VirtualBox

source: vbox/trunk/src/VBox/VMM/TM.cpp@ 30728

Last change on this file since 30728 was 30684, checked in by vboxsync, 14 years ago

TM: Added resettable accounting stats. Count the halts and execution periods.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 126.9 KB
Line 
1/* $Id: TM.cpp 30684 2010-07-06 19:57:20Z vboxsync $ */
2/** @file
3 * TM - Time Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_tm TM - The Time Manager
19 *
20 * The Time Manager abstracts the CPU clocks and manages timers used by the VMM,
21 * device and drivers.
22 *
23 * @see grp_tm
24 *
25 *
26 * @section sec_tm_clocks Clocks
27 *
28 * There are currently 4 clocks:
29 * - Virtual (guest).
30 * - Synchronous virtual (guest).
31 * - CPU Tick (TSC) (guest). Only current use is rdtsc emulation. Usually a
32 * function of the virtual clock.
33 * - Real (host). This is only used for display updates atm.
34 *
35 * The most important clocks are the three first ones and of these the second is
36 * the most interesting.
37 *
38 *
39 * The synchronous virtual clock is tied to the virtual clock except that it
40 * will take into account timer delivery lag caused by host scheduling. It will
41 * normally never advance beyond the head timer, and when lagging too far behind
42 * it will gradually speed up to catch up with the virtual clock. All devices
43 * implementing time sources accessible to and used by the guest is using this
44 * clock (for timers and other things). This ensures consistency between the
45 * time sources.
46 *
47 * The virtual clock is implemented as an offset to a monotonic, high
48 * resolution, wall clock. The current time source is using the RTTimeNanoTS()
49 * machinery based upon the Global Info Pages (GIP), that is, we're using TSC
50 * deltas (usually 10 ms) to fill the gaps between GIP updates. The result is
51 * a fairly high res clock that works in all contexts and on all hosts. The
52 * virtual clock is paused when the VM isn't in the running state.
53 *
54 * The CPU tick (TSC) is normally virtualized as a function of the synchronous
55 * virtual clock, where the frequency defaults to the host cpu frequency (as we
56 * measure it). In this mode it is possible to configure the frequency. Another
57 * (non-default) option is to use the raw unmodified host TSC values. And yet
58 * another, to tie it to time spent executing guest code. All these things are
59 * configurable should non-default behavior be desirable.
60 *
61 * The real clock is a monotonic clock (when available) with relatively low
62 * resolution, though this a bit host specific. Note that we're currently not
63 * servicing timers using the real clock when the VM is not running, this is
64 * simply because it has not been needed yet therefore not implemented.
65 *
66 *
67 * @subsection subsec_tm_timesync Guest Time Sync / UTC time
68 *
69 * Guest time syncing is primarily taken care of by the VMM device. The
70 * principle is very simple, the guest additions periodically asks the VMM
71 * device what the current UTC time is and makes adjustments accordingly.
72 *
73 * A complicating factor is that the synchronous virtual clock might be doing
74 * catchups and the guest perception is currently a little bit behind the world
75 * but it will (hopefully) be catching up soon as we're feeding timer interrupts
76 * at a slightly higher rate. Adjusting the guest clock to the current wall
77 * time in the real world would be a bad idea then because the guest will be
78 * advancing too fast and run ahead of world time (if the catchup works out).
79 * To solve this problem TM provides the VMM device with an UTC time source that
80 * gets adjusted with the current lag, so that when the guest eventually catches
81 * up the lag it will be showing correct real world time.
82 *
83 *
84 * @section sec_tm_timers Timers
85 *
86 * The timers can use any of the TM clocks described in the previous section.
87 * Each clock has its own scheduling facility, or timer queue if you like.
88 * There are a few factors which makes it a bit complex. First, there is the
89 * usual R0 vs R3 vs. RC thing. Then there are multiple threads, and then there
90 * is the timer thread that periodically checks whether any timers has expired
91 * without EMT noticing. On the API level, all but the create and save APIs
92 * must be mulithreaded. EMT will always run the timers.
93 *
94 * The design is using a doubly linked list of active timers which is ordered
95 * by expire date. This list is only modified by the EMT thread. Updates to
96 * the list are batched in a singly linked list, which is then processed by the
97 * EMT thread at the first opportunity (immediately, next time EMT modifies a
98 * timer on that clock, or next timer timeout). Both lists are offset based and
99 * all the elements are therefore allocated from the hyper heap.
100 *
101 * For figuring out when there is need to schedule and run timers TM will:
102 * - Poll whenever somebody queries the virtual clock.
103 * - Poll the virtual clocks from the EM and REM loops.
104 * - Poll the virtual clocks from trap exit path.
105 * - Poll the virtual clocks and calculate first timeout from the halt loop.
106 * - Employ a thread which periodically (100Hz) polls all the timer queues.
107 *
108 *
109 * @image html TMTIMER-Statechart-Diagram.gif
110 *
111 * @section sec_tm_timer Logging
112 *
113 * Level 2: Logs a most of the timer state transitions and queue servicing.
114 * Level 3: Logs a few oddments.
115 * Level 4: Logs TMCLOCK_VIRTUAL_SYNC catch-up events.
116 *
117 */
118
119/*******************************************************************************
120* Header Files *
121*******************************************************************************/
122#define LOG_GROUP LOG_GROUP_TM
123#include <VBox/tm.h>
124#include <VBox/vmm.h>
125#include <VBox/mm.h>
126#include <VBox/ssm.h>
127#include <VBox/dbgf.h>
128#include <VBox/rem.h>
129#include <VBox/pdmapi.h>
130#include <VBox/iom.h>
131#include "TMInternal.h"
132#include <VBox/vm.h>
133
134#include <VBox/pdmdev.h>
135#include <VBox/param.h>
136#include <VBox/err.h>
137
138#include <VBox/log.h>
139#include <iprt/asm.h>
140#include <iprt/asm-math.h>
141#include <iprt/asm-amd64-x86.h>
142#include <iprt/assert.h>
143#include <iprt/thread.h>
144#include <iprt/time.h>
145#include <iprt/timer.h>
146#include <iprt/semaphore.h>
147#include <iprt/string.h>
148#include <iprt/env.h>
149
150
151/*******************************************************************************
152* Defined Constants And Macros *
153*******************************************************************************/
154/** The current saved state version.*/
155#define TM_SAVED_STATE_VERSION 3
156
157
158/*******************************************************************************
159* Internal Functions *
160*******************************************************************************/
161static bool tmR3HasFixedTSC(PVM pVM);
162static uint64_t tmR3CalibrateTSC(PVM pVM);
163static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM);
164static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
165static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
166static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue);
167static void tmR3TimerQueueRunVirtualSync(PVM pVM);
168static DECLCALLBACK(int) tmR3SetWarpDrive(PVM pVM, uint32_t u32Percent);
169#ifndef VBOX_WITHOUT_NS_ACCOUNTING
170static DECLCALLBACK(void) tmR3CpuLoadTimer(PVM pVM, PTMTIMER pTimer, void *pvUser);
171#endif
172static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
173static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
174static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
175
176
177/**
178 * Initializes the TM.
179 *
180 * @returns VBox status code.
181 * @param pVM The VM to operate on.
182 */
183VMM_INT_DECL(int) TMR3Init(PVM pVM)
184{
185 LogFlow(("TMR3Init:\n"));
186
187 /*
188 * Assert alignment and sizes.
189 */
190 AssertCompileMemberAlignment(VM, tm.s, 32);
191 AssertCompile(sizeof(pVM->tm.s) <= sizeof(pVM->tm.padding));
192 AssertCompileMemberAlignment(TM, TimerCritSect, 8);
193 AssertCompileMemberAlignment(TM, VirtualSyncLock, 8);
194
195 /*
196 * Init the structure.
197 */
198 void *pv;
199 int rc = MMHyperAlloc(pVM, sizeof(pVM->tm.s.paTimerQueuesR3[0]) * TMCLOCK_MAX, 0, MM_TAG_TM, &pv);
200 AssertRCReturn(rc, rc);
201 pVM->tm.s.paTimerQueuesR3 = (PTMTIMERQUEUE)pv;
202 pVM->tm.s.paTimerQueuesR0 = MMHyperR3ToR0(pVM, pv);
203 pVM->tm.s.paTimerQueuesRC = MMHyperR3ToRC(pVM, pv);
204
205 pVM->tm.s.offVM = RT_OFFSETOF(VM, tm.s);
206 pVM->tm.s.idTimerCpu = pVM->cCpus - 1; /* The last CPU. */
207 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].enmClock = TMCLOCK_VIRTUAL;
208 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].u64Expire = INT64_MAX;
209 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].enmClock = TMCLOCK_VIRTUAL_SYNC;
210 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].u64Expire = INT64_MAX;
211 pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].enmClock = TMCLOCK_REAL;
212 pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].u64Expire = INT64_MAX;
213 pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].enmClock = TMCLOCK_TSC;
214 pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].u64Expire = INT64_MAX;
215
216
217 /*
218 * We directly use the GIP to calculate the virtual time. We map the
219 * the GIP into the guest context so we can do this calculation there
220 * as well and save costly world switches.
221 */
222 pVM->tm.s.pvGIPR3 = (void *)g_pSUPGlobalInfoPage;
223 AssertMsgReturn(pVM->tm.s.pvGIPR3, ("GIP support is now required!\n"), VERR_INTERNAL_ERROR);
224 RTHCPHYS HCPhysGIP;
225 rc = SUPR3GipGetPhys(&HCPhysGIP);
226 AssertMsgRCReturn(rc, ("Failed to get GIP physical address!\n"), rc);
227
228 RTGCPTR GCPtr;
229 rc = MMR3HyperMapHCPhys(pVM, pVM->tm.s.pvGIPR3, NIL_RTR0PTR, HCPhysGIP, PAGE_SIZE, "GIP", &GCPtr);
230 if (RT_FAILURE(rc))
231 {
232 AssertMsgFailed(("Failed to map GIP into GC, rc=%Rrc!\n", rc));
233 return rc;
234 }
235 pVM->tm.s.pvGIPRC = GCPtr;
236 LogFlow(("TMR3Init: HCPhysGIP=%RHp at %RRv\n", HCPhysGIP, pVM->tm.s.pvGIPRC));
237 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
238
239 /* Check assumptions made in TMAllVirtual.cpp about the GIP update interval. */
240 if ( g_pSUPGlobalInfoPage->u32Magic == SUPGLOBALINFOPAGE_MAGIC
241 && g_pSUPGlobalInfoPage->u32UpdateIntervalNS >= 250000000 /* 0.25s */)
242 return VMSetError(pVM, VERR_INTERNAL_ERROR, RT_SRC_POS,
243 N_("The GIP update interval is too big. u32UpdateIntervalNS=%RU32 (u32UpdateHz=%RU32)"),
244 g_pSUPGlobalInfoPage->u32UpdateIntervalNS, g_pSUPGlobalInfoPage->u32UpdateHz);
245 LogRel(("TM: GIP - u32Mode=%d (%s) u32UpdateHz=%u\n", g_pSUPGlobalInfoPage->u32Mode,
246 g_pSUPGlobalInfoPage->u32Mode == SUPGIPMODE_SYNC_TSC ? "SyncTSC"
247 : g_pSUPGlobalInfoPage->u32Mode == SUPGIPMODE_ASYNC_TSC ? "AsyncTSC" : "Unknown",
248 g_pSUPGlobalInfoPage->u32UpdateHz));
249
250 /*
251 * Setup the VirtualGetRaw backend.
252 */
253 pVM->tm.s.VirtualGetRawDataR3.pu64Prev = &pVM->tm.s.u64VirtualRawPrev;
254 pVM->tm.s.VirtualGetRawDataR3.pfnBad = tmVirtualNanoTSBad;
255 pVM->tm.s.VirtualGetRawDataR3.pfnRediscover = tmVirtualNanoTSRediscover;
256 if (ASMCpuId_EDX(1) & X86_CPUID_FEATURE_EDX_SSE2)
257 {
258 if (g_pSUPGlobalInfoPage->u32Mode == SUPGIPMODE_SYNC_TSC)
259 pVM->tm.s.pfnVirtualGetRawR3 = RTTimeNanoTSLFenceSync;
260 else
261 pVM->tm.s.pfnVirtualGetRawR3 = RTTimeNanoTSLFenceAsync;
262 }
263 else
264 {
265 if (g_pSUPGlobalInfoPage->u32Mode == SUPGIPMODE_SYNC_TSC)
266 pVM->tm.s.pfnVirtualGetRawR3 = RTTimeNanoTSLegacySync;
267 else
268 pVM->tm.s.pfnVirtualGetRawR3 = RTTimeNanoTSLegacyAsync;
269 }
270
271 pVM->tm.s.VirtualGetRawDataRC.pu64Prev = MMHyperR3ToRC(pVM, (void *)&pVM->tm.s.u64VirtualRawPrev);
272 pVM->tm.s.VirtualGetRawDataR0.pu64Prev = MMHyperR3ToR0(pVM, (void *)&pVM->tm.s.u64VirtualRawPrev);
273 AssertReturn(pVM->tm.s.VirtualGetRawDataR0.pu64Prev, VERR_INTERNAL_ERROR);
274 /* The rest is done in TMR3InitFinalize since it's too early to call PDM. */
275
276 /*
277 * Init the locks.
278 */
279 rc = PDMR3CritSectInit(pVM, &pVM->tm.s.TimerCritSect, RT_SRC_POS, "TM Timer Lock");
280 if (RT_FAILURE(rc))
281 return rc;
282 rc = PDMR3CritSectInit(pVM, &pVM->tm.s.VirtualSyncLock, RT_SRC_POS, "TM VirtualSync Lock");
283 if (RT_FAILURE(rc))
284 return rc;
285
286 /*
287 * Get our CFGM node, create it if necessary.
288 */
289 PCFGMNODE pCfgHandle = CFGMR3GetChild(CFGMR3GetRoot(pVM), "TM");
290 if (!pCfgHandle)
291 {
292 rc = CFGMR3InsertNode(CFGMR3GetRoot(pVM), "TM", &pCfgHandle);
293 AssertRCReturn(rc, rc);
294 }
295
296 /*
297 * Determin the TSC configuration and frequency.
298 */
299 /* mode */
300 /** @cfgm{/TM/TSCVirtualized,bool,true}
301 * Use a virtualize TSC, i.e. trap all TSC access. */
302 rc = CFGMR3QueryBool(pCfgHandle, "TSCVirtualized", &pVM->tm.s.fTSCVirtualized);
303 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
304 pVM->tm.s.fTSCVirtualized = true; /* trap rdtsc */
305 else if (RT_FAILURE(rc))
306 return VMSetError(pVM, rc, RT_SRC_POS,
307 N_("Configuration error: Failed to querying bool value \"UseRealTSC\""));
308
309 /* source */
310 /** @cfgm{/TM/UseRealTSC,bool,false}
311 * Use the real TSC as time source for the TSC instead of the synchronous
312 * virtual clock (false, default). */
313 rc = CFGMR3QueryBool(pCfgHandle, "UseRealTSC", &pVM->tm.s.fTSCUseRealTSC);
314 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
315 pVM->tm.s.fTSCUseRealTSC = false; /* use virtual time */
316 else if (RT_FAILURE(rc))
317 return VMSetError(pVM, rc, RT_SRC_POS,
318 N_("Configuration error: Failed to querying bool value \"UseRealTSC\""));
319 if (!pVM->tm.s.fTSCUseRealTSC)
320 pVM->tm.s.fTSCVirtualized = true;
321
322 /* TSC reliability */
323 /** @cfgm{/TM/MaybeUseOffsettedHostTSC,bool,detect}
324 * Whether the CPU has a fixed TSC rate and may be used in offsetted mode with
325 * VT-x/AMD-V execution. This is autodetected in a very restrictive way by
326 * default. */
327 rc = CFGMR3QueryBool(pCfgHandle, "MaybeUseOffsettedHostTSC", &pVM->tm.s.fMaybeUseOffsettedHostTSC);
328 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
329 {
330 if (!pVM->tm.s.fTSCUseRealTSC)
331 pVM->tm.s.fMaybeUseOffsettedHostTSC = tmR3HasFixedTSC(pVM);
332 else
333 pVM->tm.s.fMaybeUseOffsettedHostTSC = true;
334 }
335
336 /** @cfgm{TM/TSCTicksPerSecond, uint32_t, Current TSC frequency from GIP}
337 * The number of TSC ticks per second (i.e. the TSC frequency). This will
338 * override TSCUseRealTSC, TSCVirtualized and MaybeUseOffsettedHostTSC.
339 */
340 rc = CFGMR3QueryU64(pCfgHandle, "TSCTicksPerSecond", &pVM->tm.s.cTSCTicksPerSecond);
341 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
342 {
343 pVM->tm.s.cTSCTicksPerSecond = tmR3CalibrateTSC(pVM);
344 if ( !pVM->tm.s.fTSCUseRealTSC
345 && pVM->tm.s.cTSCTicksPerSecond >= _4G)
346 {
347 pVM->tm.s.cTSCTicksPerSecond = _4G - 1; /* (A limitation of our math code) */
348 pVM->tm.s.fMaybeUseOffsettedHostTSC = false;
349 }
350 }
351 else if (RT_FAILURE(rc))
352 return VMSetError(pVM, rc, RT_SRC_POS,
353 N_("Configuration error: Failed to querying uint64_t value \"TSCTicksPerSecond\""));
354 else if ( pVM->tm.s.cTSCTicksPerSecond < _1M
355 || pVM->tm.s.cTSCTicksPerSecond >= _4G)
356 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
357 N_("Configuration error: \"TSCTicksPerSecond\" = %RI64 is not in the range 1MHz..4GHz-1"),
358 pVM->tm.s.cTSCTicksPerSecond);
359 else
360 {
361 pVM->tm.s.fTSCUseRealTSC = pVM->tm.s.fMaybeUseOffsettedHostTSC = false;
362 pVM->tm.s.fTSCVirtualized = true;
363 }
364
365 /** @cfgm{TM/TSCTiedToExecution, bool, false}
366 * Whether the TSC should be tied to execution. This will exclude most of the
367 * virtualization overhead, but will by default include the time spent in the
368 * halt state (see TM/TSCNotTiedToHalt). This setting will override all other
369 * TSC settings except for TSCTicksPerSecond and TSCNotTiedToHalt, which should
370 * be used avoided or used with great care. Note that this will only work right
371 * together with VT-x or AMD-V, and with a single virtual CPU. */
372 rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCTiedToExecution", &pVM->tm.s.fTSCTiedToExecution, false);
373 if (RT_FAILURE(rc))
374 return VMSetError(pVM, rc, RT_SRC_POS,
375 N_("Configuration error: Failed to querying bool value \"TSCTiedToExecution\""));
376 if (pVM->tm.s.fTSCTiedToExecution)
377 {
378 /* tied to execution, override all other settings. */
379 pVM->tm.s.fTSCVirtualized = true;
380 pVM->tm.s.fTSCUseRealTSC = true;
381 pVM->tm.s.fMaybeUseOffsettedHostTSC = false;
382 }
383
384 /** @cfgm{TM/TSCNotTiedToHalt, bool, true}
385 * For overriding the default of TM/TSCTiedToExecution, i.e. set this to false
386 * to make the TSC freeze during HLT. */
387 rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCNotTiedToHalt", &pVM->tm.s.fTSCNotTiedToHalt, false);
388 if (RT_FAILURE(rc))
389 return VMSetError(pVM, rc, RT_SRC_POS,
390 N_("Configuration error: Failed to querying bool value \"TSCNotTiedToHalt\""));
391
392 /* setup and report */
393 if (pVM->tm.s.fTSCVirtualized)
394 CPUMR3SetCR4Feature(pVM, X86_CR4_TSD, ~X86_CR4_TSD);
395 else
396 CPUMR3SetCR4Feature(pVM, 0, ~X86_CR4_TSD);
397 LogRel(("TM: cTSCTicksPerSecond=%#RX64 (%'RU64) fTSCVirtualized=%RTbool fTSCUseRealTSC=%RTbool\n"
398 "TM: fMaybeUseOffsettedHostTSC=%RTbool TSCTiedToExecution=%RTbool TSCNotTiedToHalt=%RTbool\n",
399 pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.fTSCVirtualized, pVM->tm.s.fTSCUseRealTSC,
400 pVM->tm.s.fMaybeUseOffsettedHostTSC, pVM->tm.s.fTSCTiedToExecution, pVM->tm.s.fTSCNotTiedToHalt));
401
402 /*
403 * Configure the timer synchronous virtual time.
404 */
405 /** @cfgm{TM/ScheduleSlack, uint32_t, ns, 0, UINT32_MAX, 100000}
406 * Scheduling slack when processing timers. */
407 rc = CFGMR3QueryU32(pCfgHandle, "ScheduleSlack", &pVM->tm.s.u32VirtualSyncScheduleSlack);
408 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
409 pVM->tm.s.u32VirtualSyncScheduleSlack = 100000; /* 0.100ms (ASSUMES virtual time is nanoseconds) */
410 else if (RT_FAILURE(rc))
411 return VMSetError(pVM, rc, RT_SRC_POS,
412 N_("Configuration error: Failed to querying 32-bit integer value \"ScheduleSlack\""));
413
414 /** @cfgm{TM/CatchUpStopThreshold, uint64_t, ns, 0, UINT64_MAX, 500000}
415 * When to stop a catch-up, considering it successful. */
416 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStopThreshold", &pVM->tm.s.u64VirtualSyncCatchUpStopThreshold);
417 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
418 pVM->tm.s.u64VirtualSyncCatchUpStopThreshold = 500000; /* 0.5ms */
419 else if (RT_FAILURE(rc))
420 return VMSetError(pVM, rc, RT_SRC_POS,
421 N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpStopThreshold\""));
422
423 /** @cfgm{TM/CatchUpGiveUpThreshold, uint64_t, ns, 0, UINT64_MAX, 60000000000}
424 * When to give up a catch-up attempt. */
425 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpGiveUpThreshold", &pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold);
426 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
427 pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold = UINT64_C(60000000000); /* 60 sec */
428 else if (RT_FAILURE(rc))
429 return VMSetError(pVM, rc, RT_SRC_POS,
430 N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpGiveUpThreshold\""));
431
432
433 /** @cfgm{TM/CatchUpPrecentage[0..9], uint32_t, %, 1, 2000, various}
434 * The catch-up percent for a given period. */
435 /** @cfgm{TM/CatchUpStartThreshold[0..9], uint64_t, ns, 0, UINT64_MAX,
436 * The catch-up period threshold, or if you like, when a period starts. */
437#define TM_CFG_PERIOD(iPeriod, DefStart, DefPct) \
438 do \
439 { \
440 uint64_t u64; \
441 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStartThreshold" #iPeriod, &u64); \
442 if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
443 u64 = UINT64_C(DefStart); \
444 else if (RT_FAILURE(rc)) \
445 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpThreshold" #iPeriod "\"")); \
446 if ( (iPeriod > 0 && u64 <= pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod - 1].u64Start) \
447 || u64 >= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold) \
448 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("Configuration error: Invalid start of period #" #iPeriod ": %'RU64"), u64); \
449 pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u64Start = u64; \
450 rc = CFGMR3QueryU32(pCfgHandle, "CatchUpPrecentage" #iPeriod, &pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage); \
451 if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
452 pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage = (DefPct); \
453 else if (RT_FAILURE(rc)) \
454 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 32-bit integer value \"CatchUpPrecentage" #iPeriod "\"")); \
455 } while (0)
456 /* This needs more tuning. Not sure if we really need so many period and be so gentle. */
457 TM_CFG_PERIOD(0, 750000, 5); /* 0.75ms at 1.05x */
458 TM_CFG_PERIOD(1, 1500000, 10); /* 1.50ms at 1.10x */
459 TM_CFG_PERIOD(2, 8000000, 25); /* 8ms at 1.25x */
460 TM_CFG_PERIOD(3, 30000000, 50); /* 30ms at 1.50x */
461 TM_CFG_PERIOD(4, 75000000, 75); /* 75ms at 1.75x */
462 TM_CFG_PERIOD(5, 175000000, 100); /* 175ms at 2x */
463 TM_CFG_PERIOD(6, 500000000, 200); /* 500ms at 3x */
464 TM_CFG_PERIOD(7, 3000000000, 300); /* 3s at 4x */
465 TM_CFG_PERIOD(8,30000000000, 400); /* 30s at 5x */
466 TM_CFG_PERIOD(9,55000000000, 500); /* 55s at 6x */
467 AssertCompile(RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods) == 10);
468#undef TM_CFG_PERIOD
469
470 /*
471 * Configure real world time (UTC).
472 */
473 /** @cfgm{TM/UTCOffset, int64_t, ns, INT64_MIN, INT64_MAX, 0}
474 * The UTC offset. This is used to put the guest back or forwards in time. */
475 rc = CFGMR3QueryS64(pCfgHandle, "UTCOffset", &pVM->tm.s.offUTC);
476 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
477 pVM->tm.s.offUTC = 0; /* ns */
478 else if (RT_FAILURE(rc))
479 return VMSetError(pVM, rc, RT_SRC_POS,
480 N_("Configuration error: Failed to querying 64-bit integer value \"UTCOffset\""));
481
482 /*
483 * Setup the warp drive.
484 */
485 /** @cfgm{TM/WarpDrivePercentage, uint32_t, %, 0, 20000, 100}
486 * The warp drive percentage, 100% is normal speed. This is used to speed up
487 * or slow down the virtual clock, which can be useful for fast forwarding
488 * borring periods during tests. */
489 rc = CFGMR3QueryU32(pCfgHandle, "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage);
490 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
491 rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage); /* legacy */
492 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
493 pVM->tm.s.u32VirtualWarpDrivePercentage = 100;
494 else if (RT_FAILURE(rc))
495 return VMSetError(pVM, rc, RT_SRC_POS,
496 N_("Configuration error: Failed to querying uint32_t value \"WarpDrivePercent\""));
497 else if ( pVM->tm.s.u32VirtualWarpDrivePercentage < 2
498 || pVM->tm.s.u32VirtualWarpDrivePercentage > 20000)
499 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
500 N_("Configuration error: \"WarpDrivePercent\" = %RI32 is not in the range 2..20000"),
501 pVM->tm.s.u32VirtualWarpDrivePercentage);
502 pVM->tm.s.fVirtualWarpDrive = pVM->tm.s.u32VirtualWarpDrivePercentage != 100;
503 if (pVM->tm.s.fVirtualWarpDrive)
504 LogRel(("TM: u32VirtualWarpDrivePercentage=%RI32\n", pVM->tm.s.u32VirtualWarpDrivePercentage));
505
506 /*
507 * Start the timer (guard against REM not yielding).
508 */
509 /** @cfgm{TM/TimerMillies, uint32_t, ms, 1, 1000, 10}
510 * The watchdog timer interval. */
511 uint32_t u32Millies;
512 rc = CFGMR3QueryU32(pCfgHandle, "TimerMillies", &u32Millies);
513 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
514 u32Millies = 10;
515 else if (RT_FAILURE(rc))
516 return VMSetError(pVM, rc, RT_SRC_POS,
517 N_("Configuration error: Failed to query uint32_t value \"TimerMillies\""));
518 rc = RTTimerCreate(&pVM->tm.s.pTimer, u32Millies, tmR3TimerCallback, pVM);
519 if (RT_FAILURE(rc))
520 {
521 AssertMsgFailed(("Failed to create timer, u32Millies=%d rc=%Rrc.\n", u32Millies, rc));
522 return rc;
523 }
524 Log(("TM: Created timer %p firing every %d millieseconds\n", pVM->tm.s.pTimer, u32Millies));
525 pVM->tm.s.u32TimerMillies = u32Millies;
526
527 /*
528 * Register saved state.
529 */
530 rc = SSMR3RegisterInternal(pVM, "tm", 1, TM_SAVED_STATE_VERSION, sizeof(uint64_t) * 8,
531 NULL, NULL, NULL,
532 NULL, tmR3Save, NULL,
533 NULL, tmR3Load, NULL);
534 if (RT_FAILURE(rc))
535 return rc;
536
537 /*
538 * Register statistics.
539 */
540 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR3.c1nsSteps,STAMTYPE_U32, "/TM/R3/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
541 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR3.cBadPrev, STAMTYPE_U32, "/TM/R3/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
542 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.c1nsSteps,STAMTYPE_U32, "/TM/R0/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
543 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.cBadPrev, STAMTYPE_U32, "/TM/R0/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
544 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataRC.c1nsSteps,STAMTYPE_U32, "/TM/RC/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
545 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataRC.cBadPrev, STAMTYPE_U32, "/TM/RC/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
546 STAM_REL_REG( pVM,(void*)&pVM->tm.s.offVirtualSync, STAMTYPE_U64, "/TM/VirtualSync/CurrentOffset", STAMUNIT_NS, "The current offset. (subtract GivenUp to get the lag)");
547 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.offVirtualSyncGivenUp, STAMTYPE_U64, "/TM/VirtualSync/GivenUp", STAMUNIT_NS, "Nanoseconds of the 'CurrentOffset' that's been given up and won't ever be attemted caught up with.");
548
549#ifdef VBOX_WITH_STATISTICS
550 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR3.cExpired, STAMTYPE_U32, "/TM/R3/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
551 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR3.cUpdateRaces,STAMTYPE_U32, "/TM/R3/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
552 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cExpired, STAMTYPE_U32, "/TM/R0/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
553 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cUpdateRaces,STAMTYPE_U32, "/TM/R0/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
554 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataRC.cExpired, STAMTYPE_U32, "/TM/RC/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
555 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataRC.cUpdateRaces,STAMTYPE_U32, "/TM/RC/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
556 STAM_REG(pVM, &pVM->tm.s.StatDoQueues, STAMTYPE_PROFILE, "/TM/DoQueues", STAMUNIT_TICKS_PER_CALL, "Profiling timer TMR3TimerQueuesDo.");
557 STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/Virtual", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual clock queue.");
558 STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/VirtualSync", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual sync clock queue.");
559 STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/Real", STAMUNIT_TICKS_PER_CALL, "Time spent on the real clock queue.");
560
561 STAM_REG(pVM, &pVM->tm.s.StatPoll, STAMTYPE_COUNTER, "/TM/Poll", STAMUNIT_OCCURENCES, "TMTimerPoll calls.");
562 STAM_REG(pVM, &pVM->tm.s.StatPollAlreadySet, STAMTYPE_COUNTER, "/TM/Poll/AlreadySet", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the FF was already set.");
563 STAM_REG(pVM, &pVM->tm.s.StatPollELoop, STAMTYPE_COUNTER, "/TM/Poll/ELoop", STAMUNIT_OCCURENCES, "Times TMTimerPoll has given up getting a consistent virtual sync data set.");
564 STAM_REG(pVM, &pVM->tm.s.StatPollMiss, STAMTYPE_COUNTER, "/TM/Poll/Miss", STAMUNIT_OCCURENCES, "TMTimerPoll calls where nothing had expired.");
565 STAM_REG(pVM, &pVM->tm.s.StatPollRunning, STAMTYPE_COUNTER, "/TM/Poll/Running", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the queues were being run.");
566 STAM_REG(pVM, &pVM->tm.s.StatPollSimple, STAMTYPE_COUNTER, "/TM/Poll/Simple", STAMUNIT_OCCURENCES, "TMTimerPoll calls where we could take the simple path.");
567 STAM_REG(pVM, &pVM->tm.s.StatPollVirtual, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtual", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL queue.");
568 STAM_REG(pVM, &pVM->tm.s.StatPollVirtualSync, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtualSync", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL_SYNC queue.");
569
570 STAM_REG(pVM, &pVM->tm.s.StatPostponedR3, STAMTYPE_COUNTER, "/TM/PostponedR3", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-3.");
571 STAM_REG(pVM, &pVM->tm.s.StatPostponedRZ, STAMTYPE_COUNTER, "/TM/PostponedRZ", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-0 / RC.");
572
573 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneR3, STAMTYPE_PROFILE, "/TM/ScheduleOneR3", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
574 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneRZ, STAMTYPE_PROFILE, "/TM/ScheduleOneRZ", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
575 STAM_REG(pVM, &pVM->tm.s.StatScheduleSetFF, STAMTYPE_COUNTER, "/TM/ScheduleSetFF", STAMUNIT_OCCURENCES, "The number of times the timer FF was set instead of doing scheduling.");
576
577 STAM_REG(pVM, &pVM->tm.s.StatTimerSet, STAMTYPE_COUNTER, "/TM/TimerSet", STAMUNIT_OCCURENCES, "Calls");
578 STAM_REG(pVM, &pVM->tm.s.StatTimerSetOpt, STAMTYPE_COUNTER, "/TM/TimerSet/Opt", STAMUNIT_OCCURENCES, "Optimized path taken.");
579 STAM_REG(pVM, &pVM->tm.s.StatTimerSetR3, STAMTYPE_PROFILE, "/TM/TimerSet/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3.");
580 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRZ, STAMTYPE_PROFILE, "/TM/TimerSet/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0 / RC.");
581 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStActive, STAMTYPE_COUNTER, "/TM/TimerSet/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
582 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSet/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
583 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStOther, STAMTYPE_COUNTER, "/TM/TimerSet/StOther", STAMUNIT_OCCURENCES, "Other states");
584 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStop, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP");
585 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendStopSched", STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE");
586 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendSched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE");
587 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStPendResched, STAMTYPE_COUNTER, "/TM/TimerSet/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE");
588 STAM_REG(pVM, &pVM->tm.s.StatTimerSetStStopped, STAMTYPE_COUNTER, "/TM/TimerSet/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
589
590 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelative, STAMTYPE_COUNTER, "/TM/TimerSetRelative", STAMUNIT_OCCURENCES, "Calls");
591 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeOpt, STAMTYPE_COUNTER, "/TM/TimerSetRelative/Opt", STAMUNIT_OCCURENCES, "Optimized path taken.");
592 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeR3, STAMTYPE_PROFILE, "/TM/TimerSetRelative/R3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetRelative calls made in ring-3.");
593 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeRZ, STAMTYPE_PROFILE, "/TM/TimerSetRelative/RZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSetReltaive calls made in ring-0 / RC.");
594 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeRacyVirtSync, STAMTYPE_COUNTER, "/TM/TimerSetRelative/RacyVirtSync", STAMUNIT_OCCURENCES, "Potentially racy virtual sync timer update.");
595 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStActive, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StActive", STAMUNIT_OCCURENCES, "ACTIVE");
596 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStExpDeliver, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StExpDeliver", STAMUNIT_OCCURENCES, "EXPIRED_DELIVER");
597 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStOther, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StOther", STAMUNIT_OCCURENCES, "Other states");
598 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStop, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStop", STAMUNIT_OCCURENCES, "PENDING_STOP");
599 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendStopSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendStopSched",STAMUNIT_OCCURENCES, "PENDING_STOP_SCHEDULE");
600 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendSched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendSched", STAMUNIT_OCCURENCES, "PENDING_SCHEDULE");
601 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStPendResched, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StPendResched", STAMUNIT_OCCURENCES, "PENDING_RESCHEDULE");
602 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRelativeStStopped, STAMTYPE_COUNTER, "/TM/TimerSetRelative/StStopped", STAMUNIT_OCCURENCES, "STOPPED");
603
604 STAM_REG(pVM, &pVM->tm.s.StatTimerStopR3, STAMTYPE_PROFILE, "/TM/TimerStopR3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-3.");
605 STAM_REG(pVM, &pVM->tm.s.StatTimerStopRZ, STAMTYPE_PROFILE, "/TM/TimerStopRZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-0 / RC.");
606
607 STAM_REG(pVM, &pVM->tm.s.StatVirtualGet, STAMTYPE_COUNTER, "/TM/VirtualGet", STAMUNIT_OCCURENCES, "The number of times TMTimerGet was called when the clock was running.");
608 STAM_REG(pVM, &pVM->tm.s.StatVirtualGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualGetSetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling TMTimerGet.");
609 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGet, STAMTYPE_COUNTER, "/TM/VirtualSyncGet", STAMUNIT_OCCURENCES, "The number of times tmVirtualSyncGetEx was called.");
610 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetELoop, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/ELoop", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx has given up getting a consistent virtual sync data set.");
611 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetExpired, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Expired", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx encountered an expired timer stopping the clock.");
612 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLocked, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Locked", STAMUNIT_OCCURENCES, "Times we successfully acquired the lock in tmVirtualSyncGetEx.");
613 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetLockless, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/Lockless", STAMUNIT_OCCURENCES, "Times tmVirtualSyncGetEx returned without needing to take the lock.");
614 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualSyncGet/SetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling tmVirtualSyncGetEx.");
615 STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/VirtualPause", STAMUNIT_OCCURENCES, "The number of times TMR3TimerPause was called.");
616 STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/VirtualResume", STAMUNIT_OCCURENCES, "The number of times TMR3TimerResume was called.");
617
618 STAM_REG(pVM, &pVM->tm.s.StatTimerCallbackSetFF, STAMTYPE_COUNTER, "/TM/CallbackSetFF", STAMUNIT_OCCURENCES, "The number of times the timer callback set FF.");
619
620 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE010, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE010", STAMUNIT_OCCURENCES, "In catch-up mode, 10% or lower.");
621 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE025, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE025", STAMUNIT_OCCURENCES, "In catch-up mode, 25%-11%.");
622 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE100, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE100", STAMUNIT_OCCURENCES, "In catch-up mode, 100%-26%.");
623 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupOther, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupOther", STAMUNIT_OCCURENCES, "In catch-up mode, > 100%.");
624 STAM_REG(pVM, &pVM->tm.s.StatTSCNotFixed, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotFixed", STAMUNIT_OCCURENCES, "TSC is not fixed, it may run at variable speed.");
625 STAM_REG(pVM, &pVM->tm.s.StatTSCNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotTicking", STAMUNIT_OCCURENCES, "TSC is not ticking.");
626 STAM_REG(pVM, &pVM->tm.s.StatTSCSyncNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/SyncNotTicking", STAMUNIT_OCCURENCES, "VirtualSync isn't ticking.");
627 STAM_REG(pVM, &pVM->tm.s.StatTSCWarp, STAMTYPE_COUNTER, "/TM/TSC/Intercept/Warp", STAMUNIT_OCCURENCES, "Warpdrive is active.");
628 STAM_REG(pVM, &pVM->tm.s.StatTSCSet, STAMTYPE_COUNTER, "/TM/TSC/Sets", STAMUNIT_OCCURENCES, "Calls to TMCpuTickSet.");
629 STAM_REG(pVM, &pVM->tm.s.StatTSCUnderflow, STAMTYPE_COUNTER, "/TM/TSC/Underflow", STAMUNIT_OCCURENCES, "TSC underflow; corrected with last seen value .");
630#endif /* VBOX_WITH_STATISTICS */
631
632 for (VMCPUID i = 0; i < pVM->cCpus; i++)
633 {
634 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.offTSCRawSrc, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS, "TSC offset relative the raw source", "/TM/TSC/offCPU%u", i);
635#ifndef VBOX_WITHOUT_NS_ACCOUNTING
636# ifdef VBOX_WITH_STATISTICS
637 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsTotal, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Resettable: Total CPU run time.", "/TM/CPU/%02u", i);
638 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsExecuting, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent executing guest code.", "/TM/CPU/%02u/PrfExecuting", i);
639 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsHalted, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent halted.", "/TM/CPU/%02u/PrfHalted", i);
640 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.StatNsOther, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_OCCURENCE, "Resettable: Time spent in the VMM or preempted.", "/TM/CPU/%02u/PrfOther", i);
641# endif
642 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cNsTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Total CPU run time.", "/TM/CPU/%02u/cNsTotal", i);
643 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cNsExecuting, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent executing guest code.", "/TM/CPU/%02u/cNsExecuting", i);
644 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cNsHalted, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent halted.", "/TM/CPU/%02u/cNsHalted", i);
645 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cNsOther, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Time spent in the VMM or preempted.", "/TM/CPU/%02u/cNsOther", i);
646 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cPeriodsExecuting, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Times executed guest code.", "/TM/CPU/%02u/cPeriodsExecuting", i);
647 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.cPeriodsHalted, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_COUNT, "Times halted.", "/TM/CPU/%02u/cPeriodsHalted", i);
648 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.CpuLoad.cPctExecuting, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent executing guest code recently.", "/TM/CPU/%02u/pctExecuting", i);
649 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.CpuLoad.cPctHalted, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent halted recently.", "/TM/CPU/%02u/pctHalted", i);
650 STAMR3RegisterF(pVM, &pVM->aCpus[i].tm.s.CpuLoad.cPctOther, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent in the VMM or preempted recently.", "/TM/CPU/%02u/pctOther", i);
651#endif
652 }
653#ifndef VBOX_WITHOUT_NS_ACCOUNTING
654 STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctExecuting, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent executing guest code recently.", "/TM/CPU/pctExecuting");
655 STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctHalted, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent halted recently.", "/TM/CPU/pctHalted");
656 STAMR3RegisterF(pVM, &pVM->tm.s.CpuLoad.cPctOther, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "Time spent in the VMM or preempted recently.", "/TM/CPU/pctOther");
657#endif
658
659#ifdef VBOX_WITH_STATISTICS
660 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncCatchup, STAMTYPE_PROFILE_ADV, "/TM/VirtualSync/CatchUp", STAMUNIT_TICKS_PER_OCCURENCE, "Counting and measuring the times spent catching up.");
661 STAM_REG(pVM, (void *)&pVM->tm.s.fVirtualSyncCatchUp, STAMTYPE_U8, "/TM/VirtualSync/CatchUpActive", STAMUNIT_NONE, "Catch-Up active indicator.");
662 STAM_REG(pVM, (void *)&pVM->tm.s.u32VirtualSyncCatchUpPercentage, STAMTYPE_U32, "/TM/VirtualSync/CatchUpPercentage", STAMUNIT_PCT, "The catch-up percentage. (+100/100 to get clock multiplier)");
663 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncFF, STAMTYPE_PROFILE, "/TM/VirtualSync/FF", STAMUNIT_TICKS_PER_OCCURENCE, "Time spent in TMR3VirtualSyncFF by all but the dedicate timer EMT.");
664 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUp, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUp", STAMUNIT_OCCURENCES, "Times the catch-up was abandoned.");
665 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUpBeforeStarting",STAMUNIT_OCCURENCES, "Times the catch-up was abandoned before even starting. (Typically debugging++.)");
666 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRun, STAMTYPE_COUNTER, "/TM/VirtualSync/Run", STAMUNIT_OCCURENCES, "Times the virtual sync timer queue was considered.");
667 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunRestart, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Restarts", STAMUNIT_OCCURENCES, "Times the clock was restarted after a run.");
668 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStop, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Stop", STAMUNIT_OCCURENCES, "Times the clock was stopped when calculating the current time before examining the timers.");
669 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStoppedAlready, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/StoppedAlready", STAMUNIT_OCCURENCES, "Times the clock was already stopped elsewhere (TMVirtualSyncGet).");
670 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunSlack, STAMTYPE_PROFILE, "/TM/VirtualSync/Run/Slack", STAMUNIT_NS_PER_OCCURENCE, "The scheduling slack. (Catch-up handed out when running timers.)");
671 for (unsigned i = 0; i < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods); i++)
672 {
673 STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "The catch-up percentage.", "/TM/VirtualSync/Periods/%u", i);
674 STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupAdjust[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times adjusted to this period.", "/TM/VirtualSync/Periods/%u/Adjust", i);
675 STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupInitial[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times started in this period.", "/TM/VirtualSync/Periods/%u/Initial", i);
676 STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u64Start, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Start of this period (lag).", "/TM/VirtualSync/Periods/%u/Start", i);
677 }
678#endif /* VBOX_WITH_STATISTICS */
679
680 /*
681 * Register info handlers.
682 */
683 DBGFR3InfoRegisterInternalEx(pVM, "timers", "Dumps all timers. No arguments.", tmR3TimerInfo, DBGFINFO_FLAGS_RUN_ON_EMT);
684 DBGFR3InfoRegisterInternalEx(pVM, "activetimers", "Dumps active all timers. No arguments.", tmR3TimerInfoActive, DBGFINFO_FLAGS_RUN_ON_EMT);
685 DBGFR3InfoRegisterInternalEx(pVM, "clocks", "Display the time of the various clocks.", tmR3InfoClocks, DBGFINFO_FLAGS_RUN_ON_EMT);
686
687 return VINF_SUCCESS;
688}
689
690
691/**
692 * Initializes the per-VCPU TM.
693 *
694 * @returns VBox status code.
695 * @param pVM The VM to operate on.
696 */
697VMM_INT_DECL(int) TMR3InitCPU(PVM pVM)
698{
699 LogFlow(("TMR3InitCPU\n"));
700 return VINF_SUCCESS;
701}
702
703
704/**
705 * Checks if the host CPU has a fixed TSC frequency.
706 *
707 * @returns true if it has, false if it hasn't.
708 *
709 * @remark This test doesn't bother with very old CPUs that don't do power
710 * management or any other stuff that might influence the TSC rate.
711 * This isn't currently relevant.
712 */
713static bool tmR3HasFixedTSC(PVM pVM)
714{
715 if (ASMHasCpuId())
716 {
717 uint32_t uEAX, uEBX, uECX, uEDX;
718
719 if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_AMD)
720 {
721 /*
722 * AuthenticAMD - Check for APM support and that TscInvariant is set.
723 *
724 * This test isn't correct with respect to fixed/non-fixed TSC and
725 * older models, but this isn't relevant since the result is currently
726 * only used for making a descision on AMD-V models.
727 */
728 ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX);
729 if (uEAX >= 0x80000007)
730 {
731 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
732
733 ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX);
734 if ( (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR) /* TscInvariant */
735 && pGip->u32Mode == SUPGIPMODE_SYNC_TSC /* no fixed tsc if the gip timer is in async mode */)
736 return true;
737 }
738 }
739 else if (CPUMGetHostCpuVendor(pVM) == CPUMCPUVENDOR_INTEL)
740 {
741 /*
742 * GenuineIntel - Check the model number.
743 *
744 * This test is lacking in the same way and for the same reasons
745 * as the AMD test above.
746 */
747 ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
748 unsigned uModel = (uEAX >> 4) & 0x0f;
749 unsigned uFamily = (uEAX >> 8) & 0x0f;
750 if (uFamily == 0x0f)
751 uFamily += (uEAX >> 20) & 0xff;
752 if (uFamily >= 0x06)
753 uModel += ((uEAX >> 16) & 0x0f) << 4;
754 if ( (uFamily == 0x0f /*P4*/ && uModel >= 0x03)
755 || (uFamily == 0x06 /*P2/P3*/ && uModel >= 0x0e))
756 return true;
757 }
758 }
759 return false;
760}
761
762
763/**
764 * Calibrate the CPU tick.
765 *
766 * @returns Number of ticks per second.
767 */
768static uint64_t tmR3CalibrateTSC(PVM pVM)
769{
770 /*
771 * Use GIP when available present.
772 */
773 uint64_t u64Hz;
774 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
775 if ( pGip
776 && pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC)
777 {
778 unsigned iCpu = pGip->u32Mode != SUPGIPMODE_ASYNC_TSC ? 0 : ASMGetApicId();
779 if (iCpu >= RT_ELEMENTS(pGip->aCPUs))
780 AssertReleaseMsgFailed(("iCpu=%d - the ApicId is too high. send VBox.log and hardware specs!\n", iCpu));
781 else
782 {
783 if (tmR3HasFixedTSC(pVM))
784 /* Sleep a bit to get a more reliable CpuHz value. */
785 RTThreadSleep(32);
786 else
787 {
788 /* Spin for 40ms to try push up the CPU frequency and get a more reliable CpuHz value. */
789 const uint64_t u64 = RTTimeMilliTS();
790 while ((RTTimeMilliTS() - u64) < 40 /*ms*/)
791 /* nothing */;
792 }
793
794 pGip = g_pSUPGlobalInfoPage;
795 if ( pGip
796 && pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC
797 && (u64Hz = pGip->aCPUs[iCpu].u64CpuHz)
798 && u64Hz != ~(uint64_t)0)
799 return u64Hz;
800 }
801 }
802
803 /* call this once first to make sure it's initialized. */
804 RTTimeNanoTS();
805
806 /*
807 * Yield the CPU to increase our chances of getting
808 * a correct value.
809 */
810 RTThreadYield(); /* Try avoid interruptions between TSC and NanoTS samplings. */
811 static const unsigned s_auSleep[5] = { 50, 30, 30, 40, 40 };
812 uint64_t au64Samples[5];
813 unsigned i;
814 for (i = 0; i < RT_ELEMENTS(au64Samples); i++)
815 {
816 RTMSINTERVAL cMillies;
817 int cTries = 5;
818 uint64_t u64Start = ASMReadTSC();
819 uint64_t u64End;
820 uint64_t StartTS = RTTimeNanoTS();
821 uint64_t EndTS;
822 do
823 {
824 RTThreadSleep(s_auSleep[i]);
825 u64End = ASMReadTSC();
826 EndTS = RTTimeNanoTS();
827 cMillies = (RTMSINTERVAL)((EndTS - StartTS + 500000) / 1000000);
828 } while ( cMillies == 0 /* the sleep may be interrupted... */
829 || (cMillies < 20 && --cTries > 0));
830 uint64_t u64Diff = u64End - u64Start;
831
832 au64Samples[i] = (u64Diff * 1000) / cMillies;
833 AssertMsg(cTries > 0, ("cMillies=%d i=%d\n", cMillies, i));
834 }
835
836 /*
837 * Discard the highest and lowest results and calculate the average.
838 */
839 unsigned iHigh = 0;
840 unsigned iLow = 0;
841 for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
842 {
843 if (au64Samples[i] < au64Samples[iLow])
844 iLow = i;
845 if (au64Samples[i] > au64Samples[iHigh])
846 iHigh = i;
847 }
848 au64Samples[iLow] = 0;
849 au64Samples[iHigh] = 0;
850
851 u64Hz = au64Samples[0];
852 for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
853 u64Hz += au64Samples[i];
854 u64Hz /= RT_ELEMENTS(au64Samples) - 2;
855
856 return u64Hz;
857}
858
859
860/**
861 * Finalizes the TM initialization.
862 *
863 * @returns VBox status code.
864 * @param pVM The VM to operate on.
865 */
866VMM_INT_DECL(int) TMR3InitFinalize(PVM pVM)
867{
868 int rc;
869
870 /*
871 * Resolve symbols.
872 */
873 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "tmVirtualNanoTSBad", &pVM->tm.s.VirtualGetRawDataRC.pfnBad);
874 AssertRCReturn(rc, rc);
875 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "tmVirtualNanoTSRediscover", &pVM->tm.s.VirtualGetRawDataRC.pfnRediscover);
876 AssertRCReturn(rc, rc);
877 if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceSync)
878 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLFenceSync", &pVM->tm.s.pfnVirtualGetRawRC);
879 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceAsync)
880 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLFenceAsync", &pVM->tm.s.pfnVirtualGetRawRC);
881 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacySync)
882 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLegacySync", &pVM->tm.s.pfnVirtualGetRawRC);
883 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacyAsync)
884 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLegacyAsync", &pVM->tm.s.pfnVirtualGetRawRC);
885 else
886 AssertFatalFailed();
887 AssertRCReturn(rc, rc);
888
889 rc = PDMR3LdrGetSymbolR0Lazy(pVM, NULL, "tmVirtualNanoTSBad", &pVM->tm.s.VirtualGetRawDataR0.pfnBad);
890 AssertRCReturn(rc, rc);
891 rc = PDMR3LdrGetSymbolR0Lazy(pVM, NULL, "tmVirtualNanoTSRediscover", &pVM->tm.s.VirtualGetRawDataR0.pfnRediscover);
892 AssertRCReturn(rc, rc);
893 if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceSync)
894 rc = PDMR3LdrGetSymbolR0Lazy(pVM, NULL, "RTTimeNanoTSLFenceSync", &pVM->tm.s.pfnVirtualGetRawR0);
895 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceAsync)
896 rc = PDMR3LdrGetSymbolR0Lazy(pVM, NULL, "RTTimeNanoTSLFenceAsync", &pVM->tm.s.pfnVirtualGetRawR0);
897 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacySync)
898 rc = PDMR3LdrGetSymbolR0Lazy(pVM, NULL, "RTTimeNanoTSLegacySync", &pVM->tm.s.pfnVirtualGetRawR0);
899 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacyAsync)
900 rc = PDMR3LdrGetSymbolR0Lazy(pVM, NULL, "RTTimeNanoTSLegacyAsync", &pVM->tm.s.pfnVirtualGetRawR0);
901 else
902 AssertFatalFailed();
903 AssertRCReturn(rc, rc);
904
905#ifndef VBOX_WITHOUT_NS_ACCOUNTING
906 /*
907 * Create a timer for freshing the CPU load stats.
908 */
909 PTMTIMER pTimer;
910 rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, tmR3CpuLoadTimer, NULL, "CPU Load Timer", &pTimer);
911 if (RT_SUCCESS(rc))
912 rc = TMTimerSetMillies(pTimer, 1000);
913#endif
914
915 return rc;
916}
917
918
919/**
920 * Applies relocations to data and code managed by this
921 * component. This function will be called at init and
922 * whenever the VMM need to relocate it self inside the GC.
923 *
924 * @param pVM The VM.
925 * @param offDelta Relocation delta relative to old location.
926 */
927VMM_INT_DECL(void) TMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
928{
929 int rc;
930 LogFlow(("TMR3Relocate\n"));
931
932 pVM->tm.s.pvGIPRC = MMHyperR3ToRC(pVM, pVM->tm.s.pvGIPR3);
933 pVM->tm.s.paTimerQueuesRC = MMHyperR3ToRC(pVM, pVM->tm.s.paTimerQueuesR3);
934 pVM->tm.s.paTimerQueuesR0 = MMHyperR3ToR0(pVM, pVM->tm.s.paTimerQueuesR3);
935
936 pVM->tm.s.VirtualGetRawDataRC.pu64Prev = MMHyperR3ToRC(pVM, (void *)&pVM->tm.s.u64VirtualRawPrev);
937 AssertFatal(pVM->tm.s.VirtualGetRawDataRC.pu64Prev);
938 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "tmVirtualNanoTSBad", &pVM->tm.s.VirtualGetRawDataRC.pfnBad);
939 AssertFatalRC(rc);
940 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "tmVirtualNanoTSRediscover", &pVM->tm.s.VirtualGetRawDataRC.pfnRediscover);
941 AssertFatalRC(rc);
942
943 if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceSync)
944 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLFenceSync", &pVM->tm.s.pfnVirtualGetRawRC);
945 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceAsync)
946 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLFenceAsync", &pVM->tm.s.pfnVirtualGetRawRC);
947 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacySync)
948 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLegacySync", &pVM->tm.s.pfnVirtualGetRawRC);
949 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacyAsync)
950 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLegacyAsync", &pVM->tm.s.pfnVirtualGetRawRC);
951 else
952 AssertFatalFailed();
953 AssertFatalRC(rc);
954
955 /*
956 * Iterate the timers updating the pVMRC pointers.
957 */
958 for (PTMTIMER pTimer = pVM->tm.s.pCreated; pTimer; pTimer = pTimer->pBigNext)
959 {
960 pTimer->pVMRC = pVM->pVMRC;
961 pTimer->pVMR0 = pVM->pVMR0;
962 }
963}
964
965
966/**
967 * Terminates the TM.
968 *
969 * Termination means cleaning up and freeing all resources,
970 * the VM it self is at this point powered off or suspended.
971 *
972 * @returns VBox status code.
973 * @param pVM The VM to operate on.
974 */
975VMM_INT_DECL(int) TMR3Term(PVM pVM)
976{
977 AssertMsg(pVM->tm.s.offVM, ("bad init order!\n"));
978 if (pVM->tm.s.pTimer)
979 {
980 int rc = RTTimerDestroy(pVM->tm.s.pTimer);
981 AssertRC(rc);
982 pVM->tm.s.pTimer = NULL;
983 }
984
985 return VINF_SUCCESS;
986}
987
988
989/**
990 * Terminates the per-VCPU TM.
991 *
992 * Termination means cleaning up and freeing all resources,
993 * the VM it self is at this point powered off or suspended.
994 *
995 * @returns VBox status code.
996 * @param pVM The VM to operate on.
997 */
998VMM_INT_DECL(int) TMR3TermCPU(PVM pVM)
999{
1000 return VINF_SUCCESS;
1001}
1002
1003
1004/**
1005 * The VM is being reset.
1006 *
1007 * For the TM component this means that a rescheduling is preformed,
1008 * the FF is cleared and but without running the queues. We'll have to
1009 * check if this makes sense or not, but it seems like a good idea now....
1010 *
1011 * @param pVM VM handle.
1012 */
1013VMM_INT_DECL(void) TMR3Reset(PVM pVM)
1014{
1015 LogFlow(("TMR3Reset:\n"));
1016 VM_ASSERT_EMT(pVM);
1017 tmTimerLock(pVM);
1018
1019 /*
1020 * Abort any pending catch up.
1021 * This isn't perfect...
1022 */
1023 if (pVM->tm.s.fVirtualSyncCatchUp)
1024 {
1025 const uint64_t offVirtualNow = TMVirtualGetNoCheck(pVM);
1026 const uint64_t offVirtualSyncNow = TMVirtualSyncGetNoCheck(pVM);
1027 if (pVM->tm.s.fVirtualSyncCatchUp)
1028 {
1029 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
1030
1031 const uint64_t offOld = pVM->tm.s.offVirtualSyncGivenUp;
1032 const uint64_t offNew = offVirtualNow - offVirtualSyncNow;
1033 Assert(offOld <= offNew);
1034 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
1035 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSync, offNew);
1036 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
1037 LogRel(("TM: Aborting catch-up attempt on reset with a %'RU64 ns lag on reset; new total: %'RU64 ns\n", offNew - offOld, offNew));
1038 }
1039 }
1040
1041 /*
1042 * Process the queues.
1043 */
1044 for (int i = 0; i < TMCLOCK_MAX; i++)
1045 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[i]);
1046#ifdef VBOX_STRICT
1047 tmTimerQueuesSanityChecks(pVM, "TMR3Reset");
1048#endif
1049
1050 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
1051 VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /** @todo FIXME: this isn't right. */
1052 tmTimerUnlock(pVM);
1053}
1054
1055
1056/**
1057 * Resolve a builtin RC symbol.
1058 * Called by PDM when loading or relocating GC modules.
1059 *
1060 * @returns VBox status
1061 * @param pVM VM Handle.
1062 * @param pszSymbol Symbol to resolve.
1063 * @param pRCPtrValue Where to store the symbol value.
1064 * @remark This has to work before TMR3Relocate() is called.
1065 */
1066VMM_INT_DECL(int) TMR3GetImportRC(PVM pVM, const char *pszSymbol, PRTRCPTR pRCPtrValue)
1067{
1068 if (!strcmp(pszSymbol, "g_pSUPGlobalInfoPage"))
1069 *pRCPtrValue = MMHyperR3ToRC(pVM, &pVM->tm.s.pvGIPRC);
1070 //else if (..)
1071 else
1072 return VERR_SYMBOL_NOT_FOUND;
1073 return VINF_SUCCESS;
1074}
1075
1076
1077/**
1078 * Execute state save operation.
1079 *
1080 * @returns VBox status code.
1081 * @param pVM VM Handle.
1082 * @param pSSM SSM operation handle.
1083 */
1084static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM)
1085{
1086 LogFlow(("tmR3Save:\n"));
1087#ifdef VBOX_STRICT
1088 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1089 {
1090 PVMCPU pVCpu = &pVM->aCpus[i];
1091 Assert(!pVCpu->tm.s.fTSCTicking);
1092 }
1093 Assert(!pVM->tm.s.cVirtualTicking);
1094 Assert(!pVM->tm.s.fVirtualSyncTicking);
1095#endif
1096
1097 /*
1098 * Save the virtual clocks.
1099 */
1100 /* the virtual clock. */
1101 SSMR3PutU64(pSSM, TMCLOCK_FREQ_VIRTUAL);
1102 SSMR3PutU64(pSSM, pVM->tm.s.u64Virtual);
1103
1104 /* the virtual timer synchronous clock. */
1105 SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSync);
1106 SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSync);
1107 SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSyncGivenUp);
1108 SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSyncCatchUpPrev);
1109 SSMR3PutBool(pSSM, pVM->tm.s.fVirtualSyncCatchUp);
1110
1111 /* real time clock */
1112 SSMR3PutU64(pSSM, TMCLOCK_FREQ_REAL);
1113
1114 /* the cpu tick clock. */
1115 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1116 {
1117 PVMCPU pVCpu = &pVM->aCpus[i];
1118 SSMR3PutU64(pSSM, TMCpuTickGet(pVCpu));
1119 }
1120 return SSMR3PutU64(pSSM, pVM->tm.s.cTSCTicksPerSecond);
1121}
1122
1123
1124/**
1125 * Execute state load operation.
1126 *
1127 * @returns VBox status code.
1128 * @param pVM VM Handle.
1129 * @param pSSM SSM operation handle.
1130 * @param uVersion Data layout version.
1131 * @param uPass The data pass.
1132 */
1133static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1134{
1135 LogFlow(("tmR3Load:\n"));
1136
1137 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
1138#ifdef VBOX_STRICT
1139 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1140 {
1141 PVMCPU pVCpu = &pVM->aCpus[i];
1142 Assert(!pVCpu->tm.s.fTSCTicking);
1143 }
1144 Assert(!pVM->tm.s.cVirtualTicking);
1145 Assert(!pVM->tm.s.fVirtualSyncTicking);
1146#endif
1147
1148 /*
1149 * Validate version.
1150 */
1151 if (uVersion != TM_SAVED_STATE_VERSION)
1152 {
1153 AssertMsgFailed(("tmR3Load: Invalid version uVersion=%d!\n", uVersion));
1154 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1155 }
1156
1157 /*
1158 * Load the virtual clock.
1159 */
1160 pVM->tm.s.cVirtualTicking = 0;
1161 /* the virtual clock. */
1162 uint64_t u64Hz;
1163 int rc = SSMR3GetU64(pSSM, &u64Hz);
1164 if (RT_FAILURE(rc))
1165 return rc;
1166 if (u64Hz != TMCLOCK_FREQ_VIRTUAL)
1167 {
1168 AssertMsgFailed(("The virtual clock frequency differs! Saved: %'RU64 Binary: %'RU64\n",
1169 u64Hz, TMCLOCK_FREQ_VIRTUAL));
1170 return VERR_SSM_VIRTUAL_CLOCK_HZ;
1171 }
1172 SSMR3GetU64(pSSM, &pVM->tm.s.u64Virtual);
1173 pVM->tm.s.u64VirtualOffset = 0;
1174
1175 /* the virtual timer synchronous clock. */
1176 pVM->tm.s.fVirtualSyncTicking = false;
1177 uint64_t u64;
1178 SSMR3GetU64(pSSM, &u64);
1179 pVM->tm.s.u64VirtualSync = u64;
1180 SSMR3GetU64(pSSM, &u64);
1181 pVM->tm.s.offVirtualSync = u64;
1182 SSMR3GetU64(pSSM, &u64);
1183 pVM->tm.s.offVirtualSyncGivenUp = u64;
1184 SSMR3GetU64(pSSM, &u64);
1185 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64;
1186 bool f;
1187 SSMR3GetBool(pSSM, &f);
1188 pVM->tm.s.fVirtualSyncCatchUp = f;
1189
1190 /* the real clock */
1191 rc = SSMR3GetU64(pSSM, &u64Hz);
1192 if (RT_FAILURE(rc))
1193 return rc;
1194 if (u64Hz != TMCLOCK_FREQ_REAL)
1195 {
1196 AssertMsgFailed(("The real clock frequency differs! Saved: %'RU64 Binary: %'RU64\n",
1197 u64Hz, TMCLOCK_FREQ_REAL));
1198 return VERR_SSM_VIRTUAL_CLOCK_HZ; /* missleading... */
1199 }
1200
1201 /* the cpu tick clock. */
1202 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1203 {
1204 PVMCPU pVCpu = &pVM->aCpus[i];
1205
1206 pVCpu->tm.s.fTSCTicking = false;
1207 SSMR3GetU64(pSSM, &pVCpu->tm.s.u64TSC);
1208
1209 if (pVM->tm.s.fTSCUseRealTSC)
1210 pVCpu->tm.s.offTSCRawSrc = 0; /** @todo TSC restore stuff and HWACC. */
1211 }
1212
1213 rc = SSMR3GetU64(pSSM, &u64Hz);
1214 if (RT_FAILURE(rc))
1215 return rc;
1216 if (!pVM->tm.s.fTSCUseRealTSC)
1217 pVM->tm.s.cTSCTicksPerSecond = u64Hz;
1218
1219 LogRel(("TM: cTSCTicksPerSecond=%#RX64 (%'RU64) fTSCVirtualized=%RTbool fTSCUseRealTSC=%RTbool (state load)\n",
1220 pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.fTSCVirtualized, pVM->tm.s.fTSCUseRealTSC));
1221
1222 /*
1223 * Make sure timers get rescheduled immediately.
1224 */
1225 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
1226 VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
1227
1228 return VINF_SUCCESS;
1229}
1230
1231
1232/**
1233 * Internal TMR3TimerCreate worker.
1234 *
1235 * @returns VBox status code.
1236 * @param pVM The VM handle.
1237 * @param enmClock The timer clock.
1238 * @param pszDesc The timer description.
1239 * @param ppTimer Where to store the timer pointer on success.
1240 */
1241static int tmr3TimerCreate(PVM pVM, TMCLOCK enmClock, const char *pszDesc, PPTMTIMERR3 ppTimer)
1242{
1243 VM_ASSERT_EMT(pVM);
1244
1245 /*
1246 * Allocate the timer.
1247 */
1248 PTMTIMERR3 pTimer = NULL;
1249 if (pVM->tm.s.pFree && VM_IS_EMT(pVM))
1250 {
1251 pTimer = pVM->tm.s.pFree;
1252 pVM->tm.s.pFree = pTimer->pBigNext;
1253 Log3(("TM: Recycling timer %p, new free head %p.\n", pTimer, pTimer->pBigNext));
1254 }
1255
1256 if (!pTimer)
1257 {
1258 int rc = MMHyperAlloc(pVM, sizeof(*pTimer), 0, MM_TAG_TM, (void **)&pTimer);
1259 if (RT_FAILURE(rc))
1260 return rc;
1261 Log3(("TM: Allocated new timer %p\n", pTimer));
1262 }
1263
1264 /*
1265 * Initialize it.
1266 */
1267 pTimer->u64Expire = 0;
1268 pTimer->enmClock = enmClock;
1269 pTimer->pVMR3 = pVM;
1270 pTimer->pVMR0 = pVM->pVMR0;
1271 pTimer->pVMRC = pVM->pVMRC;
1272 pTimer->enmState = TMTIMERSTATE_STOPPED;
1273 pTimer->offScheduleNext = 0;
1274 pTimer->offNext = 0;
1275 pTimer->offPrev = 0;
1276 pTimer->pvUser = NULL;
1277 pTimer->pCritSect = NULL;
1278 pTimer->pszDesc = pszDesc;
1279
1280 /* insert into the list of created timers. */
1281 tmTimerLock(pVM);
1282 pTimer->pBigPrev = NULL;
1283 pTimer->pBigNext = pVM->tm.s.pCreated;
1284 pVM->tm.s.pCreated = pTimer;
1285 if (pTimer->pBigNext)
1286 pTimer->pBigNext->pBigPrev = pTimer;
1287#ifdef VBOX_STRICT
1288 tmTimerQueuesSanityChecks(pVM, "tmR3TimerCreate");
1289#endif
1290 tmTimerUnlock(pVM);
1291
1292 *ppTimer = pTimer;
1293 return VINF_SUCCESS;
1294}
1295
1296
1297/**
1298 * Creates a device timer.
1299 *
1300 * @returns VBox status.
1301 * @param pVM The VM to create the timer in.
1302 * @param pDevIns Device instance.
1303 * @param enmClock The clock to use on this timer.
1304 * @param pfnCallback Callback function.
1305 * @param pvUser The user argument to the callback.
1306 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1307 * @param pszDesc Pointer to description string which must stay around
1308 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1309 * @param ppTimer Where to store the timer on success.
1310 */
1311VMM_INT_DECL(int) TMR3TimerCreateDevice(PVM pVM, PPDMDEVINS pDevIns, TMCLOCK enmClock, PFNTMTIMERDEV pfnCallback, void *pvUser, uint32_t fFlags, const char *pszDesc, PPTMTIMERR3 ppTimer)
1312{
1313 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT)), VERR_INVALID_PARAMETER);
1314
1315 /*
1316 * Allocate and init stuff.
1317 */
1318 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
1319 if (RT_SUCCESS(rc))
1320 {
1321 (*ppTimer)->enmType = TMTIMERTYPE_DEV;
1322 (*ppTimer)->u.Dev.pfnTimer = pfnCallback;
1323 (*ppTimer)->u.Dev.pDevIns = pDevIns;
1324 (*ppTimer)->pvUser = pvUser;
1325 if (fFlags & TMTIMER_FLAGS_DEFAULT_CRIT_SECT)
1326 {
1327 if (pDevIns->pCritSectR3)
1328 (*ppTimer)->pCritSect = pDevIns->pCritSectR3;
1329 else
1330 (*ppTimer)->pCritSect = IOMR3GetCritSect(pVM);
1331 }
1332 Log(("TM: Created device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
1333 }
1334
1335 return rc;
1336}
1337
1338
1339/**
1340 * Creates a driver timer.
1341 *
1342 * @returns VBox status.
1343 * @param pVM The VM to create the timer in.
1344 * @param pDrvIns Driver instance.
1345 * @param enmClock The clock to use on this timer.
1346 * @param pfnCallback Callback function.
1347 * @param pvUser The user argument to the callback.
1348 * @param fFlags Timer creation flags, see grp_tm_timer_flags.
1349 * @param pszDesc Pointer to description string which must stay around
1350 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1351 * @param ppTimer Where to store the timer on success.
1352 */
1353VMM_INT_DECL(int) TMR3TimerCreateDriver(PVM pVM, PPDMDRVINS pDrvIns, TMCLOCK enmClock, PFNTMTIMERDRV pfnCallback, void *pvUser,
1354 uint32_t fFlags, const char *pszDesc, PPTMTIMERR3 ppTimer)
1355{
1356 AssertReturn(!(fFlags & ~(TMTIMER_FLAGS_NO_CRIT_SECT)), VERR_INVALID_PARAMETER);
1357
1358 /*
1359 * Allocate and init stuff.
1360 */
1361 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
1362 if (RT_SUCCESS(rc))
1363 {
1364 (*ppTimer)->enmType = TMTIMERTYPE_DRV;
1365 (*ppTimer)->u.Drv.pfnTimer = pfnCallback;
1366 (*ppTimer)->u.Drv.pDrvIns = pDrvIns;
1367 (*ppTimer)->pvUser = pvUser;
1368 Log(("TM: Created device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
1369 }
1370
1371 return rc;
1372}
1373
1374
1375/**
1376 * Creates an internal timer.
1377 *
1378 * @returns VBox status.
1379 * @param pVM The VM to create the timer in.
1380 * @param enmClock The clock to use on this timer.
1381 * @param pfnCallback Callback function.
1382 * @param pvUser User argument to be passed to the callback.
1383 * @param pszDesc Pointer to description string which must stay around
1384 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1385 * @param ppTimer Where to store the timer on success.
1386 */
1387VMMR3DECL(int) TMR3TimerCreateInternal(PVM pVM, TMCLOCK enmClock, PFNTMTIMERINT pfnCallback, void *pvUser, const char *pszDesc, PPTMTIMERR3 ppTimer)
1388{
1389 /*
1390 * Allocate and init stuff.
1391 */
1392 PTMTIMER pTimer;
1393 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, &pTimer);
1394 if (RT_SUCCESS(rc))
1395 {
1396 pTimer->enmType = TMTIMERTYPE_INTERNAL;
1397 pTimer->u.Internal.pfnTimer = pfnCallback;
1398 pTimer->pvUser = pvUser;
1399 *ppTimer = pTimer;
1400 Log(("TM: Created internal timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszDesc));
1401 }
1402
1403 return rc;
1404}
1405
1406/**
1407 * Creates an external timer.
1408 *
1409 * @returns Timer handle on success.
1410 * @returns NULL on failure.
1411 * @param pVM The VM to create the timer in.
1412 * @param enmClock The clock to use on this timer.
1413 * @param pfnCallback Callback function.
1414 * @param pvUser User argument.
1415 * @param pszDesc Pointer to description string which must stay around
1416 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1417 */
1418VMMR3DECL(PTMTIMERR3) TMR3TimerCreateExternal(PVM pVM, TMCLOCK enmClock, PFNTMTIMEREXT pfnCallback, void *pvUser, const char *pszDesc)
1419{
1420 /*
1421 * Allocate and init stuff.
1422 */
1423 PTMTIMERR3 pTimer;
1424 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, &pTimer);
1425 if (RT_SUCCESS(rc))
1426 {
1427 pTimer->enmType = TMTIMERTYPE_EXTERNAL;
1428 pTimer->u.External.pfnTimer = pfnCallback;
1429 pTimer->pvUser = pvUser;
1430 Log(("TM: Created external timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszDesc));
1431 return pTimer;
1432 }
1433
1434 return NULL;
1435}
1436
1437
1438/**
1439 * Destroy a timer
1440 *
1441 * @returns VBox status.
1442 * @param pTimer Timer handle as returned by one of the create functions.
1443 */
1444VMMR3DECL(int) TMR3TimerDestroy(PTMTIMER pTimer)
1445{
1446 /*
1447 * Be extra careful here.
1448 */
1449 if (!pTimer)
1450 return VINF_SUCCESS;
1451 AssertPtr(pTimer);
1452 Assert((unsigned)pTimer->enmClock < (unsigned)TMCLOCK_MAX);
1453
1454 PVM pVM = pTimer->CTX_SUFF(pVM);
1455 PTMTIMERQUEUE pQueue = &pVM->tm.s.CTX_SUFF(paTimerQueues)[pTimer->enmClock];
1456 bool fActive = false;
1457 bool fPending = false;
1458
1459 AssertMsg( !pTimer->pCritSect
1460 || VMR3GetState(pVM) != VMSTATE_RUNNING
1461 || PDMCritSectIsOwner(pTimer->pCritSect), ("%s\n", pTimer->pszDesc));
1462
1463 /*
1464 * The rest of the game happens behind the lock, just
1465 * like create does. All the work is done here.
1466 */
1467 tmTimerLock(pVM);
1468 for (int cRetries = 1000;; cRetries--)
1469 {
1470 /*
1471 * Change to the DESTROY state.
1472 */
1473 TMTIMERSTATE enmState = pTimer->enmState;
1474 TMTIMERSTATE enmNewState = enmState;
1475 Log2(("TMTimerDestroy: %p:{.enmState=%s, .pszDesc='%s'} cRetries=%d\n",
1476 pTimer, tmTimerState(enmState), R3STRING(pTimer->pszDesc), cRetries));
1477 switch (enmState)
1478 {
1479 case TMTIMERSTATE_STOPPED:
1480 case TMTIMERSTATE_EXPIRED_DELIVER:
1481 break;
1482
1483 case TMTIMERSTATE_ACTIVE:
1484 fActive = true;
1485 break;
1486
1487 case TMTIMERSTATE_PENDING_STOP:
1488 case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
1489 case TMTIMERSTATE_PENDING_RESCHEDULE:
1490 fActive = true;
1491 fPending = true;
1492 break;
1493
1494 case TMTIMERSTATE_PENDING_SCHEDULE:
1495 fPending = true;
1496 break;
1497
1498 /*
1499 * This shouldn't happen as the caller should make sure there are no races.
1500 */
1501 case TMTIMERSTATE_EXPIRED_GET_UNLINK:
1502 case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
1503 case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
1504 AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->pszDesc));
1505 tmTimerUnlock(pVM);
1506 if (!RTThreadYield())
1507 RTThreadSleep(1);
1508 AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->pszDesc),
1509 VERR_TM_UNSTABLE_STATE);
1510 tmTimerLock(pVM);
1511 continue;
1512
1513 /*
1514 * Invalid states.
1515 */
1516 case TMTIMERSTATE_FREE:
1517 case TMTIMERSTATE_DESTROY:
1518 tmTimerUnlock(pVM);
1519 AssertLogRelMsgFailedReturn(("pTimer=%p %s\n", pTimer, tmTimerState(enmState)), VERR_TM_INVALID_STATE);
1520
1521 default:
1522 AssertMsgFailed(("Unknown timer state %d (%s)\n", enmState, R3STRING(pTimer->pszDesc)));
1523 tmTimerUnlock(pVM);
1524 return VERR_TM_UNKNOWN_STATE;
1525 }
1526
1527 /*
1528 * Try switch to the destroy state.
1529 * This should always succeed as the caller should make sure there are no race.
1530 */
1531 bool fRc;
1532 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_DESTROY, enmState, fRc);
1533 if (fRc)
1534 break;
1535 AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->pszDesc));
1536 tmTimerUnlock(pVM);
1537 AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->pszDesc),
1538 VERR_TM_UNSTABLE_STATE);
1539 tmTimerLock(pVM);
1540 }
1541
1542 /*
1543 * Unlink from the active list.
1544 */
1545 if (fActive)
1546 {
1547 const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
1548 const PTMTIMER pNext = TMTIMER_GET_NEXT(pTimer);
1549 if (pPrev)
1550 TMTIMER_SET_NEXT(pPrev, pNext);
1551 else
1552 {
1553 TMTIMER_SET_HEAD(pQueue, pNext);
1554 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
1555 }
1556 if (pNext)
1557 TMTIMER_SET_PREV(pNext, pPrev);
1558 pTimer->offNext = 0;
1559 pTimer->offPrev = 0;
1560 }
1561
1562 /*
1563 * Unlink from the schedule list by running it.
1564 */
1565 if (fPending)
1566 {
1567 Log3(("TMR3TimerDestroy: tmTimerQueueSchedule\n"));
1568 STAM_PROFILE_START(&pVM->tm.s.CTX_SUFF_Z(StatScheduleOne), a);
1569 Assert(pQueue->offSchedule);
1570 tmTimerQueueSchedule(pVM, pQueue);
1571 }
1572
1573 /*
1574 * Read to move the timer from the created list and onto the free list.
1575 */
1576 Assert(!pTimer->offNext); Assert(!pTimer->offPrev); Assert(!pTimer->offScheduleNext);
1577
1578 /* unlink from created list */
1579 if (pTimer->pBigPrev)
1580 pTimer->pBigPrev->pBigNext = pTimer->pBigNext;
1581 else
1582 pVM->tm.s.pCreated = pTimer->pBigNext;
1583 if (pTimer->pBigNext)
1584 pTimer->pBigNext->pBigPrev = pTimer->pBigPrev;
1585 pTimer->pBigNext = 0;
1586 pTimer->pBigPrev = 0;
1587
1588 /* free */
1589 Log2(("TM: Inserting %p into the free list ahead of %p!\n", pTimer, pVM->tm.s.pFree));
1590 TM_SET_STATE(pTimer, TMTIMERSTATE_FREE);
1591 pTimer->pBigNext = pVM->tm.s.pFree;
1592 pVM->tm.s.pFree = pTimer;
1593
1594#ifdef VBOX_STRICT
1595 tmTimerQueuesSanityChecks(pVM, "TMR3TimerDestroy");
1596#endif
1597 tmTimerUnlock(pVM);
1598 return VINF_SUCCESS;
1599}
1600
1601
1602/**
1603 * Destroy all timers owned by a device.
1604 *
1605 * @returns VBox status.
1606 * @param pVM VM handle.
1607 * @param pDevIns Device which timers should be destroyed.
1608 */
1609VMM_INT_DECL(int) TMR3TimerDestroyDevice(PVM pVM, PPDMDEVINS pDevIns)
1610{
1611 LogFlow(("TMR3TimerDestroyDevice: pDevIns=%p\n", pDevIns));
1612 if (!pDevIns)
1613 return VERR_INVALID_PARAMETER;
1614
1615 tmTimerLock(pVM);
1616 PTMTIMER pCur = pVM->tm.s.pCreated;
1617 while (pCur)
1618 {
1619 PTMTIMER pDestroy = pCur;
1620 pCur = pDestroy->pBigNext;
1621 if ( pDestroy->enmType == TMTIMERTYPE_DEV
1622 && pDestroy->u.Dev.pDevIns == pDevIns)
1623 {
1624 int rc = TMR3TimerDestroy(pDestroy);
1625 AssertRC(rc);
1626 }
1627 }
1628 tmTimerUnlock(pVM);
1629
1630 LogFlow(("TMR3TimerDestroyDevice: returns VINF_SUCCESS\n"));
1631 return VINF_SUCCESS;
1632}
1633
1634
1635/**
1636 * Destroy all timers owned by a driver.
1637 *
1638 * @returns VBox status.
1639 * @param pVM VM handle.
1640 * @param pDrvIns Driver which timers should be destroyed.
1641 */
1642VMM_INT_DECL(int) TMR3TimerDestroyDriver(PVM pVM, PPDMDRVINS pDrvIns)
1643{
1644 LogFlow(("TMR3TimerDestroyDriver: pDrvIns=%p\n", pDrvIns));
1645 if (!pDrvIns)
1646 return VERR_INVALID_PARAMETER;
1647
1648 tmTimerLock(pVM);
1649 PTMTIMER pCur = pVM->tm.s.pCreated;
1650 while (pCur)
1651 {
1652 PTMTIMER pDestroy = pCur;
1653 pCur = pDestroy->pBigNext;
1654 if ( pDestroy->enmType == TMTIMERTYPE_DRV
1655 && pDestroy->u.Drv.pDrvIns == pDrvIns)
1656 {
1657 int rc = TMR3TimerDestroy(pDestroy);
1658 AssertRC(rc);
1659 }
1660 }
1661 tmTimerUnlock(pVM);
1662
1663 LogFlow(("TMR3TimerDestroyDriver: returns VINF_SUCCESS\n"));
1664 return VINF_SUCCESS;
1665}
1666
1667
1668/**
1669 * Internal function for getting the clock time.
1670 *
1671 * @returns clock time.
1672 * @param pVM The VM handle.
1673 * @param enmClock The clock.
1674 */
1675DECLINLINE(uint64_t) tmClock(PVM pVM, TMCLOCK enmClock)
1676{
1677 switch (enmClock)
1678 {
1679 case TMCLOCK_VIRTUAL: return TMVirtualGet(pVM);
1680 case TMCLOCK_VIRTUAL_SYNC: return TMVirtualSyncGet(pVM);
1681 case TMCLOCK_REAL: return TMRealGet(pVM);
1682 case TMCLOCK_TSC: return TMCpuTickGet(&pVM->aCpus[0] /* just take VCPU 0 */);
1683 default:
1684 AssertMsgFailed(("enmClock=%d\n", enmClock));
1685 return ~(uint64_t)0;
1686 }
1687}
1688
1689
1690/**
1691 * Checks if the sync queue has one or more expired timers.
1692 *
1693 * @returns true / false.
1694 *
1695 * @param pVM The VM handle.
1696 * @param enmClock The queue.
1697 */
1698DECLINLINE(bool) tmR3HasExpiredTimer(PVM pVM, TMCLOCK enmClock)
1699{
1700 const uint64_t u64Expire = pVM->tm.s.CTX_SUFF(paTimerQueues)[enmClock].u64Expire;
1701 return u64Expire != INT64_MAX && u64Expire <= tmClock(pVM, enmClock);
1702}
1703
1704
1705/**
1706 * Checks for expired timers in all the queues.
1707 *
1708 * @returns true / false.
1709 * @param pVM The VM handle.
1710 */
1711DECLINLINE(bool) tmR3AnyExpiredTimers(PVM pVM)
1712{
1713 /*
1714 * Combine the time calculation for the first two since we're not on EMT
1715 * TMVirtualSyncGet only permits EMT.
1716 */
1717 uint64_t u64Now = TMVirtualGetNoCheck(pVM);
1718 if (pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL].u64Expire <= u64Now)
1719 return true;
1720 u64Now = pVM->tm.s.fVirtualSyncTicking
1721 ? u64Now - pVM->tm.s.offVirtualSync
1722 : pVM->tm.s.u64VirtualSync;
1723 if (pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL_SYNC].u64Expire <= u64Now)
1724 return true;
1725
1726 /*
1727 * The remaining timers.
1728 */
1729 if (tmR3HasExpiredTimer(pVM, TMCLOCK_REAL))
1730 return true;
1731 if (tmR3HasExpiredTimer(pVM, TMCLOCK_TSC))
1732 return true;
1733 return false;
1734}
1735
1736
1737/**
1738 * Schedulation timer callback.
1739 *
1740 * @param pTimer Timer handle.
1741 * @param pvUser VM handle.
1742 * @thread Timer thread.
1743 *
1744 * @remark We cannot do the scheduling and queues running from a timer handler
1745 * since it's not executing in EMT, and even if it was it would be async
1746 * and we wouldn't know the state of the affairs.
1747 * So, we'll just raise the timer FF and force any REM execution to exit.
1748 */
1749static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t /*iTick*/)
1750{
1751 PVM pVM = (PVM)pvUser;
1752 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
1753
1754 AssertCompile(TMCLOCK_MAX == 4);
1755#ifdef DEBUG_Sander /* very annoying, keep it private. */
1756 if (VMCPU_FF_ISSET(pVCpuDst, VMCPU_FF_TIMER))
1757 Log(("tmR3TimerCallback: timer event still pending!!\n"));
1758#endif
1759 if ( !VMCPU_FF_ISSET(pVCpuDst, VMCPU_FF_TIMER)
1760 && ( pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule /** @todo FIXME - reconsider offSchedule as a reason for running the timer queues. */
1761 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].offSchedule
1762 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].offSchedule
1763 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].offSchedule
1764 || tmR3AnyExpiredTimers(pVM)
1765 )
1766 && !VMCPU_FF_ISSET(pVCpuDst, VMCPU_FF_TIMER)
1767 && !pVM->tm.s.fRunningQueues
1768 )
1769 {
1770 Log5(("TM(%u): FF: 0 -> 1\n", __LINE__));
1771 VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
1772 REMR3NotifyTimerPending(pVM, pVCpuDst);
1773 VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM /** @todo | VMNOTIFYFF_FLAGS_POKE ?*/);
1774 STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallbackSetFF);
1775 }
1776}
1777
1778
1779/**
1780 * Schedules and runs any pending timers.
1781 *
1782 * This is normally called from a forced action handler in EMT.
1783 *
1784 * @param pVM The VM to run the timers for.
1785 *
1786 * @thread EMT (actually EMT0, but we fend off the others)
1787 */
1788VMMR3DECL(void) TMR3TimerQueuesDo(PVM pVM)
1789{
1790 /*
1791 * Only the dedicated timer EMT should do stuff here.
1792 * (fRunningQueues is only used as an indicator.)
1793 */
1794 Assert(pVM->tm.s.idTimerCpu < pVM->cCpus);
1795 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
1796 if (VMMGetCpu(pVM) != pVCpuDst)
1797 {
1798 Assert(pVM->cCpus > 1);
1799 return;
1800 }
1801 STAM_PROFILE_START(&pVM->tm.s.StatDoQueues, a);
1802 Log2(("TMR3TimerQueuesDo:\n"));
1803 Assert(!pVM->tm.s.fRunningQueues);
1804 ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, true);
1805 tmTimerLock(pVM);
1806
1807 /*
1808 * Process the queues.
1809 */
1810 AssertCompile(TMCLOCK_MAX == 4);
1811
1812 /* TMCLOCK_VIRTUAL_SYNC (see also TMR3VirtualSyncFF) */
1813 STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], s1);
1814 tmVirtualSyncLock(pVM);
1815 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
1816 VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /* Clear the FF once we started working for real. */
1817
1818 if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule)
1819 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC]);
1820 tmR3TimerQueueRunVirtualSync(pVM);
1821 if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
1822 VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
1823
1824 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
1825 tmVirtualSyncUnlock(pVM);
1826 STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], s1);
1827
1828 /* TMCLOCK_VIRTUAL */
1829 STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], s2);
1830 if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].offSchedule)
1831 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL]);
1832 tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL]);
1833 STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], s2);
1834
1835 /* TMCLOCK_TSC */
1836 Assert(!pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].offActive); /* not used */
1837
1838 /* TMCLOCK_REAL */
1839 STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], s3);
1840 if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].offSchedule)
1841 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL]);
1842 tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL]);
1843 STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], s3);
1844
1845#ifdef VBOX_STRICT
1846 /* check that we didn't screwup. */
1847 tmTimerQueuesSanityChecks(pVM, "TMR3TimerQueuesDo");
1848#endif
1849
1850 /* done */
1851 Log2(("TMR3TimerQueuesDo: returns void\n"));
1852 ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, false);
1853 tmTimerUnlock(pVM);
1854 STAM_PROFILE_STOP(&pVM->tm.s.StatDoQueues, a);
1855}
1856
1857//RT_C_DECLS_BEGIN
1858//int iomLock(PVM pVM);
1859//void iomUnlock(PVM pVM);
1860//RT_C_DECLS_END
1861
1862
1863/**
1864 * Schedules and runs any pending times in the specified queue.
1865 *
1866 * This is normally called from a forced action handler in EMT.
1867 *
1868 * @param pVM The VM to run the timers for.
1869 * @param pQueue The queue to run.
1870 */
1871static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue)
1872{
1873 VM_ASSERT_EMT(pVM);
1874
1875 /*
1876 * Run timers.
1877 *
1878 * We check the clock once and run all timers which are ACTIVE
1879 * and have an expire time less or equal to the time we read.
1880 *
1881 * N.B. A generic unlink must be applied since other threads
1882 * are allowed to mess with any active timer at any time.
1883 * However, we only allow EMT to handle EXPIRED_PENDING
1884 * timers, thus enabling the timer handler function to
1885 * arm the timer again.
1886 */
1887 PTMTIMER pNext = TMTIMER_GET_HEAD(pQueue);
1888 if (!pNext)
1889 return;
1890 const uint64_t u64Now = tmClock(pVM, pQueue->enmClock);
1891 while (pNext && pNext->u64Expire <= u64Now)
1892 {
1893 PTMTIMER pTimer = pNext;
1894 pNext = TMTIMER_GET_NEXT(pTimer);
1895 PPDMCRITSECT pCritSect = pTimer->pCritSect;
1896 if (pCritSect)
1897 PDMCritSectEnter(pCritSect, VERR_INTERNAL_ERROR);
1898 Log2(("tmR3TimerQueueRun: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .pszDesc=%s}\n",
1899 pTimer, tmTimerState(pTimer->enmState), pTimer->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->pszDesc));
1900 bool fRc;
1901 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_GET_UNLINK, TMTIMERSTATE_ACTIVE, fRc);
1902 if (fRc)
1903 {
1904 Assert(!pTimer->offScheduleNext); /* this can trigger falsely */
1905
1906 /* unlink */
1907 const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
1908 if (pPrev)
1909 TMTIMER_SET_NEXT(pPrev, pNext);
1910 else
1911 {
1912 TMTIMER_SET_HEAD(pQueue, pNext);
1913 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
1914 }
1915 if (pNext)
1916 TMTIMER_SET_PREV(pNext, pPrev);
1917 pTimer->offNext = 0;
1918 pTimer->offPrev = 0;
1919
1920 /* fire */
1921 TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER);
1922 switch (pTimer->enmType)
1923 {
1924 case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer, pTimer->pvUser); break;
1925 case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer, pTimer->pvUser); break;
1926 case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer, pTimer->pvUser); break;
1927 case TMTIMERTYPE_EXTERNAL: pTimer->u.External.pfnTimer(pTimer->pvUser); break;
1928 default:
1929 AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->pszDesc));
1930 break;
1931 }
1932
1933 /* change the state if it wasn't changed already in the handler. */
1934 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc);
1935 Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
1936 }
1937 if (pCritSect)
1938 PDMCritSectLeave(pCritSect);
1939 } /* run loop */
1940}
1941
1942
1943/**
1944 * Schedules and runs any pending times in the timer queue for the
1945 * synchronous virtual clock.
1946 *
1947 * This scheduling is a bit different from the other queues as it need
1948 * to implement the special requirements of the timer synchronous virtual
1949 * clock, thus this 2nd queue run funcion.
1950 *
1951 * @param pVM The VM to run the timers for.
1952 *
1953 * @remarks The caller must own both the TM/EMT and the Virtual Sync locks.
1954 */
1955static void tmR3TimerQueueRunVirtualSync(PVM pVM)
1956{
1957 PTMTIMERQUEUE const pQueue = &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC];
1958 VM_ASSERT_EMT(pVM);
1959
1960 /*
1961 * Any timers?
1962 */
1963 PTMTIMER pNext = TMTIMER_GET_HEAD(pQueue);
1964 if (RT_UNLIKELY(!pNext))
1965 {
1966 Assert(pVM->tm.s.fVirtualSyncTicking || !pVM->tm.s.cVirtualTicking);
1967 return;
1968 }
1969 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRun);
1970
1971 /*
1972 * Calculate the time frame for which we will dispatch timers.
1973 *
1974 * We use a time frame ranging from the current sync time (which is most likely the
1975 * same as the head timer) and some configurable period (100000ns) up towards the
1976 * current virtual time. This period might also need to be restricted by the catch-up
1977 * rate so frequent calls to this function won't accelerate the time too much, however
1978 * this will be implemented at a later point if neccessary.
1979 *
1980 * Without this frame we would 1) having to run timers much more frequently
1981 * and 2) lag behind at a steady rate.
1982 */
1983 const uint64_t u64VirtualNow = TMVirtualGetNoCheck(pVM);
1984 uint64_t const offSyncGivenUp = pVM->tm.s.offVirtualSyncGivenUp;
1985 uint64_t u64Now;
1986 if (!pVM->tm.s.fVirtualSyncTicking)
1987 {
1988 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStoppedAlready);
1989 u64Now = pVM->tm.s.u64VirtualSync;
1990#ifdef DEBUG_bird
1991 Assert(u64Now <= pNext->u64Expire);
1992#endif
1993 }
1994 else
1995 {
1996 /* Calc 'now'. */
1997 bool fStopCatchup = false;
1998 bool fUpdateStuff = false;
1999 uint64_t off = pVM->tm.s.offVirtualSync;
2000 if (pVM->tm.s.fVirtualSyncCatchUp)
2001 {
2002 uint64_t u64Delta = u64VirtualNow - pVM->tm.s.u64VirtualSyncCatchUpPrev;
2003 if (RT_LIKELY(!(u64Delta >> 32)))
2004 {
2005 uint64_t u64Sub = ASMMultU64ByU32DivByU32(u64Delta, pVM->tm.s.u32VirtualSyncCatchUpPercentage, 100);
2006 if (off > u64Sub + offSyncGivenUp)
2007 {
2008 off -= u64Sub;
2009 Log4(("TM: %'RU64/-%'8RU64: sub %'RU64 [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow - off, off - offSyncGivenUp, u64Sub));
2010 }
2011 else
2012 {
2013 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2014 fStopCatchup = true;
2015 off = offSyncGivenUp;
2016 }
2017 fUpdateStuff = true;
2018 }
2019 }
2020 u64Now = u64VirtualNow - off;
2021
2022 /* Check if stopped by expired timer. */
2023 uint64_t u64Expire = pNext->u64Expire;
2024 if (u64Now >= pNext->u64Expire)
2025 {
2026 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStop);
2027 u64Now = pNext->u64Expire;
2028 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, u64Now);
2029 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
2030 Log4(("TM: %'RU64/-%'8RU64: exp tmr [tmR3TimerQueueRunVirtualSync]\n", u64Now, u64VirtualNow - u64Now - offSyncGivenUp));
2031 }
2032 else if (fUpdateStuff)
2033 {
2034 ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, off);
2035 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSyncCatchUpPrev, u64VirtualNow);
2036 if (fStopCatchup)
2037 {
2038 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2039 Log4(("TM: %'RU64/0: caught up [tmR3TimerQueueRunVirtualSync]\n", u64VirtualNow));
2040 }
2041 }
2042 }
2043
2044 /* calc end of frame. */
2045 uint64_t u64Max = u64Now + pVM->tm.s.u32VirtualSyncScheduleSlack;
2046 if (u64Max > u64VirtualNow - offSyncGivenUp)
2047 u64Max = u64VirtualNow - offSyncGivenUp;
2048
2049 /* assert sanity */
2050#ifdef DEBUG_bird
2051 Assert(u64Now <= u64VirtualNow - offSyncGivenUp);
2052 Assert(u64Max <= u64VirtualNow - offSyncGivenUp);
2053 Assert(u64Now <= u64Max);
2054 Assert(offSyncGivenUp == pVM->tm.s.offVirtualSyncGivenUp);
2055#endif
2056
2057 /*
2058 * Process the expired timers moving the clock along as we progress.
2059 */
2060#ifdef DEBUG_bird
2061#ifdef VBOX_STRICT
2062 uint64_t u64Prev = u64Now; NOREF(u64Prev);
2063#endif
2064#endif
2065 while (pNext && pNext->u64Expire <= u64Max)
2066 {
2067 PTMTIMER pTimer = pNext;
2068 pNext = TMTIMER_GET_NEXT(pTimer);
2069 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2070 if (pCritSect)
2071 PDMCritSectEnter(pCritSect, VERR_INTERNAL_ERROR);
2072 Log2(("tmR3TimerQueueRun: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .pszDesc=%s}\n",
2073 pTimer, tmTimerState(pTimer->enmState), pTimer->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->pszDesc));
2074 bool fRc;
2075 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_GET_UNLINK, TMTIMERSTATE_ACTIVE, fRc);
2076 if (fRc)
2077 {
2078 /* unlink */
2079 const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
2080 if (pPrev)
2081 TMTIMER_SET_NEXT(pPrev, pNext);
2082 else
2083 {
2084 TMTIMER_SET_HEAD(pQueue, pNext);
2085 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
2086 }
2087 if (pNext)
2088 TMTIMER_SET_PREV(pNext, pPrev);
2089 pTimer->offNext = 0;
2090 pTimer->offPrev = 0;
2091
2092 /* advance the clock - don't permit timers to be out of order or armed in the 'past'. */
2093#ifdef DEBUG_bird
2094#ifdef VBOX_STRICT
2095 AssertMsg(pTimer->u64Expire >= u64Prev, ("%'RU64 < %'RU64 %s\n", pTimer->u64Expire, u64Prev, pTimer->pszDesc));
2096 u64Prev = pTimer->u64Expire;
2097#endif
2098#endif
2099 ASMAtomicWriteU64(&pVM->tm.s.u64VirtualSync, pTimer->u64Expire);
2100 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, false);
2101
2102 /* fire */
2103 TM_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED_DELIVER);
2104 switch (pTimer->enmType)
2105 {
2106 case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer, pTimer->pvUser); break;
2107 case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer, pTimer->pvUser); break;
2108 case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer, pTimer->pvUser); break;
2109 case TMTIMERTYPE_EXTERNAL: pTimer->u.External.pfnTimer(pTimer->pvUser); break;
2110 default:
2111 AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->pszDesc));
2112 break;
2113 }
2114
2115 /* change the state if it wasn't changed already in the handler. */
2116 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED_DELIVER, fRc);
2117 Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
2118 }
2119 if (pCritSect)
2120 PDMCritSectLeave(pCritSect);
2121 } /* run loop */
2122
2123 /*
2124 * Restart the clock if it was stopped to serve any timers,
2125 * and start/adjust catch-up if necessary.
2126 */
2127 if ( !pVM->tm.s.fVirtualSyncTicking
2128 && pVM->tm.s.cVirtualTicking)
2129 {
2130 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunRestart);
2131
2132 /* calc the slack we've handed out. */
2133 const uint64_t u64VirtualNow2 = TMVirtualGetNoCheck(pVM);
2134 Assert(u64VirtualNow2 >= u64VirtualNow);
2135#ifdef DEBUG_bird
2136 AssertMsg(pVM->tm.s.u64VirtualSync >= u64Now, ("%'RU64 < %'RU64\n", pVM->tm.s.u64VirtualSync, u64Now));
2137#endif
2138 const uint64_t offSlack = pVM->tm.s.u64VirtualSync - u64Now;
2139 STAM_STATS({
2140 if (offSlack)
2141 {
2142 PSTAMPROFILE p = &pVM->tm.s.StatVirtualSyncRunSlack;
2143 p->cPeriods++;
2144 p->cTicks += offSlack;
2145 if (p->cTicksMax < offSlack) p->cTicksMax = offSlack;
2146 if (p->cTicksMin > offSlack) p->cTicksMin = offSlack;
2147 }
2148 });
2149
2150 /* Let the time run a little bit while we were busy running timers(?). */
2151 uint64_t u64Elapsed;
2152#define MAX_ELAPSED 30000U /* ns */
2153 if (offSlack > MAX_ELAPSED)
2154 u64Elapsed = 0;
2155 else
2156 {
2157 u64Elapsed = u64VirtualNow2 - u64VirtualNow;
2158 if (u64Elapsed > MAX_ELAPSED)
2159 u64Elapsed = MAX_ELAPSED;
2160 u64Elapsed = u64Elapsed > offSlack ? u64Elapsed - offSlack : 0;
2161 }
2162#undef MAX_ELAPSED
2163
2164 /* Calc the current offset. */
2165 uint64_t offNew = u64VirtualNow2 - pVM->tm.s.u64VirtualSync - u64Elapsed;
2166 Assert(!(offNew & RT_BIT_64(63)));
2167 uint64_t offLag = offNew - pVM->tm.s.offVirtualSyncGivenUp;
2168 Assert(!(offLag & RT_BIT_64(63)));
2169
2170 /*
2171 * Deal with starting, adjusting and stopping catchup.
2172 */
2173 if (pVM->tm.s.fVirtualSyncCatchUp)
2174 {
2175 if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpStopThreshold)
2176 {
2177 /* stop */
2178 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2179 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2180 Log4(("TM: %'RU64/-%'8RU64: caught up [pt]\n", u64VirtualNow2 - offNew, offLag));
2181 }
2182 else if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
2183 {
2184 /* adjust */
2185 unsigned i = 0;
2186 while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
2187 && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
2188 i++;
2189 if (pVM->tm.s.u32VirtualSyncCatchUpPercentage < pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage)
2190 {
2191 STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupAdjust[i]);
2192 ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
2193 Log4(("TM: %'RU64/%'8RU64: adj %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2194 }
2195 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64VirtualNow2;
2196 }
2197 else
2198 {
2199 /* give up */
2200 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUp);
2201 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2202 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
2203 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2204 Log4(("TM: %'RU64/%'8RU64: give up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2205 LogRel(("TM: Giving up catch-up attempt at a %'RU64 ns lag; new total: %'RU64 ns\n", offLag, offNew));
2206 }
2207 }
2208 else if (offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[0].u64Start)
2209 {
2210 if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
2211 {
2212 /* start */
2213 STAM_PROFILE_ADV_START(&pVM->tm.s.StatVirtualSyncCatchup, c);
2214 unsigned i = 0;
2215 while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
2216 && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
2217 i++;
2218 STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupInitial[i]);
2219 ASMAtomicWriteU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
2220 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncCatchUp, true);
2221 Log4(("TM: %'RU64/%'8RU64: catch-up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2222 }
2223 else
2224 {
2225 /* don't bother */
2226 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting);
2227 ASMAtomicWriteU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
2228 Log4(("TM: %'RU64/%'8RU64: give up\n", u64VirtualNow2 - offNew, offLag));
2229 LogRel(("TM: Not bothering to attempt catching up a %'RU64 ns lag; new total: %'RU64\n", offLag, offNew));
2230 }
2231 }
2232
2233 /*
2234 * Update the offset and restart the clock.
2235 */
2236 Assert(!(offNew & RT_BIT_64(63)));
2237 ASMAtomicWriteU64(&pVM->tm.s.offVirtualSync, offNew);
2238 ASMAtomicWriteBool(&pVM->tm.s.fVirtualSyncTicking, true);
2239 }
2240}
2241
2242
2243/**
2244 * Deals with stopped Virtual Sync clock.
2245 *
2246 * This is called by the forced action flag handling code in EM when it
2247 * encounters the VM_FF_TM_VIRTUAL_SYNC flag. It is called by all VCPUs and they
2248 * will block on the VirtualSyncLock until the pending timers has been executed
2249 * and the clock restarted.
2250 *
2251 * @param pVM The VM to run the timers for.
2252 * @param pVCpu The virtual CPU we're running at.
2253 *
2254 * @thread EMTs
2255 */
2256VMM_INT_DECL(void) TMR3VirtualSyncFF(PVM pVM, PVMCPU pVCpu)
2257{
2258 Log2(("TMR3VirtualSyncFF:\n"));
2259
2260 /*
2261 * The EMT doing the timers is diverted to them.
2262 */
2263 if (pVCpu->idCpu == pVM->tm.s.idTimerCpu)
2264 TMR3TimerQueuesDo(pVM);
2265 /*
2266 * The other EMTs will block on the virtual sync lock and the first owner
2267 * will run the queue and thus restarting the clock.
2268 *
2269 * Note! This is very suboptimal code wrt to resuming execution when there
2270 * are more than two Virtual CPUs, since they will all have to enter
2271 * the critical section one by one. But it's a very simple solution
2272 * which will have to do the job for now.
2273 */
2274 else
2275 {
2276 STAM_PROFILE_START(&pVM->tm.s.StatVirtualSyncFF, a);
2277 tmVirtualSyncLock(pVM);
2278 if (pVM->tm.s.fVirtualSyncTicking)
2279 {
2280 STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
2281 tmVirtualSyncUnlock(pVM);
2282 Log2(("TMR3VirtualSyncFF: ticking\n"));
2283 }
2284 else
2285 {
2286 tmVirtualSyncUnlock(pVM);
2287
2288 /* try run it. */
2289 tmTimerLock(pVM);
2290 tmVirtualSyncLock(pVM);
2291 if (pVM->tm.s.fVirtualSyncTicking)
2292 Log2(("TMR3VirtualSyncFF: ticking (2)\n"));
2293 else
2294 {
2295 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
2296 Log2(("TMR3VirtualSyncFF: running queue\n"));
2297
2298 if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule)
2299 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC]);
2300 tmR3TimerQueueRunVirtualSync(pVM);
2301 if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
2302 VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
2303
2304 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
2305 }
2306 STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
2307 tmVirtualSyncUnlock(pVM);
2308 tmTimerUnlock(pVM);
2309 }
2310 }
2311}
2312
2313
2314/** @name Saved state values
2315 * @{ */
2316#define TMTIMERSTATE_SAVED_PENDING_STOP 4
2317#define TMTIMERSTATE_SAVED_PENDING_SCHEDULE 7
2318/** @} */
2319
2320
2321/**
2322 * Saves the state of a timer to a saved state.
2323 *
2324 * @returns VBox status.
2325 * @param pTimer Timer to save.
2326 * @param pSSM Save State Manager handle.
2327 */
2328VMMR3DECL(int) TMR3TimerSave(PTMTIMERR3 pTimer, PSSMHANDLE pSSM)
2329{
2330 LogFlow(("TMR3TimerSave: %p:{enmState=%s, .pszDesc={%s}} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->pszDesc, pSSM));
2331 switch (pTimer->enmState)
2332 {
2333 case TMTIMERSTATE_STOPPED:
2334 case TMTIMERSTATE_PENDING_STOP:
2335 case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
2336 return SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_STOP);
2337
2338 case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
2339 case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
2340 AssertMsgFailed(("u64Expire is being updated! (%s)\n", pTimer->pszDesc));
2341 if (!RTThreadYield())
2342 RTThreadSleep(1);
2343 /* fall thru */
2344 case TMTIMERSTATE_ACTIVE:
2345 case TMTIMERSTATE_PENDING_SCHEDULE:
2346 case TMTIMERSTATE_PENDING_RESCHEDULE:
2347 SSMR3PutU8(pSSM, TMTIMERSTATE_SAVED_PENDING_SCHEDULE);
2348 return SSMR3PutU64(pSSM, pTimer->u64Expire);
2349
2350 case TMTIMERSTATE_EXPIRED_GET_UNLINK:
2351 case TMTIMERSTATE_EXPIRED_DELIVER:
2352 case TMTIMERSTATE_DESTROY:
2353 case TMTIMERSTATE_FREE:
2354 AssertMsgFailed(("Invalid timer state %d %s (%s)\n", pTimer->enmState, tmTimerState(pTimer->enmState), pTimer->pszDesc));
2355 return SSMR3HandleSetStatus(pSSM, VERR_TM_INVALID_STATE);
2356 }
2357
2358 AssertMsgFailed(("Unknown timer state %d (%s)\n", pTimer->enmState, pTimer->pszDesc));
2359 return SSMR3HandleSetStatus(pSSM, VERR_TM_UNKNOWN_STATE);
2360}
2361
2362
2363/**
2364 * Loads the state of a timer from a saved state.
2365 *
2366 * @returns VBox status.
2367 * @param pTimer Timer to restore.
2368 * @param pSSM Save State Manager handle.
2369 */
2370VMMR3DECL(int) TMR3TimerLoad(PTMTIMERR3 pTimer, PSSMHANDLE pSSM)
2371{
2372 Assert(pTimer); Assert(pSSM); VM_ASSERT_EMT(pTimer->pVMR3);
2373 LogFlow(("TMR3TimerLoad: %p:{enmState=%s, .pszDesc={%s}} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->pszDesc, pSSM));
2374
2375 /*
2376 * Load the state and validate it.
2377 */
2378 uint8_t u8State;
2379 int rc = SSMR3GetU8(pSSM, &u8State);
2380 if (RT_FAILURE(rc))
2381 return rc;
2382#if 1 /* Workaround for accidental state shift in r47786 (2009-05-26 19:12:12). */ /** @todo remove this in a few weeks! */
2383 if ( u8State == TMTIMERSTATE_SAVED_PENDING_STOP + 1
2384 || u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE + 1)
2385 u8State--;
2386#endif
2387 if ( u8State != TMTIMERSTATE_SAVED_PENDING_STOP
2388 && u8State != TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
2389 {
2390 AssertLogRelMsgFailed(("u8State=%d\n", u8State));
2391 return SSMR3HandleSetStatus(pSSM, VERR_TM_LOAD_STATE);
2392 }
2393
2394 /* Enter the critical section to make TMTimerSet/Stop happy. */
2395 PPDMCRITSECT pCritSect = pTimer->pCritSect;
2396 if (pCritSect)
2397 PDMCritSectEnter(pCritSect, VERR_INTERNAL_ERROR);
2398
2399 if (u8State == TMTIMERSTATE_SAVED_PENDING_SCHEDULE)
2400 {
2401 /*
2402 * Load the expire time.
2403 */
2404 uint64_t u64Expire;
2405 rc = SSMR3GetU64(pSSM, &u64Expire);
2406 if (RT_FAILURE(rc))
2407 return rc;
2408
2409 /*
2410 * Set it.
2411 */
2412 Log(("u8State=%d u64Expire=%llu\n", u8State, u64Expire));
2413 rc = TMTimerSet(pTimer, u64Expire);
2414 }
2415 else
2416 {
2417 /*
2418 * Stop it.
2419 */
2420 Log(("u8State=%d\n", u8State));
2421 rc = TMTimerStop(pTimer);
2422 }
2423
2424 if (pCritSect)
2425 PDMCritSectLeave(pCritSect);
2426
2427 /*
2428 * On failure set SSM status.
2429 */
2430 if (RT_FAILURE(rc))
2431 rc = SSMR3HandleSetStatus(pSSM, rc);
2432 return rc;
2433}
2434
2435
2436/**
2437 * Associates a critical section with a timer.
2438 *
2439 * The critical section will be entered prior to doing the timer call back, thus
2440 * avoiding potential races between the timer thread and other threads trying to
2441 * stop or adjust the timer expiration while it's being delivered. The timer
2442 * thread will leave the critical section when the timer callback returns.
2443 *
2444 * In strict builds, ownership of the critical section will be asserted by
2445 * TMTimerSet, TMTimerStop, TMTimerGetExpire and TMTimerDestroy (when called at
2446 * runtime).
2447 *
2448 * @retval VINF_SUCCESS on success.
2449 * @retval VERR_INVALID_HANDLE if the timer handle is NULL or invalid
2450 * (asserted).
2451 * @retval VERR_INVALID_PARAMETER if pCritSect is NULL or has an invalid magic
2452 * (asserted).
2453 * @retval VERR_ALREADY_EXISTS if a critical section was already associated
2454 * with the timer (asserted).
2455 * @retval VERR_INVALID_STATE if the timer isn't stopped.
2456 *
2457 * @param pTimer The timer handle.
2458 * @param pCritSect The critical section. The caller must make sure this
2459 * is around for the life time of the timer.
2460 *
2461 * @thread Any, but the caller is responsible for making sure the timer is not
2462 * active.
2463 */
2464VMMR3DECL(int) TMR3TimerSetCritSect(PTMTIMERR3 pTimer, PPDMCRITSECT pCritSect)
2465{
2466 AssertPtrReturn(pTimer, VERR_INVALID_HANDLE);
2467 AssertPtrReturn(pCritSect, VERR_INVALID_PARAMETER);
2468 const char *pszName = PDMR3CritSectName(pCritSect); /* exploited for validation */
2469 AssertReturn(pszName, VERR_INVALID_PARAMETER);
2470 AssertReturn(!pTimer->pCritSect, VERR_ALREADY_EXISTS);
2471 AssertReturn(pTimer->enmState == TMTIMERSTATE_STOPPED, VERR_INVALID_STATE);
2472 LogFlow(("pTimer=%p (%s) pCritSect=%p (%s)\n", pTimer, pTimer->pszDesc, pCritSect, pszName));
2473
2474 pTimer->pCritSect = pCritSect;
2475 return VINF_SUCCESS;
2476}
2477
2478
2479/**
2480 * Get the real world UTC time adjusted for VM lag.
2481 *
2482 * @returns pTime.
2483 * @param pVM The VM instance.
2484 * @param pTime Where to store the time.
2485 */
2486VMM_INT_DECL(PRTTIMESPEC) TMR3UtcNow(PVM pVM, PRTTIMESPEC pTime)
2487{
2488 RTTimeNow(pTime);
2489 RTTimeSpecSubNano(pTime, ASMAtomicReadU64(&pVM->tm.s.offVirtualSync) - ASMAtomicReadU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp));
2490 RTTimeSpecAddNano(pTime, pVM->tm.s.offUTC);
2491 return pTime;
2492}
2493
2494
2495/**
2496 * Pauses all clocks except TMCLOCK_REAL.
2497 *
2498 * @returns VBox status code, all errors are asserted.
2499 * @param pVM The VM handle.
2500 * @param pVCpu The virtual CPU handle.
2501 * @thread EMT corrsponding to the virtual CPU handle.
2502 */
2503VMMR3DECL(int) TMR3NotifySuspend(PVM pVM, PVMCPU pVCpu)
2504{
2505 VMCPU_ASSERT_EMT(pVCpu);
2506
2507 /*
2508 * The shared virtual clock (includes virtual sync which is tied to it).
2509 */
2510 tmTimerLock(pVM); /* Paranoia: Exploiting the timer lock here. */
2511 int rc = tmVirtualPauseLocked(pVM);
2512 tmTimerUnlock(pVM);
2513 if (RT_FAILURE(rc))
2514 return rc;
2515
2516 /*
2517 * Pause the TSC last since it is normally linked to the virtual
2518 * sync clock, so the above code may actually stop both clock.
2519 */
2520 rc = tmCpuTickPause(pVM, pVCpu);
2521 if (RT_FAILURE(rc))
2522 return rc;
2523
2524#ifndef VBOX_WITHOUT_NS_ACCOUNTING
2525 /*
2526 * Update cNsTotal.
2527 */
2528 uint32_t uGen = ASMAtomicIncU32(&pVCpu->tm.s.uTimesGen); Assert(uGen & 1);
2529 pVCpu->tm.s.cNsTotal = RTTimeNanoTS() - pVCpu->tm.s.u64NsTsStartTotal;
2530 pVCpu->tm.s.cNsOther = pVCpu->tm.s.cNsTotal - pVCpu->tm.s.cNsExecuting - pVCpu->tm.s.cNsHalted;
2531 ASMAtomicWriteU32(&pVCpu->tm.s.uTimesGen, (uGen | 1) + 1);
2532#endif
2533
2534 return VINF_SUCCESS;
2535}
2536
2537
2538/**
2539 * Resumes all clocks except TMCLOCK_REAL.
2540 *
2541 * @returns VBox status code, all errors are asserted.
2542 * @param pVM The VM handle.
2543 * @param pVCpu The virtual CPU handle.
2544 * @thread EMT corrsponding to the virtual CPU handle.
2545 */
2546VMMR3DECL(int) TMR3NotifyResume(PVM pVM, PVMCPU pVCpu)
2547{
2548 VMCPU_ASSERT_EMT(pVCpu);
2549 int rc;
2550
2551#ifndef VBOX_WITHOUT_NS_ACCOUNTING
2552 /*
2553 * Set u64NsTsStartTotal. There is no need to back this out if either of
2554 * the two calls below fail.
2555 */
2556 pVCpu->tm.s.u64NsTsStartTotal = RTTimeNanoTS() - pVCpu->tm.s.cNsTotal;
2557#endif
2558
2559 /*
2560 * Resume the TSC first since it is normally linked to the virtual sync
2561 * clock, so it may actually not be resumed until we've executed the code
2562 * below.
2563 */
2564 if (!pVM->tm.s.fTSCTiedToExecution)
2565 {
2566 rc = tmCpuTickResume(pVM, pVCpu);
2567 if (RT_FAILURE(rc))
2568 return rc;
2569 }
2570
2571 /*
2572 * The shared virtual clock (includes virtual sync which is tied to it).
2573 */
2574 tmTimerLock(pVM); /* Paranoia: Exploiting the timer lock here. */
2575 rc = tmVirtualResumeLocked(pVM);
2576 tmTimerUnlock(pVM);
2577
2578 return rc;
2579}
2580
2581
2582/**
2583 * Sets the warp drive percent of the virtual time.
2584 *
2585 * @returns VBox status code.
2586 * @param pVM The VM handle.
2587 * @param u32Percent The new percentage. 100 means normal operation.
2588 *
2589 * @todo Move to Ring-3!
2590 */
2591VMMDECL(int) TMR3SetWarpDrive(PVM pVM, uint32_t u32Percent)
2592{
2593 return VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)tmR3SetWarpDrive, 2, pVM, u32Percent);
2594}
2595
2596
2597/**
2598 * EMT worker for TMR3SetWarpDrive.
2599 *
2600 * @returns VBox status code.
2601 * @param pVM The VM handle.
2602 * @param u32Percent See TMR3SetWarpDrive().
2603 * @internal
2604 */
2605static DECLCALLBACK(int) tmR3SetWarpDrive(PVM pVM, uint32_t u32Percent)
2606{
2607 PVMCPU pVCpu = VMMGetCpu(pVM);
2608
2609 /*
2610 * Validate it.
2611 */
2612 AssertMsgReturn(u32Percent >= 2 && u32Percent <= 20000,
2613 ("%RX32 is not between 2 and 20000 (inclusive).\n", u32Percent),
2614 VERR_INVALID_PARAMETER);
2615
2616/** @todo This isn't a feature specific to virtual time, move the variables to
2617 * TM level and make it affect TMR3UCTNow as well! */
2618
2619 /*
2620 * If the time is running we'll have to pause it before we can change
2621 * the warp drive settings.
2622 */
2623 tmTimerLock(pVM); /* Paranoia: Exploiting the timer lock here. */
2624 bool fPaused = !!pVM->tm.s.cVirtualTicking;
2625 if (fPaused) /** @todo this isn't really working, but wtf. */
2626 TMR3NotifySuspend(pVM, pVCpu);
2627
2628 pVM->tm.s.u32VirtualWarpDrivePercentage = u32Percent;
2629 pVM->tm.s.fVirtualWarpDrive = u32Percent != 100;
2630 LogRel(("TM: u32VirtualWarpDrivePercentage=%RI32 fVirtualWarpDrive=%RTbool\n",
2631 pVM->tm.s.u32VirtualWarpDrivePercentage, pVM->tm.s.fVirtualWarpDrive));
2632
2633 if (fPaused)
2634 TMR3NotifyResume(pVM, pVCpu);
2635 tmTimerUnlock(pVM);
2636 return VINF_SUCCESS;
2637}
2638
2639
2640/**
2641 * Gets the performance information for one virtual CPU as seen by the VMM.
2642 *
2643 * The returned times covers the period where the VM is running and will be
2644 * reset when restoring a previous VM state (at least for the time being).
2645 *
2646 * @retval VINF_SUCCESS on success.
2647 * @retval VERR_NOT_IMPLEMENTED if not compiled in.
2648 * @retval VERR_INVALID_STATE if the VM handle is bad.
2649 * @retval VERR_INVALID_PARAMETER if idCpu is out of range.
2650 *
2651 * @param pVM The VM handle.
2652 * @param idCpu The ID of the virtual CPU which times to get.
2653 * @param pcNsTotal Where to store the total run time (nano seconds) of
2654 * the CPU, i.e. the sum of the three other returns.
2655 * Optional.
2656 * @param pcNsExecuting Where to store the time (nano seconds) spent
2657 * executing guest code. Optional.
2658 * @param pcNsHalted Where to store the time (nano seconds) spent
2659 * halted. Optional
2660 * @param pcNsOther Where to store the time (nano seconds) spent
2661 * preempted by the host scheduler, on virtualization
2662 * overhead and on other tasks.
2663 */
2664VMMR3DECL(int) TMR3GetCpuLoadTimes(PVM pVM, VMCPUID idCpu, uint64_t *pcNsTotal, uint64_t *pcNsExecuting,
2665 uint64_t *pcNsHalted, uint64_t *pcNsOther)
2666{
2667 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_STATE);
2668 AssertReturn(idCpu < pVM->cCpus, VERR_INVALID_PARAMETER);
2669
2670#ifndef VBOX_WITHOUT_NS_ACCOUNTING
2671 /*
2672 * Get a stable result set.
2673 * This should be way quicker than an EMT request.
2674 */
2675 PVMCPU pVCpu = &pVM->aCpus[idCpu];
2676 uint32_t uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
2677 uint64_t cNsTotal = pVCpu->tm.s.cNsTotal;
2678 uint64_t cNsExecuting = pVCpu->tm.s.cNsExecuting;
2679 uint64_t cNsHalted = pVCpu->tm.s.cNsHalted;
2680 uint64_t cNsOther = pVCpu->tm.s.cNsOther;
2681 while ( (uTimesGen & 1) /* update in progress */
2682 || uTimesGen != ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen))
2683 {
2684 RTThreadYield();
2685 uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
2686 cNsTotal = pVCpu->tm.s.cNsTotal;
2687 cNsExecuting = pVCpu->tm.s.cNsExecuting;
2688 cNsHalted = pVCpu->tm.s.cNsHalted;
2689 cNsOther = pVCpu->tm.s.cNsOther;
2690 }
2691
2692 /*
2693 * Fill in the return values.
2694 */
2695 if (pcNsTotal)
2696 *pcNsTotal = cNsTotal;
2697 if (pcNsExecuting)
2698 *pcNsExecuting = cNsExecuting;
2699 if (pcNsHalted)
2700 *pcNsHalted = cNsHalted;
2701 if (pcNsOther)
2702 *pcNsOther = cNsOther;
2703
2704 return VINF_SUCCESS;
2705
2706#else
2707 return VERR_NOT_IMPLEMENTED;
2708#endif
2709}
2710
2711#ifndef VBOX_WITHOUT_NS_ACCOUNTING
2712
2713/**
2714 * Helper for tmR3CpuLoadTimer.
2715 * @returns
2716 * @param pState The state to update.
2717 * @param cNsTotalDelta Total time.
2718 * @param cNsExecutingDelta Time executing.
2719 * @param cNsHaltedDelta Time halted.
2720 */
2721DECLINLINE(void) tmR3CpuLoadTimerMakeUpdate(PTMCPULOADSTATE pState,
2722 uint64_t cNsTotal,
2723 uint64_t cNsExecuting,
2724 uint64_t cNsHalted)
2725{
2726 /* Calc deltas */
2727 uint64_t cNsTotalDelta = cNsTotal - pState->cNsPrevTotal;
2728 pState->cNsPrevTotal = cNsTotal;
2729
2730 uint64_t cNsExecutingDelta = cNsExecuting - pState->cNsPrevExecuting;
2731 pState->cNsPrevExecuting = cNsExecuting;
2732
2733 uint64_t cNsHaltedDelta = cNsHalted - pState->cNsPrevHalted;
2734 pState->cNsPrevHalted = cNsHalted;
2735
2736 /* Calc pcts. */
2737 if (!cNsTotalDelta)
2738 {
2739 pState->cPctExecuting = 0;
2740 pState->cPctHalted = 100;
2741 pState->cPctOther = 0;
2742 }
2743 else if (cNsTotalDelta < UINT64_MAX / 4)
2744 {
2745 pState->cPctExecuting = (uint8_t)(cNsExecutingDelta * 100 / cNsTotalDelta);
2746 pState->cPctHalted = (uint8_t)(cNsHaltedDelta * 100 / cNsTotalDelta);
2747 pState->cPctOther = (uint8_t)((cNsTotalDelta - cNsExecutingDelta - cNsHaltedDelta) * 100 / cNsTotalDelta);
2748 }
2749 else
2750 {
2751 pState->cPctExecuting = 0;
2752 pState->cPctHalted = 100;
2753 pState->cPctOther = 0;
2754 }
2755}
2756
2757
2758/**
2759 * Timer callback that calculates the CPU load since the last time it was
2760 * called.
2761 *
2762 * @param pVM The VM handle.
2763 * @param pTimer The timer.
2764 * @param pvUser NULL, unused.
2765 */
2766static DECLCALLBACK(void) tmR3CpuLoadTimer(PVM pVM, PTMTIMER pTimer, void *pvUser)
2767{
2768 /*
2769 * Re-arm the timer first.
2770 */
2771 int rc = TMTimerSetMillies(pTimer, 1000);
2772 AssertLogRelRC(rc);
2773 NOREF(pvUser);
2774
2775 /*
2776 * Update the values for each CPU.
2777 */
2778 uint64_t cNsTotalAll = 0;
2779 uint64_t cNsExecutingAll = 0;
2780 uint64_t cNsHaltedAll = 0;
2781 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2782 {
2783 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2784
2785 /* Try get a stable data set. */
2786 uint32_t cTries = 3;
2787 uint32_t uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
2788 uint64_t cNsTotal = pVCpu->tm.s.cNsTotal;
2789 uint64_t cNsExecuting = pVCpu->tm.s.cNsExecuting;
2790 uint64_t cNsHalted = pVCpu->tm.s.cNsHalted;
2791 while (RT_UNLIKELY( (uTimesGen & 1) /* update in progress */
2792 || uTimesGen != ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen)))
2793 {
2794 if (!--cTries)
2795 break;
2796 ASMNopPause();
2797 uTimesGen = ASMAtomicReadU32(&pVCpu->tm.s.uTimesGen);
2798 cNsTotal = pVCpu->tm.s.cNsTotal;
2799 cNsExecuting = pVCpu->tm.s.cNsExecuting;
2800 cNsHalted = pVCpu->tm.s.cNsHalted;
2801 }
2802
2803 /* Totals */
2804 cNsTotalAll += cNsTotal;
2805 cNsExecutingAll += cNsExecuting;
2806 cNsHaltedAll += cNsHalted;
2807
2808 /* Calc the PCTs and update the state. */
2809 tmR3CpuLoadTimerMakeUpdate(&pVCpu->tm.s.CpuLoad, cNsTotal, cNsExecuting, cNsHalted);
2810 }
2811
2812 /*
2813 * Update the value for all the CPUs.
2814 */
2815 tmR3CpuLoadTimerMakeUpdate(&pVM->tm.s.CpuLoad, cNsTotalAll, cNsExecutingAll, cNsHaltedAll);
2816
2817 /** @todo Try add 1, 5 and 15 min load stats. */
2818
2819}
2820
2821#endif /* !VBOX_WITHOUT_NS_ACCOUNTING */
2822
2823
2824/**
2825 * Display all timers.
2826 *
2827 * @param pVM VM Handle.
2828 * @param pHlp The info helpers.
2829 * @param pszArgs Arguments, ignored.
2830 */
2831static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2832{
2833 NOREF(pszArgs);
2834 pHlp->pfnPrintf(pHlp,
2835 "Timers (pVM=%p)\n"
2836 "%.*s %.*s %.*s %.*s Clock %-18s %-18s %-25s Description\n",
2837 pVM,
2838 sizeof(RTR3PTR) * 2, "pTimerR3 ",
2839 sizeof(int32_t) * 2, "offNext ",
2840 sizeof(int32_t) * 2, "offPrev ",
2841 sizeof(int32_t) * 2, "offSched ",
2842 "Time",
2843 "Expire",
2844 "State");
2845 tmTimerLock(pVM);
2846 for (PTMTIMERR3 pTimer = pVM->tm.s.pCreated; pTimer; pTimer = pTimer->pBigNext)
2847 {
2848 pHlp->pfnPrintf(pHlp,
2849 "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %-25s %s\n",
2850 pTimer,
2851 pTimer->offNext,
2852 pTimer->offPrev,
2853 pTimer->offScheduleNext,
2854 pTimer->enmClock == TMCLOCK_REAL ? "Real " : "Virt ",
2855 TMTimerGet(pTimer),
2856 pTimer->u64Expire,
2857 tmTimerState(pTimer->enmState),
2858 pTimer->pszDesc);
2859 }
2860 tmTimerUnlock(pVM);
2861}
2862
2863
2864/**
2865 * Display all active timers.
2866 *
2867 * @param pVM VM Handle.
2868 * @param pHlp The info helpers.
2869 * @param pszArgs Arguments, ignored.
2870 */
2871static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2872{
2873 NOREF(pszArgs);
2874 pHlp->pfnPrintf(pHlp,
2875 "Active Timers (pVM=%p)\n"
2876 "%.*s %.*s %.*s %.*s Clock %-18s %-18s %-25s Description\n",
2877 pVM,
2878 sizeof(RTR3PTR) * 2, "pTimerR3 ",
2879 sizeof(int32_t) * 2, "offNext ",
2880 sizeof(int32_t) * 2, "offPrev ",
2881 sizeof(int32_t) * 2, "offSched ",
2882 "Time",
2883 "Expire",
2884 "State");
2885 for (unsigned iQueue = 0; iQueue < TMCLOCK_MAX; iQueue++)
2886 {
2887 tmTimerLock(pVM);
2888 for (PTMTIMERR3 pTimer = TMTIMER_GET_HEAD(&pVM->tm.s.paTimerQueuesR3[iQueue]);
2889 pTimer;
2890 pTimer = TMTIMER_GET_NEXT(pTimer))
2891 {
2892 pHlp->pfnPrintf(pHlp,
2893 "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %-25s %s\n",
2894 pTimer,
2895 pTimer->offNext,
2896 pTimer->offPrev,
2897 pTimer->offScheduleNext,
2898 pTimer->enmClock == TMCLOCK_REAL
2899 ? "Real "
2900 : pTimer->enmClock == TMCLOCK_VIRTUAL
2901 ? "Virt "
2902 : pTimer->enmClock == TMCLOCK_VIRTUAL_SYNC
2903 ? "VrSy "
2904 : "TSC ",
2905 TMTimerGet(pTimer),
2906 pTimer->u64Expire,
2907 tmTimerState(pTimer->enmState),
2908 pTimer->pszDesc);
2909 }
2910 tmTimerUnlock(pVM);
2911 }
2912}
2913
2914
2915/**
2916 * Display all clocks.
2917 *
2918 * @param pVM VM Handle.
2919 * @param pHlp The info helpers.
2920 * @param pszArgs Arguments, ignored.
2921 */
2922static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2923{
2924 NOREF(pszArgs);
2925
2926 /*
2927 * Read the times first to avoid more than necessary time variation.
2928 */
2929 const uint64_t u64Virtual = TMVirtualGet(pVM);
2930 const uint64_t u64VirtualSync = TMVirtualSyncGet(pVM);
2931 const uint64_t u64Real = TMRealGet(pVM);
2932
2933 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2934 {
2935 PVMCPU pVCpu = &pVM->aCpus[i];
2936 uint64_t u64TSC = TMCpuTickGet(pVCpu);
2937
2938 /*
2939 * TSC
2940 */
2941 pHlp->pfnPrintf(pHlp,
2942 "Cpu Tick: %18RU64 (%#016RX64) %RU64Hz %s%s",
2943 u64TSC, u64TSC, TMCpuTicksPerSecond(pVM),
2944 pVCpu->tm.s.fTSCTicking ? "ticking" : "paused",
2945 pVM->tm.s.fTSCVirtualized ? " - virtualized" : "");
2946 if (pVM->tm.s.fTSCUseRealTSC)
2947 {
2948 pHlp->pfnPrintf(pHlp, " - real tsc");
2949 if (pVCpu->tm.s.offTSCRawSrc)
2950 pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVCpu->tm.s.offTSCRawSrc);
2951 }
2952 else
2953 pHlp->pfnPrintf(pHlp, " - virtual clock");
2954 pHlp->pfnPrintf(pHlp, "\n");
2955 }
2956
2957 /*
2958 * virtual
2959 */
2960 pHlp->pfnPrintf(pHlp,
2961 " Virtual: %18RU64 (%#016RX64) %RU64Hz %s",
2962 u64Virtual, u64Virtual, TMVirtualGetFreq(pVM),
2963 pVM->tm.s.cVirtualTicking ? "ticking" : "paused");
2964 if (pVM->tm.s.fVirtualWarpDrive)
2965 pHlp->pfnPrintf(pHlp, " WarpDrive %RU32 %%", pVM->tm.s.u32VirtualWarpDrivePercentage);
2966 pHlp->pfnPrintf(pHlp, "\n");
2967
2968 /*
2969 * virtual sync
2970 */
2971 pHlp->pfnPrintf(pHlp,
2972 "VirtSync: %18RU64 (%#016RX64) %s%s",
2973 u64VirtualSync, u64VirtualSync,
2974 pVM->tm.s.fVirtualSyncTicking ? "ticking" : "paused",
2975 pVM->tm.s.fVirtualSyncCatchUp ? " - catchup" : "");
2976 if (pVM->tm.s.offVirtualSync)
2977 {
2978 pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVM->tm.s.offVirtualSync);
2979 if (pVM->tm.s.u32VirtualSyncCatchUpPercentage)
2980 pHlp->pfnPrintf(pHlp, " catch-up rate %u %%", pVM->tm.s.u32VirtualSyncCatchUpPercentage);
2981 }
2982 pHlp->pfnPrintf(pHlp, "\n");
2983
2984 /*
2985 * real
2986 */
2987 pHlp->pfnPrintf(pHlp,
2988 " Real: %18RU64 (%#016RX64) %RU64Hz\n",
2989 u64Real, u64Real, TMRealGetFreq(pVM));
2990}
2991
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette