VirtualBox

source: vbox/trunk/src/VBox/VMM/VMM.cpp@ 830

Last change on this file since 830 was 463, checked in by vboxsync, 18 years ago

log causes for SSM load config mismatch to release log

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 105.4 KB
Line 
1/* $Id: VMM.cpp 463 2007-01-31 12:28:42Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006 InnoTek Systemberatung GmbH
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License as published by the Free Software Foundation,
13 * in version 2 as it comes in the "COPYING" file of the VirtualBox OSE
14 * distribution. VirtualBox OSE is distributed in the hope that it will
15 * be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * If you received this file as part of a commercial VirtualBox
18 * distribution, then only the terms of your commercial VirtualBox
19 * license agreement apply instead of the previous paragraph.
20 */
21
22#if 0 //defined(__AMD64__) && !defined(__WIN__)
23# define NO_SUPCALLR0VMM
24#endif
25
26/** @page pg_vmm VMM - The Virtual Machine Monitor
27 *
28 * !Revise this! It's already incorrect!
29 *
30 * The Virtual Machine Monitor (VMM) is the core of the virtual machine. It
31 * manages the alternate reality; controlling the virtualization, managing
32 * resources, tracking CPU state, it's resources and so on...
33 *
34 * We will split the VMM into smaller entities:
35 *
36 * - Virtual Machine Core Monitor (VMCM), which purpose it is to
37 * provide ring and world switching, that including routing
38 * interrupts to the host OS and traps to the appropriate trap
39 * handlers. It will implement an external interface for
40 * managing trap handlers.
41 *
42 * - CPU Monitor (CM), tracking the state of the CPU (in the alternate
43 * reality) and implementing external interfaces to read and change
44 * the state.
45 *
46 * - Memory Monitor (MM), which purpose it is to virtualize physical
47 * pages, segment descriptor tables, interrupt descriptor tables, task
48 * segments, and keep track of all memory providing external interfaces
49 * to access content and map pages. (Internally splitt into smaller entities!)
50 *
51 * - IO Monitor (IOM), which virtualizes in and out I/O operations. It
52 * interacts with the MM to implement memory mapped I/O. External
53 * interfaces for adding and removing I/O ranges are implemented.
54 *
55 * - External Interrupt Monitor (EIM), which purpose it is to manage
56 * interrupts generated by virtual devices. This monitor provides
57 * an interfaces for raising interrupts which is accessible at any
58 * time and from all thread.
59 * <p>
60 * A subentity of the EIM is the vitual Programmable Interrupt
61 * Controller Device (VPICD), and perhaps a virtual I/O Advanced
62 * Programmable Interrupt Controller Device (VAPICD).
63 *
64 * - Direct Memory Access Monitor (DMAM), which purpose it is to support
65 * virtual device using the DMA controller. Interfaces must be as the
66 * EIM interfaces independent and threadable.
67 * <p>
68 * A subentity of the DMAM is a virtual DMA Controller Device (VDMACD).
69 *
70 *
71 * Entities working on a higher level:
72 *
73 * - Device Manager (DM), which is a support facility for virtualized
74 * hardware. This provides generic facilities for efficient device
75 * virtualization. It will manage device attaching and detaching
76 * conversing with EIM and IOM.
77 *
78 * - Debugger Facility (DBGF) provides the basic features for
79 * debugging the alternate reality execution.
80 *
81 *
82 *
83 * @section pg_vmm_s_use_cases Use Cases
84 *
85 * @subsection pg_vmm_s_use_case_boot Bootstrap
86 *
87 * - Basic Init:
88 * - Init SUPDRV.
89 *
90 * - Init Virtual Machine Instance:
91 * - Load settings.
92 * - Check resource requirements (memory, com, stuff).
93 *
94 * - Init Host Ring 3 part:
95 * - Init Core code.
96 * - Load Pluggable Components.
97 * - Init Pluggable Components.
98 *
99 * - Init Host Ring 0 part:
100 * - Load Core (core = core components like VMM, RMI, CA, and so on) code.
101 * - Init Core code.
102 * - Load Pluggable Component code.
103 * - Init Pluggable Component code.
104 *
105 * - Allocate first chunk of memory and pin it down. This block of memory
106 * will fit the following pieces:
107 * - Virtual Machine Instance data. (Config, CPU state, VMM state, ++)
108 * (This is available from everywhere (at different addresses though)).
109 * - VMM Guest Context code.
110 * - Pluggable devices Guest Context code.
111 * - Page tables (directory and everything) for the VMM Guest
112 *
113 * - Setup Guest (Ring 0) part:
114 * - Setup initial page tables (i.e. directory all the stuff).
115 * - Load Core Guest Context code.
116 * - Load Pluggable Devices Guest Context code.
117 *
118 *
119 */
120
121
122/*******************************************************************************
123* Header Files *
124*******************************************************************************/
125#define LOG_GROUP LOG_GROUP_VMM
126#include <VBox/vmm.h>
127#include <VBox/vmapi.h>
128#include <VBox/pgm.h>
129#include <VBox/cfgm.h>
130#include <VBox/pdm.h>
131#include <VBox/cpum.h>
132#include <VBox/mm.h>
133#include <VBox/iom.h>
134#include <VBox/trpm.h>
135#include <VBox/selm.h>
136#include <VBox/em.h>
137#include <VBox/sup.h>
138#include <VBox/dbgf.h>
139#include <VBox/csam.h>
140#include <VBox/patm.h>
141#include <VBox/rem.h>
142#include <VBox/ssm.h>
143#include <VBox/tm.h>
144#include "VMMInternal.h"
145#include "VMMSwitcher/VMMSwitcher.h"
146#include <VBox/vm.h>
147#include <VBox/err.h>
148#include <VBox/param.h>
149#include <VBox/version.h>
150#include <VBox/x86.h>
151#include <iprt/assert.h>
152#include <iprt/alloc.h>
153#include <iprt/asm.h>
154#include <iprt/time.h>
155#include <iprt/stream.h>
156#include <iprt/string.h>
157#include <iprt/stdarg.h>
158#include <iprt/ctype.h>
159
160
161
162/** The saved state version. */
163#define VMM_SAVED_STATE_VERSION 3
164
165
166/*******************************************************************************
167* Internal Functions *
168*******************************************************************************/
169static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
170static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
171static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser);
172static int vmmR3ServiceCallHostRequest(PVM pVM);
173
174
175/*******************************************************************************
176* Global Variables *
177*******************************************************************************/
178/** Array of switcher defininitions.
179 * The type and index shall match!
180 */
181static PVMMSWITCHERDEF s_apSwitchers[VMMSWITCHER_MAX] =
182{
183 NULL, /* invalid entry */
184#ifndef __AMD64__
185 &vmmR3Switcher32BitTo32Bit_Def,
186 &vmmR3Switcher32BitToPAE_Def,
187 NULL, //&vmmR3Switcher32BitToAMD64_Def,
188 &vmmR3SwitcherPAETo32Bit_Def,
189 &vmmR3SwitcherPAEToPAE_Def,
190 NULL, //&vmmR3SwitcherPAEToAMD64_Def,
191 NULL, //&vmmR3SwitcherAMD64ToPAE_Def,
192 NULL //&vmmR3SwitcherAMD64ToAMD64_Def,
193#else
194 NULL, //&vmmR3Switcher32BitTo32Bit_Def,
195 NULL, //&vmmR3Switcher32BitToPAE_Def,
196 NULL, //&vmmR3Switcher32BitToAMD64_Def,
197 NULL, //&vmmR3SwitcherPAETo32Bit_Def,
198 NULL, //&vmmR3SwitcherPAEToPAE_Def,
199 NULL, //&vmmR3SwitcherPAEToAMD64_Def,
200 &vmmR3SwitcherAMD64ToPAE_Def,
201 NULL //&vmmR3SwitcherAMD64ToAMD64_Def,
202#endif
203};
204
205
206
207/**
208 * Initiates the core code.
209 *
210 * This is core per VM code which might need fixups and/or for ease of use
211 * are put on linear contiguous backing.
212 *
213 * @returns VBox status code.
214 * @param pVM Pointer to VM structure.
215 */
216static int vmmR3InitCoreCode(PVM pVM)
217{
218 /*
219 * Calc the size.
220 */
221 unsigned cbCoreCode = 0;
222 for (unsigned iSwitcher = 0; iSwitcher < ELEMENTS(s_apSwitchers); iSwitcher++)
223 {
224 pVM->vmm.s.aoffSwitchers[iSwitcher] = cbCoreCode;
225 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[iSwitcher];
226 if (pSwitcher)
227 {
228 AssertRelease((unsigned)pSwitcher->enmType == iSwitcher);
229 cbCoreCode += RT_ALIGN_32(pSwitcher->cbCode + 1, 32);
230 }
231 }
232
233 /*
234 * Allocate continguous pages for switchers and deal with
235 * conflicts in the intermediate mapping of the code.
236 */
237 pVM->vmm.s.cbCoreCode = RT_ALIGN_32(cbCoreCode, PAGE_SIZE);
238 pVM->vmm.s.pvHCCoreCodeR3 = SUPContAlloc2(pVM->vmm.s.cbCoreCode, &pVM->vmm.s.pvHCCoreCodeR0, &pVM->vmm.s.HCPhysCoreCode);
239 int rc = VERR_NO_MEMORY;
240 if (pVM->vmm.s.pvHCCoreCodeR3)
241 {
242 rc = PGMR3MapIntermediate(pVM, pVM->vmm.s.pvHCCoreCodeR0, pVM->vmm.s.HCPhysCoreCode, cbCoreCode);
243 if (rc == VERR_PGM_MAPPINGS_FIX_CONFLICT)
244 {
245 /* try more allocations. */
246 struct
247 {
248 void *pvR0;
249 void *pvR3;
250 RTHCPHYS HCPhys;
251 } aBadTries[16];
252 unsigned i = 0;
253 do
254 {
255 aBadTries[i].pvR3 = pVM->vmm.s.pvHCCoreCodeR3;
256 aBadTries[i].pvR0 = pVM->vmm.s.pvHCCoreCodeR0;
257 aBadTries[i].HCPhys = pVM->vmm.s.HCPhysCoreCode;
258 i++;
259 pVM->vmm.s.pvHCCoreCodeR0 = NIL_RTR0PTR;
260 pVM->vmm.s.HCPhysCoreCode = NIL_RTHCPHYS;
261 pVM->vmm.s.pvHCCoreCodeR3 = SUPContAlloc2(pVM->vmm.s.cbCoreCode, &pVM->vmm.s.pvHCCoreCodeR0, &pVM->vmm.s.HCPhysCoreCode);
262 if (!pVM->vmm.s.pvHCCoreCodeR3)
263 break;
264 rc = PGMR3MapIntermediate(pVM, pVM->vmm.s.pvHCCoreCodeR0, pVM->vmm.s.HCPhysCoreCode, cbCoreCode);
265 } while ( rc == VERR_PGM_MAPPINGS_FIX_CONFLICT
266 && i < ELEMENTS(aBadTries) - 1);
267
268 /* cleanup */
269 if (VBOX_FAILURE(rc))
270 {
271 aBadTries[i].pvR3 = pVM->vmm.s.pvHCCoreCodeR3;
272 aBadTries[i].pvR0 = pVM->vmm.s.pvHCCoreCodeR0;
273 aBadTries[i].HCPhys = pVM->vmm.s.HCPhysCoreCode;
274 i++;
275 LogRel(("Failed to allocated and map core code: rc=%Vrc\n", rc));
276 }
277 while (i-- > 0)
278 {
279 LogRel(("Core code alloc attempt #%d: pvR3=%p pvR0=%p HCPhys=%VHp\n",
280 i, aBadTries[i].pvR3, aBadTries[i].pvR0, aBadTries[i].HCPhys));
281 SUPContFree(aBadTries[i].pvR3);
282 }
283 }
284 }
285 if (VBOX_SUCCESS(rc))
286 {
287 /*
288 * copy the code.
289 */
290 for (unsigned iSwitcher = 0; iSwitcher < ELEMENTS(s_apSwitchers); iSwitcher++)
291 {
292 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[iSwitcher];
293 if (pSwitcher)
294 memcpy((uint8_t *)pVM->vmm.s.pvHCCoreCodeR3 + pVM->vmm.s.aoffSwitchers[iSwitcher],
295 pSwitcher->pvCode, pSwitcher->cbCode);
296 }
297
298 /*
299 * Map the code into the GC address space.
300 */
301 rc = MMR3HyperMapHCPhys(pVM, pVM->vmm.s.pvHCCoreCodeR3, pVM->vmm.s.HCPhysCoreCode, cbCoreCode, "Core Code", &pVM->vmm.s.pvGCCoreCode);
302 if (VBOX_SUCCESS(rc))
303 {
304 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
305 /*
306 * Finally, PGM probably have selected a switcher already but we need
307 * to do get the addresses so we'll reselect it.
308 * This may legally fail so, we're ignoring the rc.
309 */
310 VMMR3SelectSwitcher(pVM, pVM->vmm.s.enmSwitcher);
311 return rc;
312 }
313
314 /* shit */
315 AssertMsgFailed(("PGMR3Map(,%VGv, %VGp, %#x, 0) failed with rc=%Vrc\n", pVM->vmm.s.pvGCCoreCode, pVM->vmm.s.HCPhysCoreCode, cbCoreCode, rc));
316 SUPContFree(pVM->vmm.s.pvHCCoreCodeR3);
317 }
318 else
319 VMSetError(pVM, rc, RT_SRC_POS,
320 N_("Failed to allocate %d bytes of contiguous memory for the world switcher code."),
321 cbCoreCode);
322
323 pVM->vmm.s.pvHCCoreCodeR3 = NULL;
324 pVM->vmm.s.pvHCCoreCodeR0 = NIL_RTR0PTR;
325 pVM->vmm.s.pvGCCoreCode = 0;
326 return rc;
327}
328
329
330/**
331 * Initializes the VMM.
332 *
333 * @returns VBox status code.
334 * @param pVM The VM to operate on.
335 */
336VMMR3DECL(int) VMMR3Init(PVM pVM)
337{
338 LogFlow(("VMMR3Init\n"));
339
340 /*
341 * Assert alignment, sizes and order.
342 */
343 AssertMsg(pVM->vmm.s.offVM == 0, ("Already initialized!\n"));
344 AssertMsg(sizeof(pVM->vmm.padding) >= sizeof(pVM->vmm.s),
345 ("pVM->vmm.padding is too small! vmm.padding %d while vmm.s is %d\n",
346 sizeof(pVM->vmm.padding), sizeof(pVM->vmm.s)));
347
348 /*
349 * Init basic VM VMM members.
350 */
351 pVM->vmm.s.offVM = RT_OFFSETOF(VM, vmm);
352 int rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies);
353 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
354 pVM->vmm.s.cYieldEveryMillies = 23; /* Value arrived at after experimenting with the grub boot prompt. */
355 //pVM->vmm.s.cYieldEveryMillies = 8; //debugging
356 else
357 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Vrc\n", rc), rc);
358
359 /*
360 * Register the saved state data unit.
361 */
362 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
363 NULL, vmmR3Save, NULL,
364 NULL, vmmR3Load, NULL);
365 if (VBOX_FAILURE(rc))
366 return rc;
367
368 /* GC switchers are enabled by default. Turned off by HWACCM. */
369 pVM->vmm.s.fSwitcherDisabled = false;
370
371 /*
372 * Init core code.
373 */
374 rc = vmmR3InitCoreCode(pVM);
375 if (VBOX_SUCCESS(rc))
376 {
377 /*
378 * Allocate & init VMM GC stack.
379 * The stack pages are also used by the VMM R0 when VMMR0CallHost is invoked.
380 * (The page protection is modifed during R3 init completion.)
381 */
382#ifdef VBOX_STRICT_VMM_STACK
383 rc = MMHyperAlloc(pVM, VMM_STACK_SIZE + PAGE_SIZE + PAGE_SIZE, PAGE_SIZE, MM_TAG_VMM, (void **)&pVM->vmm.s.pbHCStack);
384#else
385 rc = MMHyperAlloc(pVM, VMM_STACK_SIZE, PAGE_SIZE, MM_TAG_VMM, (void **)&pVM->vmm.s.pbHCStack);
386#endif
387 if (VBOX_SUCCESS(rc))
388 {
389 /* Set HC and GC stack pointers to top of stack. */
390 pVM->vmm.s.CallHostR0JmpBuf.pvSavedStack = (RTR0PTR)pVM->vmm.s.pbHCStack;
391 pVM->vmm.s.pbGCStack = MMHyperHC2GC(pVM, pVM->vmm.s.pbHCStack);
392 pVM->vmm.s.pbGCStackBottom = pVM->vmm.s.pbGCStack + VMM_STACK_SIZE;
393 AssertRelease(pVM->vmm.s.pbGCStack);
394
395 /* Set hypervisor eip. */
396 CPUMSetHyperESP(pVM, pVM->vmm.s.pbGCStack);
397
398 /*
399 * Allocate GC & R0 Logger instances (they are finalized in the relocator).
400 */
401#ifdef LOG_ENABLED
402 PRTLOGGER pLogger = RTLogDefaultInstance();
403 if (pLogger)
404 {
405 pVM->vmm.s.cbLoggerGC = RT_OFFSETOF(RTLOGGERGC, afGroups[pLogger->cGroups]);
406 rc = MMHyperAlloc(pVM, pVM->vmm.s.cbLoggerGC, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pLoggerHC);
407 if (VBOX_SUCCESS(rc))
408 {
409 pVM->vmm.s.pLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pLoggerHC);
410
411/*
412 * Ring-0 logging isn't 100% safe yet (thread id reuse / process exit cleanup), so
413 * you have to sign up here by adding your defined(DEBUG_<userid>) to the #if.
414 *
415 * If you want to log in non-debug modes, you'll have to remember to change SUPDRvShared.c
416 * to not stub all the log functions.
417 */
418# ifdef DEBUG_sandervl
419 rc = MMHyperAlloc(pVM, RT_OFFSETOF(VMMR0LOGGER, Logger.afGroups[pLogger->cGroups]),
420 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pR0Logger);
421 if (VBOX_SUCCESS(rc))
422 {
423 pVM->vmm.s.pR0Logger->pVM = pVM;
424 //pVM->vmm.s.pR0Logger->fCreated = false;
425 pVM->vmm.s.pR0Logger->cbLogger = RT_OFFSETOF(RTLOGGER, afGroups[pLogger->cGroups]);
426 }
427# endif
428 }
429 }
430#endif /* LOG_ENABLED */
431
432#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
433 /*
434 * Allocate GC Release Logger instances (finalized in the relocator).
435 */
436 if (VBOX_SUCCESS(rc))
437 {
438 PRTLOGGER pRelLogger = RTLogRelDefaultInstance();
439 if (pRelLogger)
440 {
441 pVM->vmm.s.cbRelLoggerGC = RT_OFFSETOF(RTLOGGERGC, afGroups[pRelLogger->cGroups]);
442 rc = MMHyperAlloc(pVM, pVM->vmm.s.cbRelLoggerGC, 0, MM_TAG_VMM, (void **)&pVM->vmm.s.pRelLoggerHC);
443 if (VBOX_SUCCESS(rc))
444 pVM->vmm.s.pRelLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pRelLoggerHC);
445 }
446 }
447#endif /* VBOX_WITH_GC_AND_R0_RELEASE_LOG */
448
449#ifdef VBOX_WITH_NMI
450 /*
451 * Allocate mapping for the host APIC.
452 */
453 if (VBOX_SUCCESS(rc))
454 {
455 rc = MMR3HyperReserve(pVM, PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
456 AssertRC(rc);
457 }
458#endif
459 if (VBOX_SUCCESS(rc))
460 {
461 rc = RTCritSectInit(&pVM->vmm.s.CritSectVMLock);
462 if (VBOX_SUCCESS(rc))
463 {
464 /*
465 * Statistics.
466 */
467 STAM_REG(pVM, &pVM->vmm.s.StatRunGC, STAMTYPE_COUNTER, "/VMM/RunGC", STAMUNIT_OCCURENCES, "Number of context switches.");
468 STAM_REG(pVM, &pVM->vmm.s.StatGCRetNormal, STAMTYPE_COUNTER, "/VMM/GCRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
469 STAM_REG(pVM, &pVM->vmm.s.StatGCRetInterrupt, STAMTYPE_COUNTER, "/VMM/GCRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
470 STAM_REG(pVM, &pVM->vmm.s.StatGCRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/GCRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
471 STAM_REG(pVM, &pVM->vmm.s.StatGCRetGuestTrap, STAMTYPE_COUNTER, "/VMM/GCRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
472 STAM_REG(pVM, &pVM->vmm.s.StatGCRetRingSwitch, STAMTYPE_COUNTER, "/VMM/GCRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
473 STAM_REG(pVM, &pVM->vmm.s.StatGCRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/GCRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
474 STAM_REG(pVM, &pVM->vmm.s.StatGCRetExceptionPrivilege, STAMTYPE_COUNTER, "/VMM/GCRet/ExceptionPrivilege", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_EXCEPTION_PRIVILEGED returns.");
475 STAM_REG(pVM, &pVM->vmm.s.StatGCRetStaleSelector, STAMTYPE_COUNTER, "/VMM/GCRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
476 STAM_REG(pVM, &pVM->vmm.s.StatGCRetIRETTrap, STAMTYPE_COUNTER, "/VMM/GCRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
477 STAM_REG(pVM, &pVM->vmm.s.StatGCRetEmulate, STAMTYPE_COUNTER, "/VMM/GCRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
478 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/GCRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
479 STAM_REG(pVM, &pVM->vmm.s.StatGCRetIORead, STAMTYPE_COUNTER, "/VMM/GCRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_READ returns.");
480 STAM_REG(pVM, &pVM->vmm.s.StatGCRetIOWrite, STAMTYPE_COUNTER, "/VMM/GCRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_WRITE returns.");
481 STAM_REG(pVM, &pVM->vmm.s.StatGCRetIOReadWrite, STAMTYPE_COUNTER, "/VMM/GCRet/IOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_IOPORT_READWRITE returns.");
482 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMMIORead, STAMTYPE_COUNTER, "/VMM/GCRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_READ returns.");
483 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/GCRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_WRITE returns.");
484 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/GCRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_READ_WRITE returns.");
485 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/GCRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
486 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/GCRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
487 STAM_REG(pVM, &pVM->vmm.s.StatGCRetLDTFault, STAMTYPE_COUNTER, "/VMM/GCRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
488 STAM_REG(pVM, &pVM->vmm.s.StatGCRetGDTFault, STAMTYPE_COUNTER, "/VMM/GCRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
489 STAM_REG(pVM, &pVM->vmm.s.StatGCRetIDTFault, STAMTYPE_COUNTER, "/VMM/GCRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
490 STAM_REG(pVM, &pVM->vmm.s.StatGCRetTSSFault, STAMTYPE_COUNTER, "/VMM/GCRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
491 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPDFault, STAMTYPE_COUNTER, "/VMM/GCRet/PDFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_PD_FAULT returns.");
492 STAM_REG(pVM, &pVM->vmm.s.StatGCRetCSAMTask, STAMTYPE_COUNTER, "/VMM/GCRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
493 STAM_REG(pVM, &pVM->vmm.s.StatGCRetSyncCR3, STAMTYPE_COUNTER, "/VMM/GCRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
494 STAM_REG(pVM, &pVM->vmm.s.StatGCRetMisc, STAMTYPE_COUNTER, "/VMM/GCRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
495 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPatchInt3, STAMTYPE_COUNTER, "/VMM/GCRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
496 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPatchPF, STAMTYPE_COUNTER, "/VMM/GCRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
497 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPatchGP, STAMTYPE_COUNTER, "/VMM/GCRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
498 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/GCRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
499 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPageOverflow, STAMTYPE_COUNTER, "/VMM/GCRet/InvlpgOverflow", STAMUNIT_OCCURENCES, "Number of VERR_REM_FLUSHED_PAGES_OVERFLOW returns.");
500 STAM_REG(pVM, &pVM->vmm.s.StatGCRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/GCRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
501 STAM_REG(pVM, &pVM->vmm.s.StatGCRetToR3, STAMTYPE_COUNTER, "/VMM/GCRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
502 STAM_REG(pVM, &pVM->vmm.s.StatGCRetTimerPending, STAMTYPE_COUNTER, "/VMM/GCRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
503 STAM_REG(pVM, &pVM->vmm.s.StatGCRetInterruptPending, STAMTYPE_COUNTER, "/VMM/GCRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
504 STAM_REG(pVM, &pVM->vmm.s.StatGCRetCallHost, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/Misc", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
505 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPGMGrowRAM, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/GrowRAM", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
506 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPDMLock, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/PDMLock", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
507 STAM_REG(pVM, &pVM->vmm.s.StatGCRetLogFlush, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/LogFlush", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
508 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPDMQueueFlush, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/QueueFlush", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
509 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPGMPoolGrow, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/PGMPoolGrow",STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
510 STAM_REG(pVM, &pVM->vmm.s.StatGCRetRemReplay, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/REMReplay", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
511 STAM_REG(pVM, &pVM->vmm.s.StatGCRetVMSetError, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/VMSetError", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
512 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPGMLock, STAMTYPE_COUNTER, "/VMM/GCRet/CallHost/PGMLock", STAMUNIT_OCCURENCES, "Number of VINF_VMM_CALL_HOST returns.");
513 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/GCRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
514 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPGMChangeMode, STAMTYPE_COUNTER, "/VMM/GCRet/PGMChangeMode", STAMUNIT_OCCURENCES, "Number of VINF_PGM_CHANGE_MODE returns.");
515 STAM_REG(pVM, &pVM->vmm.s.StatGCRetEmulHlt, STAMTYPE_COUNTER, "/VMM/GCRet/EmulHlt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_EMULATE_INSTR_HLT returns.");
516 STAM_REG(pVM, &pVM->vmm.s.StatGCRetPendingRequest, STAMTYPE_COUNTER, "/VMM/GCRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
517
518 return VINF_SUCCESS;
519 }
520 AssertRC(rc);
521 }
522 }
523 /** @todo: Need failure cleanup. */
524
525 //more todo in here?
526 //if (VBOX_SUCCESS(rc))
527 //{
528 //}
529 //int rc2 = vmmR3TermCoreCode(pVM);
530 //AssertRC(rc2));
531 }
532
533 return rc;
534}
535
536
537/**
538 * Ring-3 init finalizing.
539 *
540 * @returns VBox status code.
541 * @param pVM The VM handle.
542 */
543VMMR3DECL(int) VMMR3InitFinalize(PVM pVM)
544{
545#ifdef VBOX_STRICT_VMM_STACK
546 /*
547 * Two inaccessible pages at each sides of the stack to catch over/under-flows.
548 */
549 memset(pVM->vmm.s.pbHCStack - PAGE_SIZE, 0xcc, PAGE_SIZE);
550 PGMMapSetPage(pVM, MMHyperHC2GC(pVM, pVM->vmm.s.pbHCStack - PAGE_SIZE), PAGE_SIZE, 0);
551 RTMemProtect(pVM->vmm.s.pbHCStack - PAGE_SIZE, PAGE_SIZE, RTMEM_PROT_NONE);
552
553 memset(pVM->vmm.s.pbHCStack + VMM_STACK_SIZE, 0xcc, PAGE_SIZE);
554 PGMMapSetPage(pVM, MMHyperHC2GC(pVM, pVM->vmm.s.pbHCStack + VMM_STACK_SIZE), PAGE_SIZE, 0);
555 RTMemProtect(pVM->vmm.s.pbHCStack + VMM_STACK_SIZE, PAGE_SIZE, RTMEM_PROT_NONE);
556#endif
557
558 /*
559 * Set page attributes to r/w for stack pages.
560 */
561 int rc = PGMMapSetPage(pVM, pVM->vmm.s.pbGCStack, VMM_STACK_SIZE, X86_PTE_P | X86_PTE_A | X86_PTE_D | X86_PTE_RW);
562 AssertRC(rc);
563 if (VBOX_SUCCESS(rc))
564 {
565 /*
566 * Create the EMT yield timer.
567 */
568 rc = TMR3TimerCreateInternal(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, "EMT Yielder", &pVM->vmm.s.pYieldTimer);
569 if (VBOX_SUCCESS(rc))
570 rc = TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldEveryMillies);
571 }
572#ifdef VBOX_WITH_NMI
573 /*
574 * Map the host APIC into GC - This may be host os specific!
575 */
576 if (VBOX_SUCCESS(rc))
577 rc = PGMMap(pVM, pVM->vmm.s.GCPtrApicBase, 0xfee00000, PAGE_SIZE,
578 X86_PTE_P | X86_PTE_RW | X86_PTE_PWT | X86_PTE_PCD | X86_PTE_A | X86_PTE_D);
579#endif
580 return rc;
581}
582
583
584/**
585 * Initializes the R0 VMM.
586 *
587 * @returns VBox status code.
588 * @param pVM The VM to operate on.
589 */
590VMMR3DECL(int) VMMR3InitR0(PVM pVM)
591{
592 int rc;
593
594 /*
595 * Initialize the ring-0 logger if we haven't done so yet.
596 */
597 if ( pVM->vmm.s.pR0Logger
598 && !pVM->vmm.s.pR0Logger->fCreated)
599 {
600 rc = VMMR3UpdateLoggers(pVM);
601 if (VBOX_FAILURE(rc))
602 return rc;
603 }
604
605 /*
606 * Call Ring-0 entry with init code.
607 */
608 for (;;)
609 {
610#ifdef NO_SUPCALLR0VMM
611 //rc = VERR_GENERAL_FAILURE;
612 rc = VINF_SUCCESS;
613#else
614 rc = SUPCallVMMR0(pVM, VMMR0_DO_VMMR0_INIT, (void *)VBOX_VERSION);
615#endif
616 if ( pVM->vmm.s.pR0Logger
617 && pVM->vmm.s.pR0Logger->Logger.offScratch > 0)
618 RTLogFlushToLogger(&pVM->vmm.s.pR0Logger->Logger, NULL);
619 if (rc != VINF_VMM_CALL_HOST)
620 break;
621 rc = vmmR3ServiceCallHostRequest(pVM);
622 if (VBOX_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
623 break;
624 break; // remove this when we do setjmp for all ring-0 stuff.
625 }
626
627 if (VBOX_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
628 {
629 LogRel(("R0 init failed, rc=%Vra\n", rc));
630 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
631 rc = VERR_INTERNAL_ERROR;
632 }
633 return rc;
634}
635
636
637/**
638 * Initializes the GC VMM.
639 *
640 * @returns VBox status code.
641 * @param pVM The VM to operate on.
642 */
643VMMR3DECL(int) VMMR3InitGC(PVM pVM)
644{
645 /* In VMX mode, there's no need to init GC. */
646 if (pVM->vmm.s.fSwitcherDisabled)
647 return VINF_SUCCESS;
648
649 /*
650 * Call VMMGCInit():
651 * -# resolve the address.
652 * -# setup stackframe and EIP to use the trampoline.
653 * -# do a generic hypervisor call.
654 */
655 RTGCPTR GCPtrEP;
656 int rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMGCEntry", &GCPtrEP);
657 if (VBOX_SUCCESS(rc))
658 {
659 CPUMHyperSetCtxCore(pVM, NULL);
660 CPUMSetHyperESP(pVM, pVM->vmm.s.pbGCStackBottom); /* Clear the stack. */
661 CPUMPushHyper(pVM, VBOX_VERSION); /* Param 2: Version argument. */
662 CPUMPushHyper(pVM, VMMGC_DO_VMMGC_INIT); /* Param 1: Operation. */
663 CPUMPushHyper(pVM, pVM->pVMGC); /* Param 0: pVM */
664 CPUMPushHyper(pVM, 3 * sizeof(RTGCPTR)); /* trampoline param: stacksize. */
665 CPUMPushHyper(pVM, GCPtrEP); /* Call EIP. */
666 CPUMSetHyperEIP(pVM, pVM->vmm.s.pfnGCCallTrampoline);
667
668 for (;;)
669 {
670#ifdef NO_SUPCALLR0VMM
671 //rc = VERR_GENERAL_FAILURE;
672 rc = VINF_SUCCESS;
673#else
674 rc = SUPCallVMMR0(pVM, VMMR0_DO_CALL_HYPERVISOR, NULL);
675#endif
676#ifdef LOG_ENABLED
677 PRTLOGGERGC pLogger = pVM->vmm.s.pLoggerHC;
678 if ( pLogger
679 && pLogger->offScratch > 0)
680 RTLogFlushGC(NULL, pLogger);
681#endif
682#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
683 PRTLOGGERGC pRelLogger = pVM->vmm.s.pRelLoggerHC;
684 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
685 RTLogFlushGC(RTLogRelDefaultInstance(), pRelLogger);
686#endif
687 if (rc != VINF_VMM_CALL_HOST)
688 break;
689 rc = vmmR3ServiceCallHostRequest(pVM);
690 if (VBOX_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
691 break;
692 }
693
694 if (VBOX_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
695 {
696 VMMR3FatalDump(pVM, rc);
697 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
698 rc = VERR_INTERNAL_ERROR;
699 }
700 AssertRC(rc);
701 }
702 return rc;
703}
704
705
706/**
707 * Terminate the VMM bits.
708 *
709 * @returns VINF_SUCCESS.
710 * @param pVM The VM handle.
711 */
712VMMR3DECL(int) VMMR3Term(PVM pVM)
713{
714 /** @todo must call ring-0 so the logger thread instance can be properly removed. */
715
716#ifdef VBOX_STRICT_VMM_STACK
717 /*
718 * Make the two stack guard pages present again.
719 */
720 RTMemProtect(pVM->vmm.s.pbHCStack - PAGE_SIZE, PAGE_SIZE, RTMEM_PROT_READ | RTMEM_PROT_WRITE);
721 RTMemProtect(pVM->vmm.s.pbHCStack + VMM_STACK_SIZE, PAGE_SIZE, RTMEM_PROT_READ | RTMEM_PROT_WRITE);
722#endif
723 return VINF_SUCCESS;
724}
725
726
727/**
728 * Applies relocations to data and code managed by this
729 * component. This function will be called at init and
730 * whenever the VMM need to relocate it self inside the GC.
731 *
732 * The VMM will need to apply relocations to the core code.
733 *
734 * @param pVM The VM handle.
735 * @param offDelta The relocation delta.
736 */
737VMMR3DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
738{
739 LogFlow(("VMMR3Relocate: offDelta=%VGv\n", offDelta));
740
741 /*
742 * Recalc the GC address.
743 */
744 pVM->vmm.s.pvGCCoreCode = MMHyperHC2GC(pVM, pVM->vmm.s.pvHCCoreCodeR3);
745
746 /*
747 * The stack.
748 */
749 CPUMSetHyperESP(pVM, CPUMGetHyperESP(pVM) + offDelta);
750 pVM->vmm.s.pbGCStack = MMHyperHC2GC(pVM, pVM->vmm.s.pbHCStack);
751 pVM->vmm.s.pbGCStackBottom = pVM->vmm.s.pbGCStack + VMM_STACK_SIZE;
752
753 /*
754 * All the switchers.
755 */
756 for (unsigned iSwitcher = 0; iSwitcher < ELEMENTS(s_apSwitchers); iSwitcher++)
757 {
758 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[iSwitcher];
759 if (pSwitcher && pSwitcher->pfnRelocate)
760 {
761 unsigned off = pVM->vmm.s.aoffSwitchers[iSwitcher];
762 pSwitcher->pfnRelocate(pVM,
763 pSwitcher,
764 (uint8_t *)pVM->vmm.s.pvHCCoreCodeR0 + off,
765 (uint8_t *)pVM->vmm.s.pvHCCoreCodeR3 + off,
766 pVM->vmm.s.pvGCCoreCode + off,
767 pVM->vmm.s.HCPhysCoreCode + off);
768 }
769 }
770
771 /*
772 * Recalc the GC address for the current switcher.
773 */
774 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[pVM->vmm.s.enmSwitcher];
775 RTGCPTR GCPtr = pVM->vmm.s.pvGCCoreCode + pVM->vmm.s.aoffSwitchers[pVM->vmm.s.enmSwitcher];
776 pVM->vmm.s.pfnGCGuestToHost = GCPtr + pSwitcher->offGCGuestToHost;
777 pVM->vmm.s.pfnGCCallTrampoline = GCPtr + pSwitcher->offGCCallTrampoline;
778 pVM->pfnVMMGCGuestToHostAsm = GCPtr + pSwitcher->offGCGuestToHostAsm;
779 pVM->pfnVMMGCGuestToHostAsmHyperCtx = GCPtr + pSwitcher->offGCGuestToHostAsmHyperCtx;
780 pVM->pfnVMMGCGuestToHostAsmGuestCtx = GCPtr + pSwitcher->offGCGuestToHostAsmGuestCtx;
781
782 /*
783 * Get other GC entry points.
784 */
785 int rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuest", &pVM->vmm.s.pfnCPUMGCResumeGuest);
786 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuest not found! rc=%Vra\n", rc));
787
788 rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "CPUMGCResumeGuestV86", &pVM->vmm.s.pfnCPUMGCResumeGuestV86);
789 AssertReleaseMsgRC(rc, ("CPUMGCResumeGuestV86 not found! rc=%Vra\n", rc));
790
791 /*
792 * Update the logger.
793 */
794 VMMR3UpdateLoggers(pVM);
795}
796
797
798/**
799 * Updates the settings for the GC and R0 loggers.
800 *
801 * @returns VBox status code.
802 * @param pVM The VM handle.
803 */
804VMMR3DECL(int) VMMR3UpdateLoggers(PVM pVM)
805{
806 /*
807 * Simply clone the logger instance (for GC).
808 */
809 int rc = VINF_SUCCESS;
810 RTGCPTR GCPtrLoggerFlush = 0;
811
812 if (pVM->vmm.s.pLoggerHC
813#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
814 || pVM->vmm.s.pRelLoggerHC
815#endif
816 )
817 {
818 rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerFlush", &GCPtrLoggerFlush);
819 AssertReleaseMsgRC(rc, ("vmmGCLoggerFlush not found! rc=%Vra\n", rc));
820 }
821
822 if (pVM->vmm.s.pLoggerHC)
823 {
824 RTGCPTR GCPtrLoggerWrapper = 0;
825 rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCLoggerWrapper", &GCPtrLoggerWrapper);
826 AssertReleaseMsgRC(rc, ("vmmGCLoggerWrapper not found! rc=%Vra\n", rc));
827 pVM->vmm.s.pLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pLoggerHC);
828 rc = RTLogCloneGC(NULL /* default */, pVM->vmm.s.pLoggerHC, pVM->vmm.s.cbLoggerGC,
829 GCPtrLoggerWrapper, GCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
830 AssertReleaseMsgRC(rc, ("RTLogCloneGC failed! rc=%Vra\n", rc));
831 }
832
833#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
834 if (pVM->vmm.s.pRelLoggerHC)
835 {
836 RTGCPTR GCPtrLoggerWrapper = 0;
837 rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "vmmGCRelLoggerWrapper", &GCPtrLoggerWrapper);
838 AssertReleaseMsgRC(rc, ("vmmGCRelLoggerWrapper not found! rc=%Vra\n", rc));
839 pVM->vmm.s.pRelLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pRelLoggerHC);
840 rc = RTLogCloneGC(RTLogRelDefaultInstance(), pVM->vmm.s.pRelLoggerHC, pVM->vmm.s.cbRelLoggerGC,
841 GCPtrLoggerWrapper, GCPtrLoggerFlush, RTLOGFLAGS_BUFFERED);
842 AssertReleaseMsgRC(rc, ("RTLogCloneGC failed! rc=%Vra\n", rc));
843 }
844#endif /* VBOX_WITH_GC_AND_R0_RELEASE_LOG */
845
846 /*
847 * For the ring-0 EMT logger, we use a per-thread logger
848 * instance in ring-0. Only initialize it once.
849 */
850 PVMMR0LOGGER pR0Logger = pVM->vmm.s.pR0Logger;
851 if (pR0Logger)
852 {
853 if (!pR0Logger->fCreated)
854 {
855 RTHCPTR pfnLoggerWrapper = NULL;
856 rc = PDMR3GetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerWrapper", &pfnLoggerWrapper);
857 AssertReleaseMsgRCReturn(rc, ("VMMLoggerWrapper not found! rc=%Vra\n", rc), rc);
858
859 RTHCPTR pfnLoggerFlush = NULL;
860 rc = PDMR3GetSymbolR0(pVM, VMMR0_MAIN_MODULE_NAME, "vmmR0LoggerFlush", &pfnLoggerFlush);
861 AssertReleaseMsgRCReturn(rc, ("VMMLoggerFlush not found! rc=%Vra\n", rc), rc);
862
863 rc = RTLogCreateForR0(&pR0Logger->Logger, pR0Logger->cbLogger,
864 *(PFNRTLOGGER *)&pfnLoggerWrapper, *(PFNRTLOGFLUSH *)&pfnLoggerFlush,
865 RTLOGFLAGS_BUFFERED, RTLOGDEST_DUMMY);
866 AssertReleaseMsgRCReturn(rc, ("RTLogCloneGC failed! rc=%Vra\n", rc), rc);
867 pR0Logger->fCreated = true;
868 }
869
870 rc = RTLogCopyGroupsAndFlags(&pR0Logger->Logger, NULL /* default */, RTLOGFLAGS_BUFFERED, 0);
871 AssertRC(rc);
872 }
873
874 return rc;
875}
876
877
878/**
879 * Generic switch code relocator.
880 *
881 * @param pVM The VM handle.
882 * @param pSwitcher The switcher definition.
883 * @param pu8CodeR3 Pointer to the core code block for the switcher, ring-3 mapping.
884 * @param pu8CodeR0 Pointer to the core code block for the switcher, ring-0 mapping.
885 * @param GCPtrCode The guest context address corresponding to pu8Code.
886 * @param u32IDCode The identity mapped (ID) address corresponding to pu8Code.
887 * @param SelCS The hypervisor CS selector.
888 * @param SelDS The hypervisor DS selector.
889 * @param SelTSS The hypervisor TSS selector.
890 * @param GCPtrGDT The GC address of the hypervisor GDT.
891 * @param SelCS64 The 64-bit mode hypervisor CS selector.
892 */
893static void vmmR3SwitcherGenericRelocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode,
894 RTSEL SelCS, RTSEL SelDS, RTSEL SelTSS, RTGCPTR GCPtrGDT, RTSEL SelCS64)
895{
896 union
897 {
898 const uint8_t *pu8;
899 const uint16_t *pu16;
900 const uint32_t *pu32;
901 const uint64_t *pu64;
902 const void *pv;
903 uintptr_t u;
904 } u;
905 u.pv = pSwitcher->pvFixups;
906
907 /*
908 * Process fixups.
909 */
910 uint8_t u8;
911 while ((u8 = *u.pu8++) != FIX_THE_END)
912 {
913 /*
914 * Get the source (where to write the fixup).
915 */
916 uint32_t offSrc = *u.pu32++;
917 Assert(offSrc < pSwitcher->cbCode);
918 union
919 {
920 uint8_t *pu8;
921 uint16_t *pu16;
922 uint32_t *pu32;
923 uint64_t *pu64;
924 uintptr_t u;
925 } uSrc;
926 uSrc.pu8 = pu8CodeR3 + offSrc;
927
928 /* The fixup target and method depends on the type. */
929 switch (u8)
930 {
931 /*
932 * 32-bit relative, source in HC and target in GC.
933 */
934 case FIX_HC_2_GC_NEAR_REL:
935 {
936 Assert(offSrc - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offSrc - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
937 uint32_t offTrg = *u.pu32++;
938 Assert(offTrg - pSwitcher->offGCCode < pSwitcher->cbGCCode);
939 *uSrc.pu32 = (uint32_t)((GCPtrCode + offTrg) - (uSrc.u + 4));
940 break;
941 }
942
943 /*
944 * 32-bit relative, source in HC and target in ID.
945 */
946 case FIX_HC_2_ID_NEAR_REL:
947 {
948 Assert(offSrc - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offSrc - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
949 uint32_t offTrg = *u.pu32++;
950 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
951 *uSrc.pu32 = (uint32_t)((u32IDCode + offTrg) - (uSrc.u + 4));
952 break;
953 }
954
955 /*
956 * 32-bit relative, source in GC and target in HC.
957 */
958 case FIX_GC_2_HC_NEAR_REL:
959 {
960 Assert(offSrc - pSwitcher->offGCCode < pSwitcher->cbGCCode);
961 uint32_t offTrg = *u.pu32++;
962 Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
963 *uSrc.pu32 = (uint32_t)(((uintptr_t)pu8CodeR0 + offTrg) - (GCPtrCode + offSrc + 4));
964 break;
965 }
966
967 /*
968 * 32-bit relative, source in GC and target in ID.
969 */
970 case FIX_GC_2_ID_NEAR_REL:
971 {
972 Assert(offSrc - pSwitcher->offGCCode < pSwitcher->cbGCCode);
973 uint32_t offTrg = *u.pu32++;
974 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
975 *uSrc.pu32 = (uint32_t)((u32IDCode + offTrg) - (GCPtrCode + offSrc + 4));
976 break;
977 }
978
979 /*
980 * 32-bit relative, source in ID and target in HC.
981 */
982 case FIX_ID_2_HC_NEAR_REL:
983 {
984 Assert(offSrc - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offSrc - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
985 uint32_t offTrg = *u.pu32++;
986 Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
987 *uSrc.pu32 = (uint32_t)(((uintptr_t)pu8CodeR0 + offTrg) - (u32IDCode + offSrc + 4));
988 break;
989 }
990
991 /*
992 * 32-bit relative, source in ID and target in HC.
993 */
994 case FIX_ID_2_GC_NEAR_REL:
995 {
996 Assert(offSrc - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offSrc - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
997 uint32_t offTrg = *u.pu32++;
998 Assert(offTrg - pSwitcher->offGCCode < pSwitcher->cbGCCode);
999 *uSrc.pu32 = (uint32_t)((GCPtrCode + offTrg) - (u32IDCode + offSrc + 4));
1000 break;
1001 }
1002
1003 /*
1004 * 16:32 far jump, target in GC.
1005 */
1006 case FIX_GC_FAR32:
1007 {
1008 uint32_t offTrg = *u.pu32++;
1009 Assert(offTrg - pSwitcher->offGCCode < pSwitcher->cbGCCode);
1010 *uSrc.pu32++ = (uint32_t)(GCPtrCode + offTrg);
1011 *uSrc.pu16++ = SelCS;
1012 break;
1013 }
1014
1015 /*
1016 * Make 32-bit GC pointer given CPUM offset.
1017 */
1018 case FIX_GC_CPUM_OFF:
1019 {
1020 uint32_t offCPUM = *u.pu32++;
1021 Assert(offCPUM < sizeof(pVM->cpum));
1022 *uSrc.pu32 = (uint32_t)(VM_GUEST_ADDR(pVM, &pVM->cpum) + offCPUM);
1023 break;
1024 }
1025
1026 /*
1027 * Make 32-bit GC pointer given VM offset.
1028 */
1029 case FIX_GC_VM_OFF:
1030 {
1031 uint32_t offVM = *u.pu32++;
1032 Assert(offVM < sizeof(VM));
1033 *uSrc.pu32 = (uint32_t)(VM_GUEST_ADDR(pVM, pVM) + offVM);
1034 break;
1035 }
1036
1037 /*
1038 * Make 32-bit HC pointer given CPUM offset.
1039 */
1040 case FIX_HC_CPUM_OFF:
1041 {
1042 uint32_t offCPUM = *u.pu32++;
1043 Assert(offCPUM < sizeof(pVM->cpum));
1044 *uSrc.pu32 = (uint32_t)((uintptr_t)&pVM->cpum + offCPUM);
1045 break;
1046 }
1047
1048 /*
1049 * Make 32-bit HC pointer given VM offset.
1050 */
1051 case FIX_HC_VM_OFF:
1052 {
1053 uint32_t offVM = *u.pu32++;
1054 Assert(offVM < sizeof(VM));
1055 *uSrc.pu32 = (uint32_t)(uintptr_t)pVM + offVM;
1056 break;
1057 }
1058
1059 /*
1060 * Store the 32-Bit CR3 (32-bit) for the intermediate memory context.
1061 */
1062 case FIX_INTER_32BIT_CR3:
1063 {
1064
1065 *uSrc.pu32 = PGMGetInter32BitCR3(pVM);
1066 break;
1067 }
1068
1069 /*
1070 * Store the PAE CR3 (32-bit) for the intermediate memory context.
1071 */
1072 case FIX_INTER_PAE_CR3:
1073 {
1074
1075 *uSrc.pu32 = PGMGetInterPaeCR3(pVM);
1076 break;
1077 }
1078
1079 /*
1080 * Store the AMD64 CR3 (32-bit) for the intermediate memory context.
1081 */
1082 case FIX_INTER_AMD64_CR3:
1083 {
1084
1085 *uSrc.pu32 = PGMGetInterAmd64CR3(pVM);
1086 break;
1087 }
1088
1089 /*
1090 * Store the 32-Bit CR3 (32-bit) for the hypervisor (shadow) memory context.
1091 */
1092 case FIX_HYPER_32BIT_CR3:
1093 {
1094
1095 *uSrc.pu32 = PGMGetHyper32BitCR3(pVM);
1096 break;
1097 }
1098
1099 /*
1100 * Store the PAE CR3 (32-bit) for the hypervisor (shadow) memory context.
1101 */
1102 case FIX_HYPER_PAE_CR3:
1103 {
1104
1105 *uSrc.pu32 = PGMGetHyperPaeCR3(pVM);
1106 break;
1107 }
1108
1109 /*
1110 * Store the AMD64 CR3 (32-bit) for the hypervisor (shadow) memory context.
1111 */
1112 case FIX_HYPER_AMD64_CR3:
1113 {
1114
1115 *uSrc.pu32 = PGMGetHyperAmd64CR3(pVM);
1116 break;
1117 }
1118
1119 /*
1120 * Store Hypervisor CS (16-bit).
1121 */
1122 case FIX_HYPER_CS:
1123 {
1124 *uSrc.pu16 = SelCS;
1125 break;
1126 }
1127
1128 /*
1129 * Store Hypervisor DS (16-bit).
1130 */
1131 case FIX_HYPER_DS:
1132 {
1133 *uSrc.pu16 = SelDS;
1134 break;
1135 }
1136
1137 /*
1138 * Store Hypervisor TSS (16-bit).
1139 */
1140 case FIX_HYPER_TSS:
1141 {
1142 *uSrc.pu16 = SelTSS;
1143 break;
1144 }
1145
1146 /*
1147 * Store the 32-bit GC address of the 2nd dword of the TSS descriptor (in the GDT).
1148 */
1149 case FIX_GC_TSS_GDTE_DW2:
1150 {
1151 RTGCPTR GCPtr = GCPtrGDT + (SelTSS & ~7) + 4;
1152 *uSrc.pu32 = (uint32_t)GCPtr;
1153 break;
1154 }
1155
1156
1157 ///@todo case FIX_CR4_MASK:
1158 ///@todo case FIX_CR4_OSFSXR:
1159
1160 /*
1161 * Insert relative jump to specified target it FXSAVE/FXRSTOR isn't supported by the cpu.
1162 */
1163 case FIX_NO_FXSAVE_JMP:
1164 {
1165 uint32_t offTrg = *u.pu32++;
1166 Assert(offTrg < pSwitcher->cbCode);
1167 if (!CPUMSupportsFXSR(pVM))
1168 {
1169 *uSrc.pu8++ = 0xe9; /* jmp rel32 */
1170 *uSrc.pu32++ = offTrg - (offSrc + 5);
1171 }
1172 else
1173 {
1174 *uSrc.pu8++ = *((uint8_t *)pSwitcher->pvCode + offSrc);
1175 *uSrc.pu32++ = *(uint32_t *)((uint8_t *)pSwitcher->pvCode + offSrc + 1);
1176 }
1177 break;
1178 }
1179
1180 /*
1181 * Insert relative jump to specified target it SYSENTER isn't used by the host.
1182 */
1183 case FIX_NO_SYSENTER_JMP:
1184 {
1185 uint32_t offTrg = *u.pu32++;
1186 Assert(offTrg < pSwitcher->cbCode);
1187 if (!CPUMIsHostUsingSysEnter(pVM))
1188 {
1189 *uSrc.pu8++ = 0xe9; /* jmp rel32 */
1190 *uSrc.pu32++ = offTrg - (offSrc + 5);
1191 }
1192 else
1193 {
1194 *uSrc.pu8++ = *((uint8_t *)pSwitcher->pvCode + offSrc);
1195 *uSrc.pu32++ = *(uint32_t *)((uint8_t *)pSwitcher->pvCode + offSrc + 1);
1196 }
1197 break;
1198 }
1199
1200 /*
1201 * Insert relative jump to specified target it SYSENTER isn't used by the host.
1202 */
1203 case FIX_NO_SYSCALL_JMP:
1204 {
1205 uint32_t offTrg = *u.pu32++;
1206 Assert(offTrg < pSwitcher->cbCode);
1207 if (!CPUMIsHostUsingSysEnter(pVM))
1208 {
1209 *uSrc.pu8++ = 0xe9; /* jmp rel32 */
1210 *uSrc.pu32++ = offTrg - (offSrc + 5);
1211 }
1212 else
1213 {
1214 *uSrc.pu8++ = *((uint8_t *)pSwitcher->pvCode + offSrc);
1215 *uSrc.pu32++ = *(uint32_t *)((uint8_t *)pSwitcher->pvCode + offSrc + 1);
1216 }
1217 break;
1218 }
1219
1220#ifdef __AMD64__
1221 /*
1222 * 64-bit HC pointer fixup to (HC) target within the code (32-bit offset).
1223 */
1224 case FIX_HC_64BIT:
1225 {
1226 uint32_t offTrg = *u.pu32++;
1227 Assert(offSrc < pSwitcher->cbCode);
1228 Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
1229 *uSrc.pu64 = (uintptr_t)pu8CodeR0 + offTrg;
1230 break;
1231 }
1232
1233 /*
1234 * 64-bit HC pointer to the CPUM instance data (no argument).
1235 */
1236 case FIX_HC_64BIT_CPUM:
1237 {
1238 Assert(offSrc < pSwitcher->cbCode);
1239 *uSrc.pu64 = (uintptr_t)&pVM->cpum;
1240 break;
1241 }
1242#endif
1243
1244 /*
1245 * 32-bit ID pointer to (ID) target within the code (32-bit offset).
1246 */
1247 case FIX_ID_32BIT:
1248 {
1249 uint32_t offTrg = *u.pu32++;
1250 Assert(offSrc < pSwitcher->cbCode);
1251 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
1252 *uSrc.pu32 = u32IDCode + offTrg;
1253 break;
1254 }
1255
1256 /*
1257 * 64-bit ID pointer to (ID) target within the code (32-bit offset).
1258 */
1259 case FIX_ID_64BIT:
1260 {
1261 uint32_t offTrg = *u.pu32++;
1262 Assert(offSrc < pSwitcher->cbCode);
1263 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
1264 *uSrc.pu64 = u32IDCode + offTrg;
1265 break;
1266 }
1267
1268 /*
1269 * Far 16:32 ID pointer to 64-bit mode (ID) target within the code (32-bit offset).
1270 */
1271 case FIX_ID_FAR32_TO_64BIT_MODE:
1272 {
1273 uint32_t offTrg = *u.pu32++;
1274 Assert(offSrc < pSwitcher->cbCode);
1275 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
1276 *uSrc.pu32++ = u32IDCode + offTrg;
1277 *uSrc.pu16 = SelCS64;
1278 AssertRelease(SelCS64);
1279 break;
1280 }
1281
1282#ifdef VBOX_WITH_NMI
1283 /*
1284 * 32-bit address to the APIC base.
1285 */
1286 case FIX_GC_APIC_BASE_32BIT:
1287 {
1288 *uSrc.pu32 = pVM->vmm.s.GCPtrApicBase;
1289 break;
1290 }
1291#endif
1292
1293 default:
1294 AssertReleaseMsgFailed(("Unknown fixup %d in switcher %s\n", u8, pSwitcher->pszDesc));
1295 break;
1296 }
1297 }
1298
1299#ifdef LOG_ENABLED
1300 /*
1301 * If Log2 is enabled disassemble the switcher code.
1302 *
1303 * The switcher code have 1-2 HC parts, 1 GC part and 0-2 ID parts.
1304 */
1305 if (LogIs2Enabled())
1306 {
1307 RTLogPrintf("*** Disassembly of switcher %d '%s' %#x bytes ***\n"
1308 " pu8CodeR0 = %p\n"
1309 " pu8CodeR3 = %p\n"
1310 " GCPtrCode = %VGv\n"
1311 " u32IDCode = %08x\n"
1312 " pVMGC = %VGv\n"
1313 " pCPUMGC = %VGv\n"
1314 " pVMHC = %p\n"
1315 " pCPUMHC = %p\n"
1316 " GCPtrGDT = %VGv\n"
1317 " InterCR3s = %08x, %08x, %08x (32-Bit, PAE, AMD64)\n"
1318 " HyperCR3s = %08x, %08x, %08x (32-Bit, PAE, AMD64)\n"
1319 " SelCS = %04x\n"
1320 " SelDS = %04x\n"
1321 " SelCS64 = %04x\n"
1322 " SelTSS = %04x\n",
1323 pSwitcher->enmType, pSwitcher->pszDesc, pSwitcher->cbCode,
1324 pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode, VM_GUEST_ADDR(pVM, pVM),
1325 VM_GUEST_ADDR(pVM, &pVM->cpum), pVM, &pVM->cpum,
1326 GCPtrGDT,
1327 PGMGetHyper32BitCR3(pVM), PGMGetHyperPaeCR3(pVM), PGMGetHyperAmd64CR3(pVM),
1328 PGMGetInter32BitCR3(pVM), PGMGetInterPaeCR3(pVM), PGMGetInterAmd64CR3(pVM),
1329 SelCS, SelDS, SelCS64, SelTSS);
1330
1331 uint32_t offCode = 0;
1332 while (offCode < pSwitcher->cbCode)
1333 {
1334 /*
1335 * Figure out where this is.
1336 */
1337 const char *pszDesc = NULL;
1338 RTUINTPTR uBase;
1339 uint32_t cbCode;
1340 if (offCode - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0)
1341 {
1342 pszDesc = "HCCode0";
1343 uBase = (RTUINTPTR)pu8CodeR0;
1344 offCode = pSwitcher->offHCCode0;
1345 cbCode = pSwitcher->cbHCCode0;
1346 }
1347 else if (offCode - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1)
1348 {
1349 pszDesc = "HCCode1";
1350 uBase = (RTUINTPTR)pu8CodeR0;
1351 offCode = pSwitcher->offHCCode1;
1352 cbCode = pSwitcher->cbHCCode1;
1353 }
1354 else if (offCode - pSwitcher->offGCCode < pSwitcher->cbGCCode)
1355 {
1356 pszDesc = "GCCode";
1357 uBase = GCPtrCode;
1358 offCode = pSwitcher->offGCCode;
1359 cbCode = pSwitcher->cbGCCode;
1360 }
1361 else if (offCode - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0)
1362 {
1363 pszDesc = "IDCode0";
1364 uBase = u32IDCode;
1365 offCode = pSwitcher->offIDCode0;
1366 cbCode = pSwitcher->cbIDCode0;
1367 }
1368 else if (offCode - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1)
1369 {
1370 pszDesc = "IDCode1";
1371 uBase = u32IDCode;
1372 offCode = pSwitcher->offIDCode1;
1373 cbCode = pSwitcher->cbIDCode1;
1374 }
1375 else
1376 {
1377 RTLogPrintf(" %04x: %02x '%c' (nowhere)\n",
1378 offCode, pu8CodeR3[offCode], isprint(pu8CodeR3[offCode]) ? pu8CodeR3[offCode] : ' ');
1379 offCode++;
1380 continue;
1381 }
1382
1383 /*
1384 * Disassemble it.
1385 */
1386 RTLogPrintf(" %s: offCode=%#x cbCode=%#x\n", pszDesc, offCode, cbCode);
1387 DISCPUSTATE Cpu = {0};
1388 Cpu.mode = CPUMODE_32BIT;
1389 while (cbCode > 0)
1390 {
1391 /* try label it */
1392 if (pSwitcher->offR0HostToGuest == offCode)
1393 RTLogPrintf(" *R0HostToGuest:\n");
1394 if (pSwitcher->offGCGuestToHost == offCode)
1395 RTLogPrintf(" *GCGuestToHost:\n");
1396 if (pSwitcher->offGCCallTrampoline == offCode)
1397 RTLogPrintf(" *GCCallTrampoline:\n");
1398 if (pSwitcher->offGCGuestToHostAsm == offCode)
1399 RTLogPrintf(" *GCGuestToHostAsm:\n");
1400 if (pSwitcher->offGCGuestToHostAsmHyperCtx == offCode)
1401 RTLogPrintf(" *GCGuestToHostAsmHyperCtx:\n");
1402 if (pSwitcher->offGCGuestToHostAsmGuestCtx == offCode)
1403 RTLogPrintf(" *GCGuestToHostAsmGuestCtx:\n");
1404
1405 /* disas */
1406 uint32_t cbInstr = 0;
1407 char szDisas[256];
1408 if (DISInstr(&Cpu, (RTUINTPTR)pu8CodeR3 + offCode, uBase - (RTUINTPTR)pu8CodeR3, &cbInstr, szDisas))
1409 RTLogPrintf(" %04x: %s", offCode, szDisas); //for whatever reason szDisas includes '\n'.
1410 else
1411 {
1412 RTLogPrintf(" %04x: %02x '%c'\n",
1413 offCode, pu8CodeR3[offCode], isprint(pu8CodeR3[offCode]) ? pu8CodeR3[offCode] : ' ');
1414 cbInstr = 1;
1415 }
1416 offCode += cbInstr;
1417 cbCode -= RT_MIN(cbInstr, cbCode);
1418 }
1419 }
1420 }
1421#endif
1422}
1423
1424
1425/**
1426 * Relocator for the 32-Bit to 32-Bit world switcher.
1427 */
1428DECLCALLBACK(void) vmmR3Switcher32BitTo32Bit_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
1429{
1430 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode,
1431 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
1432}
1433
1434
1435/**
1436 * Relocator for the 32-Bit to PAE world switcher.
1437 */
1438DECLCALLBACK(void) vmmR3Switcher32BitToPAE_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
1439{
1440 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode,
1441 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
1442}
1443
1444
1445/**
1446 * Relocator for the PAE to 32-Bit world switcher.
1447 */
1448DECLCALLBACK(void) vmmR3SwitcherPAETo32Bit_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
1449{
1450 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode,
1451 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
1452}
1453
1454
1455/**
1456 * Relocator for the PAE to PAE world switcher.
1457 */
1458DECLCALLBACK(void) vmmR3SwitcherPAEToPAE_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
1459{
1460 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode,
1461 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
1462}
1463
1464
1465/**
1466 * Relocator for the AMD64 to PAE world switcher.
1467 */
1468DECLCALLBACK(void) vmmR3SwitcherAMD64ToPAE_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, uint8_t *pu8CodeR0, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
1469{
1470 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, pu8CodeR0, pu8CodeR3, GCPtrCode, u32IDCode,
1471 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), SELMGetHyperCS64(pVM));
1472}
1473
1474
1475/**
1476 * Gets the pointer to g_szRTAssertMsg1 in GC.
1477 * @returns Pointer to VMMGC::g_szRTAssertMsg1.
1478 * Returns NULL if not present.
1479 * @param pVM The VM handle.
1480 */
1481VMMR3DECL(const char *) VMMR3GetGCAssertMsg1(PVM pVM)
1482{
1483 RTGCPTR GCPtr;
1484 int rc = PDMR3GetSymbolGC(pVM, NULL, "g_szRTAssertMsg1", &GCPtr);
1485 if (VBOX_SUCCESS(rc))
1486 return (const char *)MMHyperGC2HC(pVM, GCPtr);
1487 return NULL;
1488}
1489
1490
1491/**
1492 * Gets the pointer to g_szRTAssertMsg2 in GC.
1493 * @returns Pointer to VMMGC::g_szRTAssertMsg2.
1494 * Returns NULL if not present.
1495 * @param pVM The VM handle.
1496 */
1497VMMR3DECL(const char *) VMMR3GetGCAssertMsg2(PVM pVM)
1498{
1499 RTGCPTR GCPtr;
1500 int rc = PDMR3GetSymbolGC(pVM, NULL, "g_szRTAssertMsg2", &GCPtr);
1501 if (VBOX_SUCCESS(rc))
1502 return (const char *)MMHyperGC2HC(pVM, GCPtr);
1503 return NULL;
1504}
1505
1506
1507/**
1508 * Execute state save operation.
1509 *
1510 * @returns VBox status code.
1511 * @param pVM VM Handle.
1512 * @param pSSM SSM operation handle.
1513 */
1514static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
1515{
1516 LogFlow(("vmmR3Save:\n"));
1517
1518 /*
1519 * The hypervisor stack.
1520 */
1521 SSMR3PutGCPtr(pSSM, pVM->vmm.s.pbGCStackBottom);
1522 RTGCPTR GCPtrESP = CPUMGetHyperESP(pVM);
1523 Assert(pVM->vmm.s.pbGCStackBottom - GCPtrESP <= VMM_STACK_SIZE);
1524 SSMR3PutGCPtr(pSSM, GCPtrESP);
1525 SSMR3PutMem(pSSM, pVM->vmm.s.pbHCStack, VMM_STACK_SIZE);
1526 return SSMR3PutU32(pSSM, ~0); /* terminator */
1527}
1528
1529
1530/**
1531 * Execute state load operation.
1532 *
1533 * @returns VBox status code.
1534 * @param pVM VM Handle.
1535 * @param pSSM SSM operation handle.
1536 * @param u32Version Data layout version.
1537 */
1538static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
1539{
1540 LogFlow(("vmmR3Load:\n"));
1541
1542 /*
1543 * Validate version.
1544 */
1545 if (u32Version != VMM_SAVED_STATE_VERSION)
1546 {
1547 Log(("vmmR3Load: Invalid version u32Version=%d!\n", u32Version));
1548 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1549 }
1550
1551 /*
1552 * Check that the stack is in the same place, or that it's fearly empty.
1553 */
1554 RTGCPTR GCPtrStackBottom;
1555 SSMR3GetGCPtr(pSSM, &GCPtrStackBottom);
1556 RTGCPTR GCPtrESP;
1557 int rc = SSMR3GetGCPtr(pSSM, &GCPtrESP);
1558 if (VBOX_FAILURE(rc))
1559 return rc;
1560 if ( GCPtrStackBottom == pVM->vmm.s.pbGCStackBottom
1561 || (GCPtrStackBottom - GCPtrESP < 32)) /** @todo This will break if we start preemting the hypervisor. */
1562 {
1563 /*
1564 * We *must* set the ESP because the CPUM load + PGM load relocations will render
1565 * the ESP in CPUM fatally invalid.
1566 */
1567 CPUMSetHyperESP(pVM, GCPtrESP);
1568
1569 /* restore the stack. */
1570 SSMR3GetMem(pSSM, pVM->vmm.s.pbHCStack, VMM_STACK_SIZE);
1571
1572 /* terminator */
1573 uint32_t u32;
1574 rc = SSMR3GetU32(pSSM, &u32);
1575 if (VBOX_FAILURE(rc))
1576 return rc;
1577 if (u32 != ~0U)
1578 {
1579 AssertMsgFailed(("u32=%#x\n", u32));
1580 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1581 }
1582 return VINF_SUCCESS;
1583 }
1584
1585 LogRel(("The stack is not in the same place and it's not empty! GCPtrStackBottom=%VGv pbGCStackBottom=%VGv ESP=%VGv\n",
1586 GCPtrStackBottom, pVM->vmm.s.pbGCStackBottom, GCPtrESP));
1587 AssertFailed();
1588 return VERR_SSM_LOAD_CONFIG_MISMATCH;
1589}
1590
1591
1592/**
1593 * Selects the switcher to be used for switching to GC.
1594 *
1595 * @returns VBox status code.
1596 * @param pVM VM handle.
1597 * @param enmSwitcher The new switcher.
1598 * @remark This function may be called before the VMM is initialized.
1599 */
1600VMMR3DECL(int) VMMR3SelectSwitcher(PVM pVM, VMMSWITCHER enmSwitcher)
1601{
1602 /*
1603 * Validate input.
1604 */
1605 if ( enmSwitcher < VMMSWITCHER_INVALID
1606 || enmSwitcher >= VMMSWITCHER_MAX)
1607 {
1608 AssertMsgFailed(("Invalid input enmSwitcher=%d\n", enmSwitcher));
1609 return VERR_INVALID_PARAMETER;
1610 }
1611
1612 /*
1613 * Select the new switcher.
1614 */
1615 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[enmSwitcher];
1616 if (pSwitcher)
1617 {
1618 Log(("VMMR3SelectSwitcher: enmSwitcher %d -> %d %s\n", pVM->vmm.s.enmSwitcher, enmSwitcher, pSwitcher->pszDesc));
1619 pVM->vmm.s.enmSwitcher = enmSwitcher;
1620
1621 RTR0PTR pbCodeR0 = (RTR0PTR)pVM->vmm.s.pvHCCoreCodeR0 + pVM->vmm.s.aoffSwitchers[enmSwitcher]; /** @todo fix the pvHCCoreCodeR0 type */
1622 pVM->vmm.s.pfnR0HostToGuest = pbCodeR0 + pSwitcher->offR0HostToGuest;
1623
1624 RTGCPTR GCPtr = pVM->vmm.s.pvGCCoreCode + pVM->vmm.s.aoffSwitchers[enmSwitcher];
1625 pVM->vmm.s.pfnGCGuestToHost = GCPtr + pSwitcher->offGCGuestToHost;
1626 pVM->vmm.s.pfnGCCallTrampoline = GCPtr + pSwitcher->offGCCallTrampoline;
1627 pVM->pfnVMMGCGuestToHostAsm = GCPtr + pSwitcher->offGCGuestToHostAsm;
1628 pVM->pfnVMMGCGuestToHostAsmHyperCtx = GCPtr + pSwitcher->offGCGuestToHostAsmHyperCtx;
1629 pVM->pfnVMMGCGuestToHostAsmGuestCtx = GCPtr + pSwitcher->offGCGuestToHostAsmGuestCtx;
1630 return VINF_SUCCESS;
1631 }
1632 return VERR_NOT_IMPLEMENTED;
1633}
1634
1635/**
1636 * Disable the switcher logic permanently.
1637 *
1638 * @returns VBox status code.
1639 * @param pVM VM handle.
1640 */
1641VMMR3DECL(int) VMMR3DisableSwitcher(PVM pVM)
1642{
1643/** @todo r=bird: I would suggest that we create a dummy switcher which just does something like:
1644 * @code
1645 * mov eax, VERR_INTERNAL_ERROR
1646 * ret
1647 * @endcode
1648 * And then check for fSwitcherDisabled in VMMR3SelectSwitcher() in order to prevent it from being removed.
1649 */
1650 pVM->vmm.s.fSwitcherDisabled = true;
1651 return VINF_SUCCESS;
1652}
1653
1654
1655/**
1656 * Resolve a builtin GC symbol.
1657 * Called by PDM when loading or relocating GC modules.
1658 *
1659 * @returns VBox status
1660 * @param pVM VM Handle.
1661 * @param pszSymbol Symbol to resolv
1662 * @param pGCPtrValue Where to store the symbol value.
1663 * @remark This has to work before VMMR3Relocate() is called.
1664 */
1665VMMR3DECL(int) VMMR3GetImportGC(PVM pVM, const char *pszSymbol, PRTGCPTR pGCPtrValue)
1666{
1667 if (!strcmp(pszSymbol, "g_Logger"))
1668 {
1669 if (pVM->vmm.s.pLoggerHC)
1670 pVM->vmm.s.pLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pLoggerHC);
1671 *pGCPtrValue = pVM->vmm.s.pLoggerGC;
1672 }
1673 else if (!strcmp(pszSymbol, "g_RelLogger"))
1674 {
1675#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
1676 if (pVM->vmm.s.pRelLoggerHC)
1677 pVM->vmm.s.pRelLoggerGC = MMHyperHC2GC(pVM, pVM->vmm.s.pRelLoggerHC);
1678 *pGCPtrValue = pVM->vmm.s.pRelLoggerGC;
1679#else
1680 *pGCPtrValue = NIL_RTGCPTR;
1681#endif
1682 }
1683 else
1684 return VERR_SYMBOL_NOT_FOUND;
1685 return VINF_SUCCESS;
1686}
1687
1688
1689/**
1690 * Suspends the the CPU yielder.
1691 *
1692 * @param pVM The VM handle.
1693 */
1694VMMR3DECL(void) VMMR3YieldSuspend(PVM pVM)
1695{
1696 if (!pVM->vmm.s.cYieldResumeMillies)
1697 {
1698 uint64_t u64Now = TMTimerGet(pVM->vmm.s.pYieldTimer);
1699 uint64_t u64Expire = TMTimerGetExpire(pVM->vmm.s.pYieldTimer);
1700 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
1701 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1702 else
1703 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM->vmm.s.pYieldTimer, u64Expire - u64Now);
1704 TMTimerStop(pVM->vmm.s.pYieldTimer);
1705 }
1706}
1707
1708
1709/**
1710 * Stops the the CPU yielder.
1711 *
1712 * @param pVM The VM handle.
1713 */
1714VMMR3DECL(void) VMMR3YieldStop(PVM pVM)
1715{
1716 if (!pVM->vmm.s.cYieldResumeMillies)
1717 TMTimerStop(pVM->vmm.s.pYieldTimer);
1718 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1719}
1720
1721
1722/**
1723 * Resumes the CPU yielder when it has been a suspended or stopped.
1724 *
1725 * @param pVM The VM handle.
1726 */
1727VMMR3DECL(void) VMMR3YieldResume(PVM pVM)
1728{
1729 if (pVM->vmm.s.cYieldResumeMillies)
1730 {
1731 TMTimerSetMillies(pVM->vmm.s.pYieldTimer, pVM->vmm.s.cYieldResumeMillies);
1732 pVM->vmm.s.cYieldResumeMillies = 0;
1733 }
1734}
1735
1736
1737/**
1738 * Internal timer callback function.
1739 *
1740 * @param pVM The VM.
1741 * @param pTimer The timer handle.
1742 * @param pvUser User argument specified upon timer creation.
1743 */
1744static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, PTMTIMER pTimer, void *pvUser)
1745{
1746#ifdef LOG_ENABLED
1747 uint64_t u64Elapsed = RTTimeNanoTS();
1748#endif
1749 RTThreadYield();
1750 TMTimerSetMillies(pTimer, pVM->vmm.s.cYieldEveryMillies);
1751 Log(("vmmR3YieldEMT: %RI64 ns\n", RTTimeNanoTS() - u64Elapsed));
1752}
1753
1754
1755/**
1756 * Acquire global VM lock.
1757 *
1758 * @returns VBox status code
1759 * @param pVM The VM to operate on.
1760 */
1761VMMR3DECL(int) VMMR3Lock(PVM pVM)
1762{
1763 return RTCritSectEnter(&pVM->vmm.s.CritSectVMLock);
1764}
1765
1766
1767/**
1768 * Release global VM lock.
1769 *
1770 * @returns VBox status code
1771 * @param pVM The VM to operate on.
1772 */
1773VMMR3DECL(int) VMMR3Unlock(PVM pVM)
1774{
1775 return RTCritSectLeave(&pVM->vmm.s.CritSectVMLock);
1776}
1777
1778
1779/**
1780 * Return global VM lock owner.
1781 *
1782 * @returns Thread id of owner.
1783 * @returns NIL_RTTHREAD if no owner.
1784 * @param pVM The VM to operate on.
1785 */
1786VMMR3DECL(RTNATIVETHREAD) VMMR3LockGetOwner(PVM pVM)
1787{
1788 return RTCritSectGetOwner(&pVM->vmm.s.CritSectVMLock);
1789}
1790
1791
1792/**
1793 * Checks if the current thread is the owner of the global VM lock.
1794 *
1795 * @returns true if owner.
1796 * @returns false if not owner.
1797 * @param pVM The VM to operate on.
1798 */
1799VMMR3DECL(bool) VMMR3LockIsOwner(PVM pVM)
1800{
1801 return RTCritSectIsOwner(&pVM->vmm.s.CritSectVMLock);
1802}
1803
1804
1805/**
1806 * Executes guest code.
1807 *
1808 * @param pVM VM handle.
1809 */
1810VMMR3DECL(int) VMMR3RawRunGC(PVM pVM)
1811{
1812 Log2(("VMMR3RawRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
1813
1814 /*
1815 * Set the EIP and ESP.
1816 */
1817 CPUMSetHyperEIP(pVM, CPUMGetGuestEFlags(pVM) & X86_EFL_VM
1818 ? pVM->vmm.s.pfnCPUMGCResumeGuestV86
1819 : pVM->vmm.s.pfnCPUMGCResumeGuest);
1820 CPUMSetHyperESP(pVM, pVM->vmm.s.pbGCStackBottom);
1821
1822 /*
1823 * We hide log flushes (outer) and hypervisor interrupts (inner).
1824 */
1825 for (;;)
1826 {
1827 int rc;
1828 do
1829 {
1830#ifdef NO_SUPCALLR0VMM
1831 rc = VERR_GENERAL_FAILURE;
1832#else
1833 rc = SUPCallVMMR0(pVM, VMMR0_DO_RAW_RUN, NULL);
1834#endif
1835 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1836
1837 /*
1838 * Flush the logs.
1839 */
1840#ifdef LOG_ENABLED
1841 PRTLOGGERGC pLogger = pVM->vmm.s.pLoggerHC;
1842 if ( pLogger
1843 && pLogger->offScratch > 0)
1844 RTLogFlushGC(NULL, pLogger);
1845#endif
1846#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
1847 PRTLOGGERGC pRelLogger = pVM->vmm.s.pRelLoggerHC;
1848 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1849 RTLogFlushGC(RTLogRelDefaultInstance(), pRelLogger);
1850#endif
1851 if (rc != VINF_VMM_CALL_HOST)
1852 {
1853 Log2(("VMMR3RawRunGC: returns %Vrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
1854 return rc;
1855 }
1856 rc = vmmR3ServiceCallHostRequest(pVM);
1857 if (VBOX_FAILURE(rc))
1858 return rc;
1859 /* Resume GC */
1860 }
1861}
1862
1863
1864/**
1865 * Executes guest code (Intel VMX and AMD SVM).
1866 *
1867 * @param pVM VM handle.
1868 */
1869VMMR3DECL(int) VMMR3HwAccRunGC(PVM pVM)
1870{
1871 Log2(("VMMR3HwAccRunGC: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
1872
1873 for (;;)
1874 {
1875 int rc;
1876 do
1877 {
1878#ifdef NO_SUPCALLR0VMM
1879 rc = VERR_GENERAL_FAILURE;
1880#else
1881 rc = SUPCallVMMR0(pVM, VMMR0_DO_HWACC_RUN, NULL);
1882#endif
1883 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1884
1885#ifdef LOG_ENABLED
1886 /*
1887 * Flush the log
1888 */
1889 PVMMR0LOGGER pR0Logger = pVM->vmm.s.pR0Logger;
1890 if ( pR0Logger
1891 && pR0Logger->Logger.offScratch > 0)
1892 RTLogFlushToLogger(&pR0Logger->Logger, NULL);
1893#endif /* !LOG_ENABLED */
1894 if (rc != VINF_VMM_CALL_HOST)
1895 {
1896 Log2(("VMMR3HwAccRunGC: returns %Vrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
1897 return rc;
1898 }
1899 rc = vmmR3ServiceCallHostRequest(pVM);
1900 if (VBOX_FAILURE(rc))
1901 return rc;
1902 /* Resume R0 */
1903 }
1904}
1905
1906/**
1907 * Calls GC a function.
1908 *
1909 * @param pVM The VM handle.
1910 * @param GCPtrEntry The GC function address.
1911 * @param cArgs The number of arguments in the ....
1912 * @param ... Arguments to the function.
1913 */
1914VMMR3DECL(int) VMMR3CallGC(PVM pVM, RTGCPTR GCPtrEntry, unsigned cArgs, ...)
1915{
1916 va_list args;
1917 va_start(args, cArgs);
1918 int rc = VMMR3CallGCV(pVM, GCPtrEntry, cArgs, args);
1919 va_end(args);
1920 return rc;
1921}
1922
1923
1924/**
1925 * Calls GC a function.
1926 *
1927 * @param pVM The VM handle.
1928 * @param GCPtrEntry The GC function address.
1929 * @param cArgs The number of arguments in the ....
1930 * @param args Arguments to the function.
1931 */
1932VMMR3DECL(int) VMMR3CallGCV(PVM pVM, RTGCPTR GCPtrEntry, unsigned cArgs, va_list args)
1933{
1934 Log2(("VMMR3CallGCV: GCPtrEntry=%VGv cArgs=%d\n", GCPtrEntry, cArgs));
1935
1936 /*
1937 * Setup the call frame using the trampoline.
1938 */
1939 CPUMHyperSetCtxCore(pVM, NULL);
1940 memset(pVM->vmm.s.pbHCStack, 0xaa, VMM_STACK_SIZE); /* Clear the stack. */
1941 CPUMSetHyperESP(pVM, pVM->vmm.s.pbGCStackBottom - cArgs * sizeof(RTGCUINTPTR));
1942 PRTGCUINTPTR pFrame = (PRTGCUINTPTR)(pVM->vmm.s.pbHCStack + VMM_STACK_SIZE) - cArgs;
1943 int i = cArgs;
1944 while (i-- > 0)
1945 *pFrame++ = va_arg(args, RTGCUINTPTR);
1946
1947 CPUMPushHyper(pVM, cArgs * sizeof(RTGCUINTPTR)); /* stack frame size */
1948 CPUMPushHyper(pVM, GCPtrEntry); /* what to call */
1949 CPUMSetHyperEIP(pVM, pVM->vmm.s.pfnGCCallTrampoline);
1950
1951 /*
1952 * We hide log flushes (outer) and hypervisor interrupts (inner).
1953 */
1954 for (;;)
1955 {
1956 int rc;
1957 do
1958 {
1959#ifdef NO_SUPCALLR0VMM
1960 rc = VERR_GENERAL_FAILURE;
1961#else
1962 rc = SUPCallVMMR0(pVM, VMMR0_DO_RAW_RUN, NULL);
1963#endif
1964 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1965
1966 /*
1967 * Flush the logs.
1968 */
1969#ifdef LOG_ENABLED
1970 PRTLOGGERGC pLogger = pVM->vmm.s.pLoggerHC;
1971 if ( pLogger
1972 && pLogger->offScratch > 0)
1973 RTLogFlushGC(NULL, pLogger);
1974#endif
1975#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
1976 PRTLOGGERGC pRelLogger = pVM->vmm.s.pRelLoggerHC;
1977 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
1978 RTLogFlushGC(RTLogRelDefaultInstance(), pRelLogger);
1979#endif
1980 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
1981 VMMR3FatalDump(pVM, rc);
1982 if (rc != VINF_VMM_CALL_HOST)
1983 {
1984 Log2(("VMMR3CallGCV: returns %Vrc (cs:eip=%04x:%08x)\n", rc, CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
1985 return rc;
1986 }
1987 rc = vmmR3ServiceCallHostRequest(pVM);
1988 if (VBOX_FAILURE(rc))
1989 return rc;
1990 }
1991}
1992
1993
1994/**
1995 * Resumes executing hypervisor code when interrupted
1996 * by a queue flush or a debug event.
1997 *
1998 * @returns VBox status code.
1999 * @param pVM VM handle.
2000 */
2001VMMR3DECL(int) VMMR3ResumeHyper(PVM pVM)
2002{
2003 Log(("VMMR3ResumeHyper: eip=%VGv esp=%VGv\n", CPUMGetHyperEIP(pVM), CPUMGetHyperESP(pVM)));
2004
2005 /*
2006 * We hide log flushes (outer) and hypervisor interrupts (inner).
2007 */
2008 for (;;)
2009 {
2010 int rc;
2011 do
2012 {
2013#ifdef NO_SUPCALLR0VMM
2014 rc = VERR_GENERAL_FAILURE;
2015#else
2016 rc = SUPCallVMMR0(pVM, VMMR0_DO_RAW_RUN, NULL);
2017#endif
2018 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
2019
2020 /*
2021 * Flush the loggers,
2022 */
2023#ifdef LOG_ENABLED
2024 PRTLOGGERGC pLogger = pVM->vmm.s.pLoggerHC;
2025 if ( pLogger
2026 && pLogger->offScratch > 0)
2027 RTLogFlushGC(NULL, pLogger);
2028#endif
2029#ifdef VBOX_WITH_GC_AND_R0_RELEASE_LOG
2030 PRTLOGGERGC pRelLogger = pVM->vmm.s.pRelLoggerHC;
2031 if (RT_UNLIKELY(pRelLogger && pRelLogger->offScratch > 0))
2032 RTLogFlushGC(RTLogRelDefaultInstance(), pRelLogger);
2033#endif
2034 if (rc == VERR_TRPM_PANIC || rc == VERR_TRPM_DONT_PANIC)
2035 VMMR3FatalDump(pVM, rc);
2036 if (rc != VINF_VMM_CALL_HOST)
2037 {
2038 Log(("VMMR3ResumeHyper: returns %Vrc\n", rc));
2039 return rc;
2040 }
2041 rc = vmmR3ServiceCallHostRequest(pVM);
2042 if (VBOX_FAILURE(rc))
2043 return rc;
2044 }
2045}
2046
2047
2048/**
2049 * Service a call to the ring-3 host code.
2050 *
2051 * @returns VBox status code.
2052 * @param pVM VM handle.
2053 * @remark Careful with critsects.
2054 */
2055static int vmmR3ServiceCallHostRequest(PVM pVM)
2056{
2057 switch (pVM->vmm.s.enmCallHostOperation)
2058 {
2059 /*
2060 * Acquire the PDM lock.
2061 */
2062 case VMMCALLHOST_PDM_LOCK:
2063 {
2064 pVM->vmm.s.rcCallHost = PDMR3LockCall(pVM);
2065 break;
2066 }
2067
2068 /*
2069 * Flush a PDM queue.
2070 */
2071 case VMMCALLHOST_PDM_QUEUE_FLUSH:
2072 {
2073 PDMR3QueueFlushWorker(pVM, NULL);
2074 pVM->vmm.s.rcCallHost = VINF_SUCCESS;
2075 break;
2076 }
2077
2078 /*
2079 * Grow the PGM pool.
2080 */
2081 case VMMCALLHOST_PGM_POOL_GROW:
2082 {
2083 pVM->vmm.s.rcCallHost = PGMR3PoolGrow(pVM);
2084 break;
2085 }
2086
2087 /*
2088 * Acquire the PGM lock.
2089 */
2090 case VMMCALLHOST_PGM_LOCK:
2091 {
2092 pVM->vmm.s.rcCallHost = PGMR3LockCall(pVM);
2093 break;
2094 }
2095
2096 /*
2097 * Flush REM handler notifications.
2098 */
2099 case VMMCALLHOST_REM_REPLAY_HANDLER_NOTIFICATIONS:
2100 {
2101 REMR3ReplayHandlerNotifications(pVM);
2102 break;
2103 }
2104
2105 case VMMCALLHOST_PGM_RAM_GROW_RANGE:
2106 {
2107 pVM->vmm.s.rcCallHost = PGM3PhysGrowRange(pVM, pVM->vmm.s.u64CallHostArg);
2108 break;
2109 }
2110
2111 /*
2112 * This is a noop. We just take this route to avoid unnecessary
2113 * tests in the loops.
2114 */
2115 case VMMCALLHOST_VMM_LOGGER_FLUSH:
2116 break;
2117
2118 /*
2119 * Set the VM error message.
2120 */
2121 case VMMCALLHOST_VM_SET_ERROR:
2122 VMR3SetErrorWorker(pVM);
2123 break;
2124
2125 /*
2126 * Set the VM runtime error message.
2127 */
2128 case VMMCALLHOST_VM_SET_RUNTIME_ERROR:
2129 VMR3SetRuntimeErrorWorker(pVM);
2130 break;
2131
2132 default:
2133 AssertMsgFailed(("enmCallHostOperation=%d\n", pVM->vmm.s.enmCallHostOperation));
2134 return VERR_INTERNAL_ERROR;
2135 }
2136
2137 pVM->vmm.s.enmCallHostOperation = VMMCALLHOST_INVALID;
2138 return VINF_SUCCESS;
2139}
2140
2141
2142
2143/**
2144 * Structure to pass to DBGFR3Info() and for doing all other
2145 * output during fatal dump.
2146 */
2147typedef struct VMMR3FATALDUMPINFOHLP
2148{
2149 /** The helper core. */
2150 DBGFINFOHLP Core;
2151 /** The release logger instance. */
2152 PRTLOGGER pRelLogger;
2153 /** The saved release logger flags. */
2154 RTUINT fRelLoggerFlags;
2155 /** The logger instance. */
2156 PRTLOGGER pLogger;
2157 /** The saved logger flags. */
2158 RTUINT fLoggerFlags;
2159 /** The saved logger destination flags. */
2160 RTUINT fLoggerDestFlags;
2161 /** Whether to output to stderr or not. */
2162 bool fStdErr;
2163} VMMR3FATALDUMPINFOHLP, *PVMMR3FATALDUMPINFOHLP;
2164typedef const VMMR3FATALDUMPINFOHLP *PCVMMR3FATALDUMPINFOHLP;
2165
2166
2167/**
2168 * Print formatted string.
2169 *
2170 * @param pHlp Pointer to this structure.
2171 * @param pszFormat The format string.
2172 * @param ... Arguments.
2173 */
2174static DECLCALLBACK(void) vmmR3FatalDumpInfoHlp_pfnPrintf(PCDBGFINFOHLP pHlp, const char *pszFormat, ...)
2175{
2176 va_list args;
2177 va_start(args, pszFormat);
2178 pHlp->pfnPrintfV(pHlp, pszFormat, args);
2179 va_end(args);
2180}
2181
2182
2183/**
2184 * Print formatted string.
2185 *
2186 * @param pHlp Pointer to this structure.
2187 * @param pszFormat The format string.
2188 * @param args Argument list.
2189 */
2190static DECLCALLBACK(void) vmmR3FatalDumpInfoHlp_pfnPrintfV(PCDBGFINFOHLP pHlp, const char *pszFormat, va_list args)
2191{
2192 PCVMMR3FATALDUMPINFOHLP pMyHlp = (PCVMMR3FATALDUMPINFOHLP)pHlp;
2193
2194 if (pMyHlp->pRelLogger)
2195 {
2196 va_list args2;
2197 va_copy(args2, args);
2198 RTLogLoggerV(pMyHlp->pRelLogger, pszFormat, args2);
2199 va_end(args2);
2200 }
2201 if (pMyHlp->pLogger)
2202 {
2203 va_list args2;
2204 va_copy(args2, args);
2205 RTLogLoggerV(pMyHlp->pLogger, pszFormat, args);
2206 va_end(args2);
2207 }
2208 if (pMyHlp->fStdErr)
2209 {
2210 va_list args2;
2211 va_copy(args2, args);
2212 RTStrmPrintfV(g_pStdErr, pszFormat, args);
2213 va_end(args2);
2214 }
2215}
2216
2217
2218/**
2219 * Initializes the fatal dump output helper.
2220 *
2221 * @param pHlp The structure to initialize.
2222 */
2223static void vmmR3FatalDumpInfoHlpInit(PVMMR3FATALDUMPINFOHLP pHlp)
2224{
2225 memset(pHlp, 0, sizeof(*pHlp));
2226
2227 pHlp->Core.pfnPrintf = vmmR3FatalDumpInfoHlp_pfnPrintf;
2228 pHlp->Core.pfnPrintfV = vmmR3FatalDumpInfoHlp_pfnPrintfV;
2229
2230 /*
2231 * The loggers.
2232 */
2233 pHlp->pRelLogger = RTLogRelDefaultInstance();
2234#ifndef LOG_ENABLED
2235 if (!pHlp->pRelLogger)
2236#endif
2237 pHlp->pLogger = RTLogDefaultInstance();
2238
2239 if (pHlp->pRelLogger)
2240 {
2241 pHlp->fRelLoggerFlags = pHlp->pRelLogger->fFlags;
2242 pHlp->pRelLogger->fFlags &= ~(RTLOGFLAGS_BUFFERED | RTLOGFLAGS_DISABLED);
2243 }
2244
2245 if (pHlp->pLogger)
2246 {
2247 pHlp->fLoggerFlags = pHlp->pLogger->fFlags;
2248 pHlp->fLoggerDestFlags = pHlp->pLogger->fDestFlags;
2249 pHlp->pLogger->fFlags &= ~(RTLOGFLAGS_BUFFERED | RTLOGFLAGS_DISABLED);
2250 pHlp->pLogger->fDestFlags |= RTLOGDEST_DEBUGGER;
2251 }
2252
2253 /*
2254 * Check if we need write to stderr.
2255 */
2256 pHlp->fStdErr = (!pHlp->pRelLogger || !(pHlp->pRelLogger->fDestFlags & (RTLOGDEST_STDOUT | RTLOGDEST_STDERR)))
2257 && (!pHlp->pLogger || !(pHlp->pLogger->fDestFlags & (RTLOGDEST_STDOUT | RTLOGDEST_STDERR)));
2258}
2259
2260
2261/**
2262 * Deletes the fatal dump output helper.
2263 *
2264 * @param pHlp The structure to delete.
2265 */
2266static void vmmR3FatalDumpInfoHlpDelete(PVMMR3FATALDUMPINFOHLP pHlp)
2267{
2268 if (pHlp->pRelLogger)
2269 {
2270 RTLogFlush(pHlp->pRelLogger);
2271 pHlp->pRelLogger->fFlags = pHlp->fRelLoggerFlags;
2272 }
2273
2274 if (pHlp->pLogger)
2275 {
2276 RTLogFlush(pHlp->pLogger);
2277 pHlp->pLogger->fFlags = pHlp->fLoggerFlags;
2278 pHlp->pLogger->fDestFlags = pHlp->fLoggerDestFlags;
2279 }
2280}
2281
2282
2283/**
2284 * Dumps the VM state on a fatal error.
2285 *
2286 * @param pVM VM Handle.
2287 * @param rcErr VBox status code.
2288 */
2289VMMR3DECL(void) VMMR3FatalDump(PVM pVM, int rcErr)
2290{
2291 /*
2292 * Create our output helper and sync it with the log settings.
2293 * This helper will be used for all the output.
2294 */
2295 VMMR3FATALDUMPINFOHLP Hlp;
2296 PCDBGFINFOHLP pHlp = &Hlp.Core;
2297 vmmR3FatalDumpInfoHlpInit(&Hlp);
2298
2299 /*
2300 * Header.
2301 */
2302 pHlp->pfnPrintf(pHlp,
2303 "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"
2304 "!!\n"
2305 "!! Guru Meditation %d (%Vrc)\n"
2306 "!!\n",
2307 rcErr, rcErr);
2308
2309 /*
2310 * Continue according to context.
2311 */
2312 bool fDoneHyper = false;
2313 switch (rcErr)
2314 {
2315 /*
2316 * Hyper visor errors.
2317 */
2318 case VINF_EM_DBG_HYPER_ASSERTION:
2319 pHlp->pfnPrintf(pHlp, "%s%s!!\n", VMMR3GetGCAssertMsg1(pVM), VMMR3GetGCAssertMsg2(pVM));
2320 /* fall thru */
2321 case VERR_TRPM_DONT_PANIC:
2322 case VERR_TRPM_PANIC:
2323 case VINF_EM_RAW_STALE_SELECTOR:
2324 case VINF_EM_RAW_IRET_TRAP:
2325 case VINF_EM_DBG_HYPER_BREAKPOINT:
2326 case VINF_EM_DBG_HYPER_STEPPED:
2327 {
2328 /* Trap? */
2329 uint32_t uEIP = CPUMGetHyperEIP(pVM);
2330 bool fSoftwareInterrupt = false;
2331 uint8_t u8TrapNo = 0xce;
2332 RTGCUINT uErrorCode = 0xdeadface;
2333 RTGCUINTPTR uCR2 = 0xdeadface;
2334 int rc2 = TRPMQueryTrapAll(pVM, &u8TrapNo, &fSoftwareInterrupt, &uErrorCode, &uCR2);
2335 if (VBOX_SUCCESS(rc2))
2336 pHlp->pfnPrintf(pHlp,
2337 "!! TRAP=%02x ERRCD=%VGv CR2=%VGv EIP=%VGv fSoft=%d\n",
2338 u8TrapNo, uErrorCode, uCR2, uEIP, fSoftwareInterrupt);
2339 else
2340 pHlp->pfnPrintf(pHlp,
2341 "!! EIP=%VGv NOTRAP\n",
2342 uEIP);
2343
2344 /*
2345 * Try figure out where eip is.
2346 */
2347 /** @todo make query call for core code or move this function to VMM. */
2348 /* core code? */
2349 //if (uEIP - (RTGCUINTPTR)pVM->vmm.s.pvGCCoreCode < pVM->vmm.s.cbCoreCode)
2350 // pHlp->pfnPrintf(pHlp,
2351 // "!! EIP is in CoreCode, offset %#x\n",
2352 // uEIP - (RTGCUINTPTR)pVM->vmm.s.pvGCCoreCode);
2353 //else
2354 { /* ask PDM */
2355 /** @todo ask DBGFR3Sym later. */
2356 char szModName[64];
2357 RTGCPTR GCPtrMod;
2358 char szNearSym1[260];
2359 RTGCPTR GCPtrNearSym1;
2360 char szNearSym2[260];
2361 RTGCPTR GCPtrNearSym2;
2362 int rc = PDMR3QueryModFromEIP(pVM, uEIP,
2363 &szModName[0], sizeof(szModName), &GCPtrMod,
2364 &szNearSym1[0], sizeof(szNearSym1), &GCPtrNearSym1,
2365 &szNearSym2[0], sizeof(szNearSym2), &GCPtrNearSym2);
2366 if (VBOX_SUCCESS(rc))
2367 {
2368 pHlp->pfnPrintf(pHlp,
2369 "!! EIP in %s (%p) at rva %x near symbols:\n"
2370 "!! %VGv rva %VGv off %08x %s\n"
2371 "!! %VGv rva %VGv off -%08x %s\n",
2372 szModName, GCPtrMod, (unsigned)(uEIP - GCPtrMod),
2373 GCPtrNearSym1, GCPtrNearSym1 - GCPtrMod, (unsigned)(uEIP - GCPtrNearSym1), szNearSym1,
2374 GCPtrNearSym2, GCPtrNearSym2 - GCPtrMod, (unsigned)(GCPtrNearSym2 - uEIP), szNearSym2);
2375 }
2376 else
2377 pHlp->pfnPrintf(pHlp,
2378 "!! EIP is not in any code known to VMM!\n");
2379 }
2380
2381 /* Disassemble the instruction. */
2382 char szInstr[256];
2383 rc2 = DBGFR3DisasInstrEx(pVM, 0, 0, DBGF_DISAS_FLAGS_CURRENT_HYPER, &szInstr[0], sizeof(szInstr), NULL);
2384 if (VBOX_SUCCESS(rc2))
2385 pHlp->pfnPrintf(pHlp,
2386 "!! %s\n", szInstr);
2387
2388 /* Dump the hypervisor cpu state. */
2389 pHlp->pfnPrintf(pHlp,
2390 "!!\n"
2391 "!!\n"
2392 "!!\n");
2393 rc2 = DBGFR3Info(pVM, "cpumhyper", "verbose", pHlp);
2394 fDoneHyper = true;
2395
2396 /* Callstack. */
2397 DBGFSTACKFRAME Frame = {0};
2398 rc2 = DBGFR3StackWalkBeginHyper(pVM, &Frame);
2399 if (VBOX_SUCCESS(rc2))
2400 {
2401 pHlp->pfnPrintf(pHlp,
2402 "!!\n"
2403 "!! Call Stack:\n"
2404 "!!\n"
2405 "EBP Ret EBP Ret CS:EIP Arg0 Arg1 Arg2 Arg3 CS:EIP Symbol [line]\n");
2406 do
2407 {
2408 pHlp->pfnPrintf(pHlp,
2409 "%08RX32 %08RX32 %04RX32:%08RX32 %08RX32 %08RX32 %08RX32 %08RX32",
2410 (uint32_t)Frame.AddrFrame.off,
2411 (uint32_t)Frame.AddrReturnFrame.off,
2412 (uint32_t)Frame.AddrReturnPC.Sel,
2413 (uint32_t)Frame.AddrReturnPC.off,
2414 Frame.Args.au32[0],
2415 Frame.Args.au32[1],
2416 Frame.Args.au32[2],
2417 Frame.Args.au32[3]);
2418 pHlp->pfnPrintf(pHlp, " %RTsel:%08RGv", Frame.AddrPC.Sel, Frame.AddrPC.off);
2419 if (Frame.pSymPC)
2420 {
2421 RTGCINTPTR offDisp = Frame.AddrPC.FlatPtr - Frame.pSymPC->Value;
2422 if (offDisp > 0)
2423 pHlp->pfnPrintf(pHlp, " %s+%llx", Frame.pSymPC->szName, (int64_t)offDisp);
2424 else if (offDisp < 0)
2425 pHlp->pfnPrintf(pHlp, " %s-%llx", Frame.pSymPC->szName, -(int64_t)offDisp);
2426 else
2427 pHlp->pfnPrintf(pHlp, " %s", Frame.pSymPC->szName);
2428 }
2429 if (Frame.pLinePC)
2430 pHlp->pfnPrintf(pHlp, " [%s @ 0i%d]", Frame.pLinePC->szFilename, Frame.pLinePC->uLineNo);
2431 pHlp->pfnPrintf(pHlp, "\n");
2432
2433 /* next */
2434 rc2 = DBGFR3StackWalkNext(pVM, &Frame);
2435 } while (VBOX_SUCCESS(rc2));
2436 DBGFR3StackWalkEnd(pVM, &Frame);
2437 }
2438
2439 /* raw stack */
2440 pHlp->pfnPrintf(pHlp,
2441 "!!\n"
2442 "!! Raw stack (mind the direction).\n"
2443 "!!\n"
2444 "%.*Vhxd\n",
2445 VMM_STACK_SIZE, (char *)pVM->vmm.s.pbHCStack);
2446 break;
2447 }
2448
2449 default:
2450 {
2451 break;
2452 }
2453
2454 } /* switch (rcErr) */
2455
2456
2457 /*
2458 * Dump useful state information.
2459 */
2460 /** @todo convert these dumpers to DBGFR3Info() handlers!!! */
2461 pHlp->pfnPrintf(pHlp,
2462 "!!\n"
2463 "!! PGM Access Handlers & Stuff:\n"
2464 "!!\n");
2465 PGMR3DumpMappings(pVM);
2466
2467
2468 /*
2469 * Generic info dumper loop.
2470 */
2471 static struct
2472 {
2473 const char *pszInfo;
2474 const char *pszArgs;
2475 } const aInfo[] =
2476 {
2477 { "hma", NULL },
2478 { "cpumguest", "verbose" },
2479 { "cpumhyper", "verbose" },
2480 { "cpumhost", "verbose" },
2481 { "mode", "all" },
2482 { "cpuid", "verbose" },
2483 { "gdt", NULL },
2484 { "ldt", NULL },
2485 //{ "tss", NULL },
2486 { "ioport", NULL },
2487 { "mmio", NULL },
2488 { "phys", NULL },
2489 //{ "pgmpd", NULL }, - doesn't always work at init time...
2490 { "timers", NULL },
2491 { "activetimers", NULL },
2492 { "handlers", "phys virt stats" },
2493 { "cfgm", NULL },
2494 };
2495 for (unsigned i = 0; i < ELEMENTS(aInfo); i++)
2496 {
2497 if (fDoneHyper && !strcmp(aInfo[i].pszInfo, "cpumhyper"))
2498 continue;
2499 pHlp->pfnPrintf(pHlp,
2500 "!!\n"
2501 "!! {%s, %s}\n"
2502 "!!\n",
2503 aInfo[i].pszInfo, aInfo[i].pszArgs);
2504 DBGFR3Info(pVM, aInfo[i].pszInfo, aInfo[i].pszArgs, pHlp);
2505 }
2506
2507 /* done */
2508 pHlp->pfnPrintf(pHlp,
2509 "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n");
2510
2511
2512 /*
2513 * Delete the output instance (flushing and restoring of flags).
2514 */
2515 vmmR3FatalDumpInfoHlpDelete(&Hlp);
2516}
2517
2518
2519/**
2520 * Performs a testcase.
2521 *
2522 * @returns return value from the test.
2523 * @param pVM The VM handle.
2524 * @param enmTestcase The testcase operation to perform.
2525 * @param uVariation The testcase variation id.
2526 */
2527static int vmmR3DoGCTest(PVM pVM, VMMGCOPERATION enmTestcase, unsigned uVariation)
2528{
2529 RTGCPTR GCPtrEP;
2530 int rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMGCEntry", &GCPtrEP);
2531 if (VBOX_FAILURE(rc))
2532 return rc;
2533
2534 CPUMHyperSetCtxCore(pVM, NULL);
2535 memset(pVM->vmm.s.pbHCStack, 0xaa, VMM_STACK_SIZE);
2536 CPUMSetHyperESP(pVM, pVM->vmm.s.pbGCStackBottom); /* Clear the stack. */
2537 CPUMPushHyper(pVM, uVariation);
2538 CPUMPushHyper(pVM, enmTestcase);
2539 CPUMPushHyper(pVM, pVM->pVMGC);
2540 CPUMPushHyper(pVM, 3 * sizeof(RTGCPTR)); /* stack frame size */
2541 CPUMPushHyper(pVM, GCPtrEP); /* what to call */
2542 CPUMSetHyperEIP(pVM, pVM->vmm.s.pfnGCCallTrampoline);
2543 return SUPCallVMMR0(pVM, VMMR0_DO_RAW_RUN, NULL);
2544}
2545
2546
2547/**
2548 * Performs a trap test.
2549 *
2550 * @returns Return value from the trap test.
2551 * @param pVM The VM handle.
2552 * @param u8Trap The trap number to test.
2553 * @param uVariation The testcase variation.
2554 * @param rcExpect The expected result.
2555 * @param u32Eax The expected eax value.
2556 * @param pszFaultEIP The fault address. Pass NULL if this isn't available or doesn't apply.
2557 * @param pszDesc The test description.
2558 */
2559static int vmmR3DoTrapTest(PVM pVM, uint8_t u8Trap, unsigned uVariation, int rcExpect, uint32_t u32Eax, const char *pszFaultEIP, const char *pszDesc)
2560{
2561 RTPrintf("VMM: testing 0%x / %d - %s\n", u8Trap, uVariation, pszDesc);
2562
2563 RTGCPTR GCPtrEP;
2564 int rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMGCEntry", &GCPtrEP);
2565 if (VBOX_FAILURE(rc))
2566 return rc;
2567
2568 CPUMHyperSetCtxCore(pVM, NULL);
2569 memset(pVM->vmm.s.pbHCStack, 0xaa, VMM_STACK_SIZE);
2570 CPUMSetHyperESP(pVM, pVM->vmm.s.pbGCStackBottom); /* Clear the stack. */
2571 CPUMPushHyper(pVM, uVariation);
2572 CPUMPushHyper(pVM, u8Trap + VMMGC_DO_TESTCASE_TRAP_FIRST);
2573 CPUMPushHyper(pVM, pVM->pVMGC);
2574 CPUMPushHyper(pVM, 3 * sizeof(RTGCPTR)); /* stack frame size */
2575 CPUMPushHyper(pVM, GCPtrEP); /* what to call */
2576 CPUMSetHyperEIP(pVM, pVM->vmm.s.pfnGCCallTrampoline);
2577 rc = SUPCallVMMR0(pVM, VMMR0_DO_RAW_RUN, NULL);
2578 bool fDump = false;
2579 if (rc != rcExpect)
2580 {
2581 RTPrintf("VMM: FAILURE - rc=%Vrc expected %Vrc\n", rc, rcExpect);
2582 if (rc != VERR_NOT_IMPLEMENTED)
2583 fDump = true;
2584 }
2585 else if ( u8Trap != 8 /* double fault doesn't dare setting TrapNo. */
2586 && u8Trap != 3 /* guest only, we're not in guest. */
2587 && u8Trap != 1 /* guest only, we're not in guest. */
2588 && u8Trap != TRPMGetTrapNo(pVM))
2589 {
2590 RTPrintf("VMM: FAILURE - Trap %#x expected %#x\n", TRPMGetTrapNo(pVM), u8Trap);
2591 fDump = true;
2592 }
2593 else if (pszFaultEIP)
2594 {
2595 RTGCPTR GCPtrFault;
2596 int rc2 = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, pszFaultEIP, &GCPtrFault);
2597 if (VBOX_FAILURE(rc2))
2598 RTPrintf("VMM: FAILURE - Failed to resolve symbol '%s', %Vrc!\n", pszFaultEIP, rc);
2599 else if (GCPtrFault != CPUMGetHyperEIP(pVM))
2600 {
2601 RTPrintf("VMM: FAILURE - EIP=%VGv expected %VGv (%s)\n", CPUMGetHyperEIP(pVM), GCPtrFault, pszFaultEIP);
2602 fDump = true;
2603 }
2604 }
2605 else
2606 {
2607 if (CPUMGetHyperSS(pVM) == SELMGetHyperDS(pVM))
2608 RTPrintf("VMM: FAILURE - ss=%x expected %x\n", CPUMGetHyperSS(pVM), SELMGetHyperDS(pVM));
2609 if (CPUMGetHyperES(pVM) == SELMGetHyperDS(pVM))
2610 RTPrintf("VMM: FAILURE - es=%x expected %x\n", CPUMGetHyperES(pVM), SELMGetHyperDS(pVM));
2611 if (CPUMGetHyperDS(pVM) == SELMGetHyperDS(pVM))
2612 RTPrintf("VMM: FAILURE - ds=%x expected %x\n", CPUMGetHyperDS(pVM), SELMGetHyperDS(pVM));
2613 if (CPUMGetHyperFS(pVM) == SELMGetHyperDS(pVM))
2614 RTPrintf("VMM: FAILURE - fs=%x expected %x\n", CPUMGetHyperFS(pVM), SELMGetHyperDS(pVM));
2615 if (CPUMGetHyperGS(pVM) == SELMGetHyperDS(pVM))
2616 RTPrintf("VMM: FAILURE - gs=%x expected %x\n", CPUMGetHyperGS(pVM), SELMGetHyperDS(pVM));
2617 if (CPUMGetHyperEDI(pVM) == 0x01234567)
2618 RTPrintf("VMM: FAILURE - edi=%x expected %x\n", CPUMGetHyperEDI(pVM), 0x01234567);
2619 if (CPUMGetHyperESI(pVM) == 0x42000042)
2620 RTPrintf("VMM: FAILURE - esi=%x expected %x\n", CPUMGetHyperESI(pVM), 0x42000042);
2621 if (CPUMGetHyperEBP(pVM) == 0xffeeddcc)
2622 RTPrintf("VMM: FAILURE - ebp=%x expected %x\n", CPUMGetHyperEBP(pVM), 0xffeeddcc);
2623 if (CPUMGetHyperEBX(pVM) == 0x89abcdef)
2624 RTPrintf("VMM: FAILURE - ebx=%x expected %x\n", CPUMGetHyperEBX(pVM), 0x89abcdef);
2625 if (CPUMGetHyperECX(pVM) == 0xffffaaaa)
2626 RTPrintf("VMM: FAILURE - ecx=%x expected %x\n", CPUMGetHyperECX(pVM), 0xffffaaaa);
2627 if (CPUMGetHyperEDX(pVM) == 0x77778888)
2628 RTPrintf("VMM: FAILURE - edx=%x expected %x\n", CPUMGetHyperEDX(pVM), 0x77778888);
2629 if (CPUMGetHyperEAX(pVM) == u32Eax)
2630 RTPrintf("VMM: FAILURE - eax=%x expected %x\n", CPUMGetHyperEAX(pVM), u32Eax);
2631 }
2632 if (fDump)
2633 VMMR3FatalDump(pVM, rc);
2634 return rc;
2635}
2636
2637
2638/* execute the switch. */
2639VMMR3DECL(int) VMMDoTest(PVM pVM)
2640{
2641#if 1
2642#ifdef NO_SUPCALLR0VMM
2643 RTPrintf("NO_SUPCALLR0VMM\n");
2644 return VINF_SUCCESS;
2645#endif
2646
2647 /*
2648 * Setup stack for calling VMMGCEntry().
2649 */
2650 RTGCPTR GCPtrEP;
2651 int rc = PDMR3GetSymbolGC(pVM, VMMGC_MAIN_MODULE_NAME, "VMMGCEntry", &GCPtrEP);
2652 if (VBOX_SUCCESS(rc))
2653 {
2654 RTPrintf("VMM: VMMGCEntry=%VGv\n", GCPtrEP);
2655
2656 /*
2657 * Test various crashes which we must be able to recover from.
2658 */
2659 vmmR3DoTrapTest(pVM, 0x3, 0, VINF_EM_DBG_HYPER_ASSERTION, 0xf0f0f0f0, "vmmGCTestTrap3_FaultEIP", "int3");
2660 vmmR3DoTrapTest(pVM, 0x3, 1, VINF_EM_DBG_HYPER_ASSERTION, 0xf0f0f0f0, "vmmGCTestTrap3_FaultEIP", "int3 WP");
2661
2662#if defined(DEBUG_bird) /* guess most people would like to skip these since they write to com1. */
2663 vmmR3DoTrapTest(pVM, 0x8, 0, VERR_TRPM_PANIC, 0x00000000, "vmmGCTestTrap8_FaultEIP", "#DF [#PG]");
2664 SELMR3Relocate(pVM); /* this resets the busy flag of the Trap 08 TSS */
2665 bool f;
2666 rc = CFGMR3QueryBool(CFGMR3GetRoot(pVM), "DoubleFault", &f);
2667#if !defined(DEBUG_bird)
2668 if (VBOX_SUCCESS(rc) && f)
2669#endif
2670 {
2671 /* see tripple fault warnings in SELM and VMMGC.cpp. */
2672 vmmR3DoTrapTest(pVM, 0x8, 1, VERR_TRPM_PANIC, 0x00000000, "vmmGCTestTrap8_FaultEIP", "#DF [#PG] WP");
2673 SELMR3Relocate(pVM); /* this resets the busy flag of the Trap 08 TSS */
2674 }
2675#endif
2676
2677 vmmR3DoTrapTest(pVM, 0xd, 0, VERR_TRPM_DONT_PANIC, 0xf0f0f0f0, "vmmGCTestTrap0d_FaultEIP", "ltr #GP");
2678 ///@todo find a better \#GP case, on intel ltr will \#PF (busy update?) and not \#GP.
2679 //vmmR3DoTrapTest(pVM, 0xd, 1, VERR_TRPM_DONT_PANIC, 0xf0f0f0f0, "vmmGCTestTrap0d_FaultEIP", "ltr #GP WP");
2680
2681 vmmR3DoTrapTest(pVM, 0xe, 0, VERR_TRPM_DONT_PANIC, 0x00000000, "vmmGCTestTrap0e_FaultEIP", "#PF (NULL)");
2682 vmmR3DoTrapTest(pVM, 0xe, 1, VERR_TRPM_DONT_PANIC, 0x00000000, "vmmGCTestTrap0e_FaultEIP", "#PF (NULL) WP");
2683
2684 /*
2685 * Set a debug register and perform a context switch.
2686 */
2687 rc = vmmR3DoGCTest(pVM, VMMGC_DO_TESTCASE_NOP, 0);
2688 if (rc != VINF_SUCCESS)
2689 {
2690 RTPrintf("VMM: Nop test failed, rc=%Vrc not VINF_SUCCESS\n", rc);
2691 return rc;
2692 }
2693
2694 /* a harmless breakpoint */
2695 RTPrintf("VMM: testing hardware bp at 0x10000 (not hit)\n");
2696 DBGFADDRESS Addr;
2697 DBGFR3AddrFromFlat(pVM, &Addr, 0x10000);
2698 RTUINT iBp0;
2699 rc = DBGFR3BpSetReg(pVM, &Addr, 0, ~(uint64_t)0, X86_DR7_RW_EO, 1, &iBp0);
2700 AssertReleaseRC(rc);
2701 rc = vmmR3DoGCTest(pVM, VMMGC_DO_TESTCASE_NOP, 0);
2702 if (rc != VINF_SUCCESS)
2703 {
2704 RTPrintf("VMM: DR0=0x10000 test failed with rc=%Vrc!\n", rc);
2705 return rc;
2706 }
2707
2708 /* a bad one at VMMGCEntry */
2709 RTPrintf("VMM: testing hardware bp at VMMGCEntry (hit)\n");
2710 DBGFR3AddrFromFlat(pVM, &Addr, GCPtrEP);
2711 RTUINT iBp1;
2712 rc = DBGFR3BpSetReg(pVM, &Addr, 0, ~(uint64_t)0, X86_DR7_RW_EO, 1, &iBp1);
2713 AssertReleaseRC(rc);
2714 rc = vmmR3DoGCTest(pVM, VMMGC_DO_TESTCASE_NOP, 0);
2715 if (rc != VINF_EM_DBG_HYPER_BREAKPOINT)
2716 {
2717 RTPrintf("VMM: DR1=VMMGCEntry test failed with rc=%Vrc! expected VINF_EM_RAW_BREAKPOINT_HYPER\n", rc);
2718 return rc;
2719 }
2720
2721 /* resume the breakpoint */
2722 RTPrintf("VMM: resuming hyper after breakpoint\n");
2723 CPUMSetHyperEFlags(pVM, CPUMGetHyperEFlags(pVM) | X86_EFL_RF);
2724 rc = VMMR3ResumeHyper(pVM);
2725 if (rc != VINF_SUCCESS)
2726 {
2727 RTPrintf("VMM: failed to resume on hyper breakpoint, rc=%Vrc\n", rc);
2728 return rc;
2729 }
2730
2731 /* engage the breakpoint again and try single stepping. */
2732 RTPrintf("VMM: testing hardware bp at VMMGCEntry + stepping\n");
2733 rc = vmmR3DoGCTest(pVM, VMMGC_DO_TESTCASE_NOP, 0);
2734 if (rc != VINF_EM_DBG_HYPER_BREAKPOINT)
2735 {
2736 RTPrintf("VMM: DR1=VMMGCEntry test failed with rc=%Vrc! expected VINF_EM_RAW_BREAKPOINT_HYPER\n", rc);
2737 return rc;
2738 }
2739
2740 RTGCUINTREG OldPc = CPUMGetHyperEIP(pVM);
2741 RTPrintf("%RGr=>", OldPc);
2742 unsigned i;
2743 for (i = 0; i < 8; i++)
2744 {
2745 CPUMSetHyperEFlags(pVM, CPUMGetHyperEFlags(pVM) | X86_EFL_TF | X86_EFL_RF);
2746 rc = VMMR3ResumeHyper(pVM);
2747 if (rc != VINF_EM_DBG_HYPER_STEPPED)
2748 {
2749 RTPrintf("\nVMM: failed to step on hyper breakpoint, rc=%Vrc\n", rc);
2750 return rc;
2751 }
2752 RTGCUINTREG Pc = CPUMGetHyperEIP(pVM);
2753 RTPrintf("%RGr=>", Pc);
2754 if (Pc == OldPc)
2755 {
2756 RTPrintf("\nVMM: step failed, PC: %RGr -> %RGr\n", OldPc, Pc);
2757 return VERR_GENERAL_FAILURE;
2758 }
2759 OldPc = Pc;
2760 }
2761 RTPrintf("ok\n");
2762
2763 /* done, clear it */
2764 if ( VBOX_FAILURE(DBGFR3BpClear(pVM, iBp0))
2765 || VBOX_FAILURE(DBGFR3BpClear(pVM, iBp1)))
2766 {
2767 RTPrintf("VMM: Failed to clear breakpoints!\n");
2768 return VERR_GENERAL_FAILURE;
2769 }
2770 rc = vmmR3DoGCTest(pVM, VMMGC_DO_TESTCASE_NOP, 0);
2771 if (rc != VINF_SUCCESS)
2772 {
2773 RTPrintf("VMM: NOP failed, rc=%Vrc\n", rc);
2774 return rc;
2775 }
2776
2777 /*
2778 * Interrupt forwarding.
2779 */
2780 CPUMHyperSetCtxCore(pVM, NULL);
2781 CPUMSetHyperESP(pVM, pVM->vmm.s.pbGCStackBottom); /* Clear the stack. */
2782 CPUMPushHyper(pVM, 0);
2783 CPUMPushHyper(pVM, VMMGC_DO_TESTCASE_HYPER_INTERRUPT);
2784 CPUMPushHyper(pVM, pVM->pVMGC);
2785 CPUMPushHyper(pVM, 3 * sizeof(RTGCPTR)); /* stack frame size */
2786 CPUMPushHyper(pVM, GCPtrEP); /* what to call */
2787 CPUMSetHyperEIP(pVM, pVM->vmm.s.pfnGCCallTrampoline);
2788 Log(("trampoline=%x\n", pVM->vmm.s.pfnGCCallTrampoline));
2789
2790 /*
2791 * Switch and do da thing.
2792 */
2793 RTPrintf("VMM: interrupt forwarding...\n"); RTStrmFlush(g_pStdOut); RTThreadSleep(250);
2794 i = 0;
2795 uint64_t tsBegin = RTTimeNanoTS();
2796 uint64_t TickStart = ASMReadTSC();
2797 do
2798 {
2799 rc = SUPCallVMMR0(pVM, VMMR0_DO_RAW_RUN, NULL);
2800 if (VBOX_FAILURE(rc))
2801 {
2802 Log(("VMM: GC returned fatal %Vra in iteration %d\n", rc, i));
2803 VMMR3FatalDump(pVM, rc);
2804 return rc;
2805 }
2806 i++;
2807 if (!(i % 32))
2808 Log(("VMM: iteration %d, esi=%08x edi=%08x ebx=%08x\n",
2809 i, CPUMGetHyperESI(pVM), CPUMGetHyperEDI(pVM), CPUMGetHyperEBX(pVM)));
2810 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
2811 uint64_t TickEnd = ASMReadTSC();
2812 uint64_t tsEnd = RTTimeNanoTS();
2813
2814 uint64_t Elapsed = tsEnd - tsBegin;
2815 uint64_t PerIteration = Elapsed / (uint64_t)i;
2816 uint64_t cTicksElapsed = TickEnd - TickStart;
2817 uint64_t cTicksPerIteration = cTicksElapsed / (uint64_t)i;
2818
2819 RTPrintf("VMM: %8d interrupts in %11llu ns (%11llu ticks), %10llu ns/iteration (%11llu ticks)\n",
2820 i, Elapsed, cTicksElapsed, PerIteration, cTicksPerIteration);
2821 Log(("VMM: %8d interrupts in %11llu ns (%11llu ticks), %10llu ns/iteration (%11llu ticks)\n",
2822 i, Elapsed, cTicksElapsed, PerIteration, cTicksPerIteration));
2823
2824 /*
2825 * These forced actions are not necessary for the test and trigger breakpoints too.
2826 */
2827 VM_FF_CLEAR(pVM, VM_FF_TRPM_SYNC_IDT);
2828 VM_FF_CLEAR(pVM, VM_FF_SELM_SYNC_TSS);
2829
2830 /*
2831 * Profile switching.
2832 */
2833 RTPrintf("VMM: profiling switcher...\n");
2834 Log(("VMM: profiling switcher...\n"));
2835 uint64_t TickMin = ~0;
2836 tsBegin = RTTimeNanoTS();
2837 TickStart = ASMReadTSC();
2838 for (i = 0; i < 1000000; i++)
2839 {
2840 CPUMHyperSetCtxCore(pVM, NULL);
2841 CPUMSetHyperESP(pVM, pVM->vmm.s.pbGCStackBottom); /* Clear the stack. */
2842 CPUMPushHyper(pVM, 0);
2843 CPUMPushHyper(pVM, VMMGC_DO_TESTCASE_NOP);
2844 CPUMPushHyper(pVM, pVM->pVMGC);
2845 CPUMPushHyper(pVM, 3 * sizeof(RTGCPTR)); /* stack frame size */
2846 CPUMPushHyper(pVM, GCPtrEP); /* what to call */
2847 CPUMSetHyperEIP(pVM, pVM->vmm.s.pfnGCCallTrampoline);
2848
2849 uint64_t TickThisStart = ASMReadTSC();
2850 rc = SUPCallVMMR0(pVM, VMMR0_DO_RAW_RUN, NULL);
2851 uint64_t TickThisElapsed = ASMReadTSC() - TickThisStart;
2852 if (VBOX_FAILURE(rc))
2853 {
2854 Log(("VMM: GC returned fatal %Vra in iteration %d\n", rc, i));
2855 VMMR3FatalDump(pVM, rc);
2856 return rc;
2857 }
2858 if (TickThisElapsed < TickMin)
2859 TickMin = TickThisElapsed;
2860 }
2861 TickEnd = ASMReadTSC();
2862 tsEnd = RTTimeNanoTS();
2863
2864 Elapsed = tsEnd - tsBegin;
2865 PerIteration = Elapsed / (uint64_t)i;
2866 cTicksElapsed = TickEnd - TickStart;
2867 cTicksPerIteration = cTicksElapsed / (uint64_t)i;
2868
2869 RTPrintf("VMM: %8d cycles in %11llu ns (%11lld ticks), %10llu ns/iteration (%11lld ticks) Min %11lld ticks\n",
2870 i, Elapsed, cTicksElapsed, PerIteration, cTicksPerIteration, TickMin);
2871 Log(("VMM: %8d cycles in %11llu ns (%11lld ticks), %10llu ns/iteration (%11lld ticks) Min %11lld ticks\n",
2872 i, Elapsed, cTicksElapsed, PerIteration, cTicksPerIteration, TickMin));
2873
2874 rc = VINF_SUCCESS;
2875 }
2876 else
2877 AssertMsgFailed(("Failed to resolved VMMGC.gc::VMMGCEntry(), rc=%Vrc\n", rc));
2878#endif
2879 return rc;
2880}
2881
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette