VirtualBox

source: vbox/trunk/src/VBox/VMM/VMM.cpp@ 2174

Last change on this file since 2174 was 2124, checked in by vboxsync, 18 years ago

TRPM changes to assert and report trap/interrupt types accurately.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 92.3 KB
Line 
1/* $Id: VMM.cpp 2124 2007-04-17 12:25:17Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006 InnoTek Systemberatung GmbH
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License as published by the Free Software Foundation,
13 * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
14 * distribution. VirtualBox OSE is distributed in the hope that it will
15 * be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * If you received this file as part of a commercial VirtualBox
18 * distribution, then only the terms of your commercial VirtualBox
19 * license agreement apply instead of the previous paragraph.
20 */
21
22//#define NO_SUPCALLR0VMM
23
24/** @page pg_vmm VMM - The Virtual Machine Monitor
25 *
26 * !Revise this! It's already incorrect!
27 *
28 * The Virtual Machine Monitor (VMM) is the core of the virtual machine. It
29 * manages the alternate reality; controlling the virtualization, managing
30 * resources, tracking CPU state, it's resources and so on...
31 *
32 * We will split the VMM into smaller entities:
33 *
34 * - Virtual Machine Core Monitor (VMCM), which purpose it is to
35 * provide ring and world switching, that including routing
36 * interrupts to the host OS and traps to the appropriate trap
37 * handlers. It will implement an external interface for
38 * managing trap handlers.
39 *
40 * - CPU Monitor (CM), tracking the state of the CPU (in the alternate
41 * reality) and implementing external interfaces to read and change
42 * the state.
43 *
44 * - Memory Monitor (MM), which purpose it is to virtualize physical
45 * pages, segment descriptor tables, interrupt descriptor tables, task
46 * segments, and keep track of all memory providing external interfaces
47 * to access content and map pages. (Internally splitt into smaller entities!)
48 *
49 * - IO Monitor (IOM), which virtualizes in and out I/O operations. It
50 * interacts with the MM to implement memory mapped I/O. External
51 * interfaces for adding and removing I/O ranges are implemented.
52 *
53 * - External Interrupt Monitor (EIM), which purpose it is to manage
54 * interrupts generated by virtual devices. This monitor provides
55 * an interfaces for raising interrupts which is accessible at any
56 * time and from all thread.
57 * <p>
58 * A subentity of the EIM is the vitual Programmable Interrupt
59 * Controller Device (VPICD), and perhaps a virtual I/O Advanced
60 * Programmable Interrupt Controller Device (VAPICD).
61 *
62 * - Direct Memory Access Monitor (DMAM), which purpose it is to support
63 * virtual device using the DMA controller. Interfaces must be as the
64 * EIM interfaces independent and threadable.
65 * <p>
66 * A subentity of the DMAM is a virtual DMA Controller Device (VDMACD).
67 *
68 *
69 * Entities working on a higher level:
70 *
71 * - Device Manager (DM), which is a support facility for virtualized
72 * hardware. This provides generic facilities for efficient device
73 * virtualization. It will manage device attaching and detaching
74 * conversing with EIM and IOM.
75 *
76 * - Debugger Facility (DBGF) provides the basic features for
77 * debugging the alternate reality execution.
78 *
79 *
80 *
81 * @section pg_vmm_s_use_cases Use Cases
82 *
83 * @subsection pg_vmm_s_use_case_boot Bootstrap
84 *
85 * - Basic Init:
86 * - Init SUPDRV.
87 *
88 * - Init Virtual Machine Instance:
89 * - Load settings.
90 * - Check resource requirements (memory, com, stuff).
91 *
92 * - Init Host Ring 3 part:
93 * - Init Core code.
94 * - Load Pluggable Components.
95 * - Init Pluggable Components.
96 *
97 * - Init Host Ring 0 part:
98 * - Load Core (core = core components like VMM, RMI, CA, and so on) code.
99 * - Init Core code.
100 * - Load Pluggable Component code.
101 * - Init Pluggable Component code.
102 *
103 * - Allocate first chunk of memory and pin it down. This block of memory
104 * will fit the following pieces:
105 * - Virtual Machine Instance data. (Config, CPU state, VMM state, ++)
106 * (This is available from everywhere (at different addresses though)).
107 * - VMM Guest Context code.
108 * - Pluggable devices Guest Context code.
109 * - Page tables (directory and everything) for the VMM Guest
110 *
111 * - Setup Guest (Ring 0) part:
112 * - Setup initial page tables (i.e. directory all the stuff).
113 * - Load Core Guest Context code.
114 * - Load Pluggable Devices Guest Context code.
115 *
116 *
117 */
118
119
120/*******************************************************************************
121* Header Files *
122*******************************************************************************/
123#define LOG_GROUP LOG_GROUP_VMM
124#include <VBox/vmm.h>
125#include <VBox/vmapi.h>
126#include <VBox/pgm.h>
127#include <VBox/cfgm.h>
128#include <VBox/pdm.h>
129#include <VBox/cpum.h>
130#include <VBox/mm.h>
131#include <VBox/iom.h>
132#include <VBox/trpm.h>
133#include <VBox/selm.h>
134#include <VBox/em.h>
135#include <VBox/sup.h>
136#include <VBox/dbgf.h>
137#include <VBox/csam.h>
138#include <VBox/patm.h>
139#include <VBox/rem.h>
140#include <VBox/ssm.h>
141#include <VBox/tm.h>
142#include "VMMInternal.h"
143#include "VMMSwitcher/VMMSwitcher.h"
144#include <VBox/vm.h>
145#include <VBox/err.h>
146#include <VBox/param.h>
147#include <VBox/version.h>
148#include <VBox/x86.h>
149#include <VBox/hwaccm.h>
150#include <iprt/assert.h>
151#include <iprt/alloc.h>
152#include <iprt/asm.h>
153#include <iprt/time.h>
154#include <iprt/stream.h>
155#include <iprt/string.h>
156#include <iprt/stdarg.h>
157#include <iprt/ctype.h>
158
159
160
161/** The saved state version. */
162#define VMM_SAVED_STATE_VERSION 3
163
164
165/*******************************************************************************
166* Internal Functions *
167*******************************************************************************/
168static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
169static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
170static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser);
171static int vmmR3ServiceCallHostRequest(PVM pVM);
172
173
174/*******************************************************************************
175* Global Variables *
176*******************************************************************************/
177/** Array of switcher defininitions.
178 * The type and index shall match!
179 */
180static PVMMSWITCHERDEF s_apSwitchers[VMMSWITCHER_MAX] =
181{
182 NULL, /* invalid entry */
183#ifndef __AMD64__
184 &vmmR3Switcher32BitTo32Bit_Def,
185 &vmmR3Switcher32BitToPAE_Def,
186 NULL, //&vmmR3Switcher32BitToAMD64_Def,
187 &vmmR3SwitcherPAETo32Bit_Def,
188 &vmmR3SwitcherPAEToPAE_Def,
189 NULL, //&vmmR3SwitcherPAEToAMD64_Def,
190# ifdef VBOX_WITH_HYBIRD_32BIT_KERNEL
191 &vmmR3SwitcherAMD64ToPAE_Def,
192# else
193 NULL, //&vmmR3SwitcherAMD64ToPAE_Def,
194# endif
195 NULL //&vmmR3SwitcherAMD64ToAMD64_Def,
196#else
197 NULL, //&vmmR3Switcher32BitTo32Bit_Def,
198 NULL, //&vmmR3Switcher32BitToPAE_Def,
199 NULL, //&vmmR3Switcher32BitToAMD64_Def,
200 NULL, //&vmmR3SwitcherPAETo32Bit_Def,
201 NULL, //&vmmR3SwitcherPAEToPAE_Def,
202 NULL, //&vmmR3SwitcherPAEToAMD64_Def,
203 &vmmR3SwitcherAMD64ToPAE_Def,
204 NULL //&vmmR3SwitcherAMD64ToAMD64_Def,
205#endif
206};
207
208
209
210/**
211 * Initiates the core code.
212 *
213 * This is core per VM code which might need fixups and/or for ease of use
214 * are put on linear contiguous backing.
215 *
216 * @returns VBox status code.
217 * @param pVM Pointer to VM structure.
218 */
219static int vmmR3InitCoreCode(PVM pVM)
220{
221 /*
222 * Calc the size.
223 */
224 unsigned cbCoreCode = 0;
225 for (unsigned iSwitcher = 0; iSwitcher < ELEMENTS(s_apSwitchers); iSwitcher++)
226 {
227 pVM->vmm.s.aoffSwitchers[iSwitcher] = cbCoreCode;
228 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[iSwitcher];
229 if (pSwitcher)
230 {
231 AssertRelease((unsigned)pSwitcher->enmType == iSwitcher);
232 cbCoreCode += RT_ALIGN_32(pSwitcher->cbCode + 1, 32);
233 }
234 }
235
236 /*
237 * Allocate continguous pages for switchers and deal with
238 * conflicts in the intermediate mapping of the code.
239 */
240 pVM->vmm.s.cbCoreCode = RT_ALIGN_32(cbCoreCode, PAGE_SIZE);
241 pVM->vmm.s.pvHCCoreCodeR3 = SUPContAlloc2(pVM->vmm.s.cbCoreCode >> PAGE_SHIFT, &pVM->vmm.s.pvHCCoreCodeR0, &pVM->vmm.s.HCPhysCoreCode);
242 int rc = VERR_NO_MEMORY;
243 if (pVM->vmm.s.pvHCCoreCodeR3)
244 {
245 rc = PGMR3MapIntermediate(pVM, pVM->vmm.s.pvHCCoreCodeR0, pVM->vmm.s.HCPhysCoreCode, cbCoreCode);
246 if (rc == VERR_PGM_MAPPINGS_FIX_CONFLICT)
247 {
248 /* try more allocations. */
249 struct
250 {
251 RTR0PTR pvR0;
252 void *pvR3;
253 RTHCPHYS HCPhys;
254 RTUINT cb;
255 } aBadTries[16];
256 unsigned i = 0;
257 do
258 {
259 aBadTries[i].pvR3 = pVM->vmm.s.pvHCCoreCodeR3;
260 aBadTries[i].pvR0 = pVM->vmm.s.pvHCCoreCodeR0;
261 aBadTries[i].HCPhys = pVM->vmm.s.HCPhysCoreCode;
262 i++;
263 pVM->vmm.s.pvHCCoreCodeR0 = NIL_RTR0PTR;
264 pVM->vmm.s.HCPhysCoreCode = NIL_RTHCPHYS;
265 pVM->vmm.s.pvHCCoreCodeR3 = SUPContAlloc2(pVM->vmm.s.cbCoreCode >> PAGE_SHIFT, &pVM->vmm.s.pvHCCoreCodeR0, &pVM->vmm.s.HCPhysCoreCode);
266 if (!pVM->vmm.s.pvHCCoreCodeR3)
267 break;
268 rc = PGMR3MapIntermediate(pVM, pVM->vmm.s.pvHCCoreCodeR0, pVM->vmm.s.HCPhysCoreCode, cbCoreCode);
269 } while ( rc == VERR_PGM_MAPPINGS_FIX_CONFLICT
270 && i < ELEMENTS(aBadTries) - 1);
271
272 /* cleanup */
273 if (VBOX_FAILURE(rc))
274 {
275 aBadTries[i].pvR3 = pVM->vmm.s.pvHCCoreCodeR3;
276 aBadTries[i].pvR0 = pVM->vmm.s.pvHCCoreCodeR0;
277 aBadTries[i].HCPhys = pVM->vmm.s.HCPhysCoreCode;
278 aBadTries[i].cb = pVM->vmm.s.cbCoreCode;
279 i++;
280 LogRel(("Failed to allocated and map core code: rc=%Vrc\n", rc));
281 }
282 while (i-- > 0)
283 {
284 LogRel(("Core code alloc attempt #%d: pvR3=%p pvR0=%p HCPhys=%VHp\n",
285 i, aBadTries[i].pvR3, aBadTries[i].pvR0, aBadTries[i].HCPhys));
286 SUPContFree(aBadTries[i].pvR3, aBadTries[i].cb >> PAGE_SHIFT);
287 }
288 }
289 }
290 if (VBOX_SUCCESS(rc))
291 {
292 /*
293 * copy the code.
294 */
295 for (unsigned iSwitcher = 0; iSwitcher < ELEMENTS(s_apSwitchers); iSwitcher++)
296 {
297 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[iSwitcher];
298 if (pSwitcher)
299 memcpy((uint8_t *)pVM->vmm.s.pvHCCoreCodeR3 + pVM->vmm.s.aoffSwitchers[iSwitcher],
300 pSwitcher->pvCode, pSwitcher->cbCode);
301 }
302
303 /*
304 * Map the code into the GC address space.
305 */
306 rc = MMR3HyperMapHCPhys(pVM, pVM->vmm.s.pvHCCoreCodeR3, pVM->vmm.s.HCPhysCoreCode, cbCoreCode, "Core Code", &pVM->vmm.s.pvGCCoreCode);
307 if (VBOX_SUCCESS(rc))
308 {
309 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
310 LogRel(("CoreCode: R3=%VHv R0=%VHv GC=%VGv Phys=%VHp cb=%#x\n",
311 pVM->vmm.s.pvHCCoreCodeR3, pVM->vmm.s.pvHCCoreCodeR0, pVM->vmm.s.pvGCCoreCode, pVM->vmm.s.HCPhysCoreCode, pVM->vmm.s.cbCoreCode));
312
313 /*
314 * Finally, PGM probably have selected a switcher already but we need
315 * to do get the addresses so we'll reselect it.
316 * This may legally fail so, we're ignoring the rc.
317 */
318 VMMR3SelectSwitcher(pVM, pVM->vmm.s.enmSwitcher);
319 return rc;
320 }
321
322 /* shit */
323 AssertMsgFailed(("PGMR3Map(,%VGv, %VGp, %#x, 0) failed with rc=%Vrc\n", pVM->vmm.s.pvGCCoreCode, pVM->vmm.s.HCPhysCoreCode, cbCoreCode, rc));
324 SUPContFree(pVM->vmm.s.pvHCCoreCodeR3, pVM->vmm.s.cbCoreCode >> PAGE_SHIFT);
325 }
326 else
327 VMSetError(pVM, rc, RT_SRC_POS,
328 N_("Failed to allocate %d bytes of contiguous memory for the world switcher code."),
329 cbCoreCode);
330
331 pVM->vmm.s.pvHCCoreCodeR3 = NULL;
332 pVM->vmm.s.pvHCCoreCodeR0 = NIL_RTR0PTR;
333 pVM->vmm.s.pvGCCoreCode = 0;
334 return rc;
335}
336
337
338/**
339 * Initializes the VMM.
340 *
341 * @returns VBox status code.
342 * @param pVM The VM to operate on.
343 */
344VMMR3DECL(int) VMMR3Init(PVM pVM)
345{
346 LogFlow(("VMMR3Init\n"));
347
348 /*
349 * Assert alignment, sizes and order.
350 */
351 AssertMsg(pVM->vmm.s.offVM == 0, ("Already initialized!\n"));
352 AssertMsg(sizeof(pVM->vmm.padding) >= sizeof(pVM->vmm.s),
353 ("pVM->vmm.padding is too small! vmm.padding %d while vmm.s is %d\n",
354 sizeof(pVM->vmm.padding), sizeof(pVM->vmm.s)));
355
356 /*
357 * Init basic VM VMM members.
358 */
359 pVM->vmm.s.offVM = RT_OFFSETOF(VM, vmm);
360 int rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies);
361 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
362 pVM->vmm.s.cYieldEveryMillies = 23; /* Value arrived at after experimenting with the grub boot prompt. */
363 //pVM->vmm.s.cYieldEveryMillies = 8; //debugging
364 else
365 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Vrc\n", rc), rc);
366
367 /* GC switchers are enabled by default. Turned off by HWACCM. */
368 pVM->vmm.s.fSwitcherDisabled = false;
369
370 /*
371 * Register the saved state data unit.
372 */
373 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
374 NULL, vmmR3Save, NULL,
375 NULL, vmmR3Load, NULL);
376 if (VBOX_FAILURE(rc))
377 return rc;
378
379#ifdef VBOX_WITHOUT_IDT_PATCHING
380 /*
381 * Register the Ring-0 VM handle with the session for fast ioctl calls.
382 */
383 rc = SUPSetVMForFastIOCtl(pVM->pVMR0);
384 if (VBOX_FAILURE(rc))
385 return rc;
386#endif
387
388 /*
389 * Init core code.
390 */
391 rc = vmmR3InitCoreCode(pVM);
392 if (VBOX_SUCCESS(rc))
393 {
394 /*
395 * Allocate & init VMM GC stack.
396 * The stack pages are also used by the VMM R0 when VMMR0CallHost is invoked.
397 * (The page protection is modifed during R3 init completion.)
398 */
399#ifdef VBOX_STRICT_VMM_STACK
400 rc = MMHyperAlloc(pVM, VMM_STACK_SIZE + PAGE_SIZE + PAGE_SIZE, PAGE_SIZE, MM_TAG_VMM, (void **)&pVM->vmm.s.pbHCStack);
401#else
402 rc = MMHyperAlloc(pVM, VMM_STACK_SIZE, PAGE_SIZE, MM_TAG_VMM, (void **)&pVM->vmm.s.pbHCStack);
403#endif
404 if (VBOX_SUCCESS(rc))
405 {
406 /* Set HC and GC stack pointers to top of stack. */
407 pVM->vmm.s.CallHostR0JmpBuf.pvSavedStack = (RTR0PTR)pVM->vmm.s.pbHCStack;
408 pVM->vmm.s.pbGCStack = MMHyperHC2GC(pVM, pVM->vmm.s.pbHCStack);
409 pVM->vmm.s.pbGCStackBottom = pVM->vmm.s.pbGCStack + VMM_STACK_SIZE;
410 AssertRelease(pVM->vmm.s.pbGCStack);
411
412 /* Set hypervisor eip. */
413 CPUMSetHyperESP(pVM, pVM->vmm.s.pbGCStack);
414
415 /*
416 * Allocate GC & R0 Logger instances (they are finalized in the relocator).
417 */
418#ifdef LOG_ENABLED
419 PRTLOGGER pLogger = RTLogDefaultInstance();
420 if (pLogger)
421 {
422 pVM->vmm.s.cbLoggerGC = RT_OFFSETOF(RTLOGGERGC, afGroups[pLogger->cGroups]);
423 rc = MMHyperAlloc(pVM, pVM->vmm.s.cbLoggerGC, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pLoggerHC);
424 if (VBOX_SUCCESS(rc))
425 {
426 pVM->vmm.s.pLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pLoggerHC);
427
428/*
429 * Ring-0 logging isn't 100% safe yet (thread id reuse / process exit cleanup), so
430 * you have to sign up here by adding your defined(DEBUG_<userid>) to the #if.
431 *
432 * If you want to log in non-debug modes, you'll have to remember to change SUPDRvShared.c
433 * to not stub all the log functions.
434 */
435# ifdef DEBUG_sandervl
436 rc = MMHyperAlloc(pVM, RT_OFFSETOF(VMMR0LOGGER, Logger.afGroups[pLogger->cGroups]),
437 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pR0Logger);
438 if (VBOX_SUCCESS(rc))
439 {
440 pVM->vmm.s.pR0Logger->pVM = pVM;
441 //pVM->vmm.s.pR0Logger->fCreated = false;
442 pVM->vmm.s.pR0Logger->cbLogger = RT_OFFSETOF(RTLOGGER, afGroups[pLogger->cGroups]);
443 }
444# endif
445 }
446 }
447#endif /* LOG_ENABLED */
448
449#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
450 /*
451 * Allocate GC Release Logger instances (finalized in the relocator).
452 */
453 if (VBOX_SUCCESS(rc))
454 {
455 PRTLOGGER pRelLogger = RTLogRelDefaultInstance();
456 if (pRelLogger)
457 {
458 pVM->vmm.s.cbRelLoggerGC = RT_OFFSETOF(RTLOGGERGC, afGroups[pRelLogger->cGroups]);
459 rc = MMHyperAlloc(pVM, pVM->vmm.s.cbRelLoggerGC, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRelLoggerHC);
460 if (VBOX_SUCCESS(rc))
461 pVM->vmm.s.pRelLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pRelLoggerHC);
462 }
463 }
464#endif /* VBOX_WITH_GC_AND_R0_RELEASE_LOG */
465
466#ifdef VBOX_WITH_NMI
467 /*
468 * Allocate mapping for the host APIC.
469 */
470 if (VBOX_SUCCESS(rc))
471 {
472 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
473 AssertRC(rc);
474 }
475#endif
476 if (VBOX_SUCCESS(rc))
477 {
478 rc = RTCritSectInit(&pVM->vmm.s.CritSectVMLock);
479 if (VBOX_SUCCESS(rc))
480 {
481 /*
482 * Statistics.
483 */
484 STAM_REG(pVM, &pVM->vmm.s.StatRunGC, STAMTYPE_COUNTER, "/VMM/RunGC", STAMUNIT_OCCURENCES, "Number of context switches.");
485 STAM_REG(pVM, &pVM->vmm.s.StatGCRetNormal, STAMTYPE_COUNTER, "/VMM/GCRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
486 STAM_REG(pVM, &pVM->vmm.s.StatGCRetInterrupt, STAMTYPE_COUNTER, "/VMM/GCRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
487 STAM_REG(pVM, &pVM->vmm.s.StatGCRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/GCRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
488 STAM_REG(pVM, &pVM->vmm.s.StatGCRetGuestTrap, STAMTYPE_COUNTER, "/VMM/GCRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
489 STAM_REG(pVM, &pVM->vmm.s.StatGCRetRingSwitch, STAMTYPE_COUNTER, "/VMM/GCRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
490 STAM_REG(pVM, &pVM->vmm.s.StatGCRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/GCRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
491 STAM_REG(pVM, &pVM->vmm.s.StatGCRetExceptionPrivilege, STAMTYPE_COUNTER, "/VMM/GCRet/ExceptionPrivilege", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_EXCEPTION_PRIVILEGED returns.");
492 STAM_REG(pVM, &pVM->vmm.s.StatGCRetStaleSelector, STAMTYPE_COUNTER, "/VMM/GCRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
493 STAM_REG(pVM, &pVM->vmm.s.StatGCRetIRETTrap, STAMTYPE_COUNTER, "/VMM/GCRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
494 STAM_REG(pVM, &pVM->vmm.s.StatGCRetEmulate, STAMTYPE_COUNTER, "/VMM/GCRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
495 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/GCRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
496 STAM_REG(pVM, &pVM->vmm.s.StatGCRetIORead, STAMTYPE_COUNTER, "/VMM/GCRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_READ returns.");
497 STAM_REG(pVM, &pVM->vmm.s.StatGCRetIOWrite, STAMTYPE_COUNTER, "/VMM/GCRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_WRITE returns.");
498 STAM_REG(pVM, &pVM->vmm.s.StatGCRetIOReadWrite, STAMTYPE_COUNTER, "/VMM/GCRet/IOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_READWRITE returns.");
499 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMMIORead, STAMTYPE_COUNTER, "/VMM/GCRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_READ returns.");
500 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/GCRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_WRITE returns.");
501 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/GCRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_READ_WRITE returns.");
502 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/GCRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
503 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/GCRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
504 STAM_REG(pVM, &pVM->vmm.s.StatGCRetLDTFault, STAMTYPE_COUNTER, "/VMM/GCRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
505 STAM_REG(pVM, &pVM->vmm.s.StatGCRetGDTFault, STAMTYPE_COUNTER, "/VMM/GCRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
506 STAM_REG(pVM, &pVM->vmm.s.StatGCRetIDTFault, STAMTYPE_COUNTER, "/VMM/GCRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
507 STAM_REG(pVM, &pVM->vmm.s.StatGCRetTSSFault, STAMTYPE_COUNTER, "/VMM/GCRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
508 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPDFault, STAMTYPE_COUNTER, "/VMM/GCRet/PDFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_PD_FAULT returns.");
509 STAM_REG(pVM, &pVM->vmm.s.StatGCRetCSAMTask, STAMTYPE_COUNTER, "/VMM/GCRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
510 STAM_REG(pVM, &pVM->vmm.s.StatGCRetSyncCR3, STAMTYPE_COUNTER, "/VMM/GCRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
511 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMisc, STAMTYPE_COUNTER, "/VMM/GCRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
512 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPatchInt3, STAMTYPE_COUNTER, "/VMM/GCRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
513 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPatchPF, STAMTYPE_COUNTER, "/VMM/GCRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
514 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPatchGP, STAMTYPE_COUNTER, "/VMM/GCRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
515 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/GCRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
516 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPageOverflow, STAMTYPE_COUNTER, "/VMM/GCRet/InvlpgOverflow", STAMUNIT_OCCURENCES, "Number of VERR_REM_FLUSHED_PAGES_OVERFLOW returns.");
517 STAM_REG(pVM, &pVM->vmm.s.StatGCRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/GCRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
518 STAM_REG(pVM, &pVM->vmm.s.StatGCRetToR3, STAMTYPE_COUNTER, "/VMM/GCRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
519 STAM_REG(pVM, &pVM->vmm.s.StatGCRetTimerPending, STAMTYPE_COUNTER, "/VMM/GCRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
520 STAM_REG(pVM, &pVM->vmm.s.StatGCRetInterruptPending, STAMTYPE_COUNTER, "/VMM/GCRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
521 STAM_REG(pVM, &pVM->vmm.s.StatGCRetCallHost, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/Misc", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
522 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPGMGrowRAM, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/GrowRAM", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
523 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPDMLock, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/PDMLock", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
524 STAM_REG(pVM, &pVM->vmm.s.StatGCRetLogFlush, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/LogFlush", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
525 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPDMQueueFlush, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/QueueFlush", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
526 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPGMPoolGrow, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/PGMPoolGrow",STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
527 STAM_REG(pVM, &pVM->vmm.s.StatGCRetRemReplay, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/REMReplay", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
528 STAM_REG(pVM, &pVM->vmm.s.StatGCRetVMSetError, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/VMSetError", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
529 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPGMLock, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/PGMLock", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
530 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/GCRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
531 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/GCRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns.");
532 STAM_REG(pVM, &pVM->vmm.s.StatGCRetEmulHlt, STAMTYPE_COUNTER, "/VMM/GCRet/EmulHlt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_EMULATE_INSTR_HLT returns.");
533 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPendingRequest, STAMTYPE_COUNTER, "/VMM/GCRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
534
535 return VINF_SUCCESS;
536 }
537 AssertRC(rc);
538 }
539 }
540 /** @todo: Need failure cleanup. */
541
542 //more todo in here?
543 //if (VBOX_SUCCESS(rc))
544 //{
545 //}
546 //int rc2 = vmmR3TermCoreCode(pVM);
547 //AssertRC(rc2));
548 }
549
550 return rc;
551}
552
553
554/**
555 * Ring-3 init finalizing.
556 *
557 * @returns VBox status code.
558 * @param pVM The VM handle.
559 */
560VMMR3DECL(int) VMMR3InitFinalize(PVM pVM)
561{
562#ifdef VBOX_STRICT_VMM_STACK
563 /*
564 * Two inaccessible pages at each sides of the stack to catch over/under-flows.
565 */
566 memset(pVM->vmm.s.pbHCStack - PAGE_SIZE, 0xcc, PAGE_SIZE);
567 PGMMapSetPage(pVM, MMHyperHC2GC(pVM, pVM->vmm.s.pbHCStack - PAGE_SIZE), PAGE_SIZE, 0);
568 RTMemProtect(pVM->vmm.s.pbHCStack - PAGE_SIZE, PAGE_SIZE, RTMEM_PROT_NONE);
569
570 memset(pVM->vmm.s.pbHCStack + VMM_STACK_SIZE, 0xcc, PAGE_SIZE);
571 PGMMapSetPage(pVM, MMHyperHC2GC(pVM, pVM->vmm.s.pbHCStack + VMM_STACK_SIZE), PAGE_SIZE, 0);
572 RTMemProtect(pVM->vmm.s.pbHCStack + VMM_STACK_SIZE, PAGE_SIZE, RTMEM_PROT_NONE);
573#endif
574
575 /*
576 * Set page attributes to r/w for stack pages.
577 */
578 int rc = PGMMapSetPage(pVM, pVM->vmm.s.pbGCStack, VMM_STACK_SIZE, X86_PTE_P | X86_PTE_A | X86_PTE_D | X86_PTE_RW);
579 AssertRC(rc);
580 if (VBOX_SUCCESS(rc))
581 {
582 /*
583 * Create the EMT yield timer.
584 */
585 rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, "EMT Yielder", &pVM->vmm.s.pYieldTimer);
586 if (VBOX_SUCCESS(rc))
587 rc = TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldEveryMillies);
588 }
589#ifdef VBOX_WITH_NMI
590 /*
591 * Map the host APIC into GC - This may be host os specific!
592 */
593 if (VBOX_SUCCESS(rc))
594 rc = PGMMap(pVM, pVM->vmm.s.GCPtrApicBase, 0xfee00000, PAGE_SIZE,
595 X86_PTE_P | X86_PTE_RW | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_A | X86_PTE_D);
596#endif
597 return rc;
598}
599
600
601/**
602 * Initializes the R0 VMM.
603 *
604 * @returns VBox status code.
605 * @param pVM The VM to operate on.
606 */
607VMMR3DECL(int) VMMR3InitR0(PVM pVM)
608{
609 int rc;
610
611 /*
612 * Initialize the ring-0 logger if we haven't done so yet.
613 */
614 if ( pVM->vmm.s.pR0Logger
615 && !pVM->vmm.s.pR0Logger->fCreated)
616 {
617 rc = VMMR3UpdateLoggers(pVM);
618 if (VBOX_FAILURE(rc))
619 return rc;
620 }
621
622 /*
623 * Call Ring-0 entry with init code.
624 */
625 for (;;)
626 {
627#ifdef NO_SUPCALLR0VMM
628 //rc = VERR_GENERAL_FAILURE;
629 rc = VINF_SUCCESS;
630#else
631 rc = SUPCallVMMR0(pVM->pVMR0, VMMR0_DO_VMMR0_INIT, (void *)VBOX_VERSION);
632#endif
633 if ( pVM->vmm.s.pR0Logger
634 && pVM->vmm.s.pR0Logger->Logger.offScratch > 0)
635 RTLogFlushToLogger(&pVM->vmm.s.pR0Logger->Logger, NULL);
636 if (rc != VINF_VMM_CALL_HOST)
637 break;
638 rc = vmmR3ServiceCallHostRequest(pVM);
639 if (VBOX_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
640 break;
641 break; // remove this when we do setjmp for all ring-0 stuff.
642 }
643
644 if (VBOX_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
645 {
646 LogRel(("R0 init failed, rc=%Vra\n", rc));
647 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
648 rc = VERR_INTERNAL_ERROR;
649 }
650 return rc;
651}
652
653
654/**
655 * Initializes the GC VMM.
656 *
657 * @returns VBox status code.
658 * @param pVM The VM to operate on.
659 */
660VMMR3DECL(int) VMMR3InitGC(PVM pVM)
661{
662 /* In VMX mode, there's no need to init GC. */
663 if (pVM->vmm.s.fSwitcherDisabled)
664 return VINF_SUCCESS;
665
666 /*
667 * Call VMMGCInit():
668 * -# resolve the address.
669 * -# setup stackframe and EIP to use the trampoline.
670 * -# do a generic hypervisor call.
671 */
672 RTGCPTR GCPtrEP;
673 int rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMGCEntry", &GCPtrEP);
674 if (VBOX_SUCCESS(rc))
675 {
676 CPUMHyperSetCtxCore(pVM, NULL);
677 CPUMSetHyperESP(pVM, pVM->vmm.s.pbGCStackBottom); /* Clear the stack. */
678 CPUMPushHyper(pVM, VBOX_VERSION); /* Param 2: Version argument. */
679 CPUMPushHyper(pVM, VMMGC_DO_VMMGC_INIT); /* Param 1: Operation. */
680 CPUMPushHyper(pVM, pVM->pVMGC); /* Param 0: pVM */
681 CPUMPushHyper(pVM, 3 * sizeof(RTGCPTR)); /* trampoline param: stacksize. */
682 CPUMPushHyper(pVM, GCPtrEP); /* Call EIP. */
683 CPUMSetHyperEIP(pVM, pVM->vmm.s.pfnGCCallTrampoline);
684
685 for (;;)
686 {
687#ifdef NO_SUPCALLR0VMM
688 //rc = VERR_GENERAL_FAILURE;
689 rc = VINF_SUCCESS;
690#else
691 rc = SUPCallVMMR0(pVM->pVMR0, VMMR0_DO_CALL_HYPERVISOR, NULL);
692#endif
693#ifdef LOG_ENABLED
694 PRTLOGGERGC pLogger = pVM->vmm.s.pLoggerHC;
695 if ( pLogger
696 && pLogger->offScratch > 0)
697 RTLogFlushGC(NULL, pLogger);
698#endif
699#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
700 PRTLOGGERGC pRelLogger = pVM->vmm.s.pRelLoggerHC;
701 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
702 RTLogFlushGC(RTLogRelDefaultInstance(), pRelLogger);
703#endif
704 if (rc != VINF_VMM_CALL_HOST)
705 break;
706 rc = vmmR3ServiceCallHostRequest(pVM);
707 if (VBOX_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
708 break;
709 }
710
711 if (VBOX_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
712 {
713 VMMR3FatalDump(pVM, rc);
714 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
715 rc = VERR_INTERNAL_ERROR;
716 }
717 AssertRC(rc);
718 }
719 return rc;
720}
721
722
723/**
724 * Terminate the VMM bits.
725 *
726 * @returns VINF_SUCCESS.
727 * @param pVM The VM handle.
728 */
729VMMR3DECL(int) VMMR3Term(PVM pVM)
730{
731 /** @todo must call ring-0 so the logger thread instance can be properly removed. */
732
733#ifdef VBOX_STRICT_VMM_STACK
734 /*
735 * Make the two stack guard pages present again.
736 */
737 RTMemProtect(pVM->vmm.s.pbHCStack - PAGE_SIZE, PAGE_SIZE, RTMEM_PROT_READ | RTMEM_PROT_WRITE);
738 RTMemProtect(pVM->vmm.s.pbHCStack + VMM_STACK_SIZE, PAGE_SIZE, RTMEM_PROT_READ | RTMEM_PROT_WRITE);
739#endif
740 return VINF_SUCCESS;
741}
742
743
744/**
745 * Applies relocations to data and code managed by this
746 * component. This function will be called at init and
747 * whenever the VMM need to relocate it self inside the GC.
748 *
749 * The VMM will need to apply relocations to the core code.
750 *
751 * @param pVM The VM handle.
752 * @param offDelta The relocation delta.
753 */
754VMMR3DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
755{
756 LogFlow(("VMMR3Relocate: offDelta=%VGv\n", offDelta));
757
758 /*
759 * Recalc the GC address.
760 */
761 pVM->vmm.s.pvGCCoreCode = MMHyperHC2GC(pVM, pVM->vmm.s.pvHCCoreCodeR3);
762
763 /*
764 * The stack.
765 */
766 CPUMSetHyperESP(pVM, CPUMGetHyperESP(pVM) + offDelta);
767 pVM->vmm.s.pbGCStack = MMHyperHC2GC(pVM, pVM->vmm.s.pbHCStack);
768 pVM->vmm.s.pbGCStackBottom = pVM->vmm.s.pbGCStack + VMM_STACK_SIZE;
769
770 /*
771 * All the switchers.
772 */
773 for (unsigned iSwitcher = 0; iSwitcher < ELEMENTS(s_apSwitchers); iSwitcher++)
774 {
775 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[iSwitcher];
776 if (pSwitcher && pSwitcher->pfnRelocate)
777 {
778 unsigned off = pVM->vmm.s.aoffSwitchers[iSwitcher];
779 pSwitcher->pfnRelocate(pVM,
780 pSwitcher,
781 (uint8_t *)pVM->vmm.s.pvHCCoreCodeR0 + off,
782 (uint8_t *)pVM->vmm.s.pvHCCoreCodeR3 + off,
783 pVM->vmm.s.pvGCCoreCode + off,
784 pVM->vmm.s.HCPhysCoreCode + off);
785 }
786 }
787
788 /*
789 * Recalc the GC address for the current switcher.
790 */
791 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[pVM->vmm.s.enmSwitcher];
792 RTGCPTR GCPtr = pVM->vmm.s.pvGCCoreCode + pVM->vmm.s.aoffSwitchers[pVM->vmm.s.enmSwitcher];
793 pVM->vmm.s.pfnGCGuestToHost = GCPtr + pSwitcher->offGCGuestToHost;
794 pVM->vmm.s.pfnGCCallTrampoline = GCPtr + pSwitcher->offGCCallTrampoline;
795 pVM->pfnVMMGCGuestToHostAsm = GCPtr + pSwitcher->offGCGuestToHostAsm;
796 pVM->pfnVMMGCGuestToHostAsmHyperCtx = GCPtr + pSwitcher->offGCGuestToHostAsmHyperCtx;
797 pVM->pfnVMMGCGuestToHostAsmGuestCtx = GCPtr + pSwitcher->offGCGuestToHostAsmGuestCtx;
798
799 /*
800 * Get other GC entry points.
801 */
802 int rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuest", &pVM->vmm.s.pfnCPUMGCResumeGuest);
803 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuest not found! rc=%Vra\n", rc));
804
805 rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuestV86", &pVM->vmm.s.pfnCPUMGCResumeGuestV86);
806 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuestV86 not found! rc=%Vra\n", rc));
807
808 /*
809 * Update the logger.
810 */
811 VMMR3UpdateLoggers(pVM);
812}
813
814
815/**
816 * Updates the settings for the GC and R0 loggers.
817 *
818 * @returns VBox status code.
819 * @param pVM The VM handle.
820 */
821VMMR3DECL(int) VMMR3UpdateLoggers(PVM pVM)
822{
823 /*
824 * Simply clone the logger instance (for GC).
825 */
826 int rc = VINF_SUCCESS;
827 RTGCPTR GCPtrLoggerFlush = 0;
828
829 if (pVM->vmm.s.pLoggerHC
830#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
831 || pVM->vmm.s.pRelLoggerHC
832#endif
833 )
834 {
835 rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerFlush", &GCPtrLoggerFlush);
836 AssertReleaseMsgRC(rc, ("vmmGCLoggerFlush not found! rc=%Vra\n", rc));
837 }
838
839 if (pVM->vmm.s.pLoggerHC)
840 {
841 RTGCPTR GCPtrLoggerWrapper = 0;
842 rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerWrapper", &GCPtrLoggerWrapper);
843 AssertReleaseMsgRC(rc, ("vmmGCLoggerWrapper not found! rc=%Vra\n", rc));
844 pVM->vmm.s.pLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pLoggerHC);
845 rc = RTLogCloneGC(NULL /* default */, pVM->vmm.s.pLoggerHC, pVM->vmm.s.cbLoggerGC,
846 GCPtrLoggerWrapper, GCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
847 AssertReleaseMsgRC(rc, ("RTLogCloneGC failed! rc=%Vra\n", rc));
848 }
849
850#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
851 if (pVM->vmm.s.pRelLoggerHC)
852 {
853 RTGCPTR GCPtrLoggerWrapper = 0;
854 rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCRelLoggerWrapper", &GCPtrLoggerWrapper);
855 AssertReleaseMsgRC(rc, ("vmmGCRelLoggerWrapper not found! rc=%Vra\n", rc));
856 pVM->vmm.s.pRelLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pRelLoggerHC);
857 rc = RTLogCloneGC(RTLogRelDefaultInstance(), pVM->vmm.s.pRelLoggerHC, pVM->vmm.s.cbRelLoggerGC,
858 GCPtrLoggerWrapper, GCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
859 AssertReleaseMsgRC(rc, ("RTLogCloneGC failed! rc=%Vra\n", rc));
860 }
861#endif /* VBOX_WITH_GC_AND_R0_RELEASE_LOG */
862
863 /*
864 * For the ring-0 EMT logger, we use a per-thread logger
865 * instance in ring-0. Only initialize it once.
866 */
867 PVMMR0LOGGER pR0Logger = pVM->vmm.s.pR0Logger;
868 if (pR0Logger)
869 {
870 if (!pR0Logger->fCreated)
871 {
872 RTHCPTR pfnLoggerWrapper = NULL;
873 rc = PDMR3GetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
874 AssertReleaseMsgRCReturn(rc, ("VMMLoggerWrapper not found! rc=%Vra\n", rc), rc);
875
876 RTHCPTR pfnLoggerFlush = NULL;
877 rc = PDMR3GetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
878 AssertReleaseMsgRCReturn(rc, ("VMMLoggerFlush not found! rc=%Vra\n", rc), rc);
879
880 rc = RTLogCreateForR0(&pR0Logger->Logger, pR0Logger->cbLogger,
881 *(PFNRTLOGGER *)&pfnLoggerWrapper, *(PFNRTLOGFLUSH *)&pfnLoggerFlush,
882 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY);
883 AssertReleaseMsgRCReturn(rc, ("RTLogCloneGC failed! rc=%Vra\n", rc), rc);
884 pR0Logger->fCreated = true;
885 }
886
887 rc = RTLogCopyGroupsAndFlags(&pR0Logger->Logger, NULL /* default */, RTLOGFLAGS_BUFFERED, 0);
888 AssertRC(rc);
889 }
890
891 return rc;
892}
893
894
895/**
896 * Generic switch code relocator.
897 *
898 * @param pVM The VM handle.
899 * @param pSwitcher The switcher definition.
900 * @param pu8CodeR3 Pointer to the core code block for the switcher, ring-3 mapping.
901 * @param pu8CodeR0 Pointer to the core code block for the switcher, ring-0 mapping.
902 * @param GCPtrCode The guest context address corresponding to pu8Code.
903 * @param u32IDCode The identity mapped (ID) address corresponding to pu8Code.
904 * @param SelCS The hypervisor CS selector.
905 * @param SelDS The hypervisor DS selector.
906 * @param SelTSS The hypervisor TSS selector.
907 * @param GCPtrGDT The GC address of the hypervisor GDT.
908 * @param SelCS64 The 64-bit mode hypervisor CS selector.
909 */
910static void vmmR3SwitcherGenericRelocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode,
911 RTSEL SelCS, RTSEL SelDS, RTSEL SelTSS, RTGCPTR GCPtrGDT, RTSEL SelCS64)
912{
913 union
914 {
915 const uint8_t *pu8;
916 const uint16_t *pu16;
917 const uint32_t *pu32;
918 const uint64_t *pu64;
919 const void *pv;
920 uintptr_t u;
921 } u;
922 u.pv = pSwitcher->pvFixups;
923
924 /*
925 * Process fixups.
926 */
927 uint8_t u8;
928 while ((u8 = *u.pu8++) != FIX_THE_END)
929 {
930 /*
931 * Get the source (where to write the fixup).
932 */
933 uint32_t offSrc = *u.pu32++;
934 Assert(offSrc < pSwitcher->cbCode);
935 union
936 {
937 uint8_t *pu8;
938 uint16_t *pu16;
939 uint32_t *pu32;
940 uint64_t *pu64;
941 uintptr_t u;
942 } uSrc;
943 uSrc.pu8 = pu8CodeR3 + offSrc;
944
945 /* The fixup target and method depends on the type. */
946 switch (u8)
947 {
948 /*
949 * 32-bit relative, source in HC and target in GC.
950 */
951 case FIX_HC_2_GC_NEAR_REL:
952 {
953 Assert(offSrc - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offSrc - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
954 uint32_t offTrg = *u.pu32++;
955 Assert(offTrg - pSwitcher->offGCCode < pSwitcher->cbGCCode);
956 *uSrc.pu32 = (uint32_t)((GCPtrCode + offTrg) - (uSrc.u + 4));
957 break;
958 }
959
960 /*
961 * 32-bit relative, source in HC and target in ID.
962 */
963 case FIX_HC_2_ID_NEAR_REL:
964 {
965 Assert(offSrc - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offSrc - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
966 uint32_t offTrg = *u.pu32++;
967 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
968 *uSrc.pu32 = (uint32_t)((u32IDCode + offTrg) - (uSrc.u + 4));
969 break;
970 }
971
972 /*
973 * 32-bit relative, source in GC and target in HC.
974 */
975 case FIX_GC_2_HC_NEAR_REL:
976 {
977 Assert(offSrc - pSwitcher->offGCCode < pSwitcher->cbGCCode);
978 uint32_t offTrg = *u.pu32++;
979 Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
980 *uSrc.pu32 = (uint32_t)(((uintptr_t)pu8CodeR0 + offTrg) - (GCPtrCode + offSrc + 4));
981 break;
982 }
983
984 /*
985 * 32-bit relative, source in GC and target in ID.
986 */
987 case FIX_GC_2_ID_NEAR_REL:
988 {
989 Assert(offSrc - pSwitcher->offGCCode < pSwitcher->cbGCCode);
990 uint32_t offTrg = *u.pu32++;
991 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
992 *uSrc.pu32 = (uint32_t)((u32IDCode + offTrg) - (GCPtrCode + offSrc + 4));
993 break;
994 }
995
996 /*
997 * 32-bit relative, source in ID and target in HC.
998 */
999 case FIX_ID_2_HC_NEAR_REL:
1000 {
1001 Assert(offSrc - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offSrc - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
1002 uint32_t offTrg = *u.pu32++;
1003 Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
1004 *uSrc.pu32 = (uint32_t)(((uintptr_t)pu8CodeR0 + offTrg) - (u32IDCode + offSrc + 4));
1005 break;
1006 }
1007
1008 /*
1009 * 32-bit relative, source in ID and target in HC.
1010 */
1011 case FIX_ID_2_GC_NEAR_REL:
1012 {
1013 Assert(offSrc - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offSrc - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
1014 uint32_t offTrg = *u.pu32++;
1015 Assert(offTrg - pSwitcher->offGCCode < pSwitcher->cbGCCode);
1016 *uSrc.pu32 = (uint32_t)((GCPtrCode + offTrg) - (u32IDCode + offSrc + 4));
1017 break;
1018 }
1019
1020 /*
1021 * 16:32 far jump, target in GC.
1022 */
1023 case FIX_GC_FAR32:
1024 {
1025 uint32_t offTrg = *u.pu32++;
1026 Assert(offTrg - pSwitcher->offGCCode < pSwitcher->cbGCCode);
1027 *uSrc.pu32++ = (uint32_t)(GCPtrCode + offTrg);
1028 *uSrc.pu16++ = SelCS;
1029 break;
1030 }
1031
1032 /*
1033 * Make 32-bit GC pointer given CPUM offset.
1034 */
1035 case FIX_GC_CPUM_OFF:
1036 {
1037 uint32_t offCPUM = *u.pu32++;
1038 Assert(offCPUM < sizeof(pVM->cpum));
1039 *uSrc.pu32 = (uint32_t)(VM_GUEST_ADDR(pVM, &pVM->cpum) + offCPUM);
1040 break;
1041 }
1042
1043 /*
1044 * Make 32-bit GC pointer given VM offset.
1045 */
1046 case FIX_GC_VM_OFF:
1047 {
1048 uint32_t offVM = *u.pu32++;
1049 Assert(offVM < sizeof(VM));
1050 *uSrc.pu32 = (uint32_t)(VM_GUEST_ADDR(pVM, pVM) + offVM);
1051 break;
1052 }
1053
1054 /*
1055 * Make 32-bit HC pointer given CPUM offset.
1056 */
1057 case FIX_HC_CPUM_OFF:
1058 {
1059 uint32_t offCPUM = *u.pu32++;
1060 Assert(offCPUM < sizeof(pVM->cpum));
1061 *uSrc.pu32 = (uint32_t)pVM->pVMR0 + RT_OFFSETOF(VM, cpum) + offCPUM;
1062 break;
1063 }
1064
1065 /*
1066 * Make 32-bit R0 pointer given VM offset.
1067 */
1068 case FIX_HC_VM_OFF:
1069 {
1070 uint32_t offVM = *u.pu32++;
1071 Assert(offVM < sizeof(VM));
1072 *uSrc.pu32 = (uint32_t)pVM->pVMR0 + offVM;
1073 break;
1074 }
1075
1076 /*
1077 * Store the 32-Bit CR3 (32-bit) for the intermediate memory context.
1078 */
1079 case FIX_INTER_32BIT_CR3:
1080 {
1081
1082 *uSrc.pu32 = PGMGetInter32BitCR3(pVM);
1083 break;
1084 }
1085
1086 /*
1087 * Store the PAE CR3 (32-bit) for the intermediate memory context.
1088 */
1089 case FIX_INTER_PAE_CR3:
1090 {
1091
1092 *uSrc.pu32 = PGMGetInterPaeCR3(pVM);
1093 break;
1094 }
1095
1096 /*
1097 * Store the AMD64 CR3 (32-bit) for the intermediate memory context.
1098 */
1099 case FIX_INTER_AMD64_CR3:
1100 {
1101
1102 *uSrc.pu32 = PGMGetInterAmd64CR3(pVM);
1103 break;
1104 }
1105
1106 /*
1107 * Store the 32-Bit CR3 (32-bit) for the hypervisor (shadow) memory context.
1108 */
1109 case FIX_HYPER_32BIT_CR3:
1110 {
1111
1112 *uSrc.pu32 = PGMGetHyper32BitCR3(pVM);
1113 break;
1114 }
1115
1116 /*
1117 * Store the PAE CR3 (32-bit) for the hypervisor (shadow) memory context.
1118 */
1119 case FIX_HYPER_PAE_CR3:
1120 {
1121
1122 *uSrc.pu32 = PGMGetHyperPaeCR3(pVM);
1123 break;
1124 }
1125
1126 /*
1127 * Store the AMD64 CR3 (32-bit) for the hypervisor (shadow) memory context.
1128 */
1129 case FIX_HYPER_AMD64_CR3:
1130 {
1131
1132 *uSrc.pu32 = PGMGetHyperAmd64CR3(pVM);
1133 break;
1134 }
1135
1136 /*
1137 * Store Hypervisor CS (16-bit).
1138 */
1139 case FIX_HYPER_CS:
1140 {
1141 *uSrc.pu16 = SelCS;
1142 break;
1143 }
1144
1145 /*
1146 * Store Hypervisor DS (16-bit).
1147 */
1148 case FIX_HYPER_DS:
1149 {
1150 *uSrc.pu16 = SelDS;
1151 break;
1152 }
1153
1154 /*
1155 * Store Hypervisor TSS (16-bit).
1156 */
1157 case FIX_HYPER_TSS:
1158 {
1159 *uSrc.pu16 = SelTSS;
1160 break;
1161 }
1162
1163 /*
1164 * Store the 32-bit GC address of the 2nd dword of the TSS descriptor (in the GDT).
1165 */
1166 case FIX_GC_TSS_GDTE_DW2:
1167 {
1168 RTGCPTR GCPtr = GCPtrGDT + (SelTSS & ~7) + 4;
1169 *uSrc.pu32 = (uint32_t)GCPtr;
1170 break;
1171 }
1172
1173
1174 ///@todo case FIX_CR4_MASK:
1175 ///@todo case FIX_CR4_OSFSXR:
1176
1177 /*
1178 * Insert relative jump to specified target it FXSAVE/FXRSTOR isn't supported by the cpu.
1179 */
1180 case FIX_NO_FXSAVE_JMP:
1181 {
1182 uint32_t offTrg = *u.pu32++;
1183 Assert(offTrg < pSwitcher->cbCode);
1184 if (!CPUMSupportsFXSR(pVM))
1185 {
1186 *uSrc.pu8++ = 0xe9; /* jmp rel32 */
1187 *uSrc.pu32++ = offTrg - (offSrc + 5);
1188 }
1189 else
1190 {
1191 *uSrc.pu8++ = *((uint8_t *)pSwitcher->pvCode + offSrc);
1192 *uSrc.pu32++ = *(uint32_t *)((uint8_t *)pSwitcher->pvCode + offSrc + 1);
1193 }
1194 break;
1195 }
1196
1197 /*
1198 * Insert relative jump to specified target it SYSENTER isn't used by the host.
1199 */
1200 case FIX_NO_SYSENTER_JMP:
1201 {
1202 uint32_t offTrg = *u.pu32++;
1203 Assert(offTrg < pSwitcher->cbCode);
1204 if (!CPUMIsHostUsingSysEnter(pVM))
1205 {
1206 *uSrc.pu8++ = 0xe9; /* jmp rel32 */
1207 *uSrc.pu32++ = offTrg - (offSrc + 5);
1208 }
1209 else
1210 {
1211 *uSrc.pu8++ = *((uint8_t *)pSwitcher->pvCode + offSrc);
1212 *uSrc.pu32++ = *(uint32_t *)((uint8_t *)pSwitcher->pvCode + offSrc + 1);
1213 }
1214 break;
1215 }
1216
1217 /*
1218 * Insert relative jump to specified target it SYSENTER isn't used by the host.
1219 */
1220 case FIX_NO_SYSCALL_JMP:
1221 {
1222 uint32_t offTrg = *u.pu32++;
1223 Assert(offTrg < pSwitcher->cbCode);
1224 if (!CPUMIsHostUsingSysEnter(pVM))
1225 {
1226 *uSrc.pu8++ = 0xe9; /* jmp rel32 */
1227 *uSrc.pu32++ = offTrg - (offSrc + 5);
1228 }
1229 else
1230 {
1231 *uSrc.pu8++ = *((uint8_t *)pSwitcher->pvCode + offSrc);
1232 *uSrc.pu32++ = *(uint32_t *)((uint8_t *)pSwitcher->pvCode + offSrc + 1);
1233 }
1234 break;
1235 }
1236
1237 /*
1238 * 32-bit HC pointer fixup to (HC) target within the code (32-bit offset).
1239 */
1240 case FIX_HC_32BIT:
1241 {
1242 uint32_t offTrg = *u.pu32++;
1243 Assert(offSrc < pSwitcher->cbCode);
1244 Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
1245 *uSrc.pu32 = (uintptr_t)pu8CodeR0 + offTrg;
1246 break;
1247 }
1248
1249#if defined(__AMD64__) || defined(VBOX_WITH_HYBIRD_32BIT_KERNEL)
1250 /*
1251 * 64-bit HC pointer fixup to (HC) target within the code (32-bit offset).
1252 */
1253 case FIX_HC_64BIT:
1254 {
1255 uint32_t offTrg = *u.pu32++;
1256 Assert(offSrc < pSwitcher->cbCode);
1257 Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
1258 *uSrc.pu64 = (uintptr_t)pu8CodeR0 + offTrg;
1259 break;
1260 }
1261
1262 /*
1263 * 64-bit HC Code Selector (no argument).
1264 */
1265 case FIX_HC_64BIT_CS:
1266 {
1267 Assert(offSrc < pSwitcher->cbCode);
1268#if defined(__DARWIN__) && defined(VBOX_WITH_HYBIRD_32BIT_KERNEL)
1269 *uSrc.pu16 = 0x80; /* KERNEL64_CS from i386/seg.h */
1270#else
1271 AssertFatalMsgFailed(("FIX_HC_64BIT_CS not implemented for this host\n"));
1272#endif
1273 break;
1274 }
1275
1276 /*
1277 * 64-bit HC pointer to the CPUM instance data (no argument).
1278 */
1279 case FIX_HC_64BIT_CPUM:
1280 {
1281 Assert(offSrc < pSwitcher->cbCode);
1282 *uSrc.pu64 = pVM->pVMR0 + RT_OFFSETOF(VM, cpum);
1283 break;
1284 }
1285#endif
1286
1287 /*
1288 * 32-bit ID pointer to (ID) target within the code (32-bit offset).
1289 */
1290 case FIX_ID_32BIT:
1291 {
1292 uint32_t offTrg = *u.pu32++;
1293 Assert(offSrc < pSwitcher->cbCode);
1294 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
1295 *uSrc.pu32 = u32IDCode + offTrg;
1296 break;
1297 }
1298
1299 /*
1300 * 64-bit ID pointer to (ID) target within the code (32-bit offset).
1301 */
1302 case FIX_ID_64BIT:
1303 {
1304 uint32_t offTrg = *u.pu32++;
1305 Assert(offSrc < pSwitcher->cbCode);
1306 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
1307 *uSrc.pu64 = u32IDCode + offTrg;
1308 break;
1309 }
1310
1311 /*
1312 * Far 16:32 ID pointer to 64-bit mode (ID) target within the code (32-bit offset).
1313 */
1314 case FIX_ID_FAR32_TO_64BIT_MODE:
1315 {
1316 uint32_t offTrg = *u.pu32++;
1317 Assert(offSrc < pSwitcher->cbCode);
1318 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
1319 *uSrc.pu32++ = u32IDCode + offTrg;
1320 *uSrc.pu16 = SelCS64;
1321 AssertRelease(SelCS64);
1322 break;
1323 }
1324
1325#ifdef VBOX_WITH_NMI
1326 /*
1327 * 32-bit address to the APIC base.
1328 */
1329 case FIX_GC_APIC_BASE_32BIT:
1330 {
1331 *uSrc.pu32 = pVM->vmm.s.GCPtrApicBase;
1332 break;
1333 }
1334#endif
1335
1336 default:
1337 AssertReleaseMsgFailed(("Unknown fixup %d in switcher %s\n", u8, pSwitcher->pszDesc));
1338 break;
1339 }
1340 }
1341
1342#ifdef LOG_ENABLED
1343 /*
1344 * If Log2 is enabled disassemble the switcher code.
1345 *
1346 * The switcher code have 1-2 HC parts, 1 GC part and 0-2 ID parts.
1347 */
1348 if (LogIs2Enabled())
1349 {
1350 RTLogPrintf("*** Disassembly of switcher %d '%s' %#x bytes ***\n"
1351 " pu8CodeR0 = %p\n"
1352 " pu8CodeR3 = %p\n"
1353 " GCPtrCode = %VGv\n"
1354 " u32IDCode = %08x\n"
1355 " pVMGC = %VGv\n"
1356 " pCPUMGC = %VGv\n"
1357 " pVMHC = %p\n"
1358 " pCPUMHC = %p\n"
1359 " GCPtrGDT = %VGv\n"
1360 " InterCR3s = %08x, %08x, %08x (32-Bit, PAE, AMD64)\n"
1361 " HyperCR3s = %08x, %08x, %08x (32-Bit, PAE, AMD64)\n"
1362 " SelCS = %04x\n"
1363 " SelDS = %04x\n"
1364 " SelCS64 = %04x\n"
1365 " SelTSS = %04x\n",
1366 pSwitcher->enmType, pSwitcher->pszDesc, pSwitcher->cbCode,
1367 pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode, VM_GUEST_ADDR(pVM, pVM),
1368 VM_GUEST_ADDR(pVM, &pVM->cpum), pVM, &pVM->cpum,
1369 GCPtrGDT,
1370 PGMGetHyper32BitCR3(pVM), PGMGetHyperPaeCR3(pVM), PGMGetHyperAmd64CR3(pVM),
1371 PGMGetInter32BitCR3(pVM), PGMGetInterPaeCR3(pVM), PGMGetInterAmd64CR3(pVM),
1372 SelCS, SelDS, SelCS64, SelTSS);
1373
1374 uint32_t offCode = 0;
1375 while (offCode < pSwitcher->cbCode)
1376 {
1377 /*
1378 * Figure out where this is.
1379 */
1380 const char *pszDesc = NULL;
1381 RTUINTPTR uBase;
1382 uint32_t cbCode;
1383 if (offCode - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0)
1384 {
1385 pszDesc = "HCCode0";
1386 uBase = (RTUINTPTR)pu8CodeR0;
1387 offCode = pSwitcher->offHCCode0;
1388 cbCode = pSwitcher->cbHCCode0;
1389 }
1390 else if (offCode - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1)
1391 {
1392 pszDesc = "HCCode1";
1393 uBase = (RTUINTPTR)pu8CodeR0;
1394 offCode = pSwitcher->offHCCode1;
1395 cbCode = pSwitcher->cbHCCode1;
1396 }
1397 else if (offCode - pSwitcher->offGCCode < pSwitcher->cbGCCode)
1398 {
1399 pszDesc = "GCCode";
1400 uBase = GCPtrCode;
1401 offCode = pSwitcher->offGCCode;
1402 cbCode = pSwitcher->cbGCCode;
1403 }
1404 else if (offCode - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0)
1405 {
1406 pszDesc = "IDCode0";
1407 uBase = u32IDCode;
1408 offCode = pSwitcher->offIDCode0;
1409 cbCode = pSwitcher->cbIDCode0;
1410 }
1411 else if (offCode - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1)
1412 {
1413 pszDesc = "IDCode1";
1414 uBase = u32IDCode;
1415 offCode = pSwitcher->offIDCode1;
1416 cbCode = pSwitcher->cbIDCode1;
1417 }
1418 else
1419 {
1420 RTLogPrintf(" %04x: %02x '%c' (nowhere)\n",
1421 offCode, pu8CodeR3[offCode], isprint(pu8CodeR3[offCode]) ? pu8CodeR3[offCode] : ' ');
1422 offCode++;
1423 continue;
1424 }
1425
1426 /*
1427 * Disassemble it.
1428 */
1429 RTLogPrintf(" %s: offCode=%#x cbCode=%#x\n", pszDesc, offCode, cbCode);
1430 DISCPUSTATE Cpu = {0};
1431 Cpu.mode = CPUMODE_32BIT;
1432 while (cbCode > 0)
1433 {
1434 /* try label it */
1435 if (pSwitcher->offR0HostToGuest == offCode)
1436 RTLogPrintf(" *R0HostToGuest:\n");
1437 if (pSwitcher->offGCGuestToHost == offCode)
1438 RTLogPrintf(" *GCGuestToHost:\n");
1439 if (pSwitcher->offGCCallTrampoline == offCode)
1440 RTLogPrintf(" *GCCallTrampoline:\n");
1441 if (pSwitcher->offGCGuestToHostAsm == offCode)
1442 RTLogPrintf(" *GCGuestToHostAsm:\n");
1443 if (pSwitcher->offGCGuestToHostAsmHyperCtx == offCode)
1444 RTLogPrintf(" *GCGuestToHostAsmHyperCtx:\n");
1445 if (pSwitcher->offGCGuestToHostAsmGuestCtx == offCode)
1446 RTLogPrintf(" *GCGuestToHostAsmGuestCtx:\n");
1447
1448 /* disas */
1449 uint32_t cbInstr = 0;
1450 char szDisas[256];
1451 if (DISInstr(&Cpu, (RTUINTPTR)pu8CodeR3 + offCode, uBase - (RTUINTPTR)pu8CodeR3, &cbInstr, szDisas))
1452 RTLogPrintf(" %04x: %s", offCode, szDisas); //for whatever reason szDisas includes '\n'.
1453 else
1454 {
1455 RTLogPrintf(" %04x: %02x '%c'\n",
1456 offCode, pu8CodeR3[offCode], isprint(pu8CodeR3[offCode]) ? pu8CodeR3[offCode] : ' ');
1457 cbInstr = 1;
1458 }
1459 offCode += cbInstr;
1460 cbCode -= RT_MIN(cbInstr, cbCode);
1461 }
1462 }
1463 }
1464#endif
1465}
1466
1467
1468/**
1469 * Relocator for the 32-Bit to 32-Bit world switcher.
1470 */
1471DECLCALLBACK(void) vmmR3Switcher32BitTo32Bit_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
1472{
1473 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode,
1474 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
1475}
1476
1477
1478/**
1479 * Relocator for the 32-Bit to PAE world switcher.
1480 */
1481DECLCALLBACK(void) vmmR3Switcher32BitToPAE_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
1482{
1483 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode,
1484 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
1485}
1486
1487
1488/**
1489 * Relocator for the PAE to 32-Bit world switcher.
1490 */
1491DECLCALLBACK(void) vmmR3SwitcherPAETo32Bit_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
1492{
1493 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode,
1494 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
1495}
1496
1497
1498/**
1499 * Relocator for the PAE to PAE world switcher.
1500 */
1501DECLCALLBACK(void) vmmR3SwitcherPAEToPAE_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
1502{
1503 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode,
1504 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
1505}
1506
1507
1508/**
1509 * Relocator for the AMD64 to PAE world switcher.
1510 */
1511DECLCALLBACK(void) vmmR3SwitcherAMD64ToPAE_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
1512{
1513 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode,
1514 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), SELMGetHyperCS64(pVM));
1515}
1516
1517
1518/**
1519 * Gets the pointer to g_szRTAssertMsg1 in GC.
1520 * @returns Pointer to VMMGC::g_szRTAssertMsg1.
1521 * Returns NULL if not present.
1522 * @param pVM The VM handle.
1523 */
1524VMMR3DECL(const char *) VMMR3GetGCAssertMsg1(PVM pVM)
1525{
1526 RTGCPTR GCPtr;
1527 int rc = PDMR3GetSymbolGC(pVM, NULL, "g_szRTAssertMsg1", &GCPtr);
1528 if (VBOX_SUCCESS(rc))
1529 return (const char *)MMHyperGC2HC(pVM, GCPtr);
1530 return NULL;
1531}
1532
1533
1534/**
1535 * Gets the pointer to g_szRTAssertMsg2 in GC.
1536 * @returns Pointer to VMMGC::g_szRTAssertMsg2.
1537 * Returns NULL if not present.
1538 * @param pVM The VM handle.
1539 */
1540VMMR3DECL(const char *) VMMR3GetGCAssertMsg2(PVM pVM)
1541{
1542 RTGCPTR GCPtr;
1543 int rc = PDMR3GetSymbolGC(pVM, NULL, "g_szRTAssertMsg2", &GCPtr);
1544 if (VBOX_SUCCESS(rc))
1545 return (const char *)MMHyperGC2HC(pVM, GCPtr);
1546 return NULL;
1547}
1548
1549
1550/**
1551 * Execute state save operation.
1552 *
1553 * @returns VBox status code.
1554 * @param pVM VM Handle.
1555 * @param pSSM SSM operation handle.
1556 */
1557static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
1558{
1559 LogFlow(("vmmR3Save:\n"));
1560
1561 /*
1562 * The hypervisor stack.
1563 */
1564 SSMR3PutGCPtr(pSSM, pVM->vmm.s.pbGCStackBottom);
1565 RTGCPTR GCPtrESP = CPUMGetHyperESP(pVM);
1566 Assert(pVM->vmm.s.pbGCStackBottom - GCPtrESP <= VMM_STACK_SIZE);
1567 SSMR3PutGCPtr(pSSM, GCPtrESP);
1568 SSMR3PutMem(pSSM, pVM->vmm.s.pbHCStack, VMM_STACK_SIZE);
1569 return SSMR3PutU32(pSSM, ~0); /* terminator */
1570}
1571
1572
1573/**
1574 * Execute state load operation.
1575 *
1576 * @returns VBox status code.
1577 * @param pVM VM Handle.
1578 * @param pSSM SSM operation handle.
1579 * @param u32Version Data layout version.
1580 */
1581static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
1582{
1583 LogFlow(("vmmR3Load:\n"));
1584
1585 /*
1586 * Validate version.
1587 */
1588 if (u32Version != VMM_SAVED_STATE_VERSION)
1589 {
1590 Log(("vmmR3Load: Invalid version u32Version=%d!\n", u32Version));
1591 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1592 }
1593
1594 /*
1595 * Check that the stack is in the same place, or that it's fearly empty.
1596 */
1597 RTGCPTR GCPtrStackBottom;
1598 SSMR3GetGCPtr(pSSM, &GCPtrStackBottom);
1599 RTGCPTR GCPtrESP;
1600 int rc = SSMR3GetGCPtr(pSSM, &GCPtrESP);
1601 if (VBOX_FAILURE(rc))
1602 return rc;
1603 if ( GCPtrStackBottom == pVM->vmm.s.pbGCStackBottom
1604 || (GCPtrStackBottom - GCPtrESP < 32)) /** @todo This will break if we start preemting the hypervisor. */
1605 {
1606 /*
1607 * We *must* set the ESP because the CPUM load + PGM load relocations will render
1608 * the ESP in CPUM fatally invalid.
1609 */
1610 CPUMSetHyperESP(pVM, GCPtrESP);
1611
1612 /* restore the stack. */
1613 SSMR3GetMem(pSSM, pVM->vmm.s.pbHCStack, VMM_STACK_SIZE);
1614
1615 /* terminator */
1616 uint32_t u32;
1617 rc = SSMR3GetU32(pSSM, &u32);
1618 if (VBOX_FAILURE(rc))
1619 return rc;
1620 if (u32 != ~0U)
1621 {
1622 AssertMsgFailed(("u32=%#x\n", u32));
1623 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1624 }
1625 return VINF_SUCCESS;
1626 }
1627
1628 LogRel(("The stack is not in the same place and it's not empty! GCPtrStackBottom=%VGv pbGCStackBottom=%VGv ESP=%VGv\n",
1629 GCPtrStackBottom, pVM->vmm.s.pbGCStackBottom, GCPtrESP));
1630 AssertFailed();
1631 return VERR_SSM_LOAD_CONFIG_MISMATCH;
1632}
1633
1634
1635/**
1636 * Selects the switcher to be used for switching to GC.
1637 *
1638 * @returns VBox status code.
1639 * @param pVM VM handle.
1640 * @param enmSwitcher The new switcher.
1641 * @remark This function may be called before the VMM is initialized.
1642 */
1643VMMR3DECL(int) VMMR3SelectSwitcher(PVM pVM, VMMSWITCHER enmSwitcher)
1644{
1645 /*
1646 * Validate input.
1647 */
1648 if ( enmSwitcher < VMMSWITCHER_INVALID
1649 || enmSwitcher >= VMMSWITCHER_MAX)
1650 {
1651 AssertMsgFailed(("Invalid input enmSwitcher=%d\n", enmSwitcher));
1652 return VERR_INVALID_PARAMETER;
1653 }
1654
1655 /*
1656 * Select the new switcher.
1657 */
1658 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[enmSwitcher];
1659 if (pSwitcher)
1660 {
1661 Log(("VMMR3SelectSwitcher: enmSwitcher %d -> %d %s\n", pVM->vmm.s.enmSwitcher, enmSwitcher, pSwitcher->pszDesc));
1662 pVM->vmm.s.enmSwitcher = enmSwitcher;
1663
1664 RTR0PTR pbCodeR0 = (RTR0PTR)pVM->vmm.s.pvHCCoreCodeR0 + pVM->vmm.s.aoffSwitchers[enmSwitcher]; /** @todo fix the pvHCCoreCodeR0 type */
1665 pVM->vmm.s.pfnR0HostToGuest = pbCodeR0 + pSwitcher->offR0HostToGuest;
1666
1667 RTGCPTR GCPtr = pVM->vmm.s.pvGCCoreCode + pVM->vmm.s.aoffSwitchers[enmSwitcher];
1668 pVM->vmm.s.pfnGCGuestToHost = GCPtr + pSwitcher->offGCGuestToHost;
1669 pVM->vmm.s.pfnGCCallTrampoline = GCPtr + pSwitcher->offGCCallTrampoline;
1670 pVM->pfnVMMGCGuestToHostAsm = GCPtr + pSwitcher->offGCGuestToHostAsm;
1671 pVM->pfnVMMGCGuestToHostAsmHyperCtx = GCPtr + pSwitcher->offGCGuestToHostAsmHyperCtx;
1672 pVM->pfnVMMGCGuestToHostAsmGuestCtx = GCPtr + pSwitcher->offGCGuestToHostAsmGuestCtx;
1673 return VINF_SUCCESS;
1674 }
1675 return VERR_NOT_IMPLEMENTED;
1676}
1677
1678/**
1679 * Disable the switcher logic permanently.
1680 *
1681 * @returns VBox status code.
1682 * @param pVM VM handle.
1683 */
1684VMMR3DECL(int) VMMR3DisableSwitcher(PVM pVM)
1685{
1686/** @todo r=bird: I would suggest that we create a dummy switcher which just does something like:
1687 * @code
1688 * mov eax, VERR_INTERNAL_ERROR
1689 * ret
1690 * @endcode
1691 * And then check for fSwitcherDisabled in VMMR3SelectSwitcher() in order to prevent it from being removed.
1692 */
1693 pVM->vmm.s.fSwitcherDisabled = true;
1694 return VINF_SUCCESS;
1695}
1696
1697
1698/**
1699 * Resolve a builtin GC symbol.
1700 * Called by PDM when loading or relocating GC modules.
1701 *
1702 * @returns VBox status
1703 * @param pVM VM Handle.
1704 * @param pszSymbol Symbol to resolv
1705 * @param pGCPtrValue Where to store the symbol value.
1706 * @remark This has to work before VMMR3Relocate() is called.
1707 */
1708VMMR3DECL(int) VMMR3GetImportGC(PVM pVM, const char *pszSymbol, PRTGCPTR pGCPtrValue)
1709{
1710 if (!strcmp(pszSymbol, "g_Logger"))
1711 {
1712 if (pVM->vmm.s.pLoggerHC)
1713 pVM->vmm.s.pLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pLoggerHC);
1714 *pGCPtrValue = pVM->vmm.s.pLoggerGC;
1715 }
1716 else if (!strcmp(pszSymbol, "g_RelLogger"))
1717 {
1718#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
1719 if (pVM->vmm.s.pRelLoggerHC)
1720 pVM->vmm.s.pRelLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pRelLoggerHC);
1721 *pGCPtrValue = pVM->vmm.s.pRelLoggerGC;
1722#else
1723 *pGCPtrValue = NIL_RTGCPTR;
1724#endif
1725 }
1726 else
1727 return VERR_SYMBOL_NOT_FOUND;
1728 return VINF_SUCCESS;
1729}
1730
1731
1732/**
1733 * Suspends the the CPU yielder.
1734 *
1735 * @param pVM The VM handle.
1736 */
1737VMMR3DECL(void) VMMR3YieldSuspend(PVM pVM)
1738{
1739 if (!pVM->vmm.s.cYieldResumeMillies)
1740 {
1741 uint64_t u64Now = TMTimerGet(pVM->vmm.s.pYieldTimer);
1742 uint64_t u64Expire = TMTimerGetExpire(pVM->vmm.s.pYieldTimer);
1743 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
1744 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1745 else
1746 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM->vmm.s.pYieldTimer, u64Expire - u64Now);
1747 TMTimerStop(pVM->vmm.s.pYieldTimer);
1748 }
1749}
1750
1751
1752/**
1753 * Stops the the CPU yielder.
1754 *
1755 * @param pVM The VM handle.
1756 */
1757VMMR3DECL(void) VMMR3YieldStop(PVM pVM)
1758{
1759 if (!pVM->vmm.s.cYieldResumeMillies)
1760 TMTimerStop(pVM->vmm.s.pYieldTimer);
1761 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1762}
1763
1764
1765/**
1766 * Resumes the CPU yielder when it has been a suspended or stopped.
1767 *
1768 * @param pVM The VM handle.
1769 */
1770VMMR3DECL(void) VMMR3YieldResume(PVM pVM)
1771{
1772 if (pVM->vmm.s.cYieldResumeMillies)
1773 {
1774 TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldResumeMillies);
1775 pVM->vmm.s.cYieldResumeMillies = 0;
1776 }
1777}
1778
1779
1780/**
1781 * Internal timer callback function.
1782 *
1783 * @param pVM The VM.
1784 * @param pTimer The timer handle.
1785 * @param pvUser User argument specified upon timer creation.
1786 */
1787static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser)
1788{
1789#ifdef LOG_ENABLED
1790 uint64_t u64Elapsed = RTTimeNanoTS();
1791#endif
1792 RTThreadYield();
1793 TMTimerSetMillies(pTimer, pVM->vmm.s.cYieldEveryMillies);
1794 Log(("vmmR3YieldEMT: %RI64 ns\n", RTTimeNanoTS() - u64Elapsed));
1795}
1796
1797
1798/**
1799 * Acquire global VM lock.
1800 *
1801 * @returns VBox status code
1802 * @param pVM The VM to operate on.
1803 */
1804VMMR3DECL(int) VMMR3Lock(PVM pVM)
1805{
1806 return RTCritSectEnter(&pVM->vmm.s.CritSectVMLock);
1807}
1808
1809
1810/**
1811 * Release global VM lock.
1812 *
1813 * @returns VBox status code
1814 * @param pVM The VM to operate on.
1815 */
1816VMMR3DECL(int) VMMR3Unlock(PVM pVM)
1817{
1818 return RTCritSectLeave(&pVM->vmm.s.CritSectVMLock);
1819}
1820
1821
1822/**
1823 * Return global VM lock owner.
1824 *
1825 * @returns Thread id of owner.
1826 * @returns NIL_RTTHREAD if no owner.
1827 * @param pVM The VM to operate on.
1828 */
1829VMMR3DECL(RTNATIVETHREAD) VMMR3LockGetOwner(PVM pVM)
1830{
1831 return RTCritSectGetOwner(&pVM->vmm.s.CritSectVMLock);
1832}
1833
1834
1835/**
1836 * Checks if the current thread is the owner of the global VM lock.
1837 *
1838 * @returns true if owner.
1839 * @returns false if not owner.
1840 * @param pVM The VM to operate on.
1841 */
1842VMMR3DECL(bool) VMMR3LockIsOwner(PVM pVM)
1843{
1844 return RTCritSectIsOwner(&pVM->vmm.s.CritSectVMLock);
1845}
1846
1847
1848/**
1849 * Executes guest code.
1850 *
1851 * @param pVM VM handle.
1852 */
1853VMMR3DECL(int) VMMR3RawRunGC(PVM pVM)
1854{
1855 Log2(("VMMR3RawRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
1856
1857 /*
1858 * Set the EIP and ESP.
1859 */
1860 CPUMSetHyperEIP(pVM, CPUMGetGuestEFlags(pVM) & X86_EFL_VM
1861 ? pVM->vmm.s.pfnCPUMGCResumeGuestV86
1862 : pVM->vmm.s.pfnCPUMGCResumeGuest);
1863 CPUMSetHyperESP(pVM, pVM->vmm.s.pbGCStackBottom);
1864
1865 /*
1866 * We hide log flushes (outer) and hypervisor interrupts (inner).
1867 */
1868 for (;;)
1869 {
1870 int rc;
1871 do
1872 {
1873#ifdef NO_SUPCALLR0VMM
1874 rc = VERR_GENERAL_FAILURE;
1875#else
1876 rc = SUPCallVMMR0(pVM->pVMR0, VMMR0_DO_RAW_RUN, NULL);
1877#endif
1878 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1879
1880 /*
1881 * Flush the logs.
1882 */
1883#ifdef LOG_ENABLED
1884 PRTLOGGERGC pLogger = pVM->vmm.s.pLoggerHC;
1885 if ( pLogger
1886 && pLogger->offScratch > 0)
1887 RTLogFlushGC(NULL, pLogger);
1888#endif
1889#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
1890 PRTLOGGERGC pRelLogger = pVM->vmm.s.pRelLoggerHC;
1891 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1892 RTLogFlushGC(RTLogRelDefaultInstance(), pRelLogger);
1893#endif
1894 if (rc != VINF_VMM_CALL_HOST)
1895 {
1896 Log2(("VMMR3RawRunGC: returns %Vrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
1897 return rc;
1898 }
1899 rc = vmmR3ServiceCallHostRequest(pVM);
1900 if (VBOX_FAILURE(rc))
1901 return rc;
1902 /* Resume GC */
1903 }
1904}
1905
1906
1907/**
1908 * Executes guest code (Intel VMX and AMD SVM).
1909 *
1910 * @param pVM VM handle.
1911 */
1912VMMR3DECL(int) VMMR3HwAccRunGC(PVM pVM)
1913{
1914 Log2(("VMMR3HwAccRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
1915
1916 for (;;)
1917 {
1918 int rc;
1919 do
1920 {
1921#ifdef NO_SUPCALLR0VMM
1922 rc = VERR_GENERAL_FAILURE;
1923#else
1924 rc = SUPCallVMMR0(pVM->pVMR0, VMMR0_DO_HWACC_RUN, NULL);
1925#endif
1926 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1927
1928#ifdef LOG_ENABLED
1929 /*
1930 * Flush the log
1931 */
1932 PVMMR0LOGGER pR0Logger = pVM->vmm.s.pR0Logger;
1933 if ( pR0Logger
1934 && pR0Logger->Logger.offScratch > 0)
1935 RTLogFlushToLogger(&pR0Logger->Logger, NULL);
1936#endif /* !LOG_ENABLED */
1937 if (rc != VINF_VMM_CALL_HOST)
1938 {
1939 Log2(("VMMR3HwAccRunGC: returns %Vrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
1940 return rc;
1941 }
1942 rc = vmmR3ServiceCallHostRequest(pVM);
1943 if (VBOX_FAILURE(rc))
1944 return rc;
1945 /* Resume R0 */
1946 }
1947}
1948
1949/**
1950 * Calls GC a function.
1951 *
1952 * @param pVM The VM handle.
1953 * @param GCPtrEntry The GC function address.
1954 * @param cArgs The number of arguments in the ....
1955 * @param ... Arguments to the function.
1956 */
1957VMMR3DECL(int) VMMR3CallGC(PVM pVM, RTGCPTR GCPtrEntry, unsigned cArgs, ...)
1958{
1959 va_list args;
1960 va_start(args, cArgs);
1961 int rc = VMMR3CallGCV(pVM, GCPtrEntry, cArgs, args);
1962 va_end(args);
1963 return rc;
1964}
1965
1966
1967/**
1968 * Calls GC a function.
1969 *
1970 * @param pVM The VM handle.
1971 * @param GCPtrEntry The GC function address.
1972 * @param cArgs The number of arguments in the ....
1973 * @param args Arguments to the function.
1974 */
1975VMMR3DECL(int) VMMR3CallGCV(PVM pVM, RTGCPTR GCPtrEntry, unsigned cArgs, va_list args)
1976{
1977 Log2(("VMMR3CallGCV: GCPtrEntry=%VGv cArgs=%d\n", GCPtrEntry, cArgs));
1978
1979 /*
1980 * Setup the call frame using the trampoline.
1981 */
1982 CPUMHyperSetCtxCore(pVM, NULL);
1983 memset(pVM->vmm.s.pbHCStack, 0xaa, VMM_STACK_SIZE); /* Clear the stack. */
1984 CPUMSetHyperESP(pVM, pVM->vmm.s.pbGCStackBottom - cArgs * sizeof(RTGCUINTPTR));
1985 PRTGCUINTPTR pFrame = (PRTGCUINTPTR)(pVM->vmm.s.pbHCStack + VMM_STACK_SIZE) - cArgs;
1986 int i = cArgs;
1987 while (i-- > 0)
1988 *pFrame++ = va_arg(args, RTGCUINTPTR);
1989
1990 CPUMPushHyper(pVM, cArgs * sizeof(RTGCUINTPTR)); /* stack frame size */
1991 CPUMPushHyper(pVM, GCPtrEntry); /* what to call */
1992 CPUMSetHyperEIP(pVM, pVM->vmm.s.pfnGCCallTrampoline);
1993
1994 /*
1995 * We hide log flushes (outer) and hypervisor interrupts (inner).
1996 */
1997 for (;;)
1998 {
1999 int rc;
2000 do
2001 {
2002#ifdef NO_SUPCALLR0VMM
2003 rc = VERR_GENERAL_FAILURE;
2004#else
2005 rc = SUPCallVMMR0(pVM->pVMR0, VMMR0_DO_RAW_RUN, NULL);
2006#endif
2007 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
2008
2009 /*
2010 * Flush the logs.
2011 */
2012#ifdef LOG_ENABLED
2013 PRTLOGGERGC pLogger = pVM->vmm.s.pLoggerHC;
2014 if ( pLogger
2015 && pLogger->offScratch > 0)
2016 RTLogFlushGC(NULL, pLogger);
2017#endif
2018#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
2019 PRTLOGGERGC pRelLogger = pVM->vmm.s.pRelLoggerHC;
2020 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
2021 RTLogFlushGC(RTLogRelDefaultInstance(), pRelLogger);
2022#endif
2023 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
2024 VMMR3FatalDump(pVM, rc);
2025 if (rc != VINF_VMM_CALL_HOST)
2026 {
2027 Log2(("VMMR3CallGCV: returns %Vrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
2028 return rc;
2029 }
2030 rc = vmmR3ServiceCallHostRequest(pVM);
2031 if (VBOX_FAILURE(rc))
2032 return rc;
2033 }
2034}
2035
2036
2037/**
2038 * Resumes executing hypervisor code when interrupted
2039 * by a queue flush or a debug event.
2040 *
2041 * @returns VBox status code.
2042 * @param pVM VM handle.
2043 */
2044VMMR3DECL(int) VMMR3ResumeHyper(PVM pVM)
2045{
2046 Log(("VMMR3ResumeHyper: eip=%VGv esp=%VGv\n", CPUMGetHyperEIP(pVM), CPUMGetHyperESP(pVM)));
2047
2048 /*
2049 * We hide log flushes (outer) and hypervisor interrupts (inner).
2050 */
2051 for (;;)
2052 {
2053 int rc;
2054 do
2055 {
2056#ifdef NO_SUPCALLR0VMM
2057 rc = VERR_GENERAL_FAILURE;
2058#else
2059 rc = SUPCallVMMR0(pVM->pVMR0, VMMR0_DO_RAW_RUN, NULL);
2060#endif
2061 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
2062
2063 /*
2064 * Flush the loggers,
2065 */
2066#ifdef LOG_ENABLED
2067 PRTLOGGERGC pLogger = pVM->vmm.s.pLoggerHC;
2068 if ( pLogger
2069 && pLogger->offScratch > 0)
2070 RTLogFlushGC(NULL, pLogger);
2071#endif
2072#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
2073 PRTLOGGERGC pRelLogger = pVM->vmm.s.pRelLoggerHC;
2074 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
2075 RTLogFlushGC(RTLogRelDefaultInstance(), pRelLogger);
2076#endif
2077 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
2078 VMMR3FatalDump(pVM, rc);
2079 if (rc != VINF_VMM_CALL_HOST)
2080 {
2081 Log(("VMMR3ResumeHyper: returns %Vrc\n", rc));
2082 return rc;
2083 }
2084 rc = vmmR3ServiceCallHostRequest(pVM);
2085 if (VBOX_FAILURE(rc))
2086 return rc;
2087 }
2088}
2089
2090
2091/**
2092 * Service a call to the ring-3 host code.
2093 *
2094 * @returns VBox status code.
2095 * @param pVM VM handle.
2096 * @remark Careful with critsects.
2097 */
2098static int vmmR3ServiceCallHostRequest(PVM pVM)
2099{
2100 switch (pVM->vmm.s.enmCallHostOperation)
2101 {
2102 /*
2103 * Acquire the PDM lock.
2104 */
2105 case VMMCALLHOST_PDM_LOCK:
2106 {
2107 pVM->vmm.s.rcCallHost = PDMR3LockCall(pVM);
2108 break;
2109 }
2110
2111 /*
2112 * Flush a PDM queue.
2113 */
2114 case VMMCALLHOST_PDM_QUEUE_FLUSH:
2115 {
2116 PDMR3QueueFlushWorker(pVM, NULL);
2117 pVM->vmm.s.rcCallHost = VINF_SUCCESS;
2118 break;
2119 }
2120
2121 /*
2122 * Grow the PGM pool.
2123 */
2124 case VMMCALLHOST_PGM_POOL_GROW:
2125 {
2126 pVM->vmm.s.rcCallHost = PGMR3PoolGrow(pVM);
2127 break;
2128 }
2129
2130 /*
2131 * Acquire the PGM lock.
2132 */
2133 case VMMCALLHOST_PGM_LOCK:
2134 {
2135 pVM->vmm.s.rcCallHost = PGMR3LockCall(pVM);
2136 break;
2137 }
2138
2139 /*
2140 * Flush REM handler notifications.
2141 */
2142 case VMMCALLHOST_REM_REPLAY_HANDLER_NOTIFICATIONS:
2143 {
2144 REMR3ReplayHandlerNotifications(pVM);
2145 break;
2146 }
2147
2148 case VMMCALLHOST_PGM_RAM_GROW_RANGE:
2149 {
2150 pVM->vmm.s.rcCallHost = PGM3PhysGrowRange(pVM, pVM->vmm.s.u64CallHostArg);
2151 break;
2152 }
2153
2154 /*
2155 * This is a noop. We just take this route to avoid unnecessary
2156 * tests in the loops.
2157 */
2158 case VMMCALLHOST_VMM_LOGGER_FLUSH:
2159 break;
2160
2161 /*
2162 * Set the VM error message.
2163 */
2164 case VMMCALLHOST_VM_SET_ERROR:
2165 VMR3SetErrorWorker(pVM);
2166 break;
2167
2168 /*
2169 * Set the VM runtime error message.
2170 */
2171 case VMMCALLHOST_VM_SET_RUNTIME_ERROR:
2172 VMR3SetRuntimeErrorWorker(pVM);
2173 break;
2174
2175 default:
2176 AssertMsgFailed(("enmCallHostOperation=%d\n", pVM->vmm.s.enmCallHostOperation));
2177 return VERR_INTERNAL_ERROR;
2178 }
2179
2180 pVM->vmm.s.enmCallHostOperation = VMMCALLHOST_INVALID;
2181 return VINF_SUCCESS;
2182}
2183
2184
2185
2186/**
2187 * Structure to pass to DBGFR3Info() and for doing all other
2188 * output during fatal dump.
2189 */
2190typedef struct VMMR3FATALDUMPINFOHLP
2191{
2192 /** The helper core. */
2193 DBGFINFOHLP Core;
2194 /** The release logger instance. */
2195 PRTLOGGER pRelLogger;
2196 /** The saved release logger flags. */
2197 RTUINT fRelLoggerFlags;
2198 /** The logger instance. */
2199 PRTLOGGER pLogger;
2200 /** The saved logger flags. */
2201 RTUINT fLoggerFlags;
2202 /** The saved logger destination flags. */
2203 RTUINT fLoggerDestFlags;
2204 /** Whether to output to stderr or not. */
2205 bool fStdErr;
2206} VMMR3FATALDUMPINFOHLP, *PVMMR3FATALDUMPINFOHLP;
2207typedef const VMMR3FATALDUMPINFOHLP *PCVMMR3FATALDUMPINFOHLP;
2208
2209
2210/**
2211 * Print formatted string.
2212 *
2213 * @param pHlp Pointer to this structure.
2214 * @param pszFormat The format string.
2215 * @param ... Arguments.
2216 */
2217static DECLCALLBACK(void) vmmR3FatalDumpInfoHlp_pfnPrintf(PCDBGFINFOHLP pHlp, const char *pszFormat, ...)
2218{
2219 va_list args;
2220 va_start(args, pszFormat);
2221 pHlp->pfnPrintfV(pHlp, pszFormat, args);
2222 va_end(args);
2223}
2224
2225
2226/**
2227 * Print formatted string.
2228 *
2229 * @param pHlp Pointer to this structure.
2230 * @param pszFormat The format string.
2231 * @param args Argument list.
2232 */
2233static DECLCALLBACK(void) vmmR3FatalDumpInfoHlp_pfnPrintfV(PCDBGFINFOHLP pHlp, const char *pszFormat, va_list args)
2234{
2235 PCVMMR3FATALDUMPINFOHLP pMyHlp = (PCVMMR3FATALDUMPINFOHLP)pHlp;
2236
2237 if (pMyHlp->pRelLogger)
2238 {
2239 va_list args2;
2240 va_copy(args2, args);
2241 RTLogLoggerV(pMyHlp->pRelLogger, pszFormat, args2);
2242 va_end(args2);
2243 }
2244 if (pMyHlp->pLogger)
2245 {
2246 va_list args2;
2247 va_copy(args2, args);
2248 RTLogLoggerV(pMyHlp->pLogger, pszFormat, args);
2249 va_end(args2);
2250 }
2251 if (pMyHlp->fStdErr)
2252 {
2253 va_list args2;
2254 va_copy(args2, args);
2255 RTStrmPrintfV(g_pStdErr, pszFormat, args);
2256 va_end(args2);
2257 }
2258}
2259
2260
2261/**
2262 * Initializes the fatal dump output helper.
2263 *
2264 * @param pHlp The structure to initialize.
2265 */
2266static void vmmR3FatalDumpInfoHlpInit(PVMMR3FATALDUMPINFOHLP pHlp)
2267{
2268 memset(pHlp, 0, sizeof(*pHlp));
2269
2270 pHlp->Core.pfnPrintf = vmmR3FatalDumpInfoHlp_pfnPrintf;
2271 pHlp->Core.pfnPrintfV = vmmR3FatalDumpInfoHlp_pfnPrintfV;
2272
2273 /*
2274 * The loggers.
2275 */
2276 pHlp->pRelLogger = RTLogRelDefaultInstance();
2277#ifndef LOG_ENABLED
2278 if (!pHlp->pRelLogger)
2279#endif
2280 pHlp->pLogger = RTLogDefaultInstance();
2281
2282 if (pHlp->pRelLogger)
2283 {
2284 pHlp->fRelLoggerFlags = pHlp->pRelLogger->fFlags;
2285 pHlp->pRelLogger->fFlags &= ~(RTLOGFLAGS_BUFFERED | RTLOGFLAGS_DISABLED);
2286 }
2287
2288 if (pHlp->pLogger)
2289 {
2290 pHlp->fLoggerFlags = pHlp->pLogger->fFlags;
2291 pHlp->fLoggerDestFlags = pHlp->pLogger->fDestFlags;
2292 pHlp->pLogger->fFlags &= ~(RTLOGFLAGS_BUFFERED | RTLOGFLAGS_DISABLED);
2293 pHlp->pLogger->fDestFlags |= RTLOGDEST_DEBUGGER;
2294 }
2295
2296 /*
2297 * Check if we need write to stderr.
2298 */
2299 pHlp->fStdErr = (!pHlp->pRelLogger || !(pHlp->pRelLogger->fDestFlags & (RTLOGDEST_STDOUT | RTLOGDEST_STDERR)))
2300 && (!pHlp->pLogger || !(pHlp->pLogger->fDestFlags & (RTLOGDEST_STDOUT | RTLOGDEST_STDERR)));
2301}
2302
2303
2304/**
2305 * Deletes the fatal dump output helper.
2306 *
2307 * @param pHlp The structure to delete.
2308 */
2309static void vmmR3FatalDumpInfoHlpDelete(PVMMR3FATALDUMPINFOHLP pHlp)
2310{
2311 if (pHlp->pRelLogger)
2312 {
2313 RTLogFlush(pHlp->pRelLogger);
2314 pHlp->pRelLogger->fFlags = pHlp->fRelLoggerFlags;
2315 }
2316
2317 if (pHlp->pLogger)
2318 {
2319 RTLogFlush(pHlp->pLogger);
2320 pHlp->pLogger->fFlags = pHlp->fLoggerFlags;
2321 pHlp->pLogger->fDestFlags = pHlp->fLoggerDestFlags;
2322 }
2323}
2324
2325
2326/**
2327 * Dumps the VM state on a fatal error.
2328 *
2329 * @param pVM VM Handle.
2330 * @param rcErr VBox status code.
2331 */
2332VMMR3DECL(void) VMMR3FatalDump(PVM pVM, int rcErr)
2333{
2334 /*
2335 * Create our output helper and sync it with the log settings.
2336 * This helper will be used for all the output.
2337 */
2338 VMMR3FATALDUMPINFOHLP Hlp;
2339 PCDBGFINFOHLP pHlp = &Hlp.Core;
2340 vmmR3FatalDumpInfoHlpInit(&Hlp);
2341
2342 /*
2343 * Header.
2344 */
2345 pHlp->pfnPrintf(pHlp,
2346 "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"
2347 "!!\n"
2348 "!! Guru Meditation %d (%Vrc)\n"
2349 "!!\n",
2350 rcErr, rcErr);
2351
2352 /*
2353 * Continue according to context.
2354 */
2355 bool fDoneHyper = false;
2356 switch (rcErr)
2357 {
2358 /*
2359 * Hyper visor errors.
2360 */
2361 case VINF_EM_DBG_HYPER_ASSERTION:
2362 pHlp->pfnPrintf(pHlp, "%s%s!!\n", VMMR3GetGCAssertMsg1(pVM), VMMR3GetGCAssertMsg2(pVM));
2363 /* fall thru */
2364 case VERR_TRPM_DONT_PANIC:
2365 case VERR_TRPM_PANIC:
2366 case VINF_EM_RAW_STALE_SELECTOR:
2367 case VINF_EM_RAW_IRET_TRAP:
2368 case VINF_EM_DBG_HYPER_BREAKPOINT:
2369 case VINF_EM_DBG_HYPER_STEPPED:
2370 {
2371 /* Trap? */
2372 uint32_t uEIP = CPUMGetHyperEIP(pVM);
2373 TRPMEVENT enmType;
2374 uint8_t u8TrapNo = 0xce;
2375 RTGCUINT uErrorCode = 0xdeadface;
2376 RTGCUINTPTR uCR2 = 0xdeadface;
2377 int rc2 = TRPMQueryTrapAll(pVM, &u8TrapNo, &enmType, &uErrorCode, &uCR2);
2378 if (VBOX_SUCCESS(rc2))
2379 pHlp->pfnPrintf(pHlp,
2380 "!! TRAP=%02x ERRCD=%VGv CR2=%VGv EIP=%VGv Type=%d\n",
2381 u8TrapNo, uErrorCode, uCR2, uEIP, enmType);
2382 else
2383 pHlp->pfnPrintf(pHlp,
2384 "!! EIP=%VGv NOTRAP\n",
2385 uEIP);
2386
2387 /*
2388 * Try figure out where eip is.
2389 */
2390 /** @todo make query call for core code or move this function to VMM. */
2391 /* core code? */
2392 //if (uEIP - (RTGCUINTPTR)pVM->vmm.s.pvGCCoreCode < pVM->vmm.s.cbCoreCode)
2393 // pHlp->pfnPrintf(pHlp,
2394 // "!! EIP is in CoreCode, offset %#x\n",
2395 // uEIP - (RTGCUINTPTR)pVM->vmm.s.pvGCCoreCode);
2396 //else
2397 { /* ask PDM */
2398 /** @todo ask DBGFR3Sym later. */
2399 char szModName[64];
2400 RTGCPTR GCPtrMod;
2401 char szNearSym1[260];
2402 RTGCPTR GCPtrNearSym1;
2403 char szNearSym2[260];
2404 RTGCPTR GCPtrNearSym2;
2405 int rc = PDMR3QueryModFromEIP(pVM, uEIP,
2406 &szModName[0], sizeof(szModName), &GCPtrMod,
2407 &szNearSym1[0], sizeof(szNearSym1), &GCPtrNearSym1,
2408 &szNearSym2[0], sizeof(szNearSym2), &GCPtrNearSym2);
2409 if (VBOX_SUCCESS(rc))
2410 {
2411 pHlp->pfnPrintf(pHlp,
2412 "!! EIP in %s (%p) at rva %x near symbols:\n"
2413 "!! %VGv rva %VGv off %08x %s\n"
2414 "!! %VGv rva %VGv off -%08x %s\n",
2415 szModName, GCPtrMod, (unsigned)(uEIP - GCPtrMod),
2416 GCPtrNearSym1, GCPtrNearSym1 - GCPtrMod, (unsigned)(uEIP - GCPtrNearSym1), szNearSym1,
2417 GCPtrNearSym2, GCPtrNearSym2 - GCPtrMod, (unsigned)(GCPtrNearSym2 - uEIP), szNearSym2);
2418 }
2419 else
2420 pHlp->pfnPrintf(pHlp,
2421 "!! EIP is not in any code known to VMM!\n");
2422 }
2423
2424 /* Disassemble the instruction. */
2425 char szInstr[256];
2426 rc2 = DBGFR3DisasInstrEx(pVM, 0, 0, DBGF_DISAS_FLAGS_CURRENT_HYPER, &szInstr[0], sizeof(szInstr), NULL);
2427 if (VBOX_SUCCESS(rc2))
2428 pHlp->pfnPrintf(pHlp,
2429 "!! %s\n", szInstr);
2430
2431 /* Dump the hypervisor cpu state. */
2432 pHlp->pfnPrintf(pHlp,
2433 "!!\n"
2434 "!!\n"
2435 "!!\n");
2436 rc2 = DBGFR3Info(pVM, "cpumhyper", "verbose", pHlp);
2437 fDoneHyper = true;
2438
2439 /* Callstack. */
2440 DBGFSTACKFRAME Frame = {0};
2441 rc2 = DBGFR3StackWalkBeginHyper(pVM, &Frame);
2442 if (VBOX_SUCCESS(rc2))
2443 {
2444 pHlp->pfnPrintf(pHlp,
2445 "!!\n"
2446 "!! Call Stack:\n"
2447 "!!\n"
2448 "EBP Ret EBP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP Symbol [line]\n");
2449 do
2450 {
2451 pHlp->pfnPrintf(pHlp,
2452 "%08RX32 %08RX32 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32",
2453 (uint32_t)Frame.AddrFrame.off,
2454 (uint32_t)Frame.AddrReturnFrame.off,
2455 (uint32_t)Frame.AddrReturnPC.Sel,
2456 (uint32_t)Frame.AddrReturnPC.off,
2457 Frame.Args.au32[0],
2458 Frame.Args.au32[1],
2459 Frame.Args.au32[2],
2460 Frame.Args.au32[3]);
2461 pHlp->pfnPrintf(pHlp, " %RTsel:%08RGv", Frame.AddrPC.Sel, Frame.AddrPC.off);
2462 if (Frame.pSymPC)
2463 {
2464 RTGCINTPTR offDisp = Frame.AddrPC.FlatPtr - Frame.pSymPC->Value;
2465 if (offDisp > 0)
2466 pHlp->pfnPrintf(pHlp, " %s+%llx", Frame.pSymPC->szName, (int64_t)offDisp);
2467 else if (offDisp < 0)
2468 pHlp->pfnPrintf(pHlp, " %s-%llx", Frame.pSymPC->szName, -(int64_t)offDisp);
2469 else
2470 pHlp->pfnPrintf(pHlp, " %s", Frame.pSymPC->szName);
2471 }
2472 if (Frame.pLinePC)
2473 pHlp->pfnPrintf(pHlp, " [%s @ 0i%d]", Frame.pLinePC->szFilename, Frame.pLinePC->uLineNo);
2474 pHlp->pfnPrintf(pHlp, "\n");
2475
2476 /* next */
2477 rc2 = DBGFR3StackWalkNext(pVM, &Frame);
2478 } while (VBOX_SUCCESS(rc2));
2479 DBGFR3StackWalkEnd(pVM, &Frame);
2480 }
2481
2482 /* raw stack */
2483 pHlp->pfnPrintf(pHlp,
2484 "!!\n"
2485 "!! Raw stack (mind the direction).\n"
2486 "!!\n"
2487 "%.*Vhxd\n",
2488 VMM_STACK_SIZE, (char *)pVM->vmm.s.pbHCStack);
2489 break;
2490 }
2491
2492 default:
2493 {
2494 break;
2495 }
2496
2497 } /* switch (rcErr) */
2498
2499
2500 /*
2501 * Dump useful state information.
2502 */
2503 /** @todo convert these dumpers to DBGFR3Info() handlers!!! */
2504 pHlp->pfnPrintf(pHlp,
2505 "!!\n"
2506 "!! PGM Access Handlers & Stuff:\n"
2507 "!!\n");
2508 PGMR3DumpMappings(pVM);
2509
2510
2511 /*
2512 * Generic info dumper loop.
2513 */
2514 static struct
2515 {
2516 const char *pszInfo;
2517 const char *pszArgs;
2518 } const aInfo[] =
2519 {
2520 { "hma", NULL },
2521 { "cpumguest", "verbose" },
2522 { "cpumhyper", "verbose" },
2523 { "cpumhost", "verbose" },
2524 { "mode", "all" },
2525 { "cpuid", "verbose" },
2526 { "gdt", NULL },
2527 { "ldt", NULL },
2528 //{ "tss", NULL },
2529 { "ioport", NULL },
2530 { "mmio", NULL },
2531 { "phys", NULL },
2532 //{ "pgmpd", NULL }, - doesn't always work at init time...
2533 { "timers", NULL },
2534 { "activetimers", NULL },
2535 { "handlers", "phys virt stats" },
2536 { "cfgm", NULL },
2537 };
2538 for (unsigned i = 0; i < ELEMENTS(aInfo); i++)
2539 {
2540 if (fDoneHyper && !strcmp(aInfo[i].pszInfo, "cpumhyper"))
2541 continue;
2542 pHlp->pfnPrintf(pHlp,
2543 "!!\n"
2544 "!! {%s, %s}\n"
2545 "!!\n",
2546 aInfo[i].pszInfo, aInfo[i].pszArgs);
2547 DBGFR3Info(pVM, aInfo[i].pszInfo, aInfo[i].pszArgs, pHlp);
2548 }
2549
2550 /* done */
2551 pHlp->pfnPrintf(pHlp,
2552 "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
2553
2554
2555 /*
2556 * Delete the output instance (flushing and restoring of flags).
2557 */
2558 vmmR3FatalDumpInfoHlpDelete(&Hlp);
2559}
2560
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette