VirtualBox

source: vbox/trunk/src/VBox/VMM/VMM.cpp@ 21653

Last change on this file since 21653 was 21653, checked in by vboxsync, 15 years ago

TPR patching updates

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 74.7 KB
Line 
1/* $Id: VMM.cpp 21653 2009-07-16 15:18:07Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22//#define NO_SUPCALLR0VMM
23
24/** @page pg_vmm VMM - The Virtual Machine Monitor
25 *
26 * The VMM component is two things at the moment, it's a component doing a few
27 * management and routing tasks, and it's the whole virtual machine monitor
28 * thing. For hysterical reasons, it is not doing all the management that one
29 * would expect, this is instead done by @ref pg_vm. We'll address this
30 * misdesign eventually.
31 *
32 * @see grp_vmm, grp_vm
33 *
34 *
35 * @section sec_vmmstate VMM State
36 *
37 * @image html VM_Statechart_Diagram.gif
38 *
39 * To be written.
40 *
41 *
42 * @subsection subsec_vmm_init VMM Initialization
43 *
44 * To be written.
45 *
46 *
47 * @subsection subsec_vmm_term VMM Termination
48 *
49 * To be written.
50 *
51 */
52
53/*******************************************************************************
54* Header Files *
55*******************************************************************************/
56#define LOG_GROUP LOG_GROUP_VMM
57#include <VBox/vmm.h>
58#include <VBox/vmapi.h>
59#include <VBox/pgm.h>
60#include <VBox/cfgm.h>
61#include <VBox/pdmqueue.h>
62#include <VBox/pdmcritsect.h>
63#include <VBox/pdmapi.h>
64#include <VBox/cpum.h>
65#include <VBox/mm.h>
66#include <VBox/iom.h>
67#include <VBox/trpm.h>
68#include <VBox/selm.h>
69#include <VBox/em.h>
70#include <VBox/sup.h>
71#include <VBox/dbgf.h>
72#include <VBox/csam.h>
73#include <VBox/patm.h>
74#include <VBox/rem.h>
75#include <VBox/ssm.h>
76#include <VBox/tm.h>
77#include "VMMInternal.h"
78#include "VMMSwitcher/VMMSwitcher.h"
79#include <VBox/vm.h>
80
81#include <VBox/err.h>
82#include <VBox/param.h>
83#include <VBox/version.h>
84#include <VBox/x86.h>
85#include <VBox/hwaccm.h>
86#include <iprt/assert.h>
87#include <iprt/alloc.h>
88#include <iprt/asm.h>
89#include <iprt/time.h>
90#include <iprt/semaphore.h>
91#include <iprt/stream.h>
92#include <iprt/string.h>
93#include <iprt/stdarg.h>
94#include <iprt/ctype.h>
95
96
97
98/*******************************************************************************
99* Defined Constants And Macros *
100*******************************************************************************/
101/** The saved state version. */
102#define VMM_SAVED_STATE_VERSION 3
103
104
105/*******************************************************************************
106* Internal Functions *
107*******************************************************************************/
108static int vmmR3InitStacks(PVM pVM);
109static int vmmR3InitLoggers(PVM pVM);
110static void vmmR3InitRegisterStats(PVM pVM);
111static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
112static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
113static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser);
114static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu);
115static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
116
117
118/**
119 * Initializes the VMM.
120 *
121 * @returns VBox status code.
122 * @param pVM The VM to operate on.
123 */
124VMMR3DECL(int) VMMR3Init(PVM pVM)
125{
126 LogFlow(("VMMR3Init\n"));
127
128 /*
129 * Assert alignment, sizes and order.
130 */
131 AssertMsg(pVM->vmm.s.offVM == 0, ("Already initialized!\n"));
132 AssertCompile(sizeof(pVM->vmm.s) <= sizeof(pVM->vmm.padding));
133 AssertCompile(sizeof(pVM->aCpus[0].vmm.s) <= sizeof(pVM->aCpus[0].vmm.padding));
134
135 /*
136 * Init basic VM VMM members.
137 */
138 pVM->vmm.s.offVM = RT_OFFSETOF(VM, vmm);
139 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
140 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
141 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
142 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
143 int rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies);
144 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
145 pVM->vmm.s.cYieldEveryMillies = 23; /* Value arrived at after experimenting with the grub boot prompt. */
146 //pVM->vmm.s.cYieldEveryMillies = 8; //debugging
147 else
148 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Rrc\n", rc), rc);
149
150 /*
151 * Initialize the VMM sync critical section and semaphores.
152 */
153 rc = RTCritSectInit(&pVM->vmm.s.CritSectSync);
154 AssertRCReturn(rc, rc);
155 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousEnterOneByOne);
156 AssertRCReturn(rc, rc);
157 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
158 AssertRCReturn(rc, rc);
159 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousDone);
160 AssertRCReturn(rc, rc);
161 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousDoneCaller);
162 AssertRCReturn(rc, rc);
163
164 /* GC switchers are enabled by default. Turned off by HWACCM. */
165 pVM->vmm.s.fSwitcherDisabled = false;
166
167 /*
168 * Register the saved state data unit.
169 */
170 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
171 NULL, vmmR3Save, NULL,
172 NULL, vmmR3Load, NULL);
173 if (RT_FAILURE(rc))
174 return rc;
175
176 /*
177 * Register the Ring-0 VM handle with the session for fast ioctl calls.
178 */
179 rc = SUPR3SetVMForFastIOCtl(pVM->pVMR0);
180 if (RT_FAILURE(rc))
181 return rc;
182
183 /*
184 * Init various sub-components.
185 */
186 rc = vmmR3SwitcherInit(pVM);
187 if (RT_SUCCESS(rc))
188 {
189 rc = vmmR3InitStacks(pVM);
190 if (RT_SUCCESS(rc))
191 {
192 rc = vmmR3InitLoggers(pVM);
193
194#ifdef VBOX_WITH_NMI
195 /*
196 * Allocate mapping for the host APIC.
197 */
198 if (RT_SUCCESS(rc))
199 {
200 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
201 AssertRC(rc);
202 }
203#endif
204 if (RT_SUCCESS(rc))
205 {
206 /*
207 * Debug info and statistics.
208 */
209 DBGFR3InfoRegisterInternal(pVM, "ff", "Displays the current Forced actions Flags.", vmmR3InfoFF);
210 vmmR3InitRegisterStats(pVM);
211
212 return VINF_SUCCESS;
213 }
214 }
215 /** @todo: Need failure cleanup. */
216
217 //more todo in here?
218 //if (RT_SUCCESS(rc))
219 //{
220 //}
221 //int rc2 = vmmR3TermCoreCode(pVM);
222 //AssertRC(rc2));
223 }
224
225 return rc;
226}
227
228
229/**
230 * Allocate & setup the VMM RC stack(s) (for EMTs).
231 *
232 * The stacks are also used for long jumps in Ring-0.
233 *
234 * @returns VBox status code.
235 * @param pVM Pointer to the shared VM structure.
236 *
237 * @remarks The optional guard page gets it protection setup up during R3 init
238 * completion because of init order issues.
239 */
240static int vmmR3InitStacks(PVM pVM)
241{
242 int rc = VINF_SUCCESS;
243
244 for (VMCPUID idCpu = 0; idCpu < pVM->cCPUs; idCpu++)
245 {
246 PVMCPU pVCpu = &pVM->aCpus[idCpu];
247
248#ifdef VBOX_STRICT_VMM_STACK
249 rc = MMR3HyperAllocOnceNoRel(pVM, PAGE_SIZE + VMM_STACK_SIZE + PAGE_SIZE, PAGE_SIZE, MM_TAG_VMM, (void **)&pVCpu->vmm.s.pbEMTStackR3);
250#else
251 rc = MMR3HyperAllocOnceNoRel(pVM, VMM_STACK_SIZE, PAGE_SIZE, MM_TAG_VMM, (void **)&pVCpu->vmm.s.pbEMTStackR3);
252#endif
253 if (RT_SUCCESS(rc))
254 {
255#ifdef VBOX_STRICT_VMM_STACK
256 pVCpu->vmm.s.pbEMTStackR3 += PAGE_SIZE;
257#endif
258#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
259 /* MMHyperR3ToR0 returns R3 when not doing hardware assisted virtualization. */
260 if (!VMMIsHwVirtExtForced(pVM))
261 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = NIL_RTR0PTR;
262 else
263#endif
264 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
265 pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3);
266 pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE;
267 AssertRelease(pVCpu->vmm.s.pbEMTStackRC);
268
269 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC);
270 }
271 }
272
273 return rc;
274}
275
276
277/**
278 * Initialize the loggers.
279 *
280 * @returns VBox status code.
281 * @param pVM Pointer to the shared VM structure.
282 */
283static int vmmR3InitLoggers(PVM pVM)
284{
285 int rc;
286
287 /*
288 * Allocate RC & R0 Logger instances (they are finalized in the relocator).
289 */
290#ifdef LOG_ENABLED
291 PRTLOGGER pLogger = RTLogDefaultInstance();
292 if (pLogger)
293 {
294 pVM->vmm.s.cbRCLogger = RT_OFFSETOF(RTLOGGERRC, afGroups[pLogger->cGroups]);
295 rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCLoggerR3);
296 if (RT_FAILURE(rc))
297 return rc;
298 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
299
300# ifdef VBOX_WITH_R0_LOGGING
301 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
302 {
303 PVMCPU pVCpu = &pVM->aCpus[i];
304
305 rc = MMR3HyperAllocOnceNoRelEx(pVM, RT_OFFSETOF(VMMR0LOGGER, Logger.afGroups[pLogger->cGroups]),
306 0, MM_TAG_VMM, MMHYPER_AONR_FLAGS_KERNEL_MAPPING,
307 (void **)&pVCpu->vmm.s.pR0LoggerR3);
308 if (RT_FAILURE(rc))
309 return rc;
310 pVCpu->vmm.s.pR0LoggerR3->pVM = pVM->pVMR0;
311 //pVCpu->vmm.s.pR0LoggerR3->fCreated = false;
312 pVCpu->vmm.s.pR0LoggerR3->cbLogger = RT_OFFSETOF(RTLOGGER, afGroups[pLogger->cGroups]);
313 pVCpu->vmm.s.pR0LoggerR0 = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pR0LoggerR3);
314 }
315# endif
316 }
317#endif /* LOG_ENABLED */
318
319#ifdef VBOX_WITH_RC_RELEASE_LOGGING
320 /*
321 * Allocate RC release logger instances (finalized in the relocator).
322 */
323 PRTLOGGER pRelLogger = RTLogRelDefaultInstance();
324 if (pRelLogger)
325 {
326 pVM->vmm.s.cbRCRelLogger = RT_OFFSETOF(RTLOGGERRC, afGroups[pRelLogger->cGroups]);
327 rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCRelLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCRelLoggerR3);
328 if (RT_FAILURE(rc))
329 return rc;
330 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
331 }
332#endif /* VBOX_WITH_RC_RELEASE_LOGGING */
333 return VINF_SUCCESS;
334}
335
336
337/**
338 * VMMR3Init worker that register the statistics with STAM.
339 *
340 * @param pVM The shared VM structure.
341 */
342static void vmmR3InitRegisterStats(PVM pVM)
343{
344 /*
345 * Statistics.
346 */
347 STAM_REG(pVM, &pVM->vmm.s.StatRunRC, STAMTYPE_COUNTER, "/VMM/RunRC", STAMUNIT_OCCURENCES, "Number of context switches.");
348 STAM_REG(pVM, &pVM->vmm.s.StatRZRetNormal, STAMTYPE_COUNTER, "/VMM/RZRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
349 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterrupt, STAMTYPE_COUNTER, "/VMM/RZRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
350 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
351 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGuestTrap, STAMTYPE_COUNTER, "/VMM/RZRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
352 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitch, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
353 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
354 STAM_REG(pVM, &pVM->vmm.s.StatRZRetStaleSelector, STAMTYPE_COUNTER, "/VMM/RZRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
355 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIRETTrap, STAMTYPE_COUNTER, "/VMM/RZRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
356 STAM_REG(pVM, &pVM->vmm.s.StatRZRetEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
357 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOBlockEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/EmulateIOBlock", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_EMULATE_IO_BLOCK returns.");
358 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
359 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIORead, STAMTYPE_COUNTER, "/VMM/RZRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_READ returns.");
360 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_WRITE returns.");
361 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIORead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_READ returns.");
362 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_WRITE returns.");
363 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_READ_WRITE returns.");
364 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
365 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
366 STAM_REG(pVM, &pVM->vmm.s.StatRZRetLDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
367 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
368 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
369 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTSSFault, STAMTYPE_COUNTER, "/VMM/RZRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
370 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPDFault, STAMTYPE_COUNTER, "/VMM/RZRet/PDFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_PD_FAULT returns.");
371 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCSAMTask, STAMTYPE_COUNTER, "/VMM/RZRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
372 STAM_REG(pVM, &pVM->vmm.s.StatRZRetSyncCR3, STAMTYPE_COUNTER, "/VMM/RZRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
373 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMisc, STAMTYPE_COUNTER, "/VMM/RZRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
374 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchInt3, STAMTYPE_COUNTER, "/VMM/RZRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
375 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchPF, STAMTYPE_COUNTER, "/VMM/RZRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
376 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchGP, STAMTYPE_COUNTER, "/VMM/RZRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
377 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/RZRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
378 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/RZRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
379 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
380 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTimerPending, STAMTYPE_COUNTER, "/VMM/RZRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
381 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptPending, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
382 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/RZRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
383 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/RZRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns.");
384 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPendingRequest, STAMTYPE_COUNTER, "/VMM/RZRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
385 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchTPR, STAMTYPE_COUNTER, "/VMM/RZRet/PatchTPR", STAMUNIT_OCCURENCES, "Number of VINF_EM_HWACCM_PATCH_TPR_INSTR returns.");
386 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCallRing3, STAMTYPE_COUNTER, "/VMM/RZCallR3/Misc", STAMUNIT_OCCURENCES, "Number of Other ring-3 calls.");
387 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_LOCK calls.");
388 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMQueueFlush, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMQueueFlush", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_QUEUE_FLUSH calls.");
389 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_LOCK calls.");
390 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMPoolGrow, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMPoolGrow", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_POOL_GROW calls.");
391 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMMapChunk, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMMapChunk", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_MAP_CHUNK calls.");
392 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMAllocHandy, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMAllocHandy", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES calls.");
393 STAM_REG(pVM, &pVM->vmm.s.StatRZCallRemReplay, STAMTYPE_COUNTER, "/VMM/RZCallR3/REMReplay", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS calls.");
394 STAM_REG(pVM, &pVM->vmm.s.StatRZCallLogFlush, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMMLogFlush", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VMM_LOGGER_FLUSH calls.");
395 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMSetError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_ERROR calls.");
396 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetRuntimeError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMRuntimeError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_RUNTIME_ERROR calls.");
397
398#ifdef VBOX_WITH_STATISTICS
399 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
400 {
401 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedMax, STAMTYPE_U32_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Max amount of stack used.", "/VMM/Stack/CPU%u/Max", i);
402 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedAvg, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Average stack usage.", "/VMM/Stack/CPU%u/Avg", i);
403 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cUsedTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of stack usages.", "/VMM/Stack/CPU%u/Uses", i);
404 }
405#endif
406}
407
408
409/**
410 * Initializes the per-VCPU VMM.
411 *
412 * @returns VBox status code.
413 * @param pVM The VM to operate on.
414 */
415VMMR3DECL(int) VMMR3InitCPU(PVM pVM)
416{
417 LogFlow(("VMMR3InitCPU\n"));
418 return VINF_SUCCESS;
419}
420
421
422/**
423 * Ring-3 init finalizing.
424 *
425 * @returns VBox status code.
426 * @param pVM The VM handle.
427 */
428VMMR3DECL(int) VMMR3InitFinalize(PVM pVM)
429{
430 int rc = VINF_SUCCESS;
431
432 for (VMCPUID idCpu = 0; idCpu < pVM->cCPUs; idCpu++)
433 {
434 PVMCPU pVCpu = &pVM->aCpus[idCpu];
435
436#ifdef VBOX_STRICT_VMM_STACK
437 /*
438 * Two inaccessible pages at each sides of the stack to catch over/under-flows.
439 */
440 memset(pVCpu->vmm.s.pbEMTStackR3 - PAGE_SIZE, 0xcc, PAGE_SIZE);
441 MMR3HyperSetGuard(pVM, pVCpu->vmm.s.pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, true /*fSet*/);
442
443 memset(pVCpu->vmm.s.pbEMTStackR3 + VMM_STACK_SIZE, 0xcc, PAGE_SIZE);
444 MMR3HyperSetGuard(pVM, pVCpu->vmm.s.pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, true /*fSet*/);
445#endif
446
447 /*
448 * Set page attributes to r/w for stack pages.
449 */
450 rc = PGMMapSetPage(pVM, pVCpu->vmm.s.pbEMTStackRC, VMM_STACK_SIZE, X86_PTE_P | X86_PTE_A | X86_PTE_D | X86_PTE_RW);
451 AssertRC(rc);
452 if (RT_FAILURE(rc))
453 break;
454 }
455 if (RT_SUCCESS(rc))
456 {
457 /*
458 * Create the EMT yield timer.
459 */
460 rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, "EMT Yielder", &pVM->vmm.s.pYieldTimer);
461 if (RT_SUCCESS(rc))
462 rc = TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldEveryMillies);
463 }
464
465#ifdef VBOX_WITH_NMI
466 /*
467 * Map the host APIC into GC - This is AMD/Intel + Host OS specific!
468 */
469 if (RT_SUCCESS(rc))
470 rc = PGMMap(pVM, pVM->vmm.s.GCPtrApicBase, 0xfee00000, PAGE_SIZE,
471 X86_PTE_P | X86_PTE_RW | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_A | X86_PTE_D);
472#endif
473 return rc;
474}
475
476
477/**
478 * Initializes the R0 VMM.
479 *
480 * @returns VBox status code.
481 * @param pVM The VM to operate on.
482 */
483VMMR3DECL(int) VMMR3InitR0(PVM pVM)
484{
485 int rc;
486 PVMCPU pVCpu = VMMGetCpu(pVM);
487 Assert(pVCpu && pVCpu->idCpu == 0);
488
489#ifdef LOG_ENABLED
490 /*
491 * Initialize the ring-0 logger if we haven't done so yet.
492 */
493 if ( pVCpu->vmm.s.pR0LoggerR3
494 && !pVCpu->vmm.s.pR0LoggerR3->fCreated)
495 {
496 rc = VMMR3UpdateLoggers(pVM);
497 if (RT_FAILURE(rc))
498 return rc;
499 }
500#endif
501
502 /*
503 * Call Ring-0 entry with init code.
504 */
505 for (;;)
506 {
507#ifdef NO_SUPCALLR0VMM
508 //rc = VERR_GENERAL_FAILURE;
509 rc = VINF_SUCCESS;
510#else
511 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_INIT, VMMGetSvnRev(), NULL);
512#endif
513 /*
514 * Flush the logs.
515 */
516#ifdef LOG_ENABLED
517 if ( pVCpu->vmm.s.pR0LoggerR3
518 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
519 RTLogFlushToLogger(&pVCpu->vmm.s.pR0LoggerR3->Logger, NULL);
520#endif
521 if (rc != VINF_VMM_CALL_HOST)
522 break;
523 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
524 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
525 break;
526 /* Resume R0 */
527 }
528
529 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
530 {
531 LogRel(("R0 init failed, rc=%Rra\n", rc));
532 if (RT_SUCCESS(rc))
533 rc = VERR_INTERNAL_ERROR;
534 }
535 return rc;
536}
537
538
539/**
540 * Initializes the RC VMM.
541 *
542 * @returns VBox status code.
543 * @param pVM The VM to operate on.
544 */
545VMMR3DECL(int) VMMR3InitRC(PVM pVM)
546{
547 PVMCPU pVCpu = VMMGetCpu(pVM);
548 Assert(pVCpu && pVCpu->idCpu == 0);
549
550 /* In VMX mode, there's no need to init RC. */
551 if (pVM->vmm.s.fSwitcherDisabled)
552 return VINF_SUCCESS;
553
554 AssertReturn(pVM->cCPUs == 1, VERR_RAW_MODE_INVALID_SMP);
555
556 /*
557 * Call VMMGCInit():
558 * -# resolve the address.
559 * -# setup stackframe and EIP to use the trampoline.
560 * -# do a generic hypervisor call.
561 */
562 RTRCPTR RCPtrEP;
563 int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMGCEntry", &RCPtrEP);
564 if (RT_SUCCESS(rc))
565 {
566 CPUMHyperSetCtxCore(pVCpu, NULL);
567 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC); /* Clear the stack. */
568 uint64_t u64TS = RTTimeProgramStartNanoTS();
569 CPUMPushHyper(pVCpu, (uint32_t)(u64TS >> 32)); /* Param 3: The program startup TS - Hi. */
570 CPUMPushHyper(pVCpu, (uint32_t)u64TS); /* Param 3: The program startup TS - Lo. */
571 CPUMPushHyper(pVCpu, VMMGetSvnRev()); /* Param 2: Version argument. */
572 CPUMPushHyper(pVCpu, VMMGC_DO_VMMGC_INIT); /* Param 1: Operation. */
573 CPUMPushHyper(pVCpu, pVM->pVMRC); /* Param 0: pVM */
574 CPUMPushHyper(pVCpu, 5 * sizeof(RTRCPTR)); /* trampoline param: stacksize. */
575 CPUMPushHyper(pVCpu, RCPtrEP); /* Call EIP. */
576 CPUMSetHyperEIP(pVCpu, pVM->vmm.s.pfnCallTrampolineRC);
577 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
578
579 for (;;)
580 {
581#ifdef NO_SUPCALLR0VMM
582 //rc = VERR_GENERAL_FAILURE;
583 rc = VINF_SUCCESS;
584#else
585 rc = SUPR3CallVMMR0(pVM->pVMR0, 0 /* VCPU 0 */, VMMR0_DO_CALL_HYPERVISOR, NULL);
586#endif
587#ifdef LOG_ENABLED
588 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
589 if ( pLogger
590 && pLogger->offScratch > 0)
591 RTLogFlushRC(NULL, pLogger);
592#endif
593#ifdef VBOX_WITH_RC_RELEASE_LOGGING
594 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
595 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
596 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
597#endif
598 if (rc != VINF_VMM_CALL_HOST)
599 break;
600 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
601 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
602 break;
603 }
604
605 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
606 {
607 VMMR3FatalDump(pVM, pVCpu, rc);
608 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
609 rc = VERR_INTERNAL_ERROR;
610 }
611 AssertRC(rc);
612 }
613 return rc;
614}
615
616
617/**
618 * Terminate the VMM bits.
619 *
620 * @returns VINF_SUCCESS.
621 * @param pVM The VM handle.
622 */
623VMMR3DECL(int) VMMR3Term(PVM pVM)
624{
625 PVMCPU pVCpu = VMMGetCpu(pVM);
626 Assert(pVCpu && pVCpu->idCpu == 0);
627
628 /*
629 * Call Ring-0 entry with termination code.
630 */
631 int rc;
632 for (;;)
633 {
634#ifdef NO_SUPCALLR0VMM
635 //rc = VERR_GENERAL_FAILURE;
636 rc = VINF_SUCCESS;
637#else
638 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_TERM, 0, NULL);
639#endif
640 /*
641 * Flush the logs.
642 */
643#ifdef LOG_ENABLED
644 if ( pVCpu->vmm.s.pR0LoggerR3
645 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
646 RTLogFlushToLogger(&pVCpu->vmm.s.pR0LoggerR3->Logger, NULL);
647#endif
648 if (rc != VINF_VMM_CALL_HOST)
649 break;
650 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
651 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
652 break;
653 /* Resume R0 */
654 }
655 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
656 {
657 LogRel(("VMMR3Term: R0 term failed, rc=%Rra. (warning)\n", rc));
658 if (RT_SUCCESS(rc))
659 rc = VERR_INTERNAL_ERROR;
660 }
661
662 RTCritSectDelete(&pVM->vmm.s.CritSectSync);
663 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
664 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
665 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
666 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
667 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousDone);
668 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
669 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousDoneCaller);
670 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
671
672#ifdef VBOX_STRICT_VMM_STACK
673 /*
674 * Make the two stack guard pages present again.
675 */
676 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
677 {
678 MMR3HyperSetGuard(pVM, pVM->aCpus[i].vmm.s.pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, false /*fSet*/);
679 MMR3HyperSetGuard(pVM, pVM->aCpus[i].vmm.s.pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, false /*fSet*/);
680 }
681#endif
682 return rc;
683}
684
685
686/**
687 * Terminates the per-VCPU VMM.
688 *
689 * Termination means cleaning up and freeing all resources,
690 * the VM it self is at this point powered off or suspended.
691 *
692 * @returns VBox status code.
693 * @param pVM The VM to operate on.
694 */
695VMMR3DECL(int) VMMR3TermCPU(PVM pVM)
696{
697 return VINF_SUCCESS;
698}
699
700
701/**
702 * Applies relocations to data and code managed by this
703 * component. This function will be called at init and
704 * whenever the VMM need to relocate it self inside the GC.
705 *
706 * The VMM will need to apply relocations to the core code.
707 *
708 * @param pVM The VM handle.
709 * @param offDelta The relocation delta.
710 */
711VMMR3DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
712{
713 LogFlow(("VMMR3Relocate: offDelta=%RGv\n", offDelta));
714
715 /*
716 * Recalc the RC address.
717 */
718 pVM->vmm.s.pvCoreCodeRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pvCoreCodeR3);
719
720 /*
721 * The stack.
722 */
723 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
724 {
725 PVMCPU pVCpu = &pVM->aCpus[i];
726
727 CPUMSetHyperESP(pVCpu, CPUMGetHyperESP(pVCpu) + offDelta);
728
729 pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3);
730 pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE;
731 }
732
733 /*
734 * All the switchers.
735 */
736 vmmR3SwitcherRelocate(pVM, offDelta);
737
738 /*
739 * Get other RC entry points.
740 */
741 int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuest", &pVM->vmm.s.pfnCPUMRCResumeGuest);
742 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuest not found! rc=%Rra\n", rc));
743
744 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuestV86", &pVM->vmm.s.pfnCPUMRCResumeGuestV86);
745 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuestV86 not found! rc=%Rra\n", rc));
746
747 /*
748 * Update the logger.
749 */
750 VMMR3UpdateLoggers(pVM);
751}
752
753
754/**
755 * Updates the settings for the RC and R0 loggers.
756 *
757 * @returns VBox status code.
758 * @param pVM The VM handle.
759 */
760VMMR3DECL(int) VMMR3UpdateLoggers(PVM pVM)
761{
762 /*
763 * Simply clone the logger instance (for RC).
764 */
765 int rc = VINF_SUCCESS;
766 RTRCPTR RCPtrLoggerFlush = 0;
767
768 if (pVM->vmm.s.pRCLoggerR3
769#ifdef VBOX_WITH_RC_RELEASE_LOGGING
770 || pVM->vmm.s.pRCRelLoggerR3
771#endif
772 )
773 {
774 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerFlush", &RCPtrLoggerFlush);
775 AssertReleaseMsgRC(rc, ("vmmGCLoggerFlush not found! rc=%Rra\n", rc));
776 }
777
778 if (pVM->vmm.s.pRCLoggerR3)
779 {
780 RTRCPTR RCPtrLoggerWrapper = 0;
781 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerWrapper", &RCPtrLoggerWrapper);
782 AssertReleaseMsgRC(rc, ("vmmGCLoggerWrapper not found! rc=%Rra\n", rc));
783
784 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
785 rc = RTLogCloneRC(NULL /* default */, pVM->vmm.s.pRCLoggerR3, pVM->vmm.s.cbRCLogger,
786 RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
787 AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc));
788 }
789
790#ifdef VBOX_WITH_RC_RELEASE_LOGGING
791 if (pVM->vmm.s.pRCRelLoggerR3)
792 {
793 RTRCPTR RCPtrLoggerWrapper = 0;
794 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCRelLoggerWrapper", &RCPtrLoggerWrapper);
795 AssertReleaseMsgRC(rc, ("vmmGCRelLoggerWrapper not found! rc=%Rra\n", rc));
796
797 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
798 rc = RTLogCloneRC(RTLogRelDefaultInstance(), pVM->vmm.s.pRCRelLoggerR3, pVM->vmm.s.cbRCRelLogger,
799 RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
800 AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc));
801 }
802#endif /* VBOX_WITH_RC_RELEASE_LOGGING */
803
804#ifdef LOG_ENABLED
805 /*
806 * For the ring-0 EMT logger, we use a per-thread logger instance
807 * in ring-0. Only initialize it once.
808 */
809 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
810 {
811 PVMCPU pVCpu = &pVM->aCpus[i];
812 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
813 if (pR0LoggerR3)
814 {
815 if (!pR0LoggerR3->fCreated)
816 {
817 RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR;
818 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
819 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerWrapper not found! rc=%Rra\n", rc), rc);
820
821 RTR0PTR pfnLoggerFlush = NIL_RTR0PTR;
822 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
823 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerFlush not found! rc=%Rra\n", rc), rc);
824
825 rc = RTLogCreateForR0(&pR0LoggerR3->Logger, pR0LoggerR3->cbLogger,
826 *(PFNRTLOGGER *)&pfnLoggerWrapper, *(PFNRTLOGFLUSH *)&pfnLoggerFlush,
827 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY);
828 AssertReleaseMsgRCReturn(rc, ("RTLogCreateForR0 failed! rc=%Rra\n", rc), rc);
829
830 RTR0PTR pfnLoggerPrefix = NIL_RTR0PTR;
831 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerPrefix", &pfnLoggerPrefix);
832 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerPrefix not found! rc=%Rra\n", rc), rc);
833 rc = RTLogSetCustomPrefixCallback(&pR0LoggerR3->Logger, *(PFNRTLOGPREFIX *)&pfnLoggerPrefix, NULL);
834 AssertReleaseMsgRCReturn(rc, ("RTLogSetCustomPrefixCallback failed! rc=%Rra\n", rc), rc);
835
836 pR0LoggerR3->idCpu = i;
837 pR0LoggerR3->fCreated = true;
838 pR0LoggerR3->fFlushingDisabled = false;
839
840 }
841
842 rc = RTLogCopyGroupsAndFlags(&pR0LoggerR3->Logger, NULL /* default */, pVM->vmm.s.pRCLoggerR3->fFlags, RTLOGFLAGS_BUFFERED);
843 AssertRC(rc);
844 }
845 }
846#endif
847 return rc;
848}
849
850
851/**
852 * Gets the pointer to a buffer containing the R0/RC AssertMsg1 output.
853 *
854 * @returns Pointer to the buffer.
855 * @param pVM The VM handle.
856 */
857VMMR3DECL(const char *) VMMR3GetRZAssertMsg1(PVM pVM)
858{
859 if (HWACCMIsEnabled(pVM))
860 return pVM->vmm.s.szRing0AssertMsg1;
861
862 RTRCPTR RCPtr;
863 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg1", &RCPtr);
864 if (RT_SUCCESS(rc))
865 return (const char *)MMHyperRCToR3(pVM, RCPtr);
866
867 return NULL;
868}
869
870
871/**
872 * Gets the pointer to a buffer containing the R0/RC AssertMsg2 output.
873 *
874 * @returns Pointer to the buffer.
875 * @param pVM The VM handle.
876 */
877VMMR3DECL(const char *) VMMR3GetRZAssertMsg2(PVM pVM)
878{
879 if (HWACCMIsEnabled(pVM))
880 return pVM->vmm.s.szRing0AssertMsg2;
881
882 RTRCPTR RCPtr;
883 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg2", &RCPtr);
884 if (RT_SUCCESS(rc))
885 return (const char *)MMHyperRCToR3(pVM, RCPtr);
886
887 return NULL;
888}
889
890
891/**
892 * Execute state save operation.
893 *
894 * @returns VBox status code.
895 * @param pVM VM Handle.
896 * @param pSSM SSM operation handle.
897 */
898static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
899{
900 LogFlow(("vmmR3Save:\n"));
901
902 /*
903 * The hypervisor stack.
904 * Note! See note in vmmR3Load (remove this on version change).
905 */
906 PVMCPU pVCpu0 = &pVM->aCpus[0];
907 SSMR3PutRCPtr(pSSM, pVCpu0->vmm.s.pbEMTStackBottomRC);
908 RTRCPTR RCPtrESP = CPUMGetHyperESP(pVCpu0);
909 AssertMsg(pVCpu0->vmm.s.pbEMTStackBottomRC - RCPtrESP <= VMM_STACK_SIZE, ("Bottom %RRv ESP=%RRv\n", pVCpu0->vmm.s.pbEMTStackBottomRC, RCPtrESP));
910 SSMR3PutRCPtr(pSSM, RCPtrESP);
911 SSMR3PutMem(pSSM, pVCpu0->vmm.s.pbEMTStackR3, VMM_STACK_SIZE);
912
913 /*
914 * Save the started/stopped state of all CPUs except 0 as it will always
915 * be running. This avoids breaking the saved state version. :-)
916 */
917 for (VMCPUID i = 1; i < pVM->cCPUs; i++)
918 SSMR3PutBool(pSSM, VMCPUSTATE_IS_STARTED(VMCPU_GET_STATE(&pVM->aCpus[i])));
919
920 return SSMR3PutU32(pSSM, ~0); /* terminator */
921}
922
923
924/**
925 * Execute state load operation.
926 *
927 * @returns VBox status code.
928 * @param pVM VM Handle.
929 * @param pSSM SSM operation handle.
930 * @param u32Version Data layout version.
931 */
932static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
933{
934 LogFlow(("vmmR3Load:\n"));
935
936 /*
937 * Validate version.
938 */
939 if (u32Version != VMM_SAVED_STATE_VERSION)
940 {
941 AssertMsgFailed(("vmmR3Load: Invalid version u32Version=%d!\n", u32Version));
942 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
943 }
944
945 /*
946 * Check that the stack is in the same place, or that it's fearly empty.
947 *
948 * Note! This can be skipped next time we update saved state as we will
949 * never be in a R0/RC -> ring-3 call when saving the state. The
950 * stack and the two associated pointers are not required.
951 */
952 RTRCPTR RCPtrStackBottom;
953 SSMR3GetRCPtr(pSSM, &RCPtrStackBottom);
954 RTRCPTR RCPtrESP;
955 int rc = SSMR3GetRCPtr(pSSM, &RCPtrESP);
956 if (RT_FAILURE(rc))
957 return rc;
958 SSMR3GetMem(pSSM, pVM->aCpus[0].vmm.s.pbEMTStackR3, VMM_STACK_SIZE);
959
960 /* Restore the VMCPU states. VCPU 0 is always started. */
961 VMCPU_SET_STATE(&pVM->aCpus[0], VMCPUSTATE_STARTED);
962 for (VMCPUID i = 1; i < pVM->cCPUs; i++)
963 {
964 bool fStarted;
965 rc = SSMR3GetBool(pSSM, &fStarted);
966 if (RT_FAILURE(rc))
967 return rc;
968 VMCPU_SET_STATE(&pVM->aCpus[i], fStarted ? VMCPUSTATE_STARTED : VMCPUSTATE_STOPPED);
969 }
970
971 /* terminator */
972 uint32_t u32;
973 rc = SSMR3GetU32(pSSM, &u32);
974 if (RT_FAILURE(rc))
975 return rc;
976 if (u32 != ~0U)
977 {
978 AssertMsgFailed(("u32=%#x\n", u32));
979 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
980 }
981 return VINF_SUCCESS;
982}
983
984
985/**
986 * Resolve a builtin RC symbol.
987 *
988 * Called by PDM when loading or relocating RC modules.
989 *
990 * @returns VBox status
991 * @param pVM VM Handle.
992 * @param pszSymbol Symbol to resolv
993 * @param pRCPtrValue Where to store the symbol value.
994 *
995 * @remark This has to work before VMMR3Relocate() is called.
996 */
997VMMR3DECL(int) VMMR3GetImportRC(PVM pVM, const char *pszSymbol, PRTRCPTR pRCPtrValue)
998{
999 if (!strcmp(pszSymbol, "g_Logger"))
1000 {
1001 if (pVM->vmm.s.pRCLoggerR3)
1002 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
1003 *pRCPtrValue = pVM->vmm.s.pRCLoggerRC;
1004 }
1005 else if (!strcmp(pszSymbol, "g_RelLogger"))
1006 {
1007#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1008 if (pVM->vmm.s.pRCRelLoggerR3)
1009 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
1010 *pRCPtrValue = pVM->vmm.s.pRCRelLoggerRC;
1011#else
1012 *pRCPtrValue = NIL_RTRCPTR;
1013#endif
1014 }
1015 else
1016 return VERR_SYMBOL_NOT_FOUND;
1017 return VINF_SUCCESS;
1018}
1019
1020
1021/**
1022 * Suspends the CPU yielder.
1023 *
1024 * @param pVM The VM handle.
1025 */
1026VMMR3DECL(void) VMMR3YieldSuspend(PVM pVM)
1027{
1028 VMCPU_ASSERT_EMT(&pVM->aCpus[0]);
1029 if (!pVM->vmm.s.cYieldResumeMillies)
1030 {
1031 uint64_t u64Now = TMTimerGet(pVM->vmm.s.pYieldTimer);
1032 uint64_t u64Expire = TMTimerGetExpire(pVM->vmm.s.pYieldTimer);
1033 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
1034 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1035 else
1036 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM->vmm.s.pYieldTimer, u64Expire - u64Now);
1037 TMTimerStop(pVM->vmm.s.pYieldTimer);
1038 }
1039 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1040}
1041
1042
1043/**
1044 * Stops the CPU yielder.
1045 *
1046 * @param pVM The VM handle.
1047 */
1048VMMR3DECL(void) VMMR3YieldStop(PVM pVM)
1049{
1050 if (!pVM->vmm.s.cYieldResumeMillies)
1051 TMTimerStop(pVM->vmm.s.pYieldTimer);
1052 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1053 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1054}
1055
1056
1057/**
1058 * Resumes the CPU yielder when it has been a suspended or stopped.
1059 *
1060 * @param pVM The VM handle.
1061 */
1062VMMR3DECL(void) VMMR3YieldResume(PVM pVM)
1063{
1064 if (pVM->vmm.s.cYieldResumeMillies)
1065 {
1066 TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldResumeMillies);
1067 pVM->vmm.s.cYieldResumeMillies = 0;
1068 }
1069}
1070
1071
1072/**
1073 * Internal timer callback function.
1074 *
1075 * @param pVM The VM.
1076 * @param pTimer The timer handle.
1077 * @param pvUser User argument specified upon timer creation.
1078 */
1079static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser)
1080{
1081 /*
1082 * This really needs some careful tuning. While we shouldn't be too greedy since
1083 * that'll cause the rest of the system to stop up, we shouldn't be too nice either
1084 * because that'll cause us to stop up.
1085 *
1086 * The current logic is to use the default interval when there is no lag worth
1087 * mentioning, but when we start accumulating lag we don't bother yielding at all.
1088 *
1089 * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL
1090 * so the lag is up to date.)
1091 */
1092 const uint64_t u64Lag = TMVirtualSyncGetLag(pVM);
1093 if ( u64Lag < 50000000 /* 50ms */
1094 || ( u64Lag < 1000000000 /* 1s */
1095 && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */)
1096 )
1097 {
1098 uint64_t u64Elapsed = RTTimeNanoTS();
1099 pVM->vmm.s.u64LastYield = u64Elapsed;
1100
1101 RTThreadYield();
1102
1103#ifdef LOG_ENABLED
1104 u64Elapsed = RTTimeNanoTS() - u64Elapsed;
1105 Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed));
1106#endif
1107 }
1108 TMTimerSetMillies(pTimer, pVM->vmm.s.cYieldEveryMillies);
1109}
1110
1111
1112/**
1113 * Executes guest code in the raw-mode context.
1114 *
1115 * @param pVM VM handle.
1116 * @param pVCpu The VMCPU to operate on.
1117 */
1118VMMR3DECL(int) VMMR3RawRunGC(PVM pVM, PVMCPU pVCpu)
1119{
1120 Log2(("VMMR3RawRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1121
1122 AssertReturn(pVM->cCPUs == 1, VERR_RAW_MODE_INVALID_SMP);
1123
1124 /*
1125 * Set the EIP and ESP.
1126 */
1127 CPUMSetHyperEIP(pVCpu, CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM
1128 ? pVM->vmm.s.pfnCPUMRCResumeGuestV86
1129 : pVM->vmm.s.pfnCPUMRCResumeGuest);
1130 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC);
1131
1132 /*
1133 * We hide log flushes (outer) and hypervisor interrupts (inner).
1134 */
1135 for (;;)
1136 {
1137#ifdef VBOX_STRICT
1138 if (RT_UNLIKELY(!CPUMGetHyperCR3(pVCpu) || CPUMGetHyperCR3(pVCpu) != PGMGetHyperCR3(pVCpu)))
1139 EMR3FatalError(pVCpu, VERR_VMM_HYPER_CR3_MISMATCH);
1140 PGMMapCheck(pVM);
1141#endif
1142 int rc;
1143 do
1144 {
1145#ifdef NO_SUPCALLR0VMM
1146 rc = VERR_GENERAL_FAILURE;
1147#else
1148 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1149 if (RT_LIKELY(rc == VINF_SUCCESS))
1150 rc = pVCpu->vmm.s.iLastGZRc;
1151#endif
1152 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1153
1154 /*
1155 * Flush the logs.
1156 */
1157#ifdef LOG_ENABLED
1158 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1159 if ( pLogger
1160 && pLogger->offScratch > 0)
1161 RTLogFlushRC(NULL, pLogger);
1162#endif
1163#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1164 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1165 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1166 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
1167#endif
1168 if (rc != VINF_VMM_CALL_HOST)
1169 {
1170 Log2(("VMMR3RawRunGC: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1171 return rc;
1172 }
1173 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1174 if (RT_FAILURE(rc))
1175 return rc;
1176 /* Resume GC */
1177 }
1178}
1179
1180
1181/**
1182 * Executes guest code (Intel VT-x and AMD-V).
1183 *
1184 * @param pVM VM handle.
1185 * @param pVCpu The VMCPU to operate on.
1186 */
1187VMMR3DECL(int) VMMR3HwAccRunGC(PVM pVM, PVMCPU pVCpu)
1188{
1189 Log2(("VMMR3HwAccRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1190
1191 for (;;)
1192 {
1193 int rc;
1194 do
1195 {
1196#ifdef NO_SUPCALLR0VMM
1197 rc = VERR_GENERAL_FAILURE;
1198#else
1199 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_HWACC_RUN, pVCpu->idCpu);
1200 if (RT_LIKELY(rc == VINF_SUCCESS))
1201 rc = pVCpu->vmm.s.iLastGZRc;
1202#endif
1203 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1204
1205#ifdef LOG_ENABLED
1206 /*
1207 * Flush the log
1208 */
1209 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
1210 if ( pR0LoggerR3
1211 && pR0LoggerR3->Logger.offScratch > 0)
1212 RTLogFlushToLogger(&pR0LoggerR3->Logger, NULL);
1213#endif /* !LOG_ENABLED */
1214 if (rc != VINF_VMM_CALL_HOST)
1215 {
1216 Log2(("VMMR3HwAccRunGC: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1217 return rc;
1218 }
1219 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1220 if (RT_FAILURE(rc))
1221 return rc;
1222 /* Resume R0 */
1223 }
1224}
1225
1226/**
1227 * VCPU worker for VMMSendSipi.
1228 *
1229 * @param pVM The VM to operate on.
1230 * @param idCpu Virtual CPU to perform SIPI on
1231 * @param uVector SIPI vector
1232 */
1233DECLCALLBACK(int) vmmR3SendSipi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1234{
1235 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1236 VMCPU_ASSERT_EMT(pVCpu);
1237
1238 /** @todo what are we supposed to do if the processor is already running? */
1239 if (EMGetState(pVCpu) != EMSTATE_WAIT_SIPI)
1240 return VERR_ACCESS_DENIED;
1241
1242
1243 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1244
1245 pCtx->cs = uVector << 8;
1246 pCtx->csHid.u64Base = uVector << 12;
1247 pCtx->csHid.u32Limit = 0x0000ffff;
1248 pCtx->rip = 0;
1249
1250 Log(("vmmR3SendSipi for VCPU %d with vector %x\n", uVector));
1251
1252# if 1 /* If we keep the EMSTATE_WAIT_SIPI method, then move this to EM.cpp. */
1253 EMSetState(pVCpu, EMSTATE_HALTED);
1254 return VINF_EM_RESCHEDULE;
1255# else /* And if we go the VMCPU::enmState way it can stay here. */
1256 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STOPPED);
1257 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
1258 return VINF_SUCCESS;
1259# endif
1260}
1261
1262DECLCALLBACK(int) vmmR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1263{
1264 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1265 VMCPU_ASSERT_EMT(pVCpu);
1266
1267 Log(("vmmR3SendInitIpi for VCPU %d\n", idCpu));
1268 CPUMR3ResetCpu(pVCpu);
1269 return VINF_EM_WAIT_SIPI;
1270}
1271
1272/**
1273 * Sends SIPI to the virtual CPU by setting CS:EIP into vector-dependent state
1274 * and unhalting processor
1275 *
1276 * @param pVM The VM to operate on.
1277 * @param idCpu Virtual CPU to perform SIPI on
1278 * @param uVector SIPI vector
1279 */
1280VMMR3DECL(void) VMMR3SendSipi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1281{
1282 AssertReturnVoid(idCpu < pVM->cCPUs);
1283
1284 PVMREQ pReq;
1285 int rc = VMR3ReqCallU(pVM->pUVM, idCpu, &pReq, 0, VMREQFLAGS_NO_WAIT,
1286 (PFNRT)vmmR3SendSipi, 3, pVM, idCpu, uVector);
1287 AssertRC(rc);
1288}
1289
1290/**
1291 * Sends init IPI to the virtual CPU.
1292 *
1293 * @param pVM The VM to operate on.
1294 * @param idCpu Virtual CPU to perform int IPI on
1295 */
1296VMMR3DECL(void) VMMR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1297{
1298 AssertReturnVoid(idCpu < pVM->cCPUs);
1299
1300 PVMREQ pReq;
1301 int rc = VMR3ReqCallU(pVM->pUVM, idCpu, &pReq, 0, VMREQFLAGS_NO_WAIT,
1302 (PFNRT)vmmR3SendInitIpi, 2, pVM, idCpu);
1303 AssertRC(rc);
1304}
1305
1306/**
1307 * Registers the guest memory range that can be used for patching
1308 *
1309 * @returns VBox status code.
1310 * @param pVM The VM to operate on.
1311 * @param pPatchMem Patch memory range
1312 * @param cbPatchMem Size of the memory range
1313 */
1314VMMR3DECL(int) VMMR3RegisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1315{
1316 if (HWACCMIsEnabled(pVM))
1317 return HWACMMR3EnablePatching(pVM, pPatchMem, cbPatchMem);
1318
1319 return VERR_NOT_SUPPORTED;
1320}
1321
1322/**
1323 * Deregisters the guest memory range that can be used for patching
1324 *
1325 * @returns VBox status code.
1326 * @param pVM The VM to operate on.
1327 * @param pPatchMem Patch memory range
1328 * @param cbPatchMem Size of the memory range
1329 */
1330VMMR3DECL(int) VMMR3DeregisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1331{
1332 if (HWACCMIsEnabled(pVM))
1333 return HWACMMR3DisablePatching(pVM, pPatchMem, cbPatchMem);
1334
1335 return VINF_SUCCESS;
1336}
1337
1338
1339/**
1340 * VCPU worker for VMMR3SynchronizeAllVCpus.
1341 *
1342 * @param pVM The VM to operate on.
1343 * @param idCpu Virtual CPU to perform SIPI on
1344 * @param uVector SIPI vector
1345 */
1346DECLCALLBACK(int) vmmR3SyncVCpu(PVM pVM)
1347{
1348 /* Block until the job in the caller has finished. */
1349 RTCritSectEnter(&pVM->vmm.s.CritSectSync);
1350 RTCritSectLeave(&pVM->vmm.s.CritSectSync);
1351 return VINF_SUCCESS;
1352}
1353
1354
1355/**
1356 * Atomically execute a callback handler
1357 * Note: This is very expensive; avoid using it frequently!
1358 *
1359 * @param pVM The VM to operate on.
1360 * @param pfnHandler Callback handler
1361 * @param pvUser User specified parameter
1362 *
1363 * @thread EMT
1364 */
1365VMMR3DECL(int) VMMR3AtomicExecuteHandler(PVM pVM, PFNATOMICHANDLER pfnHandler, void *pvUser)
1366{
1367 int rc;
1368 PVMCPU pVCpu = VMMGetCpu(pVM);
1369 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
1370
1371 /* Shortcut for the uniprocessor case. */
1372 if (pVM->cCPUs == 1)
1373 return pfnHandler(pVM, pvUser);
1374
1375 RTCritSectEnter(&pVM->vmm.s.CritSectSync);
1376 for (VMCPUID idCpu = 0; idCpu < pVM->cCPUs; idCpu++)
1377 {
1378 if (idCpu != pVCpu->idCpu)
1379 {
1380 rc = VMR3ReqCallU(pVM->pUVM, idCpu, NULL, 0, VMREQFLAGS_NO_WAIT,
1381 (PFNRT)vmmR3SyncVCpu, 1, pVM);
1382 AssertRC(rc);
1383 }
1384 }
1385 /* Wait until all other VCPUs are waiting for us. */
1386 while (RTCritSectGetWaiters(&pVM->vmm.s.CritSectSync) != (int32_t)(pVM->cCPUs - 1))
1387 RTThreadSleep(1);
1388
1389 rc = pfnHandler(pVM, pvUser);
1390 RTCritSectLeave(&pVM->vmm.s.CritSectSync);
1391 return rc;
1392}
1393
1394
1395/**
1396 * Count returns and have the last non-caller EMT wake up the caller.
1397 *
1398 * @param pVM The VM handle.
1399 */
1400DECL_FORCE_INLINE(void) vmmR3EmtRendezvousNonCallerReturn(PVM pVM)
1401{
1402 uint32_t cReturned = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsReturned);
1403 if (cReturned == pVM->cCPUs - 1U)
1404 {
1405 int rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1406 AssertLogRelRC(rc);
1407 }
1408}
1409
1410
1411/**
1412 * Common worker for VMMR3EmtRendezvous and VMMR3EmtRendezvousFF.
1413 *
1414 * @param pVM The VM handle.
1415 * @param pVCpu The VMCPU structure for the calling EMT.
1416 * @param fIsCaller Whether we're the VMMR3EmtRendezvous caller or
1417 * not.
1418 * @param fFlags The flags.
1419 * @param pfnRendezvous The callback.
1420 * @param pvUser The user argument for the callback.
1421 */
1422static void vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
1423 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1424{
1425 int rc;
1426
1427 /*
1428 * Enter, the last EMT triggers the next callback phase.
1429 */
1430 uint32_t cEntered = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsEntered);
1431 if (cEntered != pVM->cCPUs)
1432 {
1433 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1434 {
1435 /* Wait for our turn. */
1436 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, RT_INDEFINITE_WAIT);
1437 AssertLogRelRC(rc);
1438 }
1439 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1440 {
1441 /* Wait for the last EMT to arrive and wake everyone up. */
1442 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce, RT_INDEFINITE_WAIT);
1443 AssertLogRelRC(rc);
1444 }
1445 else
1446 {
1447 Assert((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE);
1448
1449 /*
1450 * The execute once is handled specially to optimize the code flow.
1451 *
1452 * The last EMT to arrive will perform the callback and the other
1453 * EMTs will wait on the Done/DoneCaller semaphores (instead of
1454 * the EnterOneByOne/AllAtOnce) in the meanwhile. When the callback
1455 * returns, that EMT will initiate the normal return sequence.
1456 */
1457 if (!fIsCaller)
1458 {
1459 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1460 AssertLogRelRC(rc);
1461
1462 vmmR3EmtRendezvousNonCallerReturn(pVM);
1463 }
1464 return;
1465 }
1466 }
1467 else
1468 {
1469 /*
1470 * All EMTs are waiting, clear the FF and take action according to the
1471 * execution method.
1472 */
1473 VM_FF_CLEAR(pVM, VM_FF_EMT_RENDEZVOUS);
1474
1475 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1476 {
1477 /* Wake up everyone. */
1478 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
1479 AssertLogRelRC(rc);
1480 }
1481 /* else: execute the handler on the current EMT and wake up one or more threads afterwards. */
1482 }
1483
1484
1485 /*
1486 * Do the callback and update the status if necessary.
1487 */
1488 rc = pfnRendezvous(pVM, pVCpu, pvUser);
1489 if (rc != VINF_SUCCESS)
1490 {
1491 int32_t i32RendezvousStatus;
1492 do
1493 {
1494 i32RendezvousStatus = ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus);
1495 if ( RT_FAILURE(i32RendezvousStatus)
1496 || ( i32RendezvousStatus != VINF_SUCCESS
1497 && RT_SUCCESS(rc)))
1498 break;
1499 } while (!ASMAtomicCmpXchgS32(&pVM->vmm.s.i32RendezvousStatus, rc, i32RendezvousStatus));
1500 }
1501
1502 /*
1503 * Increment the done counter and take action depending on whether we're
1504 * the last to finish callback execution.
1505 */
1506 uint32_t cDone = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsDone);
1507 if ( cDone != pVM->cCPUs
1508 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE)
1509 {
1510 /* Signal the next EMT? */
1511 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1512 {
1513 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1514 AssertLogRelRC(rc);
1515 }
1516
1517 /* Wait for the rest to finish (the caller waits on hEvtRendezvousDoneCaller). */
1518 if (!fIsCaller)
1519 {
1520 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1521 AssertLogRelRC(rc);
1522 }
1523 }
1524 else
1525 {
1526 /* Callback execution is all done, tell the rest to return. */
1527 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1528 AssertLogRelRC(rc);
1529 }
1530
1531 if (!fIsCaller)
1532 vmmR3EmtRendezvousNonCallerReturn(pVM);
1533}
1534
1535
1536/**
1537 * Called in response to VM_FF_EMT_RENDEZVOUS.
1538 *
1539 * @param pVM The VM handle
1540 * @param pVCpu The handle of the calling EMT.
1541 *
1542 * @thread EMT
1543 */
1544VMMR3DECL(void) VMMR3EmtRendezvousFF(PVM pVM, PVMCPU pVCpu)
1545{
1546 vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1547 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1548}
1549
1550
1551/**
1552 * EMT rendezvous.
1553 *
1554 * Gathers all the EMTs and execute some code on each of them, either in a one
1555 * by one fashion or all at once.
1556 *
1557 * @returns VBox status code. This will be the first error or, if all succeed,
1558 * the first informational status code.
1559 * @retval VERR_VM_THREAD_NOT_EMT if the caller is not an EMT.
1560 *
1561 * @param pVM The VM handle.
1562 * @param fFlags Flags indicating execution methods. See
1563 * grp_VMMR3EmtRendezvous_fFlags.
1564 * @param pfnRendezvous The callback.
1565 * @param pvUser User argument for the callback.
1566 *
1567 * @thread EMT
1568 */
1569VMMR3DECL(int) VMMR3EmtRendezvous(PVM pVM, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1570{
1571 /*
1572 * Validate input.
1573 */
1574 PVMCPU pVCpu = VMMGetCpu(pVM);
1575 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
1576 AssertMsg( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_INVALID
1577 && !(fFlags & ~VMMEMTRENDEZVOUS_FLAGS_VALID_MASK), ("%#x\n", fFlags));
1578
1579 int rc;
1580 if (pVM->cCPUs == 1)
1581 /*
1582 * Shortcut for the single EMT case.
1583 */
1584 rc = pfnRendezvous(pVM, pVCpu, pvUser);
1585 else
1586 {
1587 /*
1588 * Spin lock. If busy, wait for the other EMT to finish while keeping a
1589 * lookout of the RENDEZVOUS FF.
1590 */
1591 while (!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0))
1592 {
1593 if (VM_FF_ISPENDING(pVM, VM_FF_EMT_RENDEZVOUS))
1594 VMMR3EmtRendezvousFF(pVM, pVCpu);
1595 }
1596 Assert(!VM_FF_ISPENDING(pVM, VM_FF_EMT_RENDEZVOUS));
1597
1598 /*
1599 * Clear the slate. This is a semaphore ping-pong orgy. :-)
1600 */
1601 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1602 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1603 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1604 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1605 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
1606 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
1607 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1608 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
1609 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
1610 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
1611 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
1612
1613 /*
1614 * Set the FF and poke the other EMTs.
1615 */
1616 VM_FF_SET(pVM, VM_FF_EMT_RENDEZVOUS);
1617 VMR3NotifyGlobalFFU(pVM->pUVM, VMNOTIFYFF_FLAGS_POKE);
1618
1619 /*
1620 * Do the same ourselves.
1621 */
1622 vmmR3EmtRendezvousCommon(pVM, pVCpu, true /* fIsCaller */, fFlags, pfnRendezvous, pvUser);
1623
1624 /*
1625 * The caller waits for the other EMTs to be done and return before doing
1626 * the cleanup. This makes away with wakeup / reset races we would otherwise
1627 * risk in the multiple release event semaphore code (hEvtRendezvousDoneCaller).
1628 */
1629 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
1630 AssertLogRelRC(rc);
1631
1632 /*
1633 * Get the return code and clean up a little bit.
1634 */
1635 rc = pVM->vmm.s.i32RendezvousStatus;
1636 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, NULL);
1637
1638 ASMAtomicWriteU32(&pVM->vmm.s.u32RendezvousLock, 0);
1639 }
1640
1641 return rc;
1642}
1643
1644
1645/**
1646 * Read from the ring 0 jump buffer stack
1647 *
1648 * @returns VBox status code.
1649 *
1650 * @param pVM Pointer to the shared VM structure.
1651 * @param idCpu The ID of the source CPU context (for the address).
1652 * @param pAddress Where to start reading.
1653 * @param pvBuf Where to store the data we've read.
1654 * @param cbRead The number of bytes to read.
1655 */
1656VMMR3DECL(int) VMMR3ReadR0Stack(PVM pVM, VMCPUID idCpu, RTHCUINTPTR pAddress, void *pvBuf, size_t cbRead)
1657{
1658 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1659 AssertReturn(pVCpu, VERR_INVALID_PARAMETER);
1660
1661 RTHCUINTPTR offset = pVCpu->vmm.s.CallRing3JmpBufR0.SpCheck - pAddress;
1662 if (offset >= pVCpu->vmm.s.CallRing3JmpBufR0.cbSavedStack)
1663 return VERR_INVALID_POINTER;
1664
1665 memcpy(pvBuf, pVCpu->vmm.s.pbEMTStackR3 + pVCpu->vmm.s.CallRing3JmpBufR0.cbSavedStack - offset, cbRead);
1666 return VINF_SUCCESS;
1667}
1668
1669
1670/**
1671 * Calls a RC function.
1672 *
1673 * @param pVM The VM handle.
1674 * @param RCPtrEntry The address of the RC function.
1675 * @param cArgs The number of arguments in the ....
1676 * @param ... Arguments to the function.
1677 */
1678VMMR3DECL(int) VMMR3CallRC(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, ...)
1679{
1680 va_list args;
1681 va_start(args, cArgs);
1682 int rc = VMMR3CallRCV(pVM, RCPtrEntry, cArgs, args);
1683 va_end(args);
1684 return rc;
1685}
1686
1687
1688/**
1689 * Calls a RC function.
1690 *
1691 * @param pVM The VM handle.
1692 * @param RCPtrEntry The address of the RC function.
1693 * @param cArgs The number of arguments in the ....
1694 * @param args Arguments to the function.
1695 */
1696VMMR3DECL(int) VMMR3CallRCV(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, va_list args)
1697{
1698 /* Raw mode implies 1 VCPU. */
1699 AssertReturn(pVM->cCPUs == 1, VERR_RAW_MODE_INVALID_SMP);
1700 PVMCPU pVCpu = &pVM->aCpus[0];
1701
1702 Log2(("VMMR3CallGCV: RCPtrEntry=%RRv cArgs=%d\n", RCPtrEntry, cArgs));
1703
1704 /*
1705 * Setup the call frame using the trampoline.
1706 */
1707 CPUMHyperSetCtxCore(pVCpu, NULL);
1708 memset(pVCpu->vmm.s.pbEMTStackR3, 0xaa, VMM_STACK_SIZE); /* Clear the stack. */
1709 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC - cArgs * sizeof(RTGCUINTPTR32));
1710 PRTGCUINTPTR32 pFrame = (PRTGCUINTPTR32)(pVCpu->vmm.s.pbEMTStackR3 + VMM_STACK_SIZE) - cArgs;
1711 int i = cArgs;
1712 while (i-- > 0)
1713 *pFrame++ = va_arg(args, RTGCUINTPTR32);
1714
1715 CPUMPushHyper(pVCpu, cArgs * sizeof(RTGCUINTPTR32)); /* stack frame size */
1716 CPUMPushHyper(pVCpu, RCPtrEntry); /* what to call */
1717 CPUMSetHyperEIP(pVCpu, pVM->vmm.s.pfnCallTrampolineRC);
1718
1719 /*
1720 * We hide log flushes (outer) and hypervisor interrupts (inner).
1721 */
1722 for (;;)
1723 {
1724 int rc;
1725 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
1726 do
1727 {
1728#ifdef NO_SUPCALLR0VMM
1729 rc = VERR_GENERAL_FAILURE;
1730#else
1731 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1732 if (RT_LIKELY(rc == VINF_SUCCESS))
1733 rc = pVCpu->vmm.s.iLastGZRc;
1734#endif
1735 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1736
1737 /*
1738 * Flush the logs.
1739 */
1740#ifdef LOG_ENABLED
1741 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1742 if ( pLogger
1743 && pLogger->offScratch > 0)
1744 RTLogFlushRC(NULL, pLogger);
1745#endif
1746#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1747 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1748 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1749 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
1750#endif
1751 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
1752 VMMR3FatalDump(pVM, pVCpu, rc);
1753 if (rc != VINF_VMM_CALL_HOST)
1754 {
1755 Log2(("VMMR3CallGCV: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1756 return rc;
1757 }
1758 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1759 if (RT_FAILURE(rc))
1760 return rc;
1761 }
1762}
1763
1764
1765/**
1766 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
1767 *
1768 * @returns VBox status code.
1769 * @param pVM The VM to operate on.
1770 * @param uOperation Operation to execute.
1771 * @param u64Arg Constant argument.
1772 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
1773 * details.
1774 */
1775VMMR3DECL(int) VMMR3CallR0(PVM pVM, uint32_t uOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
1776{
1777 PVMCPU pVCpu = VMMGetCpu(pVM);
1778 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
1779
1780 /*
1781 * Call Ring-0 entry with init code.
1782 */
1783 int rc;
1784 for (;;)
1785 {
1786#ifdef NO_SUPCALLR0VMM
1787 rc = VERR_GENERAL_FAILURE;
1788#else
1789 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, pVCpu->idCpu, uOperation, u64Arg, pReqHdr);
1790#endif
1791 /*
1792 * Flush the logs.
1793 */
1794#ifdef LOG_ENABLED
1795 if ( pVCpu->vmm.s.pR0LoggerR3
1796 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
1797 RTLogFlushToLogger(&pVCpu->vmm.s.pR0LoggerR3->Logger, NULL);
1798#endif
1799 if (rc != VINF_VMM_CALL_HOST)
1800 break;
1801 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1802 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
1803 break;
1804 /* Resume R0 */
1805 }
1806
1807 AssertLogRelMsgReturn(rc == VINF_SUCCESS || VBOX_FAILURE(rc),
1808 ("uOperation=%u rc=%Rrc\n", uOperation, rc),
1809 VERR_INTERNAL_ERROR);
1810 return rc;
1811}
1812
1813
1814/**
1815 * Resumes executing hypervisor code when interrupted by a queue flush or a
1816 * debug event.
1817 *
1818 * @returns VBox status code.
1819 * @param pVM VM handle.
1820 * @param pVCpu VMCPU handle.
1821 */
1822VMMR3DECL(int) VMMR3ResumeHyper(PVM pVM, PVMCPU pVCpu)
1823{
1824 Log(("VMMR3ResumeHyper: eip=%RRv esp=%RRv\n", CPUMGetHyperEIP(pVCpu), CPUMGetHyperESP(pVCpu)));
1825 AssertReturn(pVM->cCPUs == 1, VERR_RAW_MODE_INVALID_SMP);
1826
1827 /*
1828 * We hide log flushes (outer) and hypervisor interrupts (inner).
1829 */
1830 for (;;)
1831 {
1832 int rc;
1833 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
1834 do
1835 {
1836#ifdef NO_SUPCALLR0VMM
1837 rc = VERR_GENERAL_FAILURE;
1838#else
1839 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1840 if (RT_LIKELY(rc == VINF_SUCCESS))
1841 rc = pVCpu->vmm.s.iLastGZRc;
1842#endif
1843 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1844
1845 /*
1846 * Flush the loggers,
1847 */
1848#ifdef LOG_ENABLED
1849 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1850 if ( pLogger
1851 && pLogger->offScratch > 0)
1852 RTLogFlushRC(NULL, pLogger);
1853#endif
1854#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1855 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1856 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1857 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
1858#endif
1859 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
1860 VMMR3FatalDump(pVM, pVCpu, rc);
1861 if (rc != VINF_VMM_CALL_HOST)
1862 {
1863 Log(("VMMR3ResumeHyper: returns %Rrc\n", rc));
1864 return rc;
1865 }
1866 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1867 if (RT_FAILURE(rc))
1868 return rc;
1869 }
1870}
1871
1872
1873/**
1874 * Service a call to the ring-3 host code.
1875 *
1876 * @returns VBox status code.
1877 * @param pVM VM handle.
1878 * @param pVCpu VMCPU handle
1879 * @remark Careful with critsects.
1880 */
1881static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu)
1882{
1883 /*
1884 * We must also check for pending critsect exits or else we can deadlock
1885 * when entering other critsects here.
1886 */
1887 if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PDM_CRITSECT))
1888 PDMCritSectFF(pVCpu);
1889
1890 switch (pVCpu->vmm.s.enmCallRing3Operation)
1891 {
1892 /*
1893 * Acquire the PDM lock.
1894 */
1895 case VMMCALLRING3_PDM_LOCK:
1896 {
1897 pVCpu->vmm.s.rcCallRing3 = PDMR3LockCall(pVM);
1898 break;
1899 }
1900
1901 /*
1902 * Flush a PDM queue.
1903 */
1904 case VMMCALLRING3_PDM_QUEUE_FLUSH:
1905 {
1906 PDMR3QueueFlushWorker(pVM, NULL);
1907 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
1908 break;
1909 }
1910
1911 /*
1912 * Grow the PGM pool.
1913 */
1914 case VMMCALLRING3_PGM_POOL_GROW:
1915 {
1916 pVCpu->vmm.s.rcCallRing3 = PGMR3PoolGrow(pVM);
1917 break;
1918 }
1919
1920 /*
1921 * Maps an page allocation chunk into ring-3 so ring-0 can use it.
1922 */
1923 case VMMCALLRING3_PGM_MAP_CHUNK:
1924 {
1925 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysChunkMap(pVM, pVCpu->vmm.s.u64CallRing3Arg);
1926 break;
1927 }
1928
1929 /*
1930 * Allocates more handy pages.
1931 */
1932 case VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES:
1933 {
1934 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateHandyPages(pVM);
1935 break;
1936 }
1937
1938 /*
1939 * Acquire the PGM lock.
1940 */
1941 case VMMCALLRING3_PGM_LOCK:
1942 {
1943 pVCpu->vmm.s.rcCallRing3 = PGMR3LockCall(pVM);
1944 break;
1945 }
1946
1947 /*
1948 * Acquire the MM hypervisor heap lock.
1949 */
1950 case VMMCALLRING3_MMHYPER_LOCK:
1951 {
1952 pVCpu->vmm.s.rcCallRing3 = MMR3LockCall(pVM);
1953 break;
1954 }
1955
1956 /*
1957 * Flush REM handler notifications.
1958 */
1959 case VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS:
1960 {
1961 REMR3ReplayHandlerNotifications(pVM);
1962 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
1963 break;
1964 }
1965
1966 /*
1967 * This is a noop. We just take this route to avoid unnecessary
1968 * tests in the loops.
1969 */
1970 case VMMCALLRING3_VMM_LOGGER_FLUSH:
1971 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
1972 LogAlways(("*FLUSH*\n"));
1973 break;
1974
1975 /*
1976 * Set the VM error message.
1977 */
1978 case VMMCALLRING3_VM_SET_ERROR:
1979 VMR3SetErrorWorker(pVM);
1980 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
1981 break;
1982
1983 /*
1984 * Set the VM runtime error message.
1985 */
1986 case VMMCALLRING3_VM_SET_RUNTIME_ERROR:
1987 pVCpu->vmm.s.rcCallRing3 = VMR3SetRuntimeErrorWorker(pVM);
1988 break;
1989
1990 /*
1991 * Signal a ring 0 hypervisor assertion.
1992 * Cancel the longjmp operation that's in progress.
1993 */
1994 case VMMCALLRING3_VM_R0_ASSERTION:
1995 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
1996 pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call = false;
1997#ifdef RT_ARCH_X86
1998 pVCpu->vmm.s.CallRing3JmpBufR0.eip = 0;
1999#else
2000 pVCpu->vmm.s.CallRing3JmpBufR0.rip = 0;
2001#endif
2002 LogRel((pVM->vmm.s.szRing0AssertMsg1));
2003 LogRel((pVM->vmm.s.szRing0AssertMsg2));
2004 return VERR_VMM_RING0_ASSERTION;
2005
2006 /*
2007 * A forced switch to ring 0 for preemption purposes.
2008 */
2009 case VMMCALLRING3_VM_R0_PREEMPT:
2010 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2011 break;
2012
2013 default:
2014 AssertMsgFailed(("enmCallRing3Operation=%d\n", pVCpu->vmm.s.enmCallRing3Operation));
2015 return VERR_INTERNAL_ERROR;
2016 }
2017
2018 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2019 return VINF_SUCCESS;
2020}
2021
2022
2023/**
2024 * Displays the Force action Flags.
2025 *
2026 * @param pVM The VM handle.
2027 * @param pHlp The output helpers.
2028 * @param pszArgs The additional arguments (ignored).
2029 */
2030static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2031{
2032 int c;
2033 uint32_t f;
2034#define PRINT_FLAG(prf,flag) do { \
2035 if (f & (prf##flag)) \
2036 { \
2037 static const char *s_psz = #flag; \
2038 if (!(c % 6)) \
2039 pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz); \
2040 else \
2041 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2042 c++; \
2043 f &= ~(prf##flag); \
2044 } \
2045 } while (0)
2046
2047#define PRINT_GROUP(prf,grp,sfx) do { \
2048 if (f & (prf##grp##sfx)) \
2049 { \
2050 static const char *s_psz = #grp; \
2051 if (!(c % 5)) \
2052 pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : " Groups:\n", s_psz); \
2053 else \
2054 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2055 c++; \
2056 } \
2057 } while (0)
2058
2059 /*
2060 * The global flags.
2061 */
2062 const uint32_t fGlobalForcedActions = pVM->fGlobalForcedActions;
2063 pHlp->pfnPrintf(pHlp, "Global FFs: %#RX32", fGlobalForcedActions);
2064
2065 /* show the flag mnemonics */
2066 c = 0;
2067 f = fGlobalForcedActions;
2068 PRINT_FLAG(VM_FF_,TM_VIRTUAL_SYNC);
2069 PRINT_FLAG(VM_FF_,PDM_QUEUES);
2070 PRINT_FLAG(VM_FF_,PDM_DMA);
2071 PRINT_FLAG(VM_FF_,DBGF);
2072 PRINT_FLAG(VM_FF_,REQUEST);
2073 PRINT_FLAG(VM_FF_,TERMINATE);
2074 PRINT_FLAG(VM_FF_,RESET);
2075 PRINT_FLAG(VM_FF_,EMT_RENDEZVOUS);
2076 PRINT_FLAG(VM_FF_,PGM_NEED_HANDY_PAGES);
2077 PRINT_FLAG(VM_FF_,PGM_NO_MEMORY);
2078 PRINT_FLAG(VM_FF_,REM_HANDLER_NOTIFY);
2079 PRINT_FLAG(VM_FF_,DEBUG_SUSPEND);
2080 if (f)
2081 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2082 else
2083 pHlp->pfnPrintf(pHlp, "\n");
2084
2085 /* the groups */
2086 c = 0;
2087 f = fGlobalForcedActions;
2088 PRINT_GROUP(VM_FF_,EXTERNAL_SUSPENDED,_MASK);
2089 PRINT_GROUP(VM_FF_,EXTERNAL_HALTED,_MASK);
2090 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE,_MASK);
2091 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2092 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_POST,_MASK);
2093 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY_POST,_MASK);
2094 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY,_MASK);
2095 PRINT_GROUP(VM_FF_,ALL_BUT_RAW,_MASK);
2096 if (c)
2097 pHlp->pfnPrintf(pHlp, "\n");
2098
2099 /*
2100 * Per CPU flags.
2101 */
2102 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
2103 {
2104 const uint32_t fLocalForcedActions = pVM->aCpus[i].fLocalForcedActions;
2105 pHlp->pfnPrintf(pHlp, "CPU %u FFs: %#RX32", i, fLocalForcedActions);
2106
2107 /* show the flag mnemonics */
2108 c = 0;
2109 f = fLocalForcedActions;
2110 PRINT_FLAG(VMCPU_FF_,INTERRUPT_APIC);
2111 PRINT_FLAG(VMCPU_FF_,INTERRUPT_PIC);
2112 PRINT_FLAG(VMCPU_FF_,TIMER);
2113 PRINT_FLAG(VMCPU_FF_,PDM_CRITSECT);
2114 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3);
2115 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3_NON_GLOBAL);
2116 PRINT_FLAG(VMCPU_FF_,TRPM_SYNC_IDT);
2117 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_TSS);
2118 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_GDT);
2119 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_LDT);
2120 PRINT_FLAG(VMCPU_FF_,INHIBIT_INTERRUPTS);
2121 PRINT_FLAG(VMCPU_FF_,CSAM_SCAN_PAGE);
2122 PRINT_FLAG(VMCPU_FF_,CSAM_PENDING_ACTION);
2123 PRINT_FLAG(VMCPU_FF_,TO_R3);
2124 if (f)
2125 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2126 else
2127 pHlp->pfnPrintf(pHlp, "\n");
2128
2129 /* the groups */
2130 c = 0;
2131 f = fLocalForcedActions;
2132 PRINT_GROUP(VMCPU_FF_,EXTERNAL_SUSPENDED,_MASK);
2133 PRINT_GROUP(VMCPU_FF_,EXTERNAL_HALTED,_MASK);
2134 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE,_MASK);
2135 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2136 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_POST,_MASK);
2137 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY_POST,_MASK);
2138 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY,_MASK);
2139 PRINT_GROUP(VMCPU_FF_,RESUME_GUEST,_MASK);
2140 PRINT_GROUP(VMCPU_FF_,HWACCM_TO_R3,_MASK);
2141 PRINT_GROUP(VMCPU_FF_,ALL_BUT_RAW,_MASK);
2142 if (c)
2143 pHlp->pfnPrintf(pHlp, "\n");
2144 }
2145
2146#undef PRINT_FLAG
2147#undef PRINT_GROUP
2148}
2149
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette