/* $Id: VMM.cpp 10450 2008-07-09 21:55:45Z vboxsync $ */
/** @file
* VMM - The Virtual Machine Monitor Core.
*/
/*
* Copyright (C) 2006-2007 Sun Microsystems, Inc.
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
* Clara, CA 95054 USA or visit http://www.sun.com if you need
* additional information or have any questions.
*/
//#define NO_SUPCALLR0VMM
/** @page pg_vmm VMM - The Virtual Machine Monitor
*
* !Revise this! It's already incorrect!
*
* The Virtual Machine Monitor (VMM) is the core of the virtual machine. It
* manages the alternate reality; controlling the virtualization, managing
* resources, tracking CPU state, it's resources and so on...
*
* We will split the VMM into smaller entities:
*
* - Virtual Machine Core Monitor (VMCM), which purpose it is to
* provide ring and world switching, that including routing
* interrupts to the host OS and traps to the appropriate trap
* handlers. It will implement an external interface for
* managing trap handlers.
*
* - CPU Monitor (CM), tracking the state of the CPU (in the alternate
* reality) and implementing external interfaces to read and change
* the state.
*
* - Memory Monitor (MM), which purpose it is to virtualize physical
* pages, segment descriptor tables, interrupt descriptor tables, task
* segments, and keep track of all memory providing external interfaces
* to access content and map pages. (Internally splitt into smaller entities!)
*
* - IO Monitor (IOM), which virtualizes in and out I/O operations. It
* interacts with the MM to implement memory mapped I/O. External
* interfaces for adding and removing I/O ranges are implemented.
*
* - External Interrupt Monitor (EIM), which purpose it is to manage
* interrupts generated by virtual devices. This monitor provides
* an interfaces for raising interrupts which is accessible at any
* time and from all thread.
*
* A subentity of the EIM is the vitual Programmable Interrupt
* Controller Device (VPICD), and perhaps a virtual I/O Advanced
* Programmable Interrupt Controller Device (VAPICD).
*
* - Direct Memory Access Monitor (DMAM), which purpose it is to support
* virtual device using the DMA controller. Interfaces must be as the
* EIM interfaces independent and threadable.
*
* A subentity of the DMAM is a virtual DMA Controller Device (VDMACD).
*
*
* Entities working on a higher level:
*
* - Device Manager (DM), which is a support facility for virtualized
* hardware. This provides generic facilities for efficient device
* virtualization. It will manage device attaching and detaching
* conversing with EIM and IOM.
*
* - Debugger Facility (DBGF) provides the basic features for
* debugging the alternate reality execution.
*
*
*
* @section pg_vmm_s_use_cases Use Cases
*
* @subsection pg_vmm_s_use_case_boot Bootstrap
*
* - Basic Init:
* - Init SUPDRV.
*
* - Init Virtual Machine Instance:
* - Load settings.
* - Check resource requirements (memory, com, stuff).
*
* - Init Host Ring 3 part:
* - Init Core code.
* - Load Pluggable Components.
* - Init Pluggable Components.
*
* - Init Host Ring 0 part:
* - Load Core (core = core components like VMM, RMI, CA, and so on) code.
* - Init Core code.
* - Load Pluggable Component code.
* - Init Pluggable Component code.
*
* - Allocate first chunk of memory and pin it down. This block of memory
* will fit the following pieces:
* - Virtual Machine Instance data. (Config, CPU state, VMM state, ++)
* (This is available from everywhere (at different addresses though)).
* - VMM Guest Context code.
* - Pluggable devices Guest Context code.
* - Page tables (directory and everything) for the VMM Guest
*
* - Setup Guest (Ring 0) part:
* - Setup initial page tables (i.e. directory all the stuff).
* - Load Core Guest Context code.
* - Load Pluggable Devices Guest Context code.
*
*
*/
/*******************************************************************************
* Header Files *
*******************************************************************************/
#define LOG_GROUP LOG_GROUP_VMM
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "VMMInternal.h"
#include "VMMSwitcher/VMMSwitcher.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
/** The saved state version. */
#define VMM_SAVED_STATE_VERSION 3
/*******************************************************************************
* Internal Functions *
*******************************************************************************/
static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser);
static int vmmR3ServiceCallHostRequest(PVM pVM);
static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
/*******************************************************************************
* Global Variables *
*******************************************************************************/
/** Array of switcher defininitions.
* The type and index shall match!
*/
static PVMMSWITCHERDEF s_apSwitchers[VMMSWITCHER_MAX] =
{
NULL, /* invalid entry */
#ifndef RT_ARCH_AMD64
&vmmR3Switcher32BitTo32Bit_Def,
&vmmR3Switcher32BitToPAE_Def,
NULL, //&vmmR3Switcher32BitToAMD64_Def,
&vmmR3SwitcherPAETo32Bit_Def,
&vmmR3SwitcherPAEToPAE_Def,
NULL, //&vmmR3SwitcherPAEToAMD64_Def,
# ifdef VBOX_WITH_HYBIRD_32BIT_KERNEL
&vmmR3SwitcherAMD64ToPAE_Def,
# else
NULL, //&vmmR3SwitcherAMD64ToPAE_Def,
# endif
NULL //&vmmR3SwitcherAMD64ToAMD64_Def,
#else
NULL, //&vmmR3Switcher32BitTo32Bit_Def,
NULL, //&vmmR3Switcher32BitToPAE_Def,
NULL, //&vmmR3Switcher32BitToAMD64_Def,
NULL, //&vmmR3SwitcherPAETo32Bit_Def,
NULL, //&vmmR3SwitcherPAEToPAE_Def,
NULL, //&vmmR3SwitcherPAEToAMD64_Def,
&vmmR3SwitcherAMD64ToPAE_Def,
NULL //&vmmR3SwitcherAMD64ToAMD64_Def,
#endif
};
/**
* Initiates the core code.
*
* This is core per VM code which might need fixups and/or for ease of use
* are put on linear contiguous backing.
*
* @returns VBox status code.
* @param pVM Pointer to VM structure.
*/
static int vmmR3InitCoreCode(PVM pVM)
{
/*
* Calc the size.
*/
unsigned cbCoreCode = 0;
for (unsigned iSwitcher = 0; iSwitcher < ELEMENTS(s_apSwitchers); iSwitcher++)
{
pVM->vmm.s.aoffSwitchers[iSwitcher] = cbCoreCode;
PVMMSWITCHERDEF pSwitcher = s_apSwitchers[iSwitcher];
if (pSwitcher)
{
AssertRelease((unsigned)pSwitcher->enmType == iSwitcher);
cbCoreCode += RT_ALIGN_32(pSwitcher->cbCode + 1, 32);
}
}
/*
* Allocate continguous pages for switchers and deal with
* conflicts in the intermediate mapping of the code.
*/
pVM->vmm.s.cbCoreCode = RT_ALIGN_32(cbCoreCode, PAGE_SIZE);
pVM->vmm.s.pvHCCoreCodeR3 = SUPContAlloc2(pVM->vmm.s.cbCoreCode >> PAGE_SHIFT, &pVM->vmm.s.pvHCCoreCodeR0, &pVM->vmm.s.HCPhysCoreCode);
int rc = VERR_NO_MEMORY;
if (pVM->vmm.s.pvHCCoreCodeR3)
{
rc = PGMR3MapIntermediate(pVM, pVM->vmm.s.pvHCCoreCodeR0, pVM->vmm.s.HCPhysCoreCode, cbCoreCode);
if (rc == VERR_PGM_INTERMEDIATE_PAGING_CONFLICT)
{
/* try more allocations. */
struct
{
RTR0PTR pvR0;
void *pvR3;
RTHCPHYS HCPhys;
RTUINT cb;
} aBadTries[128];
unsigned i = 0;
do
{
aBadTries[i].pvR3 = pVM->vmm.s.pvHCCoreCodeR3;
aBadTries[i].pvR0 = pVM->vmm.s.pvHCCoreCodeR0;
aBadTries[i].HCPhys = pVM->vmm.s.HCPhysCoreCode;
i++;
pVM->vmm.s.pvHCCoreCodeR0 = NIL_RTR0PTR;
pVM->vmm.s.HCPhysCoreCode = NIL_RTHCPHYS;
pVM->vmm.s.pvHCCoreCodeR3 = SUPContAlloc2(pVM->vmm.s.cbCoreCode >> PAGE_SHIFT, &pVM->vmm.s.pvHCCoreCodeR0, &pVM->vmm.s.HCPhysCoreCode);
if (!pVM->vmm.s.pvHCCoreCodeR3)
break;
rc = PGMR3MapIntermediate(pVM, pVM->vmm.s.pvHCCoreCodeR0, pVM->vmm.s.HCPhysCoreCode, cbCoreCode);
} while ( rc == VERR_PGM_INTERMEDIATE_PAGING_CONFLICT
&& i < RT_ELEMENTS(aBadTries) - 1);
/* cleanup */
if (VBOX_FAILURE(rc))
{
aBadTries[i].pvR3 = pVM->vmm.s.pvHCCoreCodeR3;
aBadTries[i].pvR0 = pVM->vmm.s.pvHCCoreCodeR0;
aBadTries[i].HCPhys = pVM->vmm.s.HCPhysCoreCode;
aBadTries[i].cb = pVM->vmm.s.cbCoreCode;
i++;
LogRel(("Failed to allocated and map core code: rc=%Vrc\n", rc));
}
while (i-- > 0)
{
LogRel(("Core code alloc attempt #%d: pvR3=%p pvR0=%p HCPhys=%VHp\n",
i, aBadTries[i].pvR3, aBadTries[i].pvR0, aBadTries[i].HCPhys));
SUPContFree(aBadTries[i].pvR3, aBadTries[i].cb >> PAGE_SHIFT);
}
}
}
if (VBOX_SUCCESS(rc))
{
/*
* copy the code.
*/
for (unsigned iSwitcher = 0; iSwitcher < ELEMENTS(s_apSwitchers); iSwitcher++)
{
PVMMSWITCHERDEF pSwitcher = s_apSwitchers[iSwitcher];
if (pSwitcher)
memcpy((uint8_t *)pVM->vmm.s.pvHCCoreCodeR3 + pVM->vmm.s.aoffSwitchers[iSwitcher],
pSwitcher->pvCode, pSwitcher->cbCode);
}
/*
* Map the code into the GC address space.
*/
RTGCPTR GCPtr;
rc = MMR3HyperMapHCPhys(pVM, pVM->vmm.s.pvHCCoreCodeR3, pVM->vmm.s.HCPhysCoreCode, cbCoreCode, "Core Code", &GCPtr);
if (VBOX_SUCCESS(rc))
{
pVM->vmm.s.pvGCCoreCode = GCPtr;
MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
LogRel(("CoreCode: R3=%VHv R0=%VHv GC=%VRv Phys=%VHp cb=%#x\n",
pVM->vmm.s.pvHCCoreCodeR3, pVM->vmm.s.pvHCCoreCodeR0, pVM->vmm.s.pvGCCoreCode, pVM->vmm.s.HCPhysCoreCode, pVM->vmm.s.cbCoreCode));
/*
* Finally, PGM probably have selected a switcher already but we need
* to do get the addresses so we'll reselect it.
* This may legally fail so, we're ignoring the rc.
*/
VMMR3SelectSwitcher(pVM, pVM->vmm.s.enmSwitcher);
return rc;
}
/* shit */
AssertMsgFailed(("PGMR3Map(,%VRv, %VGp, %#x, 0) failed with rc=%Vrc\n", pVM->vmm.s.pvGCCoreCode, pVM->vmm.s.HCPhysCoreCode, cbCoreCode, rc));
SUPContFree(pVM->vmm.s.pvHCCoreCodeR3, pVM->vmm.s.cbCoreCode >> PAGE_SHIFT);
}
else
VMSetError(pVM, rc, RT_SRC_POS,
N_("Failed to allocate %d bytes of contiguous memory for the world switcher code"),
cbCoreCode);
pVM->vmm.s.pvHCCoreCodeR3 = NULL;
pVM->vmm.s.pvHCCoreCodeR0 = NIL_RTR0PTR;
pVM->vmm.s.pvGCCoreCode = 0;
return rc;
}
/**
* Initializes the VMM.
*
* @returns VBox status code.
* @param pVM The VM to operate on.
*/
VMMR3DECL(int) VMMR3Init(PVM pVM)
{
LogFlow(("VMMR3Init\n"));
/*
* Assert alignment, sizes and order.
*/
AssertMsg(pVM->vmm.s.offVM == 0, ("Already initialized!\n"));
AssertMsg(sizeof(pVM->vmm.padding) >= sizeof(pVM->vmm.s),
("pVM->vmm.padding is too small! vmm.padding %d while vmm.s is %d\n",
sizeof(pVM->vmm.padding), sizeof(pVM->vmm.s)));
/*
* Init basic VM VMM members.
*/
pVM->vmm.s.offVM = RT_OFFSETOF(VM, vmm);
int rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies);
if (rc == VERR_CFGM_VALUE_NOT_FOUND)
pVM->vmm.s.cYieldEveryMillies = 23; /* Value arrived at after experimenting with the grub boot prompt. */
//pVM->vmm.s.cYieldEveryMillies = 8; //debugging
else
AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Vrc\n", rc), rc);
/* GC switchers are enabled by default. Turned off by HWACCM. */
pVM->vmm.s.fSwitcherDisabled = false;
/*
* Register the saved state data unit.
*/
rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
NULL, vmmR3Save, NULL,
NULL, vmmR3Load, NULL);
if (VBOX_FAILURE(rc))
return rc;
/*
* Register the Ring-0 VM handle with the session for fast ioctl calls.
*/
rc = SUPSetVMForFastIOCtl(pVM->pVMR0);
if (VBOX_FAILURE(rc))
return rc;
/*
* Init core code.
*/
rc = vmmR3InitCoreCode(pVM);
if (VBOX_SUCCESS(rc))
{
/*
* Allocate & init VMM GC stack.
* The stack pages are also used by the VMM R0 when VMMR0CallHost is invoked.
* (The page protection is modifed during R3 init completion.)
*/
#ifdef VBOX_STRICT_VMM_STACK
rc = MMHyperAlloc(pVM, VMM_STACK_SIZE + PAGE_SIZE + PAGE_SIZE, PAGE_SIZE, MM_TAG_VMM, (void **)&pVM->vmm.s.pbHCStack);
#else
rc = MMHyperAlloc(pVM, VMM_STACK_SIZE, PAGE_SIZE, MM_TAG_VMM, (void **)&pVM->vmm.s.pbHCStack);
#endif
if (VBOX_SUCCESS(rc))
{
/* Set HC and GC stack pointers to top of stack. */
pVM->vmm.s.CallHostR0JmpBuf.pvSavedStack = (RTR0PTR)pVM->vmm.s.pbHCStack;
pVM->vmm.s.pbGCStack = MMHyperHC2GC(pVM, pVM->vmm.s.pbHCStack);
pVM->vmm.s.pbGCStackBottom = pVM->vmm.s.pbGCStack + VMM_STACK_SIZE;
AssertRelease(pVM->vmm.s.pbGCStack);
/* Set hypervisor eip. */
CPUMSetHyperESP(pVM, pVM->vmm.s.pbGCStack);
/*
* Allocate GC & R0 Logger instances (they are finalized in the relocator).
*/
#ifdef LOG_ENABLED
PRTLOGGER pLogger = RTLogDefaultInstance();
if (pLogger)
{
pVM->vmm.s.cbLoggerGC = RT_OFFSETOF(RTLOGGERRC, afGroups[pLogger->cGroups]);
rc = MMHyperAlloc(pVM, pVM->vmm.s.cbLoggerGC, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pLoggerHC);
if (VBOX_SUCCESS(rc))
{
pVM->vmm.s.pLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pLoggerHC);
/*
* Ring-0 logging isn't 100% safe yet (thread id reuse / process exit cleanup), so
* you have to sign up here by adding your defined(DEBUG_) to the #if.
*
* If you want to log in non-debug modes, you'll have to remember to change SUPDRvShared.c
* to not stub all the log functions.
*
* You might also wish to enable the AssertMsg1/2 overrides in VMMR0.cpp when enabling this.
*/
# if defined(DEBUG_sandervl) || defined(DEBUG_frank)
rc = MMHyperAlloc(pVM, RT_OFFSETOF(VMMR0LOGGER, Logger.afGroups[pLogger->cGroups]),
0, MM_TAG_VMM, (void **)&pVM->vmm.s.pR0Logger);
if (VBOX_SUCCESS(rc))
{
pVM->vmm.s.pR0Logger->pVM = pVM->pVMR0;
//pVM->vmm.s.pR0Logger->fCreated = false;
pVM->vmm.s.pR0Logger->cbLogger = RT_OFFSETOF(RTLOGGER, afGroups[pLogger->cGroups]);
}
# endif
}
}
#endif /* LOG_ENABLED */
#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
/*
* Allocate GC Release Logger instances (finalized in the relocator).
*/
if (VBOX_SUCCESS(rc))
{
PRTLOGGER pRelLogger = RTLogRelDefaultInstance();
if (pRelLogger)
{
pVM->vmm.s.cbRelLoggerGC = RT_OFFSETOF(RTLOGGERRC, afGroups[pRelLogger->cGroups]);
rc = MMHyperAlloc(pVM, pVM->vmm.s.cbRelLoggerGC, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRelLoggerHC);
if (VBOX_SUCCESS(rc))
pVM->vmm.s.pRelLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pRelLoggerHC);
}
}
#endif /* VBOX_WITH_GC_AND_R0_RELEASE_LOG */
#ifdef VBOX_WITH_NMI
/*
* Allocate mapping for the host APIC.
*/
if (VBOX_SUCCESS(rc))
{
rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
AssertRC(rc);
}
#endif
if (VBOX_SUCCESS(rc))
{
rc = RTCritSectInit(&pVM->vmm.s.CritSectVMLock);
if (VBOX_SUCCESS(rc))
{
/*
* Debug info.
*/
DBGFR3InfoRegisterInternal(pVM, "ff", "Displays the current Forced actions Flags.", vmmR3InfoFF);
/*
* Statistics.
*/
STAM_REG(pVM, &pVM->vmm.s.StatRunGC, STAMTYPE_COUNTER, "/VMM/RunGC", STAMUNIT_OCCURENCES, "Number of context switches.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetNormal, STAMTYPE_COUNTER, "/VMM/GCRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetInterrupt, STAMTYPE_COUNTER, "/VMM/GCRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/GCRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetGuestTrap, STAMTYPE_COUNTER, "/VMM/GCRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetRingSwitch, STAMTYPE_COUNTER, "/VMM/GCRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/GCRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetExceptionPrivilege, STAMTYPE_COUNTER, "/VMM/GCRet/ExceptionPrivilege", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_EXCEPTION_PRIVILEGED returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetStaleSelector, STAMTYPE_COUNTER, "/VMM/GCRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetIRETTrap, STAMTYPE_COUNTER, "/VMM/GCRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetEmulate, STAMTYPE_COUNTER, "/VMM/GCRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/GCRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetIORead, STAMTYPE_COUNTER, "/VMM/GCRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_READ returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetIOWrite, STAMTYPE_COUNTER, "/VMM/GCRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_WRITE returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetMMIORead, STAMTYPE_COUNTER, "/VMM/GCRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_READ returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/GCRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_WRITE returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/GCRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_READ_WRITE returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/GCRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/GCRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetLDTFault, STAMTYPE_COUNTER, "/VMM/GCRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetGDTFault, STAMTYPE_COUNTER, "/VMM/GCRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetIDTFault, STAMTYPE_COUNTER, "/VMM/GCRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetTSSFault, STAMTYPE_COUNTER, "/VMM/GCRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetPDFault, STAMTYPE_COUNTER, "/VMM/GCRet/PDFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_PD_FAULT returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetCSAMTask, STAMTYPE_COUNTER, "/VMM/GCRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetSyncCR3, STAMTYPE_COUNTER, "/VMM/GCRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetMisc, STAMTYPE_COUNTER, "/VMM/GCRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetPatchInt3, STAMTYPE_COUNTER, "/VMM/GCRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetPatchPF, STAMTYPE_COUNTER, "/VMM/GCRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetPatchGP, STAMTYPE_COUNTER, "/VMM/GCRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/GCRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetPageOverflow, STAMTYPE_COUNTER, "/VMM/GCRet/InvlpgOverflow", STAMUNIT_OCCURENCES, "Number of VERR_REM_FLUSHED_PAGES_OVERFLOW returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/GCRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetToR3, STAMTYPE_COUNTER, "/VMM/GCRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetTimerPending, STAMTYPE_COUNTER, "/VMM/GCRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetInterruptPending, STAMTYPE_COUNTER, "/VMM/GCRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetCallHost, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/Misc", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetPGMGrowRAM, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/GrowRAM", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetPDMLock, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/PDMLock", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetLogFlush, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/LogFlush", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetPDMQueueFlush, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/QueueFlush", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetPGMPoolGrow, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/PGMPoolGrow",STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetRemReplay, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/REMReplay", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetVMSetError, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/VMSetError", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetPGMLock, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/PGMLock", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetHyperAssertion, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/HyperAssert", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/GCRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/GCRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetEmulHlt, STAMTYPE_COUNTER, "/VMM/GCRet/EmulHlt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_EMULATE_INSTR_HLT returns.");
STAM_REG(pVM, &pVM->vmm.s.StatGCRetPendingRequest, STAMTYPE_COUNTER, "/VMM/GCRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
return VINF_SUCCESS;
}
AssertRC(rc);
}
}
/** @todo: Need failure cleanup. */
//more todo in here?
//if (VBOX_SUCCESS(rc))
//{
//}
//int rc2 = vmmR3TermCoreCode(pVM);
//AssertRC(rc2));
}
return rc;
}
/**
* Ring-3 init finalizing.
*
* @returns VBox status code.
* @param pVM The VM handle.
*/
VMMR3DECL(int) VMMR3InitFinalize(PVM pVM)
{
#ifdef VBOX_STRICT_VMM_STACK
/*
* Two inaccessible pages at each sides of the stack to catch over/under-flows.
*/
memset(pVM->vmm.s.pbHCStack - PAGE_SIZE, 0xcc, PAGE_SIZE);
PGMMapSetPage(pVM, MMHyperHC2GC(pVM, pVM->vmm.s.pbHCStack - PAGE_SIZE), PAGE_SIZE, 0);
RTMemProtect(pVM->vmm.s.pbHCStack - PAGE_SIZE, PAGE_SIZE, RTMEM_PROT_NONE);
memset(pVM->vmm.s.pbHCStack + VMM_STACK_SIZE, 0xcc, PAGE_SIZE);
PGMMapSetPage(pVM, MMHyperHC2GC(pVM, pVM->vmm.s.pbHCStack + VMM_STACK_SIZE), PAGE_SIZE, 0);
RTMemProtect(pVM->vmm.s.pbHCStack + VMM_STACK_SIZE, PAGE_SIZE, RTMEM_PROT_NONE);
#endif
/*
* Set page attributes to r/w for stack pages.
*/
int rc = PGMMapSetPage(pVM, pVM->vmm.s.pbGCStack, VMM_STACK_SIZE, X86_PTE_P | X86_PTE_A | X86_PTE_D | X86_PTE_RW);
AssertRC(rc);
if (VBOX_SUCCESS(rc))
{
/*
* Create the EMT yield timer.
*/
rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, "EMT Yielder", &pVM->vmm.s.pYieldTimer);
if (VBOX_SUCCESS(rc))
rc = TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldEveryMillies);
}
#ifdef VBOX_WITH_NMI
/*
* Map the host APIC into GC - This may be host os specific!
*/
if (VBOX_SUCCESS(rc))
rc = PGMMap(pVM, pVM->vmm.s.GCPtrApicBase, 0xfee00000, PAGE_SIZE,
X86_PTE_P | X86_PTE_RW | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_A | X86_PTE_D);
#endif
return rc;
}
/**
* Initializes the R0 VMM.
*
* @returns VBox status code.
* @param pVM The VM to operate on.
*/
VMMR3DECL(int) VMMR3InitR0(PVM pVM)
{
int rc;
/*
* Initialize the ring-0 logger if we haven't done so yet.
*/
if ( pVM->vmm.s.pR0Logger
&& !pVM->vmm.s.pR0Logger->fCreated)
{
rc = VMMR3UpdateLoggers(pVM);
if (VBOX_FAILURE(rc))
return rc;
}
/*
* Call Ring-0 entry with init code.
*/
for (;;)
{
#ifdef NO_SUPCALLR0VMM
//rc = VERR_GENERAL_FAILURE;
rc = VINF_SUCCESS;
#else
rc = SUPCallVMMR0Ex(pVM->pVMR0, VMMR0_DO_VMMR0_INIT, VMMGetSvnRev(), NULL);
#endif
if ( pVM->vmm.s.pR0Logger
&& pVM->vmm.s.pR0Logger->Logger.offScratch > 0)
RTLogFlushToLogger(&pVM->vmm.s.pR0Logger->Logger, NULL);
if (rc != VINF_VMM_CALL_HOST)
break;
rc = vmmR3ServiceCallHostRequest(pVM);
if (VBOX_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
break;
/* Resume R0 */
}
if (VBOX_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
{
LogRel(("R0 init failed, rc=%Vra\n", rc));
if (VBOX_SUCCESS(rc))
rc = VERR_INTERNAL_ERROR;
}
return rc;
}
/**
* Initializes the GC VMM.
*
* @returns VBox status code.
* @param pVM The VM to operate on.
*/
VMMR3DECL(int) VMMR3InitGC(PVM pVM)
{
/* In VMX mode, there's no need to init GC. */
if (pVM->vmm.s.fSwitcherDisabled)
return VINF_SUCCESS;
/*
* Call VMMGCInit():
* -# resolve the address.
* -# setup stackframe and EIP to use the trampoline.
* -# do a generic hypervisor call.
*/
RTGCPTR32 GCPtrEP;
int rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMGCEntry", &GCPtrEP);
if (VBOX_SUCCESS(rc))
{
CPUMHyperSetCtxCore(pVM, NULL);
CPUMSetHyperESP(pVM, pVM->vmm.s.pbGCStackBottom); /* Clear the stack. */
uint64_t u64TS = RTTimeProgramStartNanoTS();
#if GC_ARCH_BITS == 32
CPUMPushHyper(pVM, (uint32_t)(u64TS >> 32)); /* Param 3: The program startup TS - Hi. */
CPUMPushHyper(pVM, (uint32_t)u64TS); /* Param 3: The program startup TS - Lo. */
#else /* 64-bit GC */
CPUMPushHyper(pVM, u64TS); /* Param 3: The program startup TS. */
#endif
CPUMPushHyper(pVM, VMMGetSvnRev()); /* Param 2: Version argument. */
CPUMPushHyper(pVM, VMMGC_DO_VMMGC_INIT); /* Param 1: Operation. */
CPUMPushHyper(pVM, pVM->pVMGC); /* Param 0: pVM */
CPUMPushHyper(pVM, 3 * sizeof(RTGCPTR)); /* trampoline param: stacksize. */
CPUMPushHyper(pVM, GCPtrEP); /* Call EIP. */
CPUMSetHyperEIP(pVM, pVM->vmm.s.pfnGCCallTrampoline);
for (;;)
{
#ifdef NO_SUPCALLR0VMM
//rc = VERR_GENERAL_FAILURE;
rc = VINF_SUCCESS;
#else
rc = SUPCallVMMR0(pVM->pVMR0, VMMR0_DO_CALL_HYPERVISOR, NULL);
#endif
#ifdef LOG_ENABLED
PRTLOGGERRC pLogger = pVM->vmm.s.pLoggerHC;
if ( pLogger
&& pLogger->offScratch > 0)
RTLogFlushGC(NULL, pLogger);
#endif
#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
PRTLOGGERRC pRelLogger = pVM->vmm.s.pRelLoggerHC;
if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
RTLogFlushGC(RTLogRelDefaultInstance(), pRelLogger);
#endif
if (rc != VINF_VMM_CALL_HOST)
break;
rc = vmmR3ServiceCallHostRequest(pVM);
if (VBOX_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
break;
}
if (VBOX_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
{
VMMR3FatalDump(pVM, rc);
if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
rc = VERR_INTERNAL_ERROR;
}
AssertRC(rc);
}
return rc;
}
/**
* Terminate the VMM bits.
*
* @returns VINF_SUCCESS.
* @param pVM The VM handle.
*/
VMMR3DECL(int) VMMR3Term(PVM pVM)
{
/*
* Call Ring-0 entry with termination code.
*/
int rc;
for (;;)
{
#ifdef NO_SUPCALLR0VMM
//rc = VERR_GENERAL_FAILURE;
rc = VINF_SUCCESS;
#else
rc = SUPCallVMMR0Ex(pVM->pVMR0, VMMR0_DO_VMMR0_TERM, 0, NULL);
#endif
if ( pVM->vmm.s.pR0Logger
&& pVM->vmm.s.pR0Logger->Logger.offScratch > 0)
RTLogFlushToLogger(&pVM->vmm.s.pR0Logger->Logger, NULL);
if (rc != VINF_VMM_CALL_HOST)
break;
rc = vmmR3ServiceCallHostRequest(pVM);
if (VBOX_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
break;
/* Resume R0 */
}
if (VBOX_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
{
LogRel(("VMMR3Term: R0 term failed, rc=%Vra. (warning)\n", rc));
if (VBOX_SUCCESS(rc))
rc = VERR_INTERNAL_ERROR;
}
#ifdef VBOX_STRICT_VMM_STACK
/*
* Make the two stack guard pages present again.
*/
RTMemProtect(pVM->vmm.s.pbHCStack - PAGE_SIZE, PAGE_SIZE, RTMEM_PROT_READ | RTMEM_PROT_WRITE);
RTMemProtect(pVM->vmm.s.pbHCStack + VMM_STACK_SIZE, PAGE_SIZE, RTMEM_PROT_READ | RTMEM_PROT_WRITE);
#endif
return rc;
}
/**
* Applies relocations to data and code managed by this
* component. This function will be called at init and
* whenever the VMM need to relocate it self inside the GC.
*
* The VMM will need to apply relocations to the core code.
*
* @param pVM The VM handle.
* @param offDelta The relocation delta.
*/
VMMR3DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
{
LogFlow(("VMMR3Relocate: offDelta=%VGv\n", offDelta));
/*
* Recalc the GC address.
*/
pVM->vmm.s.pvGCCoreCode = MMHyperHC2GC(pVM, pVM->vmm.s.pvHCCoreCodeR3);
/*
* The stack.
*/
CPUMSetHyperESP(pVM, CPUMGetHyperESP(pVM) + offDelta);
pVM->vmm.s.pbGCStack = MMHyperHC2GC(pVM, pVM->vmm.s.pbHCStack);
pVM->vmm.s.pbGCStackBottom = pVM->vmm.s.pbGCStack + VMM_STACK_SIZE;
/*
* All the switchers.
*/
for (unsigned iSwitcher = 0; iSwitcher < ELEMENTS(s_apSwitchers); iSwitcher++)
{
PVMMSWITCHERDEF pSwitcher = s_apSwitchers[iSwitcher];
if (pSwitcher && pSwitcher->pfnRelocate)
{
unsigned off = pVM->vmm.s.aoffSwitchers[iSwitcher];
pSwitcher->pfnRelocate(pVM,
pSwitcher,
(uint8_t *)pVM->vmm.s.pvHCCoreCodeR0 + off,
(uint8_t *)pVM->vmm.s.pvHCCoreCodeR3 + off,
pVM->vmm.s.pvGCCoreCode + off,
pVM->vmm.s.HCPhysCoreCode + off);
}
}
/*
* Recalc the GC address for the current switcher.
*/
PVMMSWITCHERDEF pSwitcher = s_apSwitchers[pVM->vmm.s.enmSwitcher];
RTGCPTR GCPtr = pVM->vmm.s.pvGCCoreCode + pVM->vmm.s.aoffSwitchers[pVM->vmm.s.enmSwitcher];
pVM->vmm.s.pfnGCGuestToHost = GCPtr + pSwitcher->offGCGuestToHost;
pVM->vmm.s.pfnGCCallTrampoline = GCPtr + pSwitcher->offGCCallTrampoline;
pVM->pfnVMMGCGuestToHostAsm = GCPtr + pSwitcher->offGCGuestToHostAsm;
pVM->pfnVMMGCGuestToHostAsmHyperCtx = GCPtr + pSwitcher->offGCGuestToHostAsmHyperCtx;
pVM->pfnVMMGCGuestToHostAsmGuestCtx = GCPtr + pSwitcher->offGCGuestToHostAsmGuestCtx;
/*
* Get other GC entry points.
*/
int rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuest", &pVM->vmm.s.pfnCPUMGCResumeGuest);
AssertReleaseMsgRC(rc, ("CPUMGCResumeGuest not found! rc=%Vra\n", rc));
rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuestV86", &pVM->vmm.s.pfnCPUMGCResumeGuestV86);
AssertReleaseMsgRC(rc, ("CPUMGCResumeGuestV86 not found! rc=%Vra\n", rc));
/*
* Update the logger.
*/
VMMR3UpdateLoggers(pVM);
}
/**
* Updates the settings for the GC and R0 loggers.
*
* @returns VBox status code.
* @param pVM The VM handle.
*/
VMMR3DECL(int) VMMR3UpdateLoggers(PVM pVM)
{
/*
* Simply clone the logger instance (for GC).
*/
int rc = VINF_SUCCESS;
RTGCPTR32 GCPtrLoggerFlush = 0;
if (pVM->vmm.s.pLoggerHC
#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
|| pVM->vmm.s.pRelLoggerHC
#endif
)
{
rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerFlush", &GCPtrLoggerFlush);
AssertReleaseMsgRC(rc, ("vmmGCLoggerFlush not found! rc=%Vra\n", rc));
}
if (pVM->vmm.s.pLoggerHC)
{
RTGCPTR32 GCPtrLoggerWrapper = 0;
rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerWrapper", &GCPtrLoggerWrapper);
AssertReleaseMsgRC(rc, ("vmmGCLoggerWrapper not found! rc=%Vra\n", rc));
pVM->vmm.s.pLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pLoggerHC);
rc = RTLogCloneRC(NULL /* default */, pVM->vmm.s.pLoggerHC, pVM->vmm.s.cbLoggerGC,
GCPtrLoggerWrapper, GCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
AssertReleaseMsgRC(rc, ("RTLogCloneGC failed! rc=%Vra\n", rc));
}
#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
if (pVM->vmm.s.pRelLoggerHC)
{
RTGCPTR32 GCPtrLoggerWrapper = 0;
rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCRelLoggerWrapper", &GCPtrLoggerWrapper);
AssertReleaseMsgRC(rc, ("vmmGCRelLoggerWrapper not found! rc=%Vra\n", rc));
pVM->vmm.s.pRelLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pRelLoggerHC);
rc = RTLogCloneRC(RTLogRelDefaultInstance(), pVM->vmm.s.pRelLoggerHC, pVM->vmm.s.cbRelLoggerGC,
GCPtrLoggerWrapper, GCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
AssertReleaseMsgRC(rc, ("RTLogCloneGC failed! rc=%Vra\n", rc));
}
#endif /* VBOX_WITH_GC_AND_R0_RELEASE_LOG */
/*
* For the ring-0 EMT logger, we use a per-thread logger
* instance in ring-0. Only initialize it once.
*/
PVMMR0LOGGER pR0Logger = pVM->vmm.s.pR0Logger;
if (pR0Logger)
{
if (!pR0Logger->fCreated)
{
RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR;
rc = PDMR3GetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
AssertReleaseMsgRCReturn(rc, ("VMMLoggerWrapper not found! rc=%Vra\n", rc), rc);
RTR0PTR pfnLoggerFlush = NIL_RTR0PTR;
rc = PDMR3GetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
AssertReleaseMsgRCReturn(rc, ("VMMLoggerFlush not found! rc=%Vra\n", rc), rc);
rc = RTLogCreateForR0(&pR0Logger->Logger, pR0Logger->cbLogger,
*(PFNRTLOGGER *)&pfnLoggerWrapper, *(PFNRTLOGFLUSH *)&pfnLoggerFlush,
RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY);
AssertReleaseMsgRCReturn(rc, ("RTLogCloneGC failed! rc=%Vra\n", rc), rc);
pR0Logger->fCreated = true;
}
rc = RTLogCopyGroupsAndFlags(&pR0Logger->Logger, NULL /* default */, RTLOGFLAGS_BUFFERED, 0);
AssertRC(rc);
}
return rc;
}
/**
* Generic switch code relocator.
*
* @param pVM The VM handle.
* @param pSwitcher The switcher definition.
* @param pu8CodeR3 Pointer to the core code block for the switcher, ring-3 mapping.
* @param pu8CodeR0 Pointer to the core code block for the switcher, ring-0 mapping.
* @param GCPtrCode The guest context address corresponding to pu8Code.
* @param u32IDCode The identity mapped (ID) address corresponding to pu8Code.
* @param SelCS The hypervisor CS selector.
* @param SelDS The hypervisor DS selector.
* @param SelTSS The hypervisor TSS selector.
* @param GCPtrGDT The GC address of the hypervisor GDT.
* @param SelCS64 The 64-bit mode hypervisor CS selector.
*/
static void vmmR3SwitcherGenericRelocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode,
RTSEL SelCS, RTSEL SelDS, RTSEL SelTSS, RTGCPTR GCPtrGDT, RTSEL SelCS64)
{
union
{
const uint8_t *pu8;
const uint16_t *pu16;
const uint32_t *pu32;
const uint64_t *pu64;
const void *pv;
uintptr_t u;
} u;
u.pv = pSwitcher->pvFixups;
/*
* Process fixups.
*/
uint8_t u8;
while ((u8 = *u.pu8++) != FIX_THE_END)
{
/*
* Get the source (where to write the fixup).
*/
uint32_t offSrc = *u.pu32++;
Assert(offSrc < pSwitcher->cbCode);
union
{
uint8_t *pu8;
uint16_t *pu16;
uint32_t *pu32;
uint64_t *pu64;
uintptr_t u;
} uSrc;
uSrc.pu8 = pu8CodeR3 + offSrc;
/* The fixup target and method depends on the type. */
switch (u8)
{
/*
* 32-bit relative, source in HC and target in GC.
*/
case FIX_HC_2_GC_NEAR_REL:
{
Assert(offSrc - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offSrc - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
uint32_t offTrg = *u.pu32++;
Assert(offTrg - pSwitcher->offGCCode < pSwitcher->cbGCCode);
*uSrc.pu32 = (uint32_t)((GCPtrCode + offTrg) - (uSrc.u + 4));
break;
}
/*
* 32-bit relative, source in HC and target in ID.
*/
case FIX_HC_2_ID_NEAR_REL:
{
Assert(offSrc - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offSrc - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
uint32_t offTrg = *u.pu32++;
Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
*uSrc.pu32 = (uint32_t)((u32IDCode + offTrg) - ((uintptr_t)pu8CodeR0 + offSrc + 4));
break;
}
/*
* 32-bit relative, source in GC and target in HC.
*/
case FIX_GC_2_HC_NEAR_REL:
{
Assert(offSrc - pSwitcher->offGCCode < pSwitcher->cbGCCode);
uint32_t offTrg = *u.pu32++;
Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
*uSrc.pu32 = (uint32_t)(((uintptr_t)pu8CodeR0 + offTrg) - (GCPtrCode + offSrc + 4));
break;
}
/*
* 32-bit relative, source in GC and target in ID.
*/
case FIX_GC_2_ID_NEAR_REL:
{
Assert(offSrc - pSwitcher->offGCCode < pSwitcher->cbGCCode);
uint32_t offTrg = *u.pu32++;
Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
*uSrc.pu32 = (uint32_t)((u32IDCode + offTrg) - (GCPtrCode + offSrc + 4));
break;
}
/*
* 32-bit relative, source in ID and target in HC.
*/
case FIX_ID_2_HC_NEAR_REL:
{
Assert(offSrc - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offSrc - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
uint32_t offTrg = *u.pu32++;
Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
*uSrc.pu32 = (uint32_t)(((uintptr_t)pu8CodeR0 + offTrg) - (u32IDCode + offSrc + 4));
break;
}
/*
* 32-bit relative, source in ID and target in HC.
*/
case FIX_ID_2_GC_NEAR_REL:
{
Assert(offSrc - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offSrc - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
uint32_t offTrg = *u.pu32++;
Assert(offTrg - pSwitcher->offGCCode < pSwitcher->cbGCCode);
*uSrc.pu32 = (uint32_t)((GCPtrCode + offTrg) - (u32IDCode + offSrc + 4));
break;
}
/*
* 16:32 far jump, target in GC.
*/
case FIX_GC_FAR32:
{
uint32_t offTrg = *u.pu32++;
Assert(offTrg - pSwitcher->offGCCode < pSwitcher->cbGCCode);
*uSrc.pu32++ = (uint32_t)(GCPtrCode + offTrg);
*uSrc.pu16++ = SelCS;
break;
}
/*
* Make 32-bit GC pointer given CPUM offset.
*/
case FIX_GC_CPUM_OFF:
{
uint32_t offCPUM = *u.pu32++;
Assert(offCPUM < sizeof(pVM->cpum));
*uSrc.pu32 = (uint32_t)(VM_GUEST_ADDR(pVM, &pVM->cpum) + offCPUM);
break;
}
/*
* Make 32-bit GC pointer given VM offset.
*/
case FIX_GC_VM_OFF:
{
uint32_t offVM = *u.pu32++;
Assert(offVM < sizeof(VM));
*uSrc.pu32 = (uint32_t)(VM_GUEST_ADDR(pVM, pVM) + offVM);
break;
}
/*
* Make 32-bit HC pointer given CPUM offset.
*/
case FIX_HC_CPUM_OFF:
{
uint32_t offCPUM = *u.pu32++;
Assert(offCPUM < sizeof(pVM->cpum));
*uSrc.pu32 = (uint32_t)pVM->pVMR0 + RT_OFFSETOF(VM, cpum) + offCPUM;
break;
}
/*
* Make 32-bit R0 pointer given VM offset.
*/
case FIX_HC_VM_OFF:
{
uint32_t offVM = *u.pu32++;
Assert(offVM < sizeof(VM));
*uSrc.pu32 = (uint32_t)pVM->pVMR0 + offVM;
break;
}
/*
* Store the 32-Bit CR3 (32-bit) for the intermediate memory context.
*/
case FIX_INTER_32BIT_CR3:
{
*uSrc.pu32 = PGMGetInter32BitCR3(pVM);
break;
}
/*
* Store the PAE CR3 (32-bit) for the intermediate memory context.
*/
case FIX_INTER_PAE_CR3:
{
*uSrc.pu32 = PGMGetInterPaeCR3(pVM);
break;
}
/*
* Store the AMD64 CR3 (32-bit) for the intermediate memory context.
*/
case FIX_INTER_AMD64_CR3:
{
*uSrc.pu32 = PGMGetInterAmd64CR3(pVM);
break;
}
/*
* Store the 32-Bit CR3 (32-bit) for the hypervisor (shadow) memory context.
*/
case FIX_HYPER_32BIT_CR3:
{
*uSrc.pu32 = PGMGetHyper32BitCR3(pVM);
break;
}
/*
* Store the PAE CR3 (32-bit) for the hypervisor (shadow) memory context.
*/
case FIX_HYPER_PAE_CR3:
{
*uSrc.pu32 = PGMGetHyperPaeCR3(pVM);
break;
}
/*
* Store the AMD64 CR3 (32-bit) for the hypervisor (shadow) memory context.
*/
case FIX_HYPER_AMD64_CR3:
{
*uSrc.pu32 = PGMGetHyperAmd64CR3(pVM);
break;
}
/*
* Store Hypervisor CS (16-bit).
*/
case FIX_HYPER_CS:
{
*uSrc.pu16 = SelCS;
break;
}
/*
* Store Hypervisor DS (16-bit).
*/
case FIX_HYPER_DS:
{
*uSrc.pu16 = SelDS;
break;
}
/*
* Store Hypervisor TSS (16-bit).
*/
case FIX_HYPER_TSS:
{
*uSrc.pu16 = SelTSS;
break;
}
/*
* Store the 32-bit GC address of the 2nd dword of the TSS descriptor (in the GDT).
*/
case FIX_GC_TSS_GDTE_DW2:
{
RTGCPTR GCPtr = GCPtrGDT + (SelTSS & ~7) + 4;
*uSrc.pu32 = (uint32_t)GCPtr;
break;
}
///@todo case FIX_CR4_MASK:
///@todo case FIX_CR4_OSFSXR:
/*
* Insert relative jump to specified target it FXSAVE/FXRSTOR isn't supported by the cpu.
*/
case FIX_NO_FXSAVE_JMP:
{
uint32_t offTrg = *u.pu32++;
Assert(offTrg < pSwitcher->cbCode);
if (!CPUMSupportsFXSR(pVM))
{
*uSrc.pu8++ = 0xe9; /* jmp rel32 */
*uSrc.pu32++ = offTrg - (offSrc + 5);
}
else
{
*uSrc.pu8++ = *((uint8_t *)pSwitcher->pvCode + offSrc);
*uSrc.pu32++ = *(uint32_t *)((uint8_t *)pSwitcher->pvCode + offSrc + 1);
}
break;
}
/*
* Insert relative jump to specified target it SYSENTER isn't used by the host.
*/
case FIX_NO_SYSENTER_JMP:
{
uint32_t offTrg = *u.pu32++;
Assert(offTrg < pSwitcher->cbCode);
if (!CPUMIsHostUsingSysEnter(pVM))
{
*uSrc.pu8++ = 0xe9; /* jmp rel32 */
*uSrc.pu32++ = offTrg - (offSrc + 5);
}
else
{
*uSrc.pu8++ = *((uint8_t *)pSwitcher->pvCode + offSrc);
*uSrc.pu32++ = *(uint32_t *)((uint8_t *)pSwitcher->pvCode + offSrc + 1);
}
break;
}
/*
* Insert relative jump to specified target it SYSENTER isn't used by the host.
*/
case FIX_NO_SYSCALL_JMP:
{
uint32_t offTrg = *u.pu32++;
Assert(offTrg < pSwitcher->cbCode);
if (!CPUMIsHostUsingSysEnter(pVM))
{
*uSrc.pu8++ = 0xe9; /* jmp rel32 */
*uSrc.pu32++ = offTrg - (offSrc + 5);
}
else
{
*uSrc.pu8++ = *((uint8_t *)pSwitcher->pvCode + offSrc);
*uSrc.pu32++ = *(uint32_t *)((uint8_t *)pSwitcher->pvCode + offSrc + 1);
}
break;
}
/*
* 32-bit HC pointer fixup to (HC) target within the code (32-bit offset).
*/
case FIX_HC_32BIT:
{
uint32_t offTrg = *u.pu32++;
Assert(offSrc < pSwitcher->cbCode);
Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
*uSrc.pu32 = (uintptr_t)pu8CodeR0 + offTrg;
break;
}
#if defined(RT_ARCH_AMD64) || defined(VBOX_WITH_HYBIRD_32BIT_KERNEL)
/*
* 64-bit HC pointer fixup to (HC) target within the code (32-bit offset).
*/
case FIX_HC_64BIT:
{
uint32_t offTrg = *u.pu32++;
Assert(offSrc < pSwitcher->cbCode);
Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
*uSrc.pu64 = (uintptr_t)pu8CodeR0 + offTrg;
break;
}
/*
* 64-bit HC Code Selector (no argument).
*/
case FIX_HC_64BIT_CS:
{
Assert(offSrc < pSwitcher->cbCode);
#if defined(RT_OS_DARWIN) && defined(VBOX_WITH_HYBIRD_32BIT_KERNEL)
*uSrc.pu16 = 0x80; /* KERNEL64_CS from i386/seg.h */
#else
AssertFatalMsgFailed(("FIX_HC_64BIT_CS not implemented for this host\n"));
#endif
break;
}
/*
* 64-bit HC pointer to the CPUM instance data (no argument).
*/
case FIX_HC_64BIT_CPUM:
{
Assert(offSrc < pSwitcher->cbCode);
*uSrc.pu64 = pVM->pVMR0 + RT_OFFSETOF(VM, cpum);
break;
}
#endif
/*
* 32-bit ID pointer to (ID) target within the code (32-bit offset).
*/
case FIX_ID_32BIT:
{
uint32_t offTrg = *u.pu32++;
Assert(offSrc < pSwitcher->cbCode);
Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
*uSrc.pu32 = u32IDCode + offTrg;
break;
}
/*
* 64-bit ID pointer to (ID) target within the code (32-bit offset).
*/
case FIX_ID_64BIT:
{
uint32_t offTrg = *u.pu32++;
Assert(offSrc < pSwitcher->cbCode);
Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
*uSrc.pu64 = u32IDCode + offTrg;
break;
}
/*
* Far 16:32 ID pointer to 64-bit mode (ID) target within the code (32-bit offset).
*/
case FIX_ID_FAR32_TO_64BIT_MODE:
{
uint32_t offTrg = *u.pu32++;
Assert(offSrc < pSwitcher->cbCode);
Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
*uSrc.pu32++ = u32IDCode + offTrg;
*uSrc.pu16 = SelCS64;
AssertRelease(SelCS64);
break;
}
#ifdef VBOX_WITH_NMI
/*
* 32-bit address to the APIC base.
*/
case FIX_GC_APIC_BASE_32BIT:
{
*uSrc.pu32 = pVM->vmm.s.GCPtrApicBase;
break;
}
#endif
default:
AssertReleaseMsgFailed(("Unknown fixup %d in switcher %s\n", u8, pSwitcher->pszDesc));
break;
}
}
#ifdef LOG_ENABLED
/*
* If Log2 is enabled disassemble the switcher code.
*
* The switcher code have 1-2 HC parts, 1 GC part and 0-2 ID parts.
*/
if (LogIs2Enabled())
{
RTLogPrintf("*** Disassembly of switcher %d '%s' %#x bytes ***\n"
" pu8CodeR0 = %p\n"
" pu8CodeR3 = %p\n"
" GCPtrCode = %VGv\n"
" u32IDCode = %08x\n"
" pVMGC = %VGv\n"
" pCPUMGC = %VGv\n"
" pVMHC = %p\n"
" pCPUMHC = %p\n"
" GCPtrGDT = %VGv\n"
" InterCR3s = %08x, %08x, %08x (32-Bit, PAE, AMD64)\n"
" HyperCR3s = %08x, %08x, %08x (32-Bit, PAE, AMD64)\n"
" SelCS = %04x\n"
" SelDS = %04x\n"
" SelCS64 = %04x\n"
" SelTSS = %04x\n",
pSwitcher->enmType, pSwitcher->pszDesc, pSwitcher->cbCode,
pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode, VM_GUEST_ADDR(pVM, pVM),
VM_GUEST_ADDR(pVM, &pVM->cpum), pVM, &pVM->cpum,
GCPtrGDT,
PGMGetHyper32BitCR3(pVM), PGMGetHyperPaeCR3(pVM), PGMGetHyperAmd64CR3(pVM),
PGMGetInter32BitCR3(pVM), PGMGetInterPaeCR3(pVM), PGMGetInterAmd64CR3(pVM),
SelCS, SelDS, SelCS64, SelTSS);
uint32_t offCode = 0;
while (offCode < pSwitcher->cbCode)
{
/*
* Figure out where this is.
*/
const char *pszDesc = NULL;
RTUINTPTR uBase;
uint32_t cbCode;
if (offCode - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0)
{
pszDesc = "HCCode0";
uBase = (RTUINTPTR)pu8CodeR0;
offCode = pSwitcher->offHCCode0;
cbCode = pSwitcher->cbHCCode0;
}
else if (offCode - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1)
{
pszDesc = "HCCode1";
uBase = (RTUINTPTR)pu8CodeR0;
offCode = pSwitcher->offHCCode1;
cbCode = pSwitcher->cbHCCode1;
}
else if (offCode - pSwitcher->offGCCode < pSwitcher->cbGCCode)
{
pszDesc = "GCCode";
uBase = GCPtrCode;
offCode = pSwitcher->offGCCode;
cbCode = pSwitcher->cbGCCode;
}
else if (offCode - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0)
{
pszDesc = "IDCode0";
uBase = u32IDCode;
offCode = pSwitcher->offIDCode0;
cbCode = pSwitcher->cbIDCode0;
}
else if (offCode - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1)
{
pszDesc = "IDCode1";
uBase = u32IDCode;
offCode = pSwitcher->offIDCode1;
cbCode = pSwitcher->cbIDCode1;
}
else
{
RTLogPrintf(" %04x: %02x '%c' (nowhere)\n",
offCode, pu8CodeR3[offCode], isprint(pu8CodeR3[offCode]) ? pu8CodeR3[offCode] : ' ');
offCode++;
continue;
}
/*
* Disassemble it.
*/
RTLogPrintf(" %s: offCode=%#x cbCode=%#x\n", pszDesc, offCode, cbCode);
DISCPUSTATE Cpu;
memset(&Cpu, 0, sizeof(Cpu));
Cpu.mode = CPUMODE_32BIT;
while (cbCode > 0)
{
/* try label it */
if (pSwitcher->offR0HostToGuest == offCode)
RTLogPrintf(" *R0HostToGuest:\n");
if (pSwitcher->offGCGuestToHost == offCode)
RTLogPrintf(" *GCGuestToHost:\n");
if (pSwitcher->offGCCallTrampoline == offCode)
RTLogPrintf(" *GCCallTrampoline:\n");
if (pSwitcher->offGCGuestToHostAsm == offCode)
RTLogPrintf(" *GCGuestToHostAsm:\n");
if (pSwitcher->offGCGuestToHostAsmHyperCtx == offCode)
RTLogPrintf(" *GCGuestToHostAsmHyperCtx:\n");
if (pSwitcher->offGCGuestToHostAsmGuestCtx == offCode)
RTLogPrintf(" *GCGuestToHostAsmGuestCtx:\n");
/* disas */
uint32_t cbInstr = 0;
char szDisas[256];
if (RT_SUCCESS(DISInstr(&Cpu, (RTUINTPTR)pu8CodeR3 + offCode, uBase - (RTUINTPTR)pu8CodeR3, &cbInstr, szDisas)))
RTLogPrintf(" %04x: %s", offCode, szDisas); //for whatever reason szDisas includes '\n'.
else
{
RTLogPrintf(" %04x: %02x '%c'\n",
offCode, pu8CodeR3[offCode], isprint(pu8CodeR3[offCode]) ? pu8CodeR3[offCode] : ' ');
cbInstr = 1;
}
offCode += cbInstr;
cbCode -= RT_MIN(cbInstr, cbCode);
}
}
}
#endif
}
/**
* Relocator for the 32-Bit to 32-Bit world switcher.
*/
DECLCALLBACK(void) vmmR3Switcher32BitTo32Bit_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
{
vmmR3SwitcherGenericRelocate(pVM, pSwitcher, pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode,
SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
}
/**
* Relocator for the 32-Bit to PAE world switcher.
*/
DECLCALLBACK(void) vmmR3Switcher32BitToPAE_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
{
vmmR3SwitcherGenericRelocate(pVM, pSwitcher, pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode,
SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
}
/**
* Relocator for the PAE to 32-Bit world switcher.
*/
DECLCALLBACK(void) vmmR3SwitcherPAETo32Bit_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
{
vmmR3SwitcherGenericRelocate(pVM, pSwitcher, pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode,
SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
}
/**
* Relocator for the PAE to PAE world switcher.
*/
DECLCALLBACK(void) vmmR3SwitcherPAEToPAE_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
{
vmmR3SwitcherGenericRelocate(pVM, pSwitcher, pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode,
SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
}
/**
* Relocator for the AMD64 to PAE world switcher.
*/
DECLCALLBACK(void) vmmR3SwitcherAMD64ToPAE_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
{
vmmR3SwitcherGenericRelocate(pVM, pSwitcher, pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode,
SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), SELMGetHyperCS64(pVM));
}
/**
* Gets the pointer to g_szRTAssertMsg1 in GC.
* @returns Pointer to VMMGC::g_szRTAssertMsg1.
* Returns NULL if not present.
* @param pVM The VM handle.
*/
VMMR3DECL(const char *) VMMR3GetGCAssertMsg1(PVM pVM)
{
RTGCPTR32 GCPtr;
int rc = PDMR3GetSymbolGC(pVM, NULL, "g_szRTAssertMsg1", &GCPtr);
if (VBOX_SUCCESS(rc))
return (const char *)MMHyperGC2HC(pVM, GCPtr);
return NULL;
}
/**
* Gets the pointer to g_szRTAssertMsg2 in GC.
* @returns Pointer to VMMGC::g_szRTAssertMsg2.
* Returns NULL if not present.
* @param pVM The VM handle.
*/
VMMR3DECL(const char *) VMMR3GetGCAssertMsg2(PVM pVM)
{
RTGCPTR32 GCPtr;
int rc = PDMR3GetSymbolGC(pVM, NULL, "g_szRTAssertMsg2", &GCPtr);
if (VBOX_SUCCESS(rc))
return (const char *)MMHyperGC2HC(pVM, GCPtr);
return NULL;
}
/**
* Execute state save operation.
*
* @returns VBox status code.
* @param pVM VM Handle.
* @param pSSM SSM operation handle.
*/
static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
{
LogFlow(("vmmR3Save:\n"));
/*
* The hypervisor stack.
*/
SSMR3PutGCPtr(pSSM, pVM->vmm.s.pbGCStackBottom);
RTGCPTR GCPtrESP = CPUMGetHyperESP(pVM);
Assert(pVM->vmm.s.pbGCStackBottom - GCPtrESP <= VMM_STACK_SIZE);
SSMR3PutGCPtr(pSSM, GCPtrESP);
SSMR3PutMem(pSSM, pVM->vmm.s.pbHCStack, VMM_STACK_SIZE);
return SSMR3PutU32(pSSM, ~0); /* terminator */
}
/**
* Execute state load operation.
*
* @returns VBox status code.
* @param pVM VM Handle.
* @param pSSM SSM operation handle.
* @param u32Version Data layout version.
*/
static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
{
LogFlow(("vmmR3Load:\n"));
/*
* Validate version.
*/
if (u32Version != VMM_SAVED_STATE_VERSION)
{
Log(("vmmR3Load: Invalid version u32Version=%d!\n", u32Version));
return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
}
/*
* Check that the stack is in the same place, or that it's fearly empty.
*/
RTGCPTR GCPtrStackBottom;
SSMR3GetGCPtr(pSSM, &GCPtrStackBottom);
RTGCPTR GCPtrESP;
int rc = SSMR3GetGCPtr(pSSM, &GCPtrESP);
if (VBOX_FAILURE(rc))
return rc;
if ( GCPtrStackBottom == pVM->vmm.s.pbGCStackBottom
|| (GCPtrStackBottom - GCPtrESP < 32)) /** @todo This will break if we start preemting the hypervisor. */
{
/*
* We *must* set the ESP because the CPUM load + PGM load relocations will render
* the ESP in CPUM fatally invalid.
*/
CPUMSetHyperESP(pVM, GCPtrESP);
/* restore the stack. */
SSMR3GetMem(pSSM, pVM->vmm.s.pbHCStack, VMM_STACK_SIZE);
/* terminator */
uint32_t u32;
rc = SSMR3GetU32(pSSM, &u32);
if (VBOX_FAILURE(rc))
return rc;
if (u32 != ~0U)
{
AssertMsgFailed(("u32=%#x\n", u32));
return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
}
return VINF_SUCCESS;
}
LogRel(("The stack is not in the same place and it's not empty! GCPtrStackBottom=%VGv pbGCStackBottom=%VGv ESP=%VGv\n",
GCPtrStackBottom, pVM->vmm.s.pbGCStackBottom, GCPtrESP));
if (SSMR3HandleGetAfter(pSSM) == SSMAFTER_DEBUG_IT)
return VINF_SUCCESS; /* ignore this */
AssertFailed();
return VERR_SSM_LOAD_CONFIG_MISMATCH;
}
/**
* Selects the switcher to be used for switching to GC.
*
* @returns VBox status code.
* @param pVM VM handle.
* @param enmSwitcher The new switcher.
* @remark This function may be called before the VMM is initialized.
*/
VMMR3DECL(int) VMMR3SelectSwitcher(PVM pVM, VMMSWITCHER enmSwitcher)
{
/*
* Validate input.
*/
if ( enmSwitcher < VMMSWITCHER_INVALID
|| enmSwitcher >= VMMSWITCHER_MAX)
{
AssertMsgFailed(("Invalid input enmSwitcher=%d\n", enmSwitcher));
return VERR_INVALID_PARAMETER;
}
/* Do nothing if the switcher is disabled. */
if (pVM->vmm.s.fSwitcherDisabled)
return VINF_SUCCESS;
/*
* Select the new switcher.
*/
PVMMSWITCHERDEF pSwitcher = s_apSwitchers[enmSwitcher];
if (pSwitcher)
{
Log(("VMMR3SelectSwitcher: enmSwitcher %d -> %d %s\n", pVM->vmm.s.enmSwitcher, enmSwitcher, pSwitcher->pszDesc));
pVM->vmm.s.enmSwitcher = enmSwitcher;
RTR0PTR pbCodeR0 = (RTR0PTR)pVM->vmm.s.pvHCCoreCodeR0 + pVM->vmm.s.aoffSwitchers[enmSwitcher]; /** @todo fix the pvHCCoreCodeR0 type */
pVM->vmm.s.pfnR0HostToGuest = pbCodeR0 + pSwitcher->offR0HostToGuest;
RTGCPTR GCPtr = pVM->vmm.s.pvGCCoreCode + pVM->vmm.s.aoffSwitchers[enmSwitcher];
pVM->vmm.s.pfnGCGuestToHost = GCPtr + pSwitcher->offGCGuestToHost;
pVM->vmm.s.pfnGCCallTrampoline = GCPtr + pSwitcher->offGCCallTrampoline;
pVM->pfnVMMGCGuestToHostAsm = GCPtr + pSwitcher->offGCGuestToHostAsm;
pVM->pfnVMMGCGuestToHostAsmHyperCtx = GCPtr + pSwitcher->offGCGuestToHostAsmHyperCtx;
pVM->pfnVMMGCGuestToHostAsmGuestCtx = GCPtr + pSwitcher->offGCGuestToHostAsmGuestCtx;
return VINF_SUCCESS;
}
return VERR_NOT_IMPLEMENTED;
}
/**
* Disable the switcher logic permanently.
*
* @returns VBox status code.
* @param pVM VM handle.
*/
VMMR3DECL(int) VMMR3DisableSwitcher(PVM pVM)
{
/** @todo r=bird: I would suggest that we create a dummy switcher which just does something like:
* @code
* mov eax, VERR_INTERNAL_ERROR
* ret
* @endcode
* And then check for fSwitcherDisabled in VMMR3SelectSwitcher() in order to prevent it from being removed.
*/
pVM->vmm.s.fSwitcherDisabled = true;
return VINF_SUCCESS;
}
/**
* Resolve a builtin GC symbol.
* Called by PDM when loading or relocating GC modules.
*
* @returns VBox status
* @param pVM VM Handle.
* @param pszSymbol Symbol to resolv
* @param pGCPtrValue Where to store the symbol value.
* @remark This has to work before VMMR3Relocate() is called.
*/
VMMR3DECL(int) VMMR3GetImportGC(PVM pVM, const char *pszSymbol, PRTGCPTR pGCPtrValue)
{
if (!strcmp(pszSymbol, "g_Logger"))
{
if (pVM->vmm.s.pLoggerHC)
pVM->vmm.s.pLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pLoggerHC);
*pGCPtrValue = pVM->vmm.s.pLoggerGC;
}
else if (!strcmp(pszSymbol, "g_RelLogger"))
{
#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
if (pVM->vmm.s.pRelLoggerHC)
pVM->vmm.s.pRelLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pRelLoggerHC);
*pGCPtrValue = pVM->vmm.s.pRelLoggerGC;
#else
*pGCPtrValue = NIL_RTGCPTR;
#endif
}
else
return VERR_SYMBOL_NOT_FOUND;
return VINF_SUCCESS;
}
/**
* Suspends the the CPU yielder.
*
* @param pVM The VM handle.
*/
VMMR3DECL(void) VMMR3YieldSuspend(PVM pVM)
{
if (!pVM->vmm.s.cYieldResumeMillies)
{
uint64_t u64Now = TMTimerGet(pVM->vmm.s.pYieldTimer);
uint64_t u64Expire = TMTimerGetExpire(pVM->vmm.s.pYieldTimer);
if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
else
pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM->vmm.s.pYieldTimer, u64Expire - u64Now);
TMTimerStop(pVM->vmm.s.pYieldTimer);
}
pVM->vmm.s.u64LastYield = RTTimeNanoTS();
}
/**
* Stops the the CPU yielder.
*
* @param pVM The VM handle.
*/
VMMR3DECL(void) VMMR3YieldStop(PVM pVM)
{
if (!pVM->vmm.s.cYieldResumeMillies)
TMTimerStop(pVM->vmm.s.pYieldTimer);
pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
pVM->vmm.s.u64LastYield = RTTimeNanoTS();
}
/**
* Resumes the CPU yielder when it has been a suspended or stopped.
*
* @param pVM The VM handle.
*/
VMMR3DECL(void) VMMR3YieldResume(PVM pVM)
{
if (pVM->vmm.s.cYieldResumeMillies)
{
TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldResumeMillies);
pVM->vmm.s.cYieldResumeMillies = 0;
}
}
/**
* Internal timer callback function.
*
* @param pVM The VM.
* @param pTimer The timer handle.
* @param pvUser User argument specified upon timer creation.
*/
static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser)
{
/*
* This really needs some careful tuning. While we shouldn't be too gready since
* that'll cause the rest of the system to stop up, we shouldn't be too nice either
* because that'll cause us to stop up.
*
* The current logic is to use the default interval when there is no lag worth
* mentioning, but when we start accumulating lag we don't bother yielding at all.
*
* (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL
* so the lag is up to date.)
*/
const uint64_t u64Lag = TMVirtualSyncGetLag(pVM);
if ( u64Lag < 50000000 /* 50ms */
|| ( u64Lag < 1000000000 /* 1s */
&& RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */)
)
{
uint64_t u64Elapsed = RTTimeNanoTS();
pVM->vmm.s.u64LastYield = u64Elapsed;
RTThreadYield();
#ifdef LOG_ENABLED
u64Elapsed = RTTimeNanoTS() - u64Elapsed;
Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed));
#endif
}
TMTimerSetMillies(pTimer, pVM->vmm.s.cYieldEveryMillies);
}
/**
* Acquire global VM lock.
*
* @returns VBox status code
* @param pVM The VM to operate on.
*/
VMMR3DECL(int) VMMR3Lock(PVM pVM)
{
return RTCritSectEnter(&pVM->vmm.s.CritSectVMLock);
}
/**
* Release global VM lock.
*
* @returns VBox status code
* @param pVM The VM to operate on.
*/
VMMR3DECL(int) VMMR3Unlock(PVM pVM)
{
return RTCritSectLeave(&pVM->vmm.s.CritSectVMLock);
}
/**
* Return global VM lock owner.
*
* @returns Thread id of owner.
* @returns NIL_RTTHREAD if no owner.
* @param pVM The VM to operate on.
*/
VMMR3DECL(RTNATIVETHREAD) VMMR3LockGetOwner(PVM pVM)
{
return RTCritSectGetOwner(&pVM->vmm.s.CritSectVMLock);
}
/**
* Checks if the current thread is the owner of the global VM lock.
*
* @returns true if owner.
* @returns false if not owner.
* @param pVM The VM to operate on.
*/
VMMR3DECL(bool) VMMR3LockIsOwner(PVM pVM)
{
return RTCritSectIsOwner(&pVM->vmm.s.CritSectVMLock);
}
/**
* Executes guest code.
*
* @param pVM VM handle.
*/
VMMR3DECL(int) VMMR3RawRunGC(PVM pVM)
{
Log2(("VMMR3RawRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
/*
* Set the EIP and ESP.
*/
CPUMSetHyperEIP(pVM, CPUMGetGuestEFlags(pVM) & X86_EFL_VM
? pVM->vmm.s.pfnCPUMGCResumeGuestV86
: pVM->vmm.s.pfnCPUMGCResumeGuest);
CPUMSetHyperESP(pVM, pVM->vmm.s.pbGCStackBottom);
/*
* We hide log flushes (outer) and hypervisor interrupts (inner).
*/
for (;;)
{
int rc;
do
{
#ifdef NO_SUPCALLR0VMM
rc = VERR_GENERAL_FAILURE;
#else
rc = SUPCallVMMR0(pVM->pVMR0, VMMR0_DO_RAW_RUN, NULL);
#endif
} while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
/*
* Flush the logs.
*/
#ifdef LOG_ENABLED
PRTLOGGERRC pLogger = pVM->vmm.s.pLoggerHC;
if ( pLogger
&& pLogger->offScratch > 0)
RTLogFlushGC(NULL, pLogger);
#endif
#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
PRTLOGGERRC pRelLogger = pVM->vmm.s.pRelLoggerHC;
if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
RTLogFlushGC(RTLogRelDefaultInstance(), pRelLogger);
#endif
if (rc != VINF_VMM_CALL_HOST)
{
Log2(("VMMR3RawRunGC: returns %Vrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
return rc;
}
rc = vmmR3ServiceCallHostRequest(pVM);
if (VBOX_FAILURE(rc))
return rc;
/* Resume GC */
}
}
/**
* Executes guest code (Intel VT-x and AMD-V).
*
* @param pVM VM handle.
*/
VMMR3DECL(int) VMMR3HwAccRunGC(PVM pVM)
{
Log2(("VMMR3HwAccRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
for (;;)
{
int rc;
do
{
#ifdef NO_SUPCALLR0VMM
rc = VERR_GENERAL_FAILURE;
#else
rc = SUPCallVMMR0Fast(pVM->pVMR0, VMMR0_DO_HWACC_RUN);
#endif
} while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
#ifdef LOG_ENABLED
/*
* Flush the log
*/
PVMMR0LOGGER pR0Logger = pVM->vmm.s.pR0Logger;
if ( pR0Logger
&& pR0Logger->Logger.offScratch > 0)
RTLogFlushToLogger(&pR0Logger->Logger, NULL);
#endif /* !LOG_ENABLED */
if (rc != VINF_VMM_CALL_HOST)
{
Log2(("VMMR3HwAccRunGC: returns %Vrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
return rc;
}
rc = vmmR3ServiceCallHostRequest(pVM);
if (VBOX_FAILURE(rc) || rc == VINF_EM_DBG_HYPER_ASSERTION)
return rc;
/* Resume R0 */
}
}
/**
* Calls GC a function.
*
* @param pVM The VM handle.
* @param GCPtrEntry The GC function address.
* @param cArgs The number of arguments in the ....
* @param ... Arguments to the function.
*/
VMMR3DECL(int) VMMR3CallGC(PVM pVM, RTGCPTR GCPtrEntry, unsigned cArgs, ...)
{
va_list args;
va_start(args, cArgs);
int rc = VMMR3CallGCV(pVM, GCPtrEntry, cArgs, args);
va_end(args);
return rc;
}
/**
* Calls GC a function.
*
* @param pVM The VM handle.
* @param GCPtrEntry The GC function address.
* @param cArgs The number of arguments in the ....
* @param args Arguments to the function.
*/
VMMR3DECL(int) VMMR3CallGCV(PVM pVM, RTGCPTR GCPtrEntry, unsigned cArgs, va_list args)
{
Log2(("VMMR3CallGCV: GCPtrEntry=%VGv cArgs=%d\n", GCPtrEntry, cArgs));
/*
* Setup the call frame using the trampoline.
*/
CPUMHyperSetCtxCore(pVM, NULL);
memset(pVM->vmm.s.pbHCStack, 0xaa, VMM_STACK_SIZE); /* Clear the stack. */
CPUMSetHyperESP(pVM, pVM->vmm.s.pbGCStackBottom - cArgs * sizeof(RTGCUINTPTR));
PRTGCUINTPTR pFrame = (PRTGCUINTPTR)(pVM->vmm.s.pbHCStack + VMM_STACK_SIZE) - cArgs;
int i = cArgs;
while (i-- > 0)
*pFrame++ = va_arg(args, RTGCUINTPTR);
CPUMPushHyper(pVM, cArgs * sizeof(RTGCUINTPTR)); /* stack frame size */
CPUMPushHyper(pVM, GCPtrEntry); /* what to call */
CPUMSetHyperEIP(pVM, pVM->vmm.s.pfnGCCallTrampoline);
/*
* We hide log flushes (outer) and hypervisor interrupts (inner).
*/
for (;;)
{
int rc;
do
{
#ifdef NO_SUPCALLR0VMM
rc = VERR_GENERAL_FAILURE;
#else
rc = SUPCallVMMR0(pVM->pVMR0, VMMR0_DO_RAW_RUN, NULL);
#endif
} while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
/*
* Flush the logs.
*/
#ifdef LOG_ENABLED
PRTLOGGERRC pLogger = pVM->vmm.s.pLoggerHC;
if ( pLogger
&& pLogger->offScratch > 0)
RTLogFlushGC(NULL, pLogger);
#endif
#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
PRTLOGGERRC pRelLogger = pVM->vmm.s.pRelLoggerHC;
if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
RTLogFlushGC(RTLogRelDefaultInstance(), pRelLogger);
#endif
if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
VMMR3FatalDump(pVM, rc);
if (rc != VINF_VMM_CALL_HOST)
{
Log2(("VMMR3CallGCV: returns %Vrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
return rc;
}
rc = vmmR3ServiceCallHostRequest(pVM);
if (VBOX_FAILURE(rc))
return rc;
}
}
/**
* Resumes executing hypervisor code when interrupted
* by a queue flush or a debug event.
*
* @returns VBox status code.
* @param pVM VM handle.
*/
VMMR3DECL(int) VMMR3ResumeHyper(PVM pVM)
{
Log(("VMMR3ResumeHyper: eip=%VGv esp=%VGv\n", CPUMGetHyperEIP(pVM), CPUMGetHyperESP(pVM)));
/*
* We hide log flushes (outer) and hypervisor interrupts (inner).
*/
for (;;)
{
int rc;
do
{
#ifdef NO_SUPCALLR0VMM
rc = VERR_GENERAL_FAILURE;
#else
rc = SUPCallVMMR0(pVM->pVMR0, VMMR0_DO_RAW_RUN, NULL);
#endif
} while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
/*
* Flush the loggers,
*/
#ifdef LOG_ENABLED
PRTLOGGERRC pLogger = pVM->vmm.s.pLoggerHC;
if ( pLogger
&& pLogger->offScratch > 0)
RTLogFlushGC(NULL, pLogger);
#endif
#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
PRTLOGGERRC pRelLogger = pVM->vmm.s.pRelLoggerHC;
if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
RTLogFlushGC(RTLogRelDefaultInstance(), pRelLogger);
#endif
if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
VMMR3FatalDump(pVM, rc);
if (rc != VINF_VMM_CALL_HOST)
{
Log(("VMMR3ResumeHyper: returns %Vrc\n", rc));
return rc;
}
rc = vmmR3ServiceCallHostRequest(pVM);
if (VBOX_FAILURE(rc))
return rc;
}
}
/**
* Service a call to the ring-3 host code.
*
* @returns VBox status code.
* @param pVM VM handle.
* @remark Careful with critsects.
*/
static int vmmR3ServiceCallHostRequest(PVM pVM)
{
switch (pVM->vmm.s.enmCallHostOperation)
{
/*
* Acquire the PDM lock.
*/
case VMMCALLHOST_PDM_LOCK:
{
pVM->vmm.s.rcCallHost = PDMR3LockCall(pVM);
break;
}
/*
* Flush a PDM queue.
*/
case VMMCALLHOST_PDM_QUEUE_FLUSH:
{
PDMR3QueueFlushWorker(pVM, NULL);
pVM->vmm.s.rcCallHost = VINF_SUCCESS;
break;
}
/*
* Grow the PGM pool.
*/
case VMMCALLHOST_PGM_POOL_GROW:
{
pVM->vmm.s.rcCallHost = PGMR3PoolGrow(pVM);
break;
}
/*
* Maps an page allocation chunk into ring-3 so ring-0 can use it.
*/
case VMMCALLHOST_PGM_MAP_CHUNK:
{
pVM->vmm.s.rcCallHost = PGMR3PhysChunkMap(pVM, pVM->vmm.s.u64CallHostArg);
break;
}
/*
* Allocates more handy pages.
*/
case VMMCALLHOST_PGM_ALLOCATE_HANDY_PAGES:
{
pVM->vmm.s.rcCallHost = PGMR3PhysAllocateHandyPages(pVM);
break;
}
#ifndef VBOX_WITH_NEW_PHYS_CODE
case VMMCALLHOST_PGM_RAM_GROW_RANGE:
{
const RTGCPHYS GCPhys = pVM->vmm.s.u64CallHostArg;
pVM->vmm.s.rcCallHost = PGM3PhysGrowRange(pVM, &GCPhys);
break;
}
#endif
/*
* Acquire the PGM lock.
*/
case VMMCALLHOST_PGM_LOCK:
{
pVM->vmm.s.rcCallHost = PGMR3LockCall(pVM);
break;
}
/*
* Flush REM handler notifications.
*/
case VMMCALLHOST_REM_REPLAY_HANDLER_NOTIFICATIONS:
{
REMR3ReplayHandlerNotifications(pVM);
break;
}
/*
* This is a noop. We just take this route to avoid unnecessary
* tests in the loops.
*/
case VMMCALLHOST_VMM_LOGGER_FLUSH:
break;
/*
* Set the VM error message.
*/
case VMMCALLHOST_VM_SET_ERROR:
VMR3SetErrorWorker(pVM);
break;
/*
* Set the VM runtime error message.
*/
case VMMCALLHOST_VM_SET_RUNTIME_ERROR:
VMR3SetRuntimeErrorWorker(pVM);
break;
/*
* Signal a ring 0 hypervisor assertion.
* Cancel the longjmp operation that's in progress.
*/
case VMMCALLHOST_VM_R0_HYPER_ASSERTION:
pVM->vmm.s.enmCallHostOperation = VMMCALLHOST_INVALID;
pVM->vmm.s.CallHostR0JmpBuf.fInRing3Call = false;
#ifdef RT_ARCH_X86
pVM->vmm.s.CallHostR0JmpBuf.eip = 0;
#else
pVM->vmm.s.CallHostR0JmpBuf.rip = 0;
#endif
return VINF_EM_DBG_HYPER_ASSERTION;
default:
AssertMsgFailed(("enmCallHostOperation=%d\n", pVM->vmm.s.enmCallHostOperation));
return VERR_INTERNAL_ERROR;
}
pVM->vmm.s.enmCallHostOperation = VMMCALLHOST_INVALID;
return VINF_SUCCESS;
}
/**
* Structure to pass to DBGFR3Info() and for doing all other
* output during fatal dump.
*/
typedef struct VMMR3FATALDUMPINFOHLP
{
/** The helper core. */
DBGFINFOHLP Core;
/** The release logger instance. */
PRTLOGGER pRelLogger;
/** The saved release logger flags. */
RTUINT fRelLoggerFlags;
/** The logger instance. */
PRTLOGGER pLogger;
/** The saved logger flags. */
RTUINT fLoggerFlags;
/** The saved logger destination flags. */
RTUINT fLoggerDestFlags;
/** Whether to output to stderr or not. */
bool fStdErr;
} VMMR3FATALDUMPINFOHLP, *PVMMR3FATALDUMPINFOHLP;
typedef const VMMR3FATALDUMPINFOHLP *PCVMMR3FATALDUMPINFOHLP;
/**
* Print formatted string.
*
* @param pHlp Pointer to this structure.
* @param pszFormat The format string.
* @param ... Arguments.
*/
static DECLCALLBACK(void) vmmR3FatalDumpInfoHlp_pfnPrintf(PCDBGFINFOHLP pHlp, const char *pszFormat, ...)
{
va_list args;
va_start(args, pszFormat);
pHlp->pfnPrintfV(pHlp, pszFormat, args);
va_end(args);
}
/**
* Print formatted string.
*
* @param pHlp Pointer to this structure.
* @param pszFormat The format string.
* @param args Argument list.
*/
static DECLCALLBACK(void) vmmR3FatalDumpInfoHlp_pfnPrintfV(PCDBGFINFOHLP pHlp, const char *pszFormat, va_list args)
{
PCVMMR3FATALDUMPINFOHLP pMyHlp = (PCVMMR3FATALDUMPINFOHLP)pHlp;
if (pMyHlp->pRelLogger)
{
va_list args2;
va_copy(args2, args);
RTLogLoggerV(pMyHlp->pRelLogger, pszFormat, args2);
va_end(args2);
}
if (pMyHlp->pLogger)
{
va_list args2;
va_copy(args2, args);
RTLogLoggerV(pMyHlp->pLogger, pszFormat, args);
va_end(args2);
}
if (pMyHlp->fStdErr)
{
va_list args2;
va_copy(args2, args);
RTStrmPrintfV(g_pStdErr, pszFormat, args);
va_end(args2);
}
}
/**
* Initializes the fatal dump output helper.
*
* @param pHlp The structure to initialize.
*/
static void vmmR3FatalDumpInfoHlpInit(PVMMR3FATALDUMPINFOHLP pHlp)
{
memset(pHlp, 0, sizeof(*pHlp));
pHlp->Core.pfnPrintf = vmmR3FatalDumpInfoHlp_pfnPrintf;
pHlp->Core.pfnPrintfV = vmmR3FatalDumpInfoHlp_pfnPrintfV;
/*
* The loggers.
*/
pHlp->pRelLogger = RTLogRelDefaultInstance();
#ifndef LOG_ENABLED
if (!pHlp->pRelLogger)
#endif
pHlp->pLogger = RTLogDefaultInstance();
if (pHlp->pRelLogger)
{
pHlp->fRelLoggerFlags = pHlp->pRelLogger->fFlags;
pHlp->pRelLogger->fFlags &= ~(RTLOGFLAGS_BUFFERED | RTLOGFLAGS_DISABLED);
}
if (pHlp->pLogger)
{
pHlp->fLoggerFlags = pHlp->pLogger->fFlags;
pHlp->fLoggerDestFlags = pHlp->pLogger->fDestFlags;
pHlp->pLogger->fFlags &= ~(RTLOGFLAGS_BUFFERED | RTLOGFLAGS_DISABLED);
#ifndef DEBUG_sandervl
pHlp->pLogger->fDestFlags |= RTLOGDEST_DEBUGGER;
#endif
}
/*
* Check if we need write to stderr.
*/
#ifdef DEBUG_sandervl
pHlp->fStdErr = false; /* takes too long to display here */
#else
pHlp->fStdErr = (!pHlp->pRelLogger || !(pHlp->pRelLogger->fDestFlags & (RTLOGDEST_STDOUT | RTLOGDEST_STDERR)))
&& (!pHlp->pLogger || !(pHlp->pLogger->fDestFlags & (RTLOGDEST_STDOUT | RTLOGDEST_STDERR)));
#endif
}
/**
* Deletes the fatal dump output helper.
*
* @param pHlp The structure to delete.
*/
static void vmmR3FatalDumpInfoHlpDelete(PVMMR3FATALDUMPINFOHLP pHlp)
{
if (pHlp->pRelLogger)
{
RTLogFlush(pHlp->pRelLogger);
pHlp->pRelLogger->fFlags = pHlp->fRelLoggerFlags;
}
if (pHlp->pLogger)
{
RTLogFlush(pHlp->pLogger);
pHlp->pLogger->fFlags = pHlp->fLoggerFlags;
pHlp->pLogger->fDestFlags = pHlp->fLoggerDestFlags;
}
}
/**
* Dumps the VM state on a fatal error.
*
* @param pVM VM Handle.
* @param rcErr VBox status code.
*/
VMMR3DECL(void) VMMR3FatalDump(PVM pVM, int rcErr)
{
/*
* Create our output helper and sync it with the log settings.
* This helper will be used for all the output.
*/
VMMR3FATALDUMPINFOHLP Hlp;
PCDBGFINFOHLP pHlp = &Hlp.Core;
vmmR3FatalDumpInfoHlpInit(&Hlp);
/*
* Header.
*/
pHlp->pfnPrintf(pHlp,
"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"
"!!\n"
"!! Guru Meditation %d (%Vrc)\n"
"!!\n",
rcErr, rcErr);
/*
* Continue according to context.
*/
bool fDoneHyper = false;
switch (rcErr)
{
/*
* Hyper visor errors.
*/
case VINF_EM_DBG_HYPER_ASSERTION:
pHlp->pfnPrintf(pHlp, "%s%s!!\n", VMMR3GetGCAssertMsg1(pVM), VMMR3GetGCAssertMsg2(pVM));
/* fall thru */
case VERR_TRPM_DONT_PANIC:
case VERR_TRPM_PANIC:
case VINF_EM_RAW_STALE_SELECTOR:
case VINF_EM_RAW_IRET_TRAP:
case VINF_EM_DBG_HYPER_BREAKPOINT:
case VINF_EM_DBG_HYPER_STEPPED:
{
/* Trap? */
uint32_t uEIP = CPUMGetHyperEIP(pVM);
TRPMEVENT enmType;
uint8_t u8TrapNo = 0xce;
RTGCUINT uErrorCode = 0xdeadface;
RTGCUINTPTR uCR2 = 0xdeadface;
int rc2 = TRPMQueryTrapAll(pVM, &u8TrapNo, &enmType, &uErrorCode, &uCR2);
if (VBOX_SUCCESS(rc2))
pHlp->pfnPrintf(pHlp,
"!! TRAP=%02x ERRCD=%VGv CR2=%VGv EIP=%VGv Type=%d\n",
u8TrapNo, uErrorCode, uCR2, uEIP, enmType);
else
pHlp->pfnPrintf(pHlp,
"!! EIP=%VGv NOTRAP\n",
uEIP);
/*
* Try figure out where eip is.
*/
/** @todo make query call for core code or move this function to VMM. */
/* core code? */
//if (uEIP - (RTGCUINTPTR)pVM->vmm.s.pvGCCoreCode < pVM->vmm.s.cbCoreCode)
// pHlp->pfnPrintf(pHlp,
// "!! EIP is in CoreCode, offset %#x\n",
// uEIP - (RTGCUINTPTR)pVM->vmm.s.pvGCCoreCode);
//else
{ /* ask PDM */
/** @todo ask DBGFR3Sym later. */
char szModName[64];
RTGCPTR GCPtrMod;
char szNearSym1[260];
RTGCPTR GCPtrNearSym1;
char szNearSym2[260];
RTGCPTR GCPtrNearSym2;
int rc = PDMR3QueryModFromEIP(pVM, uEIP,
&szModName[0], sizeof(szModName), &GCPtrMod,
&szNearSym1[0], sizeof(szNearSym1), &GCPtrNearSym1,
&szNearSym2[0], sizeof(szNearSym2), &GCPtrNearSym2);
if (VBOX_SUCCESS(rc))
{
pHlp->pfnPrintf(pHlp,
"!! EIP in %s (%VGv) at rva %x near symbols:\n"
"!! %VGv rva %VGv off %08x %s\n"
"!! %VGv rva %VGv off -%08x %s\n",
szModName, GCPtrMod, (unsigned)(uEIP - GCPtrMod),
GCPtrNearSym1, GCPtrNearSym1 - GCPtrMod, (unsigned)(uEIP - GCPtrNearSym1), szNearSym1,
GCPtrNearSym2, GCPtrNearSym2 - GCPtrMod, (unsigned)(GCPtrNearSym2 - uEIP), szNearSym2);
}
else
pHlp->pfnPrintf(pHlp,
"!! EIP is not in any code known to VMM!\n");
}
/* Disassemble the instruction. */
char szInstr[256];
rc2 = DBGFR3DisasInstrEx(pVM, 0, 0, DBGF_DISAS_FLAGS_CURRENT_HYPER, &szInstr[0], sizeof(szInstr), NULL);
if (VBOX_SUCCESS(rc2))
pHlp->pfnPrintf(pHlp,
"!! %s\n", szInstr);
/* Dump the hypervisor cpu state. */
pHlp->pfnPrintf(pHlp,
"!!\n"
"!!\n"
"!!\n");
rc2 = DBGFR3Info(pVM, "cpumhyper", "verbose", pHlp);
fDoneHyper = true;
/* Callstack. */
DBGFSTACKFRAME Frame = {0};
rc2 = DBGFR3StackWalkBeginHyper(pVM, &Frame);
if (VBOX_SUCCESS(rc2))
{
pHlp->pfnPrintf(pHlp,
"!!\n"
"!! Call Stack:\n"
"!!\n"
"EBP Ret EBP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP Symbol [line]\n");
do
{
pHlp->pfnPrintf(pHlp,
"%08RX32 %08RX32 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32",
(uint32_t)Frame.AddrFrame.off,
(uint32_t)Frame.AddrReturnFrame.off,
(uint32_t)Frame.AddrReturnPC.Sel,
(uint32_t)Frame.AddrReturnPC.off,
Frame.Args.au32[0],
Frame.Args.au32[1],
Frame.Args.au32[2],
Frame.Args.au32[3]);
pHlp->pfnPrintf(pHlp, " %RTsel:%08RGv", Frame.AddrPC.Sel, Frame.AddrPC.off);
if (Frame.pSymPC)
{
RTGCINTPTR offDisp = Frame.AddrPC.FlatPtr - Frame.pSymPC->Value;
if (offDisp > 0)
pHlp->pfnPrintf(pHlp, " %s+%llx", Frame.pSymPC->szName, (int64_t)offDisp);
else if (offDisp < 0)
pHlp->pfnPrintf(pHlp, " %s-%llx", Frame.pSymPC->szName, -(int64_t)offDisp);
else
pHlp->pfnPrintf(pHlp, " %s", Frame.pSymPC->szName);
}
if (Frame.pLinePC)
pHlp->pfnPrintf(pHlp, " [%s @ 0i%d]", Frame.pLinePC->szFilename, Frame.pLinePC->uLineNo);
pHlp->pfnPrintf(pHlp, "\n");
/* next */
rc2 = DBGFR3StackWalkNext(pVM, &Frame);
} while (VBOX_SUCCESS(rc2));
DBGFR3StackWalkEnd(pVM, &Frame);
}
/* raw stack */
pHlp->pfnPrintf(pHlp,
"!!\n"
"!! Raw stack (mind the direction).\n"
"!!\n"
"%.*Vhxd\n",
VMM_STACK_SIZE, (char *)pVM->vmm.s.pbHCStack);
break;
}
default:
{
break;
}
} /* switch (rcErr) */
/*
* Generic info dumper loop.
*/
static struct
{
const char *pszInfo;
const char *pszArgs;
} const aInfo[] =
{
{ "mappings", NULL },
{ "hma", NULL },
{ "cpumguest", "verbose" },
{ "cpumguestinstr", "verbose" },
{ "cpumhyper", "verbose" },
{ "cpumhost", "verbose" },
{ "mode", "all" },
{ "cpuid", "verbose" },
{ "gdt", NULL },
{ "ldt", NULL },
//{ "tss", NULL },
{ "ioport", NULL },
{ "mmio", NULL },
{ "phys", NULL },
//{ "pgmpd", NULL }, - doesn't always work at init time...
{ "timers", NULL },
{ "activetimers", NULL },
{ "handlers", "phys virt hyper stats" },
{ "cfgm", NULL },
};
for (unsigned i = 0; i < ELEMENTS(aInfo); i++)
{
if (fDoneHyper && !strcmp(aInfo[i].pszInfo, "cpumhyper"))
continue;
pHlp->pfnPrintf(pHlp,
"!!\n"
"!! {%s, %s}\n"
"!!\n",
aInfo[i].pszInfo, aInfo[i].pszArgs);
DBGFR3Info(pVM, aInfo[i].pszInfo, aInfo[i].pszArgs, pHlp);
}
/* done */
pHlp->pfnPrintf(pHlp,
"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
/*
* Delete the output instance (flushing and restoring of flags).
*/
vmmR3FatalDumpInfoHlpDelete(&Hlp);
}
/**
* Displays the Force action Flags.
*
* @param pVM The VM handle.
* @param pHlp The output helpers.
* @param pszArgs The additional arguments (ignored).
*/
static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
{
const uint32_t fForcedActions = pVM->fForcedActions;
pHlp->pfnPrintf(pHlp, "Forced action Flags: %#RX32", fForcedActions);
/* show the flag mnemonics */
int c = 0;
uint32_t f = fForcedActions;
#define PRINT_FLAG(flag) do { \
if (f & (flag)) \
{ \
static const char *s_psz = #flag; \
if (!(c % 6)) \
pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz + 6); \
else \
pHlp->pfnPrintf(pHlp, ", %s", s_psz + 6); \
c++; \
f &= ~(flag); \
} \
} while (0)
PRINT_FLAG(VM_FF_INTERRUPT_APIC);
PRINT_FLAG(VM_FF_INTERRUPT_PIC);
PRINT_FLAG(VM_FF_TIMER);
PRINT_FLAG(VM_FF_PDM_QUEUES);
PRINT_FLAG(VM_FF_PDM_DMA);
PRINT_FLAG(VM_FF_PDM_CRITSECT);
PRINT_FLAG(VM_FF_DBGF);
PRINT_FLAG(VM_FF_REQUEST);
PRINT_FLAG(VM_FF_TERMINATE);
PRINT_FLAG(VM_FF_RESET);
PRINT_FLAG(VM_FF_PGM_SYNC_CR3);
PRINT_FLAG(VM_FF_PGM_SYNC_CR3_NON_GLOBAL);
PRINT_FLAG(VM_FF_TRPM_SYNC_IDT);
PRINT_FLAG(VM_FF_SELM_SYNC_TSS);
PRINT_FLAG(VM_FF_SELM_SYNC_GDT);
PRINT_FLAG(VM_FF_SELM_SYNC_LDT);
PRINT_FLAG(VM_FF_INHIBIT_INTERRUPTS);
PRINT_FLAG(VM_FF_CSAM_SCAN_PAGE);
PRINT_FLAG(VM_FF_CSAM_PENDING_ACTION);
PRINT_FLAG(VM_FF_TO_R3);
PRINT_FLAG(VM_FF_DEBUG_SUSPEND);
if (f)
pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
else
pHlp->pfnPrintf(pHlp, "\n");
#undef PRINT_FLAG
/* the groups */
c = 0;
#define PRINT_GROUP(grp) do { \
if (fForcedActions & (grp)) \
{ \
static const char *s_psz = #grp; \
if (!(c % 5)) \
pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : "Groups:\n", s_psz + 6); \
else \
pHlp->pfnPrintf(pHlp, ", %s", s_psz + 6); \
c++; \
} \
} while (0)
PRINT_GROUP(VM_FF_EXTERNAL_SUSPENDED_MASK);
PRINT_GROUP(VM_FF_EXTERNAL_HALTED_MASK);
PRINT_GROUP(VM_FF_HIGH_PRIORITY_PRE_MASK);
PRINT_GROUP(VM_FF_HIGH_PRIORITY_PRE_RAW_MASK);
PRINT_GROUP(VM_FF_HIGH_PRIORITY_POST_MASK);
PRINT_GROUP(VM_FF_NORMAL_PRIORITY_POST_MASK);
PRINT_GROUP(VM_FF_NORMAL_PRIORITY_MASK);
PRINT_GROUP(VM_FF_RESUME_GUEST_MASK);
PRINT_GROUP(VM_FF_ALL_BUT_RAW_MASK);
if (c)
pHlp->pfnPrintf(pHlp, "\n");
#undef PRINT_GROUP
}