VirtualBox

source: vbox/trunk/src/VBox/VMM/TM.cpp@ 2551

Last change on this file since 2551 was 2464, checked in by vboxsync, 18 years ago

Added TMR3UCTNow, exported it as a DevHlp and made VMMDev use it as time source. TMR3UCTNow adjust for lag we intend to catchup so the guest time wont run ahead of real-world time.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 72.1 KB
Line 
1/* $Id: TM.cpp 2464 2007-05-03 15:09:01Z vboxsync $ */
2/** @file
3 * TM - Timeout Manager.
4 */
5
6/*
7 * Copyright (C) 2006 InnoTek Systemberatung GmbH
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License as published by the Free Software Foundation,
13 * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
14 * distribution. VirtualBox OSE is distributed in the hope that it will
15 * be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * If you received this file as part of a commercial VirtualBox
18 * distribution, then only the terms of your commercial VirtualBox
19 * license agreement apply instead of the previous paragraph.
20 */
21
22
23/** @page pg_tm TM - The Time Manager
24 *
25 * The Time Manager abstracts the CPU clocks and manages timers used by the VMM,
26 * device and drivers.
27 *
28 *
29 * @section sec_tm_clocks Clocks
30 *
31 * There are currently 4 clocks:
32 * - Virtual (guest).
33 * - Synchronous virtual (guest).
34 * - CPU Tick (TSC) (guest). Only current use is rdtsc emulation. Usually a
35 * function of the virtual clock.
36 * - Real (host). The only current use is display updates for not real
37 * good reason...
38 *
39 * The interesting clocks are two first ones, the virtual and synchronous virtual
40 * clock. The synchronous virtual clock is tied to the virtual clock except that
41 * it will take into account timer delivery lag caused by host scheduling. It will
42 * normally never advance beyond the header timer, and when lagging too far behind
43 * it will gradually speed up to catch up with the virtual clock.
44 *
45 * The CPU tick (TSC) is normally virtualized as a function of the virtual time,
46 * where the frequency defaults to the host cpu frequency (as we measure it). It
47 * can also use the host TSC as source and either present it with an offset or
48 * unmodified. It is of course possible to configure the TSC frequency and mode
49 * of operation.
50 *
51 * @subsection subsec_tm_timesync Guest Time Sync / UTC time
52 *
53 * Guest time syncing is primarily taken care of by the VMM device. The principle
54 * is very simple, the guest additions periodically asks the VMM device what the
55 * current UTC time is and makes adjustments accordingly. Now, because the
56 * synchronous virtual clock might be doing catchups and we would therefore
57 * deliver more than the normal rate for a little while, some adjusting of the
58 * UTC time is required before passing it on to the guest. This is why TM provides
59 * an API for query the current UTC time.
60 *
61 *
62 * @section sec_tm_timers Timers
63 *
64 * The timers can use any of the TM clocks described in the previous section. Each
65 * clock has its own scheduling facility, or timer queue if you like. There are
66 * a few factors which makes it a bit complex. First there is the usual R0 vs R3
67 * vs. GC thing. Then there is multiple threads, and then there is the timer thread
68 * that periodically checks whether any timers has expired without EMT noticing. On
69 * the API level, all but the create and save APIs must be mulithreaded. EMT will
70 * always run the timers.
71 *
72 * The design is using a doubly linked list of active timers which is ordered
73 * by expire date. This list is only modified by the EMT thread. Updates to the
74 * list are are batched in a singly linked list, which is then process by the EMT
75 * thread at the first opportunity (immediately, next time EMT modifies a timer
76 * on that clock, or next timer timeout). Both lists are offset based and all
77 * the elements therefore allocated from the hyper heap.
78 *
79 * For figuring out when there is need to schedule and run timers TM will:
80 * - Poll whenever somebody queries the virtual clock.
81 * - Poll the virtual clocks from the EM and REM loops.
82 * - Poll the virtual clocks from trap exit path.
83 * - Poll the virtual clocks and calculate first timeout from the halt loop.
84 * - Employ a thread which periodically (100Hz) polls all the timer queues.
85 *
86 *
87 * @section sec_tm_timer Logging
88 *
89 * Level 2: Logs a most of the timer state transitions and queue servicing.
90 * Level 3: Logs a few oddments.
91 * Level 4: Logs TMCLOCK_VIRTUAL_SYNC catch-up events.
92 *
93 */
94
95
96
97
98/*******************************************************************************
99* Header Files *
100*******************************************************************************/
101#define LOG_GROUP LOG_GROUP_TM
102#include <VBox/tm.h>
103#include <VBox/vmm.h>
104#include <VBox/mm.h>
105#include <VBox/ssm.h>
106#include <VBox/dbgf.h>
107#include <VBox/rem.h>
108#include "TMInternal.h"
109#include <VBox/vm.h>
110
111#include <VBox/param.h>
112#include <VBox/err.h>
113
114#include <VBox/log.h>
115#include <iprt/asm.h>
116#include <iprt/assert.h>
117#include <iprt/thread.h>
118#include <iprt/time.h>
119#include <iprt/timer.h>
120#include <iprt/semaphore.h>
121#include <iprt/string.h>
122#include <iprt/env.h>
123
124
125/*******************************************************************************
126* Defined Constants And Macros *
127*******************************************************************************/
128/** The current saved state version.*/
129#define TM_SAVED_STATE_VERSION 3
130
131
132/*******************************************************************************
133* Internal Functions *
134*******************************************************************************/
135static uint64_t tmR3Calibrate(void);
136static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM);
137static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
138static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser);
139static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue);
140static void tmR3TimerQueueRunVirtualSync(PVM pVM);
141static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
142static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
143static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
144
145
146/**
147 * Internal function for getting the clock time.
148 *
149 * @returns clock time.
150 * @param pVM The VM handle.
151 * @param enmClock The clock.
152 */
153DECLINLINE(uint64_t) tmClock(PVM pVM, TMCLOCK enmClock)
154{
155 switch (enmClock)
156 {
157 case TMCLOCK_VIRTUAL: return TMVirtualGet(pVM);
158 case TMCLOCK_VIRTUAL_SYNC: return TMVirtualSyncGet(pVM);
159 case TMCLOCK_REAL: return TMRealGet(pVM);
160 case TMCLOCK_TSC: return TMCpuTickGet(pVM);
161 default:
162 AssertMsgFailed(("enmClock=%d\n", enmClock));
163 return ~(uint64_t)0;
164 }
165}
166
167
168/**
169 * Initializes the TM.
170 *
171 * @returns VBox status code.
172 * @param pVM The VM to operate on.
173 */
174TMR3DECL(int) TMR3Init(PVM pVM)
175{
176 LogFlow(("TMR3Init:\n"));
177
178 /*
179 * Assert alignment and sizes.
180 */
181 AssertRelease(!(RT_OFFSETOF(VM, tm.s) & 31));
182 AssertRelease(sizeof(pVM->tm.s) <= sizeof(pVM->tm.padding));
183
184 /*
185 * Init the structure.
186 */
187 void *pv;
188 int rc = MMHyperAlloc(pVM, sizeof(pVM->tm.s.paTimerQueuesR3[0]) * TMCLOCK_MAX, 0, MM_TAG_TM, &pv);
189 AssertRCReturn(rc, rc);
190 pVM->tm.s.paTimerQueuesR3 = (PTMTIMERQUEUE)pv;
191
192 pVM->tm.s.offVM = RT_OFFSETOF(VM, tm.s);
193 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].enmClock = TMCLOCK_VIRTUAL;
194 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].u64Expire = INT64_MAX;
195 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].enmClock = TMCLOCK_VIRTUAL_SYNC;
196 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].u64Expire = INT64_MAX;
197 pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].enmClock = TMCLOCK_REAL;
198 pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].u64Expire = INT64_MAX;
199 pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].enmClock = TMCLOCK_TSC;
200 pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].u64Expire = INT64_MAX;
201
202 /*
203 * We indirectly - thru RTTimeNanoTS and RTTimeMilliTS - use the global
204 * info page (GIP) for both the virtual and the real clock. By mapping
205 * the GIP into guest context we can get just as accurate time even there.
206 * All that's required is that the g_pSUPGlobalInfoPage symbol is available
207 * to the GC Runtime.
208 */
209 pVM->tm.s.pvGIPR3 = (void *)g_pSUPGlobalInfoPage;
210 AssertMsgReturn(pVM->tm.s.pvGIPR3, ("GIP support is now required!\n"), VERR_INTERNAL_ERROR);
211 RTHCPHYS HCPhysGIP;
212 rc = SUPGipGetPhys(&HCPhysGIP);
213 AssertMsgRCReturn(rc, ("Failed to get GIP physical address!\n"), rc);
214
215 rc = MMR3HyperMapHCPhys(pVM, pVM->tm.s.pvGIPR3, HCPhysGIP, PAGE_SIZE, "GIP", &pVM->tm.s.pvGIPGC);
216 if (VBOX_FAILURE(rc))
217 {
218 AssertMsgFailed(("Failed to map GIP into GC, rc=%Vrc!\n", rc));
219 return rc;
220 }
221 LogFlow(("TMR3Init: HCPhysGIP=%RHp at %VGv\n", HCPhysGIP, pVM->tm.s.pvGIPGC));
222 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
223
224 /*
225 * Get our CFGM node, create it if necessary.
226 */
227 PCFGMNODE pCfgHandle = CFGMR3GetChild(CFGMR3GetRoot(pVM), "TM");
228 if (!pCfgHandle)
229 {
230 rc = CFGMR3InsertNode(CFGMR3GetRoot(pVM), "TM", &pCfgHandle);
231 AssertRCReturn(rc, rc);
232 }
233
234 /*
235 * Determin the TSC configuration and frequency.
236 */
237 /* mode */
238 rc = CFGMR3QueryBool(pCfgHandle, "TSCVirtualized", &pVM->tm.s.fTSCVirtualized);
239 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
240 pVM->tm.s.fTSCVirtualized = true; /* trap rdtsc */
241 else if (VBOX_FAILURE(rc))
242 return VMSetError(pVM, rc, RT_SRC_POS,
243 N_("Configuration error: Failed to querying bool value \"UseRealTSC\". (%Vrc)"), rc);
244
245 /* source */
246 rc = CFGMR3QueryBool(pCfgHandle, "UseRealTSC", &pVM->tm.s.fTSCTicking);
247 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
248 pVM->tm.s.fTSCUseRealTSC = false; /* use virtual time */
249 else if (VBOX_FAILURE(rc))
250 return VMSetError(pVM, rc, RT_SRC_POS,
251 N_("Configuration error: Failed to querying bool value \"UseRealTSC\". (%Vrc)"), rc);
252 if (!pVM->tm.s.fTSCUseRealTSC)
253 pVM->tm.s.fTSCVirtualized = true;
254
255 /* frequency */
256 rc = CFGMR3QueryU64(pCfgHandle, "TSCTicksPerSecond", &pVM->tm.s.cTSCTicksPerSecond);
257 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
258 {
259 pVM->tm.s.cTSCTicksPerSecond = tmR3Calibrate();
260 if ( !pVM->tm.s.fTSCUseRealTSC
261 && pVM->tm.s.cTSCTicksPerSecond >= _4G)
262 pVM->tm.s.cTSCTicksPerSecond = _4G - 1; /* (A limitation of our math code) */
263 }
264 else if (VBOX_FAILURE(rc))
265 return VMSetError(pVM, rc, RT_SRC_POS,
266 N_("Configuration error: Failed to querying uint64_t value \"TSCTicksPerSecond\". (%Vrc)"), rc);
267 else if ( pVM->tm.s.cTSCTicksPerSecond < _1M
268 || pVM->tm.s.cTSCTicksPerSecond >= _4G)
269 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
270 N_("Configuration error: \"TSCTicksPerSecond\" = %RI64 is not in the range 1MHz..4GHz-1!"),
271 pVM->tm.s.cTSCTicksPerSecond);
272 else
273 {
274 pVM->tm.s.fTSCUseRealTSC = false;
275 pVM->tm.s.fTSCVirtualized = true;
276 }
277
278 /* setup and report */
279 if (pVM->tm.s.fTSCUseRealTSC)
280 CPUMR3SetCR4Feature(pVM, 0, ~X86_CR4_TSD);
281 else
282 CPUMR3SetCR4Feature(pVM, X86_CR4_TSD, ~X86_CR4_TSD);
283 LogRel(("TM: cTSCTicksPerSecond=%#RX64 (%RU64) fTSCVirtualized=%RTbool fTSCUseRealTSC=%RTbool\n",
284 pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.fTSCVirtualized, pVM->tm.s.fTSCUseRealTSC));
285
286 /*
287 * Configure the timer synchronous virtual time.
288 */
289 rc = CFGMR3QueryU32(pCfgHandle, "ScheduleSlack", &pVM->tm.s.u32VirtualSyncScheduleSlack);
290 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
291 pVM->tm.s.u32VirtualSyncScheduleSlack = 100000; /* 0.100ms (ASSUMES virtual time is nanoseconds) */
292 else if (VBOX_FAILURE(rc))
293 return VMSetError(pVM, rc, RT_SRC_POS,
294 N_("Configuration error: Failed to querying 32-bit integer value \"ScheduleSlack\". (%Vrc)"), rc);
295
296 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStopThreshold", &pVM->tm.s.u64VirtualSyncCatchUpStopThreshold);
297 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
298 pVM->tm.s.u64VirtualSyncCatchUpStopThreshold = 500000; /* 0.5ms */
299 else if (VBOX_FAILURE(rc))
300 return VMSetError(pVM, rc, RT_SRC_POS,
301 N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpStopThreshold\". (%Vrc)"), rc);
302
303 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpGiveUpThreshold", &pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold);
304 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
305 pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold = UINT64_C(60000000000); /* 60 sec */
306 else if (VBOX_FAILURE(rc))
307 return VMSetError(pVM, rc, RT_SRC_POS,
308 N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpGiveUpThreshold\". (%Vrc)"), rc);
309
310
311#define TM_CFG_PERIOD(iPeriod, DefStart, DefPct) \
312 do \
313 { \
314 uint64_t u64; \
315 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStartThreshold" #iPeriod, &u64); \
316 if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
317 u64 = UINT64_C(DefStart); \
318 else if (VBOX_FAILURE(rc)) \
319 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpThreshold" #iPeriod "\". (%Vrc)"), rc); \
320 if ( (iPeriod > 0 && u64 <= pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod - 1].u64Start) \
321 || u64 >= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold) \
322 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("Configuration error: Invalid start of period #" #iPeriod ": %RU64\n"), u64); \
323 pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u64Start = u64; \
324 rc = CFGMR3QueryU32(pCfgHandle, "CatchUpPrecentage" #iPeriod, &pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage); \
325 if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
326 pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage = (DefPct); \
327 else if (VBOX_FAILURE(rc)) \
328 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 32-bit integer value \"CatchUpPrecentage" #iPeriod "\". (%Vrc)"), rc); \
329 } while (0)
330 /* This needs more tuning. Not sure if we really need so many period and be so gentle. */
331 TM_CFG_PERIOD(0, 750000, 5); /* 0.75ms at 1.05x */
332 TM_CFG_PERIOD(1, 1500000, 10); /* 1.50ms at 1.10x */
333 TM_CFG_PERIOD(2, 8000000, 25); /* 8ms at 1.25x */
334 TM_CFG_PERIOD(3, 30000000, 50); /* 30ms at 1.50x */
335 TM_CFG_PERIOD(4, 100000000, 75); /* 100ms at 1.75x */
336 TM_CFG_PERIOD(5, 175000000, 100); /* 175ms at 2x */
337 TM_CFG_PERIOD(6, 500000000, 200); /* 500ms at 3x */
338 TM_CFG_PERIOD(7, 3000000000, 300); /* 3s at 4x */
339 TM_CFG_PERIOD(8,30000000000, 400); /* 30s at 5x */
340 TM_CFG_PERIOD(9,55000000000, 500); /* 55s at 6x */
341 AssertCompile(RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods) == 10);
342#undef TM_CFG_PERIOD
343
344 /*
345 * Setup the warp drive.
346 */
347 rc = CFGMR3QueryU32(pCfgHandle, "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage);
348 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
349 rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage); /* legacy */
350 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
351 pVM->tm.s.u32VirtualWarpDrivePercentage = 100;
352 else if (VBOX_FAILURE(rc))
353 return VMSetError(pVM, rc, RT_SRC_POS,
354 N_("Configuration error: Failed to querying uint32_t value \"WarpDrivePercent\". (%Vrc)"), rc);
355 else if ( pVM->tm.s.u32VirtualWarpDrivePercentage < 2
356 || pVM->tm.s.u32VirtualWarpDrivePercentage > 20000)
357 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
358 N_("Configuration error: \"WarpDrivePercent\" = %RI32 is not in the range 2..20000!"),
359 pVM->tm.s.u32VirtualWarpDrivePercentage);
360 pVM->tm.s.fVirtualWarpDrive = pVM->tm.s.u32VirtualWarpDrivePercentage != 100;
361 if (pVM->tm.s.fVirtualWarpDrive)
362 LogRel(("TM: u32VirtualWarpDrivePercentage=%RI32\n", pVM->tm.s.u32VirtualWarpDrivePercentage));
363
364 /*
365 * Start the timer (guard against REM not yielding).
366 */
367 uint32_t u32Millies;
368 rc = CFGMR3QueryU32(pCfgHandle, "TimerMillies", &u32Millies);
369 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
370 u32Millies = 10;
371 else if (VBOX_FAILURE(rc))
372 return VMSetError(pVM, rc, RT_SRC_POS,
373 N_("Configuration error: Failed to query uint32_t value \"TimerMillies\", rc=%Vrc.\n"), rc);
374 rc = RTTimerCreate(&pVM->tm.s.pTimer, u32Millies, tmR3TimerCallback, pVM);
375 if (VBOX_FAILURE(rc))
376 {
377 AssertMsgFailed(("Failed to create timer, u32Millies=%d rc=%Vrc.\n", u32Millies, rc));
378 return rc;
379 }
380 Log(("TM: Created timer %p firing every %d millieseconds\n", pVM->tm.s.pTimer, u32Millies));
381 pVM->tm.s.u32TimerMillies = u32Millies;
382
383 /*
384 * Register saved state.
385 */
386 rc = SSMR3RegisterInternal(pVM, "tm", 1, TM_SAVED_STATE_VERSION, sizeof(uint64_t) * 8,
387 NULL, tmR3Save, NULL,
388 NULL, tmR3Load, NULL);
389 if (VBOX_FAILURE(rc))
390 return rc;
391
392#ifdef VBOX_WITH_STATISTICS
393 /*
394 * Register statistics.
395 */
396 STAM_REG(pVM, &pVM->tm.s.StatDoQueues, STAMTYPE_PROFILE, "/TM/DoQueues", STAMUNIT_TICKS_PER_CALL, "Profiling timer TMR3TimerQueuesDo.");
397 STAM_REG(pVM, &pVM->tm.s.StatDoQueuesSchedule, STAMTYPE_PROFILE_ADV, "/TM/DoQueues/Schedule",STAMUNIT_TICKS_PER_CALL, "The scheduling part.");
398 STAM_REG(pVM, &pVM->tm.s.StatDoQueuesRun, STAMTYPE_PROFILE_ADV, "/TM/DoQueues/Run", STAMUNIT_TICKS_PER_CALL, "The run part.");
399
400 STAM_REG(pVM, &pVM->tm.s.StatPollAlreadySet, STAMTYPE_COUNTER, "/TM/PollAlreadySet", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the FF was already set.");
401 STAM_REG(pVM, &pVM->tm.s.StatPollVirtual, STAMTYPE_COUNTER, "/TM/PollHitsVirtual", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL queue.");
402 STAM_REG(pVM, &pVM->tm.s.StatPollVirtualSync, STAMTYPE_COUNTER, "/TM/PollHitsVirtualSync",STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL_SYNC queue.");
403 STAM_REG(pVM, &pVM->tm.s.StatPollMiss, STAMTYPE_COUNTER, "/TM/PollMiss", STAMUNIT_OCCURENCES, "TMTimerPoll calls where nothing had expired.");
404
405 STAM_REG(pVM, &pVM->tm.s.StatPostponedR3, STAMTYPE_COUNTER, "/TM/PostponedR3", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-3.");
406 STAM_REG(pVM, &pVM->tm.s.StatPostponedR0, STAMTYPE_COUNTER, "/TM/PostponedR0", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-0.");
407 STAM_REG(pVM, &pVM->tm.s.StatPostponedGC, STAMTYPE_COUNTER, "/TM/PostponedGC", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in GC.");
408
409 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneGC, STAMTYPE_PROFILE, "/TM/ScheduleOneGC", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.\n");
410 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneR0, STAMTYPE_PROFILE, "/TM/ScheduleOneR0", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.\n");
411 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneR3, STAMTYPE_PROFILE, "/TM/ScheduleOneR3", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.\n");
412 STAM_REG(pVM, &pVM->tm.s.StatScheduleSetFF, STAMTYPE_COUNTER, "/TM/ScheduleSetFF", STAMUNIT_OCCURENCES, "The number of times the timer FF was set instead of doing scheduling.");
413
414 STAM_REG(pVM, &pVM->tm.s.StatTimerSetGC, STAMTYPE_PROFILE, "/TM/TimerSetGC", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in GC.");
415 STAM_REG(pVM, &pVM->tm.s.StatTimerSetR0, STAMTYPE_PROFILE, "/TM/TimerSetR0", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0.");
416 STAM_REG(pVM, &pVM->tm.s.StatTimerSetR3, STAMTYPE_PROFILE, "/TM/TimerSetR3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3.");
417
418 STAM_REG(pVM, &pVM->tm.s.StatTimerStopGC, STAMTYPE_PROFILE, "/TM/TimerStopGC", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in GC.");
419 STAM_REG(pVM, &pVM->tm.s.StatTimerStopR0, STAMTYPE_PROFILE, "/TM/TimerStopR0", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-0.");
420 STAM_REG(pVM, &pVM->tm.s.StatTimerStopR3, STAMTYPE_PROFILE, "/TM/TimerStopR3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-3.");
421
422 STAM_REG(pVM, &pVM->tm.s.StatVirtualGet, STAMTYPE_COUNTER, "/TM/VirtualGet", STAMUNIT_OCCURENCES, "The number of times TMTimerGet was called when the clock was running.");
423 STAM_REG(pVM, &pVM->tm.s.StatVirtualGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualGetSetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling TMTimerGet.");
424 STAM_REG(pVM, &pVM->tm.s.StatVirtualGetSync, STAMTYPE_COUNTER, "/TM/VirtualGetSync", STAMUNIT_OCCURENCES, "The number of times TMTimerGetSync was called when the clock was running.");
425 STAM_REG(pVM, &pVM->tm.s.StatVirtualGetSyncSetFF,STAMTYPE_COUNTER, "/TM/VirtualGetSyncSetFF",STAMUNIT_OCCURENCES, "Times we set the FF when calling TMTimerGetSync.");
426 STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/VirtualPause", STAMUNIT_OCCURENCES, "The number of times TMR3TimerPause was called.");
427 STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/VirtualResume", STAMUNIT_OCCURENCES, "The number of times TMR3TimerResume was called.");
428
429 STAM_REG(pVM, &pVM->tm.s.StatTimerCallbackSetFF,STAMTYPE_COUNTER, "/TM/CallbackSetFF", STAMUNIT_OCCURENCES, "The number of times the timer callback set FF.");
430
431
432 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncCatchup, STAMTYPE_PROFILE_ADV, "/TM/VirtualSync/CatchUp", STAMUNIT_TICKS_PER_OCCURENCE, "Counting and measuring the times spent catching up.");
433 STAM_REG(pVM, (void *)&pVM->tm.s.fVirtualSyncCatchUp, STAMTYPE_U8, "/TM/VirtualSync/CatchUpActive", STAMUNIT_NONE, "Catch-Up active indicator.");
434 STAM_REG(pVM, (void *)&pVM->tm.s.u32VirtualSyncCatchUpPercentage, STAMTYPE_U32, "/TM/VirtualSync/CatchUpPercentage", STAMUNIT_PCT, "The catch-up percentage. (+100/100 to get clock multiplier)");
435 STAM_REG(pVM, (void *)&pVM->tm.s.offVirtualSync, STAMTYPE_U64, "/TM/VirtualSync/CurrentOffset", STAMUNIT_NS, "The current offset. (subtract GivenUp to get the lag)");
436 STAM_REG(pVM, (void *)&pVM->tm.s.offVirtualSyncGivenUp, STAMTYPE_U64, "/TM/VirtualSync/GivenUp", STAMUNIT_NS, "Nanoseconds of the 'CurrentOffset' that's been given up and won't ever be attemted caught up with.");
437 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUp, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUp", STAMUNIT_OCCURENCES, "Times the catch-up was abandoned.");
438 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting,STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUpBeforeStarting", STAMUNIT_OCCURENCES, "Times the catch-up was abandoned before even starting. (Typically debugging++.)");
439 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRun, STAMTYPE_COUNTER, "/TM/VirtualSync/Run", STAMUNIT_OCCURENCES, "Times the virtual sync timer queue was considered.");
440 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunRestart, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Restarts", STAMUNIT_OCCURENCES, "Times the clock was restarted after a run.");
441 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStop, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Stop", STAMUNIT_OCCURENCES, "Times the clock was stopped when calculating the current time before examining the timers.");
442 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStoppedAlready, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/StoppedAlready", STAMUNIT_OCCURENCES, "Times the clock was already stopped elsewhere (TMVirtualSyncGet).");
443 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunSlack, STAMTYPE_PROFILE, "/TM/VirtualSync/Run/Slack", STAMUNIT_NS_PER_OCCURENCE, "The scheduling slack. (Catch-up handed out when running timers.)");
444 for (unsigned i = 0; i < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods); i++)
445 {
446 STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "The catch-up percentage.", "/TM/VirtualSync/Periods/%u", i);
447 STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupAdjust[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times adjusted to this period.", "/TM/VirtualSync/Periods/%u/Adjust", i);
448 STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupInitial[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times started in this period.", "/TM/VirtualSync/Periods/%u/Initial", i);
449 STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u64Start, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Start of this period (lag).", "/TM/VirtualSync/Periods/%u/Start", i);
450 }
451
452#endif /* VBOX_WITH_STATISTICS */
453
454 /*
455 * Register info handlers.
456 */
457 DBGFR3InfoRegisterInternalEx(pVM, "timers", "Dumps all timers. No arguments.", tmR3TimerInfo, DBGFINFO_FLAGS_RUN_ON_EMT);
458 DBGFR3InfoRegisterInternalEx(pVM, "activetimers", "Dumps active all timers. No arguments.", tmR3TimerInfoActive, DBGFINFO_FLAGS_RUN_ON_EMT);
459 DBGFR3InfoRegisterInternalEx(pVM, "clocks", "Display the time of the various clocks.", tmR3InfoClocks, DBGFINFO_FLAGS_RUN_ON_EMT);
460
461 return VINF_SUCCESS;
462}
463
464
465/**
466 * Calibrate the CPU tick.
467 *
468 * @returns Number of ticks per second.
469 */
470static uint64_t tmR3Calibrate(void)
471{
472 /*
473 * Use GIP when available present.
474 */
475 uint64_t u64Hz;
476 PCSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
477 if ( pGip
478 && pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC)
479 {
480 unsigned iCpu = pGip->u32Mode != SUPGIPMODE_ASYNC_TSC ? 0 : ASMGetApicId();
481 if (iCpu >= RT_ELEMENTS(pGip->aCPUs))
482 AssertReleaseMsgFailed(("iCpu=%d - the ApicId is too high. send VBox.log and hardware specs!\n", iCpu));
483 else
484 {
485 RTThreadSleep(32); /* To preserve old behaviour and to get a good CpuHz at startup. */
486 pGip = g_pSUPGlobalInfoPage;
487 if ( pGip
488 && pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC
489 && (u64Hz = pGip->aCPUs[iCpu].u64CpuHz)
490 && u64Hz != ~(uint64_t)0)
491 return u64Hz;
492 }
493 }
494
495 /* call this once first to make sure it's initialized. */
496 RTTimeNanoTS();
497
498 /*
499 * Yield the CPU to increase our chances of getting
500 * a correct value.
501 */
502 RTThreadYield(); /* Try avoid interruptions between TSC and NanoTS samplings. */
503 static const unsigned s_auSleep[5] = { 50, 30, 30, 40, 40 };
504 uint64_t au64Samples[5];
505 unsigned i;
506 for (i = 0; i < ELEMENTS(au64Samples); i++)
507 {
508 unsigned cMillies;
509 int cTries = 5;
510 uint64_t u64Start = ASMReadTSC();
511 uint64_t u64End;
512 uint64_t StartTS = RTTimeNanoTS();
513 uint64_t EndTS;
514 do
515 {
516 RTThreadSleep(s_auSleep[i]);
517 u64End = ASMReadTSC();
518 EndTS = RTTimeNanoTS();
519 cMillies = (unsigned)((EndTS - StartTS + 500000) / 1000000);
520 } while ( cMillies == 0 /* the sleep may be interrupted... */
521 || (cMillies < 20 && --cTries > 0));
522 uint64_t u64Diff = u64End - u64Start;
523
524 au64Samples[i] = (u64Diff * 1000) / cMillies;
525 AssertMsg(cTries > 0, ("cMillies=%d i=%d\n", cMillies, i));
526 }
527
528 /*
529 * Discard the highest and lowest results and calculate the average.
530 */
531 unsigned iHigh = 0;
532 unsigned iLow = 0;
533 for (i = 1; i < ELEMENTS(au64Samples); i++)
534 {
535 if (au64Samples[i] < au64Samples[iLow])
536 iLow = i;
537 if (au64Samples[i] > au64Samples[iHigh])
538 iHigh = i;
539 }
540 au64Samples[iLow] = 0;
541 au64Samples[iHigh] = 0;
542
543 u64Hz = au64Samples[0];
544 for (i = 1; i < ELEMENTS(au64Samples); i++)
545 u64Hz += au64Samples[i];
546 u64Hz /= ELEMENTS(au64Samples) - 2;
547
548 return u64Hz;
549}
550
551
552/**
553 * Applies relocations to data and code managed by this
554 * component. This function will be called at init and
555 * whenever the VMM need to relocate it self inside the GC.
556 *
557 * @param pVM The VM.
558 * @param offDelta Relocation delta relative to old location.
559 */
560TMR3DECL(void) TMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
561{
562 LogFlow(("TMR3Relocate\n"));
563 pVM->tm.s.pvGIPGC = MMHyperR3ToGC(pVM, pVM->tm.s.pvGIPR3);
564 pVM->tm.s.paTimerQueuesGC = MMHyperR3ToGC(pVM, pVM->tm.s.paTimerQueuesR3);
565 pVM->tm.s.paTimerQueuesR0 = MMHyperR3ToR0(pVM, pVM->tm.s.paTimerQueuesR3);
566
567 /*
568 * Iterate the timers updating the pVMGC pointers.
569 */
570 for (PTMTIMER pTimer = pVM->tm.s.pCreated; pTimer; pTimer = pTimer->pBigNext)
571 {
572 pTimer->pVMGC = pVM->pVMGC;
573 pTimer->pVMR0 = (PVMR0)pVM->pVMHC; /// @todo pTimer->pVMR0 = pVM->pVMR0;
574 }
575}
576
577
578/**
579 * Terminates the TM.
580 *
581 * Termination means cleaning up and freeing all resources,
582 * the VM it self is at this point powered off or suspended.
583 *
584 * @returns VBox status code.
585 * @param pVM The VM to operate on.
586 */
587TMR3DECL(int) TMR3Term(PVM pVM)
588{
589 AssertMsg(pVM->tm.s.offVM, ("bad init order!\n"));
590 if (pVM->tm.s.pTimer)
591 {
592 int rc = RTTimerDestroy(pVM->tm.s.pTimer);
593 AssertRC(rc);
594 pVM->tm.s.pTimer = NULL;
595 }
596
597 return VINF_SUCCESS;
598}
599
600
601/**
602 * The VM is being reset.
603 *
604 * For the TM component this means that a rescheduling is preformed,
605 * the FF is cleared and but without running the queues. We'll have to
606 * check if this makes sense or not, but it seems like a good idea now....
607 *
608 * @param pVM VM handle.
609 */
610TMR3DECL(void) TMR3Reset(PVM pVM)
611{
612 LogFlow(("TMR3Reset:\n"));
613 VM_ASSERT_EMT(pVM);
614
615 /*
616 * Process the queues.
617 */
618 for (int i = 0; i < TMCLOCK_MAX; i++)
619 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[i]);
620#ifdef VBOX_STRICT
621 tmTimerQueuesSanityChecks(pVM, "TMR3Reset");
622#endif
623 VM_FF_CLEAR(pVM, VM_FF_TIMER);
624}
625
626
627/**
628 * Resolve a builtin GC symbol.
629 * Called by PDM when loading or relocating GC modules.
630 *
631 * @returns VBox status
632 * @param pVM VM Handle.
633 * @param pszSymbol Symbol to resolv
634 * @param pGCPtrValue Where to store the symbol value.
635 * @remark This has to work before TMR3Relocate() is called.
636 */
637TMR3DECL(int) TMR3GetImportGC(PVM pVM, const char *pszSymbol, PRTGCPTR pGCPtrValue)
638{
639 if (!strcmp(pszSymbol, "g_pSUPGlobalInfoPage"))
640 *pGCPtrValue = MMHyperHC2GC(pVM, &pVM->tm.s.pvGIPGC);
641 //else if (..)
642 else
643 return VERR_SYMBOL_NOT_FOUND;
644 return VINF_SUCCESS;
645}
646
647
648/**
649 * Execute state save operation.
650 *
651 * @returns VBox status code.
652 * @param pVM VM Handle.
653 * @param pSSM SSM operation handle.
654 */
655static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM)
656{
657 LogFlow(("tmR3Save:\n"));
658 Assert(!pVM->tm.s.fTSCTicking);
659 Assert(!pVM->tm.s.fVirtualTicking);
660 Assert(!pVM->tm.s.fVirtualSyncTicking);
661
662 /*
663 * Save the virtual clocks.
664 */
665 /* the virtual clock. */
666 SSMR3PutU64(pSSM, TMCLOCK_FREQ_VIRTUAL);
667 SSMR3PutU64(pSSM, pVM->tm.s.u64Virtual);
668
669 /* the virtual timer synchronous clock. */
670 SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSync);
671 SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSync);
672 SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSyncGivenUp);
673 SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSyncCatchUpPrev);
674 SSMR3PutBool(pSSM, pVM->tm.s.fVirtualSyncCatchUp);
675
676 /* real time clock */
677 SSMR3PutU64(pSSM, TMCLOCK_FREQ_REAL);
678
679 /* the cpu tick clock. */
680 SSMR3PutU64(pSSM, TMCpuTickGet(pVM));
681 return SSMR3PutU64(pSSM, pVM->tm.s.cTSCTicksPerSecond);
682}
683
684
685/**
686 * Execute state load operation.
687 *
688 * @returns VBox status code.
689 * @param pVM VM Handle.
690 * @param pSSM SSM operation handle.
691 * @param u32Version Data layout version.
692 */
693static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
694{
695 LogFlow(("tmR3Load:\n"));
696 Assert(!pVM->tm.s.fTSCTicking);
697 Assert(!pVM->tm.s.fVirtualTicking);
698 Assert(!pVM->tm.s.fVirtualSyncTicking);
699
700 /*
701 * Validate version.
702 */
703 if (u32Version != TM_SAVED_STATE_VERSION)
704 {
705 Log(("tmR3Load: Invalid version u32Version=%d!\n", u32Version));
706 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
707 }
708
709 /*
710 * Load the virtual clock.
711 */
712 pVM->tm.s.fVirtualTicking = false;
713 /* the virtual clock. */
714 uint64_t u64Hz;
715 int rc = SSMR3GetU64(pSSM, &u64Hz);
716 if (VBOX_FAILURE(rc))
717 return rc;
718 if (u64Hz != TMCLOCK_FREQ_VIRTUAL)
719 {
720 AssertMsgFailed(("The virtual clock frequency differs! Saved: %RU64 Binary: %RU64\n",
721 u64Hz, TMCLOCK_FREQ_VIRTUAL));
722 return VERR_SSM_VIRTUAL_CLOCK_HZ;
723 }
724 SSMR3GetU64(pSSM, &pVM->tm.s.u64Virtual);
725 pVM->tm.s.u64VirtualOffset = 0;
726
727 /* the virtual timer synchronous clock. */
728 pVM->tm.s.fVirtualSyncTicking = false;
729 uint64_t u64;
730 SSMR3GetU64(pSSM, &u64);
731 pVM->tm.s.u64VirtualSync = u64;
732 SSMR3GetU64(pSSM, &u64);
733 pVM->tm.s.offVirtualSync = u64;
734 SSMR3GetU64(pSSM, &u64);
735 pVM->tm.s.offVirtualSyncGivenUp = u64;
736 SSMR3GetU64(pSSM, &u64);
737 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64;
738 bool f;
739 SSMR3GetBool(pSSM, &f);
740 pVM->tm.s.fVirtualSyncCatchUp = f;
741
742 /* the real clock */
743 rc = SSMR3GetU64(pSSM, &u64Hz);
744 if (VBOX_FAILURE(rc))
745 return rc;
746 if (u64Hz != TMCLOCK_FREQ_REAL)
747 {
748 AssertMsgFailed(("The real clock frequency differs! Saved: %RU64 Binary: %RU64\n",
749 u64Hz, TMCLOCK_FREQ_REAL));
750 return VERR_SSM_VIRTUAL_CLOCK_HZ; /* missleading... */
751 }
752
753 /* the cpu tick clock. */
754 pVM->tm.s.fTSCTicking = false;
755 SSMR3GetU64(pSSM, &pVM->tm.s.u64TSC);
756 rc = SSMR3GetU64(pSSM, &u64Hz);
757 if (VBOX_FAILURE(rc))
758 return rc;
759 if (pVM->tm.s.fTSCUseRealTSC)
760 pVM->tm.s.u64TSCOffset = 0; /** @todo TSC restore stuff and HWACC. */
761 else
762 pVM->tm.s.cTSCTicksPerSecond = u64Hz;
763 LogRel(("TM: cTSCTicksPerSecond=%#RX64 (%RU64) fTSCVirtualized=%RTbool fTSCUseRealTSC=%RTbool (state load)\n",
764 pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.fTSCVirtualized, pVM->tm.s.fTSCUseRealTSC));
765
766 /*
767 * Make sure timers get rescheduled immediately.
768 */
769 VM_FF_SET(pVM, VM_FF_TIMER);
770
771 return VINF_SUCCESS;
772}
773
774
775/**
776 * Internal TMR3TimerCreate worker.
777 *
778 * @returns VBox status code.
779 * @param pVM The VM handle.
780 * @param enmClock The timer clock.
781 * @param pszDesc The timer description.
782 * @param ppTimer Where to store the timer pointer on success.
783 */
784static int tmr3TimerCreate(PVM pVM, TMCLOCK enmClock, const char *pszDesc, PPTMTIMERR3 ppTimer)
785{
786 VM_ASSERT_EMT(pVM);
787
788 /*
789 * Allocate the timer.
790 */
791 PTMTIMERHC pTimer = NULL;
792 if (pVM->tm.s.pFree && VM_IS_EMT(pVM))
793 {
794 pTimer = pVM->tm.s.pFree;
795 pVM->tm.s.pFree = pTimer->pBigNext;
796 Log3(("TM: Recycling timer %p, new free head %p.\n", pTimer, pTimer->pBigNext));
797 }
798
799 if (!pTimer)
800 {
801 int rc = MMHyperAlloc(pVM, sizeof(*pTimer), 0, MM_TAG_TM, (void **)&pTimer);
802 if (VBOX_FAILURE(rc))
803 return rc;
804 Log3(("TM: Allocated new timer %p\n", pTimer));
805 }
806
807 /*
808 * Initialize it.
809 */
810 pTimer->u64Expire = 0;
811 pTimer->enmClock = enmClock;
812 pTimer->pVMR3 = pVM;
813 pTimer->pVMR0 = pVM->pVMR0;
814 pTimer->pVMGC = pVM->pVMGC;
815 pTimer->enmState = TMTIMERSTATE_STOPPED;
816 pTimer->offScheduleNext = 0;
817 pTimer->offNext = 0;
818 pTimer->offPrev = 0;
819 pTimer->pszDesc = pszDesc;
820
821 /* insert into the list of created timers. */
822 pTimer->pBigPrev = NULL;
823 pTimer->pBigNext = pVM->tm.s.pCreated;
824 pVM->tm.s.pCreated = pTimer;
825 if (pTimer->pBigNext)
826 pTimer->pBigNext->pBigPrev = pTimer;
827#ifdef VBOX_STRICT
828 tmTimerQueuesSanityChecks(pVM, "tmR3TimerCreate");
829#endif
830
831 *ppTimer = pTimer;
832 return VINF_SUCCESS;
833}
834
835
836/**
837 * Creates a device timer.
838 *
839 * @returns VBox status.
840 * @param pVM The VM to create the timer in.
841 * @param pDevIns Device instance.
842 * @param enmClock The clock to use on this timer.
843 * @param pfnCallback Callback function.
844 * @param pszDesc Pointer to description string which must stay around
845 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
846 * @param ppTimer Where to store the timer on success.
847 */
848TMR3DECL(int) TMR3TimerCreateDevice(PVM pVM, PPDMDEVINS pDevIns, TMCLOCK enmClock, PFNTMTIMERDEV pfnCallback, const char *pszDesc, PPTMTIMERHC ppTimer)
849{
850 /*
851 * Allocate and init stuff.
852 */
853 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
854 if (VBOX_SUCCESS(rc))
855 {
856 (*ppTimer)->enmType = TMTIMERTYPE_DEV;
857 (*ppTimer)->u.Dev.pfnTimer = pfnCallback;
858 (*ppTimer)->u.Dev.pDevIns = pDevIns;
859 Log(("TM: Created device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
860 }
861
862 return rc;
863}
864
865
866/**
867 * Creates a driver timer.
868 *
869 * @returns VBox status.
870 * @param pVM The VM to create the timer in.
871 * @param pDrvIns Driver instance.
872 * @param enmClock The clock to use on this timer.
873 * @param pfnCallback Callback function.
874 * @param pszDesc Pointer to description string which must stay around
875 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
876 * @param ppTimer Where to store the timer on success.
877 */
878TMR3DECL(int) TMR3TimerCreateDriver(PVM pVM, PPDMDRVINS pDrvIns, TMCLOCK enmClock, PFNTMTIMERDRV pfnCallback, const char *pszDesc, PPTMTIMERHC ppTimer)
879{
880 /*
881 * Allocate and init stuff.
882 */
883 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
884 if (VBOX_SUCCESS(rc))
885 {
886 (*ppTimer)->enmType = TMTIMERTYPE_DRV;
887 (*ppTimer)->u.Drv.pfnTimer = pfnCallback;
888 (*ppTimer)->u.Drv.pDrvIns = pDrvIns;
889 Log(("TM: Created device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
890 }
891
892 return rc;
893}
894
895
896/**
897 * Creates an internal timer.
898 *
899 * @returns VBox status.
900 * @param pVM The VM to create the timer in.
901 * @param enmClock The clock to use on this timer.
902 * @param pfnCallback Callback function.
903 * @param pvUser User argument to be passed to the callback.
904 * @param pszDesc Pointer to description string which must stay around
905 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
906 * @param ppTimer Where to store the timer on success.
907 */
908TMR3DECL(int) TMR3TimerCreateInternal(PVM pVM, TMCLOCK enmClock, PFNTMTIMERINT pfnCallback, void *pvUser, const char *pszDesc, PPTMTIMERHC ppTimer)
909{
910 /*
911 * Allocate and init stuff.
912 */
913 PTMTIMER pTimer;
914 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, &pTimer);
915 if (VBOX_SUCCESS(rc))
916 {
917 pTimer->enmType = TMTIMERTYPE_INTERNAL;
918 pTimer->u.Internal.pfnTimer = pfnCallback;
919 pTimer->u.Internal.pvUser = pvUser;
920 *ppTimer = pTimer;
921 Log(("TM: Created internal timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszDesc));
922 }
923
924 return rc;
925}
926
927/**
928 * Creates an external timer.
929 *
930 * @returns Timer handle on success.
931 * @returns NULL on failure.
932 * @param pVM The VM to create the timer in.
933 * @param enmClock The clock to use on this timer.
934 * @param pfnCallback Callback function.
935 * @param pvUser User argument.
936 * @param pszDesc Pointer to description string which must stay around
937 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
938 */
939TMR3DECL(PTMTIMERHC) TMR3TimerCreateExternal(PVM pVM, TMCLOCK enmClock, PFNTMTIMEREXT pfnCallback, void *pvUser, const char *pszDesc)
940{
941 /*
942 * Allocate and init stuff.
943 */
944 PTMTIMERHC pTimer;
945 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, &pTimer);
946 if (VBOX_SUCCESS(rc))
947 {
948 pTimer->enmType = TMTIMERTYPE_EXTERNAL;
949 pTimer->u.External.pfnTimer = pfnCallback;
950 pTimer->u.External.pvUser = pvUser;
951 Log(("TM: Created external timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszDesc));
952 return pTimer;
953 }
954
955 return NULL;
956}
957
958
959/**
960 * Destroy all timers owned by a device.
961 *
962 * @returns VBox status.
963 * @param pVM VM handle.
964 * @param pDevIns Device which timers should be destroyed.
965 */
966TMR3DECL(int) TMR3TimerDestroyDevice(PVM pVM, PPDMDEVINS pDevIns)
967{
968 LogFlow(("TMR3TimerDestroyDevice: pDevIns=%p\n", pDevIns));
969 if (!pDevIns)
970 return VERR_INVALID_PARAMETER;
971
972 PTMTIMER pCur = pVM->tm.s.pCreated;
973 while (pCur)
974 {
975 PTMTIMER pDestroy = pCur;
976 pCur = pDestroy->pBigNext;
977 if ( pDestroy->enmType == TMTIMERTYPE_DEV
978 && pDestroy->u.Dev.pDevIns == pDevIns)
979 {
980 int rc = TMTimerDestroy(pDestroy);
981 AssertRC(rc);
982 }
983 }
984 LogFlow(("TMR3TimerDestroyDevice: returns VINF_SUCCESS\n"));
985 return VINF_SUCCESS;
986}
987
988
989/**
990 * Destroy all timers owned by a driver.
991 *
992 * @returns VBox status.
993 * @param pVM VM handle.
994 * @param pDrvIns Driver which timers should be destroyed.
995 */
996TMR3DECL(int) TMR3TimerDestroyDriver(PVM pVM, PPDMDRVINS pDrvIns)
997{
998 LogFlow(("TMR3TimerDestroyDriver: pDrvIns=%p\n", pDrvIns));
999 if (!pDrvIns)
1000 return VERR_INVALID_PARAMETER;
1001
1002 PTMTIMER pCur = pVM->tm.s.pCreated;
1003 while (pCur)
1004 {
1005 PTMTIMER pDestroy = pCur;
1006 pCur = pDestroy->pBigNext;
1007 if ( pDestroy->enmType == TMTIMERTYPE_DRV
1008 && pDestroy->u.Drv.pDrvIns == pDrvIns)
1009 {
1010 int rc = TMTimerDestroy(pDestroy);
1011 AssertRC(rc);
1012 }
1013 }
1014 LogFlow(("TMR3TimerDestroyDriver: returns VINF_SUCCESS\n"));
1015 return VINF_SUCCESS;
1016}
1017
1018
1019/**
1020 * Checks if the sync queue has one or more expired timers.
1021 *
1022 * @returns true / false.
1023 *
1024 * @param pVM The VM handle.
1025 * @param enmClock The queue.
1026 */
1027DECLINLINE(bool) tmR3HasExpiredTimer(PVM pVM, TMCLOCK enmClock)
1028{
1029 const uint64_t u64Expire = pVM->tm.s.CTXALLSUFF(paTimerQueues)[enmClock].u64Expire;
1030 return u64Expire != INT64_MAX && u64Expire <= tmClock(pVM, enmClock);
1031}
1032
1033
1034/**
1035 * Checks for expired timers in all the queues.
1036 *
1037 * @returns true / false.
1038 * @param pVM The VM handle.
1039 */
1040DECLINLINE(bool) tmR3AnyExpiredTimers(PVM pVM)
1041{
1042 /*
1043 * Combine the time calculation for the first two since we're not on EMT
1044 * TMVirtualSyncGet only permits EMT.
1045 */
1046 uint64_t u64Now = TMVirtualGet(pVM);
1047 if (pVM->tm.s.CTXALLSUFF(paTimerQueues)[TMCLOCK_VIRTUAL].u64Expire <= u64Now)
1048 return true;
1049 u64Now = pVM->tm.s.fVirtualSyncTicking
1050 ? u64Now - pVM->tm.s.offVirtualSync
1051 : pVM->tm.s.u64VirtualSync;
1052 if (pVM->tm.s.CTXALLSUFF(paTimerQueues)[TMCLOCK_VIRTUAL_SYNC].u64Expire <= u64Now)
1053 return true;
1054
1055 /*
1056 * The remaining timers.
1057 */
1058 if (tmR3HasExpiredTimer(pVM, TMCLOCK_REAL))
1059 return true;
1060 if (tmR3HasExpiredTimer(pVM, TMCLOCK_TSC))
1061 return true;
1062 return false;
1063}
1064
1065
1066/**
1067 * Schedulation timer callback.
1068 *
1069 * @param pTimer Timer handle.
1070 * @param pvUser VM handle.
1071 * @thread Timer thread.
1072 *
1073 * @remark We cannot do the scheduling and queues running from a timer handler
1074 * since it's not executing in EMT, and even if it was it would be async
1075 * and we wouldn't know the state of the affairs.
1076 * So, we'll just raise the timer FF and force any REM execution to exit.
1077 */
1078static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser)
1079{
1080 PVM pVM = (PVM)pvUser;
1081 AssertCompile(TMCLOCK_MAX == 4);
1082#ifdef DEBUG_Sander /* very annoying, keep it private. */
1083 if (VM_FF_ISSET(pVM, VM_FF_TIMER))
1084 Log(("tmR3TimerCallback: timer event still pending!!\n"));
1085#endif
1086 if ( !VM_FF_ISSET(pVM, VM_FF_TIMER)
1087 && ( pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule
1088 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].offSchedule
1089 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].offSchedule
1090 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].offSchedule
1091 || tmR3AnyExpiredTimers(pVM)
1092 )
1093 && !VM_FF_ISSET(pVM, VM_FF_TIMER)
1094 )
1095 {
1096 VM_FF_SET(pVM, VM_FF_TIMER);
1097 REMR3NotifyTimerPending(pVM);
1098 VMR3NotifyFF(pVM, true);
1099 STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallbackSetFF);
1100 }
1101}
1102
1103
1104/**
1105 * Schedules and runs any pending timers.
1106 *
1107 * This is normally called from a forced action handler in EMT.
1108 *
1109 * @param pVM The VM to run the timers for.
1110 */
1111TMR3DECL(void) TMR3TimerQueuesDo(PVM pVM)
1112{
1113 STAM_PROFILE_START(&pVM->tm.s.StatDoQueues, a);
1114 Log2(("TMR3TimerQueuesDo:\n"));
1115
1116 /*
1117 * Process the queues.
1118 */
1119 AssertCompile(TMCLOCK_MAX == 4);
1120
1121 /* TMCLOCK_VIRTUAL_SYNC */
1122 STAM_PROFILE_ADV_START(&pVM->tm.s.StatDoQueuesSchedule, s1);
1123 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC]);
1124 STAM_PROFILE_ADV_SUSPEND(&pVM->tm.s.StatDoQueuesSchedule, s1);
1125 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatDoQueuesRun, r1);
1126 tmR3TimerQueueRunVirtualSync(pVM);
1127 STAM_PROFILE_ADV_SUSPEND(&pVM->tm.s.StatDoQueuesRun, r1);
1128
1129 /* TMCLOCK_VIRTUAL */
1130 STAM_PROFILE_ADV_RESUME(&pVM->tm.s.StatDoQueuesSchedule, s1);
1131 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL]);
1132 STAM_PROFILE_ADV_SUSPEND(&pVM->tm.s.StatDoQueuesSchedule, s2);
1133 STAM_PROFILE_ADV_RESUME(&pVM->tm.s.StatDoQueuesRun, r1);
1134 tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL]);
1135 STAM_PROFILE_ADV_SUSPEND(&pVM->tm.s.StatDoQueuesRun, r2);
1136
1137#if 0 /** @todo if ever used, remove this and fix the stam prefixes on TMCLOCK_REAL below. */
1138 /* TMCLOCK_TSC */
1139 STAM_PROFILE_ADV_RESUME(&pVM->tm.s.StatDoQueuesSchedule, s2);
1140 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC]);
1141 STAM_PROFILE_ADV_SUSPEND(&pVM->tm.s.StatDoQueuesSchedule, s3);
1142 STAM_PROFILE_ADV_RESUME(&pVM->tm.s.StatDoQueuesRun, r2);
1143 tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC]);
1144 STAM_PROFILE_ADV_SUSPEND(&pVM->tm.s.StatDoQueuesRun, r3);
1145#endif
1146
1147 /* TMCLOCK_REAL */
1148 STAM_PROFILE_ADV_RESUME(&pVM->tm.s.StatDoQueuesSchedule, s2);
1149 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL]);
1150 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatDoQueuesSchedule, s3);
1151 STAM_PROFILE_ADV_RESUME(&pVM->tm.s.StatDoQueuesRun, r2);
1152 tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL]);
1153 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatDoQueuesRun, r3);
1154
1155 /* done. */
1156 VM_FF_CLEAR(pVM, VM_FF_TIMER);
1157
1158#ifdef VBOX_STRICT
1159 /* check that we didn't screwup. */
1160 tmTimerQueuesSanityChecks(pVM, "TMR3TimerQueuesDo");
1161#endif
1162
1163 Log2(("TMR3TimerQueuesDo: returns void\n"));
1164 STAM_PROFILE_STOP(&pVM->tm.s.StatDoQueues, a);
1165}
1166
1167
1168/**
1169 * Schedules and runs any pending times in the specified queue.
1170 *
1171 * This is normally called from a forced action handler in EMT.
1172 *
1173 * @param pVM The VM to run the timers for.
1174 * @param pQueue The queue to run.
1175 */
1176static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue)
1177{
1178 VM_ASSERT_EMT(pVM);
1179
1180 /*
1181 * Run timers.
1182 *
1183 * We check the clock once and run all timers which are ACTIVE
1184 * and have an expire time less or equal to the time we read.
1185 *
1186 * N.B. A generic unlink must be applied since other threads
1187 * are allowed to mess with any active timer at any time.
1188 * However, we only allow EMT to handle EXPIRED_PENDING
1189 * timers, thus enabling the timer handler function to
1190 * arm the timer again.
1191 */
1192 PTMTIMER pNext = TMTIMER_GET_HEAD(pQueue);
1193 if (!pNext)
1194 return;
1195 const uint64_t u64Now = tmClock(pVM, pQueue->enmClock);
1196 while (pNext && pNext->u64Expire <= u64Now)
1197 {
1198 PTMTIMER pTimer = pNext;
1199 pNext = TMTIMER_GET_NEXT(pTimer);
1200 Log2(("tmR3TimerQueueRun: pTimer=%p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .pszDesc=%s}\n",
1201 pTimer, tmTimerState(pTimer->enmState), pTimer->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->pszDesc));
1202 bool fRc;
1203 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED, TMTIMERSTATE_ACTIVE, fRc);
1204 if (fRc)
1205 {
1206 Assert(!pTimer->offScheduleNext); /* this can trigger falsely */
1207
1208 /* unlink */
1209 const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
1210 if (pPrev)
1211 TMTIMER_SET_NEXT(pPrev, pNext);
1212 else
1213 {
1214 TMTIMER_SET_HEAD(pQueue, pNext);
1215 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
1216 }
1217 if (pNext)
1218 TMTIMER_SET_PREV(pNext, pPrev);
1219 pTimer->offNext = 0;
1220 pTimer->offPrev = 0;
1221
1222
1223 /* fire */
1224 switch (pTimer->enmType)
1225 {
1226 case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer); break;
1227 case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer); break;
1228 case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer, pTimer->u.Internal.pvUser); break;
1229 case TMTIMERTYPE_EXTERNAL: pTimer->u.External.pfnTimer(pTimer->u.External.pvUser); break;
1230 default:
1231 AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->pszDesc));
1232 break;
1233 }
1234
1235 /* change the state if it wasn't changed already in the handler. */
1236 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED, fRc);
1237 Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
1238 }
1239 } /* run loop */
1240}
1241
1242
1243/**
1244 * Schedules and runs any pending times in the timer queue for the
1245 * synchronous virtual clock.
1246 *
1247 * This scheduling is a bit different from the other queues as it need
1248 * to implement the special requirements of the timer synchronous virtual
1249 * clock, thus this 2nd queue run funcion.
1250 *
1251 * @param pVM The VM to run the timers for.
1252 */
1253static void tmR3TimerQueueRunVirtualSync(PVM pVM)
1254{
1255 PTMTIMERQUEUE const pQueue = &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC];
1256 VM_ASSERT_EMT(pVM);
1257
1258 /*
1259 * Any timers?
1260 */
1261 PTMTIMER pNext = TMTIMER_GET_HEAD(pQueue);
1262 if (RT_UNLIKELY(!pNext))
1263 {
1264 Assert(pVM->tm.s.fVirtualSyncTicking || !pVM->tm.s.fVirtualTicking);
1265 return;
1266 }
1267 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRun);
1268
1269 /*
1270 * Calculate the time frame for which we will dispatch timers.
1271 *
1272 * We use a time frame ranging from the current sync time (which is most likely the
1273 * same as the head timer) and some configurable period (100000ns) up towards the
1274 * current virtual time. This period might also need to be restricted by the catch-up
1275 * rate so frequent calls to this function won't accelerate the time too much, however
1276 * this will be implemented at a later point if neccessary.
1277 *
1278 * Without this frame we would 1) having to run timers much more frequently
1279 * and 2) lag behind at a steady rate.
1280 */
1281 const uint64_t u64VirtualNow = TMVirtualGetEx(pVM, false /* don't check timers */);
1282 uint64_t u64Now;
1283 if (!pVM->tm.s.fVirtualSyncTicking)
1284 {
1285 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStoppedAlready);
1286 u64Now = pVM->tm.s.u64VirtualSync;
1287 Assert(u64Now <= pNext->u64Expire);
1288 }
1289 else
1290 {
1291 /* Calc 'now'. (update order doesn't really matter here) */
1292 uint64_t off = pVM->tm.s.offVirtualSync;
1293 if (pVM->tm.s.fVirtualSyncCatchUp)
1294 {
1295 uint64_t u64Delta = u64VirtualNow - pVM->tm.s.u64VirtualSyncCatchUpPrev;
1296 if (RT_LIKELY(!(u64Delta >> 32)))
1297 {
1298 uint64_t u64Sub = ASMMultU64ByU32DivByU32(u64Delta, pVM->tm.s.u32VirtualSyncCatchUpPercentage, 100);
1299 if (off > u64Sub + pVM->tm.s.offVirtualSyncGivenUp)
1300 {
1301 off -= u64Sub;
1302 Log4(("TM: %RU64/%RU64: sub %RU64 (run)\n", u64VirtualNow - off, off - pVM->tm.s.offVirtualSyncGivenUp, u64Sub));
1303 }
1304 else
1305 {
1306 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
1307 ASMAtomicXchgBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
1308 off = pVM->tm.s.offVirtualSyncGivenUp;
1309 Log4(("TM: %RU64/0: caught up (run)\n", u64VirtualNow));
1310 }
1311 }
1312 ASMAtomicXchgU64(&pVM->tm.s.offVirtualSync, off);
1313 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64VirtualNow;
1314 }
1315 u64Now = u64VirtualNow - off;
1316
1317 /* Check if stopped by expired timer. */
1318 if (u64Now >= pNext->u64Expire)
1319 {
1320 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStop);
1321 u64Now = pNext->u64Expire;
1322 ASMAtomicXchgU64(&pVM->tm.s.u64VirtualSync, u64Now);
1323 ASMAtomicXchgBool(&pVM->tm.s.fVirtualSyncTicking, false);
1324 Log4(("TM: %RU64/%RU64: exp tmr (run)\n", u64Now, u64VirtualNow - u64Now - pVM->tm.s.offVirtualSyncGivenUp));
1325
1326 }
1327 }
1328
1329 /* calc end of frame. */
1330 uint64_t u64Max = u64Now + pVM->tm.s.u32VirtualSyncScheduleSlack;
1331 if (u64Max > u64VirtualNow - pVM->tm.s.offVirtualSyncGivenUp)
1332 u64Max = u64VirtualNow - pVM->tm.s.offVirtualSyncGivenUp;
1333
1334 /* assert sanity */
1335 Assert(u64Now <= u64VirtualNow - pVM->tm.s.offVirtualSyncGivenUp);
1336 Assert(u64Max <= u64VirtualNow - pVM->tm.s.offVirtualSyncGivenUp);
1337 Assert(u64Now <= u64Max);
1338
1339 /*
1340 * Process the expired timers moving the clock along as we progress.
1341 */
1342#ifdef VBOX_STRICT
1343 uint64_t u64Prev = u64Now; NOREF(u64Prev);
1344#endif
1345 while (pNext && pNext->u64Expire <= u64Max)
1346 {
1347 PTMTIMER pTimer = pNext;
1348 pNext = TMTIMER_GET_NEXT(pTimer);
1349 Log2(("tmR3TimerQueueRun: pTimer=%p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .pszDesc=%s}\n",
1350 pTimer, tmTimerState(pTimer->enmState), pTimer->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->pszDesc));
1351 bool fRc;
1352 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED, TMTIMERSTATE_ACTIVE, fRc);
1353 if (fRc)
1354 {
1355 /* unlink */
1356 const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
1357 if (pPrev)
1358 TMTIMER_SET_NEXT(pPrev, pNext);
1359 else
1360 {
1361 TMTIMER_SET_HEAD(pQueue, pNext);
1362 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
1363 }
1364 if (pNext)
1365 TMTIMER_SET_PREV(pNext, pPrev);
1366 pTimer->offNext = 0;
1367 pTimer->offPrev = 0;
1368
1369 /* advance the clock - don't permit timers to be out of order or armed in the 'past'. */
1370#ifdef VBOX_STRICT
1371 AssertMsg(pTimer->u64Expire >= u64Prev, ("%RU64 < %RU64 %s\n", pTimer->u64Expire, u64Prev, pTimer->pszDesc));
1372 u64Prev = pTimer->u64Expire;
1373#endif
1374 ASMAtomicXchgSize(&pVM->tm.s.fVirtualSyncTicking, false);
1375 ASMAtomicXchgU64(&pVM->tm.s.u64VirtualSync, pTimer->u64Expire);
1376
1377 /* fire */
1378 switch (pTimer->enmType)
1379 {
1380 case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer); break;
1381 case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer); break;
1382 case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer, pTimer->u.Internal.pvUser); break;
1383 case TMTIMERTYPE_EXTERNAL: pTimer->u.External.pfnTimer(pTimer->u.External.pvUser); break;
1384 default:
1385 AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->pszDesc));
1386 break;
1387 }
1388
1389 /* change the state if it wasn't changed already in the handler. */
1390 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED, fRc);
1391 Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
1392 }
1393 } /* run loop */
1394
1395 /*
1396 * Restart the clock if it was stopped to serve any timers,
1397 * and start/adjust catch-up if necessary.
1398 */
1399 if ( !pVM->tm.s.fVirtualSyncTicking
1400 && pVM->tm.s.fVirtualTicking)
1401 {
1402 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunRestart);
1403
1404 /* calc the slack we've handed out. */
1405 const uint64_t u64VirtualNow2 = TMVirtualGetEx(pVM, false /* don't check timers */);
1406 Assert(u64VirtualNow2 >= u64VirtualNow);
1407 AssertMsg(pVM->tm.s.u64VirtualSync >= u64Now, ("%RU64 < %RU64\n", pVM->tm.s.u64VirtualSync, u64Now));
1408 const uint64_t offSlack = pVM->tm.s.u64VirtualSync - u64Now;
1409 STAM_STATS({
1410 if (offSlack)
1411 {
1412 PSTAMPROFILE p = &pVM->tm.s.StatVirtualSyncRunSlack;
1413 p->cPeriods++;
1414 p->cTicks += offSlack;
1415 if (p->cTicksMax < offSlack) p->cTicksMax = offSlack;
1416 if (p->cTicksMin > offSlack) p->cTicksMin = offSlack;
1417 }
1418 });
1419
1420 /* Let the time run a little bit while we were busy running timers(?). */
1421 uint64_t u64Elapsed;
1422#define MAX_ELAPSED 30000 /* ns */
1423 if (offSlack > MAX_ELAPSED)
1424 u64Elapsed = 0;
1425 else
1426 {
1427 u64Elapsed = u64VirtualNow2 - u64VirtualNow;
1428 if (u64Elapsed > MAX_ELAPSED)
1429 u64Elapsed = MAX_ELAPSED;
1430 u64Elapsed = u64Elapsed > offSlack ? u64Elapsed - offSlack : 0;
1431 }
1432#undef MAX_ELAPSED
1433
1434 /* Calc the current offset. */
1435 uint64_t offNew = u64VirtualNow2 - pVM->tm.s.u64VirtualSync - u64Elapsed;
1436 Assert(!(offNew & RT_BIT_64(63)));
1437 uint64_t offLag = offNew - pVM->tm.s.offVirtualSyncGivenUp;
1438 Assert(!(offLag & RT_BIT_64(63)));
1439
1440 /*
1441 * Deal with starting, adjusting and stopping catchup.
1442 */
1443 if (pVM->tm.s.fVirtualSyncCatchUp)
1444 {
1445 if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpStopThreshold)
1446 {
1447 /* stop */
1448 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
1449 ASMAtomicXchgBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
1450 Log4(("TM: %RU64/%RU64: caught up\n", u64VirtualNow2 - offNew, offLag));
1451 }
1452 else if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
1453 {
1454 /* adjust */
1455 unsigned i = 0;
1456 while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
1457 && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
1458 i++;
1459 if (pVM->tm.s.u32VirtualSyncCatchUpPercentage < pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage)
1460 {
1461 STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupAdjust[i]);
1462 ASMAtomicXchgU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
1463 Log4(("TM: %RU64/%RU64: adj %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
1464 }
1465 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64VirtualNow2;
1466 }
1467 else
1468 {
1469 /* give up */
1470 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUp);
1471 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
1472 ASMAtomicXchgU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
1473 ASMAtomicXchgBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
1474 Log4(("TM: %RU64/%RU64: give up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
1475 LogRel(("TM: Giving up catch-up attempt at a %RU64 ns lag; new total: %RU64 ns\n", offLag, offNew));
1476 }
1477 }
1478 else if (offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[0].u64Start)
1479 {
1480 if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
1481 {
1482 /* start */
1483 STAM_PROFILE_ADV_START(&pVM->tm.s.StatVirtualSyncCatchup, c);
1484 unsigned i = 0;
1485 while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
1486 && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
1487 i++;
1488 STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupInitial[i]);
1489 ASMAtomicXchgU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
1490 ASMAtomicXchgBool(&pVM->tm.s.fVirtualSyncCatchUp, true);
1491 Log4(("TM: %RU64/%RU64: catch-up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
1492 }
1493 else
1494 {
1495 /* not bother */
1496 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting);
1497 ASMAtomicXchgU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
1498 Log4(("TM: %RU64/%RU64: give up\n", u64VirtualNow2 - offNew, offLag));
1499 LogRel(("TM: Not bothering to attempt catching up a %RU64 ns lag; new total: %RU64\n", offLag, offNew));
1500 }
1501 }
1502
1503 /*
1504 * Update the offset and restart the clock.
1505 */
1506 ASMAtomicXchgU64(&pVM->tm.s.offVirtualSync, offNew);
1507 ASMAtomicXchgBool(&pVM->tm.s.fVirtualSyncTicking, true);
1508 }
1509}
1510
1511
1512/**
1513 * Saves the state of a timer to a saved state.
1514 *
1515 * @returns VBox status.
1516 * @param pTimer Timer to save.
1517 * @param pSSM Save State Manager handle.
1518 */
1519TMR3DECL(int) TMR3TimerSave(PTMTIMERHC pTimer, PSSMHANDLE pSSM)
1520{
1521 LogFlow(("TMR3TimerSave: pTimer=%p:{enmState=%s, .pszDesc={%s}} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->pszDesc, pSSM));
1522 switch (pTimer->enmState)
1523 {
1524 case TMTIMERSTATE_STOPPED:
1525 case TMTIMERSTATE_PENDING_STOP:
1526 case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
1527 return SSMR3PutU8(pSSM, (uint8_t)TMTIMERSTATE_PENDING_STOP);
1528
1529 case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
1530 case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
1531 AssertMsgFailed(("u64Expire is being updated! (%s)\n", pTimer->pszDesc));
1532 if (!RTThreadYield())
1533 RTThreadSleep(1);
1534 /* fall thru */
1535 case TMTIMERSTATE_ACTIVE:
1536 case TMTIMERSTATE_PENDING_SCHEDULE:
1537 case TMTIMERSTATE_PENDING_RESCHEDULE:
1538 SSMR3PutU8(pSSM, (uint8_t)TMTIMERSTATE_PENDING_SCHEDULE);
1539 return SSMR3PutU64(pSSM, pTimer->u64Expire);
1540
1541 case TMTIMERSTATE_EXPIRED:
1542 case TMTIMERSTATE_PENDING_DESTROY:
1543 case TMTIMERSTATE_PENDING_STOP_DESTROY:
1544 case TMTIMERSTATE_FREE:
1545 AssertMsgFailed(("Invalid timer state %d %s (%s)\n", pTimer->enmState, tmTimerState(pTimer->enmState), pTimer->pszDesc));
1546 return SSMR3HandleSetStatus(pSSM, VERR_TM_INVALID_STATE);
1547 }
1548
1549 AssertMsgFailed(("Unknown timer state %d (%s)\n", pTimer->enmState, pTimer->pszDesc));
1550 return SSMR3HandleSetStatus(pSSM, VERR_TM_UNKNOWN_STATE);
1551}
1552
1553
1554/**
1555 * Loads the state of a timer from a saved state.
1556 *
1557 * @returns VBox status.
1558 * @param pTimer Timer to restore.
1559 * @param pSSM Save State Manager handle.
1560 */
1561TMR3DECL(int) TMR3TimerLoad(PTMTIMERHC pTimer, PSSMHANDLE pSSM)
1562{
1563 Assert(pTimer); Assert(pSSM); VM_ASSERT_EMT(pTimer->pVMR3);
1564 LogFlow(("TMR3TimerLoad: pTimer=%p:{enmState=%s, .pszDesc={%s}} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->pszDesc, pSSM));
1565
1566 /*
1567 * Load the state and validate it.
1568 */
1569 uint8_t u8State;
1570 int rc = SSMR3GetU8(pSSM, &u8State);
1571 if (VBOX_FAILURE(rc))
1572 return rc;
1573 TMTIMERSTATE enmState = (TMTIMERSTATE)u8State;
1574 if ( enmState != TMTIMERSTATE_PENDING_STOP
1575 && enmState != TMTIMERSTATE_PENDING_SCHEDULE
1576 && enmState != TMTIMERSTATE_PENDING_STOP_SCHEDULE)
1577 {
1578 AssertMsgFailed(("enmState=%d %s\n", enmState, tmTimerState(enmState)));
1579 return SSMR3HandleSetStatus(pSSM, VERR_TM_LOAD_STATE);
1580 }
1581
1582 if (enmState == TMTIMERSTATE_PENDING_SCHEDULE)
1583 {
1584 /*
1585 * Load the expire time.
1586 */
1587 uint64_t u64Expire;
1588 rc = SSMR3GetU64(pSSM, &u64Expire);
1589 if (VBOX_FAILURE(rc))
1590 return rc;
1591
1592 /*
1593 * Set it.
1594 */
1595 Log(("enmState=%d %s u64Expire=%llu\n", enmState, tmTimerState(enmState), u64Expire));
1596 rc = TMTimerSet(pTimer, u64Expire);
1597 }
1598 else
1599 {
1600 /*
1601 * Stop it.
1602 */
1603 Log(("enmState=%d %s\n", enmState, tmTimerState(enmState)));
1604 rc = TMTimerStop(pTimer);
1605 }
1606
1607 /*
1608 * On failure set SSM status.
1609 */
1610 if (VBOX_FAILURE(rc))
1611 rc = SSMR3HandleSetStatus(pSSM, rc);
1612 return rc;
1613}
1614
1615
1616/**
1617 * Get the real world UCT time adjusted for VM lag.
1618 *
1619 * @returns pTime.
1620 * @param pVM The VM instance.
1621 * @param pTime Where to store the time.
1622 */
1623TMR3DECL(PRTTIMESPEC) TMR3UCTNow(PVM pVM, PRTTIMESPEC pTime)
1624{
1625 RTTimeNow(pTime);
1626 RTTimeSpecSubNano(pTime, pVM->tm.s.offVirtualSync - pVM->tm.s.offVirtualSyncGivenUp);
1627 return pTime;
1628}
1629
1630
1631/**
1632 * Display all timers.
1633 *
1634 * @param pVM VM Handle.
1635 * @param pHlp The info helpers.
1636 * @param pszArgs Arguments, ignored.
1637 */
1638static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1639{
1640 NOREF(pszArgs);
1641 pHlp->pfnPrintf(pHlp,
1642 "Timers (pVM=%p)\n"
1643 "%.*s %.*s %.*s %.*s Clock %-18s %-18s %-25s Description\n",
1644 pVM,
1645 sizeof(RTR3PTR) * 2, "pTimerR3 ",
1646 sizeof(int32_t) * 2, "offNext ",
1647 sizeof(int32_t) * 2, "offPrev ",
1648 sizeof(int32_t) * 2, "offSched ",
1649 "Time",
1650 "Expire",
1651 "State");
1652 for (PTMTIMERHC pTimer = pVM->tm.s.pCreated; pTimer; pTimer = pTimer->pBigNext)
1653 {
1654 pHlp->pfnPrintf(pHlp,
1655 "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %-25s %s\n",
1656 pTimer,
1657 pTimer->offNext,
1658 pTimer->offPrev,
1659 pTimer->offScheduleNext,
1660 pTimer->enmClock == TMCLOCK_REAL ? "Real " : "Virt ",
1661 TMTimerGet(pTimer),
1662 pTimer->u64Expire,
1663 tmTimerState(pTimer->enmState),
1664 pTimer->pszDesc);
1665 }
1666}
1667
1668
1669/**
1670 * Display all active timers.
1671 *
1672 * @param pVM VM Handle.
1673 * @param pHlp The info helpers.
1674 * @param pszArgs Arguments, ignored.
1675 */
1676static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1677{
1678 NOREF(pszArgs);
1679 pHlp->pfnPrintf(pHlp,
1680 "Active Timers (pVM=%p)\n"
1681 "%.*s %.*s %.*s %.*s Clock %-18s %-18s %-25s Description\n",
1682 pVM,
1683 sizeof(RTR3PTR) * 2, "pTimerR3 ",
1684 sizeof(int32_t) * 2, "offNext ",
1685 sizeof(int32_t) * 2, "offPrev ",
1686 sizeof(int32_t) * 2, "offSched ",
1687 "Time",
1688 "Expire",
1689 "State");
1690 for (unsigned iQueue = 0; iQueue < TMCLOCK_MAX; iQueue++)
1691 {
1692 for (PTMTIMERHC pTimer = TMTIMER_GET_HEAD(&pVM->tm.s.paTimerQueuesR3[iQueue]);
1693 pTimer;
1694 pTimer = TMTIMER_GET_NEXT(pTimer))
1695 {
1696 pHlp->pfnPrintf(pHlp,
1697 "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %-25s %s\n",
1698 pTimer,
1699 pTimer->offNext,
1700 pTimer->offPrev,
1701 pTimer->offScheduleNext,
1702 pTimer->enmClock == TMCLOCK_REAL
1703 ? "Real "
1704 : pTimer->enmClock == TMCLOCK_VIRTUAL
1705 ? "Virt "
1706 : pTimer->enmClock == TMCLOCK_VIRTUAL_SYNC
1707 ? "VrSy "
1708 : "TSC ",
1709 TMTimerGet(pTimer),
1710 pTimer->u64Expire,
1711 tmTimerState(pTimer->enmState),
1712 pTimer->pszDesc);
1713 }
1714 }
1715}
1716
1717
1718/**
1719 * Display all clocks.
1720 *
1721 * @param pVM VM Handle.
1722 * @param pHlp The info helpers.
1723 * @param pszArgs Arguments, ignored.
1724 */
1725static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1726{
1727 NOREF(pszArgs);
1728
1729 /*
1730 * Read the times first to avoid more than necessary time variation.
1731 */
1732 const uint64_t u64TSC = TMCpuTickGet(pVM);
1733 const uint64_t u64Virtual = TMVirtualGet(pVM);
1734 const uint64_t u64VirtualSync = TMVirtualSyncGet(pVM);
1735 const uint64_t u64Real = TMRealGet(pVM);
1736
1737 /*
1738 * TSC
1739 */
1740 pHlp->pfnPrintf(pHlp,
1741 "Cpu Tick: %18RU64 (%#016RX64) %RU64Hz %s%s",
1742 u64TSC, u64TSC, TMCpuTicksPerSecond(pVM),
1743 pVM->tm.s.fTSCTicking ? "ticking" : "paused",
1744 pVM->tm.s.fTSCVirtualized ? " - virtualized" : "");
1745 if (pVM->tm.s.fTSCUseRealTSC)
1746 {
1747 pHlp->pfnPrintf(pHlp, " - real tsc");
1748 if (pVM->tm.s.u64TSCOffset)
1749 pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVM->tm.s.u64TSCOffset);
1750 }
1751 else
1752 pHlp->pfnPrintf(pHlp, " - virtual clock");
1753 pHlp->pfnPrintf(pHlp, "\n");
1754
1755 /*
1756 * virtual
1757 */
1758 pHlp->pfnPrintf(pHlp,
1759 " Virtual: %18RU64 (%#016RX64) %RU64Hz %s",
1760 u64Virtual, u64Virtual, TMVirtualGetFreq(pVM),
1761 pVM->tm.s.fVirtualTicking ? "ticking" : "paused");
1762 if (pVM->tm.s.fVirtualWarpDrive)
1763 pHlp->pfnPrintf(pHlp, " WarpDrive %RU32 %%", pVM->tm.s.u32VirtualWarpDrivePercentage);
1764 pHlp->pfnPrintf(pHlp, "\n");
1765
1766 /*
1767 * virtual sync
1768 */
1769 pHlp->pfnPrintf(pHlp,
1770 "VirtSync: %18RU64 (%#016RX64) %s%s",
1771 u64VirtualSync, u64VirtualSync,
1772 pVM->tm.s.fVirtualSyncTicking ? "ticking" : "paused",
1773 pVM->tm.s.fVirtualSyncCatchUp ? " - catchup" : "");
1774 if (pVM->tm.s.offVirtualSync)
1775 {
1776 pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVM->tm.s.offVirtualSync);
1777 if (pVM->tm.s.u32VirtualSyncCatchUpPercentage)
1778 pHlp->pfnPrintf(pHlp, " catch-up rate %u %%", pVM->tm.s.u32VirtualSyncCatchUpPercentage);
1779 }
1780 pHlp->pfnPrintf(pHlp, "\n");
1781
1782 /*
1783 * real
1784 */
1785 pHlp->pfnPrintf(pHlp,
1786 " Real: %18RU64 (%#016RX64) %RU64Hz\n",
1787 u64Real, u64Real, TMRealGetFreq(pVM));
1788}
1789
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette