VirtualBox

source: vbox/trunk/src/VBox/VMM/VMM.cpp@ 2623

Last change on this file since 2623 was 2507, checked in by vboxsync, 18 years ago

Drop the VINF_IOM_HC_IOPORT_READWRITE status code as it isn't really used. Made VINF_EM_LAST inclusive as per last/end convention used elsewhere in the VM.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 93.1 KB
Line 
1/* $Id: VMM.cpp 2507 2007-05-04 18:23:45Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006 InnoTek Systemberatung GmbH
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License as published by the Free Software Foundation,
13 * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
14 * distribution. VirtualBox OSE is distributed in the hope that it will
15 * be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * If you received this file as part of a commercial VirtualBox
18 * distribution, then only the terms of your commercial VirtualBox
19 * license agreement apply instead of the previous paragraph.
20 */
21
22//#define NO_SUPCALLR0VMM
23
24/** @page pg_vmm VMM - The Virtual Machine Monitor
25 *
26 * !Revise this! It's already incorrect!
27 *
28 * The Virtual Machine Monitor (VMM) is the core of the virtual machine. It
29 * manages the alternate reality; controlling the virtualization, managing
30 * resources, tracking CPU state, it's resources and so on...
31 *
32 * We will split the VMM into smaller entities:
33 *
34 * - Virtual Machine Core Monitor (VMCM), which purpose it is to
35 * provide ring and world switching, that including routing
36 * interrupts to the host OS and traps to the appropriate trap
37 * handlers. It will implement an external interface for
38 * managing trap handlers.
39 *
40 * - CPU Monitor (CM), tracking the state of the CPU (in the alternate
41 * reality) and implementing external interfaces to read and change
42 * the state.
43 *
44 * - Memory Monitor (MM), which purpose it is to virtualize physical
45 * pages, segment descriptor tables, interrupt descriptor tables, task
46 * segments, and keep track of all memory providing external interfaces
47 * to access content and map pages. (Internally splitt into smaller entities!)
48 *
49 * - IO Monitor (IOM), which virtualizes in and out I/O operations. It
50 * interacts with the MM to implement memory mapped I/O. External
51 * interfaces for adding and removing I/O ranges are implemented.
52 *
53 * - External Interrupt Monitor (EIM), which purpose it is to manage
54 * interrupts generated by virtual devices. This monitor provides
55 * an interfaces for raising interrupts which is accessible at any
56 * time and from all thread.
57 * <p>
58 * A subentity of the EIM is the vitual Programmable Interrupt
59 * Controller Device (VPICD), and perhaps a virtual I/O Advanced
60 * Programmable Interrupt Controller Device (VAPICD).
61 *
62 * - Direct Memory Access Monitor (DMAM), which purpose it is to support
63 * virtual device using the DMA controller. Interfaces must be as the
64 * EIM interfaces independent and threadable.
65 * <p>
66 * A subentity of the DMAM is a virtual DMA Controller Device (VDMACD).
67 *
68 *
69 * Entities working on a higher level:
70 *
71 * - Device Manager (DM), which is a support facility for virtualized
72 * hardware. This provides generic facilities for efficient device
73 * virtualization. It will manage device attaching and detaching
74 * conversing with EIM and IOM.
75 *
76 * - Debugger Facility (DBGF) provides the basic features for
77 * debugging the alternate reality execution.
78 *
79 *
80 *
81 * @section pg_vmm_s_use_cases Use Cases
82 *
83 * @subsection pg_vmm_s_use_case_boot Bootstrap
84 *
85 * - Basic Init:
86 * - Init SUPDRV.
87 *
88 * - Init Virtual Machine Instance:
89 * - Load settings.
90 * - Check resource requirements (memory, com, stuff).
91 *
92 * - Init Host Ring 3 part:
93 * - Init Core code.
94 * - Load Pluggable Components.
95 * - Init Pluggable Components.
96 *
97 * - Init Host Ring 0 part:
98 * - Load Core (core = core components like VMM, RMI, CA, and so on) code.
99 * - Init Core code.
100 * - Load Pluggable Component code.
101 * - Init Pluggable Component code.
102 *
103 * - Allocate first chunk of memory and pin it down. This block of memory
104 * will fit the following pieces:
105 * - Virtual Machine Instance data. (Config, CPU state, VMM state, ++)
106 * (This is available from everywhere (at different addresses though)).
107 * - VMM Guest Context code.
108 * - Pluggable devices Guest Context code.
109 * - Page tables (directory and everything) for the VMM Guest
110 *
111 * - Setup Guest (Ring 0) part:
112 * - Setup initial page tables (i.e. directory all the stuff).
113 * - Load Core Guest Context code.
114 * - Load Pluggable Devices Guest Context code.
115 *
116 *
117 */
118
119
120/*******************************************************************************
121* Header Files *
122*******************************************************************************/
123#define LOG_GROUP LOG_GROUP_VMM
124#include <VBox/vmm.h>
125#include <VBox/vmapi.h>
126#include <VBox/pgm.h>
127#include <VBox/cfgm.h>
128#include <VBox/pdm.h>
129#include <VBox/cpum.h>
130#include <VBox/mm.h>
131#include <VBox/iom.h>
132#include <VBox/trpm.h>
133#include <VBox/selm.h>
134#include <VBox/em.h>
135#include <VBox/sup.h>
136#include <VBox/dbgf.h>
137#include <VBox/csam.h>
138#include <VBox/patm.h>
139#include <VBox/rem.h>
140#include <VBox/ssm.h>
141#include <VBox/tm.h>
142#include "VMMInternal.h"
143#include "VMMSwitcher/VMMSwitcher.h"
144#include <VBox/vm.h>
145#include <VBox/err.h>
146#include <VBox/param.h>
147#include <VBox/version.h>
148#include <VBox/x86.h>
149#include <VBox/hwaccm.h>
150#include <iprt/assert.h>
151#include <iprt/alloc.h>
152#include <iprt/asm.h>
153#include <iprt/time.h>
154#include <iprt/stream.h>
155#include <iprt/string.h>
156#include <iprt/stdarg.h>
157#include <iprt/ctype.h>
158
159
160
161/** The saved state version. */
162#define VMM_SAVED_STATE_VERSION 3
163
164
165/*******************************************************************************
166* Internal Functions *
167*******************************************************************************/
168static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
169static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
170static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser);
171static int vmmR3ServiceCallHostRequest(PVM pVM);
172
173
174/*******************************************************************************
175* Global Variables *
176*******************************************************************************/
177/** Array of switcher defininitions.
178 * The type and index shall match!
179 */
180static PVMMSWITCHERDEF s_apSwitchers[VMMSWITCHER_MAX] =
181{
182 NULL, /* invalid entry */
183#ifndef __AMD64__
184 &vmmR3Switcher32BitTo32Bit_Def,
185 &vmmR3Switcher32BitToPAE_Def,
186 NULL, //&vmmR3Switcher32BitToAMD64_Def,
187 &vmmR3SwitcherPAETo32Bit_Def,
188 &vmmR3SwitcherPAEToPAE_Def,
189 NULL, //&vmmR3SwitcherPAEToAMD64_Def,
190# ifdef VBOX_WITH_HYBIRD_32BIT_KERNEL
191 &vmmR3SwitcherAMD64ToPAE_Def,
192# else
193 NULL, //&vmmR3SwitcherAMD64ToPAE_Def,
194# endif
195 NULL //&vmmR3SwitcherAMD64ToAMD64_Def,
196#else
197 NULL, //&vmmR3Switcher32BitTo32Bit_Def,
198 NULL, //&vmmR3Switcher32BitToPAE_Def,
199 NULL, //&vmmR3Switcher32BitToAMD64_Def,
200 NULL, //&vmmR3SwitcherPAETo32Bit_Def,
201 NULL, //&vmmR3SwitcherPAEToPAE_Def,
202 NULL, //&vmmR3SwitcherPAEToAMD64_Def,
203 &vmmR3SwitcherAMD64ToPAE_Def,
204 NULL //&vmmR3SwitcherAMD64ToAMD64_Def,
205#endif
206};
207
208
209
210/**
211 * Initiates the core code.
212 *
213 * This is core per VM code which might need fixups and/or for ease of use
214 * are put on linear contiguous backing.
215 *
216 * @returns VBox status code.
217 * @param pVM Pointer to VM structure.
218 */
219static int vmmR3InitCoreCode(PVM pVM)
220{
221 /*
222 * Calc the size.
223 */
224 unsigned cbCoreCode = 0;
225 for (unsigned iSwitcher = 0; iSwitcher < ELEMENTS(s_apSwitchers); iSwitcher++)
226 {
227 pVM->vmm.s.aoffSwitchers[iSwitcher] = cbCoreCode;
228 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[iSwitcher];
229 if (pSwitcher)
230 {
231 AssertRelease((unsigned)pSwitcher->enmType == iSwitcher);
232 cbCoreCode += RT_ALIGN_32(pSwitcher->cbCode + 1, 32);
233 }
234 }
235
236 /*
237 * Allocate continguous pages for switchers and deal with
238 * conflicts in the intermediate mapping of the code.
239 */
240 pVM->vmm.s.cbCoreCode = RT_ALIGN_32(cbCoreCode, PAGE_SIZE);
241 pVM->vmm.s.pvHCCoreCodeR3 = SUPContAlloc2(pVM->vmm.s.cbCoreCode >> PAGE_SHIFT, &pVM->vmm.s.pvHCCoreCodeR0, &pVM->vmm.s.HCPhysCoreCode);
242 int rc = VERR_NO_MEMORY;
243 if (pVM->vmm.s.pvHCCoreCodeR3)
244 {
245 rc = PGMR3MapIntermediate(pVM, pVM->vmm.s.pvHCCoreCodeR0, pVM->vmm.s.HCPhysCoreCode, cbCoreCode);
246 if (rc == VERR_PGM_MAPPINGS_FIX_CONFLICT)
247 {
248 /* try more allocations. */
249 struct
250 {
251 RTR0PTR pvR0;
252 void *pvR3;
253 RTHCPHYS HCPhys;
254 RTUINT cb;
255 } aBadTries[16];
256 unsigned i = 0;
257 do
258 {
259 aBadTries[i].pvR3 = pVM->vmm.s.pvHCCoreCodeR3;
260 aBadTries[i].pvR0 = pVM->vmm.s.pvHCCoreCodeR0;
261 aBadTries[i].HCPhys = pVM->vmm.s.HCPhysCoreCode;
262 i++;
263 pVM->vmm.s.pvHCCoreCodeR0 = NIL_RTR0PTR;
264 pVM->vmm.s.HCPhysCoreCode = NIL_RTHCPHYS;
265 pVM->vmm.s.pvHCCoreCodeR3 = SUPContAlloc2(pVM->vmm.s.cbCoreCode >> PAGE_SHIFT, &pVM->vmm.s.pvHCCoreCodeR0, &pVM->vmm.s.HCPhysCoreCode);
266 if (!pVM->vmm.s.pvHCCoreCodeR3)
267 break;
268 rc = PGMR3MapIntermediate(pVM, pVM->vmm.s.pvHCCoreCodeR0, pVM->vmm.s.HCPhysCoreCode, cbCoreCode);
269 } while ( rc == VERR_PGM_MAPPINGS_FIX_CONFLICT
270 && i < ELEMENTS(aBadTries) - 1);
271
272 /* cleanup */
273 if (VBOX_FAILURE(rc))
274 {
275 aBadTries[i].pvR3 = pVM->vmm.s.pvHCCoreCodeR3;
276 aBadTries[i].pvR0 = pVM->vmm.s.pvHCCoreCodeR0;
277 aBadTries[i].HCPhys = pVM->vmm.s.HCPhysCoreCode;
278 aBadTries[i].cb = pVM->vmm.s.cbCoreCode;
279 i++;
280 LogRel(("Failed to allocated and map core code: rc=%Vrc\n", rc));
281 }
282 while (i-- > 0)
283 {
284 LogRel(("Core code alloc attempt #%d: pvR3=%p pvR0=%p HCPhys=%VHp\n",
285 i, aBadTries[i].pvR3, aBadTries[i].pvR0, aBadTries[i].HCPhys));
286 SUPContFree(aBadTries[i].pvR3, aBadTries[i].cb >> PAGE_SHIFT);
287 }
288 }
289 }
290 if (VBOX_SUCCESS(rc))
291 {
292 /*
293 * copy the code.
294 */
295 for (unsigned iSwitcher = 0; iSwitcher < ELEMENTS(s_apSwitchers); iSwitcher++)
296 {
297 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[iSwitcher];
298 if (pSwitcher)
299 memcpy((uint8_t *)pVM->vmm.s.pvHCCoreCodeR3 + pVM->vmm.s.aoffSwitchers[iSwitcher],
300 pSwitcher->pvCode, pSwitcher->cbCode);
301 }
302
303 /*
304 * Map the code into the GC address space.
305 */
306 rc = MMR3HyperMapHCPhys(pVM, pVM->vmm.s.pvHCCoreCodeR3, pVM->vmm.s.HCPhysCoreCode, cbCoreCode, "Core Code", &pVM->vmm.s.pvGCCoreCode);
307 if (VBOX_SUCCESS(rc))
308 {
309 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
310 LogRel(("CoreCode: R3=%VHv R0=%VHv GC=%VGv Phys=%VHp cb=%#x\n",
311 pVM->vmm.s.pvHCCoreCodeR3, pVM->vmm.s.pvHCCoreCodeR0, pVM->vmm.s.pvGCCoreCode, pVM->vmm.s.HCPhysCoreCode, pVM->vmm.s.cbCoreCode));
312
313 /*
314 * Finally, PGM probably have selected a switcher already but we need
315 * to do get the addresses so we'll reselect it.
316 * This may legally fail so, we're ignoring the rc.
317 */
318 VMMR3SelectSwitcher(pVM, pVM->vmm.s.enmSwitcher);
319 return rc;
320 }
321
322 /* shit */
323 AssertMsgFailed(("PGMR3Map(,%VGv, %VGp, %#x, 0) failed with rc=%Vrc\n", pVM->vmm.s.pvGCCoreCode, pVM->vmm.s.HCPhysCoreCode, cbCoreCode, rc));
324 SUPContFree(pVM->vmm.s.pvHCCoreCodeR3, pVM->vmm.s.cbCoreCode >> PAGE_SHIFT);
325 }
326 else
327 VMSetError(pVM, rc, RT_SRC_POS,
328 N_("Failed to allocate %d bytes of contiguous memory for the world switcher code."),
329 cbCoreCode);
330
331 pVM->vmm.s.pvHCCoreCodeR3 = NULL;
332 pVM->vmm.s.pvHCCoreCodeR0 = NIL_RTR0PTR;
333 pVM->vmm.s.pvGCCoreCode = 0;
334 return rc;
335}
336
337
338/**
339 * Initializes the VMM.
340 *
341 * @returns VBox status code.
342 * @param pVM The VM to operate on.
343 */
344VMMR3DECL(int) VMMR3Init(PVM pVM)
345{
346 LogFlow(("VMMR3Init\n"));
347
348 /*
349 * Assert alignment, sizes and order.
350 */
351 AssertMsg(pVM->vmm.s.offVM == 0, ("Already initialized!\n"));
352 AssertMsg(sizeof(pVM->vmm.padding) >= sizeof(pVM->vmm.s),
353 ("pVM->vmm.padding is too small! vmm.padding %d while vmm.s is %d\n",
354 sizeof(pVM->vmm.padding), sizeof(pVM->vmm.s)));
355
356 /*
357 * Init basic VM VMM members.
358 */
359 pVM->vmm.s.offVM = RT_OFFSETOF(VM, vmm);
360 int rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies);
361 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
362 pVM->vmm.s.cYieldEveryMillies = 23; /* Value arrived at after experimenting with the grub boot prompt. */
363 //pVM->vmm.s.cYieldEveryMillies = 8; //debugging
364 else
365 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Vrc\n", rc), rc);
366
367 /* GC switchers are enabled by default. Turned off by HWACCM. */
368 pVM->vmm.s.fSwitcherDisabled = false;
369
370 /*
371 * Register the saved state data unit.
372 */
373 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
374 NULL, vmmR3Save, NULL,
375 NULL, vmmR3Load, NULL);
376 if (VBOX_FAILURE(rc))
377 return rc;
378
379#ifdef VBOX_WITHOUT_IDT_PATCHING
380 /*
381 * Register the Ring-0 VM handle with the session for fast ioctl calls.
382 */
383 rc = SUPSetVMForFastIOCtl(pVM->pVMR0);
384 if (VBOX_FAILURE(rc))
385 return rc;
386#endif
387
388 /*
389 * Init core code.
390 */
391 rc = vmmR3InitCoreCode(pVM);
392 if (VBOX_SUCCESS(rc))
393 {
394 /*
395 * Allocate & init VMM GC stack.
396 * The stack pages are also used by the VMM R0 when VMMR0CallHost is invoked.
397 * (The page protection is modifed during R3 init completion.)
398 */
399#ifdef VBOX_STRICT_VMM_STACK
400 rc = MMHyperAlloc(pVM, VMM_STACK_SIZE + PAGE_SIZE + PAGE_SIZE, PAGE_SIZE, MM_TAG_VMM, (void **)&pVM->vmm.s.pbHCStack);
401#else
402 rc = MMHyperAlloc(pVM, VMM_STACK_SIZE, PAGE_SIZE, MM_TAG_VMM, (void **)&pVM->vmm.s.pbHCStack);
403#endif
404 if (VBOX_SUCCESS(rc))
405 {
406 /* Set HC and GC stack pointers to top of stack. */
407 pVM->vmm.s.CallHostR0JmpBuf.pvSavedStack = (RTR0PTR)pVM->vmm.s.pbHCStack;
408 pVM->vmm.s.pbGCStack = MMHyperHC2GC(pVM, pVM->vmm.s.pbHCStack);
409 pVM->vmm.s.pbGCStackBottom = pVM->vmm.s.pbGCStack + VMM_STACK_SIZE;
410 AssertRelease(pVM->vmm.s.pbGCStack);
411
412 /* Set hypervisor eip. */
413 CPUMSetHyperESP(pVM, pVM->vmm.s.pbGCStack);
414
415 /*
416 * Allocate GC & R0 Logger instances (they are finalized in the relocator).
417 */
418#ifdef LOG_ENABLED
419 PRTLOGGER pLogger = RTLogDefaultInstance();
420 if (pLogger)
421 {
422 pVM->vmm.s.cbLoggerGC = RT_OFFSETOF(RTLOGGERGC, afGroups[pLogger->cGroups]);
423 rc = MMHyperAlloc(pVM, pVM->vmm.s.cbLoggerGC, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pLoggerHC);
424 if (VBOX_SUCCESS(rc))
425 {
426 pVM->vmm.s.pLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pLoggerHC);
427
428/*
429 * Ring-0 logging isn't 100% safe yet (thread id reuse / process exit cleanup), so
430 * you have to sign up here by adding your defined(DEBUG_<userid>) to the #if.
431 *
432 * If you want to log in non-debug modes, you'll have to remember to change SUPDRvShared.c
433 * to not stub all the log functions.
434 */
435# ifdef DEBUG_sandervl
436 rc = MMHyperAlloc(pVM, RT_OFFSETOF(VMMR0LOGGER, Logger.afGroups[pLogger->cGroups]),
437 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pR0Logger);
438 if (VBOX_SUCCESS(rc))
439 {
440 pVM->vmm.s.pR0Logger->pVM = pVM;
441 //pVM->vmm.s.pR0Logger->fCreated = false;
442 pVM->vmm.s.pR0Logger->cbLogger = RT_OFFSETOF(RTLOGGER, afGroups[pLogger->cGroups]);
443 }
444# endif
445 }
446 }
447#endif /* LOG_ENABLED */
448
449#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
450 /*
451 * Allocate GC Release Logger instances (finalized in the relocator).
452 */
453 if (VBOX_SUCCESS(rc))
454 {
455 PRTLOGGER pRelLogger = RTLogRelDefaultInstance();
456 if (pRelLogger)
457 {
458 pVM->vmm.s.cbRelLoggerGC = RT_OFFSETOF(RTLOGGERGC, afGroups[pRelLogger->cGroups]);
459 rc = MMHyperAlloc(pVM, pVM->vmm.s.cbRelLoggerGC, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRelLoggerHC);
460 if (VBOX_SUCCESS(rc))
461 pVM->vmm.s.pRelLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pRelLoggerHC);
462 }
463 }
464#endif /* VBOX_WITH_GC_AND_R0_RELEASE_LOG */
465
466#ifdef VBOX_WITH_NMI
467 /*
468 * Allocate mapping for the host APIC.
469 */
470 if (VBOX_SUCCESS(rc))
471 {
472 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
473 AssertRC(rc);
474 }
475#endif
476 if (VBOX_SUCCESS(rc))
477 {
478 rc = RTCritSectInit(&pVM->vmm.s.CritSectVMLock);
479 if (VBOX_SUCCESS(rc))
480 {
481 /*
482 * Statistics.
483 */
484 STAM_REG(pVM, &pVM->vmm.s.StatRunGC, STAMTYPE_COUNTER, "/VMM/RunGC", STAMUNIT_OCCURENCES, "Number of context switches.");
485 STAM_REG(pVM, &pVM->vmm.s.StatGCRetNormal, STAMTYPE_COUNTER, "/VMM/GCRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
486 STAM_REG(pVM, &pVM->vmm.s.StatGCRetInterrupt, STAMTYPE_COUNTER, "/VMM/GCRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
487 STAM_REG(pVM, &pVM->vmm.s.StatGCRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/GCRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
488 STAM_REG(pVM, &pVM->vmm.s.StatGCRetGuestTrap, STAMTYPE_COUNTER, "/VMM/GCRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
489 STAM_REG(pVM, &pVM->vmm.s.StatGCRetRingSwitch, STAMTYPE_COUNTER, "/VMM/GCRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
490 STAM_REG(pVM, &pVM->vmm.s.StatGCRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/GCRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
491 STAM_REG(pVM, &pVM->vmm.s.StatGCRetExceptionPrivilege, STAMTYPE_COUNTER, "/VMM/GCRet/ExceptionPrivilege", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_EXCEPTION_PRIVILEGED returns.");
492 STAM_REG(pVM, &pVM->vmm.s.StatGCRetStaleSelector, STAMTYPE_COUNTER, "/VMM/GCRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
493 STAM_REG(pVM, &pVM->vmm.s.StatGCRetIRETTrap, STAMTYPE_COUNTER, "/VMM/GCRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
494 STAM_REG(pVM, &pVM->vmm.s.StatGCRetEmulate, STAMTYPE_COUNTER, "/VMM/GCRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
495 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/GCRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
496 STAM_REG(pVM, &pVM->vmm.s.StatGCRetIORead, STAMTYPE_COUNTER, "/VMM/GCRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_READ returns.");
497 STAM_REG(pVM, &pVM->vmm.s.StatGCRetIOWrite, STAMTYPE_COUNTER, "/VMM/GCRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_WRITE returns.");
498 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMMIORead, STAMTYPE_COUNTER, "/VMM/GCRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_READ returns.");
499 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/GCRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_WRITE returns.");
500 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/GCRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_READ_WRITE returns.");
501 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/GCRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
502 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/GCRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
503 STAM_REG(pVM, &pVM->vmm.s.StatGCRetLDTFault, STAMTYPE_COUNTER, "/VMM/GCRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
504 STAM_REG(pVM, &pVM->vmm.s.StatGCRetGDTFault, STAMTYPE_COUNTER, "/VMM/GCRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
505 STAM_REG(pVM, &pVM->vmm.s.StatGCRetIDTFault, STAMTYPE_COUNTER, "/VMM/GCRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
506 STAM_REG(pVM, &pVM->vmm.s.StatGCRetTSSFault, STAMTYPE_COUNTER, "/VMM/GCRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
507 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPDFault, STAMTYPE_COUNTER, "/VMM/GCRet/PDFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_PD_FAULT returns.");
508 STAM_REG(pVM, &pVM->vmm.s.StatGCRetCSAMTask, STAMTYPE_COUNTER, "/VMM/GCRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
509 STAM_REG(pVM, &pVM->vmm.s.StatGCRetSyncCR3, STAMTYPE_COUNTER, "/VMM/GCRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
510 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMisc, STAMTYPE_COUNTER, "/VMM/GCRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
511 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPatchInt3, STAMTYPE_COUNTER, "/VMM/GCRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
512 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPatchPF, STAMTYPE_COUNTER, "/VMM/GCRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
513 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPatchGP, STAMTYPE_COUNTER, "/VMM/GCRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
514 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/GCRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
515 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPageOverflow, STAMTYPE_COUNTER, "/VMM/GCRet/InvlpgOverflow", STAMUNIT_OCCURENCES, "Number of VERR_REM_FLUSHED_PAGES_OVERFLOW returns.");
516 STAM_REG(pVM, &pVM->vmm.s.StatGCRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/GCRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
517 STAM_REG(pVM, &pVM->vmm.s.StatGCRetToR3, STAMTYPE_COUNTER, "/VMM/GCRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
518 STAM_REG(pVM, &pVM->vmm.s.StatGCRetTimerPending, STAMTYPE_COUNTER, "/VMM/GCRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
519 STAM_REG(pVM, &pVM->vmm.s.StatGCRetInterruptPending, STAMTYPE_COUNTER, "/VMM/GCRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
520 STAM_REG(pVM, &pVM->vmm.s.StatGCRetCallHost, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/Misc", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
521 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPGMGrowRAM, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/GrowRAM", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
522 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPDMLock, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/PDMLock", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
523 STAM_REG(pVM, &pVM->vmm.s.StatGCRetLogFlush, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/LogFlush", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
524 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPDMQueueFlush, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/QueueFlush", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
525 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPGMPoolGrow, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/PGMPoolGrow",STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
526 STAM_REG(pVM, &pVM->vmm.s.StatGCRetRemReplay, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/REMReplay", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
527 STAM_REG(pVM, &pVM->vmm.s.StatGCRetVMSetError, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/VMSetError", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
528 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPGMLock, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/PGMLock", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
529 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/GCRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
530 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/GCRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns.");
531 STAM_REG(pVM, &pVM->vmm.s.StatGCRetEmulHlt, STAMTYPE_COUNTER, "/VMM/GCRet/EmulHlt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_EMULATE_INSTR_HLT returns.");
532 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPendingRequest, STAMTYPE_COUNTER, "/VMM/GCRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
533
534 return VINF_SUCCESS;
535 }
536 AssertRC(rc);
537 }
538 }
539 /** @todo: Need failure cleanup. */
540
541 //more todo in here?
542 //if (VBOX_SUCCESS(rc))
543 //{
544 //}
545 //int rc2 = vmmR3TermCoreCode(pVM);
546 //AssertRC(rc2));
547 }
548
549 return rc;
550}
551
552
553/**
554 * Ring-3 init finalizing.
555 *
556 * @returns VBox status code.
557 * @param pVM The VM handle.
558 */
559VMMR3DECL(int) VMMR3InitFinalize(PVM pVM)
560{
561#ifdef VBOX_STRICT_VMM_STACK
562 /*
563 * Two inaccessible pages at each sides of the stack to catch over/under-flows.
564 */
565 memset(pVM->vmm.s.pbHCStack - PAGE_SIZE, 0xcc, PAGE_SIZE);
566 PGMMapSetPage(pVM, MMHyperHC2GC(pVM, pVM->vmm.s.pbHCStack - PAGE_SIZE), PAGE_SIZE, 0);
567 RTMemProtect(pVM->vmm.s.pbHCStack - PAGE_SIZE, PAGE_SIZE, RTMEM_PROT_NONE);
568
569 memset(pVM->vmm.s.pbHCStack + VMM_STACK_SIZE, 0xcc, PAGE_SIZE);
570 PGMMapSetPage(pVM, MMHyperHC2GC(pVM, pVM->vmm.s.pbHCStack + VMM_STACK_SIZE), PAGE_SIZE, 0);
571 RTMemProtect(pVM->vmm.s.pbHCStack + VMM_STACK_SIZE, PAGE_SIZE, RTMEM_PROT_NONE);
572#endif
573
574 /*
575 * Set page attributes to r/w for stack pages.
576 */
577 int rc = PGMMapSetPage(pVM, pVM->vmm.s.pbGCStack, VMM_STACK_SIZE, X86_PTE_P | X86_PTE_A | X86_PTE_D | X86_PTE_RW);
578 AssertRC(rc);
579 if (VBOX_SUCCESS(rc))
580 {
581 /*
582 * Create the EMT yield timer.
583 */
584 rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, "EMT Yielder", &pVM->vmm.s.pYieldTimer);
585 if (VBOX_SUCCESS(rc))
586 rc = TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldEveryMillies);
587 }
588#ifdef VBOX_WITH_NMI
589 /*
590 * Map the host APIC into GC - This may be host os specific!
591 */
592 if (VBOX_SUCCESS(rc))
593 rc = PGMMap(pVM, pVM->vmm.s.GCPtrApicBase, 0xfee00000, PAGE_SIZE,
594 X86_PTE_P | X86_PTE_RW | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_A | X86_PTE_D);
595#endif
596 return rc;
597}
598
599
600/**
601 * Initializes the R0 VMM.
602 *
603 * @returns VBox status code.
604 * @param pVM The VM to operate on.
605 */
606VMMR3DECL(int) VMMR3InitR0(PVM pVM)
607{
608 int rc;
609
610 /*
611 * Initialize the ring-0 logger if we haven't done so yet.
612 */
613 if ( pVM->vmm.s.pR0Logger
614 && !pVM->vmm.s.pR0Logger->fCreated)
615 {
616 rc = VMMR3UpdateLoggers(pVM);
617 if (VBOX_FAILURE(rc))
618 return rc;
619 }
620
621 /*
622 * Call Ring-0 entry with init code.
623 */
624 for (;;)
625 {
626#ifdef NO_SUPCALLR0VMM
627 //rc = VERR_GENERAL_FAILURE;
628 rc = VINF_SUCCESS;
629#else
630 rc = SUPCallVMMR0(pVM->pVMR0, VMMR0_DO_VMMR0_INIT, (void *)VBOX_VERSION);
631#endif
632 if ( pVM->vmm.s.pR0Logger
633 && pVM->vmm.s.pR0Logger->Logger.offScratch > 0)
634 RTLogFlushToLogger(&pVM->vmm.s.pR0Logger->Logger, NULL);
635 if (rc != VINF_VMM_CALL_HOST)
636 break;
637 rc = vmmR3ServiceCallHostRequest(pVM);
638 if (VBOX_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
639 break;
640 break; // remove this when we do setjmp for all ring-0 stuff.
641 }
642
643 if (VBOX_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
644 {
645 LogRel(("R0 init failed, rc=%Vra\n", rc));
646 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
647 rc = VERR_INTERNAL_ERROR;
648 }
649 return rc;
650}
651
652
653/**
654 * Initializes the GC VMM.
655 *
656 * @returns VBox status code.
657 * @param pVM The VM to operate on.
658 */
659VMMR3DECL(int) VMMR3InitGC(PVM pVM)
660{
661 /* In VMX mode, there's no need to init GC. */
662 if (pVM->vmm.s.fSwitcherDisabled)
663 return VINF_SUCCESS;
664
665 /*
666 * Call VMMGCInit():
667 * -# resolve the address.
668 * -# setup stackframe and EIP to use the trampoline.
669 * -# do a generic hypervisor call.
670 */
671 RTGCPTR GCPtrEP;
672 int rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMGCEntry", &GCPtrEP);
673 if (VBOX_SUCCESS(rc))
674 {
675 CPUMHyperSetCtxCore(pVM, NULL);
676 CPUMSetHyperESP(pVM, pVM->vmm.s.pbGCStackBottom); /* Clear the stack. */
677 CPUMPushHyper(pVM, VBOX_VERSION); /* Param 2: Version argument. */
678 CPUMPushHyper(pVM, VMMGC_DO_VMMGC_INIT); /* Param 1: Operation. */
679 CPUMPushHyper(pVM, pVM->pVMGC); /* Param 0: pVM */
680 CPUMPushHyper(pVM, 3 * sizeof(RTGCPTR)); /* trampoline param: stacksize. */
681 CPUMPushHyper(pVM, GCPtrEP); /* Call EIP. */
682 CPUMSetHyperEIP(pVM, pVM->vmm.s.pfnGCCallTrampoline);
683
684 for (;;)
685 {
686#ifdef NO_SUPCALLR0VMM
687 //rc = VERR_GENERAL_FAILURE;
688 rc = VINF_SUCCESS;
689#else
690 rc = SUPCallVMMR0(pVM->pVMR0, VMMR0_DO_CALL_HYPERVISOR, NULL);
691#endif
692#ifdef LOG_ENABLED
693 PRTLOGGERGC pLogger = pVM->vmm.s.pLoggerHC;
694 if ( pLogger
695 && pLogger->offScratch > 0)
696 RTLogFlushGC(NULL, pLogger);
697#endif
698#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
699 PRTLOGGERGC pRelLogger = pVM->vmm.s.pRelLoggerHC;
700 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
701 RTLogFlushGC(RTLogRelDefaultInstance(), pRelLogger);
702#endif
703 if (rc != VINF_VMM_CALL_HOST)
704 break;
705 rc = vmmR3ServiceCallHostRequest(pVM);
706 if (VBOX_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
707 break;
708 }
709
710 if (VBOX_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
711 {
712 VMMR3FatalDump(pVM, rc);
713 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
714 rc = VERR_INTERNAL_ERROR;
715 }
716 AssertRC(rc);
717 }
718 return rc;
719}
720
721
722/**
723 * Terminate the VMM bits.
724 *
725 * @returns VINF_SUCCESS.
726 * @param pVM The VM handle.
727 */
728VMMR3DECL(int) VMMR3Term(PVM pVM)
729{
730 /** @todo must call ring-0 so the logger thread instance can be properly removed. */
731
732#ifdef VBOX_STRICT_VMM_STACK
733 /*
734 * Make the two stack guard pages present again.
735 */
736 RTMemProtect(pVM->vmm.s.pbHCStack - PAGE_SIZE, PAGE_SIZE, RTMEM_PROT_READ | RTMEM_PROT_WRITE);
737 RTMemProtect(pVM->vmm.s.pbHCStack + VMM_STACK_SIZE, PAGE_SIZE, RTMEM_PROT_READ | RTMEM_PROT_WRITE);
738#endif
739 return VINF_SUCCESS;
740}
741
742
743/**
744 * Applies relocations to data and code managed by this
745 * component. This function will be called at init and
746 * whenever the VMM need to relocate it self inside the GC.
747 *
748 * The VMM will need to apply relocations to the core code.
749 *
750 * @param pVM The VM handle.
751 * @param offDelta The relocation delta.
752 */
753VMMR3DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
754{
755 LogFlow(("VMMR3Relocate: offDelta=%VGv\n", offDelta));
756
757 /*
758 * Recalc the GC address.
759 */
760 pVM->vmm.s.pvGCCoreCode = MMHyperHC2GC(pVM, pVM->vmm.s.pvHCCoreCodeR3);
761
762 /*
763 * The stack.
764 */
765 CPUMSetHyperESP(pVM, CPUMGetHyperESP(pVM) + offDelta);
766 pVM->vmm.s.pbGCStack = MMHyperHC2GC(pVM, pVM->vmm.s.pbHCStack);
767 pVM->vmm.s.pbGCStackBottom = pVM->vmm.s.pbGCStack + VMM_STACK_SIZE;
768
769 /*
770 * All the switchers.
771 */
772 for (unsigned iSwitcher = 0; iSwitcher < ELEMENTS(s_apSwitchers); iSwitcher++)
773 {
774 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[iSwitcher];
775 if (pSwitcher && pSwitcher->pfnRelocate)
776 {
777 unsigned off = pVM->vmm.s.aoffSwitchers[iSwitcher];
778 pSwitcher->pfnRelocate(pVM,
779 pSwitcher,
780 (uint8_t *)pVM->vmm.s.pvHCCoreCodeR0 + off,
781 (uint8_t *)pVM->vmm.s.pvHCCoreCodeR3 + off,
782 pVM->vmm.s.pvGCCoreCode + off,
783 pVM->vmm.s.HCPhysCoreCode + off);
784 }
785 }
786
787 /*
788 * Recalc the GC address for the current switcher.
789 */
790 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[pVM->vmm.s.enmSwitcher];
791 RTGCPTR GCPtr = pVM->vmm.s.pvGCCoreCode + pVM->vmm.s.aoffSwitchers[pVM->vmm.s.enmSwitcher];
792 pVM->vmm.s.pfnGCGuestToHost = GCPtr + pSwitcher->offGCGuestToHost;
793 pVM->vmm.s.pfnGCCallTrampoline = GCPtr + pSwitcher->offGCCallTrampoline;
794 pVM->pfnVMMGCGuestToHostAsm = GCPtr + pSwitcher->offGCGuestToHostAsm;
795 pVM->pfnVMMGCGuestToHostAsmHyperCtx = GCPtr + pSwitcher->offGCGuestToHostAsmHyperCtx;
796 pVM->pfnVMMGCGuestToHostAsmGuestCtx = GCPtr + pSwitcher->offGCGuestToHostAsmGuestCtx;
797
798 /*
799 * Get other GC entry points.
800 */
801 int rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuest", &pVM->vmm.s.pfnCPUMGCResumeGuest);
802 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuest not found! rc=%Vra\n", rc));
803
804 rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuestV86", &pVM->vmm.s.pfnCPUMGCResumeGuestV86);
805 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuestV86 not found! rc=%Vra\n", rc));
806
807 /*
808 * Update the logger.
809 */
810 VMMR3UpdateLoggers(pVM);
811}
812
813
814/**
815 * Updates the settings for the GC and R0 loggers.
816 *
817 * @returns VBox status code.
818 * @param pVM The VM handle.
819 */
820VMMR3DECL(int) VMMR3UpdateLoggers(PVM pVM)
821{
822 /*
823 * Simply clone the logger instance (for GC).
824 */
825 int rc = VINF_SUCCESS;
826 RTGCPTR GCPtrLoggerFlush = 0;
827
828 if (pVM->vmm.s.pLoggerHC
829#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
830 || pVM->vmm.s.pRelLoggerHC
831#endif
832 )
833 {
834 rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerFlush", &GCPtrLoggerFlush);
835 AssertReleaseMsgRC(rc, ("vmmGCLoggerFlush not found! rc=%Vra\n", rc));
836 }
837
838 if (pVM->vmm.s.pLoggerHC)
839 {
840 RTGCPTR GCPtrLoggerWrapper = 0;
841 rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerWrapper", &GCPtrLoggerWrapper);
842 AssertReleaseMsgRC(rc, ("vmmGCLoggerWrapper not found! rc=%Vra\n", rc));
843 pVM->vmm.s.pLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pLoggerHC);
844 rc = RTLogCloneGC(NULL /* default */, pVM->vmm.s.pLoggerHC, pVM->vmm.s.cbLoggerGC,
845 GCPtrLoggerWrapper, GCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
846 AssertReleaseMsgRC(rc, ("RTLogCloneGC failed! rc=%Vra\n", rc));
847 }
848
849#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
850 if (pVM->vmm.s.pRelLoggerHC)
851 {
852 RTGCPTR GCPtrLoggerWrapper = 0;
853 rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCRelLoggerWrapper", &GCPtrLoggerWrapper);
854 AssertReleaseMsgRC(rc, ("vmmGCRelLoggerWrapper not found! rc=%Vra\n", rc));
855 pVM->vmm.s.pRelLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pRelLoggerHC);
856 rc = RTLogCloneGC(RTLogRelDefaultInstance(), pVM->vmm.s.pRelLoggerHC, pVM->vmm.s.cbRelLoggerGC,
857 GCPtrLoggerWrapper, GCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
858 AssertReleaseMsgRC(rc, ("RTLogCloneGC failed! rc=%Vra\n", rc));
859 }
860#endif /* VBOX_WITH_GC_AND_R0_RELEASE_LOG */
861
862 /*
863 * For the ring-0 EMT logger, we use a per-thread logger
864 * instance in ring-0. Only initialize it once.
865 */
866 PVMMR0LOGGER pR0Logger = pVM->vmm.s.pR0Logger;
867 if (pR0Logger)
868 {
869 if (!pR0Logger->fCreated)
870 {
871 RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR;
872 rc = PDMR3GetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
873 AssertReleaseMsgRCReturn(rc, ("VMMLoggerWrapper not found! rc=%Vra\n", rc), rc);
874
875 RTR0PTR pfnLoggerFlush = NIL_RTR0PTR;
876 rc = PDMR3GetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
877 AssertReleaseMsgRCReturn(rc, ("VMMLoggerFlush not found! rc=%Vra\n", rc), rc);
878
879 rc = RTLogCreateForR0(&pR0Logger->Logger, pR0Logger->cbLogger,
880 *(PFNRTLOGGER *)&pfnLoggerWrapper, *(PFNRTLOGFLUSH *)&pfnLoggerFlush,
881 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY);
882 AssertReleaseMsgRCReturn(rc, ("RTLogCloneGC failed! rc=%Vra\n", rc), rc);
883 pR0Logger->fCreated = true;
884 }
885
886 rc = RTLogCopyGroupsAndFlags(&pR0Logger->Logger, NULL /* default */, RTLOGFLAGS_BUFFERED, 0);
887 AssertRC(rc);
888 }
889
890 return rc;
891}
892
893
894/**
895 * Generic switch code relocator.
896 *
897 * @param pVM The VM handle.
898 * @param pSwitcher The switcher definition.
899 * @param pu8CodeR3 Pointer to the core code block for the switcher, ring-3 mapping.
900 * @param pu8CodeR0 Pointer to the core code block for the switcher, ring-0 mapping.
901 * @param GCPtrCode The guest context address corresponding to pu8Code.
902 * @param u32IDCode The identity mapped (ID) address corresponding to pu8Code.
903 * @param SelCS The hypervisor CS selector.
904 * @param SelDS The hypervisor DS selector.
905 * @param SelTSS The hypervisor TSS selector.
906 * @param GCPtrGDT The GC address of the hypervisor GDT.
907 * @param SelCS64 The 64-bit mode hypervisor CS selector.
908 */
909static void vmmR3SwitcherGenericRelocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode,
910 RTSEL SelCS, RTSEL SelDS, RTSEL SelTSS, RTGCPTR GCPtrGDT, RTSEL SelCS64)
911{
912 union
913 {
914 const uint8_t *pu8;
915 const uint16_t *pu16;
916 const uint32_t *pu32;
917 const uint64_t *pu64;
918 const void *pv;
919 uintptr_t u;
920 } u;
921 u.pv = pSwitcher->pvFixups;
922
923 /*
924 * Process fixups.
925 */
926 uint8_t u8;
927 while ((u8 = *u.pu8++) != FIX_THE_END)
928 {
929 /*
930 * Get the source (where to write the fixup).
931 */
932 uint32_t offSrc = *u.pu32++;
933 Assert(offSrc < pSwitcher->cbCode);
934 union
935 {
936 uint8_t *pu8;
937 uint16_t *pu16;
938 uint32_t *pu32;
939 uint64_t *pu64;
940 uintptr_t u;
941 } uSrc;
942 uSrc.pu8 = pu8CodeR3 + offSrc;
943
944 /* The fixup target and method depends on the type. */
945 switch (u8)
946 {
947 /*
948 * 32-bit relative, source in HC and target in GC.
949 */
950 case FIX_HC_2_GC_NEAR_REL:
951 {
952 Assert(offSrc - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offSrc - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
953 uint32_t offTrg = *u.pu32++;
954 Assert(offTrg - pSwitcher->offGCCode < pSwitcher->cbGCCode);
955 *uSrc.pu32 = (uint32_t)((GCPtrCode + offTrg) - (uSrc.u + 4));
956 break;
957 }
958
959 /*
960 * 32-bit relative, source in HC and target in ID.
961 */
962 case FIX_HC_2_ID_NEAR_REL:
963 {
964 Assert(offSrc - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offSrc - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
965 uint32_t offTrg = *u.pu32++;
966 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
967 *uSrc.pu32 = (uint32_t)((u32IDCode + offTrg) - (uSrc.u + 4));
968 break;
969 }
970
971 /*
972 * 32-bit relative, source in GC and target in HC.
973 */
974 case FIX_GC_2_HC_NEAR_REL:
975 {
976 Assert(offSrc - pSwitcher->offGCCode < pSwitcher->cbGCCode);
977 uint32_t offTrg = *u.pu32++;
978 Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
979 *uSrc.pu32 = (uint32_t)(((uintptr_t)pu8CodeR0 + offTrg) - (GCPtrCode + offSrc + 4));
980 break;
981 }
982
983 /*
984 * 32-bit relative, source in GC and target in ID.
985 */
986 case FIX_GC_2_ID_NEAR_REL:
987 {
988 Assert(offSrc - pSwitcher->offGCCode < pSwitcher->cbGCCode);
989 uint32_t offTrg = *u.pu32++;
990 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
991 *uSrc.pu32 = (uint32_t)((u32IDCode + offTrg) - (GCPtrCode + offSrc + 4));
992 break;
993 }
994
995 /*
996 * 32-bit relative, source in ID and target in HC.
997 */
998 case FIX_ID_2_HC_NEAR_REL:
999 {
1000 Assert(offSrc - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offSrc - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
1001 uint32_t offTrg = *u.pu32++;
1002 Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
1003 *uSrc.pu32 = (uint32_t)(((uintptr_t)pu8CodeR0 + offTrg) - (u32IDCode + offSrc + 4));
1004 break;
1005 }
1006
1007 /*
1008 * 32-bit relative, source in ID and target in HC.
1009 */
1010 case FIX_ID_2_GC_NEAR_REL:
1011 {
1012 Assert(offSrc - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offSrc - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
1013 uint32_t offTrg = *u.pu32++;
1014 Assert(offTrg - pSwitcher->offGCCode < pSwitcher->cbGCCode);
1015 *uSrc.pu32 = (uint32_t)((GCPtrCode + offTrg) - (u32IDCode + offSrc + 4));
1016 break;
1017 }
1018
1019 /*
1020 * 16:32 far jump, target in GC.
1021 */
1022 case FIX_GC_FAR32:
1023 {
1024 uint32_t offTrg = *u.pu32++;
1025 Assert(offTrg - pSwitcher->offGCCode < pSwitcher->cbGCCode);
1026 *uSrc.pu32++ = (uint32_t)(GCPtrCode + offTrg);
1027 *uSrc.pu16++ = SelCS;
1028 break;
1029 }
1030
1031 /*
1032 * Make 32-bit GC pointer given CPUM offset.
1033 */
1034 case FIX_GC_CPUM_OFF:
1035 {
1036 uint32_t offCPUM = *u.pu32++;
1037 Assert(offCPUM < sizeof(pVM->cpum));
1038 *uSrc.pu32 = (uint32_t)(VM_GUEST_ADDR(pVM, &pVM->cpum) + offCPUM);
1039 break;
1040 }
1041
1042 /*
1043 * Make 32-bit GC pointer given VM offset.
1044 */
1045 case FIX_GC_VM_OFF:
1046 {
1047 uint32_t offVM = *u.pu32++;
1048 Assert(offVM < sizeof(VM));
1049 *uSrc.pu32 = (uint32_t)(VM_GUEST_ADDR(pVM, pVM) + offVM);
1050 break;
1051 }
1052
1053 /*
1054 * Make 32-bit HC pointer given CPUM offset.
1055 */
1056 case FIX_HC_CPUM_OFF:
1057 {
1058 uint32_t offCPUM = *u.pu32++;
1059 Assert(offCPUM < sizeof(pVM->cpum));
1060 *uSrc.pu32 = (uint32_t)pVM->pVMR0 + RT_OFFSETOF(VM, cpum) + offCPUM;
1061 break;
1062 }
1063
1064 /*
1065 * Make 32-bit R0 pointer given VM offset.
1066 */
1067 case FIX_HC_VM_OFF:
1068 {
1069 uint32_t offVM = *u.pu32++;
1070 Assert(offVM < sizeof(VM));
1071 *uSrc.pu32 = (uint32_t)pVM->pVMR0 + offVM;
1072 break;
1073 }
1074
1075 /*
1076 * Store the 32-Bit CR3 (32-bit) for the intermediate memory context.
1077 */
1078 case FIX_INTER_32BIT_CR3:
1079 {
1080
1081 *uSrc.pu32 = PGMGetInter32BitCR3(pVM);
1082 break;
1083 }
1084
1085 /*
1086 * Store the PAE CR3 (32-bit) for the intermediate memory context.
1087 */
1088 case FIX_INTER_PAE_CR3:
1089 {
1090
1091 *uSrc.pu32 = PGMGetInterPaeCR3(pVM);
1092 break;
1093 }
1094
1095 /*
1096 * Store the AMD64 CR3 (32-bit) for the intermediate memory context.
1097 */
1098 case FIX_INTER_AMD64_CR3:
1099 {
1100
1101 *uSrc.pu32 = PGMGetInterAmd64CR3(pVM);
1102 break;
1103 }
1104
1105 /*
1106 * Store the 32-Bit CR3 (32-bit) for the hypervisor (shadow) memory context.
1107 */
1108 case FIX_HYPER_32BIT_CR3:
1109 {
1110
1111 *uSrc.pu32 = PGMGetHyper32BitCR3(pVM);
1112 break;
1113 }
1114
1115 /*
1116 * Store the PAE CR3 (32-bit) for the hypervisor (shadow) memory context.
1117 */
1118 case FIX_HYPER_PAE_CR3:
1119 {
1120
1121 *uSrc.pu32 = PGMGetHyperPaeCR3(pVM);
1122 break;
1123 }
1124
1125 /*
1126 * Store the AMD64 CR3 (32-bit) for the hypervisor (shadow) memory context.
1127 */
1128 case FIX_HYPER_AMD64_CR3:
1129 {
1130
1131 *uSrc.pu32 = PGMGetHyperAmd64CR3(pVM);
1132 break;
1133 }
1134
1135 /*
1136 * Store Hypervisor CS (16-bit).
1137 */
1138 case FIX_HYPER_CS:
1139 {
1140 *uSrc.pu16 = SelCS;
1141 break;
1142 }
1143
1144 /*
1145 * Store Hypervisor DS (16-bit).
1146 */
1147 case FIX_HYPER_DS:
1148 {
1149 *uSrc.pu16 = SelDS;
1150 break;
1151 }
1152
1153 /*
1154 * Store Hypervisor TSS (16-bit).
1155 */
1156 case FIX_HYPER_TSS:
1157 {
1158 *uSrc.pu16 = SelTSS;
1159 break;
1160 }
1161
1162 /*
1163 * Store the 32-bit GC address of the 2nd dword of the TSS descriptor (in the GDT).
1164 */
1165 case FIX_GC_TSS_GDTE_DW2:
1166 {
1167 RTGCPTR GCPtr = GCPtrGDT + (SelTSS & ~7) + 4;
1168 *uSrc.pu32 = (uint32_t)GCPtr;
1169 break;
1170 }
1171
1172
1173 ///@todo case FIX_CR4_MASK:
1174 ///@todo case FIX_CR4_OSFSXR:
1175
1176 /*
1177 * Insert relative jump to specified target it FXSAVE/FXRSTOR isn't supported by the cpu.
1178 */
1179 case FIX_NO_FXSAVE_JMP:
1180 {
1181 uint32_t offTrg = *u.pu32++;
1182 Assert(offTrg < pSwitcher->cbCode);
1183 if (!CPUMSupportsFXSR(pVM))
1184 {
1185 *uSrc.pu8++ = 0xe9; /* jmp rel32 */
1186 *uSrc.pu32++ = offTrg - (offSrc + 5);
1187 }
1188 else
1189 {
1190 *uSrc.pu8++ = *((uint8_t *)pSwitcher->pvCode + offSrc);
1191 *uSrc.pu32++ = *(uint32_t *)((uint8_t *)pSwitcher->pvCode + offSrc + 1);
1192 }
1193 break;
1194 }
1195
1196 /*
1197 * Insert relative jump to specified target it SYSENTER isn't used by the host.
1198 */
1199 case FIX_NO_SYSENTER_JMP:
1200 {
1201 uint32_t offTrg = *u.pu32++;
1202 Assert(offTrg < pSwitcher->cbCode);
1203 if (!CPUMIsHostUsingSysEnter(pVM))
1204 {
1205 *uSrc.pu8++ = 0xe9; /* jmp rel32 */
1206 *uSrc.pu32++ = offTrg - (offSrc + 5);
1207 }
1208 else
1209 {
1210 *uSrc.pu8++ = *((uint8_t *)pSwitcher->pvCode + offSrc);
1211 *uSrc.pu32++ = *(uint32_t *)((uint8_t *)pSwitcher->pvCode + offSrc + 1);
1212 }
1213 break;
1214 }
1215
1216 /*
1217 * Insert relative jump to specified target it SYSENTER isn't used by the host.
1218 */
1219 case FIX_NO_SYSCALL_JMP:
1220 {
1221 uint32_t offTrg = *u.pu32++;
1222 Assert(offTrg < pSwitcher->cbCode);
1223 if (!CPUMIsHostUsingSysEnter(pVM))
1224 {
1225 *uSrc.pu8++ = 0xe9; /* jmp rel32 */
1226 *uSrc.pu32++ = offTrg - (offSrc + 5);
1227 }
1228 else
1229 {
1230 *uSrc.pu8++ = *((uint8_t *)pSwitcher->pvCode + offSrc);
1231 *uSrc.pu32++ = *(uint32_t *)((uint8_t *)pSwitcher->pvCode + offSrc + 1);
1232 }
1233 break;
1234 }
1235
1236 /*
1237 * 32-bit HC pointer fixup to (HC) target within the code (32-bit offset).
1238 */
1239 case FIX_HC_32BIT:
1240 {
1241 uint32_t offTrg = *u.pu32++;
1242 Assert(offSrc < pSwitcher->cbCode);
1243 Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
1244 *uSrc.pu32 = (uintptr_t)pu8CodeR0 + offTrg;
1245 break;
1246 }
1247
1248#if defined(__AMD64__) || defined(VBOX_WITH_HYBIRD_32BIT_KERNEL)
1249 /*
1250 * 64-bit HC pointer fixup to (HC) target within the code (32-bit offset).
1251 */
1252 case FIX_HC_64BIT:
1253 {
1254 uint32_t offTrg = *u.pu32++;
1255 Assert(offSrc < pSwitcher->cbCode);
1256 Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
1257 *uSrc.pu64 = (uintptr_t)pu8CodeR0 + offTrg;
1258 break;
1259 }
1260
1261 /*
1262 * 64-bit HC Code Selector (no argument).
1263 */
1264 case FIX_HC_64BIT_CS:
1265 {
1266 Assert(offSrc < pSwitcher->cbCode);
1267#if defined(__DARWIN__) && defined(VBOX_WITH_HYBIRD_32BIT_KERNEL)
1268 *uSrc.pu16 = 0x80; /* KERNEL64_CS from i386/seg.h */
1269#else
1270 AssertFatalMsgFailed(("FIX_HC_64BIT_CS not implemented for this host\n"));
1271#endif
1272 break;
1273 }
1274
1275 /*
1276 * 64-bit HC pointer to the CPUM instance data (no argument).
1277 */
1278 case FIX_HC_64BIT_CPUM:
1279 {
1280 Assert(offSrc < pSwitcher->cbCode);
1281 *uSrc.pu64 = pVM->pVMR0 + RT_OFFSETOF(VM, cpum);
1282 break;
1283 }
1284#endif
1285
1286 /*
1287 * 32-bit ID pointer to (ID) target within the code (32-bit offset).
1288 */
1289 case FIX_ID_32BIT:
1290 {
1291 uint32_t offTrg = *u.pu32++;
1292 Assert(offSrc < pSwitcher->cbCode);
1293 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
1294 *uSrc.pu32 = u32IDCode + offTrg;
1295 break;
1296 }
1297
1298 /*
1299 * 64-bit ID pointer to (ID) target within the code (32-bit offset).
1300 */
1301 case FIX_ID_64BIT:
1302 {
1303 uint32_t offTrg = *u.pu32++;
1304 Assert(offSrc < pSwitcher->cbCode);
1305 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
1306 *uSrc.pu64 = u32IDCode + offTrg;
1307 break;
1308 }
1309
1310 /*
1311 * Far 16:32 ID pointer to 64-bit mode (ID) target within the code (32-bit offset).
1312 */
1313 case FIX_ID_FAR32_TO_64BIT_MODE:
1314 {
1315 uint32_t offTrg = *u.pu32++;
1316 Assert(offSrc < pSwitcher->cbCode);
1317 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
1318 *uSrc.pu32++ = u32IDCode + offTrg;
1319 *uSrc.pu16 = SelCS64;
1320 AssertRelease(SelCS64);
1321 break;
1322 }
1323
1324#ifdef VBOX_WITH_NMI
1325 /*
1326 * 32-bit address to the APIC base.
1327 */
1328 case FIX_GC_APIC_BASE_32BIT:
1329 {
1330 *uSrc.pu32 = pVM->vmm.s.GCPtrApicBase;
1331 break;
1332 }
1333#endif
1334
1335 default:
1336 AssertReleaseMsgFailed(("Unknown fixup %d in switcher %s\n", u8, pSwitcher->pszDesc));
1337 break;
1338 }
1339 }
1340
1341#ifdef LOG_ENABLED
1342 /*
1343 * If Log2 is enabled disassemble the switcher code.
1344 *
1345 * The switcher code have 1-2 HC parts, 1 GC part and 0-2 ID parts.
1346 */
1347 if (LogIs2Enabled())
1348 {
1349 RTLogPrintf("*** Disassembly of switcher %d '%s' %#x bytes ***\n"
1350 " pu8CodeR0 = %p\n"
1351 " pu8CodeR3 = %p\n"
1352 " GCPtrCode = %VGv\n"
1353 " u32IDCode = %08x\n"
1354 " pVMGC = %VGv\n"
1355 " pCPUMGC = %VGv\n"
1356 " pVMHC = %p\n"
1357 " pCPUMHC = %p\n"
1358 " GCPtrGDT = %VGv\n"
1359 " InterCR3s = %08x, %08x, %08x (32-Bit, PAE, AMD64)\n"
1360 " HyperCR3s = %08x, %08x, %08x (32-Bit, PAE, AMD64)\n"
1361 " SelCS = %04x\n"
1362 " SelDS = %04x\n"
1363 " SelCS64 = %04x\n"
1364 " SelTSS = %04x\n",
1365 pSwitcher->enmType, pSwitcher->pszDesc, pSwitcher->cbCode,
1366 pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode, VM_GUEST_ADDR(pVM, pVM),
1367 VM_GUEST_ADDR(pVM, &pVM->cpum), pVM, &pVM->cpum,
1368 GCPtrGDT,
1369 PGMGetHyper32BitCR3(pVM), PGMGetHyperPaeCR3(pVM), PGMGetHyperAmd64CR3(pVM),
1370 PGMGetInter32BitCR3(pVM), PGMGetInterPaeCR3(pVM), PGMGetInterAmd64CR3(pVM),
1371 SelCS, SelDS, SelCS64, SelTSS);
1372
1373 uint32_t offCode = 0;
1374 while (offCode < pSwitcher->cbCode)
1375 {
1376 /*
1377 * Figure out where this is.
1378 */
1379 const char *pszDesc = NULL;
1380 RTUINTPTR uBase;
1381 uint32_t cbCode;
1382 if (offCode - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0)
1383 {
1384 pszDesc = "HCCode0";
1385 uBase = (RTUINTPTR)pu8CodeR0;
1386 offCode = pSwitcher->offHCCode0;
1387 cbCode = pSwitcher->cbHCCode0;
1388 }
1389 else if (offCode - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1)
1390 {
1391 pszDesc = "HCCode1";
1392 uBase = (RTUINTPTR)pu8CodeR0;
1393 offCode = pSwitcher->offHCCode1;
1394 cbCode = pSwitcher->cbHCCode1;
1395 }
1396 else if (offCode - pSwitcher->offGCCode < pSwitcher->cbGCCode)
1397 {
1398 pszDesc = "GCCode";
1399 uBase = GCPtrCode;
1400 offCode = pSwitcher->offGCCode;
1401 cbCode = pSwitcher->cbGCCode;
1402 }
1403 else if (offCode - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0)
1404 {
1405 pszDesc = "IDCode0";
1406 uBase = u32IDCode;
1407 offCode = pSwitcher->offIDCode0;
1408 cbCode = pSwitcher->cbIDCode0;
1409 }
1410 else if (offCode - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1)
1411 {
1412 pszDesc = "IDCode1";
1413 uBase = u32IDCode;
1414 offCode = pSwitcher->offIDCode1;
1415 cbCode = pSwitcher->cbIDCode1;
1416 }
1417 else
1418 {
1419 RTLogPrintf(" %04x: %02x '%c' (nowhere)\n",
1420 offCode, pu8CodeR3[offCode], isprint(pu8CodeR3[offCode]) ? pu8CodeR3[offCode] : ' ');
1421 offCode++;
1422 continue;
1423 }
1424
1425 /*
1426 * Disassemble it.
1427 */
1428 RTLogPrintf(" %s: offCode=%#x cbCode=%#x\n", pszDesc, offCode, cbCode);
1429 DISCPUSTATE Cpu = {0};
1430 Cpu.mode = CPUMODE_32BIT;
1431 while (cbCode > 0)
1432 {
1433 /* try label it */
1434 if (pSwitcher->offR0HostToGuest == offCode)
1435 RTLogPrintf(" *R0HostToGuest:\n");
1436 if (pSwitcher->offGCGuestToHost == offCode)
1437 RTLogPrintf(" *GCGuestToHost:\n");
1438 if (pSwitcher->offGCCallTrampoline == offCode)
1439 RTLogPrintf(" *GCCallTrampoline:\n");
1440 if (pSwitcher->offGCGuestToHostAsm == offCode)
1441 RTLogPrintf(" *GCGuestToHostAsm:\n");
1442 if (pSwitcher->offGCGuestToHostAsmHyperCtx == offCode)
1443 RTLogPrintf(" *GCGuestToHostAsmHyperCtx:\n");
1444 if (pSwitcher->offGCGuestToHostAsmGuestCtx == offCode)
1445 RTLogPrintf(" *GCGuestToHostAsmGuestCtx:\n");
1446
1447 /* disas */
1448 uint32_t cbInstr = 0;
1449 char szDisas[256];
1450 if (DISInstr(&Cpu, (RTUINTPTR)pu8CodeR3 + offCode, uBase - (RTUINTPTR)pu8CodeR3, &cbInstr, szDisas))
1451 RTLogPrintf(" %04x: %s", offCode, szDisas); //for whatever reason szDisas includes '\n'.
1452 else
1453 {
1454 RTLogPrintf(" %04x: %02x '%c'\n",
1455 offCode, pu8CodeR3[offCode], isprint(pu8CodeR3[offCode]) ? pu8CodeR3[offCode] : ' ');
1456 cbInstr = 1;
1457 }
1458 offCode += cbInstr;
1459 cbCode -= RT_MIN(cbInstr, cbCode);
1460 }
1461 }
1462 }
1463#endif
1464}
1465
1466
1467/**
1468 * Relocator for the 32-Bit to 32-Bit world switcher.
1469 */
1470DECLCALLBACK(void) vmmR3Switcher32BitTo32Bit_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
1471{
1472 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode,
1473 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
1474}
1475
1476
1477/**
1478 * Relocator for the 32-Bit to PAE world switcher.
1479 */
1480DECLCALLBACK(void) vmmR3Switcher32BitToPAE_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
1481{
1482 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode,
1483 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
1484}
1485
1486
1487/**
1488 * Relocator for the PAE to 32-Bit world switcher.
1489 */
1490DECLCALLBACK(void) vmmR3SwitcherPAETo32Bit_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
1491{
1492 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode,
1493 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
1494}
1495
1496
1497/**
1498 * Relocator for the PAE to PAE world switcher.
1499 */
1500DECLCALLBACK(void) vmmR3SwitcherPAEToPAE_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
1501{
1502 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode,
1503 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
1504}
1505
1506
1507/**
1508 * Relocator for the AMD64 to PAE world switcher.
1509 */
1510DECLCALLBACK(void) vmmR3SwitcherAMD64ToPAE_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
1511{
1512 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode,
1513 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), SELMGetHyperCS64(pVM));
1514}
1515
1516
1517/**
1518 * Gets the pointer to g_szRTAssertMsg1 in GC.
1519 * @returns Pointer to VMMGC::g_szRTAssertMsg1.
1520 * Returns NULL if not present.
1521 * @param pVM The VM handle.
1522 */
1523VMMR3DECL(const char *) VMMR3GetGCAssertMsg1(PVM pVM)
1524{
1525 RTGCPTR GCPtr;
1526 int rc = PDMR3GetSymbolGC(pVM, NULL, "g_szRTAssertMsg1", &GCPtr);
1527 if (VBOX_SUCCESS(rc))
1528 return (const char *)MMHyperGC2HC(pVM, GCPtr);
1529 return NULL;
1530}
1531
1532
1533/**
1534 * Gets the pointer to g_szRTAssertMsg2 in GC.
1535 * @returns Pointer to VMMGC::g_szRTAssertMsg2.
1536 * Returns NULL if not present.
1537 * @param pVM The VM handle.
1538 */
1539VMMR3DECL(const char *) VMMR3GetGCAssertMsg2(PVM pVM)
1540{
1541 RTGCPTR GCPtr;
1542 int rc = PDMR3GetSymbolGC(pVM, NULL, "g_szRTAssertMsg2", &GCPtr);
1543 if (VBOX_SUCCESS(rc))
1544 return (const char *)MMHyperGC2HC(pVM, GCPtr);
1545 return NULL;
1546}
1547
1548
1549/**
1550 * Execute state save operation.
1551 *
1552 * @returns VBox status code.
1553 * @param pVM VM Handle.
1554 * @param pSSM SSM operation handle.
1555 */
1556static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
1557{
1558 LogFlow(("vmmR3Save:\n"));
1559
1560 /*
1561 * The hypervisor stack.
1562 */
1563 SSMR3PutGCPtr(pSSM, pVM->vmm.s.pbGCStackBottom);
1564 RTGCPTR GCPtrESP = CPUMGetHyperESP(pVM);
1565 Assert(pVM->vmm.s.pbGCStackBottom - GCPtrESP <= VMM_STACK_SIZE);
1566 SSMR3PutGCPtr(pSSM, GCPtrESP);
1567 SSMR3PutMem(pSSM, pVM->vmm.s.pbHCStack, VMM_STACK_SIZE);
1568 return SSMR3PutU32(pSSM, ~0); /* terminator */
1569}
1570
1571
1572/**
1573 * Execute state load operation.
1574 *
1575 * @returns VBox status code.
1576 * @param pVM VM Handle.
1577 * @param pSSM SSM operation handle.
1578 * @param u32Version Data layout version.
1579 */
1580static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
1581{
1582 LogFlow(("vmmR3Load:\n"));
1583
1584 /*
1585 * Validate version.
1586 */
1587 if (u32Version != VMM_SAVED_STATE_VERSION)
1588 {
1589 Log(("vmmR3Load: Invalid version u32Version=%d!\n", u32Version));
1590 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1591 }
1592
1593 /*
1594 * Check that the stack is in the same place, or that it's fearly empty.
1595 */
1596 RTGCPTR GCPtrStackBottom;
1597 SSMR3GetGCPtr(pSSM, &GCPtrStackBottom);
1598 RTGCPTR GCPtrESP;
1599 int rc = SSMR3GetGCPtr(pSSM, &GCPtrESP);
1600 if (VBOX_FAILURE(rc))
1601 return rc;
1602 if ( GCPtrStackBottom == pVM->vmm.s.pbGCStackBottom
1603 || (GCPtrStackBottom - GCPtrESP < 32)) /** @todo This will break if we start preemting the hypervisor. */
1604 {
1605 /*
1606 * We *must* set the ESP because the CPUM load + PGM load relocations will render
1607 * the ESP in CPUM fatally invalid.
1608 */
1609 CPUMSetHyperESP(pVM, GCPtrESP);
1610
1611 /* restore the stack. */
1612 SSMR3GetMem(pSSM, pVM->vmm.s.pbHCStack, VMM_STACK_SIZE);
1613
1614 /* terminator */
1615 uint32_t u32;
1616 rc = SSMR3GetU32(pSSM, &u32);
1617 if (VBOX_FAILURE(rc))
1618 return rc;
1619 if (u32 != ~0U)
1620 {
1621 AssertMsgFailed(("u32=%#x\n", u32));
1622 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1623 }
1624 return VINF_SUCCESS;
1625 }
1626
1627 LogRel(("The stack is not in the same place and it's not empty! GCPtrStackBottom=%VGv pbGCStackBottom=%VGv ESP=%VGv\n",
1628 GCPtrStackBottom, pVM->vmm.s.pbGCStackBottom, GCPtrESP));
1629 AssertFailed();
1630 return VERR_SSM_LOAD_CONFIG_MISMATCH;
1631}
1632
1633
1634/**
1635 * Selects the switcher to be used for switching to GC.
1636 *
1637 * @returns VBox status code.
1638 * @param pVM VM handle.
1639 * @param enmSwitcher The new switcher.
1640 * @remark This function may be called before the VMM is initialized.
1641 */
1642VMMR3DECL(int) VMMR3SelectSwitcher(PVM pVM, VMMSWITCHER enmSwitcher)
1643{
1644 /*
1645 * Validate input.
1646 */
1647 if ( enmSwitcher < VMMSWITCHER_INVALID
1648 || enmSwitcher >= VMMSWITCHER_MAX)
1649 {
1650 AssertMsgFailed(("Invalid input enmSwitcher=%d\n", enmSwitcher));
1651 return VERR_INVALID_PARAMETER;
1652 }
1653
1654 /*
1655 * Select the new switcher.
1656 */
1657 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[enmSwitcher];
1658 if (pSwitcher)
1659 {
1660 Log(("VMMR3SelectSwitcher: enmSwitcher %d -> %d %s\n", pVM->vmm.s.enmSwitcher, enmSwitcher, pSwitcher->pszDesc));
1661 pVM->vmm.s.enmSwitcher = enmSwitcher;
1662
1663 RTR0PTR pbCodeR0 = (RTR0PTR)pVM->vmm.s.pvHCCoreCodeR0 + pVM->vmm.s.aoffSwitchers[enmSwitcher]; /** @todo fix the pvHCCoreCodeR0 type */
1664 pVM->vmm.s.pfnR0HostToGuest = pbCodeR0 + pSwitcher->offR0HostToGuest;
1665
1666 RTGCPTR GCPtr = pVM->vmm.s.pvGCCoreCode + pVM->vmm.s.aoffSwitchers[enmSwitcher];
1667 pVM->vmm.s.pfnGCGuestToHost = GCPtr + pSwitcher->offGCGuestToHost;
1668 pVM->vmm.s.pfnGCCallTrampoline = GCPtr + pSwitcher->offGCCallTrampoline;
1669 pVM->pfnVMMGCGuestToHostAsm = GCPtr + pSwitcher->offGCGuestToHostAsm;
1670 pVM->pfnVMMGCGuestToHostAsmHyperCtx = GCPtr + pSwitcher->offGCGuestToHostAsmHyperCtx;
1671 pVM->pfnVMMGCGuestToHostAsmGuestCtx = GCPtr + pSwitcher->offGCGuestToHostAsmGuestCtx;
1672 return VINF_SUCCESS;
1673 }
1674 return VERR_NOT_IMPLEMENTED;
1675}
1676
1677/**
1678 * Disable the switcher logic permanently.
1679 *
1680 * @returns VBox status code.
1681 * @param pVM VM handle.
1682 */
1683VMMR3DECL(int) VMMR3DisableSwitcher(PVM pVM)
1684{
1685/** @todo r=bird: I would suggest that we create a dummy switcher which just does something like:
1686 * @code
1687 * mov eax, VERR_INTERNAL_ERROR
1688 * ret
1689 * @endcode
1690 * And then check for fSwitcherDisabled in VMMR3SelectSwitcher() in order to prevent it from being removed.
1691 */
1692 pVM->vmm.s.fSwitcherDisabled = true;
1693 return VINF_SUCCESS;
1694}
1695
1696
1697/**
1698 * Resolve a builtin GC symbol.
1699 * Called by PDM when loading or relocating GC modules.
1700 *
1701 * @returns VBox status
1702 * @param pVM VM Handle.
1703 * @param pszSymbol Symbol to resolv
1704 * @param pGCPtrValue Where to store the symbol value.
1705 * @remark This has to work before VMMR3Relocate() is called.
1706 */
1707VMMR3DECL(int) VMMR3GetImportGC(PVM pVM, const char *pszSymbol, PRTGCPTR pGCPtrValue)
1708{
1709 if (!strcmp(pszSymbol, "g_Logger"))
1710 {
1711 if (pVM->vmm.s.pLoggerHC)
1712 pVM->vmm.s.pLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pLoggerHC);
1713 *pGCPtrValue = pVM->vmm.s.pLoggerGC;
1714 }
1715 else if (!strcmp(pszSymbol, "g_RelLogger"))
1716 {
1717#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
1718 if (pVM->vmm.s.pRelLoggerHC)
1719 pVM->vmm.s.pRelLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pRelLoggerHC);
1720 *pGCPtrValue = pVM->vmm.s.pRelLoggerGC;
1721#else
1722 *pGCPtrValue = NIL_RTGCPTR;
1723#endif
1724 }
1725 else
1726 return VERR_SYMBOL_NOT_FOUND;
1727 return VINF_SUCCESS;
1728}
1729
1730
1731/**
1732 * Suspends the the CPU yielder.
1733 *
1734 * @param pVM The VM handle.
1735 */
1736VMMR3DECL(void) VMMR3YieldSuspend(PVM pVM)
1737{
1738 if (!pVM->vmm.s.cYieldResumeMillies)
1739 {
1740 uint64_t u64Now = TMTimerGet(pVM->vmm.s.pYieldTimer);
1741 uint64_t u64Expire = TMTimerGetExpire(pVM->vmm.s.pYieldTimer);
1742 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
1743 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1744 else
1745 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM->vmm.s.pYieldTimer, u64Expire - u64Now);
1746 TMTimerStop(pVM->vmm.s.pYieldTimer);
1747 }
1748 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1749}
1750
1751
1752/**
1753 * Stops the the CPU yielder.
1754 *
1755 * @param pVM The VM handle.
1756 */
1757VMMR3DECL(void) VMMR3YieldStop(PVM pVM)
1758{
1759 if (!pVM->vmm.s.cYieldResumeMillies)
1760 TMTimerStop(pVM->vmm.s.pYieldTimer);
1761 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1762 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1763}
1764
1765
1766/**
1767 * Resumes the CPU yielder when it has been a suspended or stopped.
1768 *
1769 * @param pVM The VM handle.
1770 */
1771VMMR3DECL(void) VMMR3YieldResume(PVM pVM)
1772{
1773 if (pVM->vmm.s.cYieldResumeMillies)
1774 {
1775 TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldResumeMillies);
1776 pVM->vmm.s.cYieldResumeMillies = 0;
1777 }
1778}
1779
1780
1781/**
1782 * Internal timer callback function.
1783 *
1784 * @param pVM The VM.
1785 * @param pTimer The timer handle.
1786 * @param pvUser User argument specified upon timer creation.
1787 */
1788static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser)
1789{
1790 /*
1791 * This really needs some careful tuning. While we shouldn't be too gready since
1792 * that'll cause the rest of the system to stop up, we shouldn't be too nice either
1793 * because that'll cause us to stop up.
1794 *
1795 * The current logic is to use the default interval when there is no lag worth
1796 * mentioning, but when we start accumulating lag we don't bother yielding at all.
1797 *
1798 * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL
1799 * so the lag is up to date.)
1800 */
1801 const uint64_t u64Lag = TMVirtualSyncGetLag(pVM);
1802 if ( u64Lag < 50000000 /* 50ms */
1803 || ( u64Lag < 1000000000 /* 1s */
1804 && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */)
1805 )
1806 {
1807 uint64_t u64Elapsed = RTTimeNanoTS();
1808 pVM->vmm.s.u64LastYield = u64Elapsed;
1809
1810 RTThreadYield();
1811
1812#ifdef LOG_ENABLED
1813 u64Elapsed = RTTimeNanoTS() - u64Elapsed;
1814 Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed));
1815#endif
1816 }
1817 TMTimerSetMillies(pTimer, pVM->vmm.s.cYieldEveryMillies);
1818}
1819
1820
1821/**
1822 * Acquire global VM lock.
1823 *
1824 * @returns VBox status code
1825 * @param pVM The VM to operate on.
1826 */
1827VMMR3DECL(int) VMMR3Lock(PVM pVM)
1828{
1829 return RTCritSectEnter(&pVM->vmm.s.CritSectVMLock);
1830}
1831
1832
1833/**
1834 * Release global VM lock.
1835 *
1836 * @returns VBox status code
1837 * @param pVM The VM to operate on.
1838 */
1839VMMR3DECL(int) VMMR3Unlock(PVM pVM)
1840{
1841 return RTCritSectLeave(&pVM->vmm.s.CritSectVMLock);
1842}
1843
1844
1845/**
1846 * Return global VM lock owner.
1847 *
1848 * @returns Thread id of owner.
1849 * @returns NIL_RTTHREAD if no owner.
1850 * @param pVM The VM to operate on.
1851 */
1852VMMR3DECL(RTNATIVETHREAD) VMMR3LockGetOwner(PVM pVM)
1853{
1854 return RTCritSectGetOwner(&pVM->vmm.s.CritSectVMLock);
1855}
1856
1857
1858/**
1859 * Checks if the current thread is the owner of the global VM lock.
1860 *
1861 * @returns true if owner.
1862 * @returns false if not owner.
1863 * @param pVM The VM to operate on.
1864 */
1865VMMR3DECL(bool) VMMR3LockIsOwner(PVM pVM)
1866{
1867 return RTCritSectIsOwner(&pVM->vmm.s.CritSectVMLock);
1868}
1869
1870
1871/**
1872 * Executes guest code.
1873 *
1874 * @param pVM VM handle.
1875 */
1876VMMR3DECL(int) VMMR3RawRunGC(PVM pVM)
1877{
1878 Log2(("VMMR3RawRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
1879
1880 /*
1881 * Set the EIP and ESP.
1882 */
1883 CPUMSetHyperEIP(pVM, CPUMGetGuestEFlags(pVM) & X86_EFL_VM
1884 ? pVM->vmm.s.pfnCPUMGCResumeGuestV86
1885 : pVM->vmm.s.pfnCPUMGCResumeGuest);
1886 CPUMSetHyperESP(pVM, pVM->vmm.s.pbGCStackBottom);
1887
1888 /*
1889 * We hide log flushes (outer) and hypervisor interrupts (inner).
1890 */
1891 for (;;)
1892 {
1893 int rc;
1894 do
1895 {
1896#ifdef NO_SUPCALLR0VMM
1897 rc = VERR_GENERAL_FAILURE;
1898#else
1899 rc = SUPCallVMMR0(pVM->pVMR0, VMMR0_DO_RAW_RUN, NULL);
1900#endif
1901 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1902
1903 /*
1904 * Flush the logs.
1905 */
1906#ifdef LOG_ENABLED
1907 PRTLOGGERGC pLogger = pVM->vmm.s.pLoggerHC;
1908 if ( pLogger
1909 && pLogger->offScratch > 0)
1910 RTLogFlushGC(NULL, pLogger);
1911#endif
1912#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
1913 PRTLOGGERGC pRelLogger = pVM->vmm.s.pRelLoggerHC;
1914 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1915 RTLogFlushGC(RTLogRelDefaultInstance(), pRelLogger);
1916#endif
1917 if (rc != VINF_VMM_CALL_HOST)
1918 {
1919 Log2(("VMMR3RawRunGC: returns %Vrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
1920 return rc;
1921 }
1922 rc = vmmR3ServiceCallHostRequest(pVM);
1923 if (VBOX_FAILURE(rc))
1924 return rc;
1925 /* Resume GC */
1926 }
1927}
1928
1929
1930/**
1931 * Executes guest code (Intel VMX and AMD SVM).
1932 *
1933 * @param pVM VM handle.
1934 */
1935VMMR3DECL(int) VMMR3HwAccRunGC(PVM pVM)
1936{
1937 Log2(("VMMR3HwAccRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
1938
1939 for (;;)
1940 {
1941 int rc;
1942 do
1943 {
1944#ifdef NO_SUPCALLR0VMM
1945 rc = VERR_GENERAL_FAILURE;
1946#else
1947 rc = SUPCallVMMR0(pVM->pVMR0, VMMR0_DO_HWACC_RUN, NULL);
1948#endif
1949 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1950
1951#ifdef LOG_ENABLED
1952 /*
1953 * Flush the log
1954 */
1955 PVMMR0LOGGER pR0Logger = pVM->vmm.s.pR0Logger;
1956 if ( pR0Logger
1957 && pR0Logger->Logger.offScratch > 0)
1958 RTLogFlushToLogger(&pR0Logger->Logger, NULL);
1959#endif /* !LOG_ENABLED */
1960 if (rc != VINF_VMM_CALL_HOST)
1961 {
1962 Log2(("VMMR3HwAccRunGC: returns %Vrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
1963 return rc;
1964 }
1965 rc = vmmR3ServiceCallHostRequest(pVM);
1966 if (VBOX_FAILURE(rc))
1967 return rc;
1968 /* Resume R0 */
1969 }
1970}
1971
1972/**
1973 * Calls GC a function.
1974 *
1975 * @param pVM The VM handle.
1976 * @param GCPtrEntry The GC function address.
1977 * @param cArgs The number of arguments in the ....
1978 * @param ... Arguments to the function.
1979 */
1980VMMR3DECL(int) VMMR3CallGC(PVM pVM, RTGCPTR GCPtrEntry, unsigned cArgs, ...)
1981{
1982 va_list args;
1983 va_start(args, cArgs);
1984 int rc = VMMR3CallGCV(pVM, GCPtrEntry, cArgs, args);
1985 va_end(args);
1986 return rc;
1987}
1988
1989
1990/**
1991 * Calls GC a function.
1992 *
1993 * @param pVM The VM handle.
1994 * @param GCPtrEntry The GC function address.
1995 * @param cArgs The number of arguments in the ....
1996 * @param args Arguments to the function.
1997 */
1998VMMR3DECL(int) VMMR3CallGCV(PVM pVM, RTGCPTR GCPtrEntry, unsigned cArgs, va_list args)
1999{
2000 Log2(("VMMR3CallGCV: GCPtrEntry=%VGv cArgs=%d\n", GCPtrEntry, cArgs));
2001
2002 /*
2003 * Setup the call frame using the trampoline.
2004 */
2005 CPUMHyperSetCtxCore(pVM, NULL);
2006 memset(pVM->vmm.s.pbHCStack, 0xaa, VMM_STACK_SIZE); /* Clear the stack. */
2007 CPUMSetHyperESP(pVM, pVM->vmm.s.pbGCStackBottom - cArgs * sizeof(RTGCUINTPTR));
2008 PRTGCUINTPTR pFrame = (PRTGCUINTPTR)(pVM->vmm.s.pbHCStack + VMM_STACK_SIZE) - cArgs;
2009 int i = cArgs;
2010 while (i-- > 0)
2011 *pFrame++ = va_arg(args, RTGCUINTPTR);
2012
2013 CPUMPushHyper(pVM, cArgs * sizeof(RTGCUINTPTR)); /* stack frame size */
2014 CPUMPushHyper(pVM, GCPtrEntry); /* what to call */
2015 CPUMSetHyperEIP(pVM, pVM->vmm.s.pfnGCCallTrampoline);
2016
2017 /*
2018 * We hide log flushes (outer) and hypervisor interrupts (inner).
2019 */
2020 for (;;)
2021 {
2022 int rc;
2023 do
2024 {
2025#ifdef NO_SUPCALLR0VMM
2026 rc = VERR_GENERAL_FAILURE;
2027#else
2028 rc = SUPCallVMMR0(pVM->pVMR0, VMMR0_DO_RAW_RUN, NULL);
2029#endif
2030 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
2031
2032 /*
2033 * Flush the logs.
2034 */
2035#ifdef LOG_ENABLED
2036 PRTLOGGERGC pLogger = pVM->vmm.s.pLoggerHC;
2037 if ( pLogger
2038 && pLogger->offScratch > 0)
2039 RTLogFlushGC(NULL, pLogger);
2040#endif
2041#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
2042 PRTLOGGERGC pRelLogger = pVM->vmm.s.pRelLoggerHC;
2043 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
2044 RTLogFlushGC(RTLogRelDefaultInstance(), pRelLogger);
2045#endif
2046 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
2047 VMMR3FatalDump(pVM, rc);
2048 if (rc != VINF_VMM_CALL_HOST)
2049 {
2050 Log2(("VMMR3CallGCV: returns %Vrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
2051 return rc;
2052 }
2053 rc = vmmR3ServiceCallHostRequest(pVM);
2054 if (VBOX_FAILURE(rc))
2055 return rc;
2056 }
2057}
2058
2059
2060/**
2061 * Resumes executing hypervisor code when interrupted
2062 * by a queue flush or a debug event.
2063 *
2064 * @returns VBox status code.
2065 * @param pVM VM handle.
2066 */
2067VMMR3DECL(int) VMMR3ResumeHyper(PVM pVM)
2068{
2069 Log(("VMMR3ResumeHyper: eip=%VGv esp=%VGv\n", CPUMGetHyperEIP(pVM), CPUMGetHyperESP(pVM)));
2070
2071 /*
2072 * We hide log flushes (outer) and hypervisor interrupts (inner).
2073 */
2074 for (;;)
2075 {
2076 int rc;
2077 do
2078 {
2079#ifdef NO_SUPCALLR0VMM
2080 rc = VERR_GENERAL_FAILURE;
2081#else
2082 rc = SUPCallVMMR0(pVM->pVMR0, VMMR0_DO_RAW_RUN, NULL);
2083#endif
2084 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
2085
2086 /*
2087 * Flush the loggers,
2088 */
2089#ifdef LOG_ENABLED
2090 PRTLOGGERGC pLogger = pVM->vmm.s.pLoggerHC;
2091 if ( pLogger
2092 && pLogger->offScratch > 0)
2093 RTLogFlushGC(NULL, pLogger);
2094#endif
2095#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
2096 PRTLOGGERGC pRelLogger = pVM->vmm.s.pRelLoggerHC;
2097 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
2098 RTLogFlushGC(RTLogRelDefaultInstance(), pRelLogger);
2099#endif
2100 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
2101 VMMR3FatalDump(pVM, rc);
2102 if (rc != VINF_VMM_CALL_HOST)
2103 {
2104 Log(("VMMR3ResumeHyper: returns %Vrc\n", rc));
2105 return rc;
2106 }
2107 rc = vmmR3ServiceCallHostRequest(pVM);
2108 if (VBOX_FAILURE(rc))
2109 return rc;
2110 }
2111}
2112
2113
2114/**
2115 * Service a call to the ring-3 host code.
2116 *
2117 * @returns VBox status code.
2118 * @param pVM VM handle.
2119 * @remark Careful with critsects.
2120 */
2121static int vmmR3ServiceCallHostRequest(PVM pVM)
2122{
2123 switch (pVM->vmm.s.enmCallHostOperation)
2124 {
2125 /*
2126 * Acquire the PDM lock.
2127 */
2128 case VMMCALLHOST_PDM_LOCK:
2129 {
2130 pVM->vmm.s.rcCallHost = PDMR3LockCall(pVM);
2131 break;
2132 }
2133
2134 /*
2135 * Flush a PDM queue.
2136 */
2137 case VMMCALLHOST_PDM_QUEUE_FLUSH:
2138 {
2139 PDMR3QueueFlushWorker(pVM, NULL);
2140 pVM->vmm.s.rcCallHost = VINF_SUCCESS;
2141 break;
2142 }
2143
2144 /*
2145 * Grow the PGM pool.
2146 */
2147 case VMMCALLHOST_PGM_POOL_GROW:
2148 {
2149 pVM->vmm.s.rcCallHost = PGMR3PoolGrow(pVM);
2150 break;
2151 }
2152
2153 /*
2154 * Acquire the PGM lock.
2155 */
2156 case VMMCALLHOST_PGM_LOCK:
2157 {
2158 pVM->vmm.s.rcCallHost = PGMR3LockCall(pVM);
2159 break;
2160 }
2161
2162 /*
2163 * Flush REM handler notifications.
2164 */
2165 case VMMCALLHOST_REM_REPLAY_HANDLER_NOTIFICATIONS:
2166 {
2167 REMR3ReplayHandlerNotifications(pVM);
2168 break;
2169 }
2170
2171 case VMMCALLHOST_PGM_RAM_GROW_RANGE:
2172 {
2173 pVM->vmm.s.rcCallHost = PGM3PhysGrowRange(pVM, pVM->vmm.s.u64CallHostArg);
2174 break;
2175 }
2176
2177 /*
2178 * This is a noop. We just take this route to avoid unnecessary
2179 * tests in the loops.
2180 */
2181 case VMMCALLHOST_VMM_LOGGER_FLUSH:
2182 break;
2183
2184 /*
2185 * Set the VM error message.
2186 */
2187 case VMMCALLHOST_VM_SET_ERROR:
2188 VMR3SetErrorWorker(pVM);
2189 break;
2190
2191 /*
2192 * Set the VM runtime error message.
2193 */
2194 case VMMCALLHOST_VM_SET_RUNTIME_ERROR:
2195 VMR3SetRuntimeErrorWorker(pVM);
2196 break;
2197
2198 default:
2199 AssertMsgFailed(("enmCallHostOperation=%d\n", pVM->vmm.s.enmCallHostOperation));
2200 return VERR_INTERNAL_ERROR;
2201 }
2202
2203 pVM->vmm.s.enmCallHostOperation = VMMCALLHOST_INVALID;
2204 return VINF_SUCCESS;
2205}
2206
2207
2208
2209/**
2210 * Structure to pass to DBGFR3Info() and for doing all other
2211 * output during fatal dump.
2212 */
2213typedef struct VMMR3FATALDUMPINFOHLP
2214{
2215 /** The helper core. */
2216 DBGFINFOHLP Core;
2217 /** The release logger instance. */
2218 PRTLOGGER pRelLogger;
2219 /** The saved release logger flags. */
2220 RTUINT fRelLoggerFlags;
2221 /** The logger instance. */
2222 PRTLOGGER pLogger;
2223 /** The saved logger flags. */
2224 RTUINT fLoggerFlags;
2225 /** The saved logger destination flags. */
2226 RTUINT fLoggerDestFlags;
2227 /** Whether to output to stderr or not. */
2228 bool fStdErr;
2229} VMMR3FATALDUMPINFOHLP, *PVMMR3FATALDUMPINFOHLP;
2230typedef const VMMR3FATALDUMPINFOHLP *PCVMMR3FATALDUMPINFOHLP;
2231
2232
2233/**
2234 * Print formatted string.
2235 *
2236 * @param pHlp Pointer to this structure.
2237 * @param pszFormat The format string.
2238 * @param ... Arguments.
2239 */
2240static DECLCALLBACK(void) vmmR3FatalDumpInfoHlp_pfnPrintf(PCDBGFINFOHLP pHlp, const char *pszFormat, ...)
2241{
2242 va_list args;
2243 va_start(args, pszFormat);
2244 pHlp->pfnPrintfV(pHlp, pszFormat, args);
2245 va_end(args);
2246}
2247
2248
2249/**
2250 * Print formatted string.
2251 *
2252 * @param pHlp Pointer to this structure.
2253 * @param pszFormat The format string.
2254 * @param args Argument list.
2255 */
2256static DECLCALLBACK(void) vmmR3FatalDumpInfoHlp_pfnPrintfV(PCDBGFINFOHLP pHlp, const char *pszFormat, va_list args)
2257{
2258 PCVMMR3FATALDUMPINFOHLP pMyHlp = (PCVMMR3FATALDUMPINFOHLP)pHlp;
2259
2260 if (pMyHlp->pRelLogger)
2261 {
2262 va_list args2;
2263 va_copy(args2, args);
2264 RTLogLoggerV(pMyHlp->pRelLogger, pszFormat, args2);
2265 va_end(args2);
2266 }
2267 if (pMyHlp->pLogger)
2268 {
2269 va_list args2;
2270 va_copy(args2, args);
2271 RTLogLoggerV(pMyHlp->pLogger, pszFormat, args);
2272 va_end(args2);
2273 }
2274 if (pMyHlp->fStdErr)
2275 {
2276 va_list args2;
2277 va_copy(args2, args);
2278 RTStrmPrintfV(g_pStdErr, pszFormat, args);
2279 va_end(args2);
2280 }
2281}
2282
2283
2284/**
2285 * Initializes the fatal dump output helper.
2286 *
2287 * @param pHlp The structure to initialize.
2288 */
2289static void vmmR3FatalDumpInfoHlpInit(PVMMR3FATALDUMPINFOHLP pHlp)
2290{
2291 memset(pHlp, 0, sizeof(*pHlp));
2292
2293 pHlp->Core.pfnPrintf = vmmR3FatalDumpInfoHlp_pfnPrintf;
2294 pHlp->Core.pfnPrintfV = vmmR3FatalDumpInfoHlp_pfnPrintfV;
2295
2296 /*
2297 * The loggers.
2298 */
2299 pHlp->pRelLogger = RTLogRelDefaultInstance();
2300#ifndef LOG_ENABLED
2301 if (!pHlp->pRelLogger)
2302#endif
2303 pHlp->pLogger = RTLogDefaultInstance();
2304
2305 if (pHlp->pRelLogger)
2306 {
2307 pHlp->fRelLoggerFlags = pHlp->pRelLogger->fFlags;
2308 pHlp->pRelLogger->fFlags &= ~(RTLOGFLAGS_BUFFERED | RTLOGFLAGS_DISABLED);
2309 }
2310
2311 if (pHlp->pLogger)
2312 {
2313 pHlp->fLoggerFlags = pHlp->pLogger->fFlags;
2314 pHlp->fLoggerDestFlags = pHlp->pLogger->fDestFlags;
2315 pHlp->pLogger->fFlags &= ~(RTLOGFLAGS_BUFFERED | RTLOGFLAGS_DISABLED);
2316 pHlp->pLogger->fDestFlags |= RTLOGDEST_DEBUGGER;
2317 }
2318
2319 /*
2320 * Check if we need write to stderr.
2321 */
2322 pHlp->fStdErr = (!pHlp->pRelLogger || !(pHlp->pRelLogger->fDestFlags & (RTLOGDEST_STDOUT | RTLOGDEST_STDERR)))
2323 && (!pHlp->pLogger || !(pHlp->pLogger->fDestFlags & (RTLOGDEST_STDOUT | RTLOGDEST_STDERR)));
2324}
2325
2326
2327/**
2328 * Deletes the fatal dump output helper.
2329 *
2330 * @param pHlp The structure to delete.
2331 */
2332static void vmmR3FatalDumpInfoHlpDelete(PVMMR3FATALDUMPINFOHLP pHlp)
2333{
2334 if (pHlp->pRelLogger)
2335 {
2336 RTLogFlush(pHlp->pRelLogger);
2337 pHlp->pRelLogger->fFlags = pHlp->fRelLoggerFlags;
2338 }
2339
2340 if (pHlp->pLogger)
2341 {
2342 RTLogFlush(pHlp->pLogger);
2343 pHlp->pLogger->fFlags = pHlp->fLoggerFlags;
2344 pHlp->pLogger->fDestFlags = pHlp->fLoggerDestFlags;
2345 }
2346}
2347
2348
2349/**
2350 * Dumps the VM state on a fatal error.
2351 *
2352 * @param pVM VM Handle.
2353 * @param rcErr VBox status code.
2354 */
2355VMMR3DECL(void) VMMR3FatalDump(PVM pVM, int rcErr)
2356{
2357 /*
2358 * Create our output helper and sync it with the log settings.
2359 * This helper will be used for all the output.
2360 */
2361 VMMR3FATALDUMPINFOHLP Hlp;
2362 PCDBGFINFOHLP pHlp = &Hlp.Core;
2363 vmmR3FatalDumpInfoHlpInit(&Hlp);
2364
2365 /*
2366 * Header.
2367 */
2368 pHlp->pfnPrintf(pHlp,
2369 "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"
2370 "!!\n"
2371 "!! Guru Meditation %d (%Vrc)\n"
2372 "!!\n",
2373 rcErr, rcErr);
2374
2375 /*
2376 * Continue according to context.
2377 */
2378 bool fDoneHyper = false;
2379 switch (rcErr)
2380 {
2381 /*
2382 * Hyper visor errors.
2383 */
2384 case VINF_EM_DBG_HYPER_ASSERTION:
2385 pHlp->pfnPrintf(pHlp, "%s%s!!\n", VMMR3GetGCAssertMsg1(pVM), VMMR3GetGCAssertMsg2(pVM));
2386 /* fall thru */
2387 case VERR_TRPM_DONT_PANIC:
2388 case VERR_TRPM_PANIC:
2389 case VINF_EM_RAW_STALE_SELECTOR:
2390 case VINF_EM_RAW_IRET_TRAP:
2391 case VINF_EM_DBG_HYPER_BREAKPOINT:
2392 case VINF_EM_DBG_HYPER_STEPPED:
2393 {
2394 /* Trap? */
2395 uint32_t uEIP = CPUMGetHyperEIP(pVM);
2396 TRPMEVENT enmType;
2397 uint8_t u8TrapNo = 0xce;
2398 RTGCUINT uErrorCode = 0xdeadface;
2399 RTGCUINTPTR uCR2 = 0xdeadface;
2400 int rc2 = TRPMQueryTrapAll(pVM, &u8TrapNo, &enmType, &uErrorCode, &uCR2);
2401 if (VBOX_SUCCESS(rc2))
2402 pHlp->pfnPrintf(pHlp,
2403 "!! TRAP=%02x ERRCD=%VGv CR2=%VGv EIP=%VGv Type=%d\n",
2404 u8TrapNo, uErrorCode, uCR2, uEIP, enmType);
2405 else
2406 pHlp->pfnPrintf(pHlp,
2407 "!! EIP=%VGv NOTRAP\n",
2408 uEIP);
2409
2410 /*
2411 * Try figure out where eip is.
2412 */
2413 /** @todo make query call for core code or move this function to VMM. */
2414 /* core code? */
2415 //if (uEIP - (RTGCUINTPTR)pVM->vmm.s.pvGCCoreCode < pVM->vmm.s.cbCoreCode)
2416 // pHlp->pfnPrintf(pHlp,
2417 // "!! EIP is in CoreCode, offset %#x\n",
2418 // uEIP - (RTGCUINTPTR)pVM->vmm.s.pvGCCoreCode);
2419 //else
2420 { /* ask PDM */
2421 /** @todo ask DBGFR3Sym later. */
2422 char szModName[64];
2423 RTGCPTR GCPtrMod;
2424 char szNearSym1[260];
2425 RTGCPTR GCPtrNearSym1;
2426 char szNearSym2[260];
2427 RTGCPTR GCPtrNearSym2;
2428 int rc = PDMR3QueryModFromEIP(pVM, uEIP,
2429 &szModName[0], sizeof(szModName), &GCPtrMod,
2430 &szNearSym1[0], sizeof(szNearSym1), &GCPtrNearSym1,
2431 &szNearSym2[0], sizeof(szNearSym2), &GCPtrNearSym2);
2432 if (VBOX_SUCCESS(rc))
2433 {
2434 pHlp->pfnPrintf(pHlp,
2435 "!! EIP in %s (%p) at rva %x near symbols:\n"
2436 "!! %VGv rva %VGv off %08x %s\n"
2437 "!! %VGv rva %VGv off -%08x %s\n",
2438 szModName, GCPtrMod, (unsigned)(uEIP - GCPtrMod),
2439 GCPtrNearSym1, GCPtrNearSym1 - GCPtrMod, (unsigned)(uEIP - GCPtrNearSym1), szNearSym1,
2440 GCPtrNearSym2, GCPtrNearSym2 - GCPtrMod, (unsigned)(GCPtrNearSym2 - uEIP), szNearSym2);
2441 }
2442 else
2443 pHlp->pfnPrintf(pHlp,
2444 "!! EIP is not in any code known to VMM!\n");
2445 }
2446
2447 /* Disassemble the instruction. */
2448 char szInstr[256];
2449 rc2 = DBGFR3DisasInstrEx(pVM, 0, 0, DBGF_DISAS_FLAGS_CURRENT_HYPER, &szInstr[0], sizeof(szInstr), NULL);
2450 if (VBOX_SUCCESS(rc2))
2451 pHlp->pfnPrintf(pHlp,
2452 "!! %s\n", szInstr);
2453
2454 /* Dump the hypervisor cpu state. */
2455 pHlp->pfnPrintf(pHlp,
2456 "!!\n"
2457 "!!\n"
2458 "!!\n");
2459 rc2 = DBGFR3Info(pVM, "cpumhyper", "verbose", pHlp);
2460 fDoneHyper = true;
2461
2462 /* Callstack. */
2463 DBGFSTACKFRAME Frame = {0};
2464 rc2 = DBGFR3StackWalkBeginHyper(pVM, &Frame);
2465 if (VBOX_SUCCESS(rc2))
2466 {
2467 pHlp->pfnPrintf(pHlp,
2468 "!!\n"
2469 "!! Call Stack:\n"
2470 "!!\n"
2471 "EBP Ret EBP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP Symbol [line]\n");
2472 do
2473 {
2474 pHlp->pfnPrintf(pHlp,
2475 "%08RX32 %08RX32 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32",
2476 (uint32_t)Frame.AddrFrame.off,
2477 (uint32_t)Frame.AddrReturnFrame.off,
2478 (uint32_t)Frame.AddrReturnPC.Sel,
2479 (uint32_t)Frame.AddrReturnPC.off,
2480 Frame.Args.au32[0],
2481 Frame.Args.au32[1],
2482 Frame.Args.au32[2],
2483 Frame.Args.au32[3]);
2484 pHlp->pfnPrintf(pHlp, " %RTsel:%08RGv", Frame.AddrPC.Sel, Frame.AddrPC.off);
2485 if (Frame.pSymPC)
2486 {
2487 RTGCINTPTR offDisp = Frame.AddrPC.FlatPtr - Frame.pSymPC->Value;
2488 if (offDisp > 0)
2489 pHlp->pfnPrintf(pHlp, " %s+%llx", Frame.pSymPC->szName, (int64_t)offDisp);
2490 else if (offDisp < 0)
2491 pHlp->pfnPrintf(pHlp, " %s-%llx", Frame.pSymPC->szName, -(int64_t)offDisp);
2492 else
2493 pHlp->pfnPrintf(pHlp, " %s", Frame.pSymPC->szName);
2494 }
2495 if (Frame.pLinePC)
2496 pHlp->pfnPrintf(pHlp, " [%s @ 0i%d]", Frame.pLinePC->szFilename, Frame.pLinePC->uLineNo);
2497 pHlp->pfnPrintf(pHlp, "\n");
2498
2499 /* next */
2500 rc2 = DBGFR3StackWalkNext(pVM, &Frame);
2501 } while (VBOX_SUCCESS(rc2));
2502 DBGFR3StackWalkEnd(pVM, &Frame);
2503 }
2504
2505 /* raw stack */
2506 pHlp->pfnPrintf(pHlp,
2507 "!!\n"
2508 "!! Raw stack (mind the direction).\n"
2509 "!!\n"
2510 "%.*Vhxd\n",
2511 VMM_STACK_SIZE, (char *)pVM->vmm.s.pbHCStack);
2512 break;
2513 }
2514
2515 default:
2516 {
2517 break;
2518 }
2519
2520 } /* switch (rcErr) */
2521
2522
2523 /*
2524 * Dump useful state information.
2525 */
2526 /** @todo convert these dumpers to DBGFR3Info() handlers!!! */
2527 pHlp->pfnPrintf(pHlp,
2528 "!!\n"
2529 "!! PGM Access Handlers & Stuff:\n"
2530 "!!\n");
2531 PGMR3DumpMappings(pVM);
2532
2533
2534 /*
2535 * Generic info dumper loop.
2536 */
2537 static struct
2538 {
2539 const char *pszInfo;
2540 const char *pszArgs;
2541 } const aInfo[] =
2542 {
2543 { "hma", NULL },
2544 { "cpumguest", "verbose" },
2545 { "cpumhyper", "verbose" },
2546 { "cpumhost", "verbose" },
2547 { "mode", "all" },
2548 { "cpuid", "verbose" },
2549 { "gdt", NULL },
2550 { "ldt", NULL },
2551 //{ "tss", NULL },
2552 { "ioport", NULL },
2553 { "mmio", NULL },
2554 { "phys", NULL },
2555 //{ "pgmpd", NULL }, - doesn't always work at init time...
2556 { "timers", NULL },
2557 { "activetimers", NULL },
2558 { "handlers", "phys virt stats" },
2559 { "cfgm", NULL },
2560 };
2561 for (unsigned i = 0; i < ELEMENTS(aInfo); i++)
2562 {
2563 if (fDoneHyper && !strcmp(aInfo[i].pszInfo, "cpumhyper"))
2564 continue;
2565 pHlp->pfnPrintf(pHlp,
2566 "!!\n"
2567 "!! {%s, %s}\n"
2568 "!!\n",
2569 aInfo[i].pszInfo, aInfo[i].pszArgs);
2570 DBGFR3Info(pVM, aInfo[i].pszInfo, aInfo[i].pszArgs, pHlp);
2571 }
2572
2573 /* done */
2574 pHlp->pfnPrintf(pHlp,
2575 "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
2576
2577
2578 /*
2579 * Delete the output instance (flushing and restoring of flags).
2580 */
2581 vmmR3FatalDumpInfoHlpDelete(&Hlp);
2582}
2583
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette