/* $Id: TM.cpp 1956 2007-04-05 15:26:03Z vboxsync $ */ /** @file * TM - Timeout Manager. */ /* * Copyright (C) 2006 InnoTek Systemberatung GmbH * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License as published by the Free Software Foundation, * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE * distribution. VirtualBox OSE is distributed in the hope that it will * be useful, but WITHOUT ANY WARRANTY of any kind. * * If you received this file as part of a commercial VirtualBox * distribution, then only the terms of your commercial VirtualBox * license agreement apply instead of the previous paragraph. */ /** @page pg_tm TM - The Time Manager * * The Time Manager abstracts the CPU clocks and manages timers used by VM device. * * * * @section sec_tm_timers Timers * * The timers supports multiple clocks. Currently there are two clocks in the * TM, the host real time clock and the guest virtual clock. Each clock has it's * own set of scheduling facilities which are identical but for the clock source. * * Take one such timer scheduling facility, or timer queue if you like. There are * a few factors which makes it a bit complex. First there is the usual GC vs. HC * thing. Then there is multiple threads, and then there is the fact that on Unix * we might just as well take a timer signal which checks whether it's wise to * schedule timers while we're scheduling them. On API level, all but the create * and save APIs must be mulithreaded. * * The design is using a doubly linked HC list of active timers which is ordered * by expire date. Updates to the list is batched in a singly linked list (linked * by handle not pointer for atomically update support in both GC and HC) and * will be processed by the emulation thread. * * For figuring out when there is need to schedule timers a high frequency * asynchronous timer is employed using Host OS services. Its task is to check if * there are anything batched up or if a head has expired. If this is the case * a forced action is signals and the emulation thread will process this ASAP. * */ /******************************************************************************* * Header Files * *******************************************************************************/ #define LOG_GROUP LOG_GROUP_TM #include #include #include #include #include #include #include "TMInternal.h" #include #include #include #include #include #include #include #include #include #include #include #include /******************************************************************************* * Defined Constants And Macros * *******************************************************************************/ /** The current saved state version.*/ #define TM_SAVED_STATE_VERSION 2 /******************************************************************************* * Internal Functions * *******************************************************************************/ static uint64_t tmR3Calibrate(void); static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM); static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version); static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser); static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue); static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs); static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs); static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs); /** * Internal function for getting the clock time. * * @returns clock time. * @param pVM The VM handle. * @param enmClock The clock. */ DECLINLINE(uint64_t) tmClock(PVM pVM, TMCLOCK enmClock) { switch (enmClock) { case TMCLOCK_VIRTUAL: return TMVirtualGet(pVM); case TMCLOCK_VIRTUAL_SYNC: return TMVirtualGetSync(pVM); case TMCLOCK_REAL: return TMRealGet(pVM); case TMCLOCK_TSC: return TMCpuTickGet(pVM); default: AssertMsgFailed(("enmClock=%d\n", enmClock)); return ~(uint64_t)0; } } /** * Initializes the TM. * * @returns VBox status code. * @param pVM The VM to operate on. */ TMR3DECL(int) TMR3Init(PVM pVM) { LogFlow(("TMR3Init:\n")); /* * Assert alignment and sizes. */ AssertRelease(!(RT_OFFSETOF(VM, tm.s) & 31)); AssertRelease(sizeof(pVM->tm.s) <= sizeof(pVM->tm.padding)); /* * Init the structure. */ void *pv; int rc = MMHyperAlloc(pVM, sizeof(pVM->tm.s.paTimerQueuesR3[0]) * TMCLOCK_MAX, 0, MM_TAG_TM, &pv); AssertRCReturn(rc, rc); pVM->tm.s.paTimerQueuesR3 = (PTMTIMERQUEUE)pv; pVM->tm.s.offVM = RT_OFFSETOF(VM, tm.s); pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].enmClock = TMCLOCK_VIRTUAL; pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].u64Expire = INT64_MAX; pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].enmClock = TMCLOCK_VIRTUAL_SYNC; pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].u64Expire = INT64_MAX; pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].enmClock = TMCLOCK_REAL; pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].u64Expire = INT64_MAX; pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].enmClock = TMCLOCK_TSC; pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].u64Expire = INT64_MAX; /* * We indirectly - thru RTTimeNanoTS and RTTimeMilliTS - use the global * info page (GIP) for both the virtual and the real clock. By mapping * the GIP into guest context we can get just as accurate time even there. * All that's required is that the g_pSUPGlobalInfoPage symbol is available * to the GC Runtime. */ pVM->tm.s.pvGIPR3 = (void *)g_pSUPGlobalInfoPage; AssertMsgReturn(pVM->tm.s.pvGIPR3, ("GIP support is now required!\n"), VERR_INTERNAL_ERROR); RTHCPHYS HCPhysGIP; rc = SUPGipGetPhys(&HCPhysGIP); AssertMsgRCReturn(rc, ("Failed to get GIP physical address!\n"), rc); rc = MMR3HyperMapHCPhys(pVM, pVM->tm.s.pvGIPR3, HCPhysGIP, PAGE_SIZE, "GIP", &pVM->tm.s.pvGIPGC); if (VBOX_FAILURE(rc)) { AssertMsgFailed(("Failed to map GIP into GC, rc=%Vrc!\n", rc)); return rc; } LogFlow(("TMR3Init: HCPhysGIP=%RHp at %VGv\n", HCPhysGIP, pVM->tm.s.pvGIPGC)); MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL); /* * Determin the TSC configuration and frequency. */ /* mode */ rc = CFGMR3QueryBool(CFGMR3GetRoot(pVM), "TSCVirtualized", &pVM->tm.s.fTSCVirtualized); if (rc == VERR_CFGM_VALUE_NOT_FOUND) #if 0 /* seems to kind of work... */ pVM->tm.s.fTSCVirtualized = true; #else pVM->tm.s.fTSCVirtualized = false; #endif else if (VBOX_FAILURE(rc)) return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying bool value \"UseRealTSC\". (%Vrc)"), rc); /* source */ rc = CFGMR3QueryBool(CFGMR3GetRoot(pVM), "UseRealTSC", &pVM->tm.s.fTSCTicking); if (rc == VERR_CFGM_VALUE_NOT_FOUND) #if 0 /* doesn't seem to work reliably yet... xp takes several ~2 min to shutdown now. darn. */ pVM->tm.s.fTSCUseRealTSC = false; /* virtualize it */ #else pVM->tm.s.fTSCUseRealTSC = true; /* don't virtualize it */ #endif else if (VBOX_FAILURE(rc)) return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying bool value \"UseRealTSC\". (%Vrc)"), rc); #if 1 /* temporary hack */ if (RTEnvExist("VBOX_TM_VIRTUALIZED_TSC")) pVM->tm.s.fTSCUseRealTSC = false; #endif if (!pVM->tm.s.fTSCUseRealTSC) pVM->tm.s.fTSCVirtualized = true; /* frequency */ rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "TSCTicksPerSecond", &pVM->tm.s.cTSCTicksPerSecond); if (rc == VERR_CFGM_VALUE_NOT_FOUND) { pVM->tm.s.cTSCTicksPerSecond = tmR3Calibrate(); if ( !pVM->tm.s.fTSCUseRealTSC && pVM->tm.s.cTSCTicksPerSecond >= _4G) pVM->tm.s.cTSCTicksPerSecond = _4G - 1; /* (A limitation of our math code) */ } else if (VBOX_FAILURE(rc)) return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying uint64_t value \"TSCTicksPerSecond\". (%Vrc)"), rc); else if ( pVM->tm.s.cTSCTicksPerSecond < _1M || pVM->tm.s.cTSCTicksPerSecond >= _4G) return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("Configuration error: \"TSCTicksPerSecond\" = %RI64 is not in the range 1MHz..4GHz-1!"), pVM->tm.s.cTSCTicksPerSecond); else { pVM->tm.s.fTSCUseRealTSC = false; pVM->tm.s.fTSCVirtualized = true; } /* setup and report */ if (pVM->tm.s.fTSCUseRealTSC) CPUMR3SetCR4Feature(pVM, 0, ~X86_CR4_TSD); else CPUMR3SetCR4Feature(pVM, X86_CR4_TSD, ~X86_CR4_TSD); LogRel(("TM: cTSCTicksPerSecond=%#RX64 (%RU64) fTSCVirtualized=%RTbool fTSCUseRealTSC=%RTbool\n", pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.fTSCVirtualized, pVM->tm.s.fTSCUseRealTSC)); /* * Register saved state. */ rc = SSMR3RegisterInternal(pVM, "tm", 1, TM_SAVED_STATE_VERSION, sizeof(uint64_t) * 8, NULL, tmR3Save, NULL, NULL, tmR3Load, NULL); if (VBOX_FAILURE(rc)) return rc; /* * Setup the warp drive. */ rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage); if (rc == VERR_CFGM_VALUE_NOT_FOUND) pVM->tm.s.u32VirtualWarpDrivePercentage = 100; else if (VBOX_FAILURE(rc)) return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying uint32_t value \"WarpDrivePercent\". (%Vrc)"), rc); else if ( pVM->tm.s.u32VirtualWarpDrivePercentage < 2 || pVM->tm.s.u32VirtualWarpDrivePercentage > 20000) return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("Configuration error: \"WarpDrivePercent\" = %RI32 is not in the range 2..20000!"), pVM->tm.s.u32VirtualWarpDrivePercentage); pVM->tm.s.fVirtualWarpDrive = pVM->tm.s.u32VirtualWarpDrivePercentage != 100; if (pVM->tm.s.fVirtualWarpDrive) LogRel(("TM: u32VirtualWarpDrivePercentage=%RI32\n", pVM->tm.s.u32VirtualWarpDrivePercentage)); /* * Start the timer (guard against REM not yielding). */ uint32_t u32Millies; rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "TimerMillies", &u32Millies); if (rc == VERR_CFGM_VALUE_NOT_FOUND) u32Millies = 10; else if (VBOX_FAILURE(rc)) return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to query uint32_t value \"TimerMillies\", rc=%Vrc.\n"), rc); rc = RTTimerCreate(&pVM->tm.s.pTimer, u32Millies, tmR3TimerCallback, pVM); if (VBOX_FAILURE(rc)) { AssertMsgFailed(("Failed to create timer, u32Millies=%d rc=%Vrc.\n", u32Millies, rc)); return rc; } Log(("TM: Created timer %p firing every %d millieseconds\n", pVM->tm.s.pTimer, u32Millies)); pVM->tm.s.u32TimerMillies = u32Millies; #ifdef VBOX_WITH_STATISTICS /* * Register statistics. */ STAM_REG(pVM, &pVM->tm.s.StatDoQueues, STAMTYPE_PROFILE, "/TM/DoQueues", STAMUNIT_TICKS_PER_CALL, "Profiling timer TMR3TimerQueuesDo."); STAM_REG(pVM, &pVM->tm.s.StatDoQueuesSchedule, STAMTYPE_PROFILE_ADV, "/TM/DoQueues/Schedule",STAMUNIT_TICKS_PER_CALL, "The scheduling part."); STAM_REG(pVM, &pVM->tm.s.StatDoQueuesRun, STAMTYPE_PROFILE_ADV, "/TM/DoQueues/Run", STAMUNIT_TICKS_PER_CALL, "The run part."); STAM_REG(pVM, &pVM->tm.s.StatPollAlreadySet, STAMTYPE_COUNTER, "/TM/PollAlreadySet", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the FF was already set."); STAM_REG(pVM, &pVM->tm.s.StatPollVirtual, STAMTYPE_COUNTER, "/TM/PollHitsVirtual", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL queue."); STAM_REG(pVM, &pVM->tm.s.StatPollVirtualSync, STAMTYPE_COUNTER, "/TM/PollHitsVirtualSync",STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL_SYNC queue."); STAM_REG(pVM, &pVM->tm.s.StatPollMiss, STAMTYPE_COUNTER, "/TM/PollMiss", STAMUNIT_OCCURENCES, "TMTimerPoll calls where nothing had expired."); STAM_REG(pVM, &pVM->tm.s.StatPostponedR3, STAMTYPE_COUNTER, "/TM/PostponedR3", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-3."); STAM_REG(pVM, &pVM->tm.s.StatPostponedR0, STAMTYPE_COUNTER, "/TM/PostponedR0", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-0."); STAM_REG(pVM, &pVM->tm.s.StatPostponedGC, STAMTYPE_COUNTER, "/TM/PostponedGC", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in GC."); STAM_REG(pVM, &pVM->tm.s.StatScheduleOneGC, STAMTYPE_PROFILE, "/TM/ScheduleOneGC", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.\n"); STAM_REG(pVM, &pVM->tm.s.StatScheduleOneR0, STAMTYPE_PROFILE, "/TM/ScheduleOneR0", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.\n"); STAM_REG(pVM, &pVM->tm.s.StatScheduleOneR3, STAMTYPE_PROFILE, "/TM/ScheduleOneR3", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.\n"); STAM_REG(pVM, &pVM->tm.s.StatScheduleSetFF, STAMTYPE_COUNTER, "/TM/ScheduleSetFF", STAMUNIT_OCCURENCES, "The number of times the timer FF was set instead of doing scheduling."); STAM_REG(pVM, &pVM->tm.s.StatTimerSetGC, STAMTYPE_PROFILE, "/TM/TimerSetGC", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in GC."); STAM_REG(pVM, &pVM->tm.s.StatTimerSetR0, STAMTYPE_PROFILE, "/TM/TimerSetR0", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0."); STAM_REG(pVM, &pVM->tm.s.StatTimerSetR3, STAMTYPE_PROFILE, "/TM/TimerSetR3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3."); STAM_REG(pVM, &pVM->tm.s.StatTimerStopGC, STAMTYPE_PROFILE, "/TM/TimerStopGC", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in GC."); STAM_REG(pVM, &pVM->tm.s.StatTimerStopR0, STAMTYPE_PROFILE, "/TM/TimerStopR0", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-0."); STAM_REG(pVM, &pVM->tm.s.StatTimerStopR3, STAMTYPE_PROFILE, "/TM/TimerStopR3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-3."); STAM_REG(pVM, &pVM->tm.s.StatVirtualGet, STAMTYPE_COUNTER, "/TM/VirtualGet", STAMUNIT_OCCURENCES, "The number of times TMR3TimerGet was called when the clock was running."); STAM_REG(pVM, &pVM->tm.s.StatVirtualGetSync, STAMTYPE_COUNTER, "/TM/VirtualGetSync", STAMUNIT_OCCURENCES, "The number of times TMR3TimerGetSync was called when the clock was running."); STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/VirtualPause", STAMUNIT_OCCURENCES, "The number of times TMR3TimerPause was called."); STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/VirtualResume", STAMUNIT_OCCURENCES, "The number of times TMR3TimerResume was called."); STAM_REG(pVM, &pVM->tm.s.StatTimerCallbackSetFF,STAMTYPE_COUNTER, "/TM/CallbackSetFF", STAMUNIT_OCCURENCES, "The number of times the timer callback set FF."); #endif /* VBOX_WITH_STATISTICS */ /* * Register info handlers. */ DBGFR3InfoRegisterInternal(pVM, "timers", "Dumps all timers. No arguments.", tmR3TimerInfo); DBGFR3InfoRegisterInternal(pVM, "activetimers", "Dumps active all timers. No arguments.", tmR3TimerInfoActive); DBGFR3InfoRegisterInternal(pVM, "clocks", "Display the time of the various clocks.", tmR3InfoClocks); return VINF_SUCCESS; } /** * Calibrate the CPU tick. * * @returns Number of ticks per second. */ static uint64_t tmR3Calibrate(void) { /* * Use GIP when available present. */ uint64_t u64Hz; PCSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage; if ( pGip && pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC) { unsigned iCpu = pGip->u32Mode != SUPGIPMODE_ASYNC_TSC ? 0 : ASMGetApicId(); if (iCpu >= RT_ELEMENTS(pGip->aCPUs)) AssertReleaseMsgFailed(("iCpu=%d - the ApicId is too high. send VBox.log and hardware specs!\n", iCpu)); else { RTThreadSleep(32); /* To preserve old behaviour and to get a good CpuHz at startup. */ pGip = g_pSUPGlobalInfoPage; if ( pGip && pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC && (u64Hz = pGip->aCPUs[iCpu].u64CpuHz) && u64Hz != ~(uint64_t)0) return u64Hz; } } /* call this once first to make sure it's initialized. */ RTTimeNanoTS(); /* * Yield the CPU to increase our chances of getting * a correct value. */ RTThreadYield(); /* Try avoid interruptions between TSC and NanoTS samplings. */ static const unsigned s_auSleep[5] = { 50, 30, 30, 40, 40 }; uint64_t au64Samples[5]; unsigned i; for (i = 0; i < ELEMENTS(au64Samples); i++) { unsigned cMillies; int cTries = 5; uint64_t u64Start = ASMReadTSC(); uint64_t u64End; uint64_t StartTS = RTTimeNanoTS(); uint64_t EndTS; do { RTThreadSleep(s_auSleep[i]); u64End = ASMReadTSC(); EndTS = RTTimeNanoTS(); cMillies = (unsigned)((EndTS - StartTS + 500000) / 1000000); } while ( cMillies == 0 /* the sleep may be interrupted... */ || (cMillies < 20 && --cTries > 0)); uint64_t u64Diff = u64End - u64Start; au64Samples[i] = (u64Diff * 1000) / cMillies; AssertMsg(cTries > 0, ("cMillies=%d i=%d\n", cMillies, i)); } /* * Discard the highest and lowest results and calculate the average. */ unsigned iHigh = 0; unsigned iLow = 0; for (i = 1; i < ELEMENTS(au64Samples); i++) { if (au64Samples[i] < au64Samples[iLow]) iLow = i; if (au64Samples[i] > au64Samples[iHigh]) iHigh = i; } au64Samples[iLow] = 0; au64Samples[iHigh] = 0; u64Hz = au64Samples[0]; for (i = 1; i < ELEMENTS(au64Samples); i++) u64Hz += au64Samples[i]; u64Hz /= ELEMENTS(au64Samples) - 2; return u64Hz; } /** * Applies relocations to data and code managed by this * component. This function will be called at init and * whenever the VMM need to relocate it self inside the GC. * * @param pVM The VM. * @param offDelta Relocation delta relative to old location. */ TMR3DECL(void) TMR3Relocate(PVM pVM, RTGCINTPTR offDelta) { LogFlow(("TMR3Relocate\n")); pVM->tm.s.pvGIPGC = MMHyperR3ToGC(pVM, pVM->tm.s.pvGIPR3); pVM->tm.s.paTimerQueuesGC = MMHyperR3ToGC(pVM, pVM->tm.s.paTimerQueuesR3); pVM->tm.s.paTimerQueuesR0 = MMHyperR3ToR0(pVM, pVM->tm.s.paTimerQueuesR3); /* * Iterate the timers updating the pVMGC pointers. */ for (PTMTIMER pTimer = pVM->tm.s.pCreated; pTimer; pTimer = pTimer->pBigNext) { pTimer->pVMGC = pVM->pVMGC; pTimer->pVMR0 = (PVMR0)pVM->pVMHC; /// @todo pTimer->pVMR0 = pVM->pVMR0; } } /** * Terminates the TM. * * Termination means cleaning up and freeing all resources, * the VM it self is at this point powered off or suspended. * * @returns VBox status code. * @param pVM The VM to operate on. */ TMR3DECL(int) TMR3Term(PVM pVM) { AssertMsg(pVM->tm.s.offVM, ("bad init order!\n")); if (pVM->tm.s.pTimer) { int rc = RTTimerDestroy(pVM->tm.s.pTimer); AssertRC(rc); pVM->tm.s.pTimer = NULL; } return VINF_SUCCESS; } /** * The VM is being reset. * * For the TM component this means that a rescheduling is preformed, * the FF is cleared and but without running the queues. We'll have to * check if this makes sense or not, but it seems like a good idea now.... * * @param pVM VM handle. */ TMR3DECL(void) TMR3Reset(PVM pVM) { LogFlow(("TMR3Reset:\n")); VM_ASSERT_EMT(pVM); /* * Process the queues. */ for (int i = 0; i < TMCLOCK_MAX; i++) tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[i]); #ifdef VBOX_STRICT tmTimerQueuesSanityChecks(pVM, "TMR3Reset"); #endif VM_FF_CLEAR(pVM, VM_FF_TIMER); } /** * Resolve a builtin GC symbol. * Called by PDM when loading or relocating GC modules. * * @returns VBox status * @param pVM VM Handle. * @param pszSymbol Symbol to resolv * @param pGCPtrValue Where to store the symbol value. * @remark This has to work before TMR3Relocate() is called. */ TMR3DECL(int) TMR3GetImportGC(PVM pVM, const char *pszSymbol, PRTGCPTR pGCPtrValue) { if (!strcmp(pszSymbol, "g_pSUPGlobalInfoPage")) *pGCPtrValue = MMHyperHC2GC(pVM, &pVM->tm.s.pvGIPGC); //else if (..) else return VERR_SYMBOL_NOT_FOUND; return VINF_SUCCESS; } /** * Execute state save operation. * * @returns VBox status code. * @param pVM VM Handle. * @param pSSM SSM operation handle. */ static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM) { LogFlow(("tmR3Save:\n")); Assert(!pVM->tm.s.fTSCTicking); Assert(!pVM->tm.s.fVirtualTicking); Assert(!pVM->tm.s.fVirtualSyncTicking); /* * Save the virtual clocks. */ /* the virtual clock. */ SSMR3PutU64(pSSM, TMCLOCK_FREQ_VIRTUAL); SSMR3PutU64(pSSM, pVM->tm.s.u64Virtual); /* the virtual timer synchronous clock. */ SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSync); SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSyncOffset); SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSyncCatchUpPrev); SSMR3PutBool(pSSM, pVM->tm.s.fVirtualSyncCatchUp); /* real time clock */ SSMR3PutU64(pSSM, TMCLOCK_FREQ_REAL); /* the cpu tick clock. */ SSMR3PutU64(pSSM, TMCpuTickGet(pVM)); return SSMR3PutU64(pSSM, pVM->tm.s.cTSCTicksPerSecond); } /** * Execute state load operation. * * @returns VBox status code. * @param pVM VM Handle. * @param pSSM SSM operation handle. * @param u32Version Data layout version. */ static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version) { LogFlow(("tmR3Load:\n")); Assert(!pVM->tm.s.fTSCTicking); Assert(!pVM->tm.s.fVirtualTicking); Assert(!pVM->tm.s.fVirtualSyncTicking); /* * Validate version. */ if (u32Version != TM_SAVED_STATE_VERSION) { Log(("tmR3Load: Invalid version u32Version=%d!\n", u32Version)); return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION; } /* * Load the virtual clock. */ pVM->tm.s.fVirtualTicking = false; /* the virtual clock. */ uint64_t u64Hz; int rc = SSMR3GetU64(pSSM, &u64Hz); if (VBOX_FAILURE(rc)) return rc; if (u64Hz != TMCLOCK_FREQ_VIRTUAL) { AssertMsgFailed(("The virtual clock frequency differs! Saved: %RU64 Binary: %RU64\n", u64Hz, TMCLOCK_FREQ_VIRTUAL)); return VERR_SSM_VIRTUAL_CLOCK_HZ; } SSMR3GetU64(pSSM, &pVM->tm.s.u64Virtual); pVM->tm.s.u64VirtualOffset = 0; /* the virtual timer synchronous clock. */ pVM->tm.s.fVirtualSyncTicking = false; SSMR3GetU64(pSSM, &pVM->tm.s.u64VirtualSync); uint64_t u64; SSMR3GetU64(pSSM, &u64); pVM->tm.s.u64VirtualSyncOffset = u64; SSMR3GetU64(pSSM, &u64); pVM->tm.s.u64VirtualSyncCatchUpPrev = u64; bool f; SSMR3GetBool(pSSM, &f); pVM->tm.s.fVirtualSyncCatchUp = f; /* the real clock */ rc = SSMR3GetU64(pSSM, &u64Hz); if (VBOX_FAILURE(rc)) return rc; if (u64Hz != TMCLOCK_FREQ_REAL) { AssertMsgFailed(("The real clock frequency differs! Saved: %RU64 Binary: %RU64\n", u64Hz, TMCLOCK_FREQ_REAL)); return VERR_SSM_VIRTUAL_CLOCK_HZ; /* missleading... */ } /* the cpu tick clock. */ pVM->tm.s.fTSCTicking = false; SSMR3GetU64(pSSM, &pVM->tm.s.u64TSC); rc = SSMR3GetU64(pSSM, &u64Hz); if (VBOX_FAILURE(rc)) return rc; if (pVM->tm.s.fTSCUseRealTSC) pVM->tm.s.u64TSCOffset = 0; /** @todo TSC restore stuff and HWACC. */ else pVM->tm.s.cTSCTicksPerSecond = u64Hz; LogRel(("TM: cTSCTicksPerSecond=%#RX64 (%RU64) fTSCVirtualized=%RTbool fTSCUseRealTSC=%RTbool (state load)\n", pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.fTSCVirtualized, pVM->tm.s.fTSCUseRealTSC)); /* * Make sure timers get rescheduled immediately. */ VM_FF_SET(pVM, VM_FF_TIMER); return VINF_SUCCESS; } /** @todo doc */ static int tmr3TimerCreate(PVM pVM, TMCLOCK enmClock, const char *pszDesc, PPTMTIMERHC ppTimer) { VM_ASSERT_EMT(pVM); /* * Allocate the timer. */ PTMTIMERHC pTimer = NULL; if (pVM->tm.s.pFree && VM_IS_EMT(pVM)) { pTimer = pVM->tm.s.pFree; pVM->tm.s.pFree = pTimer->pBigNext; Log3(("TM: Recycling timer %p, new free head %p.\n", pTimer, pTimer->pBigNext)); } if (!pTimer) { int rc = MMHyperAlloc(pVM, sizeof(*pTimer), 0, MM_TAG_TM, (void **)&pTimer); if (VBOX_FAILURE(rc)) return rc; Log3(("TM: Allocated new timer %p\n", pTimer)); } /* * Initialize it. */ pTimer->u64Expire = 0; pTimer->enmClock = enmClock; pTimer->pVMR3 = pVM; pTimer->pVMR0 = (PVMR0)pVM->pVMHC; /// @todo pTimer->pVMR0 = pVM->pVMR0; pTimer->pVMGC = pVM->pVMGC; pTimer->enmState = TMTIMERSTATE_STOPPED; pTimer->offScheduleNext = 0; pTimer->offNext = 0; pTimer->offPrev = 0; pTimer->pszDesc = pszDesc; /* insert into the list of created timers. */ pTimer->pBigPrev = NULL; pTimer->pBigNext = pVM->tm.s.pCreated; pVM->tm.s.pCreated = pTimer; if (pTimer->pBigNext) pTimer->pBigNext->pBigPrev = pTimer; #ifdef VBOX_STRICT tmTimerQueuesSanityChecks(pVM, "tmR3TimerCreate"); #endif *ppTimer = pTimer; return VINF_SUCCESS; } /** * Creates a device timer. * * @returns VBox status. * @param pVM The VM to create the timer in. * @param pDevIns Device instance. * @param enmClock The clock to use on this timer. * @param pfnCallback Callback function. * @param pszDesc Pointer to description string which must stay around * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()). * @param ppTimer Where to store the timer on success. */ TMR3DECL(int) TMR3TimerCreateDevice(PVM pVM, PPDMDEVINS pDevIns, TMCLOCK enmClock, PFNTMTIMERDEV pfnCallback, const char *pszDesc, PPTMTIMERHC ppTimer) { /* * Allocate and init stuff. */ int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer); if (VBOX_SUCCESS(rc)) { (*ppTimer)->enmType = TMTIMERTYPE_DEV; (*ppTimer)->u.Dev.pfnTimer = pfnCallback; (*ppTimer)->u.Dev.pDevIns = pDevIns; Log(("TM: Created device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc)); } return rc; } /** * Creates a driver timer. * * @returns VBox status. * @param pVM The VM to create the timer in. * @param pDrvIns Driver instance. * @param enmClock The clock to use on this timer. * @param pfnCallback Callback function. * @param pszDesc Pointer to description string which must stay around * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()). * @param ppTimer Where to store the timer on success. */ TMR3DECL(int) TMR3TimerCreateDriver(PVM pVM, PPDMDRVINS pDrvIns, TMCLOCK enmClock, PFNTMTIMERDRV pfnCallback, const char *pszDesc, PPTMTIMERHC ppTimer) { /* * Allocate and init stuff. */ int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer); if (VBOX_SUCCESS(rc)) { (*ppTimer)->enmType = TMTIMERTYPE_DRV; (*ppTimer)->u.Drv.pfnTimer = pfnCallback; (*ppTimer)->u.Drv.pDrvIns = pDrvIns; Log(("TM: Created device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc)); } return rc; } /** * Creates an internal timer. * * @returns VBox status. * @param pVM The VM to create the timer in. * @param enmClock The clock to use on this timer. * @param pfnCallback Callback function. * @param pvUser User argument to be passed to the callback. * @param pszDesc Pointer to description string which must stay around * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()). * @param ppTimer Where to store the timer on success. */ TMR3DECL(int) TMR3TimerCreateInternal(PVM pVM, TMCLOCK enmClock, PFNTMTIMERINT pfnCallback, void *pvUser, const char *pszDesc, PPTMTIMERHC ppTimer) { /* * Allocate and init stuff. */ PTMTIMER pTimer; int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, &pTimer); if (VBOX_SUCCESS(rc)) { pTimer->enmType = TMTIMERTYPE_INTERNAL; pTimer->u.Internal.pfnTimer = pfnCallback; pTimer->u.Internal.pvUser = pvUser; *ppTimer = pTimer; Log(("TM: Created internal timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszDesc)); } return rc; } /** * Creates an external timer. * * @returns Timer handle on success. * @returns NULL on failure. * @param pVM The VM to create the timer in. * @param enmClock The clock to use on this timer. * @param pfnCallback Callback function. * @param pvUser User argument. * @param pszDesc Pointer to description string which must stay around * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()). */ TMR3DECL(PTMTIMERHC) TMR3TimerCreateExternal(PVM pVM, TMCLOCK enmClock, PFNTMTIMEREXT pfnCallback, void *pvUser, const char *pszDesc) { /* * Allocate and init stuff. */ PTMTIMERHC pTimer; int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, &pTimer); if (VBOX_SUCCESS(rc)) { pTimer->enmType = TMTIMERTYPE_EXTERNAL; pTimer->u.External.pfnTimer = pfnCallback; pTimer->u.External.pvUser = pvUser; Log(("TM: Created external timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszDesc)); return pTimer; } return NULL; } /** * Destroy all timers owned by a device. * * @returns VBox status. * @param pVM VM handle. * @param pDevIns Device which timers should be destroyed. */ TMR3DECL(int) TMR3TimerDestroyDevice(PVM pVM, PPDMDEVINS pDevIns) { LogFlow(("TMR3TimerDestroyDevice: pDevIns=%p\n", pDevIns)); if (!pDevIns) return VERR_INVALID_PARAMETER; PTMTIMER pCur = pVM->tm.s.pCreated; while (pCur) { PTMTIMER pDestroy = pCur; pCur = pDestroy->pBigNext; if ( pDestroy->enmType == TMTIMERTYPE_DEV && pDestroy->u.Dev.pDevIns == pDevIns) { int rc = TMTimerDestroy(pDestroy); AssertRC(rc); } } LogFlow(("TMR3TimerDestroyDevice: returns VINF_SUCCESS\n")); return VINF_SUCCESS; } /** * Destroy all timers owned by a driver. * * @returns VBox status. * @param pVM VM handle. * @param pDrvIns Driver which timers should be destroyed. */ TMR3DECL(int) TMR3TimerDestroyDriver(PVM pVM, PPDMDRVINS pDrvIns) { LogFlow(("TMR3TimerDestroyDriver: pDrvIns=%p\n", pDrvIns)); if (!pDrvIns) return VERR_INVALID_PARAMETER; PTMTIMER pCur = pVM->tm.s.pCreated; while (pCur) { PTMTIMER pDestroy = pCur; pCur = pDestroy->pBigNext; if ( pDestroy->enmType == TMTIMERTYPE_DRV && pDestroy->u.Drv.pDrvIns == pDrvIns) { int rc = TMTimerDestroy(pDestroy); AssertRC(rc); } } LogFlow(("TMR3TimerDestroyDriver: returns VINF_SUCCESS\n")); return VINF_SUCCESS; } /** * Checks if a queue has a pending timer. * * @returns true if it has a pending timer. * @returns false is no pending timer. * * @param pVM The VM handle. * @param enmClock The queue. */ DECLINLINE(bool) tmR3HasPending(PVM pVM, TMCLOCK enmClock) { const uint64_t u64Expire = pVM->tm.s.CTXALLSUFF(paTimerQueues)[enmClock].u64Expire; return u64Expire != INT64_MAX && u64Expire <= tmClock(pVM, enmClock); } /** * Schedulation timer callback. * * @param pTimer Timer handle. * @param pvUser VM handle. * @remark We cannot do the scheduling and queues running from a timer handler * since it's not executing in EMT, and even if it was it would be async * and we wouldn't know the state of the affairs. * So, we'll just raise the timer FF and force any REM execution to exit. */ static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser) { PVM pVM = (PVM)pvUser; AssertCompile(TMCLOCK_MAX == 4); #ifdef DEBUG_Sander /* very annoying, keep it private. */ if (VM_FF_ISSET(pVM, VM_FF_TIMER)) Log(("tmR3TimerCallback: timer event still pending!!\n")); #endif if ( !VM_FF_ISSET(pVM, VM_FF_TIMER) && ( pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule || pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].offSchedule || pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].offSchedule || pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].offSchedule || tmR3HasPending(pVM, TMCLOCK_VIRTUAL_SYNC) || tmR3HasPending(pVM, TMCLOCK_VIRTUAL) || tmR3HasPending(pVM, TMCLOCK_REAL) || tmR3HasPending(pVM, TMCLOCK_TSC) ) && !VM_FF_ISSET(pVM, VM_FF_TIMER) ) { VM_FF_SET(pVM, VM_FF_TIMER); REMR3NotifyTimerPending(pVM); VMR3NotifyFF(pVM, true); STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallbackSetFF); } } /** * Schedules and runs any pending timers. * * This is normally called from a forced action handler in EMT. * * @param pVM The VM to run the timers for. */ TMR3DECL(void) TMR3TimerQueuesDo(PVM pVM) { STAM_PROFILE_START(&pVM->tm.s.StatDoQueues, a); Log2(("TMR3TimerQueuesDo:\n")); /* * Process the queues. */ AssertCompile(TMCLOCK_MAX == 4); /* TMCLOCK_VIRTUAL */ STAM_PROFILE_ADV_START(&pVM->tm.s.StatDoQueuesSchedule, s1); tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL]); STAM_PROFILE_ADV_SUSPEND(&pVM->tm.s.StatDoQueuesSchedule, s1); STAM_PROFILE_ADV_START(&pVM->tm.s.StatDoQueuesRun, r1); tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL]); STAM_PROFILE_ADV_SUSPEND(&pVM->tm.s.StatDoQueuesRun, r1); /* TMCLOCK_VIRTUAL_SYNC */ STAM_PROFILE_ADV_RESUME(&pVM->tm.s.StatDoQueuesSchedule, s1); tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC]); STAM_PROFILE_ADV_SUSPEND(&pVM->tm.s.StatDoQueuesSchedule, s2); STAM_PROFILE_ADV_RESUME(&pVM->tm.s.StatDoQueuesRun, r1); tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC]); STAM_PROFILE_ADV_SUSPEND(&pVM->tm.s.StatDoQueuesRun, r2); /* TMCLOCK_REAL */ STAM_PROFILE_ADV_RESUME(&pVM->tm.s.StatDoQueuesSchedule, s2); tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL]); STAM_PROFILE_ADV_SUSPEND(&pVM->tm.s.StatDoQueuesSchedule, s3); STAM_PROFILE_ADV_RESUME(&pVM->tm.s.StatDoQueuesRun, r2); tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL]); STAM_PROFILE_ADV_SUSPEND(&pVM->tm.s.StatDoQueuesRun, r3); /* TMCLOCK_TSC */ STAM_PROFILE_ADV_RESUME(&pVM->tm.s.StatDoQueuesSchedule, s3); tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC]); STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatDoQueuesSchedule, s3); STAM_PROFILE_ADV_RESUME(&pVM->tm.s.StatDoQueuesRun, r3); tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC]); STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatDoQueuesRun, r3); /* done. */ VM_FF_CLEAR(pVM, VM_FF_TIMER); #ifdef VBOX_STRICT /* check that we didn't screwup. */ tmTimerQueuesSanityChecks(pVM, "TMR3TimerQueuesDo"); #endif Log2(("TMR3TimerQueuesDo: returns void\n")); STAM_PROFILE_STOP(&pVM->tm.s.StatDoQueues, a); } /** * Schedules and runs any pending times in the specified queue. * * This is normally called from a forced action handler in EMT. * * @param pVM The VM to run the timers for. * @param pQueue The queue to run. */ static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue) { VM_ASSERT_EMT(pVM); /* * Run timers. * * We check the clock once and run all timers which are ACTIVE * and have an expire time less or equal to the time we read. * * N.B. A generic unlink must be applied since other threads * are allowed to mess with any active timer at any time. * However, we only allow EMT to handle EXPIRED_PENDING * timers, thus enabling the timer handler function to * arm the timer again. */ PTMTIMER pNext = TMTIMER_GET_HEAD(pQueue); if (!pNext) return; /** @todo deal with the VIRTUAL_SYNC pausing and catch calcs ++ */ uint64_t u64Now = tmClock(pVM, pQueue->enmClock); while (pNext && pNext->u64Expire <= u64Now) { PTMTIMER pTimer = pNext; pNext = TMTIMER_GET_NEXT(pTimer); Log2(("tmR3TimerQueueRun: pTimer=%p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .pszDesc=%s}\n", pTimer, tmTimerState(pTimer->enmState), pTimer->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->pszDesc)); bool fRc; TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED, TMTIMERSTATE_ACTIVE, fRc); if (fRc) { Assert(!pTimer->offScheduleNext); /* this can trigger falsely */ /* unlink */ const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer); if (pPrev) TMTIMER_SET_NEXT(pPrev, pNext); else { TMTIMER_SET_HEAD(pQueue, pNext); pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX; } if (pNext) TMTIMER_SET_PREV(pNext, pPrev); pTimer->offNext = 0; pTimer->offPrev = 0; /* fire */ switch (pTimer->enmType) { case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer); break; case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer); break; case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer, pTimer->u.Internal.pvUser); break; case TMTIMERTYPE_EXTERNAL: pTimer->u.External.pfnTimer(pTimer->u.External.pvUser); break; default: AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->pszDesc)); break; } /* change the state if it wasn't changed already in the handler. */ TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED, fRc); Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState))); } } /* run loop */ } /** * Saves the state of a timer to a saved state. * * @returns VBox status. * @param pTimer Timer to save. * @param pSSM Save State Manager handle. */ TMR3DECL(int) TMR3TimerSave(PTMTIMERHC pTimer, PSSMHANDLE pSSM) { LogFlow(("TMR3TimerSave: pTimer=%p:{enmState=%s, .pszDesc={%s}} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->pszDesc, pSSM)); switch (pTimer->enmState) { case TMTIMERSTATE_STOPPED: case TMTIMERSTATE_PENDING_STOP: case TMTIMERSTATE_PENDING_STOP_SCHEDULE: return SSMR3PutU8(pSSM, (uint8_t)TMTIMERSTATE_PENDING_STOP); case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE: case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE: AssertMsgFailed(("u64Expire is being updated! (%s)\n", pTimer->pszDesc)); if (!RTThreadYield()) RTThreadSleep(1); /* fall thru */ case TMTIMERSTATE_ACTIVE: case TMTIMERSTATE_PENDING_SCHEDULE: case TMTIMERSTATE_PENDING_RESCHEDULE: SSMR3PutU8(pSSM, (uint8_t)TMTIMERSTATE_PENDING_SCHEDULE); return SSMR3PutU64(pSSM, pTimer->u64Expire); case TMTIMERSTATE_EXPIRED: case TMTIMERSTATE_PENDING_DESTROY: case TMTIMERSTATE_PENDING_STOP_DESTROY: case TMTIMERSTATE_FREE: AssertMsgFailed(("Invalid timer state %d %s (%s)\n", pTimer->enmState, tmTimerState(pTimer->enmState), pTimer->pszDesc)); return SSMR3HandleSetStatus(pSSM, VERR_TM_INVALID_STATE); } AssertMsgFailed(("Unknown timer state %d (%s)\n", pTimer->enmState, pTimer->pszDesc)); return SSMR3HandleSetStatus(pSSM, VERR_TM_UNKNOWN_STATE); } /** * Loads the state of a timer from a saved state. * * @returns VBox status. * @param pTimer Timer to restore. * @param pSSM Save State Manager handle. */ TMR3DECL(int) TMR3TimerLoad(PTMTIMERHC pTimer, PSSMHANDLE pSSM) { Assert(pTimer); Assert(pSSM); VM_ASSERT_EMT(pTimer->pVMR3); LogFlow(("TMR3TimerLoad: pTimer=%p:{enmState=%s, .pszDesc={%s}} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->pszDesc, pSSM)); /* * Load the state and validate it. */ uint8_t u8State; int rc = SSMR3GetU8(pSSM, &u8State); if (VBOX_FAILURE(rc)) return rc; TMTIMERSTATE enmState = (TMTIMERSTATE)u8State; if ( enmState != TMTIMERSTATE_PENDING_STOP && enmState != TMTIMERSTATE_PENDING_SCHEDULE && enmState != TMTIMERSTATE_PENDING_STOP_SCHEDULE) { AssertMsgFailed(("enmState=%d %s\n", enmState, tmTimerState(enmState))); return SSMR3HandleSetStatus(pSSM, VERR_TM_LOAD_STATE); } if (enmState == TMTIMERSTATE_PENDING_SCHEDULE) { /* * Load the expire time. */ uint64_t u64Expire; rc = SSMR3GetU64(pSSM, &u64Expire); if (VBOX_FAILURE(rc)) return rc; /* * Set it. */ Log(("enmState=%d %s u64Expire=%llu\n", enmState, tmTimerState(enmState), u64Expire)); rc = TMTimerSet(pTimer, u64Expire); } else { /* * Stop it. */ Log(("enmState=%d %s\n", enmState, tmTimerState(enmState))); rc = TMTimerStop(pTimer); } /* * On failure set SSM status. */ if (VBOX_FAILURE(rc)) rc = SSMR3HandleSetStatus(pSSM, rc); return rc; } /** * Display all timers. * * @param pVM VM Handle. * @param pHlp The info helpers. * @param pszArgs Arguments, ignored. */ static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs) { NOREF(pszArgs); pHlp->pfnPrintf(pHlp, "Timers (pVM=%p)\n" "%.*s %.*s %.*s %.*s Clock %-18s %-18s %-25s Description\n", pVM, sizeof(RTR3PTR) * 2, "pTimerR3 ", sizeof(int32_t) * 2, "offNext ", sizeof(int32_t) * 2, "offPrev ", sizeof(int32_t) * 2, "offSched ", "Time", "Expire", "State"); for (PTMTIMERHC pTimer = pVM->tm.s.pCreated; pTimer; pTimer = pTimer->pBigNext) { pHlp->pfnPrintf(pHlp, "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %-25s %s\n", pTimer, pTimer->offNext, pTimer->offPrev, pTimer->offScheduleNext, pTimer->enmClock == TMCLOCK_REAL ? "Real " : "Virt ", TMTimerGet(pTimer), pTimer->u64Expire, tmTimerState(pTimer->enmState), pTimer->pszDesc); } } /** * Display all active timers. * * @param pVM VM Handle. * @param pHlp The info helpers. * @param pszArgs Arguments, ignored. */ static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs) { NOREF(pszArgs); pHlp->pfnPrintf(pHlp, "Active Timers (pVM=%p)\n" "%.*s %.*s %.*s %.*s Clock %-18s %-18s %-25s Description\n", pVM, sizeof(RTR3PTR) * 2, "pTimerR3 ", sizeof(int32_t) * 2, "offNext ", sizeof(int32_t) * 2, "offPrev ", sizeof(int32_t) * 2, "offSched ", "Time", "Expire", "State"); for (unsigned iQueue = 0; iQueue < TMCLOCK_MAX; iQueue++) { for (PTMTIMERHC pTimer = TMTIMER_GET_HEAD(&pVM->tm.s.paTimerQueuesR3[iQueue]); pTimer; pTimer = TMTIMER_GET_NEXT(pTimer)) { pHlp->pfnPrintf(pHlp, "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %-25s %s\n", pTimer, pTimer->offNext, pTimer->offPrev, pTimer->offScheduleNext, pTimer->enmClock == TMCLOCK_REAL ? "Real " : "Virt ", TMTimerGet(pTimer), pTimer->u64Expire, tmTimerState(pTimer->enmState), pTimer->pszDesc); } } } /** * Display all clocks. * * @param pVM VM Handle. * @param pHlp The info helpers. * @param pszArgs Arguments, ignored. */ static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs) { NOREF(pszArgs); /* TSC */ uint64_t u64 = TMCpuTickGet(pVM); pHlp->pfnPrintf(pHlp, "Cpu Tick: %#RX64 (%RU64) %RU64Hz %s%s", u64, u64, TMCpuTicksPerSecond(pVM), pVM->tm.s.fTSCTicking ? "ticking" : "paused", pVM->tm.s.fTSCVirtualized ? " - virtualized" : ""); if (pVM->tm.s.fTSCUseRealTSC) { pHlp->pfnPrintf(pHlp, " - real tsc"); if (pVM->tm.s.u64TSCOffset) pHlp->pfnPrintf(pHlp, "\n offset %#RX64", pVM->tm.s.u64TSCOffset); } else pHlp->pfnPrintf(pHlp, " - virtual clock"); pHlp->pfnPrintf(pHlp, "\n"); /* virtual */ u64 = TMVirtualGet(pVM); pHlp->pfnPrintf(pHlp, " Virtual: %#RX64 (%RU64) %RU64Hz %s", u64, u64, TMVirtualGetFreq(pVM), pVM->tm.s.fVirtualTicking ? "ticking" : "paused"); if (pVM->tm.s.fVirtualWarpDrive) pHlp->pfnPrintf(pHlp, " WarpDrive %RU32 %%", pVM->tm.s.u32VirtualWarpDrivePercentage); pHlp->pfnPrintf(pHlp, "\n"); /* virtual sync */ u64 = TMVirtualGetSync(pVM); pHlp->pfnPrintf(pHlp, "VirtSync: %#RX64 (%RU64) %s%s", u64, u64, pVM->tm.s.fVirtualSyncTicking ? "ticking" : "paused", pVM->tm.s.fVirtualSyncCatchUp ? " - catchup" : ""); if (pVM->tm.s.u64VirtualSyncOffset) pHlp->pfnPrintf(pHlp, "\n offset %#RX64", pVM->tm.s.u64VirtualSyncOffset); pHlp->pfnPrintf(pHlp, "\n"); /* real */ u64 = TMRealGet(pVM); pHlp->pfnPrintf(pHlp, " Real: %#RX64 (%RU64) %RU64Hz\n", u64, u64, TMRealGetFreq(pVM)); }