VirtualBox

source: vbox/trunk/src/VBox/VMM/VMM.cpp@ 9026

Last change on this file since 9026 was 8841, checked in by vboxsync, 17 years ago

Extra statistic counter

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 98.4 KB
Line 
1/* $Id: VMM.cpp 8841 2008-05-15 11:05:07Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22//#define NO_SUPCALLR0VMM
23
24/** @page pg_vmm VMM - The Virtual Machine Monitor
25 *
26 * !Revise this! It's already incorrect!
27 *
28 * The Virtual Machine Monitor (VMM) is the core of the virtual machine. It
29 * manages the alternate reality; controlling the virtualization, managing
30 * resources, tracking CPU state, it's resources and so on...
31 *
32 * We will split the VMM into smaller entities:
33 *
34 * - Virtual Machine Core Monitor (VMCM), which purpose it is to
35 * provide ring and world switching, that including routing
36 * interrupts to the host OS and traps to the appropriate trap
37 * handlers. It will implement an external interface for
38 * managing trap handlers.
39 *
40 * - CPU Monitor (CM), tracking the state of the CPU (in the alternate
41 * reality) and implementing external interfaces to read and change
42 * the state.
43 *
44 * - Memory Monitor (MM), which purpose it is to virtualize physical
45 * pages, segment descriptor tables, interrupt descriptor tables, task
46 * segments, and keep track of all memory providing external interfaces
47 * to access content and map pages. (Internally splitt into smaller entities!)
48 *
49 * - IO Monitor (IOM), which virtualizes in and out I/O operations. It
50 * interacts with the MM to implement memory mapped I/O. External
51 * interfaces for adding and removing I/O ranges are implemented.
52 *
53 * - External Interrupt Monitor (EIM), which purpose it is to manage
54 * interrupts generated by virtual devices. This monitor provides
55 * an interfaces for raising interrupts which is accessible at any
56 * time and from all thread.
57 * <p>
58 * A subentity of the EIM is the vitual Programmable Interrupt
59 * Controller Device (VPICD), and perhaps a virtual I/O Advanced
60 * Programmable Interrupt Controller Device (VAPICD).
61 *
62 * - Direct Memory Access Monitor (DMAM), which purpose it is to support
63 * virtual device using the DMA controller. Interfaces must be as the
64 * EIM interfaces independent and threadable.
65 * <p>
66 * A subentity of the DMAM is a virtual DMA Controller Device (VDMACD).
67 *
68 *
69 * Entities working on a higher level:
70 *
71 * - Device Manager (DM), which is a support facility for virtualized
72 * hardware. This provides generic facilities for efficient device
73 * virtualization. It will manage device attaching and detaching
74 * conversing with EIM and IOM.
75 *
76 * - Debugger Facility (DBGF) provides the basic features for
77 * debugging the alternate reality execution.
78 *
79 *
80 *
81 * @section pg_vmm_s_use_cases Use Cases
82 *
83 * @subsection pg_vmm_s_use_case_boot Bootstrap
84 *
85 * - Basic Init:
86 * - Init SUPDRV.
87 *
88 * - Init Virtual Machine Instance:
89 * - Load settings.
90 * - Check resource requirements (memory, com, stuff).
91 *
92 * - Init Host Ring 3 part:
93 * - Init Core code.
94 * - Load Pluggable Components.
95 * - Init Pluggable Components.
96 *
97 * - Init Host Ring 0 part:
98 * - Load Core (core = core components like VMM, RMI, CA, and so on) code.
99 * - Init Core code.
100 * - Load Pluggable Component code.
101 * - Init Pluggable Component code.
102 *
103 * - Allocate first chunk of memory and pin it down. This block of memory
104 * will fit the following pieces:
105 * - Virtual Machine Instance data. (Config, CPU state, VMM state, ++)
106 * (This is available from everywhere (at different addresses though)).
107 * - VMM Guest Context code.
108 * - Pluggable devices Guest Context code.
109 * - Page tables (directory and everything) for the VMM Guest
110 *
111 * - Setup Guest (Ring 0) part:
112 * - Setup initial page tables (i.e. directory all the stuff).
113 * - Load Core Guest Context code.
114 * - Load Pluggable Devices Guest Context code.
115 *
116 *
117 */
118
119
120/*******************************************************************************
121* Header Files *
122*******************************************************************************/
123#define LOG_GROUP LOG_GROUP_VMM
124#include <VBox/vmm.h>
125#include <VBox/vmapi.h>
126#include <VBox/pgm.h>
127#include <VBox/cfgm.h>
128#include <VBox/pdmqueue.h>
129#include <VBox/pdmapi.h>
130#include <VBox/cpum.h>
131#include <VBox/mm.h>
132#include <VBox/iom.h>
133#include <VBox/trpm.h>
134#include <VBox/selm.h>
135#include <VBox/em.h>
136#include <VBox/sup.h>
137#include <VBox/dbgf.h>
138#include <VBox/csam.h>
139#include <VBox/patm.h>
140#include <VBox/rem.h>
141#include <VBox/ssm.h>
142#include <VBox/tm.h>
143#include "VMMInternal.h"
144#include "VMMSwitcher/VMMSwitcher.h"
145#include <VBox/vm.h>
146#include <VBox/err.h>
147#include <VBox/param.h>
148#include <VBox/version.h>
149#include <VBox/x86.h>
150#include <VBox/hwaccm.h>
151#include <iprt/assert.h>
152#include <iprt/alloc.h>
153#include <iprt/asm.h>
154#include <iprt/time.h>
155#include <iprt/stream.h>
156#include <iprt/string.h>
157#include <iprt/stdarg.h>
158#include <iprt/ctype.h>
159
160
161
162/** The saved state version. */
163#define VMM_SAVED_STATE_VERSION 3
164
165
166/*******************************************************************************
167* Internal Functions *
168*******************************************************************************/
169static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
170static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
171static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser);
172static int vmmR3ServiceCallHostRequest(PVM pVM);
173static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
174
175
176/*******************************************************************************
177* Global Variables *
178*******************************************************************************/
179/** Array of switcher defininitions.
180 * The type and index shall match!
181 */
182static PVMMSWITCHERDEF s_apSwitchers[VMMSWITCHER_MAX] =
183{
184 NULL, /* invalid entry */
185#ifndef RT_ARCH_AMD64
186 &vmmR3Switcher32BitTo32Bit_Def,
187 &vmmR3Switcher32BitToPAE_Def,
188 NULL, //&vmmR3Switcher32BitToAMD64_Def,
189 &vmmR3SwitcherPAETo32Bit_Def,
190 &vmmR3SwitcherPAEToPAE_Def,
191 NULL, //&vmmR3SwitcherPAEToAMD64_Def,
192# ifdef VBOX_WITH_HYBIRD_32BIT_KERNEL
193 &vmmR3SwitcherAMD64ToPAE_Def,
194# else
195 NULL, //&vmmR3SwitcherAMD64ToPAE_Def,
196# endif
197 NULL //&vmmR3SwitcherAMD64ToAMD64_Def,
198#else
199 NULL, //&vmmR3Switcher32BitTo32Bit_Def,
200 NULL, //&vmmR3Switcher32BitToPAE_Def,
201 NULL, //&vmmR3Switcher32BitToAMD64_Def,
202 NULL, //&vmmR3SwitcherPAETo32Bit_Def,
203 NULL, //&vmmR3SwitcherPAEToPAE_Def,
204 NULL, //&vmmR3SwitcherPAEToAMD64_Def,
205 &vmmR3SwitcherAMD64ToPAE_Def,
206 NULL //&vmmR3SwitcherAMD64ToAMD64_Def,
207#endif
208};
209
210
211
212/**
213 * Initiates the core code.
214 *
215 * This is core per VM code which might need fixups and/or for ease of use
216 * are put on linear contiguous backing.
217 *
218 * @returns VBox status code.
219 * @param pVM Pointer to VM structure.
220 */
221static int vmmR3InitCoreCode(PVM pVM)
222{
223 /*
224 * Calc the size.
225 */
226 unsigned cbCoreCode = 0;
227 for (unsigned iSwitcher = 0; iSwitcher < ELEMENTS(s_apSwitchers); iSwitcher++)
228 {
229 pVM->vmm.s.aoffSwitchers[iSwitcher] = cbCoreCode;
230 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[iSwitcher];
231 if (pSwitcher)
232 {
233 AssertRelease((unsigned)pSwitcher->enmType == iSwitcher);
234 cbCoreCode += RT_ALIGN_32(pSwitcher->cbCode + 1, 32);
235 }
236 }
237
238 /*
239 * Allocate continguous pages for switchers and deal with
240 * conflicts in the intermediate mapping of the code.
241 */
242 pVM->vmm.s.cbCoreCode = RT_ALIGN_32(cbCoreCode, PAGE_SIZE);
243 pVM->vmm.s.pvHCCoreCodeR3 = SUPContAlloc2(pVM->vmm.s.cbCoreCode >> PAGE_SHIFT, &pVM->vmm.s.pvHCCoreCodeR0, &pVM->vmm.s.HCPhysCoreCode);
244 int rc = VERR_NO_MEMORY;
245 if (pVM->vmm.s.pvHCCoreCodeR3)
246 {
247 rc = PGMR3MapIntermediate(pVM, pVM->vmm.s.pvHCCoreCodeR0, pVM->vmm.s.HCPhysCoreCode, cbCoreCode);
248 if (rc == VERR_PGM_INTERMEDIATE_PAGING_CONFLICT)
249 {
250 /* try more allocations. */
251 struct
252 {
253 RTR0PTR pvR0;
254 void *pvR3;
255 RTHCPHYS HCPhys;
256 RTUINT cb;
257 } aBadTries[128];
258 unsigned i = 0;
259 do
260 {
261 aBadTries[i].pvR3 = pVM->vmm.s.pvHCCoreCodeR3;
262 aBadTries[i].pvR0 = pVM->vmm.s.pvHCCoreCodeR0;
263 aBadTries[i].HCPhys = pVM->vmm.s.HCPhysCoreCode;
264 i++;
265 pVM->vmm.s.pvHCCoreCodeR0 = NIL_RTR0PTR;
266 pVM->vmm.s.HCPhysCoreCode = NIL_RTHCPHYS;
267 pVM->vmm.s.pvHCCoreCodeR3 = SUPContAlloc2(pVM->vmm.s.cbCoreCode >> PAGE_SHIFT, &pVM->vmm.s.pvHCCoreCodeR0, &pVM->vmm.s.HCPhysCoreCode);
268 if (!pVM->vmm.s.pvHCCoreCodeR3)
269 break;
270 rc = PGMR3MapIntermediate(pVM, pVM->vmm.s.pvHCCoreCodeR0, pVM->vmm.s.HCPhysCoreCode, cbCoreCode);
271 } while ( rc == VERR_PGM_INTERMEDIATE_PAGING_CONFLICT
272 && i < RT_ELEMENTS(aBadTries) - 1);
273
274 /* cleanup */
275 if (VBOX_FAILURE(rc))
276 {
277 aBadTries[i].pvR3 = pVM->vmm.s.pvHCCoreCodeR3;
278 aBadTries[i].pvR0 = pVM->vmm.s.pvHCCoreCodeR0;
279 aBadTries[i].HCPhys = pVM->vmm.s.HCPhysCoreCode;
280 aBadTries[i].cb = pVM->vmm.s.cbCoreCode;
281 i++;
282 LogRel(("Failed to allocated and map core code: rc=%Vrc\n", rc));
283 }
284 while (i-- > 0)
285 {
286 LogRel(("Core code alloc attempt #%d: pvR3=%p pvR0=%p HCPhys=%VHp\n",
287 i, aBadTries[i].pvR3, aBadTries[i].pvR0, aBadTries[i].HCPhys));
288 SUPContFree(aBadTries[i].pvR3, aBadTries[i].cb >> PAGE_SHIFT);
289 }
290 }
291 }
292 if (VBOX_SUCCESS(rc))
293 {
294 /*
295 * copy the code.
296 */
297 for (unsigned iSwitcher = 0; iSwitcher < ELEMENTS(s_apSwitchers); iSwitcher++)
298 {
299 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[iSwitcher];
300 if (pSwitcher)
301 memcpy((uint8_t *)pVM->vmm.s.pvHCCoreCodeR3 + pVM->vmm.s.aoffSwitchers[iSwitcher],
302 pSwitcher->pvCode, pSwitcher->cbCode);
303 }
304
305 /*
306 * Map the code into the GC address space.
307 */
308 rc = MMR3HyperMapHCPhys(pVM, pVM->vmm.s.pvHCCoreCodeR3, pVM->vmm.s.HCPhysCoreCode, cbCoreCode, "Core Code", &pVM->vmm.s.pvGCCoreCode);
309 if (VBOX_SUCCESS(rc))
310 {
311 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
312 LogRel(("CoreCode: R3=%VHv R0=%VHv GC=%VGv Phys=%VHp cb=%#x\n",
313 pVM->vmm.s.pvHCCoreCodeR3, pVM->vmm.s.pvHCCoreCodeR0, pVM->vmm.s.pvGCCoreCode, pVM->vmm.s.HCPhysCoreCode, pVM->vmm.s.cbCoreCode));
314
315 /*
316 * Finally, PGM probably have selected a switcher already but we need
317 * to do get the addresses so we'll reselect it.
318 * This may legally fail so, we're ignoring the rc.
319 */
320 VMMR3SelectSwitcher(pVM, pVM->vmm.s.enmSwitcher);
321 return rc;
322 }
323
324 /* shit */
325 AssertMsgFailed(("PGMR3Map(,%VGv, %VGp, %#x, 0) failed with rc=%Vrc\n", pVM->vmm.s.pvGCCoreCode, pVM->vmm.s.HCPhysCoreCode, cbCoreCode, rc));
326 SUPContFree(pVM->vmm.s.pvHCCoreCodeR3, pVM->vmm.s.cbCoreCode >> PAGE_SHIFT);
327 }
328 else
329 VMSetError(pVM, rc, RT_SRC_POS,
330 N_("Failed to allocate %d bytes of contiguous memory for the world switcher code"),
331 cbCoreCode);
332
333 pVM->vmm.s.pvHCCoreCodeR3 = NULL;
334 pVM->vmm.s.pvHCCoreCodeR0 = NIL_RTR0PTR;
335 pVM->vmm.s.pvGCCoreCode = 0;
336 return rc;
337}
338
339
340/**
341 * Initializes the VMM.
342 *
343 * @returns VBox status code.
344 * @param pVM The VM to operate on.
345 */
346VMMR3DECL(int) VMMR3Init(PVM pVM)
347{
348 LogFlow(("VMMR3Init\n"));
349
350 /*
351 * Assert alignment, sizes and order.
352 */
353 AssertMsg(pVM->vmm.s.offVM == 0, ("Already initialized!\n"));
354 AssertMsg(sizeof(pVM->vmm.padding) >= sizeof(pVM->vmm.s),
355 ("pVM->vmm.padding is too small! vmm.padding %d while vmm.s is %d\n",
356 sizeof(pVM->vmm.padding), sizeof(pVM->vmm.s)));
357
358 /*
359 * Init basic VM VMM members.
360 */
361 pVM->vmm.s.offVM = RT_OFFSETOF(VM, vmm);
362 int rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies);
363 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
364 pVM->vmm.s.cYieldEveryMillies = 23; /* Value arrived at after experimenting with the grub boot prompt. */
365 //pVM->vmm.s.cYieldEveryMillies = 8; //debugging
366 else
367 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Vrc\n", rc), rc);
368
369 /* GC switchers are enabled by default. Turned off by HWACCM. */
370 pVM->vmm.s.fSwitcherDisabled = false;
371
372 /*
373 * Register the saved state data unit.
374 */
375 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
376 NULL, vmmR3Save, NULL,
377 NULL, vmmR3Load, NULL);
378 if (VBOX_FAILURE(rc))
379 return rc;
380
381 /*
382 * Register the Ring-0 VM handle with the session for fast ioctl calls.
383 */
384 rc = SUPSetVMForFastIOCtl(pVM->pVMR0);
385 if (VBOX_FAILURE(rc))
386 return rc;
387
388 /*
389 * Init core code.
390 */
391 rc = vmmR3InitCoreCode(pVM);
392 if (VBOX_SUCCESS(rc))
393 {
394 /*
395 * Allocate & init VMM GC stack.
396 * The stack pages are also used by the VMM R0 when VMMR0CallHost is invoked.
397 * (The page protection is modifed during R3 init completion.)
398 */
399#ifdef VBOX_STRICT_VMM_STACK
400 rc = MMHyperAlloc(pVM, VMM_STACK_SIZE + PAGE_SIZE + PAGE_SIZE, PAGE_SIZE, MM_TAG_VMM, (void **)&pVM->vmm.s.pbHCStack);
401#else
402 rc = MMHyperAlloc(pVM, VMM_STACK_SIZE, PAGE_SIZE, MM_TAG_VMM, (void **)&pVM->vmm.s.pbHCStack);
403#endif
404 if (VBOX_SUCCESS(rc))
405 {
406 /* Set HC and GC stack pointers to top of stack. */
407 pVM->vmm.s.CallHostR0JmpBuf.pvSavedStack = (RTR0PTR)pVM->vmm.s.pbHCStack;
408 pVM->vmm.s.pbGCStack = MMHyperHC2GC(pVM, pVM->vmm.s.pbHCStack);
409 pVM->vmm.s.pbGCStackBottom = pVM->vmm.s.pbGCStack + VMM_STACK_SIZE;
410 AssertRelease(pVM->vmm.s.pbGCStack);
411
412 /* Set hypervisor eip. */
413 CPUMSetHyperESP(pVM, pVM->vmm.s.pbGCStack);
414
415 /*
416 * Allocate GC & R0 Logger instances (they are finalized in the relocator).
417 */
418#ifdef LOG_ENABLED
419 PRTLOGGER pLogger = RTLogDefaultInstance();
420 if (pLogger)
421 {
422 pVM->vmm.s.cbLoggerGC = RT_OFFSETOF(RTLOGGERGC, afGroups[pLogger->cGroups]);
423 rc = MMHyperAlloc(pVM, pVM->vmm.s.cbLoggerGC, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pLoggerHC);
424 if (VBOX_SUCCESS(rc))
425 {
426 pVM->vmm.s.pLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pLoggerHC);
427
428/*
429 * Ring-0 logging isn't 100% safe yet (thread id reuse / process exit cleanup), so
430 * you have to sign up here by adding your defined(DEBUG_<userid>) to the #if.
431 *
432 * If you want to log in non-debug modes, you'll have to remember to change SUPDRvShared.c
433 * to not stub all the log functions.
434 *
435 * You might also wish to enable the AssertMsg1/2 overrides in VMMR0.cpp when enabling this.
436 */
437# if defined(DEBUG_sandervl) || defined(DEBUG_frank)
438 rc = MMHyperAlloc(pVM, RT_OFFSETOF(VMMR0LOGGER, Logger.afGroups[pLogger->cGroups]),
439 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pR0Logger);
440 if (VBOX_SUCCESS(rc))
441 {
442 pVM->vmm.s.pR0Logger->pVM = pVM->pVMR0;
443 //pVM->vmm.s.pR0Logger->fCreated = false;
444 pVM->vmm.s.pR0Logger->cbLogger = RT_OFFSETOF(RTLOGGER, afGroups[pLogger->cGroups]);
445 }
446# endif
447 }
448 }
449#endif /* LOG_ENABLED */
450
451#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
452 /*
453 * Allocate GC Release Logger instances (finalized in the relocator).
454 */
455 if (VBOX_SUCCESS(rc))
456 {
457 PRTLOGGER pRelLogger = RTLogRelDefaultInstance();
458 if (pRelLogger)
459 {
460 pVM->vmm.s.cbRelLoggerGC = RT_OFFSETOF(RTLOGGERGC, afGroups[pRelLogger->cGroups]);
461 rc = MMHyperAlloc(pVM, pVM->vmm.s.cbRelLoggerGC, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRelLoggerHC);
462 if (VBOX_SUCCESS(rc))
463 pVM->vmm.s.pRelLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pRelLoggerHC);
464 }
465 }
466#endif /* VBOX_WITH_GC_AND_R0_RELEASE_LOG */
467
468#ifdef VBOX_WITH_NMI
469 /*
470 * Allocate mapping for the host APIC.
471 */
472 if (VBOX_SUCCESS(rc))
473 {
474 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
475 AssertRC(rc);
476 }
477#endif
478 if (VBOX_SUCCESS(rc))
479 {
480 rc = RTCritSectInit(&pVM->vmm.s.CritSectVMLock);
481 if (VBOX_SUCCESS(rc))
482 {
483 /*
484 * Debug info.
485 */
486 DBGFR3InfoRegisterInternal(pVM, "ff", "Displays the current Forced actions Flags.", vmmR3InfoFF);
487
488 /*
489 * Statistics.
490 */
491 STAM_REG(pVM, &pVM->vmm.s.StatRunGC, STAMTYPE_COUNTER, "/VMM/RunGC", STAMUNIT_OCCURENCES, "Number of context switches.");
492 STAM_REG(pVM, &pVM->vmm.s.StatGCRetNormal, STAMTYPE_COUNTER, "/VMM/GCRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
493 STAM_REG(pVM, &pVM->vmm.s.StatGCRetInterrupt, STAMTYPE_COUNTER, "/VMM/GCRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
494 STAM_REG(pVM, &pVM->vmm.s.StatGCRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/GCRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
495 STAM_REG(pVM, &pVM->vmm.s.StatGCRetGuestTrap, STAMTYPE_COUNTER, "/VMM/GCRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
496 STAM_REG(pVM, &pVM->vmm.s.StatGCRetRingSwitch, STAMTYPE_COUNTER, "/VMM/GCRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
497 STAM_REG(pVM, &pVM->vmm.s.StatGCRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/GCRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
498 STAM_REG(pVM, &pVM->vmm.s.StatGCRetExceptionPrivilege, STAMTYPE_COUNTER, "/VMM/GCRet/ExceptionPrivilege", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_EXCEPTION_PRIVILEGED returns.");
499 STAM_REG(pVM, &pVM->vmm.s.StatGCRetStaleSelector, STAMTYPE_COUNTER, "/VMM/GCRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
500 STAM_REG(pVM, &pVM->vmm.s.StatGCRetIRETTrap, STAMTYPE_COUNTER, "/VMM/GCRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
501 STAM_REG(pVM, &pVM->vmm.s.StatGCRetEmulate, STAMTYPE_COUNTER, "/VMM/GCRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
502 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/GCRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
503 STAM_REG(pVM, &pVM->vmm.s.StatGCRetIORead, STAMTYPE_COUNTER, "/VMM/GCRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_READ returns.");
504 STAM_REG(pVM, &pVM->vmm.s.StatGCRetIOWrite, STAMTYPE_COUNTER, "/VMM/GCRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_WRITE returns.");
505 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMMIORead, STAMTYPE_COUNTER, "/VMM/GCRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_READ returns.");
506 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/GCRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_WRITE returns.");
507 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/GCRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_READ_WRITE returns.");
508 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/GCRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
509 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/GCRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
510 STAM_REG(pVM, &pVM->vmm.s.StatGCRetLDTFault, STAMTYPE_COUNTER, "/VMM/GCRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
511 STAM_REG(pVM, &pVM->vmm.s.StatGCRetGDTFault, STAMTYPE_COUNTER, "/VMM/GCRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
512 STAM_REG(pVM, &pVM->vmm.s.StatGCRetIDTFault, STAMTYPE_COUNTER, "/VMM/GCRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
513 STAM_REG(pVM, &pVM->vmm.s.StatGCRetTSSFault, STAMTYPE_COUNTER, "/VMM/GCRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
514 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPDFault, STAMTYPE_COUNTER, "/VMM/GCRet/PDFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_PD_FAULT returns.");
515 STAM_REG(pVM, &pVM->vmm.s.StatGCRetCSAMTask, STAMTYPE_COUNTER, "/VMM/GCRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
516 STAM_REG(pVM, &pVM->vmm.s.StatGCRetSyncCR3, STAMTYPE_COUNTER, "/VMM/GCRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
517 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMisc, STAMTYPE_COUNTER, "/VMM/GCRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
518 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPatchInt3, STAMTYPE_COUNTER, "/VMM/GCRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
519 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPatchPF, STAMTYPE_COUNTER, "/VMM/GCRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
520 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPatchGP, STAMTYPE_COUNTER, "/VMM/GCRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
521 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/GCRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
522 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPageOverflow, STAMTYPE_COUNTER, "/VMM/GCRet/InvlpgOverflow", STAMUNIT_OCCURENCES, "Number of VERR_REM_FLUSHED_PAGES_OVERFLOW returns.");
523 STAM_REG(pVM, &pVM->vmm.s.StatGCRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/GCRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
524 STAM_REG(pVM, &pVM->vmm.s.StatGCRetToR3, STAMTYPE_COUNTER, "/VMM/GCRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
525 STAM_REG(pVM, &pVM->vmm.s.StatGCRetTimerPending, STAMTYPE_COUNTER, "/VMM/GCRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
526 STAM_REG(pVM, &pVM->vmm.s.StatGCRetInterruptPending, STAMTYPE_COUNTER, "/VMM/GCRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
527 STAM_REG(pVM, &pVM->vmm.s.StatGCRetCallHost, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/Misc", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
528 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPGMGrowRAM, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/GrowRAM", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
529 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPDMLock, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/PDMLock", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
530 STAM_REG(pVM, &pVM->vmm.s.StatGCRetLogFlush, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/LogFlush", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
531 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPDMQueueFlush, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/QueueFlush", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
532 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPGMPoolGrow, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/PGMPoolGrow",STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
533 STAM_REG(pVM, &pVM->vmm.s.StatGCRetRemReplay, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/REMReplay", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
534 STAM_REG(pVM, &pVM->vmm.s.StatGCRetVMSetError, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/VMSetError", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
535 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPGMLock, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/PGMLock", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
536 STAM_REG(pVM, &pVM->vmm.s.StatGCRetHyperAssertion, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/HyperAssert", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
537 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/GCRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
538 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/GCRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns.");
539 STAM_REG(pVM, &pVM->vmm.s.StatGCRetEmulHlt, STAMTYPE_COUNTER, "/VMM/GCRet/EmulHlt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_EMULATE_INSTR_HLT returns.");
540 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPendingRequest, STAMTYPE_COUNTER, "/VMM/GCRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
541
542 return VINF_SUCCESS;
543 }
544 AssertRC(rc);
545 }
546 }
547 /** @todo: Need failure cleanup. */
548
549 //more todo in here?
550 //if (VBOX_SUCCESS(rc))
551 //{
552 //}
553 //int rc2 = vmmR3TermCoreCode(pVM);
554 //AssertRC(rc2));
555 }
556
557 return rc;
558}
559
560
561/**
562 * Ring-3 init finalizing.
563 *
564 * @returns VBox status code.
565 * @param pVM The VM handle.
566 */
567VMMR3DECL(int) VMMR3InitFinalize(PVM pVM)
568{
569#ifdef VBOX_STRICT_VMM_STACK
570 /*
571 * Two inaccessible pages at each sides of the stack to catch over/under-flows.
572 */
573 memset(pVM->vmm.s.pbHCStack - PAGE_SIZE, 0xcc, PAGE_SIZE);
574 PGMMapSetPage(pVM, MMHyperHC2GC(pVM, pVM->vmm.s.pbHCStack - PAGE_SIZE), PAGE_SIZE, 0);
575 RTMemProtect(pVM->vmm.s.pbHCStack - PAGE_SIZE, PAGE_SIZE, RTMEM_PROT_NONE);
576
577 memset(pVM->vmm.s.pbHCStack + VMM_STACK_SIZE, 0xcc, PAGE_SIZE);
578 PGMMapSetPage(pVM, MMHyperHC2GC(pVM, pVM->vmm.s.pbHCStack + VMM_STACK_SIZE), PAGE_SIZE, 0);
579 RTMemProtect(pVM->vmm.s.pbHCStack + VMM_STACK_SIZE, PAGE_SIZE, RTMEM_PROT_NONE);
580#endif
581
582 /*
583 * Set page attributes to r/w for stack pages.
584 */
585 int rc = PGMMapSetPage(pVM, pVM->vmm.s.pbGCStack, VMM_STACK_SIZE, X86_PTE_P | X86_PTE_A | X86_PTE_D | X86_PTE_RW);
586 AssertRC(rc);
587 if (VBOX_SUCCESS(rc))
588 {
589 /*
590 * Create the EMT yield timer.
591 */
592 rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, "EMT Yielder", &pVM->vmm.s.pYieldTimer);
593 if (VBOX_SUCCESS(rc))
594 rc = TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldEveryMillies);
595 }
596#ifdef VBOX_WITH_NMI
597 /*
598 * Map the host APIC into GC - This may be host os specific!
599 */
600 if (VBOX_SUCCESS(rc))
601 rc = PGMMap(pVM, pVM->vmm.s.GCPtrApicBase, 0xfee00000, PAGE_SIZE,
602 X86_PTE_P | X86_PTE_RW | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_A | X86_PTE_D);
603#endif
604 return rc;
605}
606
607
608/**
609 * Initializes the R0 VMM.
610 *
611 * @returns VBox status code.
612 * @param pVM The VM to operate on.
613 */
614VMMR3DECL(int) VMMR3InitR0(PVM pVM)
615{
616 int rc;
617
618 /*
619 * Initialize the ring-0 logger if we haven't done so yet.
620 */
621 if ( pVM->vmm.s.pR0Logger
622 && !pVM->vmm.s.pR0Logger->fCreated)
623 {
624 rc = VMMR3UpdateLoggers(pVM);
625 if (VBOX_FAILURE(rc))
626 return rc;
627 }
628
629 /*
630 * Call Ring-0 entry with init code.
631 */
632 for (;;)
633 {
634#ifdef NO_SUPCALLR0VMM
635 //rc = VERR_GENERAL_FAILURE;
636 rc = VINF_SUCCESS;
637#else
638 rc = SUPCallVMMR0Ex(pVM->pVMR0, VMMR0_DO_VMMR0_INIT, VBOX_VERSION, NULL);
639#endif
640 if ( pVM->vmm.s.pR0Logger
641 && pVM->vmm.s.pR0Logger->Logger.offScratch > 0)
642 RTLogFlushToLogger(&pVM->vmm.s.pR0Logger->Logger, NULL);
643 if (rc != VINF_VMM_CALL_HOST)
644 break;
645 rc = vmmR3ServiceCallHostRequest(pVM);
646 if (VBOX_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
647 break;
648 /* Resume R0 */
649 }
650
651 if (VBOX_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
652 {
653 LogRel(("R0 init failed, rc=%Vra\n", rc));
654 if (VBOX_SUCCESS(rc))
655 rc = VERR_INTERNAL_ERROR;
656 }
657 return rc;
658}
659
660
661/**
662 * Initializes the GC VMM.
663 *
664 * @returns VBox status code.
665 * @param pVM The VM to operate on.
666 */
667VMMR3DECL(int) VMMR3InitGC(PVM pVM)
668{
669 /* In VMX mode, there's no need to init GC. */
670 if (pVM->vmm.s.fSwitcherDisabled)
671 return VINF_SUCCESS;
672
673 /*
674 * Call VMMGCInit():
675 * -# resolve the address.
676 * -# setup stackframe and EIP to use the trampoline.
677 * -# do a generic hypervisor call.
678 */
679 RTGCPTR GCPtrEP;
680 int rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMGCEntry", &GCPtrEP);
681 if (VBOX_SUCCESS(rc))
682 {
683 CPUMHyperSetCtxCore(pVM, NULL);
684 CPUMSetHyperESP(pVM, pVM->vmm.s.pbGCStackBottom); /* Clear the stack. */
685 uint64_t u64TS = RTTimeProgramStartNanoTS();
686#if GC_ARCH_BITS == 32
687 CPUMPushHyper(pVM, (uint32_t)(u64TS >> 32)); /* Param 3: The program startup TS - Hi. */
688 CPUMPushHyper(pVM, (uint32_t)u64TS); /* Param 3: The program startup TS - Lo. */
689#else /* 64-bit GC */
690 CPUMPushHyper(pVM, u64TS); /* Param 3: The program startup TS. */
691#endif
692 CPUMPushHyper(pVM, VBOX_VERSION); /* Param 2: Version argument. */
693 CPUMPushHyper(pVM, VMMGC_DO_VMMGC_INIT); /* Param 1: Operation. */
694 CPUMPushHyper(pVM, pVM->pVMGC); /* Param 0: pVM */
695 CPUMPushHyper(pVM, 3 * sizeof(RTGCPTR)); /* trampoline param: stacksize. */
696 CPUMPushHyper(pVM, GCPtrEP); /* Call EIP. */
697 CPUMSetHyperEIP(pVM, pVM->vmm.s.pfnGCCallTrampoline);
698
699 for (;;)
700 {
701#ifdef NO_SUPCALLR0VMM
702 //rc = VERR_GENERAL_FAILURE;
703 rc = VINF_SUCCESS;
704#else
705 rc = SUPCallVMMR0(pVM->pVMR0, VMMR0_DO_CALL_HYPERVISOR, NULL);
706#endif
707#ifdef LOG_ENABLED
708 PRTLOGGERGC pLogger = pVM->vmm.s.pLoggerHC;
709 if ( pLogger
710 && pLogger->offScratch > 0)
711 RTLogFlushGC(NULL, pLogger);
712#endif
713#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
714 PRTLOGGERGC pRelLogger = pVM->vmm.s.pRelLoggerHC;
715 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
716 RTLogFlushGC(RTLogRelDefaultInstance(), pRelLogger);
717#endif
718 if (rc != VINF_VMM_CALL_HOST)
719 break;
720 rc = vmmR3ServiceCallHostRequest(pVM);
721 if (VBOX_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
722 break;
723 }
724
725 if (VBOX_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
726 {
727 VMMR3FatalDump(pVM, rc);
728 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
729 rc = VERR_INTERNAL_ERROR;
730 }
731 AssertRC(rc);
732 }
733 return rc;
734}
735
736
737/**
738 * Terminate the VMM bits.
739 *
740 * @returns VINF_SUCCESS.
741 * @param pVM The VM handle.
742 */
743VMMR3DECL(int) VMMR3Term(PVM pVM)
744{
745 /*
746 * Call Ring-0 entry with termination code.
747 */
748 int rc;
749 for (;;)
750 {
751#ifdef NO_SUPCALLR0VMM
752 //rc = VERR_GENERAL_FAILURE;
753 rc = VINF_SUCCESS;
754#else
755 rc = SUPCallVMMR0Ex(pVM->pVMR0, VMMR0_DO_VMMR0_TERM, VBOX_VERSION, NULL);
756#endif
757 if ( pVM->vmm.s.pR0Logger
758 && pVM->vmm.s.pR0Logger->Logger.offScratch > 0)
759 RTLogFlushToLogger(&pVM->vmm.s.pR0Logger->Logger, NULL);
760 if (rc != VINF_VMM_CALL_HOST)
761 break;
762 rc = vmmR3ServiceCallHostRequest(pVM);
763 if (VBOX_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
764 break;
765 /* Resume R0 */
766 }
767 if (VBOX_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
768 {
769 LogRel(("VMMR3Term: R0 term failed, rc=%Vra. (warning)\n", rc));
770 if (VBOX_SUCCESS(rc))
771 rc = VERR_INTERNAL_ERROR;
772 }
773
774#ifdef VBOX_STRICT_VMM_STACK
775 /*
776 * Make the two stack guard pages present again.
777 */
778 RTMemProtect(pVM->vmm.s.pbHCStack - PAGE_SIZE, PAGE_SIZE, RTMEM_PROT_READ | RTMEM_PROT_WRITE);
779 RTMemProtect(pVM->vmm.s.pbHCStack + VMM_STACK_SIZE, PAGE_SIZE, RTMEM_PROT_READ | RTMEM_PROT_WRITE);
780#endif
781 return rc;
782}
783
784
785/**
786 * Applies relocations to data and code managed by this
787 * component. This function will be called at init and
788 * whenever the VMM need to relocate it self inside the GC.
789 *
790 * The VMM will need to apply relocations to the core code.
791 *
792 * @param pVM The VM handle.
793 * @param offDelta The relocation delta.
794 */
795VMMR3DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
796{
797 LogFlow(("VMMR3Relocate: offDelta=%VGv\n", offDelta));
798
799 /*
800 * Recalc the GC address.
801 */
802 pVM->vmm.s.pvGCCoreCode = MMHyperHC2GC(pVM, pVM->vmm.s.pvHCCoreCodeR3);
803
804 /*
805 * The stack.
806 */
807 CPUMSetHyperESP(pVM, CPUMGetHyperESP(pVM) + offDelta);
808 pVM->vmm.s.pbGCStack = MMHyperHC2GC(pVM, pVM->vmm.s.pbHCStack);
809 pVM->vmm.s.pbGCStackBottom = pVM->vmm.s.pbGCStack + VMM_STACK_SIZE;
810
811 /*
812 * All the switchers.
813 */
814 for (unsigned iSwitcher = 0; iSwitcher < ELEMENTS(s_apSwitchers); iSwitcher++)
815 {
816 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[iSwitcher];
817 if (pSwitcher && pSwitcher->pfnRelocate)
818 {
819 unsigned off = pVM->vmm.s.aoffSwitchers[iSwitcher];
820 pSwitcher->pfnRelocate(pVM,
821 pSwitcher,
822 (uint8_t *)pVM->vmm.s.pvHCCoreCodeR0 + off,
823 (uint8_t *)pVM->vmm.s.pvHCCoreCodeR3 + off,
824 pVM->vmm.s.pvGCCoreCode + off,
825 pVM->vmm.s.HCPhysCoreCode + off);
826 }
827 }
828
829 /*
830 * Recalc the GC address for the current switcher.
831 */
832 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[pVM->vmm.s.enmSwitcher];
833 RTGCPTR GCPtr = pVM->vmm.s.pvGCCoreCode + pVM->vmm.s.aoffSwitchers[pVM->vmm.s.enmSwitcher];
834 pVM->vmm.s.pfnGCGuestToHost = GCPtr + pSwitcher->offGCGuestToHost;
835 pVM->vmm.s.pfnGCCallTrampoline = GCPtr + pSwitcher->offGCCallTrampoline;
836 pVM->pfnVMMGCGuestToHostAsm = GCPtr + pSwitcher->offGCGuestToHostAsm;
837 pVM->pfnVMMGCGuestToHostAsmHyperCtx = GCPtr + pSwitcher->offGCGuestToHostAsmHyperCtx;
838 pVM->pfnVMMGCGuestToHostAsmGuestCtx = GCPtr + pSwitcher->offGCGuestToHostAsmGuestCtx;
839
840 /*
841 * Get other GC entry points.
842 */
843 int rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuest", &pVM->vmm.s.pfnCPUMGCResumeGuest);
844 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuest not found! rc=%Vra\n", rc));
845
846 rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuestV86", &pVM->vmm.s.pfnCPUMGCResumeGuestV86);
847 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuestV86 not found! rc=%Vra\n", rc));
848
849 /*
850 * Update the logger.
851 */
852 VMMR3UpdateLoggers(pVM);
853}
854
855
856/**
857 * Updates the settings for the GC and R0 loggers.
858 *
859 * @returns VBox status code.
860 * @param pVM The VM handle.
861 */
862VMMR3DECL(int) VMMR3UpdateLoggers(PVM pVM)
863{
864 /*
865 * Simply clone the logger instance (for GC).
866 */
867 int rc = VINF_SUCCESS;
868 RTGCPTR GCPtrLoggerFlush = 0;
869
870 if (pVM->vmm.s.pLoggerHC
871#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
872 || pVM->vmm.s.pRelLoggerHC
873#endif
874 )
875 {
876 rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerFlush", &GCPtrLoggerFlush);
877 AssertReleaseMsgRC(rc, ("vmmGCLoggerFlush not found! rc=%Vra\n", rc));
878 }
879
880 if (pVM->vmm.s.pLoggerHC)
881 {
882 RTGCPTR GCPtrLoggerWrapper = 0;
883 rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerWrapper", &GCPtrLoggerWrapper);
884 AssertReleaseMsgRC(rc, ("vmmGCLoggerWrapper not found! rc=%Vra\n", rc));
885 pVM->vmm.s.pLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pLoggerHC);
886 rc = RTLogCloneGC(NULL /* default */, pVM->vmm.s.pLoggerHC, pVM->vmm.s.cbLoggerGC,
887 GCPtrLoggerWrapper, GCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
888 AssertReleaseMsgRC(rc, ("RTLogCloneGC failed! rc=%Vra\n", rc));
889 }
890
891#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
892 if (pVM->vmm.s.pRelLoggerHC)
893 {
894 RTGCPTR GCPtrLoggerWrapper = 0;
895 rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCRelLoggerWrapper", &GCPtrLoggerWrapper);
896 AssertReleaseMsgRC(rc, ("vmmGCRelLoggerWrapper not found! rc=%Vra\n", rc));
897 pVM->vmm.s.pRelLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pRelLoggerHC);
898 rc = RTLogCloneGC(RTLogRelDefaultInstance(), pVM->vmm.s.pRelLoggerHC, pVM->vmm.s.cbRelLoggerGC,
899 GCPtrLoggerWrapper, GCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
900 AssertReleaseMsgRC(rc, ("RTLogCloneGC failed! rc=%Vra\n", rc));
901 }
902#endif /* VBOX_WITH_GC_AND_R0_RELEASE_LOG */
903
904 /*
905 * For the ring-0 EMT logger, we use a per-thread logger
906 * instance in ring-0. Only initialize it once.
907 */
908 PVMMR0LOGGER pR0Logger = pVM->vmm.s.pR0Logger;
909 if (pR0Logger)
910 {
911 if (!pR0Logger->fCreated)
912 {
913 RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR;
914 rc = PDMR3GetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
915 AssertReleaseMsgRCReturn(rc, ("VMMLoggerWrapper not found! rc=%Vra\n", rc), rc);
916
917 RTR0PTR pfnLoggerFlush = NIL_RTR0PTR;
918 rc = PDMR3GetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
919 AssertReleaseMsgRCReturn(rc, ("VMMLoggerFlush not found! rc=%Vra\n", rc), rc);
920
921 rc = RTLogCreateForR0(&pR0Logger->Logger, pR0Logger->cbLogger,
922 *(PFNRTLOGGER *)&pfnLoggerWrapper, *(PFNRTLOGFLUSH *)&pfnLoggerFlush,
923 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY);
924 AssertReleaseMsgRCReturn(rc, ("RTLogCloneGC failed! rc=%Vra\n", rc), rc);
925 pR0Logger->fCreated = true;
926 }
927
928 rc = RTLogCopyGroupsAndFlags(&pR0Logger->Logger, NULL /* default */, RTLOGFLAGS_BUFFERED, 0);
929 AssertRC(rc);
930 }
931
932 return rc;
933}
934
935
936/**
937 * Generic switch code relocator.
938 *
939 * @param pVM The VM handle.
940 * @param pSwitcher The switcher definition.
941 * @param pu8CodeR3 Pointer to the core code block for the switcher, ring-3 mapping.
942 * @param pu8CodeR0 Pointer to the core code block for the switcher, ring-0 mapping.
943 * @param GCPtrCode The guest context address corresponding to pu8Code.
944 * @param u32IDCode The identity mapped (ID) address corresponding to pu8Code.
945 * @param SelCS The hypervisor CS selector.
946 * @param SelDS The hypervisor DS selector.
947 * @param SelTSS The hypervisor TSS selector.
948 * @param GCPtrGDT The GC address of the hypervisor GDT.
949 * @param SelCS64 The 64-bit mode hypervisor CS selector.
950 */
951static void vmmR3SwitcherGenericRelocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode,
952 RTSEL SelCS, RTSEL SelDS, RTSEL SelTSS, RTGCPTR GCPtrGDT, RTSEL SelCS64)
953{
954 union
955 {
956 const uint8_t *pu8;
957 const uint16_t *pu16;
958 const uint32_t *pu32;
959 const uint64_t *pu64;
960 const void *pv;
961 uintptr_t u;
962 } u;
963 u.pv = pSwitcher->pvFixups;
964
965 /*
966 * Process fixups.
967 */
968 uint8_t u8;
969 while ((u8 = *u.pu8++) != FIX_THE_END)
970 {
971 /*
972 * Get the source (where to write the fixup).
973 */
974 uint32_t offSrc = *u.pu32++;
975 Assert(offSrc < pSwitcher->cbCode);
976 union
977 {
978 uint8_t *pu8;
979 uint16_t *pu16;
980 uint32_t *pu32;
981 uint64_t *pu64;
982 uintptr_t u;
983 } uSrc;
984 uSrc.pu8 = pu8CodeR3 + offSrc;
985
986 /* The fixup target and method depends on the type. */
987 switch (u8)
988 {
989 /*
990 * 32-bit relative, source in HC and target in GC.
991 */
992 case FIX_HC_2_GC_NEAR_REL:
993 {
994 Assert(offSrc - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offSrc - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
995 uint32_t offTrg = *u.pu32++;
996 Assert(offTrg - pSwitcher->offGCCode < pSwitcher->cbGCCode);
997 *uSrc.pu32 = (uint32_t)((GCPtrCode + offTrg) - (uSrc.u + 4));
998 break;
999 }
1000
1001 /*
1002 * 32-bit relative, source in HC and target in ID.
1003 */
1004 case FIX_HC_2_ID_NEAR_REL:
1005 {
1006 Assert(offSrc - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offSrc - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
1007 uint32_t offTrg = *u.pu32++;
1008 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
1009 *uSrc.pu32 = (uint32_t)((u32IDCode + offTrg) - ((uintptr_t)pu8CodeR0 + offSrc + 4));
1010 break;
1011 }
1012
1013 /*
1014 * 32-bit relative, source in GC and target in HC.
1015 */
1016 case FIX_GC_2_HC_NEAR_REL:
1017 {
1018 Assert(offSrc - pSwitcher->offGCCode < pSwitcher->cbGCCode);
1019 uint32_t offTrg = *u.pu32++;
1020 Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
1021 *uSrc.pu32 = (uint32_t)(((uintptr_t)pu8CodeR0 + offTrg) - (GCPtrCode + offSrc + 4));
1022 break;
1023 }
1024
1025 /*
1026 * 32-bit relative, source in GC and target in ID.
1027 */
1028 case FIX_GC_2_ID_NEAR_REL:
1029 {
1030 Assert(offSrc - pSwitcher->offGCCode < pSwitcher->cbGCCode);
1031 uint32_t offTrg = *u.pu32++;
1032 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
1033 *uSrc.pu32 = (uint32_t)((u32IDCode + offTrg) - (GCPtrCode + offSrc + 4));
1034 break;
1035 }
1036
1037 /*
1038 * 32-bit relative, source in ID and target in HC.
1039 */
1040 case FIX_ID_2_HC_NEAR_REL:
1041 {
1042 Assert(offSrc - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offSrc - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
1043 uint32_t offTrg = *u.pu32++;
1044 Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
1045 *uSrc.pu32 = (uint32_t)(((uintptr_t)pu8CodeR0 + offTrg) - (u32IDCode + offSrc + 4));
1046 break;
1047 }
1048
1049 /*
1050 * 32-bit relative, source in ID and target in HC.
1051 */
1052 case FIX_ID_2_GC_NEAR_REL:
1053 {
1054 Assert(offSrc - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offSrc - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
1055 uint32_t offTrg = *u.pu32++;
1056 Assert(offTrg - pSwitcher->offGCCode < pSwitcher->cbGCCode);
1057 *uSrc.pu32 = (uint32_t)((GCPtrCode + offTrg) - (u32IDCode + offSrc + 4));
1058 break;
1059 }
1060
1061 /*
1062 * 16:32 far jump, target in GC.
1063 */
1064 case FIX_GC_FAR32:
1065 {
1066 uint32_t offTrg = *u.pu32++;
1067 Assert(offTrg - pSwitcher->offGCCode < pSwitcher->cbGCCode);
1068 *uSrc.pu32++ = (uint32_t)(GCPtrCode + offTrg);
1069 *uSrc.pu16++ = SelCS;
1070 break;
1071 }
1072
1073 /*
1074 * Make 32-bit GC pointer given CPUM offset.
1075 */
1076 case FIX_GC_CPUM_OFF:
1077 {
1078 uint32_t offCPUM = *u.pu32++;
1079 Assert(offCPUM < sizeof(pVM->cpum));
1080 *uSrc.pu32 = (uint32_t)(VM_GUEST_ADDR(pVM, &pVM->cpum) + offCPUM);
1081 break;
1082 }
1083
1084 /*
1085 * Make 32-bit GC pointer given VM offset.
1086 */
1087 case FIX_GC_VM_OFF:
1088 {
1089 uint32_t offVM = *u.pu32++;
1090 Assert(offVM < sizeof(VM));
1091 *uSrc.pu32 = (uint32_t)(VM_GUEST_ADDR(pVM, pVM) + offVM);
1092 break;
1093 }
1094
1095 /*
1096 * Make 32-bit HC pointer given CPUM offset.
1097 */
1098 case FIX_HC_CPUM_OFF:
1099 {
1100 uint32_t offCPUM = *u.pu32++;
1101 Assert(offCPUM < sizeof(pVM->cpum));
1102 *uSrc.pu32 = (uint32_t)pVM->pVMR0 + RT_OFFSETOF(VM, cpum) + offCPUM;
1103 break;
1104 }
1105
1106 /*
1107 * Make 32-bit R0 pointer given VM offset.
1108 */
1109 case FIX_HC_VM_OFF:
1110 {
1111 uint32_t offVM = *u.pu32++;
1112 Assert(offVM < sizeof(VM));
1113 *uSrc.pu32 = (uint32_t)pVM->pVMR0 + offVM;
1114 break;
1115 }
1116
1117 /*
1118 * Store the 32-Bit CR3 (32-bit) for the intermediate memory context.
1119 */
1120 case FIX_INTER_32BIT_CR3:
1121 {
1122
1123 *uSrc.pu32 = PGMGetInter32BitCR3(pVM);
1124 break;
1125 }
1126
1127 /*
1128 * Store the PAE CR3 (32-bit) for the intermediate memory context.
1129 */
1130 case FIX_INTER_PAE_CR3:
1131 {
1132
1133 *uSrc.pu32 = PGMGetInterPaeCR3(pVM);
1134 break;
1135 }
1136
1137 /*
1138 * Store the AMD64 CR3 (32-bit) for the intermediate memory context.
1139 */
1140 case FIX_INTER_AMD64_CR3:
1141 {
1142
1143 *uSrc.pu32 = PGMGetInterAmd64CR3(pVM);
1144 break;
1145 }
1146
1147 /*
1148 * Store the 32-Bit CR3 (32-bit) for the hypervisor (shadow) memory context.
1149 */
1150 case FIX_HYPER_32BIT_CR3:
1151 {
1152
1153 *uSrc.pu32 = PGMGetHyper32BitCR3(pVM);
1154 break;
1155 }
1156
1157 /*
1158 * Store the PAE CR3 (32-bit) for the hypervisor (shadow) memory context.
1159 */
1160 case FIX_HYPER_PAE_CR3:
1161 {
1162
1163 *uSrc.pu32 = PGMGetHyperPaeCR3(pVM);
1164 break;
1165 }
1166
1167 /*
1168 * Store the AMD64 CR3 (32-bit) for the hypervisor (shadow) memory context.
1169 */
1170 case FIX_HYPER_AMD64_CR3:
1171 {
1172
1173 *uSrc.pu32 = PGMGetHyperAmd64CR3(pVM);
1174 break;
1175 }
1176
1177 /*
1178 * Store Hypervisor CS (16-bit).
1179 */
1180 case FIX_HYPER_CS:
1181 {
1182 *uSrc.pu16 = SelCS;
1183 break;
1184 }
1185
1186 /*
1187 * Store Hypervisor DS (16-bit).
1188 */
1189 case FIX_HYPER_DS:
1190 {
1191 *uSrc.pu16 = SelDS;
1192 break;
1193 }
1194
1195 /*
1196 * Store Hypervisor TSS (16-bit).
1197 */
1198 case FIX_HYPER_TSS:
1199 {
1200 *uSrc.pu16 = SelTSS;
1201 break;
1202 }
1203
1204 /*
1205 * Store the 32-bit GC address of the 2nd dword of the TSS descriptor (in the GDT).
1206 */
1207 case FIX_GC_TSS_GDTE_DW2:
1208 {
1209 RTGCPTR GCPtr = GCPtrGDT + (SelTSS & ~7) + 4;
1210 *uSrc.pu32 = (uint32_t)GCPtr;
1211 break;
1212 }
1213
1214
1215 ///@todo case FIX_CR4_MASK:
1216 ///@todo case FIX_CR4_OSFSXR:
1217
1218 /*
1219 * Insert relative jump to specified target it FXSAVE/FXRSTOR isn't supported by the cpu.
1220 */
1221 case FIX_NO_FXSAVE_JMP:
1222 {
1223 uint32_t offTrg = *u.pu32++;
1224 Assert(offTrg < pSwitcher->cbCode);
1225 if (!CPUMSupportsFXSR(pVM))
1226 {
1227 *uSrc.pu8++ = 0xe9; /* jmp rel32 */
1228 *uSrc.pu32++ = offTrg - (offSrc + 5);
1229 }
1230 else
1231 {
1232 *uSrc.pu8++ = *((uint8_t *)pSwitcher->pvCode + offSrc);
1233 *uSrc.pu32++ = *(uint32_t *)((uint8_t *)pSwitcher->pvCode + offSrc + 1);
1234 }
1235 break;
1236 }
1237
1238 /*
1239 * Insert relative jump to specified target it SYSENTER isn't used by the host.
1240 */
1241 case FIX_NO_SYSENTER_JMP:
1242 {
1243 uint32_t offTrg = *u.pu32++;
1244 Assert(offTrg < pSwitcher->cbCode);
1245 if (!CPUMIsHostUsingSysEnter(pVM))
1246 {
1247 *uSrc.pu8++ = 0xe9; /* jmp rel32 */
1248 *uSrc.pu32++ = offTrg - (offSrc + 5);
1249 }
1250 else
1251 {
1252 *uSrc.pu8++ = *((uint8_t *)pSwitcher->pvCode + offSrc);
1253 *uSrc.pu32++ = *(uint32_t *)((uint8_t *)pSwitcher->pvCode + offSrc + 1);
1254 }
1255 break;
1256 }
1257
1258 /*
1259 * Insert relative jump to specified target it SYSENTER isn't used by the host.
1260 */
1261 case FIX_NO_SYSCALL_JMP:
1262 {
1263 uint32_t offTrg = *u.pu32++;
1264 Assert(offTrg < pSwitcher->cbCode);
1265 if (!CPUMIsHostUsingSysEnter(pVM))
1266 {
1267 *uSrc.pu8++ = 0xe9; /* jmp rel32 */
1268 *uSrc.pu32++ = offTrg - (offSrc + 5);
1269 }
1270 else
1271 {
1272 *uSrc.pu8++ = *((uint8_t *)pSwitcher->pvCode + offSrc);
1273 *uSrc.pu32++ = *(uint32_t *)((uint8_t *)pSwitcher->pvCode + offSrc + 1);
1274 }
1275 break;
1276 }
1277
1278 /*
1279 * 32-bit HC pointer fixup to (HC) target within the code (32-bit offset).
1280 */
1281 case FIX_HC_32BIT:
1282 {
1283 uint32_t offTrg = *u.pu32++;
1284 Assert(offSrc < pSwitcher->cbCode);
1285 Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
1286 *uSrc.pu32 = (uintptr_t)pu8CodeR0 + offTrg;
1287 break;
1288 }
1289
1290#if defined(RT_ARCH_AMD64) || defined(VBOX_WITH_HYBIRD_32BIT_KERNEL)
1291 /*
1292 * 64-bit HC pointer fixup to (HC) target within the code (32-bit offset).
1293 */
1294 case FIX_HC_64BIT:
1295 {
1296 uint32_t offTrg = *u.pu32++;
1297 Assert(offSrc < pSwitcher->cbCode);
1298 Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
1299 *uSrc.pu64 = (uintptr_t)pu8CodeR0 + offTrg;
1300 break;
1301 }
1302
1303 /*
1304 * 64-bit HC Code Selector (no argument).
1305 */
1306 case FIX_HC_64BIT_CS:
1307 {
1308 Assert(offSrc < pSwitcher->cbCode);
1309#if defined(RT_OS_DARWIN) && defined(VBOX_WITH_HYBIRD_32BIT_KERNEL)
1310 *uSrc.pu16 = 0x80; /* KERNEL64_CS from i386/seg.h */
1311#else
1312 AssertFatalMsgFailed(("FIX_HC_64BIT_CS not implemented for this host\n"));
1313#endif
1314 break;
1315 }
1316
1317 /*
1318 * 64-bit HC pointer to the CPUM instance data (no argument).
1319 */
1320 case FIX_HC_64BIT_CPUM:
1321 {
1322 Assert(offSrc < pSwitcher->cbCode);
1323 *uSrc.pu64 = pVM->pVMR0 + RT_OFFSETOF(VM, cpum);
1324 break;
1325 }
1326#endif
1327
1328 /*
1329 * 32-bit ID pointer to (ID) target within the code (32-bit offset).
1330 */
1331 case FIX_ID_32BIT:
1332 {
1333 uint32_t offTrg = *u.pu32++;
1334 Assert(offSrc < pSwitcher->cbCode);
1335 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
1336 *uSrc.pu32 = u32IDCode + offTrg;
1337 break;
1338 }
1339
1340 /*
1341 * 64-bit ID pointer to (ID) target within the code (32-bit offset).
1342 */
1343 case FIX_ID_64BIT:
1344 {
1345 uint32_t offTrg = *u.pu32++;
1346 Assert(offSrc < pSwitcher->cbCode);
1347 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
1348 *uSrc.pu64 = u32IDCode + offTrg;
1349 break;
1350 }
1351
1352 /*
1353 * Far 16:32 ID pointer to 64-bit mode (ID) target within the code (32-bit offset).
1354 */
1355 case FIX_ID_FAR32_TO_64BIT_MODE:
1356 {
1357 uint32_t offTrg = *u.pu32++;
1358 Assert(offSrc < pSwitcher->cbCode);
1359 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
1360 *uSrc.pu32++ = u32IDCode + offTrg;
1361 *uSrc.pu16 = SelCS64;
1362 AssertRelease(SelCS64);
1363 break;
1364 }
1365
1366#ifdef VBOX_WITH_NMI
1367 /*
1368 * 32-bit address to the APIC base.
1369 */
1370 case FIX_GC_APIC_BASE_32BIT:
1371 {
1372 *uSrc.pu32 = pVM->vmm.s.GCPtrApicBase;
1373 break;
1374 }
1375#endif
1376
1377 default:
1378 AssertReleaseMsgFailed(("Unknown fixup %d in switcher %s\n", u8, pSwitcher->pszDesc));
1379 break;
1380 }
1381 }
1382
1383#ifdef LOG_ENABLED
1384 /*
1385 * If Log2 is enabled disassemble the switcher code.
1386 *
1387 * The switcher code have 1-2 HC parts, 1 GC part and 0-2 ID parts.
1388 */
1389 if (LogIs2Enabled())
1390 {
1391 RTLogPrintf("*** Disassembly of switcher %d '%s' %#x bytes ***\n"
1392 " pu8CodeR0 = %p\n"
1393 " pu8CodeR3 = %p\n"
1394 " GCPtrCode = %VGv\n"
1395 " u32IDCode = %08x\n"
1396 " pVMGC = %VGv\n"
1397 " pCPUMGC = %VGv\n"
1398 " pVMHC = %p\n"
1399 " pCPUMHC = %p\n"
1400 " GCPtrGDT = %VGv\n"
1401 " InterCR3s = %08x, %08x, %08x (32-Bit, PAE, AMD64)\n"
1402 " HyperCR3s = %08x, %08x, %08x (32-Bit, PAE, AMD64)\n"
1403 " SelCS = %04x\n"
1404 " SelDS = %04x\n"
1405 " SelCS64 = %04x\n"
1406 " SelTSS = %04x\n",
1407 pSwitcher->enmType, pSwitcher->pszDesc, pSwitcher->cbCode,
1408 pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode, VM_GUEST_ADDR(pVM, pVM),
1409 VM_GUEST_ADDR(pVM, &pVM->cpum), pVM, &pVM->cpum,
1410 GCPtrGDT,
1411 PGMGetHyper32BitCR3(pVM), PGMGetHyperPaeCR3(pVM), PGMGetHyperAmd64CR3(pVM),
1412 PGMGetInter32BitCR3(pVM), PGMGetInterPaeCR3(pVM), PGMGetInterAmd64CR3(pVM),
1413 SelCS, SelDS, SelCS64, SelTSS);
1414
1415 uint32_t offCode = 0;
1416 while (offCode < pSwitcher->cbCode)
1417 {
1418 /*
1419 * Figure out where this is.
1420 */
1421 const char *pszDesc = NULL;
1422 RTUINTPTR uBase;
1423 uint32_t cbCode;
1424 if (offCode - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0)
1425 {
1426 pszDesc = "HCCode0";
1427 uBase = (RTUINTPTR)pu8CodeR0;
1428 offCode = pSwitcher->offHCCode0;
1429 cbCode = pSwitcher->cbHCCode0;
1430 }
1431 else if (offCode - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1)
1432 {
1433 pszDesc = "HCCode1";
1434 uBase = (RTUINTPTR)pu8CodeR0;
1435 offCode = pSwitcher->offHCCode1;
1436 cbCode = pSwitcher->cbHCCode1;
1437 }
1438 else if (offCode - pSwitcher->offGCCode < pSwitcher->cbGCCode)
1439 {
1440 pszDesc = "GCCode";
1441 uBase = GCPtrCode;
1442 offCode = pSwitcher->offGCCode;
1443 cbCode = pSwitcher->cbGCCode;
1444 }
1445 else if (offCode - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0)
1446 {
1447 pszDesc = "IDCode0";
1448 uBase = u32IDCode;
1449 offCode = pSwitcher->offIDCode0;
1450 cbCode = pSwitcher->cbIDCode0;
1451 }
1452 else if (offCode - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1)
1453 {
1454 pszDesc = "IDCode1";
1455 uBase = u32IDCode;
1456 offCode = pSwitcher->offIDCode1;
1457 cbCode = pSwitcher->cbIDCode1;
1458 }
1459 else
1460 {
1461 RTLogPrintf(" %04x: %02x '%c' (nowhere)\n",
1462 offCode, pu8CodeR3[offCode], isprint(pu8CodeR3[offCode]) ? pu8CodeR3[offCode] : ' ');
1463 offCode++;
1464 continue;
1465 }
1466
1467 /*
1468 * Disassemble it.
1469 */
1470 RTLogPrintf(" %s: offCode=%#x cbCode=%#x\n", pszDesc, offCode, cbCode);
1471 DISCPUSTATE Cpu;
1472
1473 memset(&Cpu, 0, sizeof(Cpu));
1474 Cpu.mode = CPUMODE_32BIT;
1475 while (cbCode > 0)
1476 {
1477 /* try label it */
1478 if (pSwitcher->offR0HostToGuest == offCode)
1479 RTLogPrintf(" *R0HostToGuest:\n");
1480 if (pSwitcher->offGCGuestToHost == offCode)
1481 RTLogPrintf(" *GCGuestToHost:\n");
1482 if (pSwitcher->offGCCallTrampoline == offCode)
1483 RTLogPrintf(" *GCCallTrampoline:\n");
1484 if (pSwitcher->offGCGuestToHostAsm == offCode)
1485 RTLogPrintf(" *GCGuestToHostAsm:\n");
1486 if (pSwitcher->offGCGuestToHostAsmHyperCtx == offCode)
1487 RTLogPrintf(" *GCGuestToHostAsmHyperCtx:\n");
1488 if (pSwitcher->offGCGuestToHostAsmGuestCtx == offCode)
1489 RTLogPrintf(" *GCGuestToHostAsmGuestCtx:\n");
1490
1491 /* disas */
1492 uint32_t cbInstr = 0;
1493 char szDisas[256];
1494 if (RT_SUCCESS(DISInstr(&Cpu, (RTUINTPTR)pu8CodeR3 + offCode, uBase - (RTUINTPTR)pu8CodeR3, &cbInstr, szDisas)))
1495 RTLogPrintf(" %04x: %s", offCode, szDisas); //for whatever reason szDisas includes '\n'.
1496 else
1497 {
1498 RTLogPrintf(" %04x: %02x '%c'\n",
1499 offCode, pu8CodeR3[offCode], isprint(pu8CodeR3[offCode]) ? pu8CodeR3[offCode] : ' ');
1500 cbInstr = 1;
1501 }
1502 offCode += cbInstr;
1503 cbCode -= RT_MIN(cbInstr, cbCode);
1504 }
1505 }
1506 }
1507#endif
1508}
1509
1510
1511/**
1512 * Relocator for the 32-Bit to 32-Bit world switcher.
1513 */
1514DECLCALLBACK(void) vmmR3Switcher32BitTo32Bit_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
1515{
1516 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode,
1517 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
1518}
1519
1520
1521/**
1522 * Relocator for the 32-Bit to PAE world switcher.
1523 */
1524DECLCALLBACK(void) vmmR3Switcher32BitToPAE_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
1525{
1526 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode,
1527 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
1528}
1529
1530
1531/**
1532 * Relocator for the PAE to 32-Bit world switcher.
1533 */
1534DECLCALLBACK(void) vmmR3SwitcherPAETo32Bit_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
1535{
1536 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode,
1537 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
1538}
1539
1540
1541/**
1542 * Relocator for the PAE to PAE world switcher.
1543 */
1544DECLCALLBACK(void) vmmR3SwitcherPAEToPAE_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
1545{
1546 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode,
1547 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
1548}
1549
1550
1551/**
1552 * Relocator for the AMD64 to PAE world switcher.
1553 */
1554DECLCALLBACK(void) vmmR3SwitcherAMD64ToPAE_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
1555{
1556 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode,
1557 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), SELMGetHyperCS64(pVM));
1558}
1559
1560
1561/**
1562 * Gets the pointer to g_szRTAssertMsg1 in GC.
1563 * @returns Pointer to VMMGC::g_szRTAssertMsg1.
1564 * Returns NULL if not present.
1565 * @param pVM The VM handle.
1566 */
1567VMMR3DECL(const char *) VMMR3GetGCAssertMsg1(PVM pVM)
1568{
1569 RTGCPTR GCPtr;
1570 int rc = PDMR3GetSymbolGC(pVM, NULL, "g_szRTAssertMsg1", &GCPtr);
1571 if (VBOX_SUCCESS(rc))
1572 return (const char *)MMHyperGC2HC(pVM, GCPtr);
1573 return NULL;
1574}
1575
1576
1577/**
1578 * Gets the pointer to g_szRTAssertMsg2 in GC.
1579 * @returns Pointer to VMMGC::g_szRTAssertMsg2.
1580 * Returns NULL if not present.
1581 * @param pVM The VM handle.
1582 */
1583VMMR3DECL(const char *) VMMR3GetGCAssertMsg2(PVM pVM)
1584{
1585 RTGCPTR GCPtr;
1586 int rc = PDMR3GetSymbolGC(pVM, NULL, "g_szRTAssertMsg2", &GCPtr);
1587 if (VBOX_SUCCESS(rc))
1588 return (const char *)MMHyperGC2HC(pVM, GCPtr);
1589 return NULL;
1590}
1591
1592
1593/**
1594 * Execute state save operation.
1595 *
1596 * @returns VBox status code.
1597 * @param pVM VM Handle.
1598 * @param pSSM SSM operation handle.
1599 */
1600static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
1601{
1602 LogFlow(("vmmR3Save:\n"));
1603
1604 /*
1605 * The hypervisor stack.
1606 */
1607 SSMR3PutGCPtr(pSSM, pVM->vmm.s.pbGCStackBottom);
1608 RTGCPTR GCPtrESP = CPUMGetHyperESP(pVM);
1609 Assert(pVM->vmm.s.pbGCStackBottom - GCPtrESP <= VMM_STACK_SIZE);
1610 SSMR3PutGCPtr(pSSM, GCPtrESP);
1611 SSMR3PutMem(pSSM, pVM->vmm.s.pbHCStack, VMM_STACK_SIZE);
1612 return SSMR3PutU32(pSSM, ~0); /* terminator */
1613}
1614
1615
1616/**
1617 * Execute state load operation.
1618 *
1619 * @returns VBox status code.
1620 * @param pVM VM Handle.
1621 * @param pSSM SSM operation handle.
1622 * @param u32Version Data layout version.
1623 */
1624static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
1625{
1626 LogFlow(("vmmR3Load:\n"));
1627
1628 /*
1629 * Validate version.
1630 */
1631 if (u32Version != VMM_SAVED_STATE_VERSION)
1632 {
1633 Log(("vmmR3Load: Invalid version u32Version=%d!\n", u32Version));
1634 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1635 }
1636
1637 /*
1638 * Check that the stack is in the same place, or that it's fearly empty.
1639 */
1640 RTGCPTR GCPtrStackBottom;
1641 SSMR3GetGCPtr(pSSM, &GCPtrStackBottom);
1642 RTGCPTR GCPtrESP;
1643 int rc = SSMR3GetGCPtr(pSSM, &GCPtrESP);
1644 if (VBOX_FAILURE(rc))
1645 return rc;
1646 if ( GCPtrStackBottom == pVM->vmm.s.pbGCStackBottom
1647 || (GCPtrStackBottom - GCPtrESP < 32)) /** @todo This will break if we start preemting the hypervisor. */
1648 {
1649 /*
1650 * We *must* set the ESP because the CPUM load + PGM load relocations will render
1651 * the ESP in CPUM fatally invalid.
1652 */
1653 CPUMSetHyperESP(pVM, GCPtrESP);
1654
1655 /* restore the stack. */
1656 SSMR3GetMem(pSSM, pVM->vmm.s.pbHCStack, VMM_STACK_SIZE);
1657
1658 /* terminator */
1659 uint32_t u32;
1660 rc = SSMR3GetU32(pSSM, &u32);
1661 if (VBOX_FAILURE(rc))
1662 return rc;
1663 if (u32 != ~0U)
1664 {
1665 AssertMsgFailed(("u32=%#x\n", u32));
1666 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1667 }
1668 return VINF_SUCCESS;
1669 }
1670
1671 LogRel(("The stack is not in the same place and it's not empty! GCPtrStackBottom=%VGv pbGCStackBottom=%VGv ESP=%VGv\n",
1672 GCPtrStackBottom, pVM->vmm.s.pbGCStackBottom, GCPtrESP));
1673 if (SSMR3HandleGetAfter(pSSM) == SSMAFTER_DEBUG_IT)
1674 return VINF_SUCCESS; /* ignore this */
1675 AssertFailed();
1676 return VERR_SSM_LOAD_CONFIG_MISMATCH;
1677}
1678
1679
1680/**
1681 * Selects the switcher to be used for switching to GC.
1682 *
1683 * @returns VBox status code.
1684 * @param pVM VM handle.
1685 * @param enmSwitcher The new switcher.
1686 * @remark This function may be called before the VMM is initialized.
1687 */
1688VMMR3DECL(int) VMMR3SelectSwitcher(PVM pVM, VMMSWITCHER enmSwitcher)
1689{
1690 /*
1691 * Validate input.
1692 */
1693 if ( enmSwitcher < VMMSWITCHER_INVALID
1694 || enmSwitcher >= VMMSWITCHER_MAX)
1695 {
1696 AssertMsgFailed(("Invalid input enmSwitcher=%d\n", enmSwitcher));
1697 return VERR_INVALID_PARAMETER;
1698 }
1699
1700 /*
1701 * Select the new switcher.
1702 */
1703 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[enmSwitcher];
1704 if (pSwitcher)
1705 {
1706 Log(("VMMR3SelectSwitcher: enmSwitcher %d -> %d %s\n", pVM->vmm.s.enmSwitcher, enmSwitcher, pSwitcher->pszDesc));
1707 pVM->vmm.s.enmSwitcher = enmSwitcher;
1708
1709 RTR0PTR pbCodeR0 = (RTR0PTR)pVM->vmm.s.pvHCCoreCodeR0 + pVM->vmm.s.aoffSwitchers[enmSwitcher]; /** @todo fix the pvHCCoreCodeR0 type */
1710 pVM->vmm.s.pfnR0HostToGuest = pbCodeR0 + pSwitcher->offR0HostToGuest;
1711
1712 RTGCPTR GCPtr = pVM->vmm.s.pvGCCoreCode + pVM->vmm.s.aoffSwitchers[enmSwitcher];
1713 pVM->vmm.s.pfnGCGuestToHost = GCPtr + pSwitcher->offGCGuestToHost;
1714 pVM->vmm.s.pfnGCCallTrampoline = GCPtr + pSwitcher->offGCCallTrampoline;
1715 pVM->pfnVMMGCGuestToHostAsm = GCPtr + pSwitcher->offGCGuestToHostAsm;
1716 pVM->pfnVMMGCGuestToHostAsmHyperCtx = GCPtr + pSwitcher->offGCGuestToHostAsmHyperCtx;
1717 pVM->pfnVMMGCGuestToHostAsmGuestCtx = GCPtr + pSwitcher->offGCGuestToHostAsmGuestCtx;
1718 return VINF_SUCCESS;
1719 }
1720 return VERR_NOT_IMPLEMENTED;
1721}
1722
1723/**
1724 * Disable the switcher logic permanently.
1725 *
1726 * @returns VBox status code.
1727 * @param pVM VM handle.
1728 */
1729VMMR3DECL(int) VMMR3DisableSwitcher(PVM pVM)
1730{
1731/** @todo r=bird: I would suggest that we create a dummy switcher which just does something like:
1732 * @code
1733 * mov eax, VERR_INTERNAL_ERROR
1734 * ret
1735 * @endcode
1736 * And then check for fSwitcherDisabled in VMMR3SelectSwitcher() in order to prevent it from being removed.
1737 */
1738 pVM->vmm.s.fSwitcherDisabled = true;
1739 return VINF_SUCCESS;
1740}
1741
1742
1743/**
1744 * Resolve a builtin GC symbol.
1745 * Called by PDM when loading or relocating GC modules.
1746 *
1747 * @returns VBox status
1748 * @param pVM VM Handle.
1749 * @param pszSymbol Symbol to resolv
1750 * @param pGCPtrValue Where to store the symbol value.
1751 * @remark This has to work before VMMR3Relocate() is called.
1752 */
1753VMMR3DECL(int) VMMR3GetImportGC(PVM pVM, const char *pszSymbol, PRTGCPTR pGCPtrValue)
1754{
1755 if (!strcmp(pszSymbol, "g_Logger"))
1756 {
1757 if (pVM->vmm.s.pLoggerHC)
1758 pVM->vmm.s.pLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pLoggerHC);
1759 *pGCPtrValue = pVM->vmm.s.pLoggerGC;
1760 }
1761 else if (!strcmp(pszSymbol, "g_RelLogger"))
1762 {
1763#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
1764 if (pVM->vmm.s.pRelLoggerHC)
1765 pVM->vmm.s.pRelLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pRelLoggerHC);
1766 *pGCPtrValue = pVM->vmm.s.pRelLoggerGC;
1767#else
1768 *pGCPtrValue = NIL_RTGCPTR;
1769#endif
1770 }
1771 else
1772 return VERR_SYMBOL_NOT_FOUND;
1773 return VINF_SUCCESS;
1774}
1775
1776
1777/**
1778 * Suspends the the CPU yielder.
1779 *
1780 * @param pVM The VM handle.
1781 */
1782VMMR3DECL(void) VMMR3YieldSuspend(PVM pVM)
1783{
1784 if (!pVM->vmm.s.cYieldResumeMillies)
1785 {
1786 uint64_t u64Now = TMTimerGet(pVM->vmm.s.pYieldTimer);
1787 uint64_t u64Expire = TMTimerGetExpire(pVM->vmm.s.pYieldTimer);
1788 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
1789 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1790 else
1791 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM->vmm.s.pYieldTimer, u64Expire - u64Now);
1792 TMTimerStop(pVM->vmm.s.pYieldTimer);
1793 }
1794 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1795}
1796
1797
1798/**
1799 * Stops the the CPU yielder.
1800 *
1801 * @param pVM The VM handle.
1802 */
1803VMMR3DECL(void) VMMR3YieldStop(PVM pVM)
1804{
1805 if (!pVM->vmm.s.cYieldResumeMillies)
1806 TMTimerStop(pVM->vmm.s.pYieldTimer);
1807 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1808 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1809}
1810
1811
1812/**
1813 * Resumes the CPU yielder when it has been a suspended or stopped.
1814 *
1815 * @param pVM The VM handle.
1816 */
1817VMMR3DECL(void) VMMR3YieldResume(PVM pVM)
1818{
1819 if (pVM->vmm.s.cYieldResumeMillies)
1820 {
1821 TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldResumeMillies);
1822 pVM->vmm.s.cYieldResumeMillies = 0;
1823 }
1824}
1825
1826
1827/**
1828 * Internal timer callback function.
1829 *
1830 * @param pVM The VM.
1831 * @param pTimer The timer handle.
1832 * @param pvUser User argument specified upon timer creation.
1833 */
1834static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser)
1835{
1836 /*
1837 * This really needs some careful tuning. While we shouldn't be too gready since
1838 * that'll cause the rest of the system to stop up, we shouldn't be too nice either
1839 * because that'll cause us to stop up.
1840 *
1841 * The current logic is to use the default interval when there is no lag worth
1842 * mentioning, but when we start accumulating lag we don't bother yielding at all.
1843 *
1844 * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL
1845 * so the lag is up to date.)
1846 */
1847 const uint64_t u64Lag = TMVirtualSyncGetLag(pVM);
1848 if ( u64Lag < 50000000 /* 50ms */
1849 || ( u64Lag < 1000000000 /* 1s */
1850 && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */)
1851 )
1852 {
1853 uint64_t u64Elapsed = RTTimeNanoTS();
1854 pVM->vmm.s.u64LastYield = u64Elapsed;
1855
1856 RTThreadYield();
1857
1858#ifdef LOG_ENABLED
1859 u64Elapsed = RTTimeNanoTS() - u64Elapsed;
1860 Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed));
1861#endif
1862 }
1863 TMTimerSetMillies(pTimer, pVM->vmm.s.cYieldEveryMillies);
1864}
1865
1866
1867/**
1868 * Acquire global VM lock.
1869 *
1870 * @returns VBox status code
1871 * @param pVM The VM to operate on.
1872 */
1873VMMR3DECL(int) VMMR3Lock(PVM pVM)
1874{
1875 return RTCritSectEnter(&pVM->vmm.s.CritSectVMLock);
1876}
1877
1878
1879/**
1880 * Release global VM lock.
1881 *
1882 * @returns VBox status code
1883 * @param pVM The VM to operate on.
1884 */
1885VMMR3DECL(int) VMMR3Unlock(PVM pVM)
1886{
1887 return RTCritSectLeave(&pVM->vmm.s.CritSectVMLock);
1888}
1889
1890
1891/**
1892 * Return global VM lock owner.
1893 *
1894 * @returns Thread id of owner.
1895 * @returns NIL_RTTHREAD if no owner.
1896 * @param pVM The VM to operate on.
1897 */
1898VMMR3DECL(RTNATIVETHREAD) VMMR3LockGetOwner(PVM pVM)
1899{
1900 return RTCritSectGetOwner(&pVM->vmm.s.CritSectVMLock);
1901}
1902
1903
1904/**
1905 * Checks if the current thread is the owner of the global VM lock.
1906 *
1907 * @returns true if owner.
1908 * @returns false if not owner.
1909 * @param pVM The VM to operate on.
1910 */
1911VMMR3DECL(bool) VMMR3LockIsOwner(PVM pVM)
1912{
1913 return RTCritSectIsOwner(&pVM->vmm.s.CritSectVMLock);
1914}
1915
1916
1917/**
1918 * Executes guest code.
1919 *
1920 * @param pVM VM handle.
1921 */
1922VMMR3DECL(int) VMMR3RawRunGC(PVM pVM)
1923{
1924 Log2(("VMMR3RawRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
1925
1926 /*
1927 * Set the EIP and ESP.
1928 */
1929 CPUMSetHyperEIP(pVM, CPUMGetGuestEFlags(pVM) & X86_EFL_VM
1930 ? pVM->vmm.s.pfnCPUMGCResumeGuestV86
1931 : pVM->vmm.s.pfnCPUMGCResumeGuest);
1932 CPUMSetHyperESP(pVM, pVM->vmm.s.pbGCStackBottom);
1933
1934 /*
1935 * We hide log flushes (outer) and hypervisor interrupts (inner).
1936 */
1937 for (;;)
1938 {
1939 int rc;
1940 do
1941 {
1942#ifdef NO_SUPCALLR0VMM
1943 rc = VERR_GENERAL_FAILURE;
1944#else
1945 rc = SUPCallVMMR0(pVM->pVMR0, VMMR0_DO_RAW_RUN, NULL);
1946#endif
1947 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1948
1949 /*
1950 * Flush the logs.
1951 */
1952#ifdef LOG_ENABLED
1953 PRTLOGGERGC pLogger = pVM->vmm.s.pLoggerHC;
1954 if ( pLogger
1955 && pLogger->offScratch > 0)
1956 RTLogFlushGC(NULL, pLogger);
1957#endif
1958#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
1959 PRTLOGGERGC pRelLogger = pVM->vmm.s.pRelLoggerHC;
1960 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1961 RTLogFlushGC(RTLogRelDefaultInstance(), pRelLogger);
1962#endif
1963 if (rc != VINF_VMM_CALL_HOST)
1964 {
1965 Log2(("VMMR3RawRunGC: returns %Vrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
1966 return rc;
1967 }
1968 rc = vmmR3ServiceCallHostRequest(pVM);
1969 if (VBOX_FAILURE(rc))
1970 return rc;
1971 /* Resume GC */
1972 }
1973}
1974
1975
1976/**
1977 * Executes guest code (Intel VT-x and AMD-V).
1978 *
1979 * @param pVM VM handle.
1980 */
1981VMMR3DECL(int) VMMR3HwAccRunGC(PVM pVM)
1982{
1983 Log2(("VMMR3HwAccRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
1984
1985 for (;;)
1986 {
1987 int rc;
1988 do
1989 {
1990#ifdef NO_SUPCALLR0VMM
1991 rc = VERR_GENERAL_FAILURE;
1992#else
1993 rc = SUPCallVMMR0Fast(pVM->pVMR0, VMMR0_DO_HWACC_RUN);
1994#endif
1995 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1996
1997#ifdef LOG_ENABLED
1998 /*
1999 * Flush the log
2000 */
2001 PVMMR0LOGGER pR0Logger = pVM->vmm.s.pR0Logger;
2002 if ( pR0Logger
2003 && pR0Logger->Logger.offScratch > 0)
2004 RTLogFlushToLogger(&pR0Logger->Logger, NULL);
2005#endif /* !LOG_ENABLED */
2006 if (rc != VINF_VMM_CALL_HOST)
2007 {
2008 Log2(("VMMR3HwAccRunGC: returns %Vrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
2009 return rc;
2010 }
2011 rc = vmmR3ServiceCallHostRequest(pVM);
2012 if (VBOX_FAILURE(rc))
2013 return rc;
2014 /* Resume R0 */
2015 }
2016}
2017
2018/**
2019 * Calls GC a function.
2020 *
2021 * @param pVM The VM handle.
2022 * @param GCPtrEntry The GC function address.
2023 * @param cArgs The number of arguments in the ....
2024 * @param ... Arguments to the function.
2025 */
2026VMMR3DECL(int) VMMR3CallGC(PVM pVM, RTGCPTR GCPtrEntry, unsigned cArgs, ...)
2027{
2028 va_list args;
2029 va_start(args, cArgs);
2030 int rc = VMMR3CallGCV(pVM, GCPtrEntry, cArgs, args);
2031 va_end(args);
2032 return rc;
2033}
2034
2035
2036/**
2037 * Calls GC a function.
2038 *
2039 * @param pVM The VM handle.
2040 * @param GCPtrEntry The GC function address.
2041 * @param cArgs The number of arguments in the ....
2042 * @param args Arguments to the function.
2043 */
2044VMMR3DECL(int) VMMR3CallGCV(PVM pVM, RTGCPTR GCPtrEntry, unsigned cArgs, va_list args)
2045{
2046 Log2(("VMMR3CallGCV: GCPtrEntry=%VGv cArgs=%d\n", GCPtrEntry, cArgs));
2047
2048 /*
2049 * Setup the call frame using the trampoline.
2050 */
2051 CPUMHyperSetCtxCore(pVM, NULL);
2052 memset(pVM->vmm.s.pbHCStack, 0xaa, VMM_STACK_SIZE); /* Clear the stack. */
2053 CPUMSetHyperESP(pVM, pVM->vmm.s.pbGCStackBottom - cArgs * sizeof(RTGCUINTPTR));
2054 PRTGCUINTPTR pFrame = (PRTGCUINTPTR)(pVM->vmm.s.pbHCStack + VMM_STACK_SIZE) - cArgs;
2055 int i = cArgs;
2056 while (i-- > 0)
2057 *pFrame++ = va_arg(args, RTGCUINTPTR);
2058
2059 CPUMPushHyper(pVM, cArgs * sizeof(RTGCUINTPTR)); /* stack frame size */
2060 CPUMPushHyper(pVM, GCPtrEntry); /* what to call */
2061 CPUMSetHyperEIP(pVM, pVM->vmm.s.pfnGCCallTrampoline);
2062
2063 /*
2064 * We hide log flushes (outer) and hypervisor interrupts (inner).
2065 */
2066 for (;;)
2067 {
2068 int rc;
2069 do
2070 {
2071#ifdef NO_SUPCALLR0VMM
2072 rc = VERR_GENERAL_FAILURE;
2073#else
2074 rc = SUPCallVMMR0(pVM->pVMR0, VMMR0_DO_RAW_RUN, NULL);
2075#endif
2076 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
2077
2078 /*
2079 * Flush the logs.
2080 */
2081#ifdef LOG_ENABLED
2082 PRTLOGGERGC pLogger = pVM->vmm.s.pLoggerHC;
2083 if ( pLogger
2084 && pLogger->offScratch > 0)
2085 RTLogFlushGC(NULL, pLogger);
2086#endif
2087#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
2088 PRTLOGGERGC pRelLogger = pVM->vmm.s.pRelLoggerHC;
2089 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
2090 RTLogFlushGC(RTLogRelDefaultInstance(), pRelLogger);
2091#endif
2092 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
2093 VMMR3FatalDump(pVM, rc);
2094 if (rc != VINF_VMM_CALL_HOST)
2095 {
2096 Log2(("VMMR3CallGCV: returns %Vrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
2097 return rc;
2098 }
2099 rc = vmmR3ServiceCallHostRequest(pVM);
2100 if (VBOX_FAILURE(rc))
2101 return rc;
2102 }
2103}
2104
2105
2106/**
2107 * Resumes executing hypervisor code when interrupted
2108 * by a queue flush or a debug event.
2109 *
2110 * @returns VBox status code.
2111 * @param pVM VM handle.
2112 */
2113VMMR3DECL(int) VMMR3ResumeHyper(PVM pVM)
2114{
2115 Log(("VMMR3ResumeHyper: eip=%VGv esp=%VGv\n", CPUMGetHyperEIP(pVM), CPUMGetHyperESP(pVM)));
2116
2117 /*
2118 * We hide log flushes (outer) and hypervisor interrupts (inner).
2119 */
2120 for (;;)
2121 {
2122 int rc;
2123 do
2124 {
2125#ifdef NO_SUPCALLR0VMM
2126 rc = VERR_GENERAL_FAILURE;
2127#else
2128 rc = SUPCallVMMR0(pVM->pVMR0, VMMR0_DO_RAW_RUN, NULL);
2129#endif
2130 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
2131
2132 /*
2133 * Flush the loggers,
2134 */
2135#ifdef LOG_ENABLED
2136 PRTLOGGERGC pLogger = pVM->vmm.s.pLoggerHC;
2137 if ( pLogger
2138 && pLogger->offScratch > 0)
2139 RTLogFlushGC(NULL, pLogger);
2140#endif
2141#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
2142 PRTLOGGERGC pRelLogger = pVM->vmm.s.pRelLoggerHC;
2143 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
2144 RTLogFlushGC(RTLogRelDefaultInstance(), pRelLogger);
2145#endif
2146 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
2147 VMMR3FatalDump(pVM, rc);
2148 if (rc != VINF_VMM_CALL_HOST)
2149 {
2150 Log(("VMMR3ResumeHyper: returns %Vrc\n", rc));
2151 return rc;
2152 }
2153 rc = vmmR3ServiceCallHostRequest(pVM);
2154 if (VBOX_FAILURE(rc))
2155 return rc;
2156 }
2157}
2158
2159
2160/**
2161 * Service a call to the ring-3 host code.
2162 *
2163 * @returns VBox status code.
2164 * @param pVM VM handle.
2165 * @remark Careful with critsects.
2166 */
2167static int vmmR3ServiceCallHostRequest(PVM pVM)
2168{
2169 switch (pVM->vmm.s.enmCallHostOperation)
2170 {
2171 /*
2172 * Acquire the PDM lock.
2173 */
2174 case VMMCALLHOST_PDM_LOCK:
2175 {
2176 pVM->vmm.s.rcCallHost = PDMR3LockCall(pVM);
2177 break;
2178 }
2179
2180 /*
2181 * Flush a PDM queue.
2182 */
2183 case VMMCALLHOST_PDM_QUEUE_FLUSH:
2184 {
2185 PDMR3QueueFlushWorker(pVM, NULL);
2186 pVM->vmm.s.rcCallHost = VINF_SUCCESS;
2187 break;
2188 }
2189
2190 /*
2191 * Grow the PGM pool.
2192 */
2193 case VMMCALLHOST_PGM_POOL_GROW:
2194 {
2195 pVM->vmm.s.rcCallHost = PGMR3PoolGrow(pVM);
2196 break;
2197 }
2198
2199 /*
2200 * Maps an page allocation chunk into ring-3 so ring-0 can use it.
2201 */
2202 case VMMCALLHOST_PGM_MAP_CHUNK:
2203 {
2204 pVM->vmm.s.rcCallHost = PGMR3PhysChunkMap(pVM, pVM->vmm.s.u64CallHostArg);
2205 break;
2206 }
2207
2208 /*
2209 * Allocates more handy pages.
2210 */
2211 case VMMCALLHOST_PGM_ALLOCATE_HANDY_PAGES:
2212 {
2213 pVM->vmm.s.rcCallHost = PGMR3PhysAllocateHandyPages(pVM);
2214 break;
2215 }
2216#ifndef VBOX_WITH_NEW_PHYS_CODE
2217
2218 case VMMCALLHOST_PGM_RAM_GROW_RANGE:
2219 {
2220 const RTGCPHYS GCPhys = pVM->vmm.s.u64CallHostArg;
2221 pVM->vmm.s.rcCallHost = PGM3PhysGrowRange(pVM, &GCPhys);
2222 break;
2223 }
2224#endif
2225
2226 /*
2227 * Acquire the PGM lock.
2228 */
2229 case VMMCALLHOST_PGM_LOCK:
2230 {
2231 pVM->vmm.s.rcCallHost = PGMR3LockCall(pVM);
2232 break;
2233 }
2234
2235 /*
2236 * Flush REM handler notifications.
2237 */
2238 case VMMCALLHOST_REM_REPLAY_HANDLER_NOTIFICATIONS:
2239 {
2240 REMR3ReplayHandlerNotifications(pVM);
2241 break;
2242 }
2243
2244 /*
2245 * This is a noop. We just take this route to avoid unnecessary
2246 * tests in the loops.
2247 */
2248 case VMMCALLHOST_VMM_LOGGER_FLUSH:
2249 break;
2250
2251 /*
2252 * Set the VM error message.
2253 */
2254 case VMMCALLHOST_VM_SET_ERROR:
2255 VMR3SetErrorWorker(pVM);
2256 break;
2257
2258 /*
2259 * Set the VM runtime error message.
2260 */
2261 case VMMCALLHOST_VM_SET_RUNTIME_ERROR:
2262 VMR3SetRuntimeErrorWorker(pVM);
2263 break;
2264
2265 /*
2266 * Signal a ring 0 hypervisor assertion.
2267 * Cancel the longjmp operation that's in progress.
2268 */
2269 case VMMCALLHOST_VM_R0_HYPER_ASSERTION:
2270 pVM->vmm.s.CallHostR0JmpBuf.fInRing3Call = false;
2271#ifdef RT_ARCH_X86
2272 pVM->vmm.s.CallHostR0JmpBuf.eip = 0;
2273#else
2274 pVM->vmm.s.CallHostR0JmpBuf.rip = 0;
2275#endif
2276 return VINF_EM_DBG_HYPER_ASSERTION;
2277
2278 default:
2279 AssertMsgFailed(("enmCallHostOperation=%d\n", pVM->vmm.s.enmCallHostOperation));
2280 return VERR_INTERNAL_ERROR;
2281 }
2282
2283 pVM->vmm.s.enmCallHostOperation = VMMCALLHOST_INVALID;
2284 return VINF_SUCCESS;
2285}
2286
2287
2288
2289/**
2290 * Structure to pass to DBGFR3Info() and for doing all other
2291 * output during fatal dump.
2292 */
2293typedef struct VMMR3FATALDUMPINFOHLP
2294{
2295 /** The helper core. */
2296 DBGFINFOHLP Core;
2297 /** The release logger instance. */
2298 PRTLOGGER pRelLogger;
2299 /** The saved release logger flags. */
2300 RTUINT fRelLoggerFlags;
2301 /** The logger instance. */
2302 PRTLOGGER pLogger;
2303 /** The saved logger flags. */
2304 RTUINT fLoggerFlags;
2305 /** The saved logger destination flags. */
2306 RTUINT fLoggerDestFlags;
2307 /** Whether to output to stderr or not. */
2308 bool fStdErr;
2309} VMMR3FATALDUMPINFOHLP, *PVMMR3FATALDUMPINFOHLP;
2310typedef const VMMR3FATALDUMPINFOHLP *PCVMMR3FATALDUMPINFOHLP;
2311
2312
2313/**
2314 * Print formatted string.
2315 *
2316 * @param pHlp Pointer to this structure.
2317 * @param pszFormat The format string.
2318 * @param ... Arguments.
2319 */
2320static DECLCALLBACK(void) vmmR3FatalDumpInfoHlp_pfnPrintf(PCDBGFINFOHLP pHlp, const char *pszFormat, ...)
2321{
2322 va_list args;
2323 va_start(args, pszFormat);
2324 pHlp->pfnPrintfV(pHlp, pszFormat, args);
2325 va_end(args);
2326}
2327
2328
2329/**
2330 * Print formatted string.
2331 *
2332 * @param pHlp Pointer to this structure.
2333 * @param pszFormat The format string.
2334 * @param args Argument list.
2335 */
2336static DECLCALLBACK(void) vmmR3FatalDumpInfoHlp_pfnPrintfV(PCDBGFINFOHLP pHlp, const char *pszFormat, va_list args)
2337{
2338 PCVMMR3FATALDUMPINFOHLP pMyHlp = (PCVMMR3FATALDUMPINFOHLP)pHlp;
2339
2340 if (pMyHlp->pRelLogger)
2341 {
2342 va_list args2;
2343 va_copy(args2, args);
2344 RTLogLoggerV(pMyHlp->pRelLogger, pszFormat, args2);
2345 va_end(args2);
2346 }
2347 if (pMyHlp->pLogger)
2348 {
2349 va_list args2;
2350 va_copy(args2, args);
2351 RTLogLoggerV(pMyHlp->pLogger, pszFormat, args);
2352 va_end(args2);
2353 }
2354 if (pMyHlp->fStdErr)
2355 {
2356 va_list args2;
2357 va_copy(args2, args);
2358 RTStrmPrintfV(g_pStdErr, pszFormat, args);
2359 va_end(args2);
2360 }
2361}
2362
2363
2364/**
2365 * Initializes the fatal dump output helper.
2366 *
2367 * @param pHlp The structure to initialize.
2368 */
2369static void vmmR3FatalDumpInfoHlpInit(PVMMR3FATALDUMPINFOHLP pHlp)
2370{
2371 memset(pHlp, 0, sizeof(*pHlp));
2372
2373 pHlp->Core.pfnPrintf = vmmR3FatalDumpInfoHlp_pfnPrintf;
2374 pHlp->Core.pfnPrintfV = vmmR3FatalDumpInfoHlp_pfnPrintfV;
2375
2376 /*
2377 * The loggers.
2378 */
2379 pHlp->pRelLogger = RTLogRelDefaultInstance();
2380#ifndef LOG_ENABLED
2381 if (!pHlp->pRelLogger)
2382#endif
2383 pHlp->pLogger = RTLogDefaultInstance();
2384
2385 if (pHlp->pRelLogger)
2386 {
2387 pHlp->fRelLoggerFlags = pHlp->pRelLogger->fFlags;
2388 pHlp->pRelLogger->fFlags &= ~(RTLOGFLAGS_BUFFERED | RTLOGFLAGS_DISABLED);
2389 }
2390
2391 if (pHlp->pLogger)
2392 {
2393 pHlp->fLoggerFlags = pHlp->pLogger->fFlags;
2394 pHlp->fLoggerDestFlags = pHlp->pLogger->fDestFlags;
2395 pHlp->pLogger->fFlags &= ~(RTLOGFLAGS_BUFFERED | RTLOGFLAGS_DISABLED);
2396#ifndef DEBUG_sandervl
2397 pHlp->pLogger->fDestFlags |= RTLOGDEST_DEBUGGER;
2398#endif
2399 }
2400
2401 /*
2402 * Check if we need write to stderr.
2403 */
2404 pHlp->fStdErr = (!pHlp->pRelLogger || !(pHlp->pRelLogger->fDestFlags & (RTLOGDEST_STDOUT | RTLOGDEST_STDERR)))
2405 && (!pHlp->pLogger || !(pHlp->pLogger->fDestFlags & (RTLOGDEST_STDOUT | RTLOGDEST_STDERR)));
2406}
2407
2408
2409/**
2410 * Deletes the fatal dump output helper.
2411 *
2412 * @param pHlp The structure to delete.
2413 */
2414static void vmmR3FatalDumpInfoHlpDelete(PVMMR3FATALDUMPINFOHLP pHlp)
2415{
2416 if (pHlp->pRelLogger)
2417 {
2418 RTLogFlush(pHlp->pRelLogger);
2419 pHlp->pRelLogger->fFlags = pHlp->fRelLoggerFlags;
2420 }
2421
2422 if (pHlp->pLogger)
2423 {
2424 RTLogFlush(pHlp->pLogger);
2425 pHlp->pLogger->fFlags = pHlp->fLoggerFlags;
2426 pHlp->pLogger->fDestFlags = pHlp->fLoggerDestFlags;
2427 }
2428}
2429
2430
2431/**
2432 * Dumps the VM state on a fatal error.
2433 *
2434 * @param pVM VM Handle.
2435 * @param rcErr VBox status code.
2436 */
2437VMMR3DECL(void) VMMR3FatalDump(PVM pVM, int rcErr)
2438{
2439 /*
2440 * Create our output helper and sync it with the log settings.
2441 * This helper will be used for all the output.
2442 */
2443 VMMR3FATALDUMPINFOHLP Hlp;
2444 PCDBGFINFOHLP pHlp = &Hlp.Core;
2445 vmmR3FatalDumpInfoHlpInit(&Hlp);
2446
2447 /*
2448 * Header.
2449 */
2450 pHlp->pfnPrintf(pHlp,
2451 "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"
2452 "!!\n"
2453 "!! Guru Meditation %d (%Vrc)\n"
2454 "!!\n",
2455 rcErr, rcErr);
2456
2457 /*
2458 * Continue according to context.
2459 */
2460 bool fDoneHyper = false;
2461 switch (rcErr)
2462 {
2463 /*
2464 * Hyper visor errors.
2465 */
2466 case VINF_EM_DBG_HYPER_ASSERTION:
2467 pHlp->pfnPrintf(pHlp, "%s%s!!\n", VMMR3GetGCAssertMsg1(pVM), VMMR3GetGCAssertMsg2(pVM));
2468 /* fall thru */
2469 case VERR_TRPM_DONT_PANIC:
2470 case VERR_TRPM_PANIC:
2471 case VINF_EM_RAW_STALE_SELECTOR:
2472 case VINF_EM_RAW_IRET_TRAP:
2473 case VINF_EM_DBG_HYPER_BREAKPOINT:
2474 case VINF_EM_DBG_HYPER_STEPPED:
2475 {
2476 /* Trap? */
2477 uint32_t uEIP = CPUMGetHyperEIP(pVM);
2478 TRPMEVENT enmType;
2479 uint8_t u8TrapNo = 0xce;
2480 RTGCUINT uErrorCode = 0xdeadface;
2481 RTGCUINTPTR uCR2 = 0xdeadface;
2482 int rc2 = TRPMQueryTrapAll(pVM, &u8TrapNo, &enmType, &uErrorCode, &uCR2);
2483 if (VBOX_SUCCESS(rc2))
2484 pHlp->pfnPrintf(pHlp,
2485 "!! TRAP=%02x ERRCD=%VGv CR2=%VGv EIP=%VGv Type=%d\n",
2486 u8TrapNo, uErrorCode, uCR2, uEIP, enmType);
2487 else
2488 pHlp->pfnPrintf(pHlp,
2489 "!! EIP=%VGv NOTRAP\n",
2490 uEIP);
2491
2492 /*
2493 * Try figure out where eip is.
2494 */
2495 /** @todo make query call for core code or move this function to VMM. */
2496 /* core code? */
2497 //if (uEIP - (RTGCUINTPTR)pVM->vmm.s.pvGCCoreCode < pVM->vmm.s.cbCoreCode)
2498 // pHlp->pfnPrintf(pHlp,
2499 // "!! EIP is in CoreCode, offset %#x\n",
2500 // uEIP - (RTGCUINTPTR)pVM->vmm.s.pvGCCoreCode);
2501 //else
2502 { /* ask PDM */
2503 /** @todo ask DBGFR3Sym later. */
2504 char szModName[64];
2505 RTGCPTR GCPtrMod;
2506 char szNearSym1[260];
2507 RTGCPTR GCPtrNearSym1;
2508 char szNearSym2[260];
2509 RTGCPTR GCPtrNearSym2;
2510 int rc = PDMR3QueryModFromEIP(pVM, uEIP,
2511 &szModName[0], sizeof(szModName), &GCPtrMod,
2512 &szNearSym1[0], sizeof(szNearSym1), &GCPtrNearSym1,
2513 &szNearSym2[0], sizeof(szNearSym2), &GCPtrNearSym2);
2514 if (VBOX_SUCCESS(rc))
2515 {
2516 pHlp->pfnPrintf(pHlp,
2517 "!! EIP in %s (%p) at rva %x near symbols:\n"
2518 "!! %VGv rva %VGv off %08x %s\n"
2519 "!! %VGv rva %VGv off -%08x %s\n",
2520 szModName, GCPtrMod, (unsigned)(uEIP - GCPtrMod),
2521 GCPtrNearSym1, GCPtrNearSym1 - GCPtrMod, (unsigned)(uEIP - GCPtrNearSym1), szNearSym1,
2522 GCPtrNearSym2, GCPtrNearSym2 - GCPtrMod, (unsigned)(GCPtrNearSym2 - uEIP), szNearSym2);
2523 }
2524 else
2525 pHlp->pfnPrintf(pHlp,
2526 "!! EIP is not in any code known to VMM!\n");
2527 }
2528
2529 /* Disassemble the instruction. */
2530 char szInstr[256];
2531 rc2 = DBGFR3DisasInstrEx(pVM, 0, 0, DBGF_DISAS_FLAGS_CURRENT_HYPER, &szInstr[0], sizeof(szInstr), NULL);
2532 if (VBOX_SUCCESS(rc2))
2533 pHlp->pfnPrintf(pHlp,
2534 "!! %s\n", szInstr);
2535
2536 /* Dump the hypervisor cpu state. */
2537 pHlp->pfnPrintf(pHlp,
2538 "!!\n"
2539 "!!\n"
2540 "!!\n");
2541 rc2 = DBGFR3Info(pVM, "cpumhyper", "verbose", pHlp);
2542 fDoneHyper = true;
2543
2544 /* Callstack. */
2545 DBGFSTACKFRAME Frame = {0};
2546 rc2 = DBGFR3StackWalkBeginHyper(pVM, &Frame);
2547 if (VBOX_SUCCESS(rc2))
2548 {
2549 pHlp->pfnPrintf(pHlp,
2550 "!!\n"
2551 "!! Call Stack:\n"
2552 "!!\n"
2553 "EBP Ret EBP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP Symbol [line]\n");
2554 do
2555 {
2556 pHlp->pfnPrintf(pHlp,
2557 "%08RX32 %08RX32 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32",
2558 (uint32_t)Frame.AddrFrame.off,
2559 (uint32_t)Frame.AddrReturnFrame.off,
2560 (uint32_t)Frame.AddrReturnPC.Sel,
2561 (uint32_t)Frame.AddrReturnPC.off,
2562 Frame.Args.au32[0],
2563 Frame.Args.au32[1],
2564 Frame.Args.au32[2],
2565 Frame.Args.au32[3]);
2566 pHlp->pfnPrintf(pHlp, " %RTsel:%08RGv", Frame.AddrPC.Sel, Frame.AddrPC.off);
2567 if (Frame.pSymPC)
2568 {
2569 RTGCINTPTR offDisp = Frame.AddrPC.FlatPtr - Frame.pSymPC->Value;
2570 if (offDisp > 0)
2571 pHlp->pfnPrintf(pHlp, " %s+%llx", Frame.pSymPC->szName, (int64_t)offDisp);
2572 else if (offDisp < 0)
2573 pHlp->pfnPrintf(pHlp, " %s-%llx", Frame.pSymPC->szName, -(int64_t)offDisp);
2574 else
2575 pHlp->pfnPrintf(pHlp, " %s", Frame.pSymPC->szName);
2576 }
2577 if (Frame.pLinePC)
2578 pHlp->pfnPrintf(pHlp, " [%s @ 0i%d]", Frame.pLinePC->szFilename, Frame.pLinePC->uLineNo);
2579 pHlp->pfnPrintf(pHlp, "\n");
2580
2581 /* next */
2582 rc2 = DBGFR3StackWalkNext(pVM, &Frame);
2583 } while (VBOX_SUCCESS(rc2));
2584 DBGFR3StackWalkEnd(pVM, &Frame);
2585 }
2586
2587 /* raw stack */
2588 pHlp->pfnPrintf(pHlp,
2589 "!!\n"
2590 "!! Raw stack (mind the direction).\n"
2591 "!!\n"
2592 "%.*Vhxd\n",
2593 VMM_STACK_SIZE, (char *)pVM->vmm.s.pbHCStack);
2594 break;
2595 }
2596
2597 default:
2598 {
2599 break;
2600 }
2601
2602 } /* switch (rcErr) */
2603
2604
2605 /*
2606 * Generic info dumper loop.
2607 */
2608 static struct
2609 {
2610 const char *pszInfo;
2611 const char *pszArgs;
2612 } const aInfo[] =
2613 {
2614 { "mappings", NULL },
2615 { "hma", NULL },
2616 { "cpumguest", "verbose" },
2617 { "cpumhyper", "verbose" },
2618 { "cpumhost", "verbose" },
2619 { "mode", "all" },
2620 { "cpuid", "verbose" },
2621 { "gdt", NULL },
2622 { "ldt", NULL },
2623 //{ "tss", NULL },
2624 { "ioport", NULL },
2625 { "mmio", NULL },
2626 { "phys", NULL },
2627 //{ "pgmpd", NULL }, - doesn't always work at init time...
2628 { "timers", NULL },
2629 { "activetimers", NULL },
2630 { "handlers", "phys virt hyper stats" },
2631 { "cfgm", NULL },
2632 };
2633 for (unsigned i = 0; i < ELEMENTS(aInfo); i++)
2634 {
2635 if (fDoneHyper && !strcmp(aInfo[i].pszInfo, "cpumhyper"))
2636 continue;
2637 pHlp->pfnPrintf(pHlp,
2638 "!!\n"
2639 "!! {%s, %s}\n"
2640 "!!\n",
2641 aInfo[i].pszInfo, aInfo[i].pszArgs);
2642 DBGFR3Info(pVM, aInfo[i].pszInfo, aInfo[i].pszArgs, pHlp);
2643 }
2644
2645 /* done */
2646 pHlp->pfnPrintf(pHlp,
2647 "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
2648
2649
2650 /*
2651 * Delete the output instance (flushing and restoring of flags).
2652 */
2653 vmmR3FatalDumpInfoHlpDelete(&Hlp);
2654}
2655
2656
2657
2658/**
2659 * Displays the Force action Flags.
2660 *
2661 * @param pVM The VM handle.
2662 * @param pHlp The output helpers.
2663 * @param pszArgs The additional arguments (ignored).
2664 */
2665static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2666{
2667 const uint32_t fForcedActions = pVM->fForcedActions;
2668
2669 pHlp->pfnPrintf(pHlp, "Forced action Flags: %#RX32", fForcedActions);
2670
2671 /* show the flag mnemonics */
2672 int c = 0;
2673 uint32_t f = fForcedActions;
2674#define PRINT_FLAG(flag) do { \
2675 if (f & (flag)) \
2676 { \
2677 static const char *s_psz = #flag; \
2678 if (!(c % 6)) \
2679 pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz + 6); \
2680 else \
2681 pHlp->pfnPrintf(pHlp, ", %s", s_psz + 6); \
2682 c++; \
2683 f &= ~(flag); \
2684 } \
2685 } while (0)
2686 PRINT_FLAG(VM_FF_INTERRUPT_APIC);
2687 PRINT_FLAG(VM_FF_INTERRUPT_PIC);
2688 PRINT_FLAG(VM_FF_TIMER);
2689 PRINT_FLAG(VM_FF_PDM_QUEUES);
2690 PRINT_FLAG(VM_FF_PDM_DMA);
2691 PRINT_FLAG(VM_FF_PDM_CRITSECT);
2692 PRINT_FLAG(VM_FF_DBGF);
2693 PRINT_FLAG(VM_FF_REQUEST);
2694 PRINT_FLAG(VM_FF_TERMINATE);
2695 PRINT_FLAG(VM_FF_RESET);
2696 PRINT_FLAG(VM_FF_PGM_SYNC_CR3);
2697 PRINT_FLAG(VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
2698 PRINT_FLAG(VM_FF_TRPM_SYNC_IDT);
2699 PRINT_FLAG(VM_FF_SELM_SYNC_TSS);
2700 PRINT_FLAG(VM_FF_SELM_SYNC_GDT);
2701 PRINT_FLAG(VM_FF_SELM_SYNC_LDT);
2702 PRINT_FLAG(VM_FF_INHIBIT_INTERRUPTS);
2703 PRINT_FLAG(VM_FF_CSAM_SCAN_PAGE);
2704 PRINT_FLAG(VM_FF_CSAM_PENDING_ACTION);
2705 PRINT_FLAG(VM_FF_TO_R3);
2706 PRINT_FLAG(VM_FF_DEBUG_SUSPEND);
2707 if (f)
2708 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2709 else
2710 pHlp->pfnPrintf(pHlp, "\n");
2711#undef PRINT_FLAG
2712
2713 /* the groups */
2714 c = 0;
2715#define PRINT_GROUP(grp) do { \
2716 if (fForcedActions & (grp)) \
2717 { \
2718 static const char *s_psz = #grp; \
2719 if (!(c % 5)) \
2720 pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : "Groups:\n", s_psz + 6); \
2721 else \
2722 pHlp->pfnPrintf(pHlp, ", %s", s_psz + 6); \
2723 c++; \
2724 } \
2725 } while (0)
2726 PRINT_GROUP(VM_FF_EXTERNAL_SUSPENDED_MASK);
2727 PRINT_GROUP(VM_FF_EXTERNAL_HALTED_MASK);
2728 PRINT_GROUP(VM_FF_HIGH_PRIORITY_PRE_MASK);
2729 PRINT_GROUP(VM_FF_HIGH_PRIORITY_PRE_RAW_MASK);
2730 PRINT_GROUP(VM_FF_HIGH_PRIORITY_POST_MASK);
2731 PRINT_GROUP(VM_FF_NORMAL_PRIORITY_POST_MASK);
2732 PRINT_GROUP(VM_FF_NORMAL_PRIORITY_MASK);
2733 PRINT_GROUP(VM_FF_RESUME_GUEST_MASK);
2734 PRINT_GROUP(VM_FF_ALL_BUT_RAW_MASK);
2735 if (c)
2736 pHlp->pfnPrintf(pHlp, "\n");
2737#undef PRINT_GROUP
2738}
2739
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette