * @param pVM The VM handle.
1162 */
1163DECLINLINE(bool) tmR3AnyExpiredTimers(PVM pVM)
1164{
1165 /*
1166 * Combine the time calculation for the first two since we're not on EMT
1167 * TMVirtualSyncGet only permits EMT.
1168 */
1169 uint64_t u64Now = TMVirtualGet(pVM);
1170 if (pVM->tm.s.CTXALLSUFF(paTimerQueues)[TMCLOCK_VIRTUAL].u64Expire <= u64Now)
1171 return true;
1172 u64Now = pVM->tm.s.fVirtualSyncTicking
1173 ? u64Now - pVM->tm.s.offVirtualSync
1174 : pVM->tm.s.u64VirtualSync;
1175 if (pVM->tm.s.CTXALLSUFF(paTimerQueues)[TMCLOCK_VIRTUAL_SYNC].u64Expire <= u64Now)
1176 return true;
1177
1178 /*
1179 * The remaining timers.
1180 */
1181 if (tmR3HasExpiredTimer(pVM, TMCLOCK_REAL))
1182 return true;
1183 if (tmR3HasExpiredTimer(pVM, TMCLOCK_TSC))
1184 return true;
1185 return false;
1186}
1187
1188
1189/**
1190 * Schedulation timer callback.
1191 *
1192 * @param pTimer Timer handle.
1193 * @param pvUser VM handle.
1194 * @thread Timer thread.
1195 *
1196 * @remark We cannot do the scheduling and queues running from a timer handler
1197 * since it's not executing in EMT, and even if it was it would be async
1198 * and we wouldn't know the state of the affairs.
1199 * So, we'll just raise the timer FF and force any REM execution to exit.
1200 */
1201static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser)
1202{
1203 PVM pVM = (PVM)pvUser;
1204 AssertCompile(TMCLOCK_MAX == 4);
1205#ifdef DEBUG_Sander /* very annoying, keep it private. */
1206 if (VM_FF_ISSET(pVM, VM_FF_TIMER))
1207 Log(("tmR3TimerCallback: timer event still pending!!\n"));
1208#endif
1209 if ( !VM_FF_ISSET(pVM, VM_FF_TIMER)
1210 && ( pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule
1211 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].offSchedule
1212 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].offSchedule
1213 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].offSchedule
1214 || tmR3AnyExpiredTimers(pVM)
1215 )
1216 && !VM_FF_ISSET(pVM, VM_FF_TIMER)
1217 )
1218 {
1219 VM_FF_SET(pVM, VM_FF_TIMER);
1220 REMR3NotifyTimerPending(pVM);
1221 VMR3NotifyFF(pVM, true);
1222 STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallbackSetFF);
1223 }
1224}
1225
1226
1227/**
1228 * Schedules and runs any pending timers.
1229 *
1230 * This is normally called from a forced action handler in EMT.
1231 *
1232 * @param pVM The VM to run the timers for.
1233 */
1234TMR3DECL(void) TMR3TimerQueuesDo(PVM pVM)
1235{
1236 STAM_PROFILE_START(&pVM->tm.s.StatDoQueues, a);
1237 Log2(("TMR3TimerQueuesDo:\n"));
1238
1239 /*
1240 * Process the queues.
1241 */
1242 AssertCompile(TMCLOCK_MAX == 4);
1243
1244 /* TMCLOCK_VIRTUAL_SYNC */
1245 STAM_PROFILE_ADV_START(&pVM->tm.s.StatDoQueuesSchedule, s1);
1246 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC]);
1247 STAM_PROFILE_ADV_SUSPEND(&pVM->tm.s.StatDoQueuesSchedule, s1);
1248 STAM_PROFILE_ADV_START(&pVM->tm.s.StatDoQueuesRun, r1);
1249 tmR3TimerQueueRunVirtualSync(pVM);
1250 STAM_PROFILE_ADV_SUSPEND(&pVM->tm.s.StatDoQueuesRun, r1);
1251
1252 /* TMCLOCK_VIRTUAL */
1253 STAM_PROFILE_ADV_RESUME(&pVM->tm.s.StatDoQueuesSchedule, s1);
1254 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL]);
1255 STAM_PROFILE_ADV_SUSPEND(&pVM->tm.s.StatDoQueuesSchedule, s2);
1256 STAM_PROFILE_ADV_RESUME(&pVM->tm.s.StatDoQueuesRun, r1);
1257 tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL]);
1258 STAM_PROFILE_ADV_SUSPEND(&pVM->tm.s.StatDoQueuesRun, r2);
1259
1260#if 0 /** @todo if ever used, remove this and fix the stam prefixes on TMCLOCK_REAL below. */
1261 /* TMCLOCK_TSC */
1262 STAM_PROFILE_ADV_RESUME(&pVM->tm.s.StatDoQueuesSchedule, s2);
1263 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC]);
1264 STAM_PROFILE_ADV_SUSPEND(&pVM->tm.s.StatDoQueuesSchedule, s3);
1265 STAM_PROFILE_ADV_RESUME(&pVM->tm.s.StatDoQueuesRun, r2);
1266 tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC]);
1267 STAM_PROFILE_ADV_SUSPEND(&pVM->tm.s.StatDoQueuesRun, r3);
1268#endif
1269
1270 /* TMCLOCK_REAL */
1271 STAM_PROFILE_ADV_RESUME(&pVM->tm.s.StatDoQueuesSchedule, s2);
1272 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL]);
1273 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatDoQueuesSchedule, s3);
1274 STAM_PROFILE_ADV_RESUME(&pVM->tm.s.StatDoQueuesRun, r2);
1275 tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL]);
1276 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatDoQueuesRun, r3);
1277
1278 /* done. */
1279 VM_FF_CLEAR(pVM, VM_FF_TIMER);
1280
1281#ifdef VBOX_STRICT
1282 /* check that we didn't screwup. */
1283 tmTimerQueuesSanityChecks(pVM, "TMR3TimerQueuesDo");
1284#endif
1285
1286 Log2(("TMR3TimerQueuesDo: returns void\n"));
1287 STAM_PROFILE_STOP(&pVM->tm.s.StatDoQueues, a);
1288}
1289
1290
1291/**
1292 * Schedules and runs any pending times in the specified queue.
1293 *
1294 * This is normally called from a forced action handler in EMT.
1295 *
1296 * @param pVM The VM to run the timers for.
1297 * @param pQueue The queue to run.
1298 */
1299static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue)
1300{
1301 VM_ASSERT_EMT(pVM);
1302
1303 /*
1304 * Run timers.
1305 *
1306 * We check the clock once and run all timers which are ACTIVE
1307 * and have an expire time less or equal to the time we read.
1308 *
1309 * N.B. A generic unlink must be applied since other threads
1310 * are allowed to mess with any active timer at any time.
1311 * However, we only allow EMT to handle EXPIRED_PENDING
1312 * timers, thus enabling the timer handler function to
1313 * arm the timer again.
1314 */
1315 PTMTIMER pNext = TMTIMER_GET_HEAD(pQueue);
1316 if (!pNext)
1317 return;
1318 const uint64_t u64Now = tmClock(pVM, pQueue->enmClock);
1319 while (pNext && pNext->u64Expire <= u64Now)
1320 {
1321 PTMTIMER pTimer = pNext;
1322 pNext = TMTIMER_GET_NEXT(pTimer);
1323 Log2(("tmR3TimerQueueRun: pTimer=%p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .pszDesc=%s}\n",
1324 pTimer, tmTimerState(pTimer->enmState), pTimer->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->pszDesc));
1325 bool fRc;
1326 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED, TMTIMERSTATE_ACTIVE, fRc);
1327 if (fRc)
1328 {
1329 Assert(!pTimer->offScheduleNext); /* this can trigger falsely */
1330
1331 /* unlink */
1332 const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
1333 if (pPrev)
1334 TMTIMER_SET_NEXT(pPrev, pNext);
1335 else
1336 {
1337 TMTIMER_SET_HEAD(pQueue, pNext);
1338 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
1339 }
1340 if (pNext)
1341 TMTIMER_SET_PREV(pNext, pPrev);
1342 pTimer->offNext = 0;
1343 pTimer->offPrev = 0;
1344
1345
1346 /* fire */
1347 switch (pTimer->enmType)
1348 {
1349 case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer); break;
1350 case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer); break;
1351 case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer, pTimer->u.Internal.pvUser); break;
1352 case TMTIMERTYPE_EXTERNAL: pTimer->u.External.pfnTimer(pTimer->u.External.pvUser); break;
1353 default:
1354 AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->pszDesc));
1355 break;
1356 }
1357
1358 /* change the state if it wasn't changed already in the handler. */
1359 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED, fRc);
1360 Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
1361 }
1362 } /* run loop */
1363}
1364
1365
1366/**
1367 * Schedules and runs any pending times in the timer queue for the
1368 * synchronous virtual clock.
1369 *
1370 * This scheduling is a bit different from the other queues as it need
1371 * to implement the special requirements of the timer synchronous virtual
1372 * clock, thus this 2nd queue run funcion.
1373 *
1374 * @param pVM The VM to run the timers for.
1375 */
1376static void tmR3TimerQueueRunVirtualSync(PVM pVM)
1377{
1378 PTMTIMERQUEUE const pQueue = &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC];
1379 VM_ASSERT_EMT(pVM);
1380
1381 /*
1382 * Any timers?
1383 */
1384 PTMTIMER pNext = TMTIMER_GET_HEAD(pQueue);
1385 if (RT_UNLIKELY(!pNext))
1386 {
1387 Assert(pVM->tm.s.fVirtualSyncTicking || !pVM->tm.s.fVirtualTicking);
1388 return;
1389 }
1390 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRun);
1391
1392 /*
1393 * Calculate the time frame for which we will dispatch timers.
1394 *
1395 * We use a time frame ranging from the current sync time (which is most likely the
1396 * same as the head timer) and some configurable period (100000ns) up towards the
1397 * current virtual time. This period might also need to be restricted by the catch-up
1398 * rate so frequent calls to this function won't accelerate the time too much, however
1399 * this will be implemented at a later point if neccessary.
1400 *
1401 * Without this frame we would 1) having to run timers much more frequently
1402 * and 2) lag behind at a steady rate.
1403 */
1404 const uint64_t u64VirtualNow = TMVirtualGetEx(pVM, false /* don't check timers */);
1405 uint64_t u64Now;
1406 if (!pVM->tm.s.fVirtualSyncTicking)
1407 {
1408 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStoppedAlready);
1409 u64Now = pVM->tm.s.u64VirtualSync;
1410 Assert(u64Now <= pNext->u64Expire);
1411 }
1412 else
1413 {
1414 /* Calc 'now'. (update order doesn't really matter here) */
1415 uint64_t off = pVM->tm.s.offVirtualSync;
1416 if (pVM->tm.s.fVirtualSyncCatchUp)
1417 {
1418 uint64_t u64Delta = u64VirtualNow - pVM->tm.s.u64VirtualSyncCatchUpPrev;
1419 if (RT_LIKELY(!(u64Delta >> 32)))
1420 {
1421 uint64_t u64Sub = ASMMultU64ByU32DivByU32(u64Delta, pVM->tm.s.u32VirtualSyncCatchUpPercentage, 100);
1422 if (off > u64Sub + pVM->tm.s.offVirtualSyncGivenUp)
1423 {
1424 off -= u64Sub;
1425 Log4(("TM: %RU64/%RU64: sub %RU64 (run)\n", u64VirtualNow - off, off - pVM->tm.s.offVirtualSyncGivenUp, u64Sub));
1426 }
1427 else
1428 {
1429 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
1430 ASMAtomicXchgBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
1431 off = pVM->tm.s.offVirtualSyncGivenUp;
1432 Log4(("TM: %RU64/0: caught up (run)\n", u64VirtualNow));
1433 }
1434 }
1435 ASMAtomicXchgU64(&pVM->tm.s.offVirtualSync, off);
1436 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64VirtualNow;
1437 }
1438 u64Now = u64VirtualNow - off;
1439
1440 /* Check if stopped by expired timer. */
1441 if (u64Now >= pNext->u64Expire)
1442 {
1443 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStop);
1444 u64Now = pNext->u64Expire;
1445 ASMAtomicXchgU64(&pVM->tm.s.u64VirtualSync, u64Now);
1446 ASMAtomicXchgBool(&pVM->tm.s.fVirtualSyncTicking, false);
1447 Log4(("TM: %RU64/%RU64: exp tmr (run)\n", u64Now, u64VirtualNow - u64Now - pVM->tm.s.offVirtualSyncGivenUp));
1448
1449 }
1450 }
1451
1452 /* calc end of frame. */
1453 uint64_t u64Max = u64Now + pVM->tm.s.u32VirtualSyncScheduleSlack;
1454 if (u64Max > u64VirtualNow - pVM->tm.s.offVirtualSyncGivenUp)
1455 u64Max = u64VirtualNow - pVM->tm.s.offVirtualSyncGivenUp;
1456
1457 /* assert sanity */
1458 Assert(u64Now <= u64VirtualNow - pVM->tm.s.offVirtualSyncGivenUp);
1459 Assert(u64Max <= u64VirtualNow - pVM->tm.s.offVirtualSyncGivenUp);
1460 Assert(u64Now <= u64Max);
1461
1462 /*
1463 * Process the expired timers moving the clock along as we progress.
1464 */
1465#ifdef VBOX_STRICT
1466 uint64_t u64Prev = u64Now; NOREF(u64Prev);
1467#endif
1468 while (pNext && pNext->u64Expire <= u64Max)
1469 {
1470 PTMTIMER pTimer = pNext;
1471 pNext = TMTIMER_GET_NEXT(pTimer);
1472 Log2(("tmR3TimerQueueRun: pTimer=%p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .pszDesc=%s}\n",
1473 pTimer, tmTimerState(pTimer->enmState), pTimer->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->pszDesc));
1474 bool fRc;
1475 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED, TMTIMERSTATE_ACTIVE, fRc);
1476 if (fRc)
1477 {
1478 /* unlink */
1479 const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
1480 if (pPrev)
1481 TMTIMER_SET_NEXT(pPrev, pNext);
1482 else
1483 {
1484 TMTIMER_SET_HEAD(pQueue, pNext);
1485 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
1486 }
1487 if (pNext)
1488 TMTIMER_SET_PREV(pNext, pPrev);
1489 pTimer->offNext = 0;
1490 pTimer->offPrev = 0;
1491
1492 /* advance the clock - don't permit timers to be out of order or armed in the 'past'. */
1493#ifdef VBOX_STRICT
1494 AssertMsg(pTimer->u64Expire >= u64Prev, ("%RU64 < %RU64 %s\n", pTimer->u64Expire, u64Prev, pTimer->pszDesc));
1495 u64Prev = pTimer->u64Expire;
1496#endif
1497 ASMAtomicXchgSize(&pVM->tm.s.fVirtualSyncTicking, false);
1498 ASMAtomicXchgU64(&pVM->tm.s.u64VirtualSync, pTimer->u64Expire);
1499
1500 /* fire */
1501 switch (pTimer->enmType)
1502 {
1503 case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer); break;
1504 case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer); break;
1505 case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer, pTimer->u.Internal.pvUser); break;
1506 case TMTIMERTYPE_EXTERNAL: pTimer->u.External.pfnTimer(pTimer->u.External.pvUser); break;
1507 default:
1508 AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->pszDesc));
1509 break;
1510 }
1511
1512 /* change the state if it wasn't changed already in the handler. */
1513 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED, fRc);
1514 Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
1515 }
1516 } /* run loop */
1517
1518 /*
1519 * Restart the clock if it was stopped to serve any timers,
1520 * and start/adjust catch-up if necessary.
1521 */
1522 if ( !pVM->tm.s.fVirtualSyncTicking
1523 && pVM->tm.s.fVirtualTicking)
1524 {
1525 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunRestart);
1526
1527 /* calc the slack we've handed out. */
1528 const uint64_t u64VirtualNow2 = TMVirtualGetEx(pVM, false /* don't check timers */);
1529 Assert(u64VirtualNow2 >= u64VirtualNow);
1530 AssertMsg(pVM->tm.s.u64VirtualSync >= u64Now, ("%RU64 < %RU64\n", pVM->tm.s.u64VirtualSync, u64Now));
1531 const uint64_t offSlack = pVM->tm.s.u64VirtualSync - u64Now;
1532 STAM_STATS({
1533 if (offSlack)
1534 {
1535 PSTAMPROFILE p = &pVM->tm.s.StatVirtualSyncRunSlack;
1536 p->cPeriods++;
1537 p->cTicks += offSlack;
1538 if (p->cTicksMax < offSlack) p->cTicksMax = offSlack;
1539 if (p->cTicksMin > offSlack) p->cTicksMin = offSlack;
1540 }
1541 });
1542
1543 /* Let the time run a little bit while we were busy running timers(?). */
1544 uint64_t u64Elapsed;
1545#define MAX_ELAPSED 30000 /* ns */
1546 if (offSlack > MAX_ELAPSED)
1547 u64Elapsed = 0;
1548 else
1549 {
1550 u64Elapsed = u64VirtualNow2 - u64VirtualNow;
1551 if (u64Elapsed > MAX_ELAPSED)
1552 u64Elapsed = MAX_ELAPSED;
1553 u64Elapsed = u64Elapsed > offSlack ? u64Elapsed - offSlack : 0;
1554 }
1555#undef MAX_ELAPSED
1556
1557 /* Calc the current offset. */
1558 uint64_t offNew = u64VirtualNow2 - pVM->tm.s.u64VirtualSync - u64Elapsed;
1559 Assert(!(offNew & RT_BIT_64(63)));
1560 uint64_t offLag = offNew - pVM->tm.s.offVirtualSyncGivenUp;
1561 Assert(!(offLag & RT_BIT_64(63)));
1562
1563 /*
1564 * Deal with starting, adjusting and stopping catchup.
1565 */
1566 if (pVM->tm.s.fVirtualSyncCatchUp)
1567 {
1568 if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpStopThreshold)
1569 {
1570 /* stop */
1571 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
1572 ASMAtomicXchgBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
1573 Log4(("TM: %RU64/%RU64: caught up\n", u64VirtualNow2 - offNew, offLag));
1574 }
1575 else if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
1576 {
1577 /* adjust */
1578 unsigned i = 0;
1579 while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
1580 && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
1581 i++;
1582 if (pVM->tm.s.u32VirtualSyncCatchUpPercentage < pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage)
1583 {
1584 STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupAdjust[i]);
1585 ASMAtomicXchgU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
1586 Log4(("TM: %RU64/%RU64: adj %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
1587 }
1588 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64VirtualNow2;
1589 }
1590 else
1591 {
1592 /* give up */
1593 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUp);
1594 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
1595 ASMAtomicXchgU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
1596 ASMAtomicXchgBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
1597 Log4(("TM: %RU64/%RU64: give up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
1598 LogRel(("TM: Giving up catch-up attempt at a %RU64 ns lag; new total: %RU64 ns\n", offLag, offNew));
1599 }
1600 }
1601 else if (offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[0].u64Start)
1602 {
1603 if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
1604 {
1605 /* start */
1606 STAM_PROFILE_ADV_START(&pVM->tm.s.StatVirtualSyncCatchup, c);
1607 unsigned i = 0;
1608 while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
1609 && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
1610 i++;
1611 STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupInitial[i]);
1612 ASMAtomicXchgU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
1613 ASMAtomicXchgBool(&pVM->tm.s.fVirtualSyncCatchUp, true);
1614 Log4(("TM: %RU64/%RU64: catch-up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
1615 }
1616 else
1617 {
1618 /* don't bother */
1619 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting);
1620 ASMAtomicXchgU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
1621 Log4(("TM: %RU64/%RU64: give up\n", u64VirtualNow2 - offNew, offLag));
1622 LogRel(("TM: Not bothering to attempt catching up a %RU64 ns lag; new total: %RU64\n", offLag, offNew));
1623 }
1624 }
1625
1626 /*
1627 * Update the offset and restart the clock.
1628 */
1629 Assert(!(offNew & RT_BIT_64(63)));
1630 ASMAtomicXchgU64(&pVM->tm.s.offVirtualSync, offNew);
1631 ASMAtomicXchgBool(&pVM->tm.s.fVirtualSyncTicking, true);
1632 }
1633}
1634
1635
1636/**
1637 * Saves the state of a timer to a saved state.
1638 *
1639 * @returns VBox status.
1640 * @param pTimer Timer to save.
1641 * @param pSSM Save State Manager handle.
1642 */
1643TMR3DECL(int) TMR3TimerSave(PTMTIMERR3 pTimer, PSSMHANDLE pSSM)
1644{
1645 LogFlow(("TMR3TimerSave: pTimer=%p:{enmState=%s, .pszDesc={%s}} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->pszDesc, pSSM));
1646 switch (pTimer->enmState)
1647 {
1648 case TMTIMERSTATE_STOPPED:
1649 case TMTIMERSTATE_PENDING_STOP:
1650 case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
1651 return SSMR3PutU8(pSSM, (uint8_t)TMTIMERSTATE_PENDING_STOP);
1652
1653 case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
1654 case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
1655 AssertMsgFailed(("u64Expire is being updated! (%s)\n", pTimer->pszDesc));
1656 if (!RTThreadYield())
1657 RTThreadSleep(1);
1658 /* fall thru */
1659 case TMTIMERSTATE_ACTIVE:
1660 case TMTIMERSTATE_PENDING_SCHEDULE:
1661 case TMTIMERSTATE_PENDING_RESCHEDULE:
1662 SSMR3PutU8(pSSM, (uint8_t)TMTIMERSTATE_PENDING_SCHEDULE);
1663 return SSMR3PutU64(pSSM, pTimer->u64Expire);
1664
1665 case TMTIMERSTATE_EXPIRED:
1666 case TMTIMERSTATE_PENDING_DESTROY:
1667 case TMTIMERSTATE_PENDING_STOP_DESTROY:
1668 case TMTIMERSTATE_FREE:
1669 AssertMsgFailed(("Invalid timer state %d %s (%s)\n", pTimer->enmState, tmTimerState(pTimer->enmState), pTimer->pszDesc));
1670 return SSMR3HandleSetStatus(pSSM, VERR_TM_INVALID_STATE);
1671 }
1672
1673 AssertMsgFailed(("Unknown timer state %d (%s)\n", pTimer->enmState, pTimer->pszDesc));
1674 return SSMR3HandleSetStatus(pSSM, VERR_TM_UNKNOWN_STATE);
1675}
1676
1677
1678/**
1679 * Loads the state of a timer from a saved state.
1680 *
1681 * @returns VBox status.
1682 * @param pTimer Timer to restore.
1683 * @param pSSM Save State Manager handle.
1684 */
1685TMR3DECL(int) TMR3TimerLoad(PTMTIMERR3 pTimer, PSSMHANDLE pSSM)
1686{
1687 Assert(pTimer); Assert(pSSM); VM_ASSERT_EMT(pTimer->pVMR3);
1688 LogFlow(("TMR3TimerLoad: pTimer=%p:{enmState=%s, .pszDesc={%s}} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->pszDesc, pSSM));
1689
1690 /*
1691 * Load the state and validate it.
1692 */
1693 uint8_t u8State;
1694 int rc = SSMR3GetU8(pSSM, &u8State);
1695 if (VBOX_FAILURE(rc))
1696 return rc;
1697 TMTIMERSTATE enmState = (TMTIMERSTATE)u8State;
1698 if ( enmState != TMTIMERSTATE_PENDING_STOP
1699 && enmState != TMTIMERSTATE_PENDING_SCHEDULE
1700 && enmState != TMTIMERSTATE_PENDING_STOP_SCHEDULE)
1701 {
1702 AssertMsgFailed(("enmState=%d %s\n", enmState, tmTimerState(enmState)));
1703 return SSMR3HandleSetStatus(pSSM, VERR_TM_LOAD_STATE);
1704 }
1705
1706 if (enmState == TMTIMERSTATE_PENDING_SCHEDULE)
1707 {
1708 /*
1709 * Load the expire time.
1710 */
1711 uint64_t u64Expire;
1712 rc = SSMR3GetU64(pSSM, &u64Expire);
1713 if (VBOX_FAILURE(rc))
1714 return rc;
1715
1716 /*
1717 * Set it.
1718 */
1719 Log(("enmState=%d %s u64Expire=%llu\n", enmState, tmTimerState(enmState), u64Expire));
1720 rc = TMTimerSet(pTimer, u64Expire);
1721 }
1722 else
1723 {
1724 /*
1725 * Stop it.
1726 */
1727 Log(("enmState=%d %s\n", enmState, tmTimerState(enmState)));
1728 rc = TMTimerStop(pTimer);
1729 }
1730
1731 /*
1732 * On failure set SSM status.
1733 */
1734 if (VBOX_FAILURE(rc))
1735 rc = SSMR3HandleSetStatus(pSSM, rc);
1736 return rc;
1737}
1738
1739
1740/**
1741 * Get the real world UTC time adjusted for VM lag.
1742 *
1743 * @returns pTime.
1744 * @param pVM The VM instance.
1745 * @param pTime Where to store the time.
1746 */
1747TMR3DECL(PRTTIMESPEC) TMR3UTCNow(PVM pVM, PRTTIMESPEC pTime)
1748{
1749 RTTimeNow(pTime);
1750 RTTimeSpecSubNano(pTime, pVM->tm.s.offVirtualSync - pVM->tm.s.offVirtualSyncGivenUp);
1751 RTTimeSpecAddNano(pTime, pVM->tm.s.offUTC);
1752 return pTime;
1753}
1754
1755
1756/**
1757 * Display all timers.
1758 *
1759 * @param pVM VM Handle.
1760 * @param pHlp The info helpers.
1761 * @param pszArgs Arguments, ignored.
1762 */
1763static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1764{
1765 NOREF(pszArgs);
1766 pHlp->pfnPrintf(pHlp,
1767 "Timers (pVM=%p)\n"
1768 "%.*s %.*s %.*s %.*s Clock %-18s %-18s %-25s Description\n",
1769 pVM,
1770 sizeof(RTR3PTR) * 2, "pTimerR3 ",
1771 sizeof(int32_t) * 2, "offNext ",
1772 sizeof(int32_t) * 2, "offPrev ",
1773 sizeof(int32_t) * 2, "offSched ",
1774 "Time",
1775 "Expire",
1776 "State");
1777 for (PTMTIMERR3 pTimer = pVM->tm.s.pCreated; pTimer; pTimer = pTimer->pBigNext)
1778 {
1779 pHlp->pfnPrintf(pHlp,
1780 "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %-25s %s\n",
1781 pTimer,
1782 pTimer->offNext,
1783 pTimer->offPrev,
1784 pTimer->offScheduleNext,
1785 pTimer->enmClock == TMCLOCK_REAL ? "Real " : "Virt ",
1786 TMTimerGet(pTimer),
1787 pTimer->u64Expire,
1788 tmTimerState(pTimer->enmState),
1789 pTimer->pszDesc);
1790 }
1791}
1792
1793
1794/**
1795 * Display all active timers.
1796 *
1797 * @param pVM VM Handle.
1798 * @param pHlp The info helpers.
1799 * @param pszArgs Arguments, ignored.
1800 */
1801static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1802{
1803 NOREF(pszArgs);
1804 pHlp->pfnPrintf(pHlp,
1805 "Active Timers (pVM=%p)\n"
1806 "%.*s %.*s %.*s %.*s Clock %-18s %-18s %-25s Description\n",
1807 pVM,
1808 sizeof(RTR3PTR) * 2, "pTimerR3 ",
1809 sizeof(int32_t) * 2, "offNext ",
1810 sizeof(int32_t) * 2, "offPrev ",
1811 sizeof(int32_t) * 2, "offSched ",
1812 "Time",
1813 "Expire",
1814 "State");
1815 for (unsigned iQueue = 0; iQueue < TMCLOCK_MAX; iQueue++)
1816 {
1817 for (PTMTIMERR3 pTimer = TMTIMER_GET_HEAD(&pVM->tm.s.paTimerQueuesR3[iQueue]);
1818 pTimer;
1819 pTimer = TMTIMER_GET_NEXT(pTimer))
1820 {
1821 pHlp->pfnPrintf(pHlp,
1822 "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %-25s %s\n",
1823 pTimer,
1824 pTimer->offNext,
1825 pTimer->offPrev,
1826 pTimer->offScheduleNext,
1827 pTimer->enmClock == TMCLOCK_REAL
1828 ? "Real "
1829 : pTimer->enmClock == TMCLOCK_VIRTUAL
1830 ? "Virt "
1831 : pTimer->enmClock == TMCLOCK_VIRTUAL_SYNC
1832 ? "VrSy "
1833 : "TSC ",
1834 TMTimerGet(pTimer),
1835 pTimer->u64Expire,
1836 tmTimerState(pTimer->enmState),
1837 pTimer->pszDesc);
1838 }
1839 }
1840}
1841
1842
1843/**
1844 * Display all clocks.
1845 *
1846 * @param pVM VM Handle.
1847 * @param pHlp The info helpers.
1848 * @param pszArgs Arguments, ignored.
1849 */
1850static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1851{
1852 NOREF(pszArgs);
1853
1854 /*
1855 * Read the times first to avoid more than necessary time variation.
1856 */
1857 const uint64_t u64TSC = TMCpuTickGet(pVM);
1858 const uint64_t u64Virtual = TMVirtualGet(pVM);
1859 const uint64_t u64VirtualSync = TMVirtualSyncGet(pVM);
1860 const uint64_t u64Real = TMRealGet(pVM);
1861
1862 /*
1863 * TSC
1864 */
1865 pHlp->pfnPrintf(pHlp,
1866 "Cpu Tick: %18RU64 (%#016RX64) %RU64Hz %s%s",
1867 u64TSC, u64TSC, TMCpuTicksPerSecond(pVM),
1868 pVM->tm.s.fTSCTicking ? "ticking" : "paused",
1869 pVM->tm.s.fTSCVirtualized ? " - virtualized" : "");
1870 if (pVM->tm.s.fTSCUseRealTSC)
1871 {
1872 pHlp->pfnPrintf(pHlp, " - real tsc");
1873 if (pVM->tm.s.u64TSCOffset)
1874 pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVM->tm.s.u64TSCOffset);
1875 }
1876 else
1877 pHlp->pfnPrintf(pHlp, " - virtual clock");
1878 pHlp->pfnPrintf(pHlp, "\n");
1879
1880 /*
1881 * virtual
1882 */
1883 pHlp->pfnPrintf(pHlp,
1884 " Virtual: %18RU64 (%#016RX64) %RU64Hz %s",
1885 u64Virtual, u64Virtual, TMVirtualGetFreq(pVM),
1886 pVM->tm.s.fVirtualTicking ? "ticking" : "paused");
1887 if (pVM->tm.s.fVirtualWarpDrive)
1888 pHlp->pfnPrintf(pHlp, " WarpDrive %RU32 %%", pVM->tm.s.u32VirtualWarpDrivePercentage);
1889 pHlp->pfnPrintf(pHlp, "\n");
1890
1891 /*
1892 * virtual sync
1893 */
1894 pHlp->pfnPrintf(pHlp,
1895 "VirtSync: %18RU64 (%#016RX64) %s%s",
1896 u64VirtualSync, u64VirtualSync,
1897 pVM->tm.s.fVirtualSyncTicking ? "ticking" : "paused",
1898 pVM->tm.s.fVirtualSyncCatchUp ? " - catchup" : "");
1899 if (pVM->tm.s.offVirtualSync)
1900 {
1901 pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVM->tm.s.offVirtualSync);
1902 if (pVM->tm.s.u32VirtualSyncCatchUpPercentage)
1903 pHlp->pfnPrintf(pHlp, " catch-up rate %u %%", pVM->tm.s.u32VirtualSyncCatchUpPercentage);
1904 }
1905 pHlp->pfnPrintf(pHlp, "\n");
1906
1907 /*
1908 * real
1909 */
1910 pHlp->pfnPrintf(pHlp,
1911 " Real: %18RU64 (%#016RX64) %RU64Hz\n",
1912 u64Real, u64Real, TMRealGetFreq(pVM));
1913}
1914
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette