VirtualBox

source: vbox/trunk/src/VBox/VMM/VMM.cpp@ 21086

Last change on this file since 21086 was 20875, checked in by vboxsync, 16 years ago

VMM: Renamed almost all references to CallHost to CallRing3.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 73.9 KB
Line 
1/* $Id: VMM.cpp 20875 2009-06-24 02:29:17Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22//#define NO_SUPCALLR0VMM
23
24/** @page pg_vmm VMM - The Virtual Machine Monitor
25 *
26 * The VMM component is two things at the moment, it's a component doing a few
27 * management and routing tasks, and it's the whole virtual machine monitor
28 * thing. For hysterical reasons, it is not doing all the management that one
29 * would expect, this is instead done by @ref pg_vm. We'll address this
30 * misdesign eventually.
31 *
32 * @see grp_vmm, grp_vm
33 *
34 *
35 * @section sec_vmmstate VMM State
36 *
37 * @image html VM_Statechart_Diagram.gif
38 *
39 * To be written.
40 *
41 *
42 * @subsection subsec_vmm_init VMM Initialization
43 *
44 * To be written.
45 *
46 *
47 * @subsection subsec_vmm_term VMM Termination
48 *
49 * To be written.
50 *
51 */
52
53/*******************************************************************************
54* Header Files *
55*******************************************************************************/
56#define LOG_GROUP LOG_GROUP_VMM
57#include <VBox/vmm.h>
58#include <VBox/vmapi.h>
59#include <VBox/pgm.h>
60#include <VBox/cfgm.h>
61#include <VBox/pdmqueue.h>
62#include <VBox/pdmcritsect.h>
63#include <VBox/pdmapi.h>
64#include <VBox/cpum.h>
65#include <VBox/mm.h>
66#include <VBox/iom.h>
67#include <VBox/trpm.h>
68#include <VBox/selm.h>
69#include <VBox/em.h>
70#include <VBox/sup.h>
71#include <VBox/dbgf.h>
72#include <VBox/csam.h>
73#include <VBox/patm.h>
74#include <VBox/rem.h>
75#include <VBox/ssm.h>
76#include <VBox/tm.h>
77#include "VMMInternal.h"
78#include "VMMSwitcher/VMMSwitcher.h"
79#include <VBox/vm.h>
80
81#include <VBox/err.h>
82#include <VBox/param.h>
83#include <VBox/version.h>
84#include <VBox/x86.h>
85#include <VBox/hwaccm.h>
86#include <iprt/assert.h>
87#include <iprt/alloc.h>
88#include <iprt/asm.h>
89#include <iprt/time.h>
90#include <iprt/semaphore.h>
91#include <iprt/stream.h>
92#include <iprt/string.h>
93#include <iprt/stdarg.h>
94#include <iprt/ctype.h>
95
96
97
98/*******************************************************************************
99* Defined Constants And Macros *
100*******************************************************************************/
101/** The saved state version. */
102#define VMM_SAVED_STATE_VERSION 3
103
104
105/*******************************************************************************
106* Internal Functions *
107*******************************************************************************/
108static int vmmR3InitStacks(PVM pVM);
109static int vmmR3InitLoggers(PVM pVM);
110static void vmmR3InitRegisterStats(PVM pVM);
111static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
112static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
113static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser);
114static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu);
115static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
116
117
118/**
119 * Initializes the VMM.
120 *
121 * @returns VBox status code.
122 * @param pVM The VM to operate on.
123 */
124VMMR3DECL(int) VMMR3Init(PVM pVM)
125{
126 LogFlow(("VMMR3Init\n"));
127
128 /*
129 * Assert alignment, sizes and order.
130 */
131 AssertMsg(pVM->vmm.s.offVM == 0, ("Already initialized!\n"));
132 AssertCompile(sizeof(pVM->vmm.s) <= sizeof(pVM->vmm.padding));
133 AssertCompile(sizeof(pVM->aCpus[0].vmm.s) <= sizeof(pVM->aCpus[0].vmm.padding));
134
135 /*
136 * Init basic VM VMM members.
137 */
138 pVM->vmm.s.offVM = RT_OFFSETOF(VM, vmm);
139 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
140 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
141 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
142 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
143 int rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies);
144 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
145 pVM->vmm.s.cYieldEveryMillies = 23; /* Value arrived at after experimenting with the grub boot prompt. */
146 //pVM->vmm.s.cYieldEveryMillies = 8; //debugging
147 else
148 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Rrc\n", rc), rc);
149
150 /*
151 * Initialize the VMM sync critical section and semaphores.
152 */
153 rc = RTCritSectInit(&pVM->vmm.s.CritSectSync);
154 AssertRCReturn(rc, rc);
155 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousEnterOneByOne);
156 AssertRCReturn(rc, rc);
157 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
158 AssertRCReturn(rc, rc);
159 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousDone);
160 AssertRCReturn(rc, rc);
161 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousDoneCaller);
162 AssertRCReturn(rc, rc);
163
164 /* GC switchers are enabled by default. Turned off by HWACCM. */
165 pVM->vmm.s.fSwitcherDisabled = false;
166
167 /*
168 * Register the saved state data unit.
169 */
170 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
171 NULL, vmmR3Save, NULL,
172 NULL, vmmR3Load, NULL);
173 if (RT_FAILURE(rc))
174 return rc;
175
176 /*
177 * Register the Ring-0 VM handle with the session for fast ioctl calls.
178 */
179 rc = SUPR3SetVMForFastIOCtl(pVM->pVMR0);
180 if (RT_FAILURE(rc))
181 return rc;
182
183 /*
184 * Init various sub-components.
185 */
186 rc = vmmR3SwitcherInit(pVM);
187 if (RT_SUCCESS(rc))
188 {
189 rc = vmmR3InitStacks(pVM);
190 if (RT_SUCCESS(rc))
191 {
192 rc = vmmR3InitLoggers(pVM);
193
194#ifdef VBOX_WITH_NMI
195 /*
196 * Allocate mapping for the host APIC.
197 */
198 if (RT_SUCCESS(rc))
199 {
200 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
201 AssertRC(rc);
202 }
203#endif
204 if (RT_SUCCESS(rc))
205 {
206 /*
207 * Debug info and statistics.
208 */
209 DBGFR3InfoRegisterInternal(pVM, "ff", "Displays the current Forced actions Flags.", vmmR3InfoFF);
210 vmmR3InitRegisterStats(pVM);
211
212 return VINF_SUCCESS;
213 }
214 }
215 /** @todo: Need failure cleanup. */
216
217 //more todo in here?
218 //if (RT_SUCCESS(rc))
219 //{
220 //}
221 //int rc2 = vmmR3TermCoreCode(pVM);
222 //AssertRC(rc2));
223 }
224
225 return rc;
226}
227
228
229/**
230 * Allocate & setup the VMM RC stack(s) (for EMTs).
231 *
232 * The stacks are also used for long jumps in Ring-0.
233 *
234 * @returns VBox status code.
235 * @param pVM Pointer to the shared VM structure.
236 *
237 * @remarks The optional guard page gets it protection setup up during R3 init
238 * completion because of init order issues.
239 */
240static int vmmR3InitStacks(PVM pVM)
241{
242 int rc = VINF_SUCCESS;
243
244 for (VMCPUID idCpu = 0; idCpu < pVM->cCPUs; idCpu++)
245 {
246 PVMCPU pVCpu = &pVM->aCpus[idCpu];
247
248#ifdef VBOX_STRICT_VMM_STACK
249 rc = MMR3HyperAllocOnceNoRel(pVM, PAGE_SIZE + VMM_STACK_SIZE + PAGE_SIZE, PAGE_SIZE, MM_TAG_VMM, (void **)&pVCpu->vmm.s.pbEMTStackR3);
250#else
251 rc = MMR3HyperAllocOnceNoRel(pVM, VMM_STACK_SIZE, PAGE_SIZE, MM_TAG_VMM, (void **)&pVCpu->vmm.s.pbEMTStackR3);
252#endif
253 if (RT_SUCCESS(rc))
254 {
255#ifdef VBOX_STRICT_VMM_STACK
256 pVCpu->vmm.s.pbEMTStackR3 += PAGE_SIZE;
257#endif
258#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
259 /* MMHyperR3ToR0 returns R3 when not doing hardware assisted virtualization. */
260 if (!VMMIsHwVirtExtForced(pVM))
261 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = NIL_RTR0PTR;
262 else
263#endif
264 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
265 pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3);
266 pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE;
267 AssertRelease(pVCpu->vmm.s.pbEMTStackRC);
268
269 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC);
270 }
271 }
272
273 return rc;
274}
275
276
277/**
278 * Initialize the loggers.
279 *
280 * @returns VBox status code.
281 * @param pVM Pointer to the shared VM structure.
282 */
283static int vmmR3InitLoggers(PVM pVM)
284{
285 int rc;
286
287 /*
288 * Allocate RC & R0 Logger instances (they are finalized in the relocator).
289 */
290#ifdef LOG_ENABLED
291 PRTLOGGER pLogger = RTLogDefaultInstance();
292 if (pLogger)
293 {
294 pVM->vmm.s.cbRCLogger = RT_OFFSETOF(RTLOGGERRC, afGroups[pLogger->cGroups]);
295 rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCLoggerR3);
296 if (RT_FAILURE(rc))
297 return rc;
298 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
299
300# ifdef VBOX_WITH_R0_LOGGING
301 for (unsigned i = 0; i < pVM->cCPUs; i++)
302 {
303 PVMCPU pVCpu = &pVM->aCpus[i];
304
305 rc = MMR3HyperAllocOnceNoRel(pVM, RT_OFFSETOF(VMMR0LOGGER, Logger.afGroups[pLogger->cGroups]),
306 0, MM_TAG_VMM, (void **)&pVCpu->vmm.s.pR0LoggerR3);
307 if (RT_FAILURE(rc))
308 return rc;
309 pVCpu->vmm.s.pR0LoggerR3->pVM = pVM->pVMR0;
310 //pVCpu->vmm.s.pR0LoggerR3->fCreated = false;
311 pVCpu->vmm.s.pR0LoggerR3->cbLogger = RT_OFFSETOF(RTLOGGER, afGroups[pLogger->cGroups]);
312 pVCpu->vmm.s.pR0LoggerR0 = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pR0LoggerR3);
313 }
314# endif
315 }
316#endif /* LOG_ENABLED */
317
318#ifdef VBOX_WITH_RC_RELEASE_LOGGING
319 /*
320 * Allocate RC release logger instances (finalized in the relocator).
321 */
322 PRTLOGGER pRelLogger = RTLogRelDefaultInstance();
323 if (pRelLogger)
324 {
325 pVM->vmm.s.cbRCRelLogger = RT_OFFSETOF(RTLOGGERRC, afGroups[pRelLogger->cGroups]);
326 rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCRelLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCRelLoggerR3);
327 if (RT_FAILURE(rc))
328 return rc;
329 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
330 }
331#endif /* VBOX_WITH_RC_RELEASE_LOGGING */
332 return VINF_SUCCESS;
333}
334
335
336/**
337 * VMMR3Init worker that register the statistics with STAM.
338 *
339 * @param pVM The shared VM structure.
340 */
341static void vmmR3InitRegisterStats(PVM pVM)
342{
343 /*
344 * Statistics.
345 */
346 STAM_REG(pVM, &pVM->vmm.s.StatRunRC, STAMTYPE_COUNTER, "/VMM/RunRC", STAMUNIT_OCCURENCES, "Number of context switches.");
347 STAM_REG(pVM, &pVM->vmm.s.StatRZRetNormal, STAMTYPE_COUNTER, "/VMM/RZRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
348 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterrupt, STAMTYPE_COUNTER, "/VMM/RZRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
349 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
350 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGuestTrap, STAMTYPE_COUNTER, "/VMM/RZRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
351 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitch, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
352 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
353 STAM_REG(pVM, &pVM->vmm.s.StatRZRetExceptionPrivilege, STAMTYPE_COUNTER, "/VMM/RZRet/ExceptionPrivilege", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_EXCEPTION_PRIVILEGED returns.");
354 STAM_REG(pVM, &pVM->vmm.s.StatRZRetStaleSelector, STAMTYPE_COUNTER, "/VMM/RZRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
355 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIRETTrap, STAMTYPE_COUNTER, "/VMM/RZRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
356 STAM_REG(pVM, &pVM->vmm.s.StatRZRetEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
357 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOBlockEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/EmulateIOBlock", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_EMULATE_IO_BLOCK returns.");
358 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
359 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIORead, STAMTYPE_COUNTER, "/VMM/RZRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_READ returns.");
360 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_WRITE returns.");
361 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIORead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_READ returns.");
362 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_WRITE returns.");
363 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_READ_WRITE returns.");
364 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
365 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
366 STAM_REG(pVM, &pVM->vmm.s.StatRZRetLDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
367 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
368 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
369 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTSSFault, STAMTYPE_COUNTER, "/VMM/RZRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
370 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPDFault, STAMTYPE_COUNTER, "/VMM/RZRet/PDFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_PD_FAULT returns.");
371 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCSAMTask, STAMTYPE_COUNTER, "/VMM/RZRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
372 STAM_REG(pVM, &pVM->vmm.s.StatRZRetSyncCR3, STAMTYPE_COUNTER, "/VMM/RZRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
373 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMisc, STAMTYPE_COUNTER, "/VMM/RZRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
374 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchInt3, STAMTYPE_COUNTER, "/VMM/RZRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
375 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchPF, STAMTYPE_COUNTER, "/VMM/RZRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
376 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchGP, STAMTYPE_COUNTER, "/VMM/RZRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
377 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/RZRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
378 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/RZRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
379 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
380 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTimerPending, STAMTYPE_COUNTER, "/VMM/RZRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
381 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptPending, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
382 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/RZRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
383 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/RZRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns.");
384 STAM_REG(pVM, &pVM->vmm.s.StatRZRetEmulHlt, STAMTYPE_COUNTER, "/VMM/RZRet/EmulHlt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_EMULATE_INSTR_HLT returns.");
385 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPendingRequest, STAMTYPE_COUNTER, "/VMM/RZRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
386
387 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCallRing3, STAMTYPE_COUNTER, "/VMM/RZCallR3/Misc", STAMUNIT_OCCURENCES, "Number of Other ring-3 calls.");
388 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_LOCK calls.");
389 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMQueueFlush, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMQueueFlush", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_QUEUE_FLUSH calls.");
390 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_LOCK calls.");
391 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMPoolGrow, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMPoolGrow", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_POOL_GROW calls.");
392 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMMapChunk, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMMapChunk", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_MAP_CHUNK calls.");
393 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMAllocHandy, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMAllocHandy", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES calls.");
394 STAM_REG(pVM, &pVM->vmm.s.StatRZCallRemReplay, STAMTYPE_COUNTER, "/VMM/RZCallR3/REMReplay", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS calls.");
395 STAM_REG(pVM, &pVM->vmm.s.StatRZCallLogFlush, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMMLogFlush", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VMM_LOGGER_FLUSH calls.");
396 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMSetError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_ERROR calls.");
397 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetRuntimeError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMRuntimeError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_RUNTIME_ERROR calls.");
398
399#ifdef VBOX_WITH_STATISTICS
400 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
401 {
402 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedMax, STAMTYPE_U32_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Max amount of stack used.", "/VMM/Stack/CPU%u/Max", i);
403 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedAvg, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Average stack usage.", "/VMM/Stack/CPU%u/Avg", i);
404 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cUsedTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of stack usages.", "/VMM/Stack/CPU%u/Uses", i);
405 }
406#endif
407}
408
409
410/**
411 * Initializes the per-VCPU VMM.
412 *
413 * @returns VBox status code.
414 * @param pVM The VM to operate on.
415 */
416VMMR3DECL(int) VMMR3InitCPU(PVM pVM)
417{
418 LogFlow(("VMMR3InitCPU\n"));
419 return VINF_SUCCESS;
420}
421
422
423/**
424 * Ring-3 init finalizing.
425 *
426 * @returns VBox status code.
427 * @param pVM The VM handle.
428 */
429VMMR3DECL(int) VMMR3InitFinalize(PVM pVM)
430{
431 int rc = VINF_SUCCESS;
432
433 for (VMCPUID idCpu = 0; idCpu < pVM->cCPUs; idCpu++)
434 {
435 PVMCPU pVCpu = &pVM->aCpus[idCpu];
436
437#ifdef VBOX_STRICT_VMM_STACK
438 /*
439 * Two inaccessible pages at each sides of the stack to catch over/under-flows.
440 */
441 memset(pVCpu->vmm.s.pbEMTStackR3 - PAGE_SIZE, 0xcc, PAGE_SIZE);
442 MMR3HyperSetGuard(pVM, pVCpu->vmm.s.pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, true /*fSet*/);
443
444 memset(pVCpu->vmm.s.pbEMTStackR3 + VMM_STACK_SIZE, 0xcc, PAGE_SIZE);
445 MMR3HyperSetGuard(pVM, pVCpu->vmm.s.pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, true /*fSet*/);
446#endif
447
448 /*
449 * Set page attributes to r/w for stack pages.
450 */
451 rc = PGMMapSetPage(pVM, pVCpu->vmm.s.pbEMTStackRC, VMM_STACK_SIZE, X86_PTE_P | X86_PTE_A | X86_PTE_D | X86_PTE_RW);
452 AssertRC(rc);
453 if (RT_FAILURE(rc))
454 break;
455 }
456 if (RT_SUCCESS(rc))
457 {
458 /*
459 * Create the EMT yield timer.
460 */
461 rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, "EMT Yielder", &pVM->vmm.s.pYieldTimer);
462 if (RT_SUCCESS(rc))
463 rc = TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldEveryMillies);
464 }
465
466#ifdef VBOX_WITH_NMI
467 /*
468 * Map the host APIC into GC - This is AMD/Intel + Host OS specific!
469 */
470 if (RT_SUCCESS(rc))
471 rc = PGMMap(pVM, pVM->vmm.s.GCPtrApicBase, 0xfee00000, PAGE_SIZE,
472 X86_PTE_P | X86_PTE_RW | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_A | X86_PTE_D);
473#endif
474 return rc;
475}
476
477
478/**
479 * Initializes the R0 VMM.
480 *
481 * @returns VBox status code.
482 * @param pVM The VM to operate on.
483 */
484VMMR3DECL(int) VMMR3InitR0(PVM pVM)
485{
486 int rc;
487 PVMCPU pVCpu = VMMGetCpu(pVM);
488 Assert(pVCpu && pVCpu->idCpu == 0);
489
490#ifdef LOG_ENABLED
491 /*
492 * Initialize the ring-0 logger if we haven't done so yet.
493 */
494 if ( pVCpu->vmm.s.pR0LoggerR3
495 && !pVCpu->vmm.s.pR0LoggerR3->fCreated)
496 {
497 rc = VMMR3UpdateLoggers(pVM);
498 if (RT_FAILURE(rc))
499 return rc;
500 }
501#endif
502
503 /*
504 * Call Ring-0 entry with init code.
505 */
506 for (;;)
507 {
508#ifdef NO_SUPCALLR0VMM
509 //rc = VERR_GENERAL_FAILURE;
510 rc = VINF_SUCCESS;
511#else
512 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_INIT, VMMGetSvnRev(), NULL);
513#endif
514 /*
515 * Flush the logs.
516 */
517#ifdef LOG_ENABLED
518 if ( pVCpu->vmm.s.pR0LoggerR3
519 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
520 RTLogFlushToLogger(&pVCpu->vmm.s.pR0LoggerR3->Logger, NULL);
521#endif
522 if (rc != VINF_VMM_CALL_HOST)
523 break;
524 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
525 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
526 break;
527 /* Resume R0 */
528 }
529
530 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
531 {
532 LogRel(("R0 init failed, rc=%Rra\n", rc));
533 if (RT_SUCCESS(rc))
534 rc = VERR_INTERNAL_ERROR;
535 }
536 return rc;
537}
538
539
540/**
541 * Initializes the RC VMM.
542 *
543 * @returns VBox status code.
544 * @param pVM The VM to operate on.
545 */
546VMMR3DECL(int) VMMR3InitRC(PVM pVM)
547{
548 PVMCPU pVCpu = VMMGetCpu(pVM);
549 Assert(pVCpu && pVCpu->idCpu == 0);
550
551 /* In VMX mode, there's no need to init RC. */
552 if (pVM->vmm.s.fSwitcherDisabled)
553 return VINF_SUCCESS;
554
555 AssertReturn(pVM->cCPUs == 1, VERR_RAW_MODE_INVALID_SMP);
556
557 /*
558 * Call VMMGCInit():
559 * -# resolve the address.
560 * -# setup stackframe and EIP to use the trampoline.
561 * -# do a generic hypervisor call.
562 */
563 RTRCPTR RCPtrEP;
564 int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMGCEntry", &RCPtrEP);
565 if (RT_SUCCESS(rc))
566 {
567 CPUMHyperSetCtxCore(pVCpu, NULL);
568 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC); /* Clear the stack. */
569 uint64_t u64TS = RTTimeProgramStartNanoTS();
570 CPUMPushHyper(pVCpu, (uint32_t)(u64TS >> 32)); /* Param 3: The program startup TS - Hi. */
571 CPUMPushHyper(pVCpu, (uint32_t)u64TS); /* Param 3: The program startup TS - Lo. */
572 CPUMPushHyper(pVCpu, VMMGetSvnRev()); /* Param 2: Version argument. */
573 CPUMPushHyper(pVCpu, VMMGC_DO_VMMGC_INIT); /* Param 1: Operation. */
574 CPUMPushHyper(pVCpu, pVM->pVMRC); /* Param 0: pVM */
575 CPUMPushHyper(pVCpu, 5 * sizeof(RTRCPTR)); /* trampoline param: stacksize. */
576 CPUMPushHyper(pVCpu, RCPtrEP); /* Call EIP. */
577 CPUMSetHyperEIP(pVCpu, pVM->vmm.s.pfnCallTrampolineRC);
578 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
579
580 for (;;)
581 {
582#ifdef NO_SUPCALLR0VMM
583 //rc = VERR_GENERAL_FAILURE;
584 rc = VINF_SUCCESS;
585#else
586 rc = SUPR3CallVMMR0(pVM->pVMR0, 0 /* VCPU 0 */, VMMR0_DO_CALL_HYPERVISOR, NULL);
587#endif
588#ifdef LOG_ENABLED
589 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
590 if ( pLogger
591 && pLogger->offScratch > 0)
592 RTLogFlushRC(NULL, pLogger);
593#endif
594#ifdef VBOX_WITH_RC_RELEASE_LOGGING
595 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
596 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
597 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
598#endif
599 if (rc != VINF_VMM_CALL_HOST)
600 break;
601 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
602 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
603 break;
604 }
605
606 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
607 {
608 VMMR3FatalDump(pVM, pVCpu, rc);
609 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
610 rc = VERR_INTERNAL_ERROR;
611 }
612 AssertRC(rc);
613 }
614 return rc;
615}
616
617
618/**
619 * Terminate the VMM bits.
620 *
621 * @returns VINF_SUCCESS.
622 * @param pVM The VM handle.
623 */
624VMMR3DECL(int) VMMR3Term(PVM pVM)
625{
626 PVMCPU pVCpu = VMMGetCpu(pVM);
627 Assert(pVCpu && pVCpu->idCpu == 0);
628
629 /*
630 * Call Ring-0 entry with termination code.
631 */
632 int rc;
633 for (;;)
634 {
635#ifdef NO_SUPCALLR0VMM
636 //rc = VERR_GENERAL_FAILURE;
637 rc = VINF_SUCCESS;
638#else
639 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_TERM, 0, NULL);
640#endif
641 /*
642 * Flush the logs.
643 */
644#ifdef LOG_ENABLED
645 if ( pVCpu->vmm.s.pR0LoggerR3
646 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
647 RTLogFlushToLogger(&pVCpu->vmm.s.pR0LoggerR3->Logger, NULL);
648#endif
649 if (rc != VINF_VMM_CALL_HOST)
650 break;
651 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
652 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
653 break;
654 /* Resume R0 */
655 }
656 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
657 {
658 LogRel(("VMMR3Term: R0 term failed, rc=%Rra. (warning)\n", rc));
659 if (RT_SUCCESS(rc))
660 rc = VERR_INTERNAL_ERROR;
661 }
662
663 RTCritSectDelete(&pVM->vmm.s.CritSectSync);
664 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
665 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
666 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
667 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
668 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousDone);
669 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
670 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousDoneCaller);
671 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
672
673#ifdef VBOX_STRICT_VMM_STACK
674 /*
675 * Make the two stack guard pages present again.
676 */
677 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
678 {
679 MMR3HyperSetGuard(pVM, pVM->aCpus[i].vmm.s.pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, false /*fSet*/);
680 MMR3HyperSetGuard(pVM, pVM->aCpus[i].vmm.s.pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, false /*fSet*/);
681 }
682#endif
683 return rc;
684}
685
686
687/**
688 * Terminates the per-VCPU VMM.
689 *
690 * Termination means cleaning up and freeing all resources,
691 * the VM it self is at this point powered off or suspended.
692 *
693 * @returns VBox status code.
694 * @param pVM The VM to operate on.
695 */
696VMMR3DECL(int) VMMR3TermCPU(PVM pVM)
697{
698 return VINF_SUCCESS;
699}
700
701
702/**
703 * Applies relocations to data and code managed by this
704 * component. This function will be called at init and
705 * whenever the VMM need to relocate it self inside the GC.
706 *
707 * The VMM will need to apply relocations to the core code.
708 *
709 * @param pVM The VM handle.
710 * @param offDelta The relocation delta.
711 */
712VMMR3DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
713{
714 LogFlow(("VMMR3Relocate: offDelta=%RGv\n", offDelta));
715
716 /*
717 * Recalc the RC address.
718 */
719 pVM->vmm.s.pvCoreCodeRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pvCoreCodeR3);
720
721 /*
722 * The stack.
723 */
724 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
725 {
726 PVMCPU pVCpu = &pVM->aCpus[i];
727
728 CPUMSetHyperESP(pVCpu, CPUMGetHyperESP(pVCpu) + offDelta);
729
730 pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3);
731 pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE;
732 }
733
734 /*
735 * All the switchers.
736 */
737 vmmR3SwitcherRelocate(pVM, offDelta);
738
739 /*
740 * Get other RC entry points.
741 */
742 int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuest", &pVM->vmm.s.pfnCPUMRCResumeGuest);
743 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuest not found! rc=%Rra\n", rc));
744
745 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuestV86", &pVM->vmm.s.pfnCPUMRCResumeGuestV86);
746 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuestV86 not found! rc=%Rra\n", rc));
747
748 /*
749 * Update the logger.
750 */
751 VMMR3UpdateLoggers(pVM);
752}
753
754
755/**
756 * Updates the settings for the RC and R0 loggers.
757 *
758 * @returns VBox status code.
759 * @param pVM The VM handle.
760 */
761VMMR3DECL(int) VMMR3UpdateLoggers(PVM pVM)
762{
763 /*
764 * Simply clone the logger instance (for RC).
765 */
766 int rc = VINF_SUCCESS;
767 RTRCPTR RCPtrLoggerFlush = 0;
768
769 if (pVM->vmm.s.pRCLoggerR3
770#ifdef VBOX_WITH_RC_RELEASE_LOGGING
771 || pVM->vmm.s.pRCRelLoggerR3
772#endif
773 )
774 {
775 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerFlush", &RCPtrLoggerFlush);
776 AssertReleaseMsgRC(rc, ("vmmGCLoggerFlush not found! rc=%Rra\n", rc));
777 }
778
779 if (pVM->vmm.s.pRCLoggerR3)
780 {
781 RTRCPTR RCPtrLoggerWrapper = 0;
782 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerWrapper", &RCPtrLoggerWrapper);
783 AssertReleaseMsgRC(rc, ("vmmGCLoggerWrapper not found! rc=%Rra\n", rc));
784
785 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
786 rc = RTLogCloneRC(NULL /* default */, pVM->vmm.s.pRCLoggerR3, pVM->vmm.s.cbRCLogger,
787 RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
788 AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc));
789 }
790
791#ifdef VBOX_WITH_RC_RELEASE_LOGGING
792 if (pVM->vmm.s.pRCRelLoggerR3)
793 {
794 RTRCPTR RCPtrLoggerWrapper = 0;
795 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCRelLoggerWrapper", &RCPtrLoggerWrapper);
796 AssertReleaseMsgRC(rc, ("vmmGCRelLoggerWrapper not found! rc=%Rra\n", rc));
797
798 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
799 rc = RTLogCloneRC(RTLogRelDefaultInstance(), pVM->vmm.s.pRCRelLoggerR3, pVM->vmm.s.cbRCRelLogger,
800 RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
801 AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc));
802 }
803#endif /* VBOX_WITH_RC_RELEASE_LOGGING */
804
805#ifdef LOG_ENABLED
806 /*
807 * For the ring-0 EMT logger, we use a per-thread logger instance
808 * in ring-0. Only initialize it once.
809 */
810 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
811 {
812 PVMCPU pVCpu = &pVM->aCpus[i];
813 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
814 if (pR0LoggerR3)
815 {
816 if (!pR0LoggerR3->fCreated)
817 {
818 RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR;
819 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
820 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerWrapper not found! rc=%Rra\n", rc), rc);
821
822 RTR0PTR pfnLoggerFlush = NIL_RTR0PTR;
823 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
824 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerFlush not found! rc=%Rra\n", rc), rc);
825
826 rc = RTLogCreateForR0(&pR0LoggerR3->Logger, pR0LoggerR3->cbLogger,
827 *(PFNRTLOGGER *)&pfnLoggerWrapper, *(PFNRTLOGFLUSH *)&pfnLoggerFlush,
828 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY);
829 AssertReleaseMsgRCReturn(rc, ("RTLogCreateForR0 failed! rc=%Rra\n", rc), rc);
830
831 RTR0PTR pfnLoggerPrefix = NIL_RTR0PTR;
832 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerPrefix", &pfnLoggerPrefix);
833 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerPrefix not found! rc=%Rra\n", rc), rc);
834 rc = RTLogSetCustomPrefixCallback(&pR0LoggerR3->Logger, *(PFNRTLOGPREFIX *)&pfnLoggerPrefix, NULL);
835 AssertReleaseMsgRCReturn(rc, ("RTLogSetCustomPrefixCallback failed! rc=%Rra\n", rc), rc);
836
837 pR0LoggerR3->idCpu = i;
838 pR0LoggerR3->fCreated = true;
839 pR0LoggerR3->fFlushingDisabled = false;
840
841 }
842
843 rc = RTLogCopyGroupsAndFlags(&pR0LoggerR3->Logger, NULL /* default */, pVM->vmm.s.pRCLoggerR3->fFlags, RTLOGFLAGS_BUFFERED);
844 AssertRC(rc);
845 }
846 }
847#endif
848 return rc;
849}
850
851
852/**
853 * Gets the pointer to a buffer containing the R0/RC AssertMsg1 output.
854 *
855 * @returns Pointer to the buffer.
856 * @param pVM The VM handle.
857 */
858VMMR3DECL(const char *) VMMR3GetRZAssertMsg1(PVM pVM)
859{
860 if (HWACCMIsEnabled(pVM))
861 return pVM->vmm.s.szRing0AssertMsg1;
862
863 RTRCPTR RCPtr;
864 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg1", &RCPtr);
865 if (RT_SUCCESS(rc))
866 return (const char *)MMHyperRCToR3(pVM, RCPtr);
867
868 return NULL;
869}
870
871
872/**
873 * Gets the pointer to a buffer containing the R0/RC AssertMsg2 output.
874 *
875 * @returns Pointer to the buffer.
876 * @param pVM The VM handle.
877 */
878VMMR3DECL(const char *) VMMR3GetRZAssertMsg2(PVM pVM)
879{
880 if (HWACCMIsEnabled(pVM))
881 return pVM->vmm.s.szRing0AssertMsg2;
882
883 RTRCPTR RCPtr;
884 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg2", &RCPtr);
885 if (RT_SUCCESS(rc))
886 return (const char *)MMHyperRCToR3(pVM, RCPtr);
887
888 return NULL;
889}
890
891
892/**
893 * Execute state save operation.
894 *
895 * @returns VBox status code.
896 * @param pVM VM Handle.
897 * @param pSSM SSM operation handle.
898 */
899static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
900{
901 LogFlow(("vmmR3Save:\n"));
902
903 /*
904 * The hypervisor stack.
905 * Note! See note in vmmR3Load (remove this on version change).
906 */
907 PVMCPU pVCpu0 = &pVM->aCpus[0];
908 SSMR3PutRCPtr(pSSM, pVCpu0->vmm.s.pbEMTStackBottomRC);
909 RTRCPTR RCPtrESP = CPUMGetHyperESP(pVCpu0);
910 AssertMsg(pVCpu0->vmm.s.pbEMTStackBottomRC - RCPtrESP <= VMM_STACK_SIZE, ("Bottom %RRv ESP=%RRv\n", pVCpu0->vmm.s.pbEMTStackBottomRC, RCPtrESP));
911 SSMR3PutRCPtr(pSSM, RCPtrESP);
912 SSMR3PutMem(pSSM, pVCpu0->vmm.s.pbEMTStackR3, VMM_STACK_SIZE);
913
914 /*
915 * Save the started/stopped state of all CPUs except 0 as it will always
916 * be running. This avoids breaking the saved state version. :-)
917 */
918 for (VMCPUID i = 1; i < pVM->cCPUs; i++)
919 SSMR3PutBool(pSSM, VMCPUSTATE_IS_STARTED(VMCPU_GET_STATE(&pVM->aCpus[i])));
920
921 return SSMR3PutU32(pSSM, ~0); /* terminator */
922}
923
924
925/**
926 * Execute state load operation.
927 *
928 * @returns VBox status code.
929 * @param pVM VM Handle.
930 * @param pSSM SSM operation handle.
931 * @param u32Version Data layout version.
932 */
933static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
934{
935 LogFlow(("vmmR3Load:\n"));
936
937 /*
938 * Validate version.
939 */
940 if (u32Version != VMM_SAVED_STATE_VERSION)
941 {
942 AssertMsgFailed(("vmmR3Load: Invalid version u32Version=%d!\n", u32Version));
943 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
944 }
945
946 /*
947 * Check that the stack is in the same place, or that it's fearly empty.
948 *
949 * Note! This can be skipped next time we update saved state as we will
950 * never be in a R0/RC -> ring-3 call when saving the state. The
951 * stack and the two associated pointers are not required.
952 */
953 RTRCPTR RCPtrStackBottom;
954 SSMR3GetRCPtr(pSSM, &RCPtrStackBottom);
955 RTRCPTR RCPtrESP;
956 int rc = SSMR3GetRCPtr(pSSM, &RCPtrESP);
957 if (RT_FAILURE(rc))
958 return rc;
959 SSMR3GetMem(pSSM, pVM->aCpus[0].vmm.s.pbEMTStackR3, VMM_STACK_SIZE);
960
961 /* Restore the VMCPU states. VCPU 0 is always started. */
962 VMCPU_SET_STATE(&pVM->aCpus[0], VMCPUSTATE_STARTED);
963 for (VMCPUID i = 1; i < pVM->cCPUs; i++)
964 {
965 bool fStarted;
966 rc = SSMR3GetBool(pSSM, &fStarted);
967 if (RT_FAILURE(rc))
968 return rc;
969 VMCPU_SET_STATE(&pVM->aCpus[i], fStarted ? VMCPUSTATE_STARTED : VMCPUSTATE_STOPPED);
970 }
971
972 /* terminator */
973 uint32_t u32;
974 rc = SSMR3GetU32(pSSM, &u32);
975 if (RT_FAILURE(rc))
976 return rc;
977 if (u32 != ~0U)
978 {
979 AssertMsgFailed(("u32=%#x\n", u32));
980 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
981 }
982 return VINF_SUCCESS;
983}
984
985
986/**
987 * Resolve a builtin RC symbol.
988 *
989 * Called by PDM when loading or relocating RC modules.
990 *
991 * @returns VBox status
992 * @param pVM VM Handle.
993 * @param pszSymbol Symbol to resolv
994 * @param pRCPtrValue Where to store the symbol value.
995 *
996 * @remark This has to work before VMMR3Relocate() is called.
997 */
998VMMR3DECL(int) VMMR3GetImportRC(PVM pVM, const char *pszSymbol, PRTRCPTR pRCPtrValue)
999{
1000 if (!strcmp(pszSymbol, "g_Logger"))
1001 {
1002 if (pVM->vmm.s.pRCLoggerR3)
1003 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
1004 *pRCPtrValue = pVM->vmm.s.pRCLoggerRC;
1005 }
1006 else if (!strcmp(pszSymbol, "g_RelLogger"))
1007 {
1008#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1009 if (pVM->vmm.s.pRCRelLoggerR3)
1010 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
1011 *pRCPtrValue = pVM->vmm.s.pRCRelLoggerRC;
1012#else
1013 *pRCPtrValue = NIL_RTRCPTR;
1014#endif
1015 }
1016 else
1017 return VERR_SYMBOL_NOT_FOUND;
1018 return VINF_SUCCESS;
1019}
1020
1021
1022/**
1023 * Suspends the CPU yielder.
1024 *
1025 * @param pVM The VM handle.
1026 */
1027VMMR3DECL(void) VMMR3YieldSuspend(PVM pVM)
1028{
1029 VMCPU_ASSERT_EMT(&pVM->aCpus[0]);
1030 if (!pVM->vmm.s.cYieldResumeMillies)
1031 {
1032 uint64_t u64Now = TMTimerGet(pVM->vmm.s.pYieldTimer);
1033 uint64_t u64Expire = TMTimerGetExpire(pVM->vmm.s.pYieldTimer);
1034 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
1035 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1036 else
1037 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM->vmm.s.pYieldTimer, u64Expire - u64Now);
1038 TMTimerStop(pVM->vmm.s.pYieldTimer);
1039 }
1040 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1041}
1042
1043
1044/**
1045 * Stops the CPU yielder.
1046 *
1047 * @param pVM The VM handle.
1048 */
1049VMMR3DECL(void) VMMR3YieldStop(PVM pVM)
1050{
1051 if (!pVM->vmm.s.cYieldResumeMillies)
1052 TMTimerStop(pVM->vmm.s.pYieldTimer);
1053 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1054 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1055}
1056
1057
1058/**
1059 * Resumes the CPU yielder when it has been a suspended or stopped.
1060 *
1061 * @param pVM The VM handle.
1062 */
1063VMMR3DECL(void) VMMR3YieldResume(PVM pVM)
1064{
1065 if (pVM->vmm.s.cYieldResumeMillies)
1066 {
1067 TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldResumeMillies);
1068 pVM->vmm.s.cYieldResumeMillies = 0;
1069 }
1070}
1071
1072
1073/**
1074 * Internal timer callback function.
1075 *
1076 * @param pVM The VM.
1077 * @param pTimer The timer handle.
1078 * @param pvUser User argument specified upon timer creation.
1079 */
1080static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser)
1081{
1082 /*
1083 * This really needs some careful tuning. While we shouldn't be too greedy since
1084 * that'll cause the rest of the system to stop up, we shouldn't be too nice either
1085 * because that'll cause us to stop up.
1086 *
1087 * The current logic is to use the default interval when there is no lag worth
1088 * mentioning, but when we start accumulating lag we don't bother yielding at all.
1089 *
1090 * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL
1091 * so the lag is up to date.)
1092 */
1093 const uint64_t u64Lag = TMVirtualSyncGetLag(pVM);
1094 if ( u64Lag < 50000000 /* 50ms */
1095 || ( u64Lag < 1000000000 /* 1s */
1096 && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */)
1097 )
1098 {
1099 uint64_t u64Elapsed = RTTimeNanoTS();
1100 pVM->vmm.s.u64LastYield = u64Elapsed;
1101
1102 RTThreadYield();
1103
1104#ifdef LOG_ENABLED
1105 u64Elapsed = RTTimeNanoTS() - u64Elapsed;
1106 Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed));
1107#endif
1108 }
1109 TMTimerSetMillies(pTimer, pVM->vmm.s.cYieldEveryMillies);
1110}
1111
1112
1113/**
1114 * Executes guest code in the raw-mode context.
1115 *
1116 * @param pVM VM handle.
1117 * @param pVCpu The VMCPU to operate on.
1118 */
1119VMMR3DECL(int) VMMR3RawRunGC(PVM pVM, PVMCPU pVCpu)
1120{
1121 Log2(("VMMR3RawRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1122
1123 AssertReturn(pVM->cCPUs == 1, VERR_RAW_MODE_INVALID_SMP);
1124
1125 /*
1126 * Set the EIP and ESP.
1127 */
1128 CPUMSetHyperEIP(pVCpu, CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM
1129 ? pVM->vmm.s.pfnCPUMRCResumeGuestV86
1130 : pVM->vmm.s.pfnCPUMRCResumeGuest);
1131 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC);
1132
1133 /*
1134 * We hide log flushes (outer) and hypervisor interrupts (inner).
1135 */
1136 for (;;)
1137 {
1138#ifdef VBOX_STRICT
1139 if (RT_UNLIKELY(!CPUMGetHyperCR3(pVCpu) || CPUMGetHyperCR3(pVCpu) != PGMGetHyperCR3(pVCpu)))
1140 EMR3FatalError(pVCpu, VERR_VMM_HYPER_CR3_MISMATCH);
1141 PGMMapCheck(pVM);
1142#endif
1143 int rc;
1144 do
1145 {
1146#ifdef NO_SUPCALLR0VMM
1147 rc = VERR_GENERAL_FAILURE;
1148#else
1149 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1150 if (RT_LIKELY(rc == VINF_SUCCESS))
1151 rc = pVCpu->vmm.s.iLastGZRc;
1152#endif
1153 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1154
1155 /*
1156 * Flush the logs.
1157 */
1158#ifdef LOG_ENABLED
1159 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1160 if ( pLogger
1161 && pLogger->offScratch > 0)
1162 RTLogFlushRC(NULL, pLogger);
1163#endif
1164#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1165 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1166 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1167 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
1168#endif
1169 if (rc != VINF_VMM_CALL_HOST)
1170 {
1171 Log2(("VMMR3RawRunGC: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1172 return rc;
1173 }
1174 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1175 if (RT_FAILURE(rc))
1176 return rc;
1177 /* Resume GC */
1178 }
1179}
1180
1181
1182/**
1183 * Executes guest code (Intel VT-x and AMD-V).
1184 *
1185 * @param pVM VM handle.
1186 * @param pVCpu The VMCPU to operate on.
1187 */
1188VMMR3DECL(int) VMMR3HwAccRunGC(PVM pVM, PVMCPU pVCpu)
1189{
1190 Log2(("VMMR3HwAccRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1191
1192 for (;;)
1193 {
1194 int rc;
1195 do
1196 {
1197#ifdef NO_SUPCALLR0VMM
1198 rc = VERR_GENERAL_FAILURE;
1199#else
1200 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_HWACC_RUN, pVCpu->idCpu);
1201 if (RT_LIKELY(rc == VINF_SUCCESS))
1202 rc = pVCpu->vmm.s.iLastGZRc;
1203#endif
1204 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1205
1206#ifdef LOG_ENABLED
1207 /*
1208 * Flush the log
1209 */
1210 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
1211 if ( pR0LoggerR3
1212 && pR0LoggerR3->Logger.offScratch > 0)
1213 RTLogFlushToLogger(&pR0LoggerR3->Logger, NULL);
1214#endif /* !LOG_ENABLED */
1215 if (rc != VINF_VMM_CALL_HOST)
1216 {
1217 Log2(("VMMR3HwAccRunGC: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1218 return rc;
1219 }
1220 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1221 if (RT_FAILURE(rc))
1222 return rc;
1223 /* Resume R0 */
1224 }
1225}
1226
1227/**
1228 * VCPU worker for VMMSendSipi.
1229 *
1230 * @param pVM The VM to operate on.
1231 * @param idCpu Virtual CPU to perform SIPI on
1232 * @param uVector SIPI vector
1233 */
1234DECLCALLBACK(int) vmmR3SendSipi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1235{
1236 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1237 VMCPU_ASSERT_EMT(pVCpu);
1238
1239 /** @todo what are we supposed to do if the processor is already running? */
1240 if (EMGetState(pVCpu) != EMSTATE_WAIT_SIPI)
1241 return VERR_ACCESS_DENIED;
1242
1243
1244 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1245
1246 pCtx->cs = uVector << 8;
1247 pCtx->csHid.u64Base = uVector << 12;
1248 pCtx->csHid.u32Limit = 0x0000ffff;
1249 pCtx->rip = 0;
1250
1251 Log(("vmmR3SendSipi for VCPU %d with vector %x\n", uVector));
1252
1253# if 1 /* If we keep the EMSTATE_WAIT_SIPI method, then move this to EM.cpp. */
1254 EMSetState(pVCpu, EMSTATE_HALTED);
1255 return VINF_EM_RESCHEDULE;
1256# else /* And if we go the VMCPU::enmState way it can stay here. */
1257 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STOPPED);
1258 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
1259 return VINF_SUCCESS;
1260# endif
1261}
1262
1263DECLCALLBACK(int) vmmR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1264{
1265 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1266 VMCPU_ASSERT_EMT(pVCpu);
1267
1268 Log(("vmmR3SendInitIpi for VCPU %d\n", idCpu));
1269 CPUMR3ResetCpu(pVCpu);
1270 return VINF_EM_WAIT_SIPI;
1271}
1272
1273/**
1274 * Sends SIPI to the virtual CPU by setting CS:EIP into vector-dependent state
1275 * and unhalting processor
1276 *
1277 * @param pVM The VM to operate on.
1278 * @param idCpu Virtual CPU to perform SIPI on
1279 * @param uVector SIPI vector
1280 */
1281VMMR3DECL(void) VMMR3SendSipi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1282{
1283 AssertReturnVoid(idCpu < pVM->cCPUs);
1284
1285 PVMREQ pReq;
1286 int rc = VMR3ReqCallU(pVM->pUVM, idCpu, &pReq, 0, VMREQFLAGS_NO_WAIT,
1287 (PFNRT)vmmR3SendSipi, 3, pVM, idCpu, uVector);
1288 AssertRC(rc);
1289}
1290
1291/**
1292 * Sends init IPI to the virtual CPU.
1293 *
1294 * @param pVM The VM to operate on.
1295 * @param idCpu Virtual CPU to perform int IPI on
1296 */
1297VMMR3DECL(void) VMMR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1298{
1299 AssertReturnVoid(idCpu < pVM->cCPUs);
1300
1301 PVMREQ pReq;
1302 int rc = VMR3ReqCallU(pVM->pUVM, idCpu, &pReq, 0, VMREQFLAGS_NO_WAIT,
1303 (PFNRT)vmmR3SendInitIpi, 2, pVM, idCpu);
1304 AssertRC(rc);
1305}
1306
1307
1308/**
1309 * VCPU worker for VMMR3SynchronizeAllVCpus.
1310 *
1311 * @param pVM The VM to operate on.
1312 * @param idCpu Virtual CPU to perform SIPI on
1313 * @param uVector SIPI vector
1314 */
1315DECLCALLBACK(int) vmmR3SyncVCpu(PVM pVM)
1316{
1317 /* Block until the job in the caller has finished. */
1318 RTCritSectEnter(&pVM->vmm.s.CritSectSync);
1319 RTCritSectLeave(&pVM->vmm.s.CritSectSync);
1320 return VINF_SUCCESS;
1321}
1322
1323
1324/**
1325 * Atomically execute a callback handler
1326 * Note: This is very expensive; avoid using it frequently!
1327 *
1328 * @param pVM The VM to operate on.
1329 * @param pfnHandler Callback handler
1330 * @param pvUser User specified parameter
1331 *
1332 * @thread EMT
1333 */
1334VMMR3DECL(int) VMMR3AtomicExecuteHandler(PVM pVM, PFNATOMICHANDLER pfnHandler, void *pvUser)
1335{
1336 int rc;
1337 PVMCPU pVCpu = VMMGetCpu(pVM);
1338 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
1339
1340 /* Shortcut for the uniprocessor case. */
1341 if (pVM->cCPUs == 1)
1342 return pfnHandler(pVM, pvUser);
1343
1344 RTCritSectEnter(&pVM->vmm.s.CritSectSync);
1345 for (VMCPUID idCpu = 0; idCpu < pVM->cCPUs; idCpu++)
1346 {
1347 if (idCpu != pVCpu->idCpu)
1348 {
1349 rc = VMR3ReqCallU(pVM->pUVM, idCpu, NULL, 0, VMREQFLAGS_NO_WAIT,
1350 (PFNRT)vmmR3SyncVCpu, 1, pVM);
1351 AssertRC(rc);
1352 }
1353 }
1354 /* Wait until all other VCPUs are waiting for us. */
1355 while (RTCritSectGetWaiters(&pVM->vmm.s.CritSectSync) != (int32_t)(pVM->cCPUs - 1))
1356 RTThreadSleep(1);
1357
1358 rc = pfnHandler(pVM, pvUser);
1359 RTCritSectLeave(&pVM->vmm.s.CritSectSync);
1360 return rc;
1361}
1362
1363
1364/**
1365 * Count returns and have the last non-caller EMT wake up the caller.
1366 *
1367 * @param pVM The VM handle.
1368 */
1369DECL_FORCE_INLINE(void) vmmR3EmtRendezvousNonCallerReturn(PVM pVM)
1370{
1371 uint32_t cReturned = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsReturned);
1372 if (cReturned == pVM->cCPUs - 1U)
1373 {
1374 int rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1375 AssertLogRelRC(rc);
1376 }
1377}
1378
1379
1380/**
1381 * Common worker for VMMR3EmtRendezvous and VMMR3EmtRendezvousFF.
1382 *
1383 * @param pVM The VM handle.
1384 * @param pVCpu The VMCPU structure for the calling EMT.
1385 * @param fIsCaller Whether we're the VMMR3EmtRendezvous caller or
1386 * not.
1387 * @param fFlags The flags.
1388 * @param pfnRendezvous The callback.
1389 * @param pvUser The user argument for the callback.
1390 */
1391static void vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
1392 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1393{
1394 int rc;
1395
1396 /*
1397 * Enter, the last EMT triggers the next callback phase.
1398 */
1399 uint32_t cEntered = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsEntered);
1400 if (cEntered != pVM->cCPUs)
1401 {
1402 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1403 {
1404 /* Wait for our turn. */
1405 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, RT_INDEFINITE_WAIT);
1406 AssertLogRelRC(rc);
1407 }
1408 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1409 {
1410 /* Wait for the last EMT to arrive and wake everyone up. */
1411 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce, RT_INDEFINITE_WAIT);
1412 AssertLogRelRC(rc);
1413 }
1414 else
1415 {
1416 Assert((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE);
1417
1418 /*
1419 * The execute once is handled specially to optimize the code flow.
1420 *
1421 * The last EMT to arrive will perform the callback and the other
1422 * EMTs will wait on the Done/DoneCaller semaphores (instead of
1423 * the EnterOneByOne/AllAtOnce) in the meanwhile. When the callback
1424 * returns, that EMT will initiate the normal return sequence.
1425 */
1426 if (!fIsCaller)
1427 {
1428 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1429 AssertLogRelRC(rc);
1430
1431 vmmR3EmtRendezvousNonCallerReturn(pVM);
1432 }
1433 return;
1434 }
1435 }
1436 else
1437 {
1438 /*
1439 * All EMTs are waiting, clear the FF and take action according to the
1440 * execution method.
1441 */
1442 VM_FF_CLEAR(pVM, VM_FF_EMT_RENDEZVOUS);
1443
1444 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1445 {
1446 /* Wake up everyone. */
1447 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
1448 AssertLogRelRC(rc);
1449 }
1450 /* else: execute the handler on the current EMT and wake up one or more threads afterwards. */
1451 }
1452
1453
1454 /*
1455 * Do the callback and update the status if necessary.
1456 */
1457 rc = pfnRendezvous(pVM, pVCpu, pvUser);
1458 if (rc != VINF_SUCCESS)
1459 {
1460 int32_t i32RendezvousStatus;
1461 do
1462 {
1463 i32RendezvousStatus = ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus);
1464 if ( RT_FAILURE(i32RendezvousStatus)
1465 || ( i32RendezvousStatus != VINF_SUCCESS
1466 && RT_SUCCESS(rc)))
1467 break;
1468 } while (!ASMAtomicCmpXchgS32(&pVM->vmm.s.i32RendezvousStatus, rc, i32RendezvousStatus));
1469 }
1470
1471 /*
1472 * Increment the done counter and take action depending on whether we're
1473 * the last to finish callback execution.
1474 */
1475 uint32_t cDone = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsDone);
1476 if ( cDone != pVM->cCPUs
1477 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE)
1478 {
1479 /* Signal the next EMT? */
1480 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1481 {
1482 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1483 AssertLogRelRC(rc);
1484 }
1485
1486 /* Wait for the rest to finish (the caller waits on hEvtRendezvousDoneCaller). */
1487 if (!fIsCaller)
1488 {
1489 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1490 AssertLogRelRC(rc);
1491 }
1492 }
1493 else
1494 {
1495 /* Callback execution is all done, tell the rest to return. */
1496 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1497 AssertLogRelRC(rc);
1498 }
1499
1500 if (!fIsCaller)
1501 vmmR3EmtRendezvousNonCallerReturn(pVM);
1502}
1503
1504
1505/**
1506 * Called in response to VM_FF_EMT_RENDEZVOUS.
1507 *
1508 * @param pVM The VM handle
1509 * @param pVCpu The handle of the calling EMT.
1510 *
1511 * @thread EMT
1512 */
1513VMMR3DECL(void) VMMR3EmtRendezvousFF(PVM pVM, PVMCPU pVCpu)
1514{
1515 vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1516 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1517}
1518
1519
1520/**
1521 * EMT rendezvous.
1522 *
1523 * Gathers all the EMTs and execute some code on each of them, either in a one
1524 * by one fashion or all at once.
1525 *
1526 * @returns VBox status code. This will be the first error or, if all succeed,
1527 * the first informational status code.
1528 * @retval VERR_VM_THREAD_NOT_EMT if the caller is not an EMT.
1529 *
1530 * @param pVM The VM handle.
1531 * @param fFlags Flags indicating execution methods. See
1532 * grp_VMMR3EmtRendezvous_fFlags.
1533 * @param pfnRendezvous The callback.
1534 * @param pvUser User argument for the callback.
1535 *
1536 * @thread EMT
1537 */
1538VMMR3DECL(int) VMMR3EmtRendezvous(PVM pVM, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1539{
1540 /*
1541 * Validate input.
1542 */
1543 PVMCPU pVCpu = VMMGetCpu(pVM);
1544 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
1545 AssertMsg( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_INVALID
1546 && !(fFlags & ~VMMEMTRENDEZVOUS_FLAGS_VALID_MASK), ("%#x\n", fFlags));
1547
1548 int rc;
1549 if (pVM->cCPUs == 1)
1550 /*
1551 * Shortcut for the single EMT case.
1552 */
1553 rc = pfnRendezvous(pVM, pVCpu, pvUser);
1554 else
1555 {
1556 /*
1557 * Spin lock. If busy, wait for the other EMT to finish while keeping a
1558 * lookout of the RENDEZVOUS FF.
1559 */
1560 while (!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0))
1561 {
1562 if (VM_FF_ISPENDING(pVM, VM_FF_EMT_RENDEZVOUS))
1563 VMMR3EmtRendezvousFF(pVM, pVCpu);
1564 }
1565 Assert(!VM_FF_ISPENDING(pVM, VM_FF_EMT_RENDEZVOUS));
1566
1567 /*
1568 * Clear the slate. This is a semaphore ping-pong orgy. :-)
1569 */
1570 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1571 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1572 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1573 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1574 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
1575 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
1576 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1577 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
1578 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
1579 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
1580 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
1581
1582 /*
1583 * Set the FF and poke the other EMTs.
1584 */
1585 VM_FF_SET(pVM, VM_FF_EMT_RENDEZVOUS);
1586 VMR3NotifyGlobalFFU(pVM->pUVM, VMNOTIFYFF_FLAGS_POKE);
1587
1588 /*
1589 * Do the same ourselves.
1590 */
1591 vmmR3EmtRendezvousCommon(pVM, pVCpu, true /* fIsCaller */, fFlags, pfnRendezvous, pvUser);
1592
1593 /*
1594 * The caller waits for the other EMTs to be done and return before doing
1595 * the cleanup. This makes away with wakeup / reset races we would otherwise
1596 * risk in the multiple release event semaphore code (hEvtRendezvousDoneCaller).
1597 */
1598 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
1599 AssertLogRelRC(rc);
1600
1601 /*
1602 * Get the return code and clean up a little bit.
1603 */
1604 rc = pVM->vmm.s.i32RendezvousStatus;
1605 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, NULL);
1606
1607 ASMAtomicWriteU32(&pVM->vmm.s.u32RendezvousLock, 0);
1608 }
1609
1610 return rc;
1611}
1612
1613
1614/**
1615 * Read from the ring 0 jump buffer stack
1616 *
1617 * @returns VBox status code.
1618 *
1619 * @param pVM Pointer to the shared VM structure.
1620 * @param idCpu The ID of the source CPU context (for the address).
1621 * @param pAddress Where to start reading.
1622 * @param pvBuf Where to store the data we've read.
1623 * @param cbRead The number of bytes to read.
1624 */
1625VMMR3DECL(int) VMMR3ReadR0Stack(PVM pVM, VMCPUID idCpu, RTHCUINTPTR pAddress, void *pvBuf, size_t cbRead)
1626{
1627 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1628 AssertReturn(pVCpu, VERR_INVALID_PARAMETER);
1629
1630 RTHCUINTPTR offset = pVCpu->vmm.s.CallRing3JmpBufR0.SpCheck - pAddress;
1631 if (offset >= pVCpu->vmm.s.CallRing3JmpBufR0.cbSavedStack)
1632 return VERR_INVALID_POINTER;
1633
1634 memcpy(pvBuf, pVCpu->vmm.s.pbEMTStackR3 + pVCpu->vmm.s.CallRing3JmpBufR0.cbSavedStack - offset, cbRead);
1635 return VINF_SUCCESS;
1636}
1637
1638
1639/**
1640 * Calls a RC function.
1641 *
1642 * @param pVM The VM handle.
1643 * @param RCPtrEntry The address of the RC function.
1644 * @param cArgs The number of arguments in the ....
1645 * @param ... Arguments to the function.
1646 */
1647VMMR3DECL(int) VMMR3CallRC(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, ...)
1648{
1649 va_list args;
1650 va_start(args, cArgs);
1651 int rc = VMMR3CallRCV(pVM, RCPtrEntry, cArgs, args);
1652 va_end(args);
1653 return rc;
1654}
1655
1656
1657/**
1658 * Calls a RC function.
1659 *
1660 * @param pVM The VM handle.
1661 * @param RCPtrEntry The address of the RC function.
1662 * @param cArgs The number of arguments in the ....
1663 * @param args Arguments to the function.
1664 */
1665VMMR3DECL(int) VMMR3CallRCV(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, va_list args)
1666{
1667 /* Raw mode implies 1 VCPU. */
1668 AssertReturn(pVM->cCPUs == 1, VERR_RAW_MODE_INVALID_SMP);
1669 PVMCPU pVCpu = &pVM->aCpus[0];
1670
1671 Log2(("VMMR3CallGCV: RCPtrEntry=%RRv cArgs=%d\n", RCPtrEntry, cArgs));
1672
1673 /*
1674 * Setup the call frame using the trampoline.
1675 */
1676 CPUMHyperSetCtxCore(pVCpu, NULL);
1677 memset(pVCpu->vmm.s.pbEMTStackR3, 0xaa, VMM_STACK_SIZE); /* Clear the stack. */
1678 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC - cArgs * sizeof(RTGCUINTPTR32));
1679 PRTGCUINTPTR32 pFrame = (PRTGCUINTPTR32)(pVCpu->vmm.s.pbEMTStackR3 + VMM_STACK_SIZE) - cArgs;
1680 int i = cArgs;
1681 while (i-- > 0)
1682 *pFrame++ = va_arg(args, RTGCUINTPTR32);
1683
1684 CPUMPushHyper(pVCpu, cArgs * sizeof(RTGCUINTPTR32)); /* stack frame size */
1685 CPUMPushHyper(pVCpu, RCPtrEntry); /* what to call */
1686 CPUMSetHyperEIP(pVCpu, pVM->vmm.s.pfnCallTrampolineRC);
1687
1688 /*
1689 * We hide log flushes (outer) and hypervisor interrupts (inner).
1690 */
1691 for (;;)
1692 {
1693 int rc;
1694 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
1695 do
1696 {
1697#ifdef NO_SUPCALLR0VMM
1698 rc = VERR_GENERAL_FAILURE;
1699#else
1700 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1701 if (RT_LIKELY(rc == VINF_SUCCESS))
1702 rc = pVCpu->vmm.s.iLastGZRc;
1703#endif
1704 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1705
1706 /*
1707 * Flush the logs.
1708 */
1709#ifdef LOG_ENABLED
1710 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1711 if ( pLogger
1712 && pLogger->offScratch > 0)
1713 RTLogFlushRC(NULL, pLogger);
1714#endif
1715#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1716 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1717 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1718 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
1719#endif
1720 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
1721 VMMR3FatalDump(pVM, pVCpu, rc);
1722 if (rc != VINF_VMM_CALL_HOST)
1723 {
1724 Log2(("VMMR3CallGCV: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1725 return rc;
1726 }
1727 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1728 if (RT_FAILURE(rc))
1729 return rc;
1730 }
1731}
1732
1733
1734/**
1735 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
1736 *
1737 * @returns VBox status code.
1738 * @param pVM The VM to operate on.
1739 * @param uOperation Operation to execute.
1740 * @param u64Arg Constant argument.
1741 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
1742 * details.
1743 */
1744VMMR3DECL(int) VMMR3CallR0(PVM pVM, uint32_t uOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
1745{
1746 PVMCPU pVCpu = VMMGetCpu(pVM);
1747 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
1748
1749 /*
1750 * Call Ring-0 entry with init code.
1751 */
1752 int rc;
1753 for (;;)
1754 {
1755#ifdef NO_SUPCALLR0VMM
1756 rc = VERR_GENERAL_FAILURE;
1757#else
1758 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, pVCpu->idCpu, uOperation, u64Arg, pReqHdr);
1759#endif
1760 /*
1761 * Flush the logs.
1762 */
1763#ifdef LOG_ENABLED
1764 if ( pVCpu->vmm.s.pR0LoggerR3
1765 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
1766 RTLogFlushToLogger(&pVCpu->vmm.s.pR0LoggerR3->Logger, NULL);
1767#endif
1768 if (rc != VINF_VMM_CALL_HOST)
1769 break;
1770 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1771 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
1772 break;
1773 /* Resume R0 */
1774 }
1775
1776 AssertLogRelMsgReturn(rc == VINF_SUCCESS || VBOX_FAILURE(rc),
1777 ("uOperation=%u rc=%Rrc\n", uOperation, rc),
1778 VERR_INTERNAL_ERROR);
1779 return rc;
1780}
1781
1782
1783/**
1784 * Resumes executing hypervisor code when interrupted by a queue flush or a
1785 * debug event.
1786 *
1787 * @returns VBox status code.
1788 * @param pVM VM handle.
1789 * @param pVCpu VMCPU handle.
1790 */
1791VMMR3DECL(int) VMMR3ResumeHyper(PVM pVM, PVMCPU pVCpu)
1792{
1793 Log(("VMMR3ResumeHyper: eip=%RRv esp=%RRv\n", CPUMGetHyperEIP(pVCpu), CPUMGetHyperESP(pVCpu)));
1794 AssertReturn(pVM->cCPUs == 1, VERR_RAW_MODE_INVALID_SMP);
1795
1796 /*
1797 * We hide log flushes (outer) and hypervisor interrupts (inner).
1798 */
1799 for (;;)
1800 {
1801 int rc;
1802 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
1803 do
1804 {
1805#ifdef NO_SUPCALLR0VMM
1806 rc = VERR_GENERAL_FAILURE;
1807#else
1808 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1809 if (RT_LIKELY(rc == VINF_SUCCESS))
1810 rc = pVCpu->vmm.s.iLastGZRc;
1811#endif
1812 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1813
1814 /*
1815 * Flush the loggers,
1816 */
1817#ifdef LOG_ENABLED
1818 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1819 if ( pLogger
1820 && pLogger->offScratch > 0)
1821 RTLogFlushRC(NULL, pLogger);
1822#endif
1823#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1824 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1825 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1826 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
1827#endif
1828 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
1829 VMMR3FatalDump(pVM, pVCpu, rc);
1830 if (rc != VINF_VMM_CALL_HOST)
1831 {
1832 Log(("VMMR3ResumeHyper: returns %Rrc\n", rc));
1833 return rc;
1834 }
1835 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1836 if (RT_FAILURE(rc))
1837 return rc;
1838 }
1839}
1840
1841
1842/**
1843 * Service a call to the ring-3 host code.
1844 *
1845 * @returns VBox status code.
1846 * @param pVM VM handle.
1847 * @param pVCpu VMCPU handle
1848 * @remark Careful with critsects.
1849 */
1850static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu)
1851{
1852 /*
1853 * We must also check for pending critsect exits or else we can deadlock
1854 * when entering other critsects here.
1855 */
1856 if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PDM_CRITSECT))
1857 PDMCritSectFF(pVCpu);
1858
1859 switch (pVCpu->vmm.s.enmCallRing3Operation)
1860 {
1861 /*
1862 * Acquire the PDM lock.
1863 */
1864 case VMMCALLRING3_PDM_LOCK:
1865 {
1866 pVCpu->vmm.s.rcCallRing3 = PDMR3LockCall(pVM);
1867 break;
1868 }
1869
1870 /*
1871 * Flush a PDM queue.
1872 */
1873 case VMMCALLRING3_PDM_QUEUE_FLUSH:
1874 {
1875 PDMR3QueueFlushWorker(pVM, NULL);
1876 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
1877 break;
1878 }
1879
1880 /*
1881 * Grow the PGM pool.
1882 */
1883 case VMMCALLRING3_PGM_POOL_GROW:
1884 {
1885 pVCpu->vmm.s.rcCallRing3 = PGMR3PoolGrow(pVM);
1886 break;
1887 }
1888
1889 /*
1890 * Maps an page allocation chunk into ring-3 so ring-0 can use it.
1891 */
1892 case VMMCALLRING3_PGM_MAP_CHUNK:
1893 {
1894 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysChunkMap(pVM, pVCpu->vmm.s.u64CallRing3Arg);
1895 break;
1896 }
1897
1898 /*
1899 * Allocates more handy pages.
1900 */
1901 case VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES:
1902 {
1903 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateHandyPages(pVM);
1904 break;
1905 }
1906
1907 /*
1908 * Acquire the PGM lock.
1909 */
1910 case VMMCALLRING3_PGM_LOCK:
1911 {
1912 pVCpu->vmm.s.rcCallRing3 = PGMR3LockCall(pVM);
1913 break;
1914 }
1915
1916 /*
1917 * Acquire the MM hypervisor heap lock.
1918 */
1919 case VMMCALLRING3_MMHYPER_LOCK:
1920 {
1921 pVCpu->vmm.s.rcCallRing3 = MMR3LockCall(pVM);
1922 break;
1923 }
1924
1925 /*
1926 * Flush REM handler notifications.
1927 */
1928 case VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS:
1929 {
1930 REMR3ReplayHandlerNotifications(pVM);
1931 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
1932 break;
1933 }
1934
1935 /*
1936 * This is a noop. We just take this route to avoid unnecessary
1937 * tests in the loops.
1938 */
1939 case VMMCALLRING3_VMM_LOGGER_FLUSH:
1940 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
1941 LogAlways(("*FLUSH*\n"));
1942 break;
1943
1944 /*
1945 * Set the VM error message.
1946 */
1947 case VMMCALLRING3_VM_SET_ERROR:
1948 VMR3SetErrorWorker(pVM);
1949 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
1950 break;
1951
1952 /*
1953 * Set the VM runtime error message.
1954 */
1955 case VMMCALLRING3_VM_SET_RUNTIME_ERROR:
1956 pVCpu->vmm.s.rcCallRing3 = VMR3SetRuntimeErrorWorker(pVM);
1957 break;
1958
1959 /*
1960 * Signal a ring 0 hypervisor assertion.
1961 * Cancel the longjmp operation that's in progress.
1962 */
1963 case VMMCALLRING3_VM_R0_ASSERTION:
1964 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
1965 pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call = false;
1966#ifdef RT_ARCH_X86
1967 pVCpu->vmm.s.CallRing3JmpBufR0.eip = 0;
1968#else
1969 pVCpu->vmm.s.CallRing3JmpBufR0.rip = 0;
1970#endif
1971 LogRel((pVM->vmm.s.szRing0AssertMsg1));
1972 LogRel((pVM->vmm.s.szRing0AssertMsg2));
1973 return VERR_VMM_RING0_ASSERTION;
1974
1975 /*
1976 * A forced switch to ring 0 for preemption purposes.
1977 */
1978 case VMMCALLRING3_VM_R0_PREEMPT:
1979 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
1980 break;
1981
1982 default:
1983 AssertMsgFailed(("enmCallRing3Operation=%d\n", pVCpu->vmm.s.enmCallRing3Operation));
1984 return VERR_INTERNAL_ERROR;
1985 }
1986
1987 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
1988 return VINF_SUCCESS;
1989}
1990
1991
1992/**
1993 * Displays the Force action Flags.
1994 *
1995 * @param pVM The VM handle.
1996 * @param pHlp The output helpers.
1997 * @param pszArgs The additional arguments (ignored).
1998 */
1999static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2000{
2001 int c;
2002 uint32_t f;
2003#define PRINT_FLAG(prf,flag) do { \
2004 if (f & (prf##flag)) \
2005 { \
2006 static const char *s_psz = #flag; \
2007 if (!(c % 6)) \
2008 pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz); \
2009 else \
2010 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2011 c++; \
2012 f &= ~(prf##flag); \
2013 } \
2014 } while (0)
2015
2016#define PRINT_GROUP(prf,grp,sfx) do { \
2017 if (f & (prf##grp##sfx)) \
2018 { \
2019 static const char *s_psz = #grp; \
2020 if (!(c % 5)) \
2021 pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : " Groups:\n", s_psz); \
2022 else \
2023 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2024 c++; \
2025 } \
2026 } while (0)
2027
2028 /*
2029 * The global flags.
2030 */
2031 const uint32_t fGlobalForcedActions = pVM->fGlobalForcedActions;
2032 pHlp->pfnPrintf(pHlp, "Global FFs: %#RX32", fGlobalForcedActions);
2033
2034 /* show the flag mnemonics */
2035 c = 0;
2036 f = fGlobalForcedActions;
2037 PRINT_FLAG(VM_FF_,TM_VIRTUAL_SYNC);
2038 PRINT_FLAG(VM_FF_,PDM_QUEUES);
2039 PRINT_FLAG(VM_FF_,PDM_DMA);
2040 PRINT_FLAG(VM_FF_,DBGF);
2041 PRINT_FLAG(VM_FF_,REQUEST);
2042 PRINT_FLAG(VM_FF_,TERMINATE);
2043 PRINT_FLAG(VM_FF_,RESET);
2044 PRINT_FLAG(VM_FF_,EMT_RENDEZVOUS);
2045 PRINT_FLAG(VM_FF_,PGM_NEED_HANDY_PAGES);
2046 PRINT_FLAG(VM_FF_,PGM_NO_MEMORY);
2047 PRINT_FLAG(VM_FF_,REM_HANDLER_NOTIFY);
2048 PRINT_FLAG(VM_FF_,DEBUG_SUSPEND);
2049 if (f)
2050 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2051 else
2052 pHlp->pfnPrintf(pHlp, "\n");
2053
2054 /* the groups */
2055 c = 0;
2056 f = fGlobalForcedActions;
2057 PRINT_GROUP(VM_FF_,EXTERNAL_SUSPENDED,_MASK);
2058 PRINT_GROUP(VM_FF_,EXTERNAL_HALTED,_MASK);
2059 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE,_MASK);
2060 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2061 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_POST,_MASK);
2062 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY_POST,_MASK);
2063 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY,_MASK);
2064 PRINT_GROUP(VM_FF_,ALL_BUT_RAW,_MASK);
2065 if (c)
2066 pHlp->pfnPrintf(pHlp, "\n");
2067
2068 /*
2069 * Per CPU flags.
2070 */
2071 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
2072 {
2073 const uint32_t fLocalForcedActions = pVM->aCpus[i].fLocalForcedActions;
2074 pHlp->pfnPrintf(pHlp, "CPU %u FFs: %#RX32", i, fLocalForcedActions);
2075
2076 /* show the flag mnemonics */
2077 c = 0;
2078 f = fLocalForcedActions;
2079 PRINT_FLAG(VMCPU_FF_,INTERRUPT_APIC);
2080 PRINT_FLAG(VMCPU_FF_,INTERRUPT_PIC);
2081 PRINT_FLAG(VMCPU_FF_,TIMER);
2082 PRINT_FLAG(VMCPU_FF_,PDM_CRITSECT);
2083 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3);
2084 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3_NON_GLOBAL);
2085 PRINT_FLAG(VMCPU_FF_,TRPM_SYNC_IDT);
2086 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_TSS);
2087 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_GDT);
2088 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_LDT);
2089 PRINT_FLAG(VMCPU_FF_,INHIBIT_INTERRUPTS);
2090 PRINT_FLAG(VMCPU_FF_,CSAM_SCAN_PAGE);
2091 PRINT_FLAG(VMCPU_FF_,CSAM_PENDING_ACTION);
2092 PRINT_FLAG(VMCPU_FF_,TO_R3);
2093 if (f)
2094 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2095 else
2096 pHlp->pfnPrintf(pHlp, "\n");
2097
2098 /* the groups */
2099 c = 0;
2100 f = fLocalForcedActions;
2101 PRINT_GROUP(VMCPU_FF_,EXTERNAL_SUSPENDED,_MASK);
2102 PRINT_GROUP(VMCPU_FF_,EXTERNAL_HALTED,_MASK);
2103 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE,_MASK);
2104 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2105 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_POST,_MASK);
2106 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY_POST,_MASK);
2107 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY,_MASK);
2108 PRINT_GROUP(VMCPU_FF_,RESUME_GUEST,_MASK);
2109 PRINT_GROUP(VMCPU_FF_,HWACCM_TO_R3,_MASK);
2110 PRINT_GROUP(VMCPU_FF_,ALL_BUT_RAW,_MASK);
2111 if (c)
2112 pHlp->pfnPrintf(pHlp, "\n");
2113 }
2114
2115#undef PRINT_FLAG
2116#undef PRINT_GROUP
2117}
2118
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette