VirtualBox

source: vbox/trunk/src/VBox/VMM/VMM.cpp@ 32792

Last change on this file since 32792 was 32792, checked in by vboxsync, 14 years ago

And more

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 83.6 KB
Line 
1/* $Id: VMM.cpp 32792 2010-09-28 13:52:18Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18//#define NO_SUPCALLR0VMM
19
20/** @page pg_vmm VMM - The Virtual Machine Monitor
21 *
22 * The VMM component is two things at the moment, it's a component doing a few
23 * management and routing tasks, and it's the whole virtual machine monitor
24 * thing. For hysterical reasons, it is not doing all the management that one
25 * would expect, this is instead done by @ref pg_vm. We'll address this
26 * misdesign eventually.
27 *
28 * @see grp_vmm, grp_vm
29 *
30 *
31 * @section sec_vmmstate VMM State
32 *
33 * @image html VM_Statechart_Diagram.gif
34 *
35 * To be written.
36 *
37 *
38 * @subsection subsec_vmm_init VMM Initialization
39 *
40 * To be written.
41 *
42 *
43 * @subsection subsec_vmm_term VMM Termination
44 *
45 * To be written.
46 *
47 */
48
49/*******************************************************************************
50* Header Files *
51*******************************************************************************/
52#define LOG_GROUP LOG_GROUP_VMM
53#include <VBox/vmm.h>
54#include <VBox/vmapi.h>
55#include <VBox/pgm.h>
56#include <VBox/cfgm.h>
57#include <VBox/pdmqueue.h>
58#include <VBox/pdmcritsect.h>
59#include <VBox/pdmapi.h>
60#include <VBox/cpum.h>
61#include <VBox/mm.h>
62#include <VBox/iom.h>
63#include <VBox/trpm.h>
64#include <VBox/selm.h>
65#include <VBox/em.h>
66#include <VBox/sup.h>
67#include <VBox/dbgf.h>
68#include <VBox/csam.h>
69#include <VBox/patm.h>
70#include <VBox/rem.h>
71#include <VBox/ssm.h>
72#include <VBox/tm.h>
73#include "VMMInternal.h"
74#include "VMMSwitcher/VMMSwitcher.h"
75#include <VBox/vm.h>
76#include <VBox/ftm.h>
77
78#include <VBox/err.h>
79#include <VBox/param.h>
80#include <VBox/version.h>
81#include <VBox/x86.h>
82#include <VBox/hwaccm.h>
83#include <iprt/assert.h>
84#include <iprt/alloc.h>
85#include <iprt/asm.h>
86#include <iprt/time.h>
87#include <iprt/semaphore.h>
88#include <iprt/stream.h>
89#include <iprt/string.h>
90#include <iprt/stdarg.h>
91#include <iprt/ctype.h>
92
93
94
95/*******************************************************************************
96* Defined Constants And Macros *
97*******************************************************************************/
98/** The saved state version. */
99#define VMM_SAVED_STATE_VERSION 4
100/** The saved state version used by v3.0 and earlier. (Teleportation) */
101#define VMM_SAVED_STATE_VERSION_3_0 3
102
103
104/*******************************************************************************
105* Internal Functions *
106*******************************************************************************/
107static int vmmR3InitStacks(PVM pVM);
108static int vmmR3InitLoggers(PVM pVM);
109static void vmmR3InitRegisterStats(PVM pVM);
110static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
111static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
112static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser);
113static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu);
114static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
115
116
117/**
118 * Initializes the VMM.
119 *
120 * @returns VBox status code.
121 * @param pVM The VM to operate on.
122 */
123VMMR3DECL(int) VMMR3Init(PVM pVM)
124{
125 LogFlow(("VMMR3Init\n"));
126
127 /*
128 * Assert alignment, sizes and order.
129 */
130 AssertMsg(pVM->vmm.s.offVM == 0, ("Already initialized!\n"));
131 AssertCompile(sizeof(pVM->vmm.s) <= sizeof(pVM->vmm.padding));
132 AssertCompile(sizeof(pVM->aCpus[0].vmm.s) <= sizeof(pVM->aCpus[0].vmm.padding));
133
134 /*
135 * Init basic VM VMM members.
136 */
137 pVM->vmm.s.offVM = RT_OFFSETOF(VM, vmm);
138 pVM->vmm.s.pahEvtRendezvousEnterOrdered = NULL;
139 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
140 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
141 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
142 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
143
144 /** @cfgm{YieldEMTInterval, uint32_t, 1, UINT32_MAX, 23, ms}
145 * The EMT yield interval. The EMT yielding is a hack we employ to play a
146 * bit nicer with the rest of the system (like for instance the GUI).
147 */
148 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies,
149 23 /* Value arrived at after experimenting with the grub boot prompt. */);
150 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Rrc\n", rc), rc);
151
152
153 /** @cfgm{VMM/UsePeriodicPreemptionTimers, boolean, true}
154 * Controls whether we employ per-cpu preemption timers to limit the time
155 * spent executing guest code. This option is not available on all
156 * platforms and we will silently ignore this setting then. If we are
157 * running in VT-x mode, we will use the VMX-preemption timer instead of
158 * this one when possible.
159 */
160 PCFGMNODE pCfgVMM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "VMM");
161 rc = CFGMR3QueryBoolDef(pCfgVMM, "UsePeriodicPreemptionTimers", &pVM->vmm.s.fUsePeriodicPreemptionTimers, true);
162 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"VMM/UsePeriodicPreemptionTimers\", rc=%Rrc\n", rc), rc);
163
164 /*
165 * Initialize the VMM sync critical section and semaphores.
166 */
167 rc = RTCritSectInit(&pVM->vmm.s.CritSectSync);
168 AssertRCReturn(rc, rc);
169 pVM->vmm.s.pahEvtRendezvousEnterOrdered = (PRTSEMEVENT)MMR3HeapAlloc(pVM, MM_TAG_VMM, sizeof(RTSEMEVENT) * pVM->cCpus);
170 if (!pVM->vmm.s.pahEvtRendezvousEnterOrdered)
171 return VERR_NO_MEMORY;
172 for (VMCPUID i = 0; i < pVM->cCpus; i++)
173 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
174 for (VMCPUID i = 0; i < pVM->cCpus; i++)
175 {
176 rc = RTSemEventCreate(&pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
177 AssertRCReturn(rc, rc);
178 }
179 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousEnterOneByOne);
180 AssertRCReturn(rc, rc);
181 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
182 AssertRCReturn(rc, rc);
183 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousDone);
184 AssertRCReturn(rc, rc);
185 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousDoneCaller);
186 AssertRCReturn(rc, rc);
187
188 /* GC switchers are enabled by default. Turned off by HWACCM. */
189 pVM->vmm.s.fSwitcherDisabled = false;
190
191 /*
192 * Register the saved state data unit.
193 */
194 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
195 NULL, NULL, NULL,
196 NULL, vmmR3Save, NULL,
197 NULL, vmmR3Load, NULL);
198 if (RT_FAILURE(rc))
199 return rc;
200
201 /*
202 * Register the Ring-0 VM handle with the session for fast ioctl calls.
203 */
204 rc = SUPR3SetVMForFastIOCtl(pVM->pVMR0);
205 if (RT_FAILURE(rc))
206 return rc;
207
208 /*
209 * Init various sub-components.
210 */
211 rc = vmmR3SwitcherInit(pVM);
212 if (RT_SUCCESS(rc))
213 {
214 rc = vmmR3InitStacks(pVM);
215 if (RT_SUCCESS(rc))
216 {
217 rc = vmmR3InitLoggers(pVM);
218
219#ifdef VBOX_WITH_NMI
220 /*
221 * Allocate mapping for the host APIC.
222 */
223 if (RT_SUCCESS(rc))
224 {
225 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
226 AssertRC(rc);
227 }
228#endif
229 if (RT_SUCCESS(rc))
230 {
231 /*
232 * Debug info and statistics.
233 */
234 DBGFR3InfoRegisterInternal(pVM, "ff", "Displays the current Forced actions Flags.", vmmR3InfoFF);
235 vmmR3InitRegisterStats(pVM);
236
237 return VINF_SUCCESS;
238 }
239 }
240 /** @todo: Need failure cleanup. */
241
242 //more todo in here?
243 //if (RT_SUCCESS(rc))
244 //{
245 //}
246 //int rc2 = vmmR3TermCoreCode(pVM);
247 //AssertRC(rc2));
248 }
249
250 return rc;
251}
252
253
254/**
255 * Allocate & setup the VMM RC stack(s) (for EMTs).
256 *
257 * The stacks are also used for long jumps in Ring-0.
258 *
259 * @returns VBox status code.
260 * @param pVM Pointer to the shared VM structure.
261 *
262 * @remarks The optional guard page gets it protection setup up during R3 init
263 * completion because of init order issues.
264 */
265static int vmmR3InitStacks(PVM pVM)
266{
267 int rc = VINF_SUCCESS;
268#ifdef VMM_R0_SWITCH_STACK
269 uint32_t fFlags = MMHYPER_AONR_FLAGS_KERNEL_MAPPING;
270#else
271 uint32_t fFlags = 0;
272#endif
273
274 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
275 {
276 PVMCPU pVCpu = &pVM->aCpus[idCpu];
277
278#ifdef VBOX_STRICT_VMM_STACK
279 rc = MMR3HyperAllocOnceNoRelEx(pVM, PAGE_SIZE + VMM_STACK_SIZE + PAGE_SIZE,
280#else
281 rc = MMR3HyperAllocOnceNoRelEx(pVM, VMM_STACK_SIZE,
282#endif
283 PAGE_SIZE, MM_TAG_VMM, fFlags, (void **)&pVCpu->vmm.s.pbEMTStackR3);
284 if (RT_SUCCESS(rc))
285 {
286#ifdef VBOX_STRICT_VMM_STACK
287 pVCpu->vmm.s.pbEMTStackR3 += PAGE_SIZE;
288#endif
289#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
290 /* MMHyperR3ToR0 returns R3 when not doing hardware assisted virtualization. */
291 if (!VMMIsHwVirtExtForced(pVM))
292 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = NIL_RTR0PTR;
293 else
294#endif
295 pVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
296 pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3);
297 pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE;
298 AssertRelease(pVCpu->vmm.s.pbEMTStackRC);
299
300 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC);
301 }
302 }
303
304 return rc;
305}
306
307
308/**
309 * Initialize the loggers.
310 *
311 * @returns VBox status code.
312 * @param pVM Pointer to the shared VM structure.
313 */
314static int vmmR3InitLoggers(PVM pVM)
315{
316 int rc;
317
318 /*
319 * Allocate RC & R0 Logger instances (they are finalized in the relocator).
320 */
321#ifdef LOG_ENABLED
322 PRTLOGGER pLogger = RTLogDefaultInstance();
323 if (pLogger)
324 {
325 pVM->vmm.s.cbRCLogger = RT_OFFSETOF(RTLOGGERRC, afGroups[pLogger->cGroups]);
326 rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCLoggerR3);
327 if (RT_FAILURE(rc))
328 return rc;
329 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
330
331# ifdef VBOX_WITH_R0_LOGGING
332 for (VMCPUID i = 0; i < pVM->cCpus; i++)
333 {
334 PVMCPU pVCpu = &pVM->aCpus[i];
335
336 rc = MMR3HyperAllocOnceNoRelEx(pVM, RT_OFFSETOF(VMMR0LOGGER, Logger.afGroups[pLogger->cGroups]),
337 0, MM_TAG_VMM, MMHYPER_AONR_FLAGS_KERNEL_MAPPING,
338 (void **)&pVCpu->vmm.s.pR0LoggerR3);
339 if (RT_FAILURE(rc))
340 return rc;
341 pVCpu->vmm.s.pR0LoggerR3->pVM = pVM->pVMR0;
342 //pVCpu->vmm.s.pR0LoggerR3->fCreated = false;
343 pVCpu->vmm.s.pR0LoggerR3->cbLogger = RT_OFFSETOF(RTLOGGER, afGroups[pLogger->cGroups]);
344 pVCpu->vmm.s.pR0LoggerR0 = MMHyperR3ToR0(pVM, pVCpu->vmm.s.pR0LoggerR3);
345 }
346# endif
347 }
348#endif /* LOG_ENABLED */
349
350#ifdef VBOX_WITH_RC_RELEASE_LOGGING
351 /*
352 * Allocate RC release logger instances (finalized in the relocator).
353 */
354 PRTLOGGER pRelLogger = RTLogRelDefaultInstance();
355 if (pRelLogger)
356 {
357 pVM->vmm.s.cbRCRelLogger = RT_OFFSETOF(RTLOGGERRC, afGroups[pRelLogger->cGroups]);
358 rc = MMR3HyperAllocOnceNoRel(pVM, pVM->vmm.s.cbRCRelLogger, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRCRelLoggerR3);
359 if (RT_FAILURE(rc))
360 return rc;
361 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
362 }
363#endif /* VBOX_WITH_RC_RELEASE_LOGGING */
364 return VINF_SUCCESS;
365}
366
367
368/**
369 * VMMR3Init worker that register the statistics with STAM.
370 *
371 * @param pVM The shared VM structure.
372 */
373static void vmmR3InitRegisterStats(PVM pVM)
374{
375 /*
376 * Statistics.
377 */
378 STAM_REG(pVM, &pVM->vmm.s.StatRunRC, STAMTYPE_COUNTER, "/VMM/RunRC", STAMUNIT_OCCURENCES, "Number of context switches.");
379 STAM_REG(pVM, &pVM->vmm.s.StatRZRetNormal, STAMTYPE_COUNTER, "/VMM/RZRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
380 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterrupt, STAMTYPE_COUNTER, "/VMM/RZRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
381 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
382 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGuestTrap, STAMTYPE_COUNTER, "/VMM/RZRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
383 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitch, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
384 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
385 STAM_REG(pVM, &pVM->vmm.s.StatRZRetStaleSelector, STAMTYPE_COUNTER, "/VMM/RZRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
386 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIRETTrap, STAMTYPE_COUNTER, "/VMM/RZRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
387 STAM_REG(pVM, &pVM->vmm.s.StatRZRetEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
388 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOBlockEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/EmulateIOBlock", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_EMULATE_IO_BLOCK returns.");
389 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
390 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIORead, STAMTYPE_COUNTER, "/VMM/RZRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_READ returns.");
391 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_WRITE returns.");
392 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIORead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_READ returns.");
393 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_WRITE returns.");
394 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_READ_WRITE returns.");
395 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
396 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
397 STAM_REG(pVM, &pVM->vmm.s.StatRZRetLDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
398 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
399 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
400 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTSSFault, STAMTYPE_COUNTER, "/VMM/RZRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
401 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPDFault, STAMTYPE_COUNTER, "/VMM/RZRet/PDFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_PD_FAULT returns.");
402 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCSAMTask, STAMTYPE_COUNTER, "/VMM/RZRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
403 STAM_REG(pVM, &pVM->vmm.s.StatRZRetSyncCR3, STAMTYPE_COUNTER, "/VMM/RZRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
404 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMisc, STAMTYPE_COUNTER, "/VMM/RZRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
405 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchInt3, STAMTYPE_COUNTER, "/VMM/RZRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
406 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchPF, STAMTYPE_COUNTER, "/VMM/RZRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
407 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchGP, STAMTYPE_COUNTER, "/VMM/RZRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
408 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/RZRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
409 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/RZRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
410 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
411 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Unknown, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Unknown", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
412 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3TMVirt, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/TMVirt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
413 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3HandyPages, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Handy", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
414 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3PDMQueues, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/PDMQueue", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
415 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Rendezvous, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Rendezvous", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
416 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Timer, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Timer", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
417 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3DMA, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/DMA", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
418 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTimerPending, STAMTYPE_COUNTER, "/VMM/RZRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
419 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptPending, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
420 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/RZRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
421 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/RZRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns.");
422 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMFlushPending, STAMTYPE_COUNTER, "/VMM/RZRet/PGMFlushPending", STAMUNIT_OCCURENCES, "Number of VINF_PGM_POOL_FLUSH_PENDING returns.");
423 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPendingRequest, STAMTYPE_COUNTER, "/VMM/RZRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
424 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchTPR, STAMTYPE_COUNTER, "/VMM/RZRet/PatchTPR", STAMUNIT_OCCURENCES, "Number of VINF_EM_HWACCM_PATCH_TPR_INSTR returns.");
425 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCallRing3, STAMTYPE_COUNTER, "/VMM/RZCallR3/Misc", STAMUNIT_OCCURENCES, "Number of Other ring-3 calls.");
426 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPDMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PDMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PDM_LOCK calls.");
427 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMLock, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMLock", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_LOCK calls.");
428 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMPoolGrow, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMPoolGrow", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_POOL_GROW calls.");
429 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMMapChunk, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMMapChunk", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_MAP_CHUNK calls.");
430 STAM_REG(pVM, &pVM->vmm.s.StatRZCallPGMAllocHandy, STAMTYPE_COUNTER, "/VMM/RZCallR3/PGMAllocHandy", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES calls.");
431 STAM_REG(pVM, &pVM->vmm.s.StatRZCallRemReplay, STAMTYPE_COUNTER, "/VMM/RZCallR3/REMReplay", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS calls.");
432 STAM_REG(pVM, &pVM->vmm.s.StatRZCallLogFlush, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMMLogFlush", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VMM_LOGGER_FLUSH calls.");
433 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMSetError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_ERROR calls.");
434 STAM_REG(pVM, &pVM->vmm.s.StatRZCallVMSetRuntimeError, STAMTYPE_COUNTER, "/VMM/RZCallR3/VMRuntimeError", STAMUNIT_OCCURENCES, "Number of VMMCALLRING3_VM_SET_RUNTIME_ERROR calls.");
435
436#ifdef VBOX_WITH_STATISTICS
437 for (VMCPUID i = 0; i < pVM->cCpus; i++)
438 {
439 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedMax, STAMTYPE_U32_RESET, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Max amount of stack used.", "/VMM/Stack/CPU%u/Max", i);
440 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cbUsedAvg, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, "Average stack usage.", "/VMM/Stack/CPU%u/Avg", i);
441 STAMR3RegisterF(pVM, &pVM->aCpus[i].vmm.s.CallRing3JmpBufR0.cUsedTotal, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of stack usages.", "/VMM/Stack/CPU%u/Uses", i);
442 }
443#endif
444}
445
446
447/**
448 * Initializes the per-VCPU VMM.
449 *
450 * @returns VBox status code.
451 * @param pVM The VM to operate on.
452 */
453VMMR3DECL(int) VMMR3InitCPU(PVM pVM)
454{
455 LogFlow(("VMMR3InitCPU\n"));
456 return VINF_SUCCESS;
457}
458
459
460/**
461 * Ring-3 init finalizing.
462 *
463 * @returns VBox status code.
464 * @param pVM The VM handle.
465 */
466VMMR3DECL(int) VMMR3InitFinalize(PVM pVM)
467{
468 int rc;
469
470 /*
471 * Set page attributes to r/w for stack pages.
472 */
473 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
474 {
475 rc = PGMMapSetPage(pVM, pVM->aCpus[idCpu].vmm.s.pbEMTStackRC, VMM_STACK_SIZE,
476 X86_PTE_P | X86_PTE_A | X86_PTE_D | X86_PTE_RW);
477 AssertRCReturn(rc, rc);
478 }
479
480 /*
481 * Create the EMT yield timer.
482 */
483 rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, "EMT Yielder", &pVM->vmm.s.pYieldTimer);
484 AssertRCReturn(rc, rc);
485
486 rc = TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldEveryMillies);
487 AssertRCReturn(rc, rc);
488
489#ifdef VBOX_WITH_NMI
490 /*
491 * Map the host APIC into GC - This is AMD/Intel + Host OS specific!
492 */
493 rc = PGMMap(pVM, pVM->vmm.s.GCPtrApicBase, 0xfee00000, PAGE_SIZE,
494 X86_PTE_P | X86_PTE_RW | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_A | X86_PTE_D);
495 AssertRCReturn(rc, rc);
496#endif
497
498#ifdef VBOX_STRICT_VMM_STACK
499 /*
500 * Setup the stack guard pages: Two inaccessible pages at each sides of the
501 * stack to catch over/under-flows.
502 */
503 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
504 {
505 uint8_t *pbEMTStackR3 = pVM->aCpus[idCpu].vmm.s.pbEMTStackR3;
506
507 memset(pbEMTStackR3 - PAGE_SIZE, 0xcc, PAGE_SIZE);
508 MMR3HyperSetGuard(pVM, pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, true /*fSet*/);
509
510 memset(pbEMTStackR3 + VMM_STACK_SIZE, 0xcc, PAGE_SIZE);
511 MMR3HyperSetGuard(pVM, pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, true /*fSet*/);
512 }
513 pVM->vmm.s.fStackGuardsStationed = true;
514#endif
515
516 /*
517 * Disable the periodic preemption timers if we can use the VMX-preemption
518 * timer instead.
519 */
520 if ( pVM->vmm.s.fUsePeriodicPreemptionTimers
521 && HWACCMR3IsVmxPreemptionTimerUsed(pVM))
522 pVM->vmm.s.fUsePeriodicPreemptionTimers = false;
523 LogRel(("VMM: fUsePeriodicPreemptionTimers=%RTbool\n", pVM->vmm.s.fUsePeriodicPreemptionTimers));
524
525 return VINF_SUCCESS;
526}
527
528
529/**
530 * Initializes the R0 VMM.
531 *
532 * @returns VBox status code.
533 * @param pVM The VM to operate on.
534 */
535VMMR3DECL(int) VMMR3InitR0(PVM pVM)
536{
537 int rc;
538 PVMCPU pVCpu = VMMGetCpu(pVM);
539 Assert(pVCpu && pVCpu->idCpu == 0);
540
541#ifdef LOG_ENABLED
542 /*
543 * Initialize the ring-0 logger if we haven't done so yet.
544 */
545 if ( pVCpu->vmm.s.pR0LoggerR3
546 && !pVCpu->vmm.s.pR0LoggerR3->fCreated)
547 {
548 rc = VMMR3UpdateLoggers(pVM);
549 if (RT_FAILURE(rc))
550 return rc;
551 }
552#endif
553
554 /*
555 * Call Ring-0 entry with init code.
556 */
557 for (;;)
558 {
559#ifdef NO_SUPCALLR0VMM
560 //rc = VERR_GENERAL_FAILURE;
561 rc = VINF_SUCCESS;
562#else
563 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_INIT, VMMGetSvnRev(), NULL);
564#endif
565 /*
566 * Flush the logs.
567 */
568#ifdef LOG_ENABLED
569 if ( pVCpu->vmm.s.pR0LoggerR3
570 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
571 RTLogFlushToLogger(&pVCpu->vmm.s.pR0LoggerR3->Logger, NULL);
572#endif
573 if (rc != VINF_VMM_CALL_HOST)
574 break;
575 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
576 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
577 break;
578 /* Resume R0 */
579 }
580
581 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
582 {
583 LogRel(("R0 init failed, rc=%Rra\n", rc));
584 if (RT_SUCCESS(rc))
585 rc = VERR_INTERNAL_ERROR;
586 }
587 return rc;
588}
589
590
591/**
592 * Initializes the RC VMM.
593 *
594 * @returns VBox status code.
595 * @param pVM The VM to operate on.
596 */
597VMMR3DECL(int) VMMR3InitRC(PVM pVM)
598{
599 PVMCPU pVCpu = VMMGetCpu(pVM);
600 Assert(pVCpu && pVCpu->idCpu == 0);
601
602 /* In VMX mode, there's no need to init RC. */
603 if (pVM->vmm.s.fSwitcherDisabled)
604 return VINF_SUCCESS;
605
606 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
607
608 /*
609 * Call VMMGCInit():
610 * -# resolve the address.
611 * -# setup stackframe and EIP to use the trampoline.
612 * -# do a generic hypervisor call.
613 */
614 RTRCPTR RCPtrEP;
615 int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMGCEntry", &RCPtrEP);
616 if (RT_SUCCESS(rc))
617 {
618 CPUMHyperSetCtxCore(pVCpu, NULL);
619 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC); /* Clear the stack. */
620 uint64_t u64TS = RTTimeProgramStartNanoTS();
621 CPUMPushHyper(pVCpu, (uint32_t)(u64TS >> 32)); /* Param 3: The program startup TS - Hi. */
622 CPUMPushHyper(pVCpu, (uint32_t)u64TS); /* Param 3: The program startup TS - Lo. */
623 CPUMPushHyper(pVCpu, VMMGetSvnRev()); /* Param 2: Version argument. */
624 CPUMPushHyper(pVCpu, VMMGC_DO_VMMGC_INIT); /* Param 1: Operation. */
625 CPUMPushHyper(pVCpu, pVM->pVMRC); /* Param 0: pVM */
626 CPUMPushHyper(pVCpu, 5 * sizeof(RTRCPTR)); /* trampoline param: stacksize. */
627 CPUMPushHyper(pVCpu, RCPtrEP); /* Call EIP. */
628 CPUMSetHyperEIP(pVCpu, pVM->vmm.s.pfnCallTrampolineRC);
629 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
630
631 for (;;)
632 {
633#ifdef NO_SUPCALLR0VMM
634 //rc = VERR_GENERAL_FAILURE;
635 rc = VINF_SUCCESS;
636#else
637 rc = SUPR3CallVMMR0(pVM->pVMR0, 0 /* VCPU 0 */, VMMR0_DO_CALL_HYPERVISOR, NULL);
638#endif
639#ifdef LOG_ENABLED
640 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
641 if ( pLogger
642 && pLogger->offScratch > 0)
643 RTLogFlushRC(NULL, pLogger);
644#endif
645#ifdef VBOX_WITH_RC_RELEASE_LOGGING
646 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
647 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
648 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
649#endif
650 if (rc != VINF_VMM_CALL_HOST)
651 break;
652 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
653 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
654 break;
655 }
656
657 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
658 {
659 VMMR3FatalDump(pVM, pVCpu, rc);
660 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
661 rc = VERR_INTERNAL_ERROR;
662 }
663 AssertRC(rc);
664 }
665 return rc;
666}
667
668
669/**
670 * Terminate the VMM bits.
671 *
672 * @returns VINF_SUCCESS.
673 * @param pVM The VM handle.
674 */
675VMMR3DECL(int) VMMR3Term(PVM pVM)
676{
677 PVMCPU pVCpu = VMMGetCpu(pVM);
678 Assert(pVCpu && pVCpu->idCpu == 0);
679
680 /*
681 * Call Ring-0 entry with termination code.
682 */
683 int rc;
684 for (;;)
685 {
686#ifdef NO_SUPCALLR0VMM
687 //rc = VERR_GENERAL_FAILURE;
688 rc = VINF_SUCCESS;
689#else
690 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, 0 /*idCpu*/, VMMR0_DO_VMMR0_TERM, 0, NULL);
691#endif
692 /*
693 * Flush the logs.
694 */
695#ifdef LOG_ENABLED
696 if ( pVCpu->vmm.s.pR0LoggerR3
697 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
698 RTLogFlushToLogger(&pVCpu->vmm.s.pR0LoggerR3->Logger, NULL);
699#endif
700 if (rc != VINF_VMM_CALL_HOST)
701 break;
702 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
703 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
704 break;
705 /* Resume R0 */
706 }
707 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
708 {
709 LogRel(("VMMR3Term: R0 term failed, rc=%Rra. (warning)\n", rc));
710 if (RT_SUCCESS(rc))
711 rc = VERR_INTERNAL_ERROR;
712 }
713
714 RTCritSectDelete(&pVM->vmm.s.CritSectSync);
715 for (VMCPUID i = 0; i < pVM->cCpus; i++)
716 {
717 RTSemEventDestroy(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
718 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
719 }
720 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
721 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
722 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
723 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
724 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousDone);
725 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
726 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousDoneCaller);
727 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
728
729#ifdef VBOX_STRICT_VMM_STACK
730 /*
731 * Make the two stack guard pages present again.
732 */
733 if (pVM->vmm.s.fStackGuardsStationed)
734 {
735 for (VMCPUID i = 0; i < pVM->cCpus; i++)
736 {
737 uint8_t *pbEMTStackR3 = pVM->aCpus[i].vmm.s.pbEMTStackR3;
738 MMR3HyperSetGuard(pVM, pbEMTStackR3 - PAGE_SIZE, PAGE_SIZE, false /*fSet*/);
739 MMR3HyperSetGuard(pVM, pbEMTStackR3 + VMM_STACK_SIZE, PAGE_SIZE, false /*fSet*/);
740 }
741 pVM->vmm.s.fStackGuardsStationed = false;
742 }
743#endif
744 return rc;
745}
746
747
748/**
749 * Terminates the per-VCPU VMM.
750 *
751 * Termination means cleaning up and freeing all resources,
752 * the VM it self is at this point powered off or suspended.
753 *
754 * @returns VBox status code.
755 * @param pVM The VM to operate on.
756 */
757VMMR3DECL(int) VMMR3TermCPU(PVM pVM)
758{
759 return VINF_SUCCESS;
760}
761
762
763/**
764 * Applies relocations to data and code managed by this
765 * component. This function will be called at init and
766 * whenever the VMM need to relocate it self inside the GC.
767 *
768 * The VMM will need to apply relocations to the core code.
769 *
770 * @param pVM The VM handle.
771 * @param offDelta The relocation delta.
772 */
773VMMR3DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
774{
775 LogFlow(("VMMR3Relocate: offDelta=%RGv\n", offDelta));
776
777 /*
778 * Recalc the RC address.
779 */
780#ifdef VBOX_WITH_RAW_MODE
781 pVM->vmm.s.pvCoreCodeRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pvCoreCodeR3);
782#endif
783
784 /*
785 * The stack.
786 */
787 for (VMCPUID i = 0; i < pVM->cCpus; i++)
788 {
789 PVMCPU pVCpu = &pVM->aCpus[i];
790
791 CPUMSetHyperESP(pVCpu, CPUMGetHyperESP(pVCpu) + offDelta);
792
793 pVCpu->vmm.s.pbEMTStackRC = MMHyperR3ToRC(pVM, pVCpu->vmm.s.pbEMTStackR3);
794 pVCpu->vmm.s.pbEMTStackBottomRC = pVCpu->vmm.s.pbEMTStackRC + VMM_STACK_SIZE;
795 }
796
797 /*
798 * All the switchers.
799 */
800 vmmR3SwitcherRelocate(pVM, offDelta);
801
802 /*
803 * Get other RC entry points.
804 */
805 int rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuest", &pVM->vmm.s.pfnCPUMRCResumeGuest);
806 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuest not found! rc=%Rra\n", rc));
807
808 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuestV86", &pVM->vmm.s.pfnCPUMRCResumeGuestV86);
809 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuestV86 not found! rc=%Rra\n", rc));
810
811 /*
812 * Update the logger.
813 */
814 VMMR3UpdateLoggers(pVM);
815}
816
817
818/**
819 * Updates the settings for the RC and R0 loggers.
820 *
821 * @returns VBox status code.
822 * @param pVM The VM handle.
823 */
824VMMR3DECL(int) VMMR3UpdateLoggers(PVM pVM)
825{
826 /*
827 * Simply clone the logger instance (for RC).
828 */
829 int rc = VINF_SUCCESS;
830 RTRCPTR RCPtrLoggerFlush = 0;
831
832 if (pVM->vmm.s.pRCLoggerR3
833#ifdef VBOX_WITH_RC_RELEASE_LOGGING
834 || pVM->vmm.s.pRCRelLoggerR3
835#endif
836 )
837 {
838 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerFlush", &RCPtrLoggerFlush);
839 AssertReleaseMsgRC(rc, ("vmmGCLoggerFlush not found! rc=%Rra\n", rc));
840 }
841
842 if (pVM->vmm.s.pRCLoggerR3)
843 {
844 RTRCPTR RCPtrLoggerWrapper = 0;
845 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerWrapper", &RCPtrLoggerWrapper);
846 AssertReleaseMsgRC(rc, ("vmmGCLoggerWrapper not found! rc=%Rra\n", rc));
847
848 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
849 rc = RTLogCloneRC(NULL /* default */, pVM->vmm.s.pRCLoggerR3, pVM->vmm.s.cbRCLogger,
850 RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
851 AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc));
852 }
853
854#ifdef VBOX_WITH_RC_RELEASE_LOGGING
855 if (pVM->vmm.s.pRCRelLoggerR3)
856 {
857 RTRCPTR RCPtrLoggerWrapper = 0;
858 rc = PDMR3LdrGetSymbolRC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCRelLoggerWrapper", &RCPtrLoggerWrapper);
859 AssertReleaseMsgRC(rc, ("vmmGCRelLoggerWrapper not found! rc=%Rra\n", rc));
860
861 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
862 rc = RTLogCloneRC(RTLogRelDefaultInstance(), pVM->vmm.s.pRCRelLoggerR3, pVM->vmm.s.cbRCRelLogger,
863 RCPtrLoggerWrapper, RCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
864 AssertReleaseMsgRC(rc, ("RTLogCloneRC failed! rc=%Rra\n", rc));
865 }
866#endif /* VBOX_WITH_RC_RELEASE_LOGGING */
867
868#ifdef LOG_ENABLED
869 /*
870 * For the ring-0 EMT logger, we use a per-thread logger instance
871 * in ring-0. Only initialize it once.
872 */
873 for (VMCPUID i = 0; i < pVM->cCpus; i++)
874 {
875 PVMCPU pVCpu = &pVM->aCpus[i];
876 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
877 if (pR0LoggerR3)
878 {
879 if (!pR0LoggerR3->fCreated)
880 {
881 RTR0PTR pfnLoggerWrapper = NIL_RTR0PTR;
882 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
883 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerWrapper not found! rc=%Rra\n", rc), rc);
884
885 RTR0PTR pfnLoggerFlush = NIL_RTR0PTR;
886 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
887 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerFlush not found! rc=%Rra\n", rc), rc);
888
889 rc = RTLogCreateForR0(&pR0LoggerR3->Logger, pR0LoggerR3->cbLogger,
890 *(PFNRTLOGGER *)&pfnLoggerWrapper, *(PFNRTLOGFLUSH *)&pfnLoggerFlush,
891 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY);
892 AssertReleaseMsgRCReturn(rc, ("RTLogCreateForR0 failed! rc=%Rra\n", rc), rc);
893
894 RTR0PTR pfnLoggerPrefix = NIL_RTR0PTR;
895 rc = PDMR3LdrGetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerPrefix", &pfnLoggerPrefix);
896 AssertReleaseMsgRCReturn(rc, ("vmmR0LoggerPrefix not found! rc=%Rra\n", rc), rc);
897 rc = RTLogSetCustomPrefixCallback(&pR0LoggerR3->Logger, *(PFNRTLOGPREFIX *)&pfnLoggerPrefix, NULL);
898 AssertReleaseMsgRCReturn(rc, ("RTLogSetCustomPrefixCallback failed! rc=%Rra\n", rc), rc);
899
900 pR0LoggerR3->idCpu = i;
901 pR0LoggerR3->fCreated = true;
902 pR0LoggerR3->fFlushingDisabled = false;
903
904 }
905
906 rc = RTLogCopyGroupsAndFlags(&pR0LoggerR3->Logger, NULL /* default */, pVM->vmm.s.pRCLoggerR3->fFlags, RTLOGFLAGS_BUFFERED);
907 AssertRC(rc);
908 }
909 }
910#endif
911 return rc;
912}
913
914
915/**
916 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg1Weak output.
917 *
918 * @returns Pointer to the buffer.
919 * @param pVM The VM handle.
920 */
921VMMR3DECL(const char *) VMMR3GetRZAssertMsg1(PVM pVM)
922{
923 if (HWACCMIsEnabled(pVM))
924 return pVM->vmm.s.szRing0AssertMsg1;
925
926 RTRCPTR RCPtr;
927 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg1", &RCPtr);
928 if (RT_SUCCESS(rc))
929 return (const char *)MMHyperRCToR3(pVM, RCPtr);
930
931 return NULL;
932}
933
934
935/**
936 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg2Weak output.
937 *
938 * @returns Pointer to the buffer.
939 * @param pVM The VM handle.
940 */
941VMMR3DECL(const char *) VMMR3GetRZAssertMsg2(PVM pVM)
942{
943 if (HWACCMIsEnabled(pVM))
944 return pVM->vmm.s.szRing0AssertMsg2;
945
946 RTRCPTR RCPtr;
947 int rc = PDMR3LdrGetSymbolRC(pVM, NULL, "g_szRTAssertMsg2", &RCPtr);
948 if (RT_SUCCESS(rc))
949 return (const char *)MMHyperRCToR3(pVM, RCPtr);
950
951 return NULL;
952}
953
954
955/**
956 * Execute state save operation.
957 *
958 * @returns VBox status code.
959 * @param pVM VM Handle.
960 * @param pSSM SSM operation handle.
961 */
962static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
963{
964 LogFlow(("vmmR3Save:\n"));
965
966 /*
967 * Save the started/stopped state of all CPUs except 0 as it will always
968 * be running. This avoids breaking the saved state version. :-)
969 */
970 for (VMCPUID i = 1; i < pVM->cCpus; i++)
971 SSMR3PutBool(pSSM, VMCPUSTATE_IS_STARTED(VMCPU_GET_STATE(&pVM->aCpus[i])));
972
973 return SSMR3PutU32(pSSM, UINT32_MAX); /* terminator */
974}
975
976
977/**
978 * Execute state load operation.
979 *
980 * @returns VBox status code.
981 * @param pVM VM Handle.
982 * @param pSSM SSM operation handle.
983 * @param uVersion Data layout version.
984 * @param uPass The data pass.
985 */
986static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
987{
988 LogFlow(("vmmR3Load:\n"));
989 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
990
991 /*
992 * Validate version.
993 */
994 if ( uVersion != VMM_SAVED_STATE_VERSION
995 && uVersion != VMM_SAVED_STATE_VERSION_3_0)
996 {
997 AssertMsgFailed(("vmmR3Load: Invalid version uVersion=%u!\n", uVersion));
998 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
999 }
1000
1001 if (uVersion <= VMM_SAVED_STATE_VERSION_3_0)
1002 {
1003 /* Ignore the stack bottom, stack pointer and stack bits. */
1004 RTRCPTR RCPtrIgnored;
1005 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
1006 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
1007#ifdef RT_OS_DARWIN
1008 if ( SSMR3HandleVersion(pSSM) >= VBOX_FULL_VERSION_MAKE(3,0,0)
1009 && SSMR3HandleVersion(pSSM) < VBOX_FULL_VERSION_MAKE(3,1,0)
1010 && SSMR3HandleRevision(pSSM) >= 48858
1011 && ( !strcmp(SSMR3HandleHostOSAndArch(pSSM), "darwin.x86")
1012 || !strcmp(SSMR3HandleHostOSAndArch(pSSM), "") )
1013 )
1014 SSMR3Skip(pSSM, 16384);
1015 else
1016 SSMR3Skip(pSSM, 8192);
1017#else
1018 SSMR3Skip(pSSM, 8192);
1019#endif
1020 }
1021
1022 /*
1023 * Restore the VMCPU states. VCPU 0 is always started.
1024 */
1025 VMCPU_SET_STATE(&pVM->aCpus[0], VMCPUSTATE_STARTED);
1026 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1027 {
1028 bool fStarted;
1029 int rc = SSMR3GetBool(pSSM, &fStarted);
1030 if (RT_FAILURE(rc))
1031 return rc;
1032 VMCPU_SET_STATE(&pVM->aCpus[i], fStarted ? VMCPUSTATE_STARTED : VMCPUSTATE_STOPPED);
1033 }
1034
1035 /* terminator */
1036 uint32_t u32;
1037 int rc = SSMR3GetU32(pSSM, &u32);
1038 if (RT_FAILURE(rc))
1039 return rc;
1040 if (u32 != UINT32_MAX)
1041 {
1042 AssertMsgFailed(("u32=%#x\n", u32));
1043 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1044 }
1045 return VINF_SUCCESS;
1046}
1047
1048
1049/**
1050 * Resolve a builtin RC symbol.
1051 *
1052 * Called by PDM when loading or relocating RC modules.
1053 *
1054 * @returns VBox status
1055 * @param pVM VM Handle.
1056 * @param pszSymbol Symbol to resolv
1057 * @param pRCPtrValue Where to store the symbol value.
1058 *
1059 * @remark This has to work before VMMR3Relocate() is called.
1060 */
1061VMMR3DECL(int) VMMR3GetImportRC(PVM pVM, const char *pszSymbol, PRTRCPTR pRCPtrValue)
1062{
1063 if (!strcmp(pszSymbol, "g_Logger"))
1064 {
1065 if (pVM->vmm.s.pRCLoggerR3)
1066 pVM->vmm.s.pRCLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCLoggerR3);
1067 *pRCPtrValue = pVM->vmm.s.pRCLoggerRC;
1068 }
1069 else if (!strcmp(pszSymbol, "g_RelLogger"))
1070 {
1071#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1072 if (pVM->vmm.s.pRCRelLoggerR3)
1073 pVM->vmm.s.pRCRelLoggerRC = MMHyperR3ToRC(pVM, pVM->vmm.s.pRCRelLoggerR3);
1074 *pRCPtrValue = pVM->vmm.s.pRCRelLoggerRC;
1075#else
1076 *pRCPtrValue = NIL_RTRCPTR;
1077#endif
1078 }
1079 else
1080 return VERR_SYMBOL_NOT_FOUND;
1081 return VINF_SUCCESS;
1082}
1083
1084
1085/**
1086 * Suspends the CPU yielder.
1087 *
1088 * @param pVM The VM handle.
1089 */
1090VMMR3DECL(void) VMMR3YieldSuspend(PVM pVM)
1091{
1092 VMCPU_ASSERT_EMT(&pVM->aCpus[0]);
1093 if (!pVM->vmm.s.cYieldResumeMillies)
1094 {
1095 uint64_t u64Now = TMTimerGet(pVM->vmm.s.pYieldTimer);
1096 uint64_t u64Expire = TMTimerGetExpire(pVM->vmm.s.pYieldTimer);
1097 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
1098 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1099 else
1100 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM->vmm.s.pYieldTimer, u64Expire - u64Now);
1101 TMTimerStop(pVM->vmm.s.pYieldTimer);
1102 }
1103 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1104}
1105
1106
1107/**
1108 * Stops the CPU yielder.
1109 *
1110 * @param pVM The VM handle.
1111 */
1112VMMR3DECL(void) VMMR3YieldStop(PVM pVM)
1113{
1114 if (!pVM->vmm.s.cYieldResumeMillies)
1115 TMTimerStop(pVM->vmm.s.pYieldTimer);
1116 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1117 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1118}
1119
1120
1121/**
1122 * Resumes the CPU yielder when it has been a suspended or stopped.
1123 *
1124 * @param pVM The VM handle.
1125 */
1126VMMR3DECL(void) VMMR3YieldResume(PVM pVM)
1127{
1128 if (pVM->vmm.s.cYieldResumeMillies)
1129 {
1130 TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldResumeMillies);
1131 pVM->vmm.s.cYieldResumeMillies = 0;
1132 }
1133}
1134
1135
1136/**
1137 * Internal timer callback function.
1138 *
1139 * @param pVM The VM.
1140 * @param pTimer The timer handle.
1141 * @param pvUser User argument specified upon timer creation.
1142 */
1143static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser)
1144{
1145 /*
1146 * This really needs some careful tuning. While we shouldn't be too greedy since
1147 * that'll cause the rest of the system to stop up, we shouldn't be too nice either
1148 * because that'll cause us to stop up.
1149 *
1150 * The current logic is to use the default interval when there is no lag worth
1151 * mentioning, but when we start accumulating lag we don't bother yielding at all.
1152 *
1153 * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL
1154 * so the lag is up to date.)
1155 */
1156 const uint64_t u64Lag = TMVirtualSyncGetLag(pVM);
1157 if ( u64Lag < 50000000 /* 50ms */
1158 || ( u64Lag < 1000000000 /* 1s */
1159 && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */)
1160 )
1161 {
1162 uint64_t u64Elapsed = RTTimeNanoTS();
1163 pVM->vmm.s.u64LastYield = u64Elapsed;
1164
1165 RTThreadYield();
1166
1167#ifdef LOG_ENABLED
1168 u64Elapsed = RTTimeNanoTS() - u64Elapsed;
1169 Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed));
1170#endif
1171 }
1172 TMTimerSetMillies(pTimer, pVM->vmm.s.cYieldEveryMillies);
1173}
1174
1175
1176/**
1177 * Executes guest code in the raw-mode context.
1178 *
1179 * @param pVM VM handle.
1180 * @param pVCpu The VMCPU to operate on.
1181 */
1182VMMR3DECL(int) VMMR3RawRunGC(PVM pVM, PVMCPU pVCpu)
1183{
1184 Log2(("VMMR3RawRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1185
1186 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
1187
1188 /*
1189 * Set the EIP and ESP.
1190 */
1191 CPUMSetHyperEIP(pVCpu, CPUMGetGuestEFlags(pVCpu) & X86_EFL_VM
1192 ? pVM->vmm.s.pfnCPUMRCResumeGuestV86
1193 : pVM->vmm.s.pfnCPUMRCResumeGuest);
1194 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC);
1195
1196 /*
1197 * We hide log flushes (outer) and hypervisor interrupts (inner).
1198 */
1199 for (;;)
1200 {
1201#ifdef VBOX_STRICT
1202 if (RT_UNLIKELY(!CPUMGetHyperCR3(pVCpu) || CPUMGetHyperCR3(pVCpu) != PGMGetHyperCR3(pVCpu)))
1203 EMR3FatalError(pVCpu, VERR_VMM_HYPER_CR3_MISMATCH);
1204 PGMMapCheck(pVM);
1205#endif
1206 int rc;
1207 do
1208 {
1209#ifdef NO_SUPCALLR0VMM
1210 rc = VERR_GENERAL_FAILURE;
1211#else
1212 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1213 if (RT_LIKELY(rc == VINF_SUCCESS))
1214 rc = pVCpu->vmm.s.iLastGZRc;
1215#endif
1216 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1217
1218 /*
1219 * Flush the logs.
1220 */
1221#ifdef LOG_ENABLED
1222 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1223 if ( pLogger
1224 && pLogger->offScratch > 0)
1225 RTLogFlushRC(NULL, pLogger);
1226#endif
1227#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1228 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1229 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1230 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
1231#endif
1232 if (rc != VINF_VMM_CALL_HOST)
1233 {
1234 Log2(("VMMR3RawRunGC: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1235 return rc;
1236 }
1237 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1238 if (RT_FAILURE(rc))
1239 return rc;
1240 /* Resume GC */
1241 }
1242}
1243
1244
1245/**
1246 * Executes guest code (Intel VT-x and AMD-V).
1247 *
1248 * @param pVM VM handle.
1249 * @param pVCpu The VMCPU to operate on.
1250 */
1251VMMR3DECL(int) VMMR3HwAccRunGC(PVM pVM, PVMCPU pVCpu)
1252{
1253 Log2(("VMMR3HwAccRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1254
1255 for (;;)
1256 {
1257 int rc;
1258 do
1259 {
1260#ifdef NO_SUPCALLR0VMM
1261 rc = VERR_GENERAL_FAILURE;
1262#else
1263 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_HWACC_RUN, pVCpu->idCpu);
1264 if (RT_LIKELY(rc == VINF_SUCCESS))
1265 rc = pVCpu->vmm.s.iLastGZRc;
1266#endif
1267 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1268
1269#ifdef LOG_ENABLED
1270 /*
1271 * Flush the log
1272 */
1273 PVMMR0LOGGER pR0LoggerR3 = pVCpu->vmm.s.pR0LoggerR3;
1274 if ( pR0LoggerR3
1275 && pR0LoggerR3->Logger.offScratch > 0)
1276 RTLogFlushToLogger(&pR0LoggerR3->Logger, NULL);
1277#endif /* !LOG_ENABLED */
1278 if (rc != VINF_VMM_CALL_HOST)
1279 {
1280 Log2(("VMMR3HwAccRunGC: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1281 return rc;
1282 }
1283 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1284 if (RT_FAILURE(rc))
1285 return rc;
1286 /* Resume R0 */
1287 }
1288}
1289
1290/**
1291 * VCPU worker for VMMSendSipi.
1292 *
1293 * @param pVM The VM to operate on.
1294 * @param idCpu Virtual CPU to perform SIPI on
1295 * @param uVector SIPI vector
1296 */
1297DECLCALLBACK(int) vmmR3SendSipi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1298{
1299 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1300 VMCPU_ASSERT_EMT(pVCpu);
1301
1302 /** @todo what are we supposed to do if the processor is already running? */
1303 if (EMGetState(pVCpu) != EMSTATE_WAIT_SIPI)
1304 return VERR_ACCESS_DENIED;
1305
1306
1307 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1308
1309 pCtx->cs = uVector << 8;
1310 pCtx->csHid.u64Base = uVector << 12;
1311 pCtx->csHid.u32Limit = 0x0000ffff;
1312 pCtx->rip = 0;
1313
1314 Log(("vmmR3SendSipi for VCPU %d with vector %x\n", uVector));
1315
1316# if 1 /* If we keep the EMSTATE_WAIT_SIPI method, then move this to EM.cpp. */
1317 EMSetState(pVCpu, EMSTATE_HALTED);
1318 return VINF_EM_RESCHEDULE;
1319# else /* And if we go the VMCPU::enmState way it can stay here. */
1320 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STOPPED);
1321 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
1322 return VINF_SUCCESS;
1323# endif
1324}
1325
1326DECLCALLBACK(int) vmmR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1327{
1328 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1329 VMCPU_ASSERT_EMT(pVCpu);
1330
1331 Log(("vmmR3SendInitIpi for VCPU %d\n", idCpu));
1332 CPUMR3ResetCpu(pVCpu);
1333 return VINF_EM_WAIT_SIPI;
1334}
1335
1336/**
1337 * Sends SIPI to the virtual CPU by setting CS:EIP into vector-dependent state
1338 * and unhalting processor
1339 *
1340 * @param pVM The VM to operate on.
1341 * @param idCpu Virtual CPU to perform SIPI on
1342 * @param uVector SIPI vector
1343 */
1344VMMR3DECL(void) VMMR3SendSipi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1345{
1346 AssertReturnVoid(idCpu < pVM->cCpus);
1347
1348 int rc = VMR3ReqCallNoWaitU(pVM->pUVM, idCpu, (PFNRT)vmmR3SendSipi, 3, pVM, idCpu, uVector);
1349 AssertRC(rc);
1350}
1351
1352/**
1353 * Sends init IPI to the virtual CPU.
1354 *
1355 * @param pVM The VM to operate on.
1356 * @param idCpu Virtual CPU to perform int IPI on
1357 */
1358VMMR3DECL(void) VMMR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1359{
1360 AssertReturnVoid(idCpu < pVM->cCpus);
1361
1362 int rc = VMR3ReqCallNoWaitU(pVM->pUVM, idCpu, (PFNRT)vmmR3SendInitIpi, 2, pVM, idCpu);
1363 AssertRC(rc);
1364}
1365
1366/**
1367 * Registers the guest memory range that can be used for patching
1368 *
1369 * @returns VBox status code.
1370 * @param pVM The VM to operate on.
1371 * @param pPatchMem Patch memory range
1372 * @param cbPatchMem Size of the memory range
1373 */
1374VMMR3DECL(int) VMMR3RegisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1375{
1376 if (HWACCMIsEnabled(pVM))
1377 return HWACMMR3EnablePatching(pVM, pPatchMem, cbPatchMem);
1378
1379 return VERR_NOT_SUPPORTED;
1380}
1381
1382/**
1383 * Deregisters the guest memory range that can be used for patching
1384 *
1385 * @returns VBox status code.
1386 * @param pVM The VM to operate on.
1387 * @param pPatchMem Patch memory range
1388 * @param cbPatchMem Size of the memory range
1389 */
1390VMMR3DECL(int) VMMR3DeregisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1391{
1392 if (HWACCMIsEnabled(pVM))
1393 return HWACMMR3DisablePatching(pVM, pPatchMem, cbPatchMem);
1394
1395 return VINF_SUCCESS;
1396}
1397
1398
1399/**
1400 * VCPU worker for VMMR3SynchronizeAllVCpus.
1401 *
1402 * @param pVM The VM to operate on.
1403 * @param idCpu Virtual CPU to perform SIPI on
1404 * @param uVector SIPI vector
1405 */
1406DECLCALLBACK(int) vmmR3SyncVCpu(PVM pVM)
1407{
1408 /* Block until the job in the caller has finished. */
1409 RTCritSectEnter(&pVM->vmm.s.CritSectSync);
1410 RTCritSectLeave(&pVM->vmm.s.CritSectSync);
1411 return VINF_SUCCESS;
1412}
1413
1414
1415/**
1416 * Atomically execute a callback handler
1417 * Note: This is very expensive; avoid using it frequently!
1418 *
1419 * @param pVM The VM to operate on.
1420 * @param pfnHandler Callback handler
1421 * @param pvUser User specified parameter
1422 *
1423 * @thread EMT
1424 */
1425VMMR3DECL(int) VMMR3AtomicExecuteHandler(PVM pVM, PFNATOMICHANDLER pfnHandler, void *pvUser)
1426{
1427 int rc;
1428 PVMCPU pVCpu = VMMGetCpu(pVM);
1429 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
1430
1431 /* Shortcut for the uniprocessor case. */
1432 if (pVM->cCpus == 1)
1433 return pfnHandler(pVM, pvUser);
1434
1435 RTCritSectEnter(&pVM->vmm.s.CritSectSync);
1436 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1437 {
1438 if (idCpu != pVCpu->idCpu)
1439 {
1440 rc = VMR3ReqCallNoWaitU(pVM->pUVM, idCpu, (PFNRT)vmmR3SyncVCpu, 1, pVM);
1441 AssertRC(rc);
1442 }
1443 }
1444 /* Wait until all other VCPUs are waiting for us. */
1445 while (RTCritSectGetWaiters(&pVM->vmm.s.CritSectSync) != (int32_t)(pVM->cCpus - 1))
1446 RTThreadSleep(1);
1447
1448 rc = pfnHandler(pVM, pvUser);
1449 RTCritSectLeave(&pVM->vmm.s.CritSectSync);
1450 return rc;
1451}
1452
1453
1454/**
1455 * Count returns and have the last non-caller EMT wake up the caller.
1456 *
1457 * @returns VBox strict informational status code for EM scheduling. No failures
1458 * will be returned here, those are for the caller only.
1459 *
1460 * @param pVM The VM handle.
1461 */
1462DECL_FORCE_INLINE(int) vmmR3EmtRendezvousNonCallerReturn(PVM pVM)
1463{
1464 int rcRet = ASMAtomicReadS32(&pVM->vmm.s.i32RendezvousStatus);
1465 uint32_t cReturned = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsReturned);
1466 if (cReturned == pVM->cCpus - 1U)
1467 {
1468 int rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1469 AssertLogRelRC(rc);
1470 }
1471
1472 AssertLogRelMsgReturn( rcRet <= VINF_SUCCESS
1473 || (rcRet >= VINF_EM_FIRST && rcRet <= VINF_EM_LAST),
1474 ("%Rrc\n", rcRet),
1475 VERR_IPE_UNEXPECTED_INFO_STATUS);
1476 return RT_SUCCESS(rcRet) ? rcRet : VINF_SUCCESS;
1477}
1478
1479
1480/**
1481 * Common worker for VMMR3EmtRendezvous and VMMR3EmtRendezvousFF.
1482 *
1483 * @returns VBox strict informational status code for EM scheduling. No failures
1484 * will be returned here, those are for the caller only. When
1485 * fIsCaller is set, VINF_SUCESS is always returned.
1486 *
1487 * @param pVM The VM handle.
1488 * @param pVCpu The VMCPU structure for the calling EMT.
1489 * @param fIsCaller Whether we're the VMMR3EmtRendezvous caller or
1490 * not.
1491 * @param fFlags The flags.
1492 * @param pfnRendezvous The callback.
1493 * @param pvUser The user argument for the callback.
1494 */
1495static int vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
1496 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1497{
1498 int rc;
1499
1500 /*
1501 * Enter, the last EMT triggers the next callback phase.
1502 */
1503 uint32_t cEntered = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsEntered);
1504 if (cEntered != pVM->cCpus)
1505 {
1506 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1507 {
1508 /* Wait for our turn. */
1509 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, RT_INDEFINITE_WAIT);
1510 AssertLogRelRC(rc);
1511 }
1512 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1513 {
1514 /* Wait for the last EMT to arrive and wake everyone up. */
1515 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce, RT_INDEFINITE_WAIT);
1516 AssertLogRelRC(rc);
1517 }
1518 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1519 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1520 {
1521 /* Wait for our turn. */
1522 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1523 AssertLogRelRC(rc);
1524 }
1525 else
1526 {
1527 Assert((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE);
1528
1529 /*
1530 * The execute once is handled specially to optimize the code flow.
1531 *
1532 * The last EMT to arrive will perform the callback and the other
1533 * EMTs will wait on the Done/DoneCaller semaphores (instead of
1534 * the EnterOneByOne/AllAtOnce) in the meanwhile. When the callback
1535 * returns, that EMT will initiate the normal return sequence.
1536 */
1537 if (!fIsCaller)
1538 {
1539 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1540 AssertLogRelRC(rc);
1541
1542 return vmmR3EmtRendezvousNonCallerReturn(pVM);
1543 }
1544 return VINF_SUCCESS;
1545 }
1546 }
1547 else
1548 {
1549 /*
1550 * All EMTs are waiting, clear the FF and take action according to the
1551 * execution method.
1552 */
1553 VM_FF_CLEAR(pVM, VM_FF_EMT_RENDEZVOUS);
1554
1555 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1556 {
1557 /* Wake up everyone. */
1558 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
1559 AssertLogRelRC(rc);
1560 }
1561 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1562 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1563 {
1564 /* Figure out who to wake up and wake it up. If it's ourself, then
1565 it's easy otherwise wait for our turn. */
1566 VMCPUID iFirst = (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1567 ? 0
1568 : pVM->cCpus - 1U;
1569 if (pVCpu->idCpu != iFirst)
1570 {
1571 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iFirst]);
1572 AssertLogRelRC(rc);
1573 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1574 AssertLogRelRC(rc);
1575 }
1576 }
1577 /* else: execute the handler on the current EMT and wake up one or more threads afterwards. */
1578 }
1579
1580
1581 /*
1582 * Do the callback and update the status if necessary.
1583 */
1584 if ( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1585 || RT_SUCCESS(ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus)) )
1586 {
1587 VBOXSTRICTRC rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
1588 if (rcStrict != VINF_SUCCESS)
1589 {
1590 AssertLogRelMsg( rcStrict <= VINF_SUCCESS
1591 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
1592 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
1593 int32_t i32RendezvousStatus;
1594 do
1595 {
1596 i32RendezvousStatus = ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus);
1597 if ( rcStrict == i32RendezvousStatus
1598 || RT_FAILURE(i32RendezvousStatus)
1599 || ( i32RendezvousStatus != VINF_SUCCESS
1600 && rcStrict > i32RendezvousStatus))
1601 break;
1602 } while (!ASMAtomicCmpXchgS32(&pVM->vmm.s.i32RendezvousStatus, VBOXSTRICTRC_VAL(rcStrict), i32RendezvousStatus));
1603 }
1604 }
1605
1606 /*
1607 * Increment the done counter and take action depending on whether we're
1608 * the last to finish callback execution.
1609 */
1610 uint32_t cDone = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsDone);
1611 if ( cDone != pVM->cCpus
1612 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE)
1613 {
1614 /* Signal the next EMT? */
1615 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1616 {
1617 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1618 AssertLogRelRC(rc);
1619 }
1620 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1621 {
1622 Assert(cDone == pVCpu->idCpu + 1U);
1623 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu + 1U]);
1624 AssertLogRelRC(rc);
1625 }
1626 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1627 {
1628 Assert(pVM->cCpus - cDone == pVCpu->idCpu);
1629 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVM->cCpus - cDone - 1U]);
1630 AssertLogRelRC(rc);
1631 }
1632
1633 /* Wait for the rest to finish (the caller waits on hEvtRendezvousDoneCaller). */
1634 if (!fIsCaller)
1635 {
1636 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1637 AssertLogRelRC(rc);
1638 }
1639 }
1640 else
1641 {
1642 /* Callback execution is all done, tell the rest to return. */
1643 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1644 AssertLogRelRC(rc);
1645 }
1646
1647 if (!fIsCaller)
1648 return vmmR3EmtRendezvousNonCallerReturn(pVM);
1649 return VINF_SUCCESS;
1650}
1651
1652
1653/**
1654 * Called in response to VM_FF_EMT_RENDEZVOUS.
1655 *
1656 * @returns VBox strict status code - EM scheduling. No errors will be returned
1657 * here, nor will any non-EM scheduling status codes be returned.
1658 *
1659 * @param pVM The VM handle
1660 * @param pVCpu The handle of the calling EMT.
1661 *
1662 * @thread EMT
1663 */
1664VMMR3DECL(int) VMMR3EmtRendezvousFF(PVM pVM, PVMCPU pVCpu)
1665{
1666 return vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1667 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1668}
1669
1670
1671/**
1672 * EMT rendezvous.
1673 *
1674 * Gathers all the EMTs and execute some code on each of them, either in a one
1675 * by one fashion or all at once.
1676 *
1677 * @returns VBox strict status code. This will be the the first error,
1678 * VINF_SUCCESS, or an EM scheduling status code.
1679 *
1680 * @param pVM The VM handle.
1681 * @param fFlags Flags indicating execution methods. See
1682 * grp_VMMR3EmtRendezvous_fFlags.
1683 * @param pfnRendezvous The callback.
1684 * @param pvUser User argument for the callback.
1685 *
1686 * @thread Any.
1687 */
1688VMMR3DECL(int) VMMR3EmtRendezvous(PVM pVM, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1689{
1690 /*
1691 * Validate input.
1692 */
1693 AssertMsg( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_INVALID
1694 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) <= VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1695 && !(fFlags & ~VMMEMTRENDEZVOUS_FLAGS_VALID_MASK), ("%#x\n", fFlags));
1696 AssertMsg( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1697 || ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE
1698 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE),
1699 ("type %u\n", fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK));
1700
1701 VBOXSTRICTRC rcStrict;
1702 PVMCPU pVCpu = VMMGetCpu(pVM);
1703 if (!pVCpu)
1704 /*
1705 * Forward the request to an EMT thread.
1706 */
1707 rcStrict = VMR3ReqCallWait(pVM, VMCPUID_ANY,
1708 (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
1709 else if (pVM->cCpus == 1)
1710 /*
1711 * Shortcut for the single EMT case.
1712 */
1713 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
1714 else
1715 {
1716 /*
1717 * Spin lock. If busy, wait for the other EMT to finish while keeping a
1718 * lookout of the RENDEZVOUS FF.
1719 */
1720 int rc;
1721 rcStrict = VINF_SUCCESS;
1722 if (RT_UNLIKELY(!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0)))
1723 {
1724 while (!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0))
1725 {
1726 if (VM_FF_ISPENDING(pVM, VM_FF_EMT_RENDEZVOUS))
1727 {
1728 rc = VMMR3EmtRendezvousFF(pVM, pVCpu);
1729 if ( rc != VINF_SUCCESS
1730 && ( rcStrict == VINF_SUCCESS
1731 || rcStrict > rc))
1732 rcStrict = rc;
1733 /** @todo Perhaps deal with termination here? */
1734 }
1735 ASMNopPause();
1736 }
1737 }
1738 Assert(!VM_FF_ISPENDING(pVM, VM_FF_EMT_RENDEZVOUS));
1739
1740 /*
1741 * Clear the slate. This is a semaphore ping-pong orgy. :-)
1742 */
1743 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1744 {
1745 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i], 0);
1746 AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1747 }
1748 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1749 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1750 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1751 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
1752 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
1753 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
1754 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1755 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
1756 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
1757 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
1758 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
1759
1760 /*
1761 * Set the FF and poke the other EMTs.
1762 */
1763 VM_FF_SET(pVM, VM_FF_EMT_RENDEZVOUS);
1764 VMR3NotifyGlobalFFU(pVM->pUVM, VMNOTIFYFF_FLAGS_POKE);
1765
1766 /*
1767 * Do the same ourselves.
1768 */
1769 vmmR3EmtRendezvousCommon(pVM, pVCpu, true /* fIsCaller */, fFlags, pfnRendezvous, pvUser);
1770
1771 /*
1772 * The caller waits for the other EMTs to be done and return before doing
1773 * the cleanup. This makes away with wakeup / reset races we would otherwise
1774 * risk in the multiple release event semaphore code (hEvtRendezvousDoneCaller).
1775 */
1776 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
1777 AssertLogRelRC(rc);
1778
1779 /*
1780 * Get the return code and clean up a little bit.
1781 */
1782 int rcMy = pVM->vmm.s.i32RendezvousStatus;
1783 ASMAtomicWriteNullPtr((void * volatile *)&pVM->vmm.s.pfnRendezvous);
1784
1785 ASMAtomicWriteU32(&pVM->vmm.s.u32RendezvousLock, 0);
1786
1787 /*
1788 * Merge rcStrict and rcMy.
1789 */
1790 AssertRC(VBOXSTRICTRC_VAL(rcStrict));
1791 if ( rcMy != VINF_SUCCESS
1792 && ( rcStrict == VINF_SUCCESS
1793 || rcStrict > rcMy))
1794 rcStrict = rcMy;
1795 }
1796
1797 AssertLogRelMsgReturn( rcStrict <= VINF_SUCCESS
1798 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
1799 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)),
1800 VERR_IPE_UNEXPECTED_INFO_STATUS);
1801 return VBOXSTRICTRC_VAL(rcStrict);
1802}
1803
1804
1805/**
1806 * Read from the ring 0 jump buffer stack
1807 *
1808 * @returns VBox status code.
1809 *
1810 * @param pVM Pointer to the shared VM structure.
1811 * @param idCpu The ID of the source CPU context (for the address).
1812 * @param R0Addr Where to start reading.
1813 * @param pvBuf Where to store the data we've read.
1814 * @param cbRead The number of bytes to read.
1815 */
1816VMMR3DECL(int) VMMR3ReadR0Stack(PVM pVM, VMCPUID idCpu, RTHCUINTPTR R0Addr, void *pvBuf, size_t cbRead)
1817{
1818 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1819 AssertReturn(pVCpu, VERR_INVALID_PARAMETER);
1820
1821#ifdef VMM_R0_SWITCH_STACK
1822 RTHCUINTPTR off = R0Addr - MMHyperCCToR0(pVM, pVCpu->vmm.s.pbEMTStackR3);
1823#else
1824 RTHCUINTPTR off = pVCpu->vmm.s.CallRing3JmpBufR0.cbSavedStack - (pVCpu->vmm.s.CallRing3JmpBufR0.SpCheck - R0Addr);
1825#endif
1826 if ( off > VMM_STACK_SIZE
1827 || off + cbRead >= VMM_STACK_SIZE)
1828 return VERR_INVALID_POINTER;
1829
1830 memcpy(pvBuf, &pVCpu->vmm.s.pbEMTStackR3[off], cbRead);
1831 return VINF_SUCCESS;
1832}
1833
1834
1835/**
1836 * Calls a RC function.
1837 *
1838 * @param pVM The VM handle.
1839 * @param RCPtrEntry The address of the RC function.
1840 * @param cArgs The number of arguments in the ....
1841 * @param ... Arguments to the function.
1842 */
1843VMMR3DECL(int) VMMR3CallRC(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, ...)
1844{
1845 va_list args;
1846 va_start(args, cArgs);
1847 int rc = VMMR3CallRCV(pVM, RCPtrEntry, cArgs, args);
1848 va_end(args);
1849 return rc;
1850}
1851
1852
1853/**
1854 * Calls a RC function.
1855 *
1856 * @param pVM The VM handle.
1857 * @param RCPtrEntry The address of the RC function.
1858 * @param cArgs The number of arguments in the ....
1859 * @param args Arguments to the function.
1860 */
1861VMMR3DECL(int) VMMR3CallRCV(PVM pVM, RTRCPTR RCPtrEntry, unsigned cArgs, va_list args)
1862{
1863 /* Raw mode implies 1 VCPU. */
1864 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
1865 PVMCPU pVCpu = &pVM->aCpus[0];
1866
1867 Log2(("VMMR3CallGCV: RCPtrEntry=%RRv cArgs=%d\n", RCPtrEntry, cArgs));
1868
1869 /*
1870 * Setup the call frame using the trampoline.
1871 */
1872 CPUMHyperSetCtxCore(pVCpu, NULL);
1873 memset(pVCpu->vmm.s.pbEMTStackR3, 0xaa, VMM_STACK_SIZE); /* Clear the stack. */
1874 CPUMSetHyperESP(pVCpu, pVCpu->vmm.s.pbEMTStackBottomRC - cArgs * sizeof(RTGCUINTPTR32));
1875 PRTGCUINTPTR32 pFrame = (PRTGCUINTPTR32)(pVCpu->vmm.s.pbEMTStackR3 + VMM_STACK_SIZE) - cArgs;
1876 int i = cArgs;
1877 while (i-- > 0)
1878 *pFrame++ = va_arg(args, RTGCUINTPTR32);
1879
1880 CPUMPushHyper(pVCpu, cArgs * sizeof(RTGCUINTPTR32)); /* stack frame size */
1881 CPUMPushHyper(pVCpu, RCPtrEntry); /* what to call */
1882 CPUMSetHyperEIP(pVCpu, pVM->vmm.s.pfnCallTrampolineRC);
1883
1884 /*
1885 * We hide log flushes (outer) and hypervisor interrupts (inner).
1886 */
1887 for (;;)
1888 {
1889 int rc;
1890 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
1891 do
1892 {
1893#ifdef NO_SUPCALLR0VMM
1894 rc = VERR_GENERAL_FAILURE;
1895#else
1896 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
1897 if (RT_LIKELY(rc == VINF_SUCCESS))
1898 rc = pVCpu->vmm.s.iLastGZRc;
1899#endif
1900 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1901
1902 /*
1903 * Flush the logs.
1904 */
1905#ifdef LOG_ENABLED
1906 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
1907 if ( pLogger
1908 && pLogger->offScratch > 0)
1909 RTLogFlushRC(NULL, pLogger);
1910#endif
1911#ifdef VBOX_WITH_RC_RELEASE_LOGGING
1912 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
1913 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1914 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
1915#endif
1916 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
1917 VMMR3FatalDump(pVM, pVCpu, rc);
1918 if (rc != VINF_VMM_CALL_HOST)
1919 {
1920 Log2(("VMMR3CallGCV: returns %Rrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestEIP(pVCpu)));
1921 return rc;
1922 }
1923 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1924 if (RT_FAILURE(rc))
1925 return rc;
1926 }
1927}
1928
1929
1930/**
1931 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
1932 *
1933 * @returns VBox status code.
1934 * @param pVM The VM to operate on.
1935 * @param uOperation Operation to execute.
1936 * @param u64Arg Constant argument.
1937 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
1938 * details.
1939 */
1940VMMR3DECL(int) VMMR3CallR0(PVM pVM, uint32_t uOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
1941{
1942 PVMCPU pVCpu = VMMGetCpu(pVM);
1943 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
1944
1945 /*
1946 * Call Ring-0 entry with init code.
1947 */
1948 int rc;
1949 for (;;)
1950 {
1951#ifdef NO_SUPCALLR0VMM
1952 rc = VERR_GENERAL_FAILURE;
1953#else
1954 rc = SUPR3CallVMMR0Ex(pVM->pVMR0, pVCpu->idCpu, uOperation, u64Arg, pReqHdr);
1955#endif
1956 /*
1957 * Flush the logs.
1958 */
1959#ifdef LOG_ENABLED
1960 if ( pVCpu->vmm.s.pR0LoggerR3
1961 && pVCpu->vmm.s.pR0LoggerR3->Logger.offScratch > 0)
1962 RTLogFlushToLogger(&pVCpu->vmm.s.pR0LoggerR3->Logger, NULL);
1963#endif
1964 if (rc != VINF_VMM_CALL_HOST)
1965 break;
1966 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
1967 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
1968 break;
1969 /* Resume R0 */
1970 }
1971
1972 AssertLogRelMsgReturn(rc == VINF_SUCCESS || RT_FAILURE(rc),
1973 ("uOperation=%u rc=%Rrc\n", uOperation, rc),
1974 VERR_INTERNAL_ERROR);
1975 return rc;
1976}
1977
1978
1979/**
1980 * Resumes executing hypervisor code when interrupted by a queue flush or a
1981 * debug event.
1982 *
1983 * @returns VBox status code.
1984 * @param pVM VM handle.
1985 * @param pVCpu VMCPU handle.
1986 */
1987VMMR3DECL(int) VMMR3ResumeHyper(PVM pVM, PVMCPU pVCpu)
1988{
1989 Log(("VMMR3ResumeHyper: eip=%RRv esp=%RRv\n", CPUMGetHyperEIP(pVCpu), CPUMGetHyperESP(pVCpu)));
1990 AssertReturn(pVM->cCpus == 1, VERR_RAW_MODE_INVALID_SMP);
1991
1992 /*
1993 * We hide log flushes (outer) and hypervisor interrupts (inner).
1994 */
1995 for (;;)
1996 {
1997 int rc;
1998 Assert(CPUMGetHyperCR3(pVCpu) && CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu));
1999 do
2000 {
2001#ifdef NO_SUPCALLR0VMM
2002 rc = VERR_GENERAL_FAILURE;
2003#else
2004 rc = SUPR3CallVMMR0Fast(pVM->pVMR0, VMMR0_DO_RAW_RUN, 0);
2005 if (RT_LIKELY(rc == VINF_SUCCESS))
2006 rc = pVCpu->vmm.s.iLastGZRc;
2007#endif
2008 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
2009
2010 /*
2011 * Flush the loggers,
2012 */
2013#ifdef LOG_ENABLED
2014 PRTLOGGERRC pLogger = pVM->vmm.s.pRCLoggerR3;
2015 if ( pLogger
2016 && pLogger->offScratch > 0)
2017 RTLogFlushRC(NULL, pLogger);
2018#endif
2019#ifdef VBOX_WITH_RC_RELEASE_LOGGING
2020 PRTLOGGERRC pRelLogger = pVM->vmm.s.pRCRelLoggerR3;
2021 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
2022 RTLogFlushRC(RTLogRelDefaultInstance(), pRelLogger);
2023#endif
2024 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
2025 VMMR3FatalDump(pVM, pVCpu, rc);
2026 if (rc != VINF_VMM_CALL_HOST)
2027 {
2028 Log(("VMMR3ResumeHyper: returns %Rrc\n", rc));
2029 return rc;
2030 }
2031 rc = vmmR3ServiceCallRing3Request(pVM, pVCpu);
2032 if (RT_FAILURE(rc))
2033 return rc;
2034 }
2035}
2036
2037
2038/**
2039 * Service a call to the ring-3 host code.
2040 *
2041 * @returns VBox status code.
2042 * @param pVM VM handle.
2043 * @param pVCpu VMCPU handle
2044 * @remark Careful with critsects.
2045 */
2046static int vmmR3ServiceCallRing3Request(PVM pVM, PVMCPU pVCpu)
2047{
2048 /*
2049 * We must also check for pending critsect exits or else we can deadlock
2050 * when entering other critsects here.
2051 */
2052 if (VMCPU_FF_ISPENDING(pVCpu, VMCPU_FF_PDM_CRITSECT))
2053 PDMCritSectFF(pVCpu);
2054
2055 switch (pVCpu->vmm.s.enmCallRing3Operation)
2056 {
2057 /*
2058 * Acquire the PDM lock.
2059 */
2060 case VMMCALLRING3_PDM_LOCK:
2061 {
2062 pVCpu->vmm.s.rcCallRing3 = PDMR3LockCall(pVM);
2063 break;
2064 }
2065
2066 /*
2067 * Grow the PGM pool.
2068 */
2069 case VMMCALLRING3_PGM_POOL_GROW:
2070 {
2071 pVCpu->vmm.s.rcCallRing3 = PGMR3PoolGrow(pVM);
2072 break;
2073 }
2074
2075 /*
2076 * Maps an page allocation chunk into ring-3 so ring-0 can use it.
2077 */
2078 case VMMCALLRING3_PGM_MAP_CHUNK:
2079 {
2080 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysChunkMap(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2081 break;
2082 }
2083
2084 /*
2085 * Allocates more handy pages.
2086 */
2087 case VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES:
2088 {
2089 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateHandyPages(pVM);
2090 break;
2091 }
2092
2093 /*
2094 * Allocates a large page.
2095 */
2096 case VMMCALLRING3_PGM_ALLOCATE_LARGE_HANDY_PAGE:
2097 {
2098 pVCpu->vmm.s.rcCallRing3 = PGMR3PhysAllocateLargeHandyPage(pVM, pVCpu->vmm.s.u64CallRing3Arg);
2099 break;
2100 }
2101
2102 /*
2103 * Acquire the PGM lock.
2104 */
2105 case VMMCALLRING3_PGM_LOCK:
2106 {
2107 pVCpu->vmm.s.rcCallRing3 = PGMR3LockCall(pVM);
2108 break;
2109 }
2110
2111 /*
2112 * Acquire the MM hypervisor heap lock.
2113 */
2114 case VMMCALLRING3_MMHYPER_LOCK:
2115 {
2116 pVCpu->vmm.s.rcCallRing3 = MMR3LockCall(pVM);
2117 break;
2118 }
2119
2120 /*
2121 * Flush REM handler notifications.
2122 */
2123 case VMMCALLRING3_REM_REPLAY_HANDLER_NOTIFICATIONS:
2124 {
2125 REMR3ReplayHandlerNotifications(pVM);
2126 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2127 break;
2128 }
2129
2130 /*
2131 * This is a noop. We just take this route to avoid unnecessary
2132 * tests in the loops.
2133 */
2134 case VMMCALLRING3_VMM_LOGGER_FLUSH:
2135 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2136 LogAlways(("*FLUSH*\n"));
2137 break;
2138
2139 /*
2140 * Set the VM error message.
2141 */
2142 case VMMCALLRING3_VM_SET_ERROR:
2143 VMR3SetErrorWorker(pVM);
2144 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2145 break;
2146
2147 /*
2148 * Set the VM runtime error message.
2149 */
2150 case VMMCALLRING3_VM_SET_RUNTIME_ERROR:
2151 pVCpu->vmm.s.rcCallRing3 = VMR3SetRuntimeErrorWorker(pVM);
2152 break;
2153
2154 /*
2155 * Signal a ring 0 hypervisor assertion.
2156 * Cancel the longjmp operation that's in progress.
2157 */
2158 case VMMCALLRING3_VM_R0_ASSERTION:
2159 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2160 pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call = false;
2161#ifdef RT_ARCH_X86
2162 pVCpu->vmm.s.CallRing3JmpBufR0.eip = 0;
2163#else
2164 pVCpu->vmm.s.CallRing3JmpBufR0.rip = 0;
2165#endif
2166#ifdef VMM_R0_SWITCH_STACK
2167 *(uint64_t *)pVCpu->vmm.s.pbEMTStackR3 = 0; /* clear marker */
2168#endif
2169 LogRel((pVM->vmm.s.szRing0AssertMsg1));
2170 LogRel((pVM->vmm.s.szRing0AssertMsg2));
2171 return VERR_VMM_RING0_ASSERTION;
2172
2173 /*
2174 * A forced switch to ring 0 for preemption purposes.
2175 */
2176 case VMMCALLRING3_VM_R0_PREEMPT:
2177 pVCpu->vmm.s.rcCallRing3 = VINF_SUCCESS;
2178 break;
2179
2180 case VMMCALLRING3_FTM_SET_CHECKPOINT:
2181 pVCpu->vmm.s.rcCallRing3 = FTMR3SetCheckpoint(pVM, (FTMCHECKPOINTTYPE)pVCpu->vmm.s.u64CallRing3Arg);
2182 break;
2183
2184 default:
2185 AssertMsgFailed(("enmCallRing3Operation=%d\n", pVCpu->vmm.s.enmCallRing3Operation));
2186 return VERR_INTERNAL_ERROR;
2187 }
2188
2189 pVCpu->vmm.s.enmCallRing3Operation = VMMCALLRING3_INVALID;
2190 return VINF_SUCCESS;
2191}
2192
2193
2194/**
2195 * Displays the Force action Flags.
2196 *
2197 * @param pVM The VM handle.
2198 * @param pHlp The output helpers.
2199 * @param pszArgs The additional arguments (ignored).
2200 */
2201static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2202{
2203 int c;
2204 uint32_t f;
2205#define PRINT_FLAG(prf,flag) do { \
2206 if (f & (prf##flag)) \
2207 { \
2208 static const char *s_psz = #flag; \
2209 if (!(c % 6)) \
2210 pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz); \
2211 else \
2212 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2213 c++; \
2214 f &= ~(prf##flag); \
2215 } \
2216 } while (0)
2217
2218#define PRINT_GROUP(prf,grp,sfx) do { \
2219 if (f & (prf##grp##sfx)) \
2220 { \
2221 static const char *s_psz = #grp; \
2222 if (!(c % 5)) \
2223 pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : " Groups:\n", s_psz); \
2224 else \
2225 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2226 c++; \
2227 } \
2228 } while (0)
2229
2230 /*
2231 * The global flags.
2232 */
2233 const uint32_t fGlobalForcedActions = pVM->fGlobalForcedActions;
2234 pHlp->pfnPrintf(pHlp, "Global FFs: %#RX32", fGlobalForcedActions);
2235
2236 /* show the flag mnemonics */
2237 c = 0;
2238 f = fGlobalForcedActions;
2239 PRINT_FLAG(VM_FF_,TM_VIRTUAL_SYNC);
2240 PRINT_FLAG(VM_FF_,PDM_QUEUES);
2241 PRINT_FLAG(VM_FF_,PDM_DMA);
2242 PRINT_FLAG(VM_FF_,DBGF);
2243 PRINT_FLAG(VM_FF_,REQUEST);
2244 PRINT_FLAG(VM_FF_,CHECK_VM_STATE);
2245 PRINT_FLAG(VM_FF_,RESET);
2246 PRINT_FLAG(VM_FF_,EMT_RENDEZVOUS);
2247 PRINT_FLAG(VM_FF_,PGM_NEED_HANDY_PAGES);
2248 PRINT_FLAG(VM_FF_,PGM_NO_MEMORY);
2249 PRINT_FLAG(VM_FF_,PGM_POOL_FLUSH_PENDING);
2250 PRINT_FLAG(VM_FF_,REM_HANDLER_NOTIFY);
2251 PRINT_FLAG(VM_FF_,DEBUG_SUSPEND);
2252 if (f)
2253 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2254 else
2255 pHlp->pfnPrintf(pHlp, "\n");
2256
2257 /* the groups */
2258 c = 0;
2259 f = fGlobalForcedActions;
2260 PRINT_GROUP(VM_FF_,EXTERNAL_SUSPENDED,_MASK);
2261 PRINT_GROUP(VM_FF_,EXTERNAL_HALTED,_MASK);
2262 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE,_MASK);
2263 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2264 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_POST,_MASK);
2265 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY_POST,_MASK);
2266 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY,_MASK);
2267 PRINT_GROUP(VM_FF_,ALL_BUT_RAW,_MASK);
2268 if (c)
2269 pHlp->pfnPrintf(pHlp, "\n");
2270
2271 /*
2272 * Per CPU flags.
2273 */
2274 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2275 {
2276 const uint32_t fLocalForcedActions = pVM->aCpus[i].fLocalForcedActions;
2277 pHlp->pfnPrintf(pHlp, "CPU %u FFs: %#RX32", i, fLocalForcedActions);
2278
2279 /* show the flag mnemonics */
2280 c = 0;
2281 f = fLocalForcedActions;
2282 PRINT_FLAG(VMCPU_FF_,INTERRUPT_APIC);
2283 PRINT_FLAG(VMCPU_FF_,INTERRUPT_PIC);
2284 PRINT_FLAG(VMCPU_FF_,TIMER);
2285 PRINT_FLAG(VMCPU_FF_,PDM_CRITSECT);
2286 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3);
2287 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3_NON_GLOBAL);
2288 PRINT_FLAG(VMCPU_FF_,TLB_FLUSH);
2289 PRINT_FLAG(VMCPU_FF_,TRPM_SYNC_IDT);
2290 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_TSS);
2291 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_GDT);
2292 PRINT_FLAG(VMCPU_FF_,SELM_SYNC_LDT);
2293 PRINT_FLAG(VMCPU_FF_,INHIBIT_INTERRUPTS);
2294 PRINT_FLAG(VMCPU_FF_,CSAM_SCAN_PAGE);
2295 PRINT_FLAG(VMCPU_FF_,CSAM_PENDING_ACTION);
2296 PRINT_FLAG(VMCPU_FF_,TO_R3);
2297 if (f)
2298 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2299 else
2300 pHlp->pfnPrintf(pHlp, "\n");
2301
2302 /* the groups */
2303 c = 0;
2304 f = fLocalForcedActions;
2305 PRINT_GROUP(VMCPU_FF_,EXTERNAL_SUSPENDED,_MASK);
2306 PRINT_GROUP(VMCPU_FF_,EXTERNAL_HALTED,_MASK);
2307 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE,_MASK);
2308 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2309 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_POST,_MASK);
2310 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY_POST,_MASK);
2311 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY,_MASK);
2312 PRINT_GROUP(VMCPU_FF_,RESUME_GUEST,_MASK);
2313 PRINT_GROUP(VMCPU_FF_,HWACCM_TO_R3,_MASK);
2314 PRINT_GROUP(VMCPU_FF_,ALL_BUT_RAW,_MASK);
2315 if (c)
2316 pHlp->pfnPrintf(pHlp, "\n");
2317 }
2318
2319#undef PRINT_FLAG
2320#undef PRINT_GROUP
2321}
2322
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette