VirtualBox

source: vbox/trunk/src/VBox/VMM/TM.cpp@ 22299

Last change on this file since 22299 was 22242, checked in by vboxsync, 15 years ago

Made TSC underflow checking more generic.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 115.9 KB
Line 
1/* $Id: TM.cpp 22242 2009-08-13 15:38:35Z vboxsync $ */
2/** @file
3 * TM - Time Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22/** @page pg_tm TM - The Time Manager
23 *
24 * The Time Manager abstracts the CPU clocks and manages timers used by the VMM,
25 * device and drivers.
26 *
27 * @see grp_tm
28 *
29 *
30 * @section sec_tm_clocks Clocks
31 *
32 * There are currently 4 clocks:
33 * - Virtual (guest).
34 * - Synchronous virtual (guest).
35 * - CPU Tick (TSC) (guest). Only current use is rdtsc emulation. Usually a
36 * function of the virtual clock.
37 * - Real (host). This is only used for display updates atm.
38 *
39 * The most important clocks are the three first ones and of these the second is
40 * the most interesting.
41 *
42 *
43 * The synchronous virtual clock is tied to the virtual clock except that it
44 * will take into account timer delivery lag caused by host scheduling. It will
45 * normally never advance beyond the head timer, and when lagging too far behind
46 * it will gradually speed up to catch up with the virtual clock. All devices
47 * implementing time sources accessible to and used by the guest is using this
48 * clock (for timers and other things). This ensures consistency between the
49 * time sources.
50 *
51 * The virtual clock is implemented as an offset to a monotonic, high
52 * resolution, wall clock. The current time source is using the RTTimeNanoTS()
53 * machinery based upon the Global Info Pages (GIP), that is, we're using TSC
54 * deltas (usually 10 ms) to fill the gaps between GIP updates. The result is
55 * a fairly high res clock that works in all contexts and on all hosts. The
56 * virtual clock is paused when the VM isn't in the running state.
57 *
58 * The CPU tick (TSC) is normally virtualized as a function of the synchronous
59 * virtual clock, where the frequency defaults to the host cpu frequency (as we
60 * measure it). In this mode it is possible to configure the frequency. Another
61 * (non-default) option is to use the raw unmodified host TSC values. And yet
62 * another, to tie it to time spent executing guest code. All these things are
63 * configurable should non-default behavior be desirable.
64 *
65 * The real clock is a monotonic clock (when available) with relatively low
66 * resolution, though this a bit host specific. Note that we're currently not
67 * servicing timers using the real clock when the VM is not running, this is
68 * simply because it has not been needed yet therefore not implemented.
69 *
70 *
71 * @subsection subsec_tm_timesync Guest Time Sync / UTC time
72 *
73 * Guest time syncing is primarily taken care of by the VMM device. The
74 * principle is very simple, the guest additions periodically asks the VMM
75 * device what the current UTC time is and makes adjustments accordingly.
76 *
77 * A complicating factor is that the synchronous virtual clock might be doing
78 * catchups and the guest perception is currently a little bit behind the world
79 * but it will (hopefully) be catching up soon as we're feeding timer interrupts
80 * at a slightly higher rate. Adjusting the guest clock to the current wall
81 * time in the real world would be a bad idea then because the guest will be
82 * advancing too fast and run ahead of world time (if the catchup works out).
83 * To solve this problem TM provides the VMM device with an UTC time source that
84 * gets adjusted with the current lag, so that when the guest eventually catches
85 * up the lag it will be showing correct real world time.
86 *
87 *
88 * @section sec_tm_timers Timers
89 *
90 * The timers can use any of the TM clocks described in the previous section.
91 * Each clock has its own scheduling facility, or timer queue if you like.
92 * There are a few factors which makes it a bit complex. First, there is the
93 * usual R0 vs R3 vs. RC thing. Then there are multiple threads, and then there
94 * is the timer thread that periodically checks whether any timers has expired
95 * without EMT noticing. On the API level, all but the create and save APIs
96 * must be mulithreaded. EMT will always run the timers.
97 *
98 * The design is using a doubly linked list of active timers which is ordered
99 * by expire date. This list is only modified by the EMT thread. Updates to
100 * the list are batched in a singly linked list, which is then processed by the
101 * EMT thread at the first opportunity (immediately, next time EMT modifies a
102 * timer on that clock, or next timer timeout). Both lists are offset based and
103 * all the elements are therefore allocated from the hyper heap.
104 *
105 * For figuring out when there is need to schedule and run timers TM will:
106 * - Poll whenever somebody queries the virtual clock.
107 * - Poll the virtual clocks from the EM and REM loops.
108 * - Poll the virtual clocks from trap exit path.
109 * - Poll the virtual clocks and calculate first timeout from the halt loop.
110 * - Employ a thread which periodically (100Hz) polls all the timer queues.
111 *
112 *
113 * @image html TMTIMER-Statechart-Diagram.gif
114 *
115 * @section sec_tm_timer Logging
116 *
117 * Level 2: Logs a most of the timer state transitions and queue servicing.
118 * Level 3: Logs a few oddments.
119 * Level 4: Logs TMCLOCK_VIRTUAL_SYNC catch-up events.
120 *
121 */
122
123/*******************************************************************************
124* Header Files *
125*******************************************************************************/
126#define LOG_GROUP LOG_GROUP_TM
127#include <VBox/tm.h>
128#include <VBox/vmm.h>
129#include <VBox/mm.h>
130#include <VBox/ssm.h>
131#include <VBox/dbgf.h>
132#include <VBox/rem.h>
133#include <VBox/pdm.h>
134#include "TMInternal.h"
135#include <VBox/vm.h>
136
137#include <VBox/param.h>
138#include <VBox/err.h>
139
140#include <VBox/log.h>
141#include <iprt/asm.h>
142#include <iprt/assert.h>
143#include <iprt/thread.h>
144#include <iprt/time.h>
145#include <iprt/timer.h>
146#include <iprt/semaphore.h>
147#include <iprt/string.h>
148#include <iprt/env.h>
149
150
151/*******************************************************************************
152* Defined Constants And Macros *
153*******************************************************************************/
154/** The current saved state version.*/
155#define TM_SAVED_STATE_VERSION 3
156
157
158/*******************************************************************************
159* Internal Functions *
160*******************************************************************************/
161static bool tmR3HasFixedTSC(PVM pVM);
162static uint64_t tmR3CalibrateTSC(PVM pVM);
163static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM);
164static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
165static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
166static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue);
167static void tmR3TimerQueueRunVirtualSync(PVM pVM);
168static DECLCALLBACK(int) tmR3SetWarpDrive(PVM pVM, uint32_t u32Percent);
169static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
170static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
171static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
172
173
174/**
175 * Initializes the TM.
176 *
177 * @returns VBox status code.
178 * @param pVM The VM to operate on.
179 */
180VMMR3DECL(int) TMR3Init(PVM pVM)
181{
182 LogFlow(("TMR3Init:\n"));
183
184 /*
185 * Assert alignment and sizes.
186 */
187 AssertCompileMemberAlignment(VM, tm.s, 32);
188 AssertCompile(sizeof(pVM->tm.s) <= sizeof(pVM->tm.padding));
189 AssertCompileMemberAlignment(TM, TimerCritSect, 8);
190 AssertCompileMemberAlignment(TM, VirtualSyncLock, 8);
191
192 /*
193 * Init the structure.
194 */
195 void *pv;
196 int rc = MMHyperAlloc(pVM, sizeof(pVM->tm.s.paTimerQueuesR3[0]) * TMCLOCK_MAX, 0, MM_TAG_TM, &pv);
197 AssertRCReturn(rc, rc);
198 pVM->tm.s.paTimerQueuesR3 = (PTMTIMERQUEUE)pv;
199 pVM->tm.s.paTimerQueuesR0 = MMHyperR3ToR0(pVM, pv);
200 pVM->tm.s.paTimerQueuesRC = MMHyperR3ToRC(pVM, pv);
201
202 pVM->tm.s.offVM = RT_OFFSETOF(VM, tm.s);
203 pVM->tm.s.idTimerCpu = pVM->cCPUs - 1; /* The last CPU. */
204 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].enmClock = TMCLOCK_VIRTUAL;
205 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].u64Expire = INT64_MAX;
206 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].enmClock = TMCLOCK_VIRTUAL_SYNC;
207 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].u64Expire = INT64_MAX;
208 pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].enmClock = TMCLOCK_REAL;
209 pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].u64Expire = INT64_MAX;
210 pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].enmClock = TMCLOCK_TSC;
211 pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].u64Expire = INT64_MAX;
212
213
214 /*
215 * We directly use the GIP to calculate the virtual time. We map the
216 * the GIP into the guest context so we can do this calculation there
217 * as well and save costly world switches.
218 */
219 pVM->tm.s.pvGIPR3 = (void *)g_pSUPGlobalInfoPage;
220 AssertMsgReturn(pVM->tm.s.pvGIPR3, ("GIP support is now required!\n"), VERR_INTERNAL_ERROR);
221 RTHCPHYS HCPhysGIP;
222 rc = SUPR3GipGetPhys(&HCPhysGIP);
223 AssertMsgRCReturn(rc, ("Failed to get GIP physical address!\n"), rc);
224
225 RTGCPTR GCPtr;
226 rc = MMR3HyperMapHCPhys(pVM, pVM->tm.s.pvGIPR3, NIL_RTR0PTR, HCPhysGIP, PAGE_SIZE, "GIP", &GCPtr);
227 if (RT_FAILURE(rc))
228 {
229 AssertMsgFailed(("Failed to map GIP into GC, rc=%Rrc!\n", rc));
230 return rc;
231 }
232 pVM->tm.s.pvGIPRC = GCPtr;
233 LogFlow(("TMR3Init: HCPhysGIP=%RHp at %RRv\n", HCPhysGIP, pVM->tm.s.pvGIPRC));
234 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
235
236 /* Check assumptions made in TMAllVirtual.cpp about the GIP update interval. */
237 if ( g_pSUPGlobalInfoPage->u32Magic == SUPGLOBALINFOPAGE_MAGIC
238 && g_pSUPGlobalInfoPage->u32UpdateIntervalNS >= 250000000 /* 0.25s */)
239 return VMSetError(pVM, VERR_INTERNAL_ERROR, RT_SRC_POS,
240 N_("The GIP update interval is too big. u32UpdateIntervalNS=%RU32 (u32UpdateHz=%RU32)"),
241 g_pSUPGlobalInfoPage->u32UpdateIntervalNS, g_pSUPGlobalInfoPage->u32UpdateHz);
242 LogRel(("TM: GIP - u32Mode=%d (%s) u32UpdateHz=%u\n", g_pSUPGlobalInfoPage->u32Mode,
243 g_pSUPGlobalInfoPage->u32Mode == SUPGIPMODE_SYNC_TSC ? "SyncTSC"
244 : g_pSUPGlobalInfoPage->u32Mode == SUPGIPMODE_ASYNC_TSC ? "AsyncTSC" : "Unknown",
245 g_pSUPGlobalInfoPage->u32UpdateHz));
246
247 /*
248 * Setup the VirtualGetRaw backend.
249 */
250 pVM->tm.s.VirtualGetRawDataR3.pu64Prev = &pVM->tm.s.u64VirtualRawPrev;
251 pVM->tm.s.VirtualGetRawDataR3.pfnBad = tmVirtualNanoTSBad;
252 pVM->tm.s.VirtualGetRawDataR3.pfnRediscover = tmVirtualNanoTSRediscover;
253 if (ASMCpuId_EDX(1) & X86_CPUID_FEATURE_EDX_SSE2)
254 {
255 if (g_pSUPGlobalInfoPage->u32Mode == SUPGIPMODE_SYNC_TSC)
256 pVM->tm.s.pfnVirtualGetRawR3 = RTTimeNanoTSLFenceSync;
257 else
258 pVM->tm.s.pfnVirtualGetRawR3 = RTTimeNanoTSLFenceAsync;
259 }
260 else
261 {
262 if (g_pSUPGlobalInfoPage->u32Mode == SUPGIPMODE_SYNC_TSC)
263 pVM->tm.s.pfnVirtualGetRawR3 = RTTimeNanoTSLegacySync;
264 else
265 pVM->tm.s.pfnVirtualGetRawR3 = RTTimeNanoTSLegacyAsync;
266 }
267
268 pVM->tm.s.VirtualGetRawDataRC.pu64Prev = MMHyperR3ToRC(pVM, (void *)&pVM->tm.s.u64VirtualRawPrev);
269 pVM->tm.s.VirtualGetRawDataR0.pu64Prev = MMHyperR3ToR0(pVM, (void *)&pVM->tm.s.u64VirtualRawPrev);
270 AssertReturn(pVM->tm.s.VirtualGetRawDataR0.pu64Prev, VERR_INTERNAL_ERROR);
271 /* The rest is done in TMR3InitFinalize since it's too early to call PDM. */
272
273 /*
274 * Init the locks.
275 */
276 rc = PDMR3CritSectInit(pVM, &pVM->tm.s.TimerCritSect, "TM Timer Lock");
277 if (RT_FAILURE(rc))
278 return rc;
279 rc = PDMR3CritSectInit(pVM, &pVM->tm.s.VirtualSyncLock, "TM VirtualSync Lock");
280 if (RT_FAILURE(rc))
281 return rc;
282
283 /*
284 * Get our CFGM node, create it if necessary.
285 */
286 PCFGMNODE pCfgHandle = CFGMR3GetChild(CFGMR3GetRoot(pVM), "TM");
287 if (!pCfgHandle)
288 {
289 rc = CFGMR3InsertNode(CFGMR3GetRoot(pVM), "TM", &pCfgHandle);
290 AssertRCReturn(rc, rc);
291 }
292
293 /*
294 * Determin the TSC configuration and frequency.
295 */
296 /* mode */
297 /** @cfgm{/TM/TSCVirtualized,bool,true}
298 * Use a virtualize TSC, i.e. trap all TSC access. */
299 rc = CFGMR3QueryBool(pCfgHandle, "TSCVirtualized", &pVM->tm.s.fTSCVirtualized);
300 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
301 pVM->tm.s.fTSCVirtualized = true; /* trap rdtsc */
302 else if (RT_FAILURE(rc))
303 return VMSetError(pVM, rc, RT_SRC_POS,
304 N_("Configuration error: Failed to querying bool value \"UseRealTSC\""));
305
306 /* source */
307 /** @cfgm{/TM/UseRealTSC,bool,false}
308 * Use the real TSC as time source for the TSC instead of the synchronous
309 * virtual clock (false, default). */
310 rc = CFGMR3QueryBool(pCfgHandle, "UseRealTSC", &pVM->tm.s.fTSCUseRealTSC);
311 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
312 pVM->tm.s.fTSCUseRealTSC = false; /* use virtual time */
313 else if (RT_FAILURE(rc))
314 return VMSetError(pVM, rc, RT_SRC_POS,
315 N_("Configuration error: Failed to querying bool value \"UseRealTSC\""));
316 if (!pVM->tm.s.fTSCUseRealTSC)
317 pVM->tm.s.fTSCVirtualized = true;
318
319 /* TSC reliability */
320 /** @cfgm{/TM/MaybeUseOffsettedHostTSC,bool,detect}
321 * Whether the CPU has a fixed TSC rate and may be used in offsetted mode with
322 * VT-x/AMD-V execution. This is autodetected in a very restrictive way by
323 * default. */
324 rc = CFGMR3QueryBool(pCfgHandle, "MaybeUseOffsettedHostTSC", &pVM->tm.s.fMaybeUseOffsettedHostTSC);
325 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
326 {
327 if (!pVM->tm.s.fTSCUseRealTSC)
328 pVM->tm.s.fMaybeUseOffsettedHostTSC = tmR3HasFixedTSC(pVM);
329 else
330 pVM->tm.s.fMaybeUseOffsettedHostTSC = true;
331 }
332
333 /** @cfgm{TM/TSCTicksPerSecond, uint32_t, Current TSC frequency from GIP}
334 * The number of TSC ticks per second (i.e. the TSC frequency). This will
335 * override TSCUseRealTSC, TSCVirtualized and MaybeUseOffsettedHostTSC.
336 */
337 rc = CFGMR3QueryU64(pCfgHandle, "TSCTicksPerSecond", &pVM->tm.s.cTSCTicksPerSecond);
338 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
339 {
340 pVM->tm.s.cTSCTicksPerSecond = tmR3CalibrateTSC(pVM);
341 if ( !pVM->tm.s.fTSCUseRealTSC
342 && pVM->tm.s.cTSCTicksPerSecond >= _4G)
343 {
344 pVM->tm.s.cTSCTicksPerSecond = _4G - 1; /* (A limitation of our math code) */
345 pVM->tm.s.fMaybeUseOffsettedHostTSC = false;
346 }
347 }
348 else if (RT_FAILURE(rc))
349 return VMSetError(pVM, rc, RT_SRC_POS,
350 N_("Configuration error: Failed to querying uint64_t value \"TSCTicksPerSecond\""));
351 else if ( pVM->tm.s.cTSCTicksPerSecond < _1M
352 || pVM->tm.s.cTSCTicksPerSecond >= _4G)
353 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
354 N_("Configuration error: \"TSCTicksPerSecond\" = %RI64 is not in the range 1MHz..4GHz-1"),
355 pVM->tm.s.cTSCTicksPerSecond);
356 else
357 {
358 pVM->tm.s.fTSCUseRealTSC = pVM->tm.s.fMaybeUseOffsettedHostTSC = false;
359 pVM->tm.s.fTSCVirtualized = true;
360 }
361
362 /** @cfgm{TM/TSCTiedToExecution, bool, false}
363 * Whether the TSC should be tied to execution. This will exclude most of the
364 * virtualization overhead, but will by default include the time spent in the
365 * halt state (see TM/TSCNotTiedToHalt). This setting will override all other
366 * TSC settings except for TSCTicksPerSecond and TSCNotTiedToHalt, which should
367 * be used avoided or used with great care. Note that this will only work right
368 * together with VT-x or AMD-V, and with a single virtual CPU. */
369 rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCTiedToExecution", &pVM->tm.s.fTSCTiedToExecution, false);
370 if (RT_FAILURE(rc))
371 return VMSetError(pVM, rc, RT_SRC_POS,
372 N_("Configuration error: Failed to querying bool value \"TSCTiedToExecution\""));
373 if (pVM->tm.s.fTSCTiedToExecution)
374 {
375 /* tied to execution, override all other settings. */
376 pVM->tm.s.fTSCVirtualized = true;
377 pVM->tm.s.fTSCUseRealTSC = true;
378 pVM->tm.s.fMaybeUseOffsettedHostTSC = false;
379 }
380
381 /** @cfgm{TM/TSCNotTiedToHalt, bool, true}
382 * For overriding the default of TM/TSCTiedToExecution, i.e. set this to false
383 * to make the TSC freeze during HLT. */
384 rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCNotTiedToHalt", &pVM->tm.s.fTSCNotTiedToHalt, false);
385 if (RT_FAILURE(rc))
386 return VMSetError(pVM, rc, RT_SRC_POS,
387 N_("Configuration error: Failed to querying bool value \"TSCNotTiedToHalt\""));
388
389 /* setup and report */
390 if (pVM->tm.s.fTSCVirtualized)
391 CPUMR3SetCR4Feature(pVM, X86_CR4_TSD, ~X86_CR4_TSD);
392 else
393 CPUMR3SetCR4Feature(pVM, 0, ~X86_CR4_TSD);
394 LogRel(("TM: cTSCTicksPerSecond=%#RX64 (%'RU64) fTSCVirtualized=%RTbool fTSCUseRealTSC=%RTbool\n"
395 "TM: fMaybeUseOffsettedHostTSC=%RTbool TSCTiedToExecution=%RTbool TSCNotTiedToHalt=%RTbool\n",
396 pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.fTSCVirtualized, pVM->tm.s.fTSCUseRealTSC,
397 pVM->tm.s.fMaybeUseOffsettedHostTSC, pVM->tm.s.fTSCTiedToExecution, pVM->tm.s.fTSCNotTiedToHalt));
398
399 /*
400 * Configure the timer synchronous virtual time.
401 */
402 /** @cfgm{TM/ScheduleSlack, uint32_t, ns, 0, UINT32_MAX, 100000}
403 * Scheduling slack when processing timers. */
404 rc = CFGMR3QueryU32(pCfgHandle, "ScheduleSlack", &pVM->tm.s.u32VirtualSyncScheduleSlack);
405 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
406 pVM->tm.s.u32VirtualSyncScheduleSlack = 100000; /* 0.100ms (ASSUMES virtual time is nanoseconds) */
407 else if (RT_FAILURE(rc))
408 return VMSetError(pVM, rc, RT_SRC_POS,
409 N_("Configuration error: Failed to querying 32-bit integer value \"ScheduleSlack\""));
410
411 /** @cfgm{TM/CatchUpStopThreshold, uint64_t, ns, 0, UINT64_MAX, 500000}
412 * When to stop a catch-up, considering it successful. */
413 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStopThreshold", &pVM->tm.s.u64VirtualSyncCatchUpStopThreshold);
414 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
415 pVM->tm.s.u64VirtualSyncCatchUpStopThreshold = 500000; /* 0.5ms */
416 else if (RT_FAILURE(rc))
417 return VMSetError(pVM, rc, RT_SRC_POS,
418 N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpStopThreshold\""));
419
420 /** @cfgm{TM/CatchUpGiveUpThreshold, uint64_t, ns, 0, UINT64_MAX, 60000000000}
421 * When to give up a catch-up attempt. */
422 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpGiveUpThreshold", &pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold);
423 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
424 pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold = UINT64_C(60000000000); /* 60 sec */
425 else if (RT_FAILURE(rc))
426 return VMSetError(pVM, rc, RT_SRC_POS,
427 N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpGiveUpThreshold\""));
428
429
430 /** @cfgm{TM/CatchUpPrecentage[0..9], uint32_t, %, 1, 2000, various}
431 * The catch-up percent for a given period. */
432 /** @cfgm{TM/CatchUpStartThreshold[0..9], uint64_t, ns, 0, UINT64_MAX,
433 * The catch-up period threshold, or if you like, when a period starts. */
434#define TM_CFG_PERIOD(iPeriod, DefStart, DefPct) \
435 do \
436 { \
437 uint64_t u64; \
438 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStartThreshold" #iPeriod, &u64); \
439 if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
440 u64 = UINT64_C(DefStart); \
441 else if (RT_FAILURE(rc)) \
442 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpThreshold" #iPeriod "\"")); \
443 if ( (iPeriod > 0 && u64 <= pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod - 1].u64Start) \
444 || u64 >= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold) \
445 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("Configuration error: Invalid start of period #" #iPeriod ": %'RU64"), u64); \
446 pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u64Start = u64; \
447 rc = CFGMR3QueryU32(pCfgHandle, "CatchUpPrecentage" #iPeriod, &pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage); \
448 if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
449 pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage = (DefPct); \
450 else if (RT_FAILURE(rc)) \
451 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 32-bit integer value \"CatchUpPrecentage" #iPeriod "\"")); \
452 } while (0)
453 /* This needs more tuning. Not sure if we really need so many period and be so gentle. */
454 TM_CFG_PERIOD(0, 750000, 5); /* 0.75ms at 1.05x */
455 TM_CFG_PERIOD(1, 1500000, 10); /* 1.50ms at 1.10x */
456 TM_CFG_PERIOD(2, 8000000, 25); /* 8ms at 1.25x */
457 TM_CFG_PERIOD(3, 30000000, 50); /* 30ms at 1.50x */
458 TM_CFG_PERIOD(4, 75000000, 75); /* 75ms at 1.75x */
459 TM_CFG_PERIOD(5, 175000000, 100); /* 175ms at 2x */
460 TM_CFG_PERIOD(6, 500000000, 200); /* 500ms at 3x */
461 TM_CFG_PERIOD(7, 3000000000, 300); /* 3s at 4x */
462 TM_CFG_PERIOD(8,30000000000, 400); /* 30s at 5x */
463 TM_CFG_PERIOD(9,55000000000, 500); /* 55s at 6x */
464 AssertCompile(RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods) == 10);
465#undef TM_CFG_PERIOD
466
467 /*
468 * Configure real world time (UTC).
469 */
470 /** @cfgm{TM/UTCOffset, int64_t, ns, INT64_MIN, INT64_MAX, 0}
471 * The UTC offset. This is used to put the guest back or forwards in time. */
472 rc = CFGMR3QueryS64(pCfgHandle, "UTCOffset", &pVM->tm.s.offUTC);
473 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
474 pVM->tm.s.offUTC = 0; /* ns */
475 else if (RT_FAILURE(rc))
476 return VMSetError(pVM, rc, RT_SRC_POS,
477 N_("Configuration error: Failed to querying 64-bit integer value \"UTCOffset\""));
478
479 /*
480 * Setup the warp drive.
481 */
482 /** @cfgm{TM/WarpDrivePercentage, uint32_t, %, 0, 20000, 100}
483 * The warp drive percentage, 100% is normal speed. This is used to speed up
484 * or slow down the virtual clock, which can be useful for fast forwarding
485 * borring periods during tests. */
486 rc = CFGMR3QueryU32(pCfgHandle, "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage);
487 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
488 rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage); /* legacy */
489 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
490 pVM->tm.s.u32VirtualWarpDrivePercentage = 100;
491 else if (RT_FAILURE(rc))
492 return VMSetError(pVM, rc, RT_SRC_POS,
493 N_("Configuration error: Failed to querying uint32_t value \"WarpDrivePercent\""));
494 else if ( pVM->tm.s.u32VirtualWarpDrivePercentage < 2
495 || pVM->tm.s.u32VirtualWarpDrivePercentage > 20000)
496 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
497 N_("Configuration error: \"WarpDrivePercent\" = %RI32 is not in the range 2..20000"),
498 pVM->tm.s.u32VirtualWarpDrivePercentage);
499 pVM->tm.s.fVirtualWarpDrive = pVM->tm.s.u32VirtualWarpDrivePercentage != 100;
500 if (pVM->tm.s.fVirtualWarpDrive)
501 LogRel(("TM: u32VirtualWarpDrivePercentage=%RI32\n", pVM->tm.s.u32VirtualWarpDrivePercentage));
502
503 /*
504 * Start the timer (guard against REM not yielding).
505 */
506 /** @cfgm{TM/TimerMillies, uint32_t, ms, 1, 1000, 10}
507 * The watchdog timer interval. */
508 uint32_t u32Millies;
509 rc = CFGMR3QueryU32(pCfgHandle, "TimerMillies", &u32Millies);
510 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
511 u32Millies = 10;
512 else if (RT_FAILURE(rc))
513 return VMSetError(pVM, rc, RT_SRC_POS,
514 N_("Configuration error: Failed to query uint32_t value \"TimerMillies\""));
515 rc = RTTimerCreate(&pVM->tm.s.pTimer, u32Millies, tmR3TimerCallback, pVM);
516 if (RT_FAILURE(rc))
517 {
518 AssertMsgFailed(("Failed to create timer, u32Millies=%d rc=%Rrc.\n", u32Millies, rc));
519 return rc;
520 }
521 Log(("TM: Created timer %p firing every %d millieseconds\n", pVM->tm.s.pTimer, u32Millies));
522 pVM->tm.s.u32TimerMillies = u32Millies;
523
524 /*
525 * Register saved state.
526 */
527 rc = SSMR3RegisterInternal(pVM, "tm", 1, TM_SAVED_STATE_VERSION, sizeof(uint64_t) * 8,
528 NULL, tmR3Save, NULL,
529 NULL, tmR3Load, NULL);
530 if (RT_FAILURE(rc))
531 return rc;
532
533 /*
534 * Register statistics.
535 */
536 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR3.c1nsSteps,STAMTYPE_U32, "/TM/R3/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
537 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR3.cBadPrev, STAMTYPE_U32, "/TM/R3/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
538 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.c1nsSteps,STAMTYPE_U32, "/TM/R0/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
539 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.cBadPrev, STAMTYPE_U32, "/TM/R0/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
540 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataRC.c1nsSteps,STAMTYPE_U32, "/TM/RC/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
541 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataRC.cBadPrev, STAMTYPE_U32, "/TM/RC/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
542 STAM_REL_REG( pVM,(void*)&pVM->tm.s.offVirtualSync, STAMTYPE_U64, "/TM/VirtualSync/CurrentOffset", STAMUNIT_NS, "The current offset. (subtract GivenUp to get the lag)");
543 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.offVirtualSyncGivenUp, STAMTYPE_U64, "/TM/VirtualSync/GivenUp", STAMUNIT_NS, "Nanoseconds of the 'CurrentOffset' that's been given up and won't ever be attemted caught up with.");
544
545#ifdef VBOX_WITH_STATISTICS
546 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR3.cExpired, STAMTYPE_U32, "/TM/R3/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
547 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR3.cUpdateRaces,STAMTYPE_U32, "/TM/R3/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
548 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cExpired, STAMTYPE_U32, "/TM/R0/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
549 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cUpdateRaces,STAMTYPE_U32, "/TM/R0/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
550 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataRC.cExpired, STAMTYPE_U32, "/TM/RC/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
551 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataRC.cUpdateRaces,STAMTYPE_U32, "/TM/RC/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
552 STAM_REG(pVM, &pVM->tm.s.StatDoQueues, STAMTYPE_PROFILE, "/TM/DoQueues", STAMUNIT_TICKS_PER_CALL, "Profiling timer TMR3TimerQueuesDo.");
553 STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/Virtual", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual clock queue.");
554 STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/VirtualSync", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual sync clock queue.");
555 STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/Real", STAMUNIT_TICKS_PER_CALL, "Time spent on the real clock queue.");
556
557 STAM_REG(pVM, &pVM->tm.s.StatPoll, STAMTYPE_COUNTER, "/TM/Poll", STAMUNIT_OCCURENCES, "TMTimerPoll calls.");
558 STAM_REG(pVM, &pVM->tm.s.StatPollAlreadySet, STAMTYPE_COUNTER, "/TM/Poll/AlreadySet", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the FF was already set.");
559 STAM_REG(pVM, &pVM->tm.s.StatPollELoop, STAMTYPE_COUNTER, "/TM/Poll/ELoop", STAMUNIT_OCCURENCES, "Times TMTimerPoll has given up getting a consistent virtual sync data set.");
560 STAM_REG(pVM, &pVM->tm.s.StatPollMiss, STAMTYPE_COUNTER, "/TM/Poll/Miss", STAMUNIT_OCCURENCES, "TMTimerPoll calls where nothing had expired.");
561 STAM_REG(pVM, &pVM->tm.s.StatPollRunning, STAMTYPE_COUNTER, "/TM/Poll/Running", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the queues were being run.");
562 STAM_REG(pVM, &pVM->tm.s.StatPollSimple, STAMTYPE_COUNTER, "/TM/Poll/Simple", STAMUNIT_OCCURENCES, "TMTimerPoll calls where we could take the simple path.");
563 STAM_REG(pVM, &pVM->tm.s.StatPollVirtual, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtual", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL queue.");
564 STAM_REG(pVM, &pVM->tm.s.StatPollVirtualSync, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtualSync", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL_SYNC queue.");
565
566 STAM_REG(pVM, &pVM->tm.s.StatPostponedR3, STAMTYPE_COUNTER, "/TM/PostponedR3", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-3.");
567 STAM_REG(pVM, &pVM->tm.s.StatPostponedRZ, STAMTYPE_COUNTER, "/TM/PostponedRZ", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-0 / RC.");
568
569 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneR3, STAMTYPE_PROFILE, "/TM/ScheduleOneR3", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
570 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneRZ, STAMTYPE_PROFILE, "/TM/ScheduleOneRZ", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
571 STAM_REG(pVM, &pVM->tm.s.StatScheduleSetFF, STAMTYPE_COUNTER, "/TM/ScheduleSetFF", STAMUNIT_OCCURENCES, "The number of times the timer FF was set instead of doing scheduling.");
572
573 STAM_REG(pVM, &pVM->tm.s.StatTimerSet, STAMTYPE_COUNTER, "/TM/TimerSet", STAMUNIT_OCCURENCES, "Calls");
574 STAM_REG(pVM, &pVM->tm.s.StatTimerSetOpt, STAMTYPE_COUNTER, "/TM/TimerSet/Opt", STAMUNIT_OCCURENCES, "Optimized path taken.");
575 STAM_REG(pVM, &pVM->tm.s.StatTimerSetR3, STAMTYPE_PROFILE, "/TM/TimerSet/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3.");
576 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRZ, STAMTYPE_PROFILE, "/TM/TimerSet/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0 / RC.");
577 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStActive, STAMTYPE_COUNTER, "/TM/TimerSet/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
578 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSet/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
579 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStOther, STAMTYPE_COUNTER, "/TM/TimerSet/StOther", STAMUNIT_OCCURENCES, "Other states");
580 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStop, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP");
581 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStopSched", STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE");
582 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE");
583 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendResched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE");
584 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStStopped, STAMTYPE_COUNTER, "/TM/TimerSet/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
585
586 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelative, STAMTYPE_COUNTER, "/TM/TimerSetRelative", STAMUNIT_OCCURENCES, "Calls");
587 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeOpt, STAMTYPE_COUNTER, "/TM/TimerSetRelative/Opt", STAMUNIT_OCCURENCES, "Optimized path taken.");
588 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeR3, STAMTYPE_PROFILE, "/TM/TimerSetRelative/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetRelative calls made in ring-3.");
589 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeRZ, STAMTYPE_PROFILE, "/TM/TimerSetRelative/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetReltaive calls made in ring-0 / RC.");
590 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeRacyVirtSync, STAMTYPE_COUNTER, "/TM/TimerSetRelative/RacyVirtSync", STAMUNIT_OCCURENCES, "Potentially racy virtual sync timer update.");
591 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStActive, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
592 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
593 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStOther, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StOther", STAMUNIT_OCCURENCES, "Other states");
594 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStop, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP");
595 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStopSched",STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE");
596 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE");
597 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendResched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE");
598 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStStopped, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
599
600 STAM_REG(pVM, &pVM->tm.s.StatTimerStopR3, STAMTYPE_PROFILE, "/TM/TimerStopR3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-3.");
601 STAM_REG(pVM, &pVM->tm.s.StatTimerStopRZ, STAMTYPE_PROFILE, "/TM/TimerStopRZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-0 / RC.");
602
603 STAM_REG(pVM, &pVM->tm.s.StatVirtualGet, STAMTYPE_COUNTER, "/TM/VirtualGet", STAMUNIT_OCCURENCES, "The number of times TMTimerGet was called when the clock was running.");
604 STAM_REG(pVM, &pVM->tm.s.StatVirtualGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualGetSetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling TMTimerGet.");
605 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGet, STAMTYPE_COUNTER, "/TM/VirtualSyncGet", STAMUNIT_OCCURENCES, "The number of times tmVirtualSyncGetEx was called.");
606 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetELoop, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/ELoop", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx has given up getting a consistent virtual sync data set.");
607 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetExpired, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Expired", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx encountered an expired timer stopping the clock.");
608 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLocked, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Locked", STAMUNIT_OCCURENCES, "Times we successfully acquired the lock in tmVirtualSyncGetEx.");
609 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLockless, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Lockless", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx returned without needing to take the lock.");
610 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/SetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling tmVirtualSyncGetEx.");
611 STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/VirtualPause", STAMUNIT_OCCURENCES, "The number of times TMR3TimerPause was called.");
612 STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/VirtualResume", STAMUNIT_OCCURENCES, "The number of times TMR3TimerResume was called.");
613
614 STAM_REG(pVM, &pVM->tm.s.StatTimerCallbackSetFF, STAMTYPE_COUNTER, "/TM/CallbackSetFF", STAMUNIT_OCCURENCES, "The number of times the timer callback set FF.");
615
616 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE010, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE010", STAMUNIT_OCCURENCES, "In catch-up mode, 10% or lower.");
617 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE025, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE025", STAMUNIT_OCCURENCES, "In catch-up mode, 25%-11%.");
618 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE100, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE100", STAMUNIT_OCCURENCES, "In catch-up mode, 100%-26%.");
619 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupOther, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupOther", STAMUNIT_OCCURENCES, "In catch-up mode, > 100%.");
620 STAM_REG(pVM, &pVM->tm.s.StatTSCNotFixed, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotFixed", STAMUNIT_OCCURENCES, "TSC is not fixed, it may run at variable speed.");
621 STAM_REG(pVM, &pVM->tm.s.StatTSCNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotTicking", STAMUNIT_OCCURENCES, "TSC is not ticking.");
622 STAM_REG(pVM, &pVM->tm.s.StatTSCSyncNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/SyncNotTicking", STAMUNIT_OCCURENCES, "VirtualSync isn't ticking.");
623 STAM_REG(pVM, &pVM->tm.s.StatTSCWarp, STAMTYPE_COUNTER, "/TM/TSC/Intercept/Warp", STAMUNIT_OCCURENCES, "Warpdrive is active.");
624 STAM_REG(pVM, &pVM->tm.s.StatTSCSet, STAMTYPE_COUNTER, "/TM/TSC/Sets", STAMUNIT_OCCURENCES, "Calls to TMCpuTickSet.");
625 STAM_REG(pVM, &pVM->tm.s.StatTSCUnderflow, STAMTYPE_COUNTER, "/TM/TSC/Underflow", STAMUNIT_OCCURENCES, "TSC underflow; corrected with last seen value .");
626#endif /* VBOX_WITH_STATISTICS */
627
628 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
629 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.offTSCRawSrc, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS, "TSC offset relative the raw source", "/TM/TSC/offCPU%u", i);
630
631#ifdef VBOX_WITH_STATISTICS
632 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncCatchup, STAMTYPE_PROFILE_ADV, "/TM/VirtualSync/CatchUp", STAMUNIT_TICKS_PER_OCCURENCE, "Counting and measuring the times spent catching up.");
633 STAM_REG(pVM, (void *)&pVM->tm.s.fVirtualSyncCatchUp, STAMTYPE_U8, "/TM/VirtualSync/CatchUpActive", STAMUNIT_NONE, "Catch-Up active indicator.");
634 STAM_REG(pVM, (void *)&pVM->tm.s.u32VirtualSyncCatchUpPercentage, STAMTYPE_U32, "/TM/VirtualSync/CatchUpPercentage", STAMUNIT_PCT, "The catch-up percentage. (+100/100 to get clock multiplier)");
635 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncFF, STAMTYPE_PROFILE, "/TM/VirtualSync/FF", STAMUNIT_TICKS_PER_OCCURENCE, "Time spent in TMR3VirtualSyncFF by all but the dedicate timer EMT.");
636 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUp, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUp", STAMUNIT_OCCURENCES, "Times the catch-up was abandoned.");
637 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUpBeforeStarting",STAMUNIT_OCCURENCES, "Times the catch-up was abandoned before even starting. (Typically debugging++.)");
638 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRun, STAMTYPE_COUNTER, "/TM/VirtualSync/Run", STAMUNIT_OCCURENCES, "Times the virtual sync timer queue was considered.");
639 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunRestart, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Restarts", STAMUNIT_OCCURENCES, "Times the clock was restarted after a run.");
640 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStop, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Stop", STAMUNIT_OCCURENCES, "Times the clock was stopped when calculating the current time before examining the timers.");
641 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStoppedAlready, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/StoppedAlready", STAMUNIT_OCCURENCES, "Times the clock was already stopped elsewhere (TMVirtualSyncGet).");
642 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunSlack, STAMTYPE_PROFILE, "/TM/VirtualSync/Run/Slack", STAMUNIT_NS_PER_OCCURENCE, "The scheduling slack. (Catch-up handed out when running timers.)");
643 for (unsigned i = 0; i < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods); i++)
644 {
645 STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "The catch-up percentage.", "/TM/VirtualSync/Periods/%u", i);
646 STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupAdjust[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times adjusted to this period.", "/TM/VirtualSync/Periods/%u/Adjust", i);
647 STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupInitial[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times started in this period.", "/TM/VirtualSync/Periods/%u/Initial", i);
648 STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u64Start, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Start of this period (lag).", "/TM/VirtualSync/Periods/%u/Start", i);
649 }
650#endif /* VBOX_WITH_STATISTICS */
651
652 /*
653 * Register info handlers.
654 */
655 DBGFR3InfoRegisterInternalEx(pVM, "timers", "Dumps all timers. No arguments.", tmR3TimerInfo, DBGFINFO_FLAGS_RUN_ON_EMT);
656 DBGFR3InfoRegisterInternalEx(pVM, "activetimers", "Dumps active all timers. No arguments.", tmR3TimerInfoActive, DBGFINFO_FLAGS_RUN_ON_EMT);
657 DBGFR3InfoRegisterInternalEx(pVM, "clocks", "Display the time of the various clocks.", tmR3InfoClocks, DBGFINFO_FLAGS_RUN_ON_EMT);
658
659 return VINF_SUCCESS;
660}
661
662
663/**
664 * Initializes the per-VCPU TM.
665 *
666 * @returns VBox status code.
667 * @param pVM The VM to operate on.
668 */
669VMMR3DECL(int) TMR3InitCPU(PVM pVM)
670{
671 LogFlow(("TMR3InitCPU\n"));
672 return VINF_SUCCESS;
673}
674
675
676/**
677 * Checks if the host CPU has a fixed TSC frequency.
678 *
679 * @returns true if it has, false if it hasn't.
680 *
681 * @remark This test doesn't bother with very old CPUs that don't do power
682 * management or any other stuff that might influence the TSC rate.
683 * This isn't currently relevant.
684 */
685static bool tmR3HasFixedTSC(PVM pVM)
686{
687 if (ASMHasCpuId())
688 {
689 uint32_t uEAX, uEBX, uECX, uEDX;
690
691 if (CPUMGetCPUVendor(pVM) == CPUMCPUVENDOR_AMD)
692 {
693 /*
694 * AuthenticAMD - Check for APM support and that TscInvariant is set.
695 *
696 * This test isn't correct with respect to fixed/non-fixed TSC and
697 * older models, but this isn't relevant since the result is currently
698 * only used for making a descision on AMD-V models.
699 */
700 ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX);
701 if (uEAX >= 0x80000007)
702 {
703 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
704
705 ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX);
706 if ( (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR) /* TscInvariant */
707 && pGip->u32Mode == SUPGIPMODE_SYNC_TSC /* no fixed tsc if the gip timer is in async mode */)
708 return true;
709 }
710 }
711 else if (CPUMGetCPUVendor(pVM) == CPUMCPUVENDOR_INTEL)
712 {
713 /*
714 * GenuineIntel - Check the model number.
715 *
716 * This test is lacking in the same way and for the same reasons
717 * as the AMD test above.
718 */
719 ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
720 unsigned uModel = (uEAX >> 4) & 0x0f;
721 unsigned uFamily = (uEAX >> 8) & 0x0f;
722 if (uFamily == 0x0f)
723 uFamily += (uEAX >> 20) & 0xff;
724 if (uFamily >= 0x06)
725 uModel += ((uEAX >> 16) & 0x0f) << 4;
726 if ( (uFamily == 0x0f /*P4*/ && uModel >= 0x03)
727 || (uFamily == 0x06 /*P2/P3*/ && uModel >= 0x0e))
728 return true;
729 }
730 }
731 return false;
732}
733
734
735/**
736 * Calibrate the CPU tick.
737 *
738 * @returns Number of ticks per second.
739 */
740static uint64_t tmR3CalibrateTSC(PVM pVM)
741{
742 /*
743 * Use GIP when available present.
744 */
745 uint64_t u64Hz;
746 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
747 if ( pGip
748 && pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC)
749 {
750 unsigned iCpu = pGip->u32Mode != SUPGIPMODE_ASYNC_TSC ? 0 : ASMGetApicId();
751 if (iCpu >= RT_ELEMENTS(pGip->aCPUs))
752 AssertReleaseMsgFailed(("iCpu=%d - the ApicId is too high. send VBox.log and hardware specs!\n", iCpu));
753 else
754 {
755 if (tmR3HasFixedTSC(pVM))
756 /* Sleep a bit to get a more reliable CpuHz value. */
757 RTThreadSleep(32);
758 else
759 {
760 /* Spin for 40ms to try push up the CPU frequency and get a more reliable CpuHz value. */
761 const uint64_t u64 = RTTimeMilliTS();
762 while ((RTTimeMilliTS() - u64) < 40 /*ms*/)
763 /* nothing */;
764 }
765
766 pGip = g_pSUPGlobalInfoPage;
767 if ( pGip
768 && pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC
769 && (u64Hz = pGip->aCPUs[iCpu].u64CpuHz)
770 && u64Hz != ~(uint64_t)0)
771 return u64Hz;
772 }
773 }
774
775 /* call this once first to make sure it's initialized. */
776 RTTimeNanoTS();
777
778 /*
779 * Yield the CPU to increase our chances of getting
780 * a correct value.
781 */
782 RTThreadYield(); /* Try avoid interruptions between TSC and NanoTS samplings. */
783 static const unsigned s_auSleep[5] = { 50, 30, 30, 40, 40 };
784 uint64_t au64Samples[5];
785 unsigned i;
786 for (i = 0; i < RT_ELEMENTS(au64Samples); i++)
787 {
788 unsigned cMillies;
789 int cTries = 5;
790 uint64_t u64Start = ASMReadTSC();
791 uint64_t u64End;
792 uint64_t StartTS = RTTimeNanoTS();
793 uint64_t EndTS;
794 do
795 {
796 RTThreadSleep(s_auSleep[i]);
797 u64End = ASMReadTSC();
798 EndTS = RTTimeNanoTS();
799 cMillies = (unsigned)((EndTS - StartTS + 500000) / 1000000);
800 } while ( cMillies == 0 /* the sleep may be interrupted... */
801 || (cMillies < 20 && --cTries > 0));
802 uint64_t u64Diff = u64End - u64Start;
803
804 au64Samples[i] = (u64Diff * 1000) / cMillies;
805 AssertMsg(cTries > 0, ("cMillies=%d i=%d\n", cMillies, i));
806 }
807
808 /*
809 * Discard the highest and lowest results and calculate the average.
810 */
811 unsigned iHigh = 0;
812 unsigned iLow = 0;
813 for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
814 {
815 if (au64Samples[i] < au64Samples[iLow])
816 iLow = i;
817 if (au64Samples[i] > au64Samples[iHigh])
818 iHigh = i;
819 }
820 au64Samples[iLow] = 0;
821 au64Samples[iHigh] = 0;
822
823 u64Hz = au64Samples[0];
824 for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
825 u64Hz += au64Samples[i];
826 u64Hz /= RT_ELEMENTS(au64Samples) - 2;
827
828 return u64Hz;
829}
830
831
832/**
833 * Finalizes the TM initialization.
834 *
835 * @returns VBox status code.
836 * @param pVM The VM to operate on.
837 */
838VMMR3DECL(int) TMR3InitFinalize(PVM pVM)
839{
840 int rc;
841
842 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "tmVirtualNanoTSBad", &pVM->tm.s.VirtualGetRawDataRC.pfnBad);
843 AssertRCReturn(rc, rc);
844 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "tmVirtualNanoTSRediscover", &pVM->tm.s.VirtualGetRawDataRC.pfnRediscover);
845 AssertRCReturn(rc, rc);
846 if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceSync)
847 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLFenceSync", &pVM->tm.s.pfnVirtualGetRawRC);
848 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceAsync)
849 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLFenceAsync", &pVM->tm.s.pfnVirtualGetRawRC);
850 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacySync)
851 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLegacySync", &pVM->tm.s.pfnVirtualGetRawRC);
852 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacyAsync)
853 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLegacyAsync", &pVM->tm.s.pfnVirtualGetRawRC);
854 else
855 AssertFatalFailed();
856 AssertRCReturn(rc, rc);
857
858 rc = PDMR3LdrGetSymbolR0Lazy(pVM, NULL, "tmVirtualNanoTSBad", &pVM->tm.s.VirtualGetRawDataR0.pfnBad);
859 AssertRCReturn(rc, rc);
860 rc = PDMR3LdrGetSymbolR0Lazy(pVM, NULL, "tmVirtualNanoTSRediscover", &pVM->tm.s.VirtualGetRawDataR0.pfnRediscover);
861 AssertRCReturn(rc, rc);
862 if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceSync)
863 rc = PDMR3LdrGetSymbolR0Lazy(pVM, NULL, "RTTimeNanoTSLFenceSync", &pVM->tm.s.pfnVirtualGetRawR0);
864 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceAsync)
865 rc = PDMR3LdrGetSymbolR0Lazy(pVM, NULL, "RTTimeNanoTSLFenceAsync", &pVM->tm.s.pfnVirtualGetRawR0);
866 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacySync)
867 rc = PDMR3LdrGetSymbolR0Lazy(pVM, NULL, "RTTimeNanoTSLegacySync", &pVM->tm.s.pfnVirtualGetRawR0);
868 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacyAsync)
869 rc = PDMR3LdrGetSymbolR0Lazy(pVM, NULL, "RTTimeNanoTSLegacyAsync", &pVM->tm.s.pfnVirtualGetRawR0);
870 else
871 AssertFatalFailed();
872 AssertRCReturn(rc, rc);
873
874 return VINF_SUCCESS;
875}
876
877
878/**
879 * Applies relocations to data and code managed by this
880 * component. This function will be called at init and
881 * whenever the VMM need to relocate it self inside the GC.
882 *
883 * @param pVM The VM.
884 * @param offDelta Relocation delta relative to old location.
885 */
886VMMR3DECL(void) TMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
887{
888 int rc;
889 LogFlow(("TMR3Relocate\n"));
890
891 pVM->tm.s.pvGIPRC = MMHyperR3ToRC(pVM, pVM->tm.s.pvGIPR3);
892 pVM->tm.s.paTimerQueuesRC = MMHyperR3ToRC(pVM, pVM->tm.s.paTimerQueuesR3);
893 pVM->tm.s.paTimerQueuesR0 = MMHyperR3ToR0(pVM, pVM->tm.s.paTimerQueuesR3);
894
895 pVM->tm.s.VirtualGetRawDataRC.pu64Prev = MMHyperR3ToRC(pVM, (void *)&pVM->tm.s.u64VirtualRawPrev);
896 AssertFatal(pVM->tm.s.VirtualGetRawDataRC.pu64Prev);
897 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "tmVirtualNanoTSBad", &pVM->tm.s.VirtualGetRawDataRC.pfnBad);
898 AssertFatalRC(rc);
899 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "tmVirtualNanoTSRediscover", &pVM->tm.s.VirtualGetRawDataRC.pfnRediscover);
900 AssertFatalRC(rc);
901
902 if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceSync)
903 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLFenceSync", &pVM->tm.s.pfnVirtualGetRawRC);
904 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceAsync)
905 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLFenceAsync", &pVM->tm.s.pfnVirtualGetRawRC);
906 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacySync)
907 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLegacySync", &pVM->tm.s.pfnVirtualGetRawRC);
908 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacyAsync)
909 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLegacyAsync", &pVM->tm.s.pfnVirtualGetRawRC);
910 else
911 AssertFatalFailed();
912 AssertFatalRC(rc);
913
914 /*
915 * Iterate the timers updating the pVMRC pointers.
916 */
917 for (PTMTIMER pTimer = pVM->tm.s.pCreated; pTimer; pTimer = pTimer->pBigNext)
918 {
919 pTimer->pVMRC = pVM->pVMRC;
920 pTimer->pVMR0 = pVM->pVMR0;
921 }
922}
923
924
925/**
926 * Terminates the TM.
927 *
928 * Termination means cleaning up and freeing all resources,
929 * the VM it self is at this point powered off or suspended.
930 *
931 * @returns VBox status code.
932 * @param pVM The VM to operate on.
933 */
934VMMR3DECL(int) TMR3Term(PVM pVM)
935{
936 AssertMsg(pVM->tm.s.offVM, ("bad init order!\n"));
937 if (pVM->tm.s.pTimer)
938 {
939 int rc = RTTimerDestroy(pVM->tm.s.pTimer);
940 AssertRC(rc);
941 pVM->tm.s.pTimer = NULL;
942 }
943
944 return VINF_SUCCESS;
945}
946
947
948/**
949 * Terminates the per-VCPU TM.
950 *
951 * Termination means cleaning up and freeing all resources,
952 * the VM it self is at this point powered off or suspended.
953 *
954 * @returns VBox status code.
955 * @param pVM The VM to operate on.
956 */
957VMMR3DECL(int) TMR3TermCPU(PVM pVM)
958{
959 return 0;
960}
961
962
963/**
964 * The VM is being reset.
965 *
966 * For the TM component this means that a rescheduling is preformed,
967 * the FF is cleared and but without running the queues. We'll have to
968 * check if this makes sense or not, but it seems like a good idea now....
969 *
970 * @param pVM VM handle.
971 */
972VMMR3DECL(void) TMR3Reset(PVM pVM)
973{
974 LogFlow(("TMR3Reset:\n"));
975 VM_ASSERT_EMT(pVM);
976 tmTimerLock(pVM);
977
978 /*
979 * Abort any pending catch up.
980 * This isn't perfect...
981 */
982 if (pVM->tm.s.fVirtualSyncCatchUp)
983 {
984 const uint64_t offVirtualNow = TMVirtualGetNoCheck(pVM);
985 const uint64_t offVirtualSyncNow = TMVirtualSyncGetNoCheck(pVM);
986 if (pVM->tm.s.fVirtualSyncCatchUp)
987 {
988 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
989
990 const uint64_t offOld = pVM->tm.s.offVirtualSyncGivenUp;
991 const uint64_t offNew = offVirtualNow - offVirtualSyncNow;
992 Assert(offOld <= offNew);
993 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
994 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSync, offNew);
995 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
996 LogRel(("TM: Aborting catch-up attempt on reset with a %'RU64 ns lag on reset; new total: %'RU64 ns\n", offNew - offOld, offNew));
997 }
998 }
999
1000 /*
1001 * Process the queues.
1002 */
1003 for (int i = 0; i < TMCLOCK_MAX; i++)
1004 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[i]);
1005#ifdef VBOX_STRICT
1006 tmTimerQueuesSanityChecks(pVM, "TMR3Reset");
1007#endif
1008
1009 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
1010 VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /** @todo FIXME: this isn't right. */
1011 tmTimerUnlock(pVM);
1012}
1013
1014
1015/**
1016 * Resolve a builtin RC symbol.
1017 * Called by PDM when loading or relocating GC modules.
1018 *
1019 * @returns VBox status
1020 * @param pVM VM Handle.
1021 * @param pszSymbol Symbol to resolve.
1022 * @param pRCPtrValue Where to store the symbol value.
1023 * @remark This has to work before TMR3Relocate() is called.
1024 */
1025VMMR3DECL(int) TMR3GetImportRC(PVM pVM, const char *pszSymbol, PRTRCPTR pRCPtrValue)
1026{
1027 if (!strcmp(pszSymbol, "g_pSUPGlobalInfoPage"))
1028 *pRCPtrValue = MMHyperR3ToRC(pVM, &pVM->tm.s.pvGIPRC);
1029 //else if (..)
1030 else
1031 return VERR_SYMBOL_NOT_FOUND;
1032 return VINF_SUCCESS;
1033}
1034
1035
1036/**
1037 * Execute state save operation.
1038 *
1039 * @returns VBox status code.
1040 * @param pVM VM Handle.
1041 * @param pSSM SSM operation handle.
1042 */
1043static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM)
1044{
1045 LogFlow(("tmR3Save:\n"));
1046#ifdef VBOX_STRICT
1047 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
1048 {
1049 PVMCPU pVCpu = &pVM->aCpus[i];
1050 Assert(!pVCpu->tm.s.fTSCTicking);
1051 }
1052 Assert(!pVM->tm.s.cVirtualTicking);
1053 Assert(!pVM->tm.s.fVirtualSyncTicking);
1054#endif
1055
1056 /*
1057 * Save the virtual clocks.
1058 */
1059 /* the virtual clock. */
1060 SSMR3PutU64(pSSM, TMCLOCK_FREQ_VIRTUAL);
1061 SSMR3PutU64(pSSM, pVM->tm.s.u64Virtual);
1062
1063 /* the virtual timer synchronous clock. */
1064 SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSync);
1065 SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSync);
1066 SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSyncGivenUp);
1067 SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSyncCatchUpPrev);
1068 SSMR3PutBool(pSSM, pVM->tm.s.fVirtualSyncCatchUp);
1069
1070 /* real time clock */
1071 SSMR3PutU64(pSSM, TMCLOCK_FREQ_REAL);
1072
1073 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
1074 {
1075 PVMCPU pVCpu = &pVM->aCpus[i];
1076
1077 /* the cpu tick clock. */
1078 SSMR3PutU64(pSSM, TMCpuTickGet(pVCpu));
1079 }
1080 return SSMR3PutU64(pSSM, pVM->tm.s.cTSCTicksPerSecond);
1081}
1082
1083
1084/**
1085 * Execute state load operation.
1086 *
1087 * @returns VBox status code.
1088 * @param pVM VM Handle.
1089 * @param pSSM SSM operation handle.
1090 * @param u32Version Data layout version.
1091 */
1092static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
1093{
1094 LogFlow(("tmR3Load:\n"));
1095
1096#ifdef VBOX_STRICT
1097 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
1098 {
1099 PVMCPU pVCpu = &pVM->aCpus[i];
1100 Assert(!pVCpu->tm.s.fTSCTicking);
1101 }
1102 Assert(!pVM->tm.s.cVirtualTicking);
1103 Assert(!pVM->tm.s.fVirtualSyncTicking);
1104#endif
1105
1106 /*
1107 * Validate version.
1108 */
1109 if (u32Version != TM_SAVED_STATE_VERSION)
1110 {
1111 AssertMsgFailed(("tmR3Load: Invalid version u32Version=%d!\n", u32Version));
1112 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1113 }
1114
1115 /*
1116 * Load the virtual clock.
1117 */
1118 pVM->tm.s.cVirtualTicking = 0;
1119 /* the virtual clock. */
1120 uint64_t u64Hz;
1121 int rc = SSMR3GetU64(pSSM, &u64Hz);
1122 if (RT_FAILURE(rc))
1123 return rc;
1124 if (u64Hz != TMCLOCK_FREQ_VIRTUAL)
1125 {
1126 AssertMsgFailed(("The virtual clock frequency differs! Saved: %'RU64 Binary: %'RU64\n",
1127 u64Hz, TMCLOCK_FREQ_VIRTUAL));
1128 return VERR_SSM_VIRTUAL_CLOCK_HZ;
1129 }
1130 SSMR3GetU64(pSSM, &pVM->tm.s.u64Virtual);
1131 pVM->tm.s.u64VirtualOffset = 0;
1132
1133 /* the virtual timer synchronous clock. */
1134 pVM->tm.s.fVirtualSyncTicking = false;
1135 uint64_t u64;
1136 SSMR3GetU64(pSSM, &u64);
1137 pVM->tm.s.u64VirtualSync = u64;
1138 SSMR3GetU64(pSSM, &u64);
1139 pVM->tm.s.offVirtualSync = u64;
1140 SSMR3GetU64(pSSM, &u64);
1141 pVM->tm.s.offVirtualSyncGivenUp = u64;
1142 SSMR3GetU64(pSSM, &u64);
1143 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64;
1144 bool f;
1145 SSMR3GetBool(pSSM, &f);
1146 pVM->tm.s.fVirtualSyncCatchUp = f;
1147
1148 /* the real clock */
1149 rc = SSMR3GetU64(pSSM, &u64Hz);
1150 if (RT_FAILURE(rc))
1151 return rc;
1152 if (u64Hz != TMCLOCK_FREQ_REAL)
1153 {
1154 AssertMsgFailed(("The real clock frequency differs! Saved: %'RU64 Binary: %'RU64\n",
1155 u64Hz, TMCLOCK_FREQ_REAL));
1156 return VERR_SSM_VIRTUAL_CLOCK_HZ; /* missleading... */
1157 }
1158
1159 /* the cpu tick clock. */
1160 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
1161 {
1162 PVMCPU pVCpu = &pVM->aCpus[i];
1163
1164 pVCpu->tm.s.fTSCTicking = false;
1165 SSMR3GetU64(pSSM, &pVCpu->tm.s.u64TSC);
1166
1167 if (pVM->tm.s.fTSCUseRealTSC)
1168 pVCpu->tm.s.offTSCRawSrc = 0; /** @todo TSC restore stuff and HWACC. */
1169 }
1170
1171 rc = SSMR3GetU64(pSSM, &u64Hz);
1172 if (RT_FAILURE(rc))
1173 return rc;
1174 if (!pVM->tm.s.fTSCUseRealTSC)
1175 pVM->tm.s.cTSCTicksPerSecond = u64Hz;
1176
1177 LogRel(("TM: cTSCTicksPerSecond=%#RX64 (%'RU64) fTSCVirtualized=%RTbool fTSCUseRealTSC=%RTbool (state load)\n",
1178 pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.fTSCVirtualized, pVM->tm.s.fTSCUseRealTSC));
1179
1180 /*
1181 * Make sure timers get rescheduled immediately.
1182 */
1183 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
1184 VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
1185
1186 return VINF_SUCCESS;
1187}
1188
1189
1190/**
1191 * Internal TMR3TimerCreate worker.
1192 *
1193 * @returns VBox status code.
1194 * @param pVM The VM handle.
1195 * @param enmClock The timer clock.
1196 * @param pszDesc The timer description.
1197 * @param ppTimer Where to store the timer pointer on success.
1198 */
1199static int tmr3TimerCreate(PVM pVM, TMCLOCK enmClock, const char *pszDesc, PPTMTIMERR3 ppTimer)
1200{
1201 VM_ASSERT_EMT(pVM);
1202
1203 /*
1204 * Allocate the timer.
1205 */
1206 PTMTIMERR3 pTimer = NULL;
1207 if (pVM->tm.s.pFree && VM_IS_EMT(pVM))
1208 {
1209 pTimer = pVM->tm.s.pFree;
1210 pVM->tm.s.pFree = pTimer->pBigNext;
1211 Log3(("TM: Recycling timer %p, new free head %p.\n", pTimer, pTimer->pBigNext));
1212 }
1213
1214 if (!pTimer)
1215 {
1216 int rc = MMHyperAlloc(pVM, sizeof(*pTimer), 0, MM_TAG_TM, (void **)&pTimer);
1217 if (RT_FAILURE(rc))
1218 return rc;
1219 Log3(("TM: Allocated new timer %p\n", pTimer));
1220 }
1221
1222 /*
1223 * Initialize it.
1224 */
1225 pTimer->u64Expire = 0;
1226 pTimer->enmClock = enmClock;
1227 pTimer->pVMR3 = pVM;
1228 pTimer->pVMR0 = pVM->pVMR0;
1229 pTimer->pVMRC = pVM->pVMRC;
1230 pTimer->enmState = TMTIMERSTATE_STOPPED;
1231 pTimer->offScheduleNext = 0;
1232 pTimer->offNext = 0;
1233 pTimer->offPrev = 0;
1234 pTimer->pvUser = NULL;
1235 pTimer->pCritSect = NULL;
1236 pTimer->pszDesc = pszDesc;
1237
1238 /* insert into the list of created timers. */
1239 tmTimerLock(pVM);
1240 pTimer->pBigPrev = NULL;
1241 pTimer->pBigNext = pVM->tm.s.pCreated;
1242 pVM->tm.s.pCreated = pTimer;
1243 if (pTimer->pBigNext)
1244 pTimer->pBigNext->pBigPrev = pTimer;
1245#ifdef VBOX_STRICT
1246 tmTimerQueuesSanityChecks(pVM, "tmR3TimerCreate");
1247#endif
1248 tmTimerUnlock(pVM);
1249
1250 *ppTimer = pTimer;
1251 return VINF_SUCCESS;
1252}
1253
1254
1255/**
1256 * Creates a device timer.
1257 *
1258 * @returns VBox status.
1259 * @param pVM The VM to create the timer in.
1260 * @param pDevIns Device instance.
1261 * @param enmClock The clock to use on this timer.
1262 * @param pfnCallback Callback function.
1263 * @param pvUser The user argument to the callback.
1264 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1265 * @param pszDesc Pointer to description string which must stay around
1266 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1267 * @param ppTimer Where to store the timer on success.
1268 */
1269VMMR3DECL(int) TMR3TimerCreateDevice(PVM pVM, PPDMDEVINS pDevIns, TMCLOCK enmClock, PFNTMTIMERDEV pfnCallback, void *pvUser, uint32_t fFlags, const char *pszDesc, PPTMTIMERR3 ppTimer)
1270{
1271 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT)), VERR_INVALID_PARAMETER);
1272
1273 /*
1274 * Allocate and init stuff.
1275 */
1276 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
1277 if (RT_SUCCESS(rc))
1278 {
1279 (*ppTimer)->enmType = TMTIMERTYPE_DEV;
1280 (*ppTimer)->u.Dev.pfnTimer = pfnCallback;
1281 (*ppTimer)->u.Dev.pDevIns = pDevIns;
1282 (*ppTimer)->pvUser = pvUser;
1283 if (fFlags & TMTIMER_FLAGS_DEFAULT_CRIT_SECT)
1284 (*ppTimer)->pCritSect = IOMR3GetCritSect(pVM);
1285 Log(("TM: Created device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
1286 }
1287
1288 return rc;
1289}
1290
1291
1292/**
1293 * Creates a driver timer.
1294 *
1295 * @returns VBox status.
1296 * @param pVM The VM to create the timer in.
1297 * @param pDrvIns Driver instance.
1298 * @param enmClock The clock to use on this timer.
1299 * @param pfnCallback Callback function.
1300 * @param pvUser The user argument to the callback.
1301 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1302 * @param pszDesc Pointer to description string which must stay around
1303 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1304 * @param ppTimer Where to store the timer on success.
1305 */
1306VMMR3DECL(int) TMR3TimerCreateDriver(PVM pVM, PPDMDRVINS pDrvIns, TMCLOCK enmClock, PFNTMTIMERDRV pfnCallback, void *pvUser,
1307 uint32_t fFlags, const char *pszDesc, PPTMTIMERR3 ppTimer)
1308{
1309 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT)), VERR_INVALID_PARAMETER);
1310
1311 /*
1312 * Allocate and init stuff.
1313 */
1314 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
1315 if (RT_SUCCESS(rc))
1316 {
1317 (*ppTimer)->enmType = TMTIMERTYPE_DRV;
1318 (*ppTimer)->u.Drv.pfnTimer = pfnCallback;
1319 (*ppTimer)->u.Drv.pDrvIns = pDrvIns;
1320 (*ppTimer)->pvUser = pvUser;
1321 Log(("TM: Created device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
1322 }
1323
1324 return rc;
1325}
1326
1327
1328/**
1329 * Creates an internal timer.
1330 *
1331 * @returns VBox status.
1332 * @param pVM The VM to create the timer in.
1333 * @param enmClock The clock to use on this timer.
1334 * @param pfnCallback Callback function.
1335 * @param pvUser User argument to be passed to the callback.
1336 * @param pszDesc Pointer to description string which must stay around
1337 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1338 * @param ppTimer Where to store the timer on success.
1339 */
1340VMMR3DECL(int) TMR3TimerCreateInternal(PVM pVM, TMCLOCK enmClock, PFNTMTIMERINT pfnCallback, void *pvUser, const char *pszDesc, PPTMTIMERR3 ppTimer)
1341{
1342 /*
1343 * Allocate and init stuff.
1344 */
1345 PTMTIMER pTimer;
1346 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, &pTimer);
1347 if (RT_SUCCESS(rc))
1348 {
1349 pTimer->enmType = TMTIMERTYPE_INTERNAL;
1350 pTimer->u.Internal.pfnTimer = pfnCallback;
1351 pTimer->pvUser = pvUser;
1352 *ppTimer = pTimer;
1353 Log(("TM: Created internal timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszDesc));
1354 }
1355
1356 return rc;
1357}
1358
1359/**
1360 * Creates an external timer.
1361 *
1362 * @returns Timer handle on success.
1363 * @returns NULL on failure.
1364 * @param pVM The VM to create the timer in.
1365 * @param enmClock The clock to use on this timer.
1366 * @param pfnCallback Callback function.
1367 * @param pvUser User argument.
1368 * @param pszDesc Pointer to description string which must stay around
1369 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1370 */
1371VMMR3DECL(PTMTIMERR3) TMR3TimerCreateExternal(PVM pVM, TMCLOCK enmClock, PFNTMTIMEREXT pfnCallback, void *pvUser, const char *pszDesc)
1372{
1373 /*
1374 * Allocate and init stuff.
1375 */
1376 PTMTIMERR3 pTimer;
1377 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, &pTimer);
1378 if (RT_SUCCESS(rc))
1379 {
1380 pTimer->enmType = TMTIMERTYPE_EXTERNAL;
1381 pTimer->u.External.pfnTimer = pfnCallback;
1382 pTimer->pvUser = pvUser;
1383 Log(("TM: Created external timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszDesc));
1384 return pTimer;
1385 }
1386
1387 return NULL;
1388}
1389
1390
1391/**
1392 * Destroy a timer
1393 *
1394 * @returns VBox status.
1395 * @param pTimer Timer handle as returned by one of the create functions.
1396 */
1397VMMR3DECL(int) TMR3TimerDestroy(PTMTIMER pTimer)
1398{
1399 /*
1400 * Be extra careful here.
1401 */
1402 if (!pTimer)
1403 return VINF_SUCCESS;
1404 AssertPtr(pTimer);
1405 Assert((unsigned)pTimer->enmClock < (unsigned)TMCLOCK_MAX);
1406
1407 PVM pVM = pTimer->CTX_SUFF(pVM);
1408 PTMTIMERQUEUE pQueue = &pVM->tm.s.CTX_SUFF(paTimerQueues)[pTimer->enmClock];
1409 bool fActive = false;
1410 bool fPending = false;
1411
1412 AssertMsg( !pTimer->pCritSect
1413 || VMR3GetState(pVM) != VMSTATE_RUNNING
1414 || PDMCritSectIsOwner(pTimer->pCritSect), ("%s\n", pTimer->pszDesc));
1415
1416 /*
1417 * The rest of the game happens behind the lock, just
1418 * like create does. All the work is done here.
1419 */
1420 tmTimerLock(pVM);
1421 for (int cRetries = 1000;; cRetries--)
1422 {
1423 /*
1424 * Change to the DESTROY state.
1425 */
1426 TMTIMERSTATE enmState = pTimer->enmState;
1427 TMTIMERSTATE enmNewState = enmState;
1428 Log2(("TMTimerDestroy: %p:{.enmState=%s, .pszDesc='%s'} cRetries=%d\n",
1429 pTimer, tmTimerState(enmState), R3STRING(pTimer->pszDesc), cRetries));
1430 switch (enmState)
1431 {
1432 case TMTIMERSTATE_STOPPED:
1433 case TMTIMERSTATE_EXPIRED_DELIVER:
1434 break;
1435
1436 case TMTIMERSTATE_ACTIVE:
1437 fActive = true;
1438 break;
1439
1440 case TMTIMERSTATE_PENDING_STOP:
1441 case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
1442 case TMTIMERSTATE_PENDING_RESCHEDULE:
1443 fActive = true;
1444 fPending = true;
1445 break;
1446
1447 case TMTIMERSTATE_PENDING_SCHEDULE:
1448 fPending = true;
1449 break;
1450
1451 /*
1452 * This shouldn't happen as the caller should make sure there are no races.
1453 */
1454 case TMTIMERSTATE_EXPIRED_GET_UNLINK:
1455 case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
1456 case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
1457 AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->pszDesc));
1458 tmTimerUnlock(pVM);
1459 if (!RTThreadYield())
1460 RTThreadSleep(1);
1461 AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->pszDesc),
1462 VERR_TM_UNSTABLE_STATE);
1463 tmTimerLock(pVM);
1464 continue;
1465
1466 /*
1467 * Invalid states.
1468 */
1469 case TMTIMERSTATE_FREE:
1470 case TMTIMERSTATE_DESTROY:
1471 tmTimerUnlock(pVM);
1472 AssertLogRelMsgFailedReturn(("pTimer=%p %s\n", pTimer, tmTimerState(enmState)), VERR_TM_INVALID_STATE);
1473
1474 default:
1475 AssertMsgFailed(("Unknown timer state %d (%s)\n", enmState, R3STRING(pTimer->pszDesc)));
1476 tmTimerUnlock(pVM);
1477 return VERR_TM_UNKNOWN_STATE;
1478 }
1479
1480 /*
1481 * Try switch to the destroy state.
1482 * This should always succeed as the caller should make sure there are no race.
1483 */
1484 bool fRc;
1485 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_DESTROY, enmState, fRc);
1486 if (fRc)
1487 break;
1488 AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->pszDesc));
1489 tmTimerUnlock(pVM);
1490 AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->pszDesc),
1491 VERR_TM_UNSTABLE_STATE);
1492 tmTimerLock(pVM);
1493 }
1494
1495 /*
1496 * Unlink from the active list.
1497 */
1498 if (fActive)
1499 {
1500 const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
1501 const PTMTIMER pNext = TMTIMER_GET_NEXT(pTimer);
1502 if (pPrev)
1503 TMTIMER_SET_NEXT(pPrev, pNext);
1504 else
1505 {
1506 TMTIMER_SET_HEAD(pQueue, pNext);
1507 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
1508 }
1509 if (pNext)
1510 TMTIMER_SET_PREV(pNext, pPrev);
1511 pTimer->offNext = 0;
1512 pTimer->offPrev = 0;
1513 }
1514
1515 /*
1516 * Unlink from the schedule list by running it.
1517 */
1518 if (fPending)
1519 {
1520 Log3(("TMR3TimerDestroy: tmTimerQueueSchedule\n"));
1521 STAM_PROFILE_START(&pVM->tm.s.CTX_SUFF_Z(StatScheduleOne), a);
1522 Assert(pQueue->offSchedule);
1523 tmTimerQueueSchedule(pVM, pQueue);
1524 }
1525
1526 /*
1527 * Read to move the timer from the created list and onto the free list.
1528 */
1529 Assert(!pTimer->offNext); Assert(!pTimer->offPrev); Assert(!pTimer->offScheduleNext);
1530
1531 /* unlink from created list */
1532 if (pTimer->pBigPrev)
1533 pTimer->pBigPrev->pBigNext = pTimer->pBigNext;
1534 else
1535 pVM->tm.s.pCreated = pTimer->pBigNext;
1536 if (pTimer->pBigNext)
1537 pTimer->pBigNext->pBigPrev = pTimer->pBigPrev;
1538 pTimer->pBigNext = 0;
1539 pTimer->pBigPrev = 0;
1540
1541 /* free */
1542 Log2(("TM: Inserting %p into the free list ahead of %p!\n", pTimer, pVM->tm.s.pFree));
1543 TM_SET_STATE(pTimer, TMTIMERSTATE_FREE);
1544 pTimer->pBigNext = pVM->tm.s.pFree;
1545 pVM->tm.s.pFree = pTimer;
1546
1547#ifdef VBOX_STRICT
1548 tmTimerQueuesSanityChecks(pVM, "TMR3TimerDestroy");
1549#endif
1550 tmTimerUnlock(pVM);
1551 return VINF_SUCCESS;
1552}
1553
1554
1555/**
1556 * Destroy all timers owned by a device.
1557 *
1558 * @returns VBox status.
1559 * @param pVM VM handle.
1560 * @param pDevIns Device which timers should be destroyed.
1561 */
1562VMMR3DECL(int) TMR3TimerDestroyDevice(PVM pVM, PPDMDEVINS pDevIns)
1563{
1564 LogFlow(("TMR3TimerDestroyDevice: pDevIns=%p\n", pDevIns));
1565 if (!pDevIns)
1566 return VERR_INVALID_PARAMETER;
1567
1568 tmTimerLock(pVM);
1569 PTMTIMER pCur = pVM->tm.s.pCreated;
1570 while (pCur)
1571 {
1572 PTMTIMER pDestroy = pCur;
1573 pCur = pDestroy->pBigNext;
1574 if ( pDestroy->enmType == TMTIMERTYPE_DEV
1575 && pDestroy->u.Dev.pDevIns == pDevIns)
1576 {
1577 int rc = TMR3TimerDestroy(pDestroy);
1578 AssertRC(rc);
1579 }
1580 }
1581 tmTimerUnlock(pVM);
1582
1583 LogFlow(("TMR3TimerDestroyDevice: returns VINF_SUCCESS\n"));
1584 return VINF_SUCCESS;
1585}
1586
1587
1588/**
1589 * Destroy all timers owned by a driver.
1590 *
1591 * @returns VBox status.
1592 * @param pVM VM handle.
1593 * @param pDrvIns Driver which timers should be destroyed.
1594 */
1595VMMR3DECL(int) TMR3TimerDestroyDriver(PVM pVM, PPDMDRVINS pDrvIns)
1596{
1597 LogFlow(("TMR3TimerDestroyDriver: pDrvIns=%p\n", pDrvIns));
1598 if (!pDrvIns)
1599 return VERR_INVALID_PARAMETER;
1600
1601 tmTimerLock(pVM);
1602 PTMTIMER pCur = pVM->tm.s.pCreated;
1603 while (pCur)
1604 {
1605 PTMTIMER pDestroy = pCur;
1606 pCur = pDestroy->pBigNext;
1607 if ( pDestroy->enmType == TMTIMERTYPE_DRV
1608 && pDestroy->u.Drv.pDrvIns == pDrvIns)
1609 {
1610 int rc = TMR3TimerDestroy(pDestroy);
1611 AssertRC(rc);
1612 }
1613 }
1614 tmTimerUnlock(pVM);
1615
1616 LogFlow(("TMR3TimerDestroyDriver: returns VINF_SUCCESS\n"));
1617 return VINF_SUCCESS;
1618}
1619
1620
1621/**
1622 * Internal function for getting the clock time.
1623 *
1624 * @returns clock time.
1625 * @param pVM The VM handle.
1626 * @param enmClock The clock.
1627 */
1628DECLINLINE(uint64_t) tmClock(PVM pVM, TMCLOCK enmClock)
1629{
1630 switch (enmClock)
1631 {
1632 case TMCLOCK_VIRTUAL: return TMVirtualGet(pVM);
1633 case TMCLOCK_VIRTUAL_SYNC: return TMVirtualSyncGet(pVM);
1634 case TMCLOCK_REAL: return TMRealGet(pVM);
1635 case TMCLOCK_TSC: return TMCpuTickGet(&pVM->aCpus[0] /* just take VCPU 0 */);
1636 default:
1637 AssertMsgFailed(("enmClock=%d\n", enmClock));
1638 return ~(uint64_t)0;
1639 }
1640}
1641
1642
1643/**
1644 * Checks if the sync queue has one or more expired timers.
1645 *
1646 * @returns true / false.
1647 *
1648 * @param pVM The VM handle.
1649 * @param enmClock The queue.
1650 */
1651DECLINLINE(bool) tmR3HasExpiredTimer(PVM pVM, TMCLOCK enmClock)
1652{
1653 const uint64_t u64Expire = pVM->tm.s.CTX_SUFF(paTimerQueues)[enmClock].u64Expire;
1654 return u64Expire != INT64_MAX && u64Expire <= tmClock(pVM, enmClock);
1655}
1656
1657
1658/**
1659 * Checks for expired timers in all the queues.
1660 *
1661 * @returns true / false.
1662 * @param pVM The VM handle.
1663 */
1664DECLINLINE(bool) tmR3AnyExpiredTimers(PVM pVM)
1665{
1666 /*
1667 * Combine the time calculation for the first two since we're not on EMT
1668 * TMVirtualSyncGet only permits EMT.
1669 */
1670 uint64_t u64Now = TMVirtualGetNoCheck(pVM);
1671 if (pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL].u64Expire <= u64Now)
1672 return true;
1673 u64Now = pVM->tm.s.fVirtualSyncTicking
1674 ? u64Now - pVM->tm.s.offVirtualSync
1675 : pVM->tm.s.u64VirtualSync;
1676 if (pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL_SYNC].u64Expire <= u64Now)
1677 return true;
1678
1679 /*
1680 * The remaining timers.
1681 */
1682 if (tmR3HasExpiredTimer(pVM, TMCLOCK_REAL))
1683 return true;
1684 if (tmR3HasExpiredTimer(pVM, TMCLOCK_TSC))
1685 return true;
1686 return false;
1687}
1688
1689
1690/**
1691 * Schedulation timer callback.
1692 *
1693 * @param pTimer Timer handle.
1694 * @param pvUser VM handle.
1695 * @thread Timer thread.
1696 *
1697 * @remark We cannot do the scheduling and queues running from a timer handler
1698 * since it's not executing in EMT, and even if it was it would be async
1699 * and we wouldn't know the state of the affairs.
1700 * So, we'll just raise the timer FF and force any REM execution to exit.
1701 */
1702static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t /*iTick*/)
1703{
1704 PVM pVM = (PVM)pvUser;
1705 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
1706
1707 AssertCompile(TMCLOCK_MAX == 4);
1708#ifdef DEBUG_Sander /* very annoying, keep it private. */
1709 if (VMCPU_FF_ISSET(pVCpuDst, VMCPU_FF_TIMER))
1710 Log(("tmR3TimerCallback: timer event still pending!!\n"));
1711#endif
1712 if ( !VMCPU_FF_ISSET(pVCpuDst, VMCPU_FF_TIMER)
1713 && ( pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule /** @todo FIXME - reconsider offSchedule as a reason for running the timer queues. */
1714 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].offSchedule
1715 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].offSchedule
1716 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].offSchedule
1717 || tmR3AnyExpiredTimers(pVM)
1718 )
1719 && !VMCPU_FF_ISSET(pVCpuDst, VMCPU_FF_TIMER)
1720 && !pVM->tm.s.fRunningQueues
1721 )
1722 {
1723 Log5(("TM(%u): FF: 0 -> 1\n", __LINE__));
1724 VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
1725 REMR3NotifyTimerPending(pVM, pVCpuDst);
1726 VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM /** @todo | VMNOTIFYFF_FLAGS_POKE ?*/);
1727 STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallbackSetFF);
1728 }
1729}
1730
1731
1732/**
1733 * Schedules and runs any pending timers.
1734 *
1735 * This is normally called from a forced action handler in EMT.
1736 *
1737 * @param pVM The VM to run the timers for.
1738 *
1739 * @thread EMT (actually EMT0, but we fend off the others)
1740 */
1741VMMR3DECL(void) TMR3TimerQueuesDo(PVM pVM)
1742{
1743 /*
1744 * Only the dedicated timer EMT should do stuff here.
1745 * (fRunningQueues is only used as an indicator.)
1746 */
1747 Assert(pVM->tm.s.idTimerCpu < pVM->cCPUs);
1748 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
1749 if (VMMGetCpu(pVM) != pVCpuDst)
1750 {
1751 Assert(pVM->cCPUs > 1);
1752 return;
1753 }
1754 STAM_PROFILE_START(&pVM->tm.s.StatDoQueues, a);
1755 Log2(("TMR3TimerQueuesDo:\n"));
1756 Assert(!pVM->tm.s.fRunningQueues);
1757 ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, true);
1758 tmTimerLock(pVM);
1759
1760 /*
1761 * Process the queues.
1762 */
1763 AssertCompile(TMCLOCK_MAX == 4);
1764
1765 /* TMCLOCK_VIRTUAL_SYNC (see also TMR3VirtualSyncFF) */
1766 STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], s1);
1767 tmVirtualSyncLock(pVM);
1768 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
1769 VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /* Clear the FF once we started working for real. */
1770
1771 if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule)
1772 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC]);
1773 tmR3TimerQueueRunVirtualSync(pVM);
1774 if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
1775 VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
1776
1777 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
1778 tmVirtualSyncUnlock(pVM);
1779 STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], s1);
1780
1781 /* TMCLOCK_VIRTUAL */
1782 STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], s2);
1783 if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].offSchedule)
1784 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL]);
1785 tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL]);
1786 STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], s2);
1787
1788 /* TMCLOCK_TSC */
1789 Assert(!pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].offActive); /* not used */
1790
1791 /* TMCLOCK_REAL */
1792 STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], s3);
1793 if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].offSchedule)
1794 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL]);
1795 tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL]);
1796 STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], s3);
1797
1798#ifdef VBOX_STRICT
1799 /* check that we didn't screwup. */
1800 tmTimerQueuesSanityChecks(pVM, "TMR3TimerQueuesDo");
1801#endif
1802
1803 /* done */
1804 Log2(("TMR3TimerQueuesDo: returns void\n"));
1805 ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, false);
1806 tmTimerUnlock(pVM);
1807 STAM_PROFILE_STOP(&pVM->tm.s.StatDoQueues, a);
1808}
1809
1810//RT_C_DECLS_BEGIN
1811//int iomLock(PVM pVM);
1812//void iomUnlock(PVM pVM);
1813//RT_C_DECLS_END
1814
1815
1816/**
1817 * Schedules and runs any pending times in the specified queue.
1818 *
1819 * This is normally called from a forced action handler in EMT.
1820 *
1821 * @param pVM The VM to run the timers for.
1822 * @param pQueue The queue to run.
1823 */
1824static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue)
1825{
1826 VM_ASSERT_EMT(pVM);
1827
1828 /*
1829 * Run timers.
1830 *
1831 * We check the clock once and run all timers which are ACTIVE
1832 * and have an expire time less or equal to the time we read.
1833 *
1834 * N.B. A generic unlink must be applied since other threads
1835 * are allowed to mess with any active timer at any time.
1836 * However, we only allow EMT to handle EXPIRED_PENDING
1837 * timers, thus enabling the timer handler function to
1838 * arm the timer again.
1839 */
1840 PTMTIMER pNext = TMTIMER_GET_HEAD(pQueue);
1841 if (!pNext)
1842 return;
1843 const uint64_t u64Now = tmClock(pVM, pQueue->enmClock);
1844 while (pNext && pNext->u64Expire <= u64Now)
1845 {
1846 PTMTIMER pTimer = pNext;
1847 pNext = TMTIMER_GET_NEXT(pTimer);
1848 PPDMCRITSECT pCritSect = pTimer->pCritSect;
1849 if (pCritSect)
1850 PDMCritSectEnter(pCritSect, VERR_INTERNAL_ERROR);
1851 Log2(("tmR3TimerQueueRun: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .pszDesc=%s}\n",
1852 pTimer, tmTimerState(pTimer->enmState), pTimer->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->pszDesc));
1853 bool fRc;
1854 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_GET_UNLINK, TMTIMERSTATE_ACTIVE, fRc);
1855 if (fRc)
1856 {
1857 Assert(!pTimer->offScheduleNext); /* this can trigger falsely */
1858
1859 /* unlink */
1860 const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
1861 if (pPrev)
1862 TMTIMER_SET_NEXT(pPrev, pNext);
1863 else
1864 {
1865 TMTIMER_SET_HEAD(pQueue, pNext);
1866 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
1867 }
1868 if (pNext)
1869 TMTIMER_SET_PREV(pNext, pPrev);
1870 pTimer->offNext = 0;
1871 pTimer->offPrev = 0;
1872
1873 /* fire */
1874 TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER);
1875 switch (pTimer->enmType)
1876 {
1877 case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer, pTimer->pvUser); break;
1878 case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer, pTimer->pvUser); break;
1879 case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer, pTimer->pvUser); break;
1880 case TMTIMERTYPE_EXTERNAL: pTimer->u.External.pfnTimer(pTimer->pvUser); break;
1881 default:
1882 AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->pszDesc));
1883 break;
1884 }
1885
1886 /* change the state if it wasn't changed already in the handler. */
1887 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc);
1888 Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
1889 }
1890 if (pCritSect)
1891 PDMCritSectLeave(pCritSect);
1892 } /* run loop */
1893}
1894
1895
1896/**
1897 * Schedules and runs any pending times in the timer queue for the
1898 * synchronous virtual clock.
1899 *
1900 * This scheduling is a bit different from the other queues as it need
1901 * to implement the special requirements of the timer synchronous virtual
1902 * clock, thus this 2nd queue run funcion.
1903 *
1904 * @param pVM The VM to run the timers for.
1905 *
1906 * @remarks The caller must own both the TM/EMT and the Virtual Sync locks.
1907 */
1908static void tmR3TimerQueueRunVirtualSync(PVM pVM)
1909{
1910 PTMTIMERQUEUE const pQueue = &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC];
1911 VM_ASSERT_EMT(pVM);
1912
1913 /*
1914 * Any timers?
1915 */
1916 PTMTIMER pNext = TMTIMER_GET_HEAD(pQueue);
1917 if (RT_UNLIKELY(!pNext))
1918 {
1919 Assert(pVM->tm.s.fVirtualSyncTicking || !pVM->tm.s.cVirtualTicking);
1920 return;
1921 }
1922 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRun);
1923
1924 /*
1925 * Calculate the time frame for which we will dispatch timers.
1926 *
1927 * We use a time frame ranging from the current sync time (which is most likely the
1928 * same as the head timer) and some configurable period (100000ns) up towards the
1929 * current virtual time. This period might also need to be restricted by the catch-up
1930 * rate so frequent calls to this function won't accelerate the time too much, however
1931 * this will be implemented at a later point if neccessary.
1932 *
1933 * Without this frame we would 1) having to run timers much more frequently
1934 * and 2) lag behind at a steady rate.
1935 */
1936 const uint64_t u64VirtualNow = TMVirtualGetNoCheck(pVM);
1937 uint64_t const offSyncGivenUp = pVM->tm.s.offVirtualSyncGivenUp;
1938 uint64_t u64Now;
1939 if (!pVM->tm.s.fVirtualSyncTicking)
1940 {
1941 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStoppedAlready);
1942 u64Now = pVM->tm.s.u64VirtualSync;
1943#ifdef DEBUG_bird
1944 Assert(u64Now <= pNext->u64Expire);
1945#endif
1946 }
1947 else
1948 {
1949 /* Calc 'now'. */
1950 bool fStopCatchup = false;
1951 bool fUpdateStuff = false;
1952 uint64_t off = pVM->tm.s.offVirtualSync;
1953 if (pVM->tm.s.fVirtualSyncCatchUp)
1954 {
1955 uint64_t u64Delta = u64VirtualNow - pVM->tm.s.u64VirtualSyncCatchUpPrev;
1956 if (RT_LIKELY(!(u64Delta >> 32)))
1957 {
1958 uint64_t u64Sub = ASMMultU64ByU32DivByU32(u64Delta, pVM->tm.s.u32VirtualSyncCatchUpPercentage, 100);
1959 if (off > u64Sub + offSyncGivenUp)
1960 {
1961 off -= u64Sub;
1962 Log4(("TM: %'RU64/-%'8RU64: sub %'RU64 [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow - off, off - offSyncGivenUp, u64Sub));
1963 }
1964 else
1965 {
1966 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
1967 fStopCatchup = true;
1968 off = offSyncGivenUp;
1969 }
1970 }
1971 }
1972 u64Now = u64VirtualNow - off;
1973
1974 /* Check if stopped by expired timer. */
1975 uint64_t u64Expire = pNext->u64Expire;
1976 if (u64Now >= pNext->u64Expire)
1977 {
1978 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStop);
1979 u64Now = pNext->u64Expire;
1980 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
1981 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
1982 Log4(("TM: %'RU64/-%'8RU64: exp tmr [tmR3TimerQueueRunVirtualSync]\n", u64Now, u64VirtualNow - u64Now - offSyncGivenUp));
1983 }
1984 else if (fUpdateStuff)
1985 {
1986 ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, off);
1987 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSyncCatchUpPrev, u64VirtualNow);
1988 if (fStopCatchup)
1989 {
1990 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
1991 Log4(("TM: %'RU64/0: caught up [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow));
1992 }
1993 }
1994 }
1995
1996 /* calc end of frame. */
1997 uint64_t u64Max = u64Now + pVM->tm.s.u32VirtualSyncScheduleSlack;
1998 if (u64Max > u64VirtualNow - offSyncGivenUp)
1999 u64Max = u64VirtualNow - offSyncGivenUp;
2000
2001 /* assert sanity */
2002#ifdef DEBUG_bird
2003 Assert(u64Now <= u64VirtualNow - offSyncGivenUp);
2004 Assert(u64Max <= u64VirtualNow - offSyncGivenUp);
2005 Assert(u64Now <= u64Max);
2006 Assert(offSyncGivenUp == pVM->tm.s.offVirtualSyncGivenUp);
2007#endif
2008
2009 /*
2010 * Process the expired timers moving the clock along as we progress.
2011 */
2012#ifdef DEBUG_bird
2013#ifdef VBOX_STRICT
2014 uint64_t u64Prev = u64Now; NOREF(u64Prev);
2015#endif
2016#endif
2017 while (pNext && pNext->u64Expire <= u64Max)
2018 {
2019 PTMTIMER pTimer = pNext;
2020 pNext = TMTIMER_GET_NEXT(pTimer);
2021 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2022 if (pCritSect)
2023 PDMCritSectEnter(pCritSect, VERR_INTERNAL_ERROR);
2024 Log2(("tmR3TimerQueueRun: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .pszDesc=%s}\n",
2025 pTimer, tmTimerState(pTimer->enmState), pTimer->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->pszDesc));
2026 bool fRc;
2027 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_GET_UNLINK, TMTIMERSTATE_ACTIVE, fRc);
2028 if (fRc)
2029 {
2030 /* unlink */
2031 const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
2032 if (pPrev)
2033 TMTIMER_SET_NEXT(pPrev, pNext);
2034 else
2035 {
2036 TMTIMER_SET_HEAD(pQueue, pNext);
2037 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
2038 }
2039 if (pNext)
2040 TMTIMER_SET_PREV(pNext, pPrev);
2041 pTimer->offNext = 0;
2042 pTimer->offPrev = 0;
2043
2044 /* advance the clock - don't permit timers to be out of order or armed in the 'past'. */
2045#ifdef DEBUG_bird
2046#ifdef VBOX_STRICT
2047 AssertMsg(pTimer->u64Expire >= u64Prev, ("%'RU64 < %'RU64 %s\n", pTimer->u64Expire, u64Prev, pTimer->pszDesc));
2048 u64Prev = pTimer->u64Expire;
2049#endif
2050#endif
2051 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, pTimer->u64Expire);
2052 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
2053
2054 /* fire */
2055 TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER);
2056 switch (pTimer->enmType)
2057 {
2058 case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer, pTimer->pvUser); break;
2059 case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer, pTimer->pvUser); break;
2060 case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer, pTimer->pvUser); break;
2061 case TMTIMERTYPE_EXTERNAL: pTimer->u.External.pfnTimer(pTimer->pvUser); break;
2062 default:
2063 AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->pszDesc));
2064 break;
2065 }
2066
2067 /* change the state if it wasn't changed already in the handler. */
2068 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc);
2069 Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
2070 }
2071 if (pCritSect)
2072 PDMCritSectLeave(pCritSect);
2073 } /* run loop */
2074
2075 /*
2076 * Restart the clock if it was stopped to serve any timers,
2077 * and start/adjust catch-up if necessary.
2078 */
2079 if ( !pVM->tm.s.fVirtualSyncTicking
2080 && pVM->tm.s.cVirtualTicking)
2081 {
2082 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunRestart);
2083
2084 /* calc the slack we've handed out. */
2085 const uint64_t u64VirtualNow2 = TMVirtualGetNoCheck(pVM);
2086 Assert(u64VirtualNow2 >= u64VirtualNow);
2087#ifdef DEBUG_bird
2088 AssertMsg(pVM->tm.s.u64VirtualSync >= u64Now, ("%'RU64 < %'RU64\n", pVM->tm.s.u64VirtualSync, u64Now));
2089#endif
2090 const uint64_t offSlack = pVM->tm.s.u64VirtualSync - u64Now;
2091 STAM_STATS({
2092 if (offSlack)
2093 {
2094 PSTAMPROFILE p = &pVM->tm.s.StatVirtualSyncRunSlack;
2095 p->cPeriods++;
2096 p->cTicks += offSlack;
2097 if (p->cTicksMax < offSlack) p->cTicksMax = offSlack;
2098 if (p->cTicksMin > offSlack) p->cTicksMin = offSlack;
2099 }
2100 });
2101
2102 /* Let the time run a little bit while we were busy running timers(?). */
2103 uint64_t u64Elapsed;
2104#define MAX_ELAPSED 30000U /* ns */
2105 if (offSlack > MAX_ELAPSED)
2106 u64Elapsed = 0;
2107 else
2108 {
2109 u64Elapsed = u64VirtualNow2 - u64VirtualNow;
2110 if (u64Elapsed > MAX_ELAPSED)
2111 u64Elapsed = MAX_ELAPSED;
2112 u64Elapsed = u64Elapsed > offSlack ? u64Elapsed - offSlack : 0;
2113 }
2114#undef MAX_ELAPSED
2115
2116 /* Calc the current offset. */
2117 uint64_t offNew = u64VirtualNow2 - pVM->tm.s.u64VirtualSync - u64Elapsed;
2118 Assert(!(offNew & RT_BIT_64(63)));
2119 uint64_t offLag = offNew - pVM->tm.s.offVirtualSyncGivenUp;
2120 Assert(!(offLag & RT_BIT_64(63)));
2121
2122 /*
2123 * Deal with starting, adjusting and stopping catchup.
2124 */
2125 if (pVM->tm.s.fVirtualSyncCatchUp)
2126 {
2127 if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpStopThreshold)
2128 {
2129 /* stop */
2130 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2131 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2132 Log4(("TM: %'RU64/-%'8RU64: caught up [pt]\n", u64VirtualNow2 - offNew, offLag));
2133 }
2134 else if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
2135 {
2136 /* adjust */
2137 unsigned i = 0;
2138 while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
2139 && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
2140 i++;
2141 if (pVM->tm.s.u32VirtualSyncCatchUpPercentage < pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage)
2142 {
2143 STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupAdjust[i]);
2144 ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
2145 Log4(("TM: %'RU64/%'8RU64: adj %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2146 }
2147 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64VirtualNow2;
2148 }
2149 else
2150 {
2151 /* give up */
2152 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUp);
2153 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2154 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
2155 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2156 Log4(("TM: %'RU64/%'8RU64: give up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2157 LogRel(("TM: Giving up catch-up attempt at a %'RU64 ns lag; new total: %'RU64 ns\n", offLag, offNew));
2158 }
2159 }
2160 else if (offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[0].u64Start)
2161 {
2162 if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
2163 {
2164 /* start */
2165 STAM_PROFILE_ADV_START(&pVM->tm.s.StatVirtualSyncCatchup, c);
2166 unsigned i = 0;
2167 while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
2168 && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
2169 i++;
2170 STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupInitial[i]);
2171 ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
2172 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, true);
2173 Log4(("TM: %'RU64/%'8RU64: catch-up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2174 }
2175 else
2176 {
2177 /* don't bother */
2178 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting);
2179 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
2180 Log4(("TM: %'RU64/%'8RU64: give up\n", u64VirtualNow2 - offNew, offLag));
2181 LogRel(("TM: Not bothering to attempt catching up a %'RU64 ns lag; new total: %'RU64\n", offLag, offNew));
2182 }
2183 }
2184
2185 /*
2186 * Update the offset and restart the clock.
2187 */
2188 Assert(!(offNew & RT_BIT_64(63)));
2189 ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, offNew);
2190 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, true);
2191 }
2192}
2193
2194
2195/**
2196 * Deals with stopped Virtual Sync clock.
2197 *
2198 * This is called by the forced action flag handling code in EM when it
2199 * encounters the VM_FF_TM_VIRTUAL_SYNC flag. It is called by all VCPUs and they
2200 * will block on the VirtualSyncLock until the pending timers has been executed
2201 * and the clock restarted.
2202 *
2203 * @param pVM The VM to run the timers for.
2204 * @param pVCpu The virtual CPU we're running at.
2205 *
2206 * @thread EMTs
2207 */
2208VMMR3DECL(void) TMR3VirtualSyncFF(PVM pVM, PVMCPU pVCpu)
2209{
2210 Log2(("TMR3VirtualSyncFF:\n"));
2211
2212 /*
2213 * The EMT doing the timers is diverted to them.
2214 */
2215 if (pVCpu->idCpu == pVM->tm.s.idTimerCpu)
2216 TMR3TimerQueuesDo(pVM);
2217 /*
2218 * The other EMTs will block on the virtual sync lock and the first owner
2219 * will run the queue and thus restarting the clock.
2220 *
2221 * Note! This is very suboptimal code wrt to resuming execution when there
2222 * are more than two Virtual CPUs, since they will all have to enter
2223 * the critical section one by one. But it's a very simple solution
2224 * which will have to do the job for now.
2225 */
2226 else
2227 {
2228 STAM_PROFILE_START(&pVM->tm.s.StatVirtualSyncFF, a);
2229 tmVirtualSyncLock(pVM);
2230 if (pVM->tm.s.fVirtualSyncTicking)
2231 {
2232 STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
2233 tmVirtualSyncUnlock(pVM);
2234 Log2(("TMR3VirtualSyncFF: ticking\n"));
2235 }
2236 else
2237 {
2238 tmVirtualSyncUnlock(pVM);
2239
2240 /* try run it. */
2241 tmTimerLock(pVM);
2242 tmVirtualSyncLock(pVM);
2243 if (pVM->tm.s.fVirtualSyncTicking)
2244 Log2(("TMR3VirtualSyncFF: ticking (2)\n"));
2245 else
2246 {
2247 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
2248 Log2(("TMR3VirtualSyncFF: running queue\n"));
2249
2250 if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule)
2251 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC]);
2252 tmR3TimerQueueRunVirtualSync(pVM);
2253 if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
2254 VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
2255
2256 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
2257 }
2258 STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
2259 tmVirtualSyncUnlock(pVM);
2260 tmTimerUnlock(pVM);
2261 }
2262 }
2263}
2264
2265
2266/** @name Saved state values
2267 * @{ */
2268#define TMTIMERSTATE_SAVED_PENDING_STOP 4
2269#define TMTIMERSTATE_SAVED_PENDING_SCHEDULE 7
2270/** @} */
2271
2272
2273/**
2274 * Saves the state of a timer to a saved state.
2275 *
2276 * @returns VBox status.
2277 * @param pTimer Timer to save.
2278 * @param pSSM Save State Manager handle.
2279 */
2280VMMR3DECL(int) TMR3TimerSave(PTMTIMERR3 pTimer, PSSMHANDLE pSSM)
2281{
2282 LogFlow(("TMR3TimerSave: %p:{enmState=%s, .pszDesc={%s}} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->pszDesc, pSSM));
2283 switch (pTimer->enmState)
2284 {
2285 case TMTIMERSTATE_STOPPED:
2286 case TMTIMERSTATE_PENDING_STOP:
2287 case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
2288 return SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_STOP);
2289
2290 case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
2291 case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
2292 AssertMsgFailed(("u64Expire is being updated! (%s)\n", pTimer->pszDesc));
2293 if (!RTThreadYield())
2294 RTThreadSleep(1);
2295 /* fall thru */
2296 case TMTIMERSTATE_ACTIVE:
2297 case TMTIMERSTATE_PENDING_SCHEDULE:
2298 case TMTIMERSTATE_PENDING_RESCHEDULE:
2299 SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_SCHEDULE);
2300 return SSMR3PutU64(pSSM, pTimer->u64Expire);
2301
2302 case TMTIMERSTATE_EXPIRED_GET_UNLINK:
2303 case TMTIMERSTATE_EXPIRED_DELIVER:
2304 case TMTIMERSTATE_DESTROY:
2305 case TMTIMERSTATE_FREE:
2306 AssertMsgFailed(("Invalid timer state %d %s (%s)\n", pTimer->enmState, tmTimerState(pTimer->enmState), pTimer->pszDesc));
2307 return SSMR3HandleSetStatus(pSSM, VERR_TM_INVALID_STATE);
2308 }
2309
2310 AssertMsgFailed(("Unknown timer state %d (%s)\n", pTimer->enmState, pTimer->pszDesc));
2311 return SSMR3HandleSetStatus(pSSM, VERR_TM_UNKNOWN_STATE);
2312}
2313
2314
2315/**
2316 * Loads the state of a timer from a saved state.
2317 *
2318 * @returns VBox status.
2319 * @param pTimer Timer to restore.
2320 * @param pSSM Save State Manager handle.
2321 */
2322VMMR3DECL(int) TMR3TimerLoad(PTMTIMERR3 pTimer, PSSMHANDLE pSSM)
2323{
2324 Assert(pTimer); Assert(pSSM); VM_ASSERT_EMT(pTimer->pVMR3);
2325 LogFlow(("TMR3TimerLoad: %p:{enmState=%s, .pszDesc={%s}} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->pszDesc, pSSM));
2326
2327 /*
2328 * Load the state and validate it.
2329 */
2330 uint8_t u8State;
2331 int rc = SSMR3GetU8(pSSM, &u8State);
2332 if (RT_FAILURE(rc))
2333 return rc;
2334#if 1 /* Workaround for accidental state shift in r47786 (2009-05-26 19:12:12). */ /** @todo remove this in a few weeks! */
2335 if ( u8State == TMTIMERSTATE_SAVED_PENDING_STOP + 1
2336 || u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE + 1)
2337 u8State--;
2338#endif
2339 if ( u8State != TMTIMERSTATE_SAVED_PENDING_STOP
2340 && u8State != TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
2341 {
2342 AssertLogRelMsgFailed(("u8State=%d\n", u8State));
2343 return SSMR3HandleSetStatus(pSSM, VERR_TM_LOAD_STATE);
2344 }
2345
2346 /* Enter the critical section to make TMTimerSet/Stop happy. */
2347 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2348 if (pCritSect)
2349 PDMCritSectEnter(pCritSect, VERR_INTERNAL_ERROR);
2350
2351 if (u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
2352 {
2353 /*
2354 * Load the expire time.
2355 */
2356 uint64_t u64Expire;
2357 rc = SSMR3GetU64(pSSM, &u64Expire);
2358 if (RT_FAILURE(rc))
2359 return rc;
2360
2361 /*
2362 * Set it.
2363 */
2364 Log(("u8State=%d u64Expire=%llu\n", u8State, u64Expire));
2365 rc = TMTimerSet(pTimer, u64Expire);
2366 }
2367 else
2368 {
2369 /*
2370 * Stop it.
2371 */
2372 Log(("u8State=%d\n", u8State));
2373 rc = TMTimerStop(pTimer);
2374 }
2375
2376 if (pCritSect)
2377 PDMCritSectLeave(pCritSect);
2378
2379 /*
2380 * On failure set SSM status.
2381 */
2382 if (RT_FAILURE(rc))
2383 rc = SSMR3HandleSetStatus(pSSM, rc);
2384 return rc;
2385}
2386
2387
2388/**
2389 * Associates a critical section with a timer.
2390 *
2391 * The critical section will be entered prior to doing the timer call back, thus
2392 * avoiding potential races between the timer thread and other threads trying to
2393 * stop or adjust the timer expiration while it's being delivered. The timer
2394 * thread will leave the critical section when the timer callback returns.
2395 *
2396 * In strict builds, ownership of the critical section will be asserted by
2397 * TMTimerSet, TMTimerStop, TMTimerGetExpire and TMTimerDestroy (when called at
2398 * runtime).
2399 *
2400 * @retval VINF_SUCCESS on success.
2401 * @retval VERR_INVALID_HANDLE if the timer handle is NULL or invalid
2402 * (asserted).
2403 * @retval VERR_INVALID_PARAMETER if pCritSect is NULL or has an invalid magic
2404 * (asserted).
2405 * @retval VERR_ALREADY_EXISTS if a critical section was already associated
2406 * with the timer (asserted).
2407 * @retval VERR_INVALID_STATE if the timer isn't stopped.
2408 *
2409 * @param pTimer The timer handle.
2410 * @param pCritSect The critical section. The caller must make sure this
2411 * is around for the life time of the timer.
2412 *
2413 * @thread Any, but the caller is responsible for making sure the timer is not
2414 * active.
2415 */
2416VMMR3DECL(int) TMR3TimerSetCritSect(PTMTIMERR3 pTimer, PPDMCRITSECT pCritSect)
2417{
2418 AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
2419 AssertPtrReturn(pCritSect, VERR_INVALID_PARAMETER);
2420 const char *pszName = PDMR3CritSectName(pCritSect); /* exploited for validation */
2421 AssertReturn(pszName, VERR_INVALID_PARAMETER);
2422 AssertReturn(!pTimer->pCritSect, VERR_ALREADY_EXISTS);
2423 AssertReturn(pTimer->enmState == TMTIMERSTATE_STOPPED, VERR_INVALID_STATE);
2424 LogFlow(("pTimer=%p (%s) pCritSect=%p (%s)\n", pTimer, pTimer->pszDesc, pCritSect, pszName));
2425
2426 pTimer->pCritSect = pCritSect;
2427 return VINF_SUCCESS;
2428}
2429
2430
2431/**
2432 * Get the real world UTC time adjusted for VM lag.
2433 *
2434 * @returns pTime.
2435 * @param pVM The VM instance.
2436 * @param pTime Where to store the time.
2437 */
2438VMMR3DECL(PRTTIMESPEC) TMR3UTCNow(PVM pVM, PRTTIMESPEC pTime)
2439{
2440 RTTimeNow(pTime);
2441 RTTimeSpecSubNano(pTime, ASMAtomicReadU64(&pVM->tm.s.offVirtualSync) - ASMAtomicReadU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp));
2442 RTTimeSpecAddNano(pTime, pVM->tm.s.offUTC);
2443 return pTime;
2444}
2445
2446
2447/**
2448 * Pauses all clocks except TMCLOCK_REAL.
2449 *
2450 * @returns VBox status code, all errors are asserted.
2451 * @param pVM The VM handle.
2452 * @param pVCpu The virtual CPU handle.
2453 * @thread EMT corrsponding to the virtual CPU handle.
2454 */
2455VMMR3DECL(int) TMR3NotifySuspend(PVM pVM, PVMCPU pVCpu)
2456{
2457 VMCPU_ASSERT_EMT(pVCpu);
2458
2459 /*
2460 * The shared virtual clock (includes virtual sync which is tied to it).
2461 */
2462 tmTimerLock(pVM); /* Paranoia: Exploiting the timer lock here. */
2463 int rc = tmVirtualPauseLocked(pVM);
2464 tmTimerUnlock(pVM);
2465 if (RT_FAILURE(rc))
2466 return rc;
2467
2468 /*
2469 * Pause the TSC last since it is normally linked to the virtual
2470 * sync clock, so the above code may actually stop both clock.
2471 */
2472 return tmCpuTickPause(pVM, pVCpu);
2473}
2474
2475
2476/**
2477 * Resumes all clocks except TMCLOCK_REAL.
2478 *
2479 * @returns VBox status code, all errors are asserted.
2480 * @param pVM The VM handle.
2481 * @param pVCpu The virtual CPU handle.
2482 * @thread EMT corrsponding to the virtual CPU handle.
2483 */
2484VMMR3DECL(int) TMR3NotifyResume(PVM pVM, PVMCPU pVCpu)
2485{
2486 VMCPU_ASSERT_EMT(pVCpu);
2487 int rc;
2488
2489 /*
2490 * Resume the TSC first since it is normally linked to the virtual sync
2491 * clock, so it may actually not be resumed until we've executed the code
2492 * below.
2493 */
2494 if (!pVM->tm.s.fTSCTiedToExecution)
2495 {
2496 rc = tmCpuTickResume(pVM, pVCpu);
2497 if (RT_FAILURE(rc))
2498 return rc;
2499 }
2500
2501 /*
2502 * The shared virtual clock (includes virtual sync which is tied to it).
2503 */
2504 tmTimerLock(pVM); /* Paranoia: Exploiting the timer lock here. */
2505 rc = tmVirtualResumeLocked(pVM);
2506 tmTimerUnlock(pVM);
2507
2508 return rc;
2509}
2510
2511
2512/**
2513 * Sets the warp drive percent of the virtual time.
2514 *
2515 * @returns VBox status code.
2516 * @param pVM The VM handle.
2517 * @param u32Percent The new percentage. 100 means normal operation.
2518 *
2519 * @todo Move to Ring-3!
2520 */
2521VMMDECL(int) TMR3SetWarpDrive(PVM pVM, uint32_t u32Percent)
2522{
2523 PVMREQ pReq;
2524 int rc = VMR3ReqCall(pVM, VMCPUID_ANY, &pReq, RT_INDEFINITE_WAIT,
2525 (PFNRT)tmR3SetWarpDrive, 2, pVM, u32Percent);
2526 if (RT_SUCCESS(rc))
2527 rc = pReq->iStatus;
2528 VMR3ReqFree(pReq);
2529 return rc;
2530}
2531
2532
2533/**
2534 * EMT worker for TMR3SetWarpDrive.
2535 *
2536 * @returns VBox status code.
2537 * @param pVM The VM handle.
2538 * @param u32Percent See TMR3SetWarpDrive().
2539 * @internal
2540 */
2541static DECLCALLBACK(int) tmR3SetWarpDrive(PVM pVM, uint32_t u32Percent)
2542{
2543 PVMCPU pVCpu = VMMGetCpu(pVM);
2544
2545 /*
2546 * Validate it.
2547 */
2548 AssertMsgReturn(u32Percent >= 2 && u32Percent <= 20000,
2549 ("%RX32 is not between 2 and 20000 (inclusive).\n", u32Percent),
2550 VERR_INVALID_PARAMETER);
2551
2552/** @todo This isn't a feature specific to virtual time, move the variables to
2553 * TM level and make it affect TMR3UCTNow as well! */
2554
2555 /*
2556 * If the time is running we'll have to pause it before we can change
2557 * the warp drive settings.
2558 */
2559 tmTimerLock(pVM); /* Paranoia: Exploiting the timer lock here. */
2560 bool fPaused = !!pVM->tm.s.cVirtualTicking;
2561 if (fPaused) /** @todo this isn't really working, but wtf. */
2562 TMR3NotifySuspend(pVM, pVCpu);
2563
2564 pVM->tm.s.u32VirtualWarpDrivePercentage = u32Percent;
2565 pVM->tm.s.fVirtualWarpDrive = u32Percent != 100;
2566 LogRel(("TM: u32VirtualWarpDrivePercentage=%RI32 fVirtualWarpDrive=%RTbool\n",
2567 pVM->tm.s.u32VirtualWarpDrivePercentage, pVM->tm.s.fVirtualWarpDrive));
2568
2569 if (fPaused)
2570 TMR3NotifyResume(pVM, pVCpu);
2571 tmTimerUnlock(pVM);
2572 return VINF_SUCCESS;
2573}
2574
2575
2576/**
2577 * Display all timers.
2578 *
2579 * @param pVM VM Handle.
2580 * @param pHlp The info helpers.
2581 * @param pszArgs Arguments, ignored.
2582 */
2583static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2584{
2585 NOREF(pszArgs);
2586 pHlp->pfnPrintf(pHlp,
2587 "Timers (pVM=%p)\n"
2588 "%.*s %.*s %.*s %.*s Clock %-18s %-18s %-25s Description\n",
2589 pVM,
2590 sizeof(RTR3PTR) * 2, "pTimerR3 ",
2591 sizeof(int32_t) * 2, "offNext ",
2592 sizeof(int32_t) * 2, "offPrev ",
2593 sizeof(int32_t) * 2, "offSched ",
2594 "Time",
2595 "Expire",
2596 "State");
2597 tmTimerLock(pVM);
2598 for (PTMTIMERR3 pTimer = pVM->tm.s.pCreated; pTimer; pTimer = pTimer->pBigNext)
2599 {
2600 pHlp->pfnPrintf(pHlp,
2601 "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %-25s %s\n",
2602 pTimer,
2603 pTimer->offNext,
2604 pTimer->offPrev,
2605 pTimer->offScheduleNext,
2606 pTimer->enmClock == TMCLOCK_REAL ? "Real " : "Virt ",
2607 TMTimerGet(pTimer),
2608 pTimer->u64Expire,
2609 tmTimerState(pTimer->enmState),
2610 pTimer->pszDesc);
2611 }
2612 tmTimerUnlock(pVM);
2613}
2614
2615
2616/**
2617 * Display all active timers.
2618 *
2619 * @param pVM VM Handle.
2620 * @param pHlp The info helpers.
2621 * @param pszArgs Arguments, ignored.
2622 */
2623static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2624{
2625 NOREF(pszArgs);
2626 pHlp->pfnPrintf(pHlp,
2627 "Active Timers (pVM=%p)\n"
2628 "%.*s %.*s %.*s %.*s Clock %-18s %-18s %-25s Description\n",
2629 pVM,
2630 sizeof(RTR3PTR) * 2, "pTimerR3 ",
2631 sizeof(int32_t) * 2, "offNext ",
2632 sizeof(int32_t) * 2, "offPrev ",
2633 sizeof(int32_t) * 2, "offSched ",
2634 "Time",
2635 "Expire",
2636 "State");
2637 for (unsigned iQueue = 0; iQueue < TMCLOCK_MAX; iQueue++)
2638 {
2639 tmTimerLock(pVM);
2640 for (PTMTIMERR3 pTimer = TMTIMER_GET_HEAD(&pVM->tm.s.paTimerQueuesR3[iQueue]);
2641 pTimer;
2642 pTimer = TMTIMER_GET_NEXT(pTimer))
2643 {
2644 pHlp->pfnPrintf(pHlp,
2645 "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %-25s %s\n",
2646 pTimer,
2647 pTimer->offNext,
2648 pTimer->offPrev,
2649 pTimer->offScheduleNext,
2650 pTimer->enmClock == TMCLOCK_REAL
2651 ? "Real "
2652 : pTimer->enmClock == TMCLOCK_VIRTUAL
2653 ? "Virt "
2654 : pTimer->enmClock == TMCLOCK_VIRTUAL_SYNC
2655 ? "VrSy "
2656 : "TSC ",
2657 TMTimerGet(pTimer),
2658 pTimer->u64Expire,
2659 tmTimerState(pTimer->enmState),
2660 pTimer->pszDesc);
2661 }
2662 tmTimerUnlock(pVM);
2663 }
2664}
2665
2666
2667/**
2668 * Display all clocks.
2669 *
2670 * @param pVM VM Handle.
2671 * @param pHlp The info helpers.
2672 * @param pszArgs Arguments, ignored.
2673 */
2674static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2675{
2676 NOREF(pszArgs);
2677
2678 /*
2679 * Read the times first to avoid more than necessary time variation.
2680 */
2681 const uint64_t u64Virtual = TMVirtualGet(pVM);
2682 const uint64_t u64VirtualSync = TMVirtualSyncGet(pVM);
2683 const uint64_t u64Real = TMRealGet(pVM);
2684
2685 for (unsigned i = 0; i < pVM->cCPUs; i++)
2686 {
2687 PVMCPU pVCpu = &pVM->aCpus[i];
2688 uint64_t u64TSC = TMCpuTickGet(pVCpu);
2689
2690 /*
2691 * TSC
2692 */
2693 pHlp->pfnPrintf(pHlp,
2694 "Cpu Tick: %18RU64 (%#016RX64) %RU64Hz %s%s",
2695 u64TSC, u64TSC, TMCpuTicksPerSecond(pVM),
2696 pVCpu->tm.s.fTSCTicking ? "ticking" : "paused",
2697 pVM->tm.s.fTSCVirtualized ? " - virtualized" : "");
2698 if (pVM->tm.s.fTSCUseRealTSC)
2699 {
2700 pHlp->pfnPrintf(pHlp, " - real tsc");
2701 if (pVCpu->tm.s.offTSCRawSrc)
2702 pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVCpu->tm.s.offTSCRawSrc);
2703 }
2704 else
2705 pHlp->pfnPrintf(pHlp, " - virtual clock");
2706 pHlp->pfnPrintf(pHlp, "\n");
2707 }
2708
2709 /*
2710 * virtual
2711 */
2712 pHlp->pfnPrintf(pHlp,
2713 " Virtual: %18RU64 (%#016RX64) %RU64Hz %s",
2714 u64Virtual, u64Virtual, TMVirtualGetFreq(pVM),
2715 pVM->tm.s.cVirtualTicking ? "ticking" : "paused");
2716 if (pVM->tm.s.fVirtualWarpDrive)
2717 pHlp->pfnPrintf(pHlp, " WarpDrive %RU32 %%", pVM->tm.s.u32VirtualWarpDrivePercentage);
2718 pHlp->pfnPrintf(pHlp, "\n");
2719
2720 /*
2721 * virtual sync
2722 */
2723 pHlp->pfnPrintf(pHlp,
2724 "VirtSync: %18RU64 (%#016RX64) %s%s",
2725 u64VirtualSync, u64VirtualSync,
2726 pVM->tm.s.fVirtualSyncTicking ? "ticking" : "paused",
2727 pVM->tm.s.fVirtualSyncCatchUp ? " - catchup" : "");
2728 if (pVM->tm.s.offVirtualSync)
2729 {
2730 pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVM->tm.s.offVirtualSync);
2731 if (pVM->tm.s.u32VirtualSyncCatchUpPercentage)
2732 pHlp->pfnPrintf(pHlp, " catch-up rate %u %%", pVM->tm.s.u32VirtualSyncCatchUpPercentage);
2733 }
2734 pHlp->pfnPrintf(pHlp, "\n");
2735
2736 /*
2737 * real
2738 */
2739 pHlp->pfnPrintf(pHlp,
2740 " Real: %18RU64 (%#016RX64) %RU64Hz\n",
2741 u64Real, u64Real, TMRealGetFreq(pVM));
2742}
2743
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette