/* $Id: APICAll.cpp 72392 2018-05-30 12:27:17Z vboxsync $ */ /** @file * APIC - Advanced Programmable Interrupt Controller - All Contexts. */ /* * Copyright (C) 2016-2017 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_DEV_APIC #include "APICInternal.h" #include #include #include #include #include #include /********************************************************************************************************************************* * Global Variables * *********************************************************************************************************************************/ #if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4 /** An ordered array of valid LVT masks. */ static const uint32_t g_au32LvtValidMasks[] = { XAPIC_LVT_TIMER_VALID, XAPIC_LVT_THERMAL_VALID, XAPIC_LVT_PERF_VALID, XAPIC_LVT_LINT_VALID, /* LINT0 */ XAPIC_LVT_LINT_VALID, /* LINT1 */ XAPIC_LVT_ERROR_VALID }; #endif #if 0 /** @todo CMCI */ static const uint32_t g_au32LvtExtValidMask[] = { XAPIC_LVT_CMCI_VALID }; #endif /** * Checks if a vector is set in an APIC 256-bit sparse register. * * @returns true if the specified vector is set, false otherwise. * @param pApicReg The APIC 256-bit spare register. * @param uVector The vector to check if set. */ DECLINLINE(bool) apicTestVectorInReg(const volatile XAPIC256BITREG *pApicReg, uint8_t uVector) { const volatile uint8_t *pbBitmap = (const volatile uint8_t *)&pApicReg->u[0]; return ASMBitTest(pbBitmap + XAPIC_REG256_VECTOR_OFF(uVector), XAPIC_REG256_VECTOR_BIT(uVector)); } /** * Sets the vector in an APIC 256-bit sparse register. * * @param pApicReg The APIC 256-bit spare register. * @param uVector The vector to set. */ DECLINLINE(void) apicSetVectorInReg(volatile XAPIC256BITREG *pApicReg, uint8_t uVector) { volatile uint8_t *pbBitmap = (volatile uint8_t *)&pApicReg->u[0]; ASMAtomicBitSet(pbBitmap + XAPIC_REG256_VECTOR_OFF(uVector), XAPIC_REG256_VECTOR_BIT(uVector)); } /** * Clears the vector in an APIC 256-bit sparse register. * * @param pApicReg The APIC 256-bit spare register. * @param uVector The vector to clear. */ DECLINLINE(void) apicClearVectorInReg(volatile XAPIC256BITREG *pApicReg, uint8_t uVector) { volatile uint8_t *pbBitmap = (volatile uint8_t *)&pApicReg->u[0]; ASMAtomicBitClear(pbBitmap + XAPIC_REG256_VECTOR_OFF(uVector), XAPIC_REG256_VECTOR_BIT(uVector)); } #if 0 /* unused */ /** * Checks if a vector is set in an APIC Pending-Interrupt Bitmap (PIB). * * @returns true if the specified vector is set, false otherwise. * @param pvPib Opaque pointer to the PIB. * @param uVector The vector to check if set. */ DECLINLINE(bool) apicTestVectorInPib(volatile void *pvPib, uint8_t uVector) { return ASMBitTest(pvPib, uVector); } #endif /* unused */ /** * Atomically sets the PIB notification bit. * * @returns non-zero if the bit was already set, 0 otherwise. * @param pApicPib Pointer to the PIB. */ DECLINLINE(uint32_t) apicSetNotificationBitInPib(PAPICPIB pApicPib) { return ASMAtomicXchgU32(&pApicPib->fOutstandingNotification, RT_BIT_32(31)); } /** * Atomically tests and clears the PIB notification bit. * * @returns non-zero if the bit was already set, 0 otherwise. * @param pApicPib Pointer to the PIB. */ DECLINLINE(uint32_t) apicClearNotificationBitInPib(PAPICPIB pApicPib) { return ASMAtomicXchgU32(&pApicPib->fOutstandingNotification, UINT32_C(0)); } /** * Sets the vector in an APIC Pending-Interrupt Bitmap (PIB). * * @param pvPib Opaque pointer to the PIB. * @param uVector The vector to set. */ DECLINLINE(void) apicSetVectorInPib(volatile void *pvPib, uint8_t uVector) { ASMAtomicBitSet(pvPib, uVector); } #if 0 /* unused */ /** * Clears the vector in an APIC Pending-Interrupt Bitmap (PIB). * * @param pvPib Opaque pointer to the PIB. * @param uVector The vector to clear. */ DECLINLINE(void) apicClearVectorInPib(volatile void *pvPib, uint8_t uVector) { ASMAtomicBitClear(pvPib, uVector); } #endif /* unused */ #if 0 /* unused */ /** * Atomically OR's a fragment (32 vectors) into an APIC 256-bit sparse * register. * * @param pApicReg The APIC 256-bit spare register. * @param idxFragment The index of the 32-bit fragment in @a * pApicReg. * @param u32Fragment The 32-bit vector fragment to OR. */ DECLINLINE(void) apicOrVectorsToReg(volatile XAPIC256BITREG *pApicReg, size_t idxFragment, uint32_t u32Fragment) { Assert(idxFragment < RT_ELEMENTS(pApicReg->u)); ASMAtomicOrU32(&pApicReg->u[idxFragment].u32Reg, u32Fragment); } #endif /* unused */ #if 0 /* unused */ /** * Atomically AND's a fragment (32 vectors) into an APIC * 256-bit sparse register. * * @param pApicReg The APIC 256-bit spare register. * @param idxFragment The index of the 32-bit fragment in @a * pApicReg. * @param u32Fragment The 32-bit vector fragment to AND. */ DECLINLINE(void) apicAndVectorsToReg(volatile XAPIC256BITREG *pApicReg, size_t idxFragment, uint32_t u32Fragment) { Assert(idxFragment < RT_ELEMENTS(pApicReg->u)); ASMAtomicAndU32(&pApicReg->u[idxFragment].u32Reg, u32Fragment); } #endif /* unused */ /** * Reports and returns appropriate error code for invalid MSR accesses. * * @returns Strict VBox status code. * @retval VINF_CPUM_R3_MSR_WRITE if the MSR write could not be serviced in the * current context (raw-mode or ring-0). * @retval VINF_CPUM_R3_MSR_READ if the MSR read could not be serviced in the * current context (raw-mode or ring-0). * @retval VERR_CPUM_RAISE_GP_0 on failure, the caller is expected to take the * appropriate actions. * * @param pVCpu The cross context virtual CPU structure. * @param u32Reg The MSR being accessed. * @param enmAccess The invalid-access type. */ static VBOXSTRICTRC apicMsrAccessError(PVMCPU pVCpu, uint32_t u32Reg, APICMSRACCESS enmAccess) { static struct { const char *pszBefore; /* The error message before printing the MSR index */ const char *pszAfter; /* The error message after printing the MSR index */ int rcRZ; /* The RZ error code */ } const s_aAccess[] = { /* enmAccess pszBefore pszAfter rcRZ */ /* 0 */ { "read MSR", " while not in x2APIC mode", VINF_CPUM_R3_MSR_READ }, /* 1 */ { "write MSR", " while not in x2APIC mode", VINF_CPUM_R3_MSR_WRITE }, /* 2 */ { "read reserved/unknown MSR", "", VINF_CPUM_R3_MSR_READ }, /* 3 */ { "write reserved/unknown MSR", "", VINF_CPUM_R3_MSR_WRITE }, /* 4 */ { "read write-only MSR", "", VINF_CPUM_R3_MSR_READ }, /* 5 */ { "write read-only MSR", "", VINF_CPUM_R3_MSR_WRITE }, /* 6 */ { "read reserved bits of MSR", "", VINF_CPUM_R3_MSR_READ }, /* 7 */ { "write reserved bits of MSR", "", VINF_CPUM_R3_MSR_WRITE }, /* 8 */ { "write an invalid value to MSR", "", VINF_CPUM_R3_MSR_WRITE }, /* 9 */ { "write MSR", "disallowed by configuration", VINF_CPUM_R3_MSR_WRITE }, /* 10 */ { "read MSR", "disallowed by configuration", VINF_CPUM_R3_MSR_READ } }; AssertCompile(RT_ELEMENTS(s_aAccess) == APICMSRACCESS_COUNT); size_t const i = enmAccess; Assert(i < RT_ELEMENTS(s_aAccess)); #ifdef IN_RING3 LogRelMax(5, ("APIC%u: Attempt to %s (%#x)%s -> #GP(0)\n", pVCpu->idCpu, s_aAccess[i].pszBefore, u32Reg, s_aAccess[i].pszAfter)); return VERR_CPUM_RAISE_GP_0; #else RT_NOREF_PV(u32Reg); RT_NOREF_PV(pVCpu); return s_aAccess[i].rcRZ; #endif } /** * Gets the descriptive APIC mode. * * @returns The name. * @param enmMode The xAPIC mode. */ const char *apicGetModeName(APICMODE enmMode) { switch (enmMode) { case APICMODE_DISABLED: return "Disabled"; case APICMODE_XAPIC: return "xAPIC"; case APICMODE_X2APIC: return "x2APIC"; default: break; } return "Invalid"; } /** * Gets the descriptive destination format name. * * @returns The destination format name. * @param enmDestFormat The destination format. */ const char *apicGetDestFormatName(XAPICDESTFORMAT enmDestFormat) { switch (enmDestFormat) { case XAPICDESTFORMAT_FLAT: return "Flat"; case XAPICDESTFORMAT_CLUSTER: return "Cluster"; default: break; } return "Invalid"; } /** * Gets the descriptive delivery mode name. * * @returns The delivery mode name. * @param enmDeliveryMode The delivery mode. */ const char *apicGetDeliveryModeName(XAPICDELIVERYMODE enmDeliveryMode) { switch (enmDeliveryMode) { case XAPICDELIVERYMODE_FIXED: return "Fixed"; case XAPICDELIVERYMODE_LOWEST_PRIO: return "Lowest-priority"; case XAPICDELIVERYMODE_SMI: return "SMI"; case XAPICDELIVERYMODE_NMI: return "NMI"; case XAPICDELIVERYMODE_INIT: return "INIT"; case XAPICDELIVERYMODE_STARTUP: return "SIPI"; case XAPICDELIVERYMODE_EXTINT: return "ExtINT"; default: break; } return "Invalid"; } /** * Gets the descriptive destination mode name. * * @returns The destination mode name. * @param enmDestMode The destination mode. */ const char *apicGetDestModeName(XAPICDESTMODE enmDestMode) { switch (enmDestMode) { case XAPICDESTMODE_PHYSICAL: return "Physical"; case XAPICDESTMODE_LOGICAL: return "Logical"; default: break; } return "Invalid"; } /** * Gets the descriptive trigger mode name. * * @returns The trigger mode name. * @param enmTriggerMode The trigger mode. */ const char *apicGetTriggerModeName(XAPICTRIGGERMODE enmTriggerMode) { switch (enmTriggerMode) { case XAPICTRIGGERMODE_EDGE: return "Edge"; case XAPICTRIGGERMODE_LEVEL: return "Level"; default: break; } return "Invalid"; } /** * Gets the destination shorthand name. * * @returns The destination shorthand name. * @param enmDestShorthand The destination shorthand. */ const char *apicGetDestShorthandName(XAPICDESTSHORTHAND enmDestShorthand) { switch (enmDestShorthand) { case XAPICDESTSHORTHAND_NONE: return "None"; case XAPICDESTSHORTHAND_SELF: return "Self"; case XAPIDDESTSHORTHAND_ALL_INCL_SELF: return "All including self"; case XAPICDESTSHORTHAND_ALL_EXCL_SELF: return "All excluding self"; default: break; } return "Invalid"; } /** * Gets the timer mode name. * * @returns The timer mode name. * @param enmTimerMode The timer mode. */ const char *apicGetTimerModeName(XAPICTIMERMODE enmTimerMode) { switch (enmTimerMode) { case XAPICTIMERMODE_ONESHOT: return "One-shot"; case XAPICTIMERMODE_PERIODIC: return "Periodic"; case XAPICTIMERMODE_TSC_DEADLINE: return "TSC deadline"; default: break; } return "Invalid"; } /** * Gets the APIC mode given the base MSR value. * * @returns The APIC mode. * @param uApicBaseMsr The APIC Base MSR value. */ APICMODE apicGetMode(uint64_t uApicBaseMsr) { uint32_t const uMode = (uApicBaseMsr >> 10) & UINT64_C(3); APICMODE const enmMode = (APICMODE)uMode; #ifdef VBOX_STRICT /* Paranoia. */ switch (uMode) { case APICMODE_DISABLED: case APICMODE_INVALID: case APICMODE_XAPIC: case APICMODE_X2APIC: break; default: AssertMsgFailed(("Invalid mode")); } #endif return enmMode; } /** * Returns whether the APIC is hardware enabled or not. * * @returns true if enabled, false otherwise. * @param pVCpu The cross context virtual CPU structure. */ VMM_INT_DECL(bool) APICIsEnabled(PVMCPU pVCpu) { PCAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu); return RT_BOOL(pApicCpu->uApicBaseMsr & MSR_IA32_APICBASE_EN); } /** * Finds the most significant set bit in an APIC 256-bit sparse register. * * @returns @a rcNotFound if no bit was set, 0-255 otherwise. * @param pReg The APIC 256-bit sparse register. * @param rcNotFound What to return when no bit is set. */ static int apicGetHighestSetBitInReg(volatile const XAPIC256BITREG *pReg, int rcNotFound) { ssize_t const cFragments = RT_ELEMENTS(pReg->u); unsigned const uFragmentShift = 5; AssertCompile(1 << uFragmentShift == sizeof(pReg->u[0].u32Reg) * 8); for (ssize_t i = cFragments - 1; i >= 0; i--) { uint32_t const uFragment = pReg->u[i].u32Reg; if (uFragment) { unsigned idxSetBit = ASMBitLastSetU32(uFragment); --idxSetBit; idxSetBit |= i << uFragmentShift; return idxSetBit; } } return rcNotFound; } /** * Reads a 32-bit register at a specified offset. * * @returns The value at the specified offset. * @param pXApicPage The xAPIC page. * @param offReg The offset of the register being read. */ DECLINLINE(uint32_t) apicReadRaw32(PCXAPICPAGE pXApicPage, uint16_t offReg) { Assert(offReg < sizeof(*pXApicPage) - sizeof(uint32_t)); uint8_t const *pbXApic = (const uint8_t *)pXApicPage; uint32_t const uValue = *(const uint32_t *)(pbXApic + offReg); return uValue; } /** * Writes a 32-bit register at a specified offset. * * @param pXApicPage The xAPIC page. * @param offReg The offset of the register being written. * @param uReg The value of the register. */ DECLINLINE(void) apicWriteRaw32(PXAPICPAGE pXApicPage, uint16_t offReg, uint32_t uReg) { Assert(offReg < sizeof(*pXApicPage) - sizeof(uint32_t)); uint8_t *pbXApic = (uint8_t *)pXApicPage; *(uint32_t *)(pbXApic + offReg) = uReg; } /** * Sets an error in the internal ESR of the specified APIC. * * @param pVCpu The cross context virtual CPU structure. * @param uError The error. * @thread Any. */ DECLINLINE(void) apicSetError(PVMCPU pVCpu, uint32_t uError) { PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu); ASMAtomicOrU32(&pApicCpu->uEsrInternal, uError); } /** * Clears all errors in the internal ESR. * * @returns The value of the internal ESR before clearing. * @param pVCpu The cross context virtual CPU structure. */ DECLINLINE(uint32_t) apicClearAllErrors(PVMCPU pVCpu) { VMCPU_ASSERT_EMT(pVCpu); PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu); return ASMAtomicXchgU32(&pApicCpu->uEsrInternal, 0); } /** * Signals the guest if a pending interrupt is ready to be serviced. * * @param pVCpu The cross context virtual CPU structure. */ static void apicSignalNextPendingIntr(PVMCPU pVCpu) { VMCPU_ASSERT_EMT_OR_NOT_RUNNING(pVCpu); PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpu); if (pXApicPage->svr.u.fApicSoftwareEnable) { int const irrv = apicGetHighestSetBitInReg(&pXApicPage->irr, -1 /* rcNotFound */); if (irrv >= 0) { Assert(irrv <= (int)UINT8_MAX); uint8_t const uVector = irrv; uint8_t const uPpr = pXApicPage->ppr.u8Ppr; if ( !uPpr || XAPIC_PPR_GET_PP(uVector) > XAPIC_PPR_GET_PP(uPpr)) { Log2(("APIC%u: apicSignalNextPendingIntr: Signaling pending interrupt. uVector=%#x\n", pVCpu->idCpu, uVector)); apicSetInterruptFF(pVCpu, PDMAPICIRQ_HARDWARE); } else { Log2(("APIC%u: apicSignalNextPendingIntr: Nothing to signal. uVector=%#x uPpr=%#x uTpr=%#x\n", pVCpu->idCpu, uVector, uPpr, pXApicPage->tpr.u8Tpr)); } } } else { Log2(("APIC%u: apicSignalNextPendingIntr: APIC software-disabled, clearing pending interrupt\n", pVCpu->idCpu)); apicClearInterruptFF(pVCpu, PDMAPICIRQ_HARDWARE); } } /** * Sets the Spurious-Interrupt Vector Register (SVR). * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param uSvr The SVR value. */ static VBOXSTRICTRC apicSetSvr(PVMCPU pVCpu, uint32_t uSvr) { VMCPU_ASSERT_EMT(pVCpu); uint32_t uValidMask = XAPIC_SVR_VALID; PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu); if (pXApicPage->version.u.fEoiBroadcastSupression) uValidMask |= XAPIC_SVR_SUPRESS_EOI_BROADCAST; if ( XAPIC_IN_X2APIC_MODE(pVCpu) && (uSvr & ~uValidMask)) return apicMsrAccessError(pVCpu, MSR_IA32_X2APIC_SVR, APICMSRACCESS_WRITE_RSVD_BITS); Log2(("APIC%u: apicSetSvr: uSvr=%#RX32\n", pVCpu->idCpu, uSvr)); apicWriteRaw32(pXApicPage, XAPIC_OFF_SVR, uSvr); if (!pXApicPage->svr.u.fApicSoftwareEnable) { /** @todo CMCI. */ pXApicPage->lvt_timer.u.u1Mask = 1; #if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4 pXApicPage->lvt_thermal.u.u1Mask = 1; #endif pXApicPage->lvt_perf.u.u1Mask = 1; pXApicPage->lvt_lint0.u.u1Mask = 1; pXApicPage->lvt_lint1.u.u1Mask = 1; pXApicPage->lvt_error.u.u1Mask = 1; } apicSignalNextPendingIntr(pVCpu); return VINF_SUCCESS; } /** * Sends an interrupt to one or more APICs. * * @returns Strict VBox status code. * @param pVM The cross context VM structure. * @param pVCpu The cross context virtual CPU structure, can be * NULL if the source of the interrupt is not an * APIC (for e.g. a bus). * @param uVector The interrupt vector. * @param enmTriggerMode The trigger mode. * @param enmDeliveryMode The delivery mode. * @param pDestCpuSet The destination CPU set. * @param pfIntrAccepted Where to store whether this interrupt was * accepted by the target APIC(s) or not. * Optional, can be NULL. * @param uSrcTag The interrupt source tag (debugging). * @param rcRZ The return code if the operation cannot be * performed in the current context. */ static VBOXSTRICTRC apicSendIntr(PVM pVM, PVMCPU pVCpu, uint8_t uVector, XAPICTRIGGERMODE enmTriggerMode, XAPICDELIVERYMODE enmDeliveryMode, PCVMCPUSET pDestCpuSet, bool *pfIntrAccepted, uint32_t uSrcTag, int rcRZ) { VBOXSTRICTRC rcStrict = VINF_SUCCESS; VMCPUID const cCpus = pVM->cCpus; bool fAccepted = false; switch (enmDeliveryMode) { case XAPICDELIVERYMODE_FIXED: { for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++) { if ( VMCPUSET_IS_PRESENT(pDestCpuSet, idCpu) && APICIsEnabled(&pVM->aCpus[idCpu])) fAccepted = apicPostInterrupt(&pVM->aCpus[idCpu], uVector, enmTriggerMode, uSrcTag); } break; } case XAPICDELIVERYMODE_LOWEST_PRIO: { VMCPUID const idCpu = VMCPUSET_FIND_FIRST_PRESENT(pDestCpuSet); if ( idCpu < pVM->cCpus && APICIsEnabled(&pVM->aCpus[idCpu])) fAccepted = apicPostInterrupt(&pVM->aCpus[idCpu], uVector, enmTriggerMode, uSrcTag); else AssertMsgFailed(("APIC: apicSendIntr: No CPU found for lowest-priority delivery mode! idCpu=%u\n", idCpu)); break; } case XAPICDELIVERYMODE_SMI: { for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++) { if (VMCPUSET_IS_PRESENT(pDestCpuSet, idCpu)) { Log2(("APIC: apicSendIntr: Raising SMI on VCPU%u\n", idCpu)); apicSetInterruptFF(&pVM->aCpus[idCpu], PDMAPICIRQ_SMI); fAccepted = true; } } break; } case XAPICDELIVERYMODE_NMI: { for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++) { if ( VMCPUSET_IS_PRESENT(pDestCpuSet, idCpu) && APICIsEnabled(&pVM->aCpus[idCpu])) { Log2(("APIC: apicSendIntr: Raising NMI on VCPU%u\n", idCpu)); apicSetInterruptFF(&pVM->aCpus[idCpu], PDMAPICIRQ_NMI); fAccepted = true; } } break; } case XAPICDELIVERYMODE_INIT: { #ifdef IN_RING3 for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++) if (VMCPUSET_IS_PRESENT(pDestCpuSet, idCpu)) { Log2(("APIC: apicSendIntr: Issuing INIT to VCPU%u\n", idCpu)); VMMR3SendInitIpi(pVM, idCpu); fAccepted = true; } #else /* We need to return to ring-3 to deliver the INIT. */ rcStrict = rcRZ; fAccepted = true; #endif break; } case XAPICDELIVERYMODE_STARTUP: { #ifdef IN_RING3 for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++) if (VMCPUSET_IS_PRESENT(pDestCpuSet, idCpu)) { Log2(("APIC: apicSendIntr: Issuing SIPI to VCPU%u\n", idCpu)); VMMR3SendStartupIpi(pVM, idCpu, uVector); fAccepted = true; } #else /* We need to return to ring-3 to deliver the SIPI. */ rcStrict = rcRZ; fAccepted = true; Log2(("APIC: apicSendIntr: SIPI issued, returning to RZ. rc=%Rrc\n", rcRZ)); #endif break; } case XAPICDELIVERYMODE_EXTINT: { for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++) if (VMCPUSET_IS_PRESENT(pDestCpuSet, idCpu)) { Log2(("APIC: apicSendIntr: Raising EXTINT on VCPU%u\n", idCpu)); apicSetInterruptFF(&pVM->aCpus[idCpu], PDMAPICIRQ_EXTINT); fAccepted = true; } break; } default: { AssertMsgFailed(("APIC: apicSendIntr: Unsupported delivery mode %#x (%s)\n", enmDeliveryMode, apicGetDeliveryModeName(enmDeliveryMode))); break; } } /* * If an illegal vector is programmed, set the 'send illegal vector' error here if the * interrupt is being sent by an APIC. * * The 'receive illegal vector' will be set on the target APIC when the interrupt * gets generated, see apicPostInterrupt(). * * See Intel spec. 10.5.3 "Error Handling". */ if ( rcStrict != rcRZ && pVCpu) { /* * Flag only errors when the delivery mode is fixed and not others. * * Ubuntu 10.04-3 amd64 live CD with 2 VCPUs gets upset as it sends an SIPI to the * 2nd VCPU with vector 6 and checks the ESR for no errors, see @bugref{8245#c86}. */ /** @todo The spec says this for LVT, but not explcitly for ICR-lo * but it probably is true. */ if (enmDeliveryMode == XAPICDELIVERYMODE_FIXED) { if (RT_UNLIKELY(uVector <= XAPIC_ILLEGAL_VECTOR_END)) apicSetError(pVCpu, XAPIC_ESR_SEND_ILLEGAL_VECTOR); } } if (pfIntrAccepted) *pfIntrAccepted = fAccepted; return rcStrict; } /** * Checks if this APIC belongs to a logical destination. * * @returns true if the APIC belongs to the logical * destination, false otherwise. * @param pVCpu The cross context virtual CPU structure. * @param fDest The destination mask. * * @thread Any. */ static bool apicIsLogicalDest(PVMCPU pVCpu, uint32_t fDest) { if (XAPIC_IN_X2APIC_MODE(pVCpu)) { /* * Flat logical mode is not supported in x2APIC mode. * In clustered logical mode, the 32-bit logical ID in the LDR is interpreted as follows: * - High 16 bits is the cluster ID. * - Low 16 bits: each bit represents a unique APIC within the cluster. */ PCX2APICPAGE pX2ApicPage = VMCPU_TO_CX2APICPAGE(pVCpu); uint32_t const u32Ldr = pX2ApicPage->ldr.u32LogicalApicId; if (X2APIC_LDR_GET_CLUSTER_ID(u32Ldr) == (fDest & X2APIC_LDR_CLUSTER_ID)) return RT_BOOL(u32Ldr & fDest & X2APIC_LDR_LOGICAL_ID); return false; } #if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4 /* * In both flat and clustered logical mode, a destination mask of all set bits indicates a broadcast. * See AMD spec. 16.6.1 "Receiving System and IPI Interrupts". */ Assert(!XAPIC_IN_X2APIC_MODE(pVCpu)); if ((fDest & XAPIC_LDR_FLAT_LOGICAL_ID) == XAPIC_LDR_FLAT_LOGICAL_ID) return true; PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpu); XAPICDESTFORMAT enmDestFormat = (XAPICDESTFORMAT)pXApicPage->dfr.u.u4Model; if (enmDestFormat == XAPICDESTFORMAT_FLAT) { /* The destination mask is interpreted as a bitmap of 8 unique logical APIC IDs. */ uint8_t const u8Ldr = pXApicPage->ldr.u.u8LogicalApicId; return RT_BOOL(u8Ldr & fDest & XAPIC_LDR_FLAT_LOGICAL_ID); } /* * In clustered logical mode, the 8-bit logical ID in the LDR is interpreted as follows: * - High 4 bits is the cluster ID. * - Low 4 bits: each bit represents a unique APIC within the cluster. */ Assert(enmDestFormat == XAPICDESTFORMAT_CLUSTER); uint8_t const u8Ldr = pXApicPage->ldr.u.u8LogicalApicId; if (XAPIC_LDR_CLUSTERED_GET_CLUSTER_ID(u8Ldr) == (fDest & XAPIC_LDR_CLUSTERED_CLUSTER_ID)) return RT_BOOL(u8Ldr & fDest & XAPIC_LDR_CLUSTERED_LOGICAL_ID); return false; #else # error "Implement Pentium and P6 family APIC architectures" #endif } /** * Figures out the set of destination CPUs for a given destination mode, format * and delivery mode setting. * * @param pVM The cross context VM structure. * @param fDestMask The destination mask. * @param fBroadcastMask The broadcast mask. * @param enmDestMode The destination mode. * @param enmDeliveryMode The delivery mode. * @param pDestCpuSet The destination CPU set to update. */ static void apicGetDestCpuSet(PVM pVM, uint32_t fDestMask, uint32_t fBroadcastMask, XAPICDESTMODE enmDestMode, XAPICDELIVERYMODE enmDeliveryMode, PVMCPUSET pDestCpuSet) { VMCPUSET_EMPTY(pDestCpuSet); /* * Physical destination mode only supports either a broadcast or a single target. * - Broadcast with lowest-priority delivery mode is not supported[1], we deliver it * as a regular broadcast like in fixed delivery mode. * - For a single target, lowest-priority delivery mode makes no sense. We deliver * to the target like in fixed delivery mode. * * [1] See Intel spec. 10.6.2.1 "Physical Destination Mode". */ if ( enmDestMode == XAPICDESTMODE_PHYSICAL && enmDeliveryMode == XAPICDELIVERYMODE_LOWEST_PRIO) { AssertMsgFailed(("APIC: Lowest-priority delivery using physical destination mode!")); enmDeliveryMode = XAPICDELIVERYMODE_FIXED; } uint32_t const cCpus = pVM->cCpus; if (enmDeliveryMode == XAPICDELIVERYMODE_LOWEST_PRIO) { Assert(enmDestMode == XAPICDESTMODE_LOGICAL); #if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4 VMCPUID idCpuLowestTpr = NIL_VMCPUID; uint8_t u8LowestTpr = UINT8_C(0xff); for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++) { PVMCPU pVCpuDest = &pVM->aCpus[idCpu]; if (apicIsLogicalDest(pVCpuDest, fDestMask)) { PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpuDest); uint8_t const u8Tpr = pXApicPage->tpr.u8Tpr; /* PAV */ /* * If there is a tie for lowest priority, the local APIC with the highest ID is chosen. * Hence the use of "<=" in the check below. * See AMD spec. 16.6.2 "Lowest Priority Messages and Arbitration". */ if (u8Tpr <= u8LowestTpr) { u8LowestTpr = u8Tpr; idCpuLowestTpr = idCpu; } } } if (idCpuLowestTpr != NIL_VMCPUID) VMCPUSET_ADD(pDestCpuSet, idCpuLowestTpr); #else # error "Implement Pentium and P6 family APIC architectures" #endif return; } /* * x2APIC: * - In both physical and logical destination mode, a destination mask of 0xffffffff implies a broadcast[1]. * xAPIC: * - In physical destination mode, a destination mask of 0xff implies a broadcast[2]. * - In both flat and clustered logical mode, a destination mask of 0xff implies a broadcast[3]. * * [1] See Intel spec. 10.12.9 "ICR Operation in x2APIC Mode". * [2] See Intel spec. 10.6.2.1 "Physical Destination Mode". * [2] See AMD spec. 16.6.1 "Receiving System and IPI Interrupts". */ if ((fDestMask & fBroadcastMask) == fBroadcastMask) { VMCPUSET_FILL(pDestCpuSet); return; } if (enmDestMode == XAPICDESTMODE_PHYSICAL) { /* The destination mask is interpreted as the physical APIC ID of a single target. */ #if 1 /* Since our physical APIC ID is read-only to software, set the corresponding bit in the CPU set. */ if (RT_LIKELY(fDestMask < cCpus)) VMCPUSET_ADD(pDestCpuSet, fDestMask); #else /* The physical APIC ID may not match our VCPU ID, search through the list of targets. */ for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++) { PVMCPU pVCpuDest = &pVM->aCpus[idCpu]; if (XAPIC_IN_X2APIC_MODE(pVCpuDest)) { PCX2APICPAGE pX2ApicPage = VMCPU_TO_CX2APICPAGE(pVCpuDest); if (pX2ApicPage->id.u32ApicId == fDestMask) VMCPUSET_ADD(pDestCpuSet, pVCpuDest->idCpu); } else { PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpuDest); if (pXApicPage->id.u8ApicId == (uint8_t)fDestMask) VMCPUSET_ADD(pDestCpuSet, pVCpuDest->idCpu); } } #endif } else { Assert(enmDestMode == XAPICDESTMODE_LOGICAL); /* A destination mask of all 0's implies no target APICs (since it's interpreted as a bitmap or partial bitmap). */ if (RT_UNLIKELY(!fDestMask)) return; /* The destination mask is interpreted as a bitmap of software-programmable logical APIC ID of the target APICs. */ for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++) { PVMCPU pVCpuDest = &pVM->aCpus[idCpu]; if (apicIsLogicalDest(pVCpuDest, fDestMask)) VMCPUSET_ADD(pDestCpuSet, pVCpuDest->idCpu); } } } /** * Sends an Interprocessor Interrupt (IPI) using values from the Interrupt * Command Register (ICR). * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param rcRZ The return code if the operation cannot be * performed in the current context. */ DECLINLINE(VBOXSTRICTRC) apicSendIpi(PVMCPU pVCpu, int rcRZ) { VMCPU_ASSERT_EMT(pVCpu); PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu); XAPICDELIVERYMODE const enmDeliveryMode = (XAPICDELIVERYMODE)pXApicPage->icr_lo.u.u3DeliveryMode; XAPICDESTMODE const enmDestMode = (XAPICDESTMODE)pXApicPage->icr_lo.u.u1DestMode; XAPICINITLEVEL const enmInitLevel = (XAPICINITLEVEL)pXApicPage->icr_lo.u.u1Level; XAPICTRIGGERMODE const enmTriggerMode = (XAPICTRIGGERMODE)pXApicPage->icr_lo.u.u1TriggerMode; XAPICDESTSHORTHAND const enmDestShorthand = (XAPICDESTSHORTHAND)pXApicPage->icr_lo.u.u2DestShorthand; uint8_t const uVector = pXApicPage->icr_lo.u.u8Vector; PX2APICPAGE pX2ApicPage = VMCPU_TO_X2APICPAGE(pVCpu); uint32_t const fDest = XAPIC_IN_X2APIC_MODE(pVCpu) ? pX2ApicPage->icr_hi.u32IcrHi : pXApicPage->icr_hi.u.u8Dest; #if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4 /* * INIT Level De-assert is not support on Pentium 4 and Xeon processors. * Apparently, this also applies to NMI, SMI, lowest-priority and fixed delivery modes, * see @bugref{8245#c116}. * * See AMD spec. 16.5 "Interprocessor Interrupts (IPI)" for a table of valid ICR combinations. */ if ( enmTriggerMode == XAPICTRIGGERMODE_LEVEL && enmInitLevel == XAPICINITLEVEL_DEASSERT && ( enmDeliveryMode == XAPICDELIVERYMODE_FIXED || enmDeliveryMode == XAPICDELIVERYMODE_LOWEST_PRIO || enmDeliveryMode == XAPICDELIVERYMODE_SMI || enmDeliveryMode == XAPICDELIVERYMODE_NMI || enmDeliveryMode == XAPICDELIVERYMODE_INIT)) { Log2(("APIC%u: %s level de-assert unsupported, ignoring!\n", pVCpu->idCpu, apicGetDeliveryModeName(enmDeliveryMode))); return VINF_SUCCESS; } #else # error "Implement Pentium and P6 family APIC architectures" #endif /* * The destination and delivery modes are ignored/by-passed when a destination shorthand is specified. * See Intel spec. 10.6.2.3 "Broadcast/Self Delivery Mode". */ VMCPUSET DestCpuSet; switch (enmDestShorthand) { case XAPICDESTSHORTHAND_NONE: { PVM pVM = pVCpu->CTX_SUFF(pVM); uint32_t const fBroadcastMask = XAPIC_IN_X2APIC_MODE(pVCpu) ? X2APIC_ID_BROADCAST_MASK : XAPIC_ID_BROADCAST_MASK; apicGetDestCpuSet(pVM, fDest, fBroadcastMask, enmDestMode, enmDeliveryMode, &DestCpuSet); break; } case XAPICDESTSHORTHAND_SELF: { VMCPUSET_EMPTY(&DestCpuSet); VMCPUSET_ADD(&DestCpuSet, pVCpu->idCpu); break; } case XAPIDDESTSHORTHAND_ALL_INCL_SELF: { VMCPUSET_FILL(&DestCpuSet); break; } case XAPICDESTSHORTHAND_ALL_EXCL_SELF: { VMCPUSET_FILL(&DestCpuSet); VMCPUSET_DEL(&DestCpuSet, pVCpu->idCpu); break; } } return apicSendIntr(pVCpu->CTX_SUFF(pVM), pVCpu, uVector, enmTriggerMode, enmDeliveryMode, &DestCpuSet, NULL /* pfIntrAccepted */, 0 /* uSrcTag */, rcRZ); } /** * Sets the Interrupt Command Register (ICR) high dword. * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param uIcrHi The ICR high dword. */ static VBOXSTRICTRC apicSetIcrHi(PVMCPU pVCpu, uint32_t uIcrHi) { VMCPU_ASSERT_EMT(pVCpu); Assert(!XAPIC_IN_X2APIC_MODE(pVCpu)); PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu); pXApicPage->icr_hi.all.u32IcrHi = uIcrHi & XAPIC_ICR_HI_DEST; STAM_COUNTER_INC(&pVCpu->apic.s.StatIcrHiWrite); Log2(("APIC%u: apicSetIcrHi: uIcrHi=%#RX32\n", pVCpu->idCpu, pXApicPage->icr_hi.all.u32IcrHi)); return VINF_SUCCESS; } /** * Sets the Interrupt Command Register (ICR) low dword. * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param uIcrLo The ICR low dword. * @param rcRZ The return code if the operation cannot be performed * in the current context. * @param fUpdateStat Whether to update the ICR low write statistics * counter. */ static VBOXSTRICTRC apicSetIcrLo(PVMCPU pVCpu, uint32_t uIcrLo, int rcRZ, bool fUpdateStat) { VMCPU_ASSERT_EMT(pVCpu); PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu); pXApicPage->icr_lo.all.u32IcrLo = uIcrLo & XAPIC_ICR_LO_WR_VALID; Log2(("APIC%u: apicSetIcrLo: uIcrLo=%#RX32\n", pVCpu->idCpu, pXApicPage->icr_lo.all.u32IcrLo)); if (fUpdateStat) STAM_COUNTER_INC(&pVCpu->apic.s.StatIcrLoWrite); RT_NOREF(fUpdateStat); return apicSendIpi(pVCpu, rcRZ); } /** * Sets the Interrupt Command Register (ICR). * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param u64Icr The ICR (High and Low combined). * @param rcRZ The return code if the operation cannot be performed * in the current context. * * @remarks This function is used by both x2APIC interface and the Hyper-V * interface, see APICHvSetIcr. The Hyper-V spec isn't clear what * happens when invalid bits are set. For the time being, it will * \#GP like a regular x2APIC access. */ static VBOXSTRICTRC apicSetIcr(PVMCPU pVCpu, uint64_t u64Icr, int rcRZ) { VMCPU_ASSERT_EMT(pVCpu); /* Validate. */ uint32_t const uLo = RT_LO_U32(u64Icr); if (RT_LIKELY(!(uLo & ~XAPIC_ICR_LO_WR_VALID))) { /* Update high dword first, then update the low dword which sends the IPI. */ PX2APICPAGE pX2ApicPage = VMCPU_TO_X2APICPAGE(pVCpu); pX2ApicPage->icr_hi.u32IcrHi = RT_HI_U32(u64Icr); STAM_COUNTER_INC(&pVCpu->apic.s.StatIcrFullWrite); return apicSetIcrLo(pVCpu, uLo, rcRZ, false /* fUpdateStat */); } return apicMsrAccessError(pVCpu, MSR_IA32_X2APIC_ICR, APICMSRACCESS_WRITE_RSVD_BITS); } /** * Sets the Error Status Register (ESR). * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param uEsr The ESR value. */ static VBOXSTRICTRC apicSetEsr(PVMCPU pVCpu, uint32_t uEsr) { VMCPU_ASSERT_EMT(pVCpu); Log2(("APIC%u: apicSetEsr: uEsr=%#RX32\n", pVCpu->idCpu, uEsr)); if ( XAPIC_IN_X2APIC_MODE(pVCpu) && (uEsr & ~XAPIC_ESR_WO_VALID)) return apicMsrAccessError(pVCpu, MSR_IA32_X2APIC_ESR, APICMSRACCESS_WRITE_RSVD_BITS); /* * Writes to the ESR causes the internal state to be updated in the register, * clearing the original state. See AMD spec. 16.4.6 "APIC Error Interrupts". */ PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu); pXApicPage->esr.all.u32Errors = apicClearAllErrors(pVCpu); return VINF_SUCCESS; } /** * Updates the Processor Priority Register (PPR). * * @param pVCpu The cross context virtual CPU structure. */ static void apicUpdatePpr(PVMCPU pVCpu) { VMCPU_ASSERT_EMT(pVCpu); /* See Intel spec 10.8.3.1 "Task and Processor Priorities". */ PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu); uint8_t const uIsrv = apicGetHighestSetBitInReg(&pXApicPage->isr, 0 /* rcNotFound */); uint8_t uPpr; if (XAPIC_TPR_GET_TP(pXApicPage->tpr.u8Tpr) >= XAPIC_PPR_GET_PP(uIsrv)) uPpr = pXApicPage->tpr.u8Tpr; else uPpr = XAPIC_PPR_GET_PP(uIsrv); pXApicPage->ppr.u8Ppr = uPpr; } /** * Gets the Processor Priority Register (PPR). * * @returns The PPR value. * @param pVCpu The cross context virtual CPU structure. */ static uint8_t apicGetPpr(PVMCPU pVCpu) { VMCPU_ASSERT_EMT(pVCpu); STAM_COUNTER_INC(&pVCpu->apic.s.StatTprRead); /* * With virtualized APIC registers or with TPR virtualization, the hardware may * update ISR/TPR transparently. We thus re-calculate the PPR which may be out of sync. * See Intel spec. 29.2.2 "Virtual-Interrupt Delivery". * * In all other instances, whenever the TPR or ISR changes, we need to update the PPR * as well (e.g. like we do manually in apicR3InitIpi and by calling apicUpdatePpr). */ PCAPIC pApic = VM_TO_APIC(pVCpu->CTX_SUFF(pVM)); if (pApic->fVirtApicRegsEnabled) /** @todo re-think this */ apicUpdatePpr(pVCpu); PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpu); return pXApicPage->ppr.u8Ppr; } /** * Sets the Task Priority Register (TPR). * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param uTpr The TPR value. * @param fForceX2ApicBehaviour Pretend the APIC is in x2APIC mode during * this write. */ static VBOXSTRICTRC apicSetTprEx(PVMCPU pVCpu, uint32_t uTpr, bool fForceX2ApicBehaviour) { VMCPU_ASSERT_EMT(pVCpu); Log2(("APIC%u: apicSetTprEx: uTpr=%#RX32\n", pVCpu->idCpu, uTpr)); STAM_COUNTER_INC(&pVCpu->apic.s.StatTprWrite); bool const fX2ApicMode = XAPIC_IN_X2APIC_MODE(pVCpu) || fForceX2ApicBehaviour; if ( fX2ApicMode && (uTpr & ~XAPIC_TPR_VALID)) return apicMsrAccessError(pVCpu, MSR_IA32_X2APIC_TPR, APICMSRACCESS_WRITE_RSVD_BITS); PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu); pXApicPage->tpr.u8Tpr = uTpr; apicUpdatePpr(pVCpu); apicSignalNextPendingIntr(pVCpu); return VINF_SUCCESS; } /** * Sets the End-Of-Interrupt (EOI) register. * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param uEoi The EOI value. * @param rcBusy The busy return code when the write cannot * be completed successfully in this context. * @param fForceX2ApicBehaviour Pretend the APIC is in x2APIC mode during * this write. */ static VBOXSTRICTRC apicSetEoi(PVMCPU pVCpu, uint32_t uEoi, int rcBusy, bool fForceX2ApicBehaviour) { VMCPU_ASSERT_EMT(pVCpu); Log2(("APIC%u: apicSetEoi: uEoi=%#RX32\n", pVCpu->idCpu, uEoi)); STAM_COUNTER_INC(&pVCpu->apic.s.StatEoiWrite); bool const fX2ApicMode = XAPIC_IN_X2APIC_MODE(pVCpu) || fForceX2ApicBehaviour; if ( fX2ApicMode && (uEoi & ~XAPIC_EOI_WO_VALID)) return apicMsrAccessError(pVCpu, MSR_IA32_X2APIC_EOI, APICMSRACCESS_WRITE_RSVD_BITS); PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu); int isrv = apicGetHighestSetBitInReg(&pXApicPage->isr, -1 /* rcNotFound */); if (isrv >= 0) { /* * Broadcast the EOI to the I/O APIC(s). * * We'll handle the EOI broadcast first as there is tiny chance we get rescheduled to * ring-3 due to contention on the I/O APIC lock. This way we don't mess with the rest * of the APIC state and simply restart the EOI write operation from ring-3. */ Assert(isrv <= (int)UINT8_MAX); uint8_t const uVector = isrv; bool const fLevelTriggered = apicTestVectorInReg(&pXApicPage->tmr, uVector); if (fLevelTriggered) { int rc = PDMIoApicBroadcastEoi(pVCpu->CTX_SUFF(pVM), uVector); if (rc == VINF_SUCCESS) { /* likely */ } else return rcBusy; /* * Clear the vector from the TMR. * * The broadcast to I/O APIC can re-trigger new interrupts to arrive via the bus. However, * APICUpdatePendingInterrupts() which updates TMR can only be done from EMT which we * currently are on, so no possibility of concurrent updates. */ apicClearVectorInReg(&pXApicPage->tmr, uVector); /* * Clear the remote IRR bit for level-triggered, fixed mode LINT0 interrupt. * The LINT1 pin does not support level-triggered interrupts. * See Intel spec. 10.5.1 "Local Vector Table". */ uint32_t const uLvtLint0 = pXApicPage->lvt_lint0.all.u32LvtLint0; if ( XAPIC_LVT_GET_REMOTE_IRR(uLvtLint0) && XAPIC_LVT_GET_VECTOR(uLvtLint0) == uVector && XAPIC_LVT_GET_DELIVERY_MODE(uLvtLint0) == XAPICDELIVERYMODE_FIXED) { ASMAtomicAndU32((volatile uint32_t *)&pXApicPage->lvt_lint0.all.u32LvtLint0, ~XAPIC_LVT_REMOTE_IRR); Log2(("APIC%u: apicSetEoi: Cleared remote-IRR for LINT0. uVector=%#x\n", pVCpu->idCpu, uVector)); } Log2(("APIC%u: apicSetEoi: Cleared level triggered interrupt from TMR. uVector=%#x\n", pVCpu->idCpu, uVector)); } /* * Mark interrupt as serviced, update the PPR and signal pending interrupts. */ Log2(("APIC%u: apicSetEoi: Clearing interrupt from ISR. uVector=%#x\n", pVCpu->idCpu, uVector)); apicClearVectorInReg(&pXApicPage->isr, uVector); apicUpdatePpr(pVCpu); apicSignalNextPendingIntr(pVCpu); } else { #ifdef DEBUG_ramshankar /** @todo Figure out if this is done intentionally by guests or is a bug * in our emulation. Happened with Win10 SMP VM during reboot after * installation of guest additions with 3D support. */ AssertMsgFailed(("APIC%u: apicSetEoi: Failed to find any ISR bit\n", pVCpu->idCpu)); #endif } return VINF_SUCCESS; } /** * Sets the Logical Destination Register (LDR). * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param uLdr The LDR value. * * @remarks LDR is read-only in x2APIC mode. */ static VBOXSTRICTRC apicSetLdr(PVMCPU pVCpu, uint32_t uLdr) { VMCPU_ASSERT_EMT(pVCpu); PCAPIC pApic = VM_TO_APIC(pVCpu->CTX_SUFF(pVM)); Assert(!XAPIC_IN_X2APIC_MODE(pVCpu) || pApic->fHyperVCompatMode); RT_NOREF_PV(pApic); Log2(("APIC%u: apicSetLdr: uLdr=%#RX32\n", pVCpu->idCpu, uLdr)); PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu); apicWriteRaw32(pXApicPage, XAPIC_OFF_LDR, uLdr & XAPIC_LDR_VALID); return VINF_SUCCESS; } /** * Sets the Destination Format Register (DFR). * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param uDfr The DFR value. * * @remarks DFR is not available in x2APIC mode. */ static VBOXSTRICTRC apicSetDfr(PVMCPU pVCpu, uint32_t uDfr) { VMCPU_ASSERT_EMT(pVCpu); Assert(!XAPIC_IN_X2APIC_MODE(pVCpu)); uDfr &= XAPIC_DFR_VALID; uDfr |= XAPIC_DFR_RSVD_MB1; Log2(("APIC%u: apicSetDfr: uDfr=%#RX32\n", pVCpu->idCpu, uDfr)); PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu); apicWriteRaw32(pXApicPage, XAPIC_OFF_DFR, uDfr); return VINF_SUCCESS; } /** * Sets the Timer Divide Configuration Register (DCR). * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param uTimerDcr The timer DCR value. */ static VBOXSTRICTRC apicSetTimerDcr(PVMCPU pVCpu, uint32_t uTimerDcr) { VMCPU_ASSERT_EMT(pVCpu); if ( XAPIC_IN_X2APIC_MODE(pVCpu) && (uTimerDcr & ~XAPIC_TIMER_DCR_VALID)) return apicMsrAccessError(pVCpu, MSR_IA32_X2APIC_TIMER_DCR, APICMSRACCESS_WRITE_RSVD_BITS); Log2(("APIC%u: apicSetTimerDcr: uTimerDcr=%#RX32\n", pVCpu->idCpu, uTimerDcr)); PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu); apicWriteRaw32(pXApicPage, XAPIC_OFF_TIMER_DCR, uTimerDcr); return VINF_SUCCESS; } /** * Gets the timer's Current Count Register (CCR). * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param rcBusy The busy return code for the timer critical section. * @param puValue Where to store the LVT timer CCR. */ static VBOXSTRICTRC apicGetTimerCcr(PVMCPU pVCpu, int rcBusy, uint32_t *puValue) { VMCPU_ASSERT_EMT(pVCpu); Assert(puValue); PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpu); *puValue = 0; /* In TSC-deadline mode, CCR returns 0, see Intel spec. 10.5.4.1 "TSC-Deadline Mode". */ if (pXApicPage->lvt_timer.u.u2TimerMode == XAPIC_TIMER_MODE_TSC_DEADLINE) return VINF_SUCCESS; /* If the initial-count register is 0, CCR returns 0 as it cannot exceed the ICR. */ uint32_t const uInitialCount = pXApicPage->timer_icr.u32InitialCount; if (!uInitialCount) return VINF_SUCCESS; /* * Reading the virtual-sync clock requires locking its timer because it's not * a simple atomic operation, see tmVirtualSyncGetEx(). * * We also need to lock before reading the timer CCR, see apicR3TimerCallback(). */ PCAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu); PTMTIMER pTimer = pApicCpu->CTX_SUFF(pTimer); int rc = TMTimerLock(pTimer, rcBusy); if (rc == VINF_SUCCESS) { /* If the current-count register is 0, it implies the timer expired. */ uint32_t const uCurrentCount = pXApicPage->timer_ccr.u32CurrentCount; if (uCurrentCount) { uint64_t const cTicksElapsed = TMTimerGet(pApicCpu->CTX_SUFF(pTimer)) - pApicCpu->u64TimerInitial; TMTimerUnlock(pTimer); uint8_t const uTimerShift = apicGetTimerShift(pXApicPage); uint64_t const uDelta = cTicksElapsed >> uTimerShift; if (uInitialCount > uDelta) *puValue = uInitialCount - uDelta; } else TMTimerUnlock(pTimer); } return rc; } /** * Sets the timer's Initial-Count Register (ICR). * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param rcBusy The busy return code for the timer critical section. * @param uInitialCount The timer ICR. */ static VBOXSTRICTRC apicSetTimerIcr(PVMCPU pVCpu, int rcBusy, uint32_t uInitialCount) { VMCPU_ASSERT_EMT(pVCpu); PAPIC pApic = VM_TO_APIC(pVCpu->CTX_SUFF(pVM)); PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu); PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu); PTMTIMER pTimer = pApicCpu->CTX_SUFF(pTimer); Log2(("APIC%u: apicSetTimerIcr: uInitialCount=%#RX32\n", pVCpu->idCpu, uInitialCount)); STAM_COUNTER_INC(&pApicCpu->StatTimerIcrWrite); /* In TSC-deadline mode, timer ICR writes are ignored, see Intel spec. 10.5.4.1 "TSC-Deadline Mode". */ if ( pApic->fSupportsTscDeadline && pXApicPage->lvt_timer.u.u2TimerMode == XAPIC_TIMER_MODE_TSC_DEADLINE) return VINF_SUCCESS; /* * The timer CCR may be modified by apicR3TimerCallback() in parallel, * so obtain the lock -before- updating it here to be consistent with the * timer ICR. We rely on CCR being consistent in apicGetTimerCcr(). */ int rc = TMTimerLock(pTimer, rcBusy); if (rc == VINF_SUCCESS) { pXApicPage->timer_icr.u32InitialCount = uInitialCount; pXApicPage->timer_ccr.u32CurrentCount = uInitialCount; if (uInitialCount) apicStartTimer(pVCpu, uInitialCount); else apicStopTimer(pVCpu); TMTimerUnlock(pTimer); } return rc; } /** * Sets an LVT entry. * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param offLvt The LVT entry offset in the xAPIC page. * @param uLvt The LVT value to set. */ static VBOXSTRICTRC apicSetLvtEntry(PVMCPU pVCpu, uint16_t offLvt, uint32_t uLvt) { VMCPU_ASSERT_EMT(pVCpu); #if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4 AssertMsg( offLvt == XAPIC_OFF_LVT_TIMER || offLvt == XAPIC_OFF_LVT_THERMAL || offLvt == XAPIC_OFF_LVT_PERF || offLvt == XAPIC_OFF_LVT_LINT0 || offLvt == XAPIC_OFF_LVT_LINT1 || offLvt == XAPIC_OFF_LVT_ERROR, ("APIC%u: apicSetLvtEntry: invalid offset, offLvt=%#RX16, uLvt=%#RX32\n", pVCpu->idCpu, offLvt, uLvt)); /* * If TSC-deadline mode isn't support, ignore the bit in xAPIC mode * and raise #GP(0) in x2APIC mode. */ PCAPIC pApic = VM_TO_APIC(pVCpu->CTX_SUFF(pVM)); if (offLvt == XAPIC_OFF_LVT_TIMER) { if ( !pApic->fSupportsTscDeadline && (uLvt & XAPIC_LVT_TIMER_TSCDEADLINE)) { if (XAPIC_IN_X2APIC_MODE(pVCpu)) return apicMsrAccessError(pVCpu, XAPIC_GET_X2APIC_MSR(offLvt), APICMSRACCESS_WRITE_RSVD_BITS); uLvt &= ~XAPIC_LVT_TIMER_TSCDEADLINE; /** @todo TSC-deadline timer mode transition */ } } /* * Validate rest of the LVT bits. */ uint16_t const idxLvt = (offLvt - XAPIC_OFF_LVT_START) >> 4; AssertReturn(idxLvt < RT_ELEMENTS(g_au32LvtValidMasks), VERR_OUT_OF_RANGE); /* * For x2APIC, disallow setting of invalid/reserved bits. * For xAPIC, mask out invalid/reserved bits (i.e. ignore them). */ if ( XAPIC_IN_X2APIC_MODE(pVCpu) && (uLvt & ~g_au32LvtValidMasks[idxLvt])) return apicMsrAccessError(pVCpu, XAPIC_GET_X2APIC_MSR(offLvt), APICMSRACCESS_WRITE_RSVD_BITS); uLvt &= g_au32LvtValidMasks[idxLvt]; /* * In the software-disabled state, LVT mask-bit must remain set and attempts to clear the mask * bit must be ignored. See Intel spec. 10.4.7.2 "Local APIC State After It Has Been Software Disabled". */ PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu); if (!pXApicPage->svr.u.fApicSoftwareEnable) uLvt |= XAPIC_LVT_MASK; /* * It is unclear whether we should signal a 'send illegal vector' error here and ignore updating * the LVT entry when the delivery mode is 'fixed'[1] or update it in addition to signaling the * error or not signal the error at all. For now, we'll allow setting illegal vectors into the LVT * but set the 'send illegal vector' error here. The 'receive illegal vector' error will be set if * the interrupt for the vector happens to be generated, see apicPostInterrupt(). * * [1] See Intel spec. 10.5.2 "Valid Interrupt Vectors". */ if (RT_UNLIKELY( XAPIC_LVT_GET_VECTOR(uLvt) <= XAPIC_ILLEGAL_VECTOR_END && XAPIC_LVT_GET_DELIVERY_MODE(uLvt) == XAPICDELIVERYMODE_FIXED)) apicSetError(pVCpu, XAPIC_ESR_SEND_ILLEGAL_VECTOR); Log2(("APIC%u: apicSetLvtEntry: offLvt=%#RX16 uLvt=%#RX32\n", pVCpu->idCpu, offLvt, uLvt)); apicWriteRaw32(pXApicPage, offLvt, uLvt); return VINF_SUCCESS; #else # error "Implement Pentium and P6 family APIC architectures" #endif /* XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4 */ } #if 0 /** * Sets an LVT entry in the extended LVT range. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param offLvt The LVT entry offset in the xAPIC page. * @param uValue The LVT value to set. */ static int apicSetLvtExtEntry(PVMCPU pVCpu, uint16_t offLvt, uint32_t uLvt) { VMCPU_ASSERT_EMT(pVCpu); AssertMsg(offLvt == XAPIC_OFF_CMCI, ("APIC%u: apicSetLvt1Entry: invalid offset %#RX16\n", pVCpu->idCpu, offLvt)); /** @todo support CMCI. */ return VERR_NOT_IMPLEMENTED; } #endif /** * Hints TM about the APIC timer frequency. * * @param pApicCpu The APIC CPU state. * @param uInitialCount The new initial count. * @param uTimerShift The new timer shift. * @thread Any. */ void apicHintTimerFreq(PAPICCPU pApicCpu, uint32_t uInitialCount, uint8_t uTimerShift) { Assert(pApicCpu); if ( pApicCpu->uHintedTimerInitialCount != uInitialCount || pApicCpu->uHintedTimerShift != uTimerShift) { uint32_t uHz; if (uInitialCount) { uint64_t cTicksPerPeriod = (uint64_t)uInitialCount << uTimerShift; uHz = TMTimerGetFreq(pApicCpu->CTX_SUFF(pTimer)) / cTicksPerPeriod; } else uHz = 0; TMTimerSetFrequencyHint(pApicCpu->CTX_SUFF(pTimer), uHz); pApicCpu->uHintedTimerInitialCount = uInitialCount; pApicCpu->uHintedTimerShift = uTimerShift; } } /** * Gets the Interrupt Command Register (ICR), without performing any interface * checks. * * @returns The ICR value. * @param pVCpu The cross context virtual CPU structure. */ DECLINLINE(uint64_t) apicGetIcrNoCheck(PVMCPU pVCpu) { PCX2APICPAGE pX2ApicPage = VMCPU_TO_CX2APICPAGE(pVCpu); uint64_t const uHi = pX2ApicPage->icr_hi.u32IcrHi; uint64_t const uLo = pX2ApicPage->icr_lo.all.u32IcrLo; uint64_t const uIcr = RT_MAKE_U64(uLo, uHi); return uIcr; } /** * Reads an APIC register. * * @returns VBox status code. * @param pApicDev The APIC device instance. * @param pVCpu The cross context virtual CPU structure. * @param offReg The offset of the register being read. * @param puValue Where to store the register value. */ DECLINLINE(VBOXSTRICTRC) apicReadRegister(PAPICDEV pApicDev, PVMCPU pVCpu, uint16_t offReg, uint32_t *puValue) { VMCPU_ASSERT_EMT(pVCpu); Assert(offReg <= XAPIC_OFF_MAX_VALID); PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu); uint32_t uValue = 0; VBOXSTRICTRC rc = VINF_SUCCESS; switch (offReg) { case XAPIC_OFF_ID: case XAPIC_OFF_VERSION: case XAPIC_OFF_TPR: case XAPIC_OFF_EOI: case XAPIC_OFF_RRD: case XAPIC_OFF_LDR: case XAPIC_OFF_DFR: case XAPIC_OFF_SVR: case XAPIC_OFF_ISR0: case XAPIC_OFF_ISR1: case XAPIC_OFF_ISR2: case XAPIC_OFF_ISR3: case XAPIC_OFF_ISR4: case XAPIC_OFF_ISR5: case XAPIC_OFF_ISR6: case XAPIC_OFF_ISR7: case XAPIC_OFF_TMR0: case XAPIC_OFF_TMR1: case XAPIC_OFF_TMR2: case XAPIC_OFF_TMR3: case XAPIC_OFF_TMR4: case XAPIC_OFF_TMR5: case XAPIC_OFF_TMR6: case XAPIC_OFF_TMR7: case XAPIC_OFF_IRR0: case XAPIC_OFF_IRR1: case XAPIC_OFF_IRR2: case XAPIC_OFF_IRR3: case XAPIC_OFF_IRR4: case XAPIC_OFF_IRR5: case XAPIC_OFF_IRR6: case XAPIC_OFF_IRR7: case XAPIC_OFF_ESR: case XAPIC_OFF_ICR_LO: case XAPIC_OFF_ICR_HI: case XAPIC_OFF_LVT_TIMER: #if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4 case XAPIC_OFF_LVT_THERMAL: #endif case XAPIC_OFF_LVT_PERF: case XAPIC_OFF_LVT_LINT0: case XAPIC_OFF_LVT_LINT1: case XAPIC_OFF_LVT_ERROR: case XAPIC_OFF_TIMER_ICR: case XAPIC_OFF_TIMER_DCR: { Assert( !XAPIC_IN_X2APIC_MODE(pVCpu) || ( offReg != XAPIC_OFF_DFR && offReg != XAPIC_OFF_ICR_HI && offReg != XAPIC_OFF_EOI)); uValue = apicReadRaw32(pXApicPage, offReg); Log2(("APIC%u: apicReadRegister: offReg=%#x uValue=%#x\n", pVCpu->idCpu, offReg, uValue)); break; } case XAPIC_OFF_PPR: { uValue = apicGetPpr(pVCpu); break; } case XAPIC_OFF_TIMER_CCR: { Assert(!XAPIC_IN_X2APIC_MODE(pVCpu)); rc = apicGetTimerCcr(pVCpu, VINF_IOM_R3_MMIO_READ, &uValue); break; } case XAPIC_OFF_APR: { #if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4 /* Unsupported on Pentium 4 and Xeon CPUs, invalid in x2APIC mode. */ Assert(!XAPIC_IN_X2APIC_MODE(pVCpu)); #else # error "Implement Pentium and P6 family APIC architectures" #endif break; } default: { Assert(!XAPIC_IN_X2APIC_MODE(pVCpu)); rc = PDMDevHlpDBGFStop(pApicDev->CTX_SUFF(pDevIns), RT_SRC_POS, "VCPU[%u]: offReg=%#RX16\n", pVCpu->idCpu, offReg); apicSetError(pVCpu, XAPIC_ESR_ILLEGAL_REG_ADDRESS); break; } } *puValue = uValue; return rc; } /** * Writes an APIC register. * * @returns Strict VBox status code. * @param pApicDev The APIC device instance. * @param pVCpu The cross context virtual CPU structure. * @param offReg The offset of the register being written. * @param uValue The register value. */ DECLINLINE(VBOXSTRICTRC) apicWriteRegister(PAPICDEV pApicDev, PVMCPU pVCpu, uint16_t offReg, uint32_t uValue) { VMCPU_ASSERT_EMT(pVCpu); Assert(offReg <= XAPIC_OFF_MAX_VALID); Assert(!XAPIC_IN_X2APIC_MODE(pVCpu)); VBOXSTRICTRC rcStrict = VINF_SUCCESS; switch (offReg) { case XAPIC_OFF_TPR: { rcStrict = apicSetTprEx(pVCpu, uValue, false /* fForceX2ApicBehaviour */); break; } case XAPIC_OFF_LVT_TIMER: #if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4 case XAPIC_OFF_LVT_THERMAL: #endif case XAPIC_OFF_LVT_PERF: case XAPIC_OFF_LVT_LINT0: case XAPIC_OFF_LVT_LINT1: case XAPIC_OFF_LVT_ERROR: { rcStrict = apicSetLvtEntry(pVCpu, offReg, uValue); break; } case XAPIC_OFF_TIMER_ICR: { rcStrict = apicSetTimerIcr(pVCpu, VINF_IOM_R3_MMIO_WRITE, uValue); break; } case XAPIC_OFF_EOI: { rcStrict = apicSetEoi(pVCpu, uValue, VINF_IOM_R3_MMIO_WRITE, false /* fForceX2ApicBehaviour */); break; } case XAPIC_OFF_LDR: { rcStrict = apicSetLdr(pVCpu, uValue); break; } case XAPIC_OFF_DFR: { rcStrict = apicSetDfr(pVCpu, uValue); break; } case XAPIC_OFF_SVR: { rcStrict = apicSetSvr(pVCpu, uValue); break; } case XAPIC_OFF_ICR_LO: { rcStrict = apicSetIcrLo(pVCpu, uValue, VINF_IOM_R3_MMIO_WRITE, true /* fUpdateStat */); break; } case XAPIC_OFF_ICR_HI: { rcStrict = apicSetIcrHi(pVCpu, uValue); break; } case XAPIC_OFF_TIMER_DCR: { rcStrict = apicSetTimerDcr(pVCpu, uValue); break; } case XAPIC_OFF_ESR: { rcStrict = apicSetEsr(pVCpu, uValue); break; } case XAPIC_OFF_APR: case XAPIC_OFF_RRD: { #if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4 /* Unsupported on Pentium 4 and Xeon CPUs but writes do -not- set an illegal register access error. */ #else # error "Implement Pentium and P6 family APIC architectures" #endif break; } /* Read-only, write ignored: */ case XAPIC_OFF_VERSION: case XAPIC_OFF_ID: break; /* Unavailable/reserved in xAPIC mode: */ case X2APIC_OFF_SELF_IPI: /* Read-only registers: */ case XAPIC_OFF_PPR: case XAPIC_OFF_ISR0: case XAPIC_OFF_ISR1: case XAPIC_OFF_ISR2: case XAPIC_OFF_ISR3: case XAPIC_OFF_ISR4: case XAPIC_OFF_ISR5: case XAPIC_OFF_ISR6: case XAPIC_OFF_ISR7: case XAPIC_OFF_TMR0: case XAPIC_OFF_TMR1: case XAPIC_OFF_TMR2: case XAPIC_OFF_TMR3: case XAPIC_OFF_TMR4: case XAPIC_OFF_TMR5: case XAPIC_OFF_TMR6: case XAPIC_OFF_TMR7: case XAPIC_OFF_IRR0: case XAPIC_OFF_IRR1: case XAPIC_OFF_IRR2: case XAPIC_OFF_IRR3: case XAPIC_OFF_IRR4: case XAPIC_OFF_IRR5: case XAPIC_OFF_IRR6: case XAPIC_OFF_IRR7: case XAPIC_OFF_TIMER_CCR: default: { rcStrict = PDMDevHlpDBGFStop(pApicDev->CTX_SUFF(pDevIns), RT_SRC_POS, "APIC%u: offReg=%#RX16\n", pVCpu->idCpu, offReg); apicSetError(pVCpu, XAPIC_ESR_ILLEGAL_REG_ADDRESS); break; } } return rcStrict; } /** * Reads an APIC MSR. * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param u32Reg The MSR being read. * @param pu64Value Where to store the read value. */ VMM_INT_DECL(VBOXSTRICTRC) APICReadMsr(PVMCPU pVCpu, uint32_t u32Reg, uint64_t *pu64Value) { /* * Validate. */ VMCPU_ASSERT_EMT(pVCpu); Assert(u32Reg >= MSR_IA32_X2APIC_ID && u32Reg <= MSR_IA32_X2APIC_SELF_IPI); Assert(pu64Value); /* * Is the APIC enabled? */ PCAPIC pApic = VM_TO_APIC(pVCpu->CTX_SUFF(pVM)); if (APICIsEnabled(pVCpu)) { /* likely */ } else { return apicMsrAccessError(pVCpu, u32Reg, pApic->enmMaxMode == PDMAPICMODE_NONE ? APICMSRACCESS_READ_DISALLOWED_CONFIG : APICMSRACCESS_READ_RSVD_OR_UNKNOWN); } #ifndef IN_RING3 if (pApic->fRZEnabled) { /* likely */} else return VINF_CPUM_R3_MSR_READ; #endif STAM_COUNTER_INC(&pVCpu->apic.s.CTX_SUFF_Z(StatMsrRead)); VBOXSTRICTRC rcStrict = VINF_SUCCESS; if (RT_LIKELY( XAPIC_IN_X2APIC_MODE(pVCpu) || pApic->fHyperVCompatMode)) { switch (u32Reg) { /* Special handling for x2APIC: */ case MSR_IA32_X2APIC_ICR: { *pu64Value = apicGetIcrNoCheck(pVCpu); break; } /* Special handling, compatible with xAPIC: */ case MSR_IA32_X2APIC_TIMER_CCR: { uint32_t uValue; rcStrict = apicGetTimerCcr(pVCpu, VINF_CPUM_R3_MSR_READ, &uValue); *pu64Value = uValue; break; } /* Special handling, compatible with xAPIC: */ case MSR_IA32_X2APIC_PPR: { *pu64Value = apicGetPpr(pVCpu); break; } /* Raw read, compatible with xAPIC: */ case MSR_IA32_X2APIC_ID: case MSR_IA32_X2APIC_VERSION: case MSR_IA32_X2APIC_TPR: case MSR_IA32_X2APIC_LDR: case MSR_IA32_X2APIC_SVR: case MSR_IA32_X2APIC_ISR0: case MSR_IA32_X2APIC_ISR1: case MSR_IA32_X2APIC_ISR2: case MSR_IA32_X2APIC_ISR3: case MSR_IA32_X2APIC_ISR4: case MSR_IA32_X2APIC_ISR5: case MSR_IA32_X2APIC_ISR6: case MSR_IA32_X2APIC_ISR7: case MSR_IA32_X2APIC_TMR0: case MSR_IA32_X2APIC_TMR1: case MSR_IA32_X2APIC_TMR2: case MSR_IA32_X2APIC_TMR3: case MSR_IA32_X2APIC_TMR4: case MSR_IA32_X2APIC_TMR5: case MSR_IA32_X2APIC_TMR6: case MSR_IA32_X2APIC_TMR7: case MSR_IA32_X2APIC_IRR0: case MSR_IA32_X2APIC_IRR1: case MSR_IA32_X2APIC_IRR2: case MSR_IA32_X2APIC_IRR3: case MSR_IA32_X2APIC_IRR4: case MSR_IA32_X2APIC_IRR5: case MSR_IA32_X2APIC_IRR6: case MSR_IA32_X2APIC_IRR7: case MSR_IA32_X2APIC_ESR: case MSR_IA32_X2APIC_LVT_TIMER: case MSR_IA32_X2APIC_LVT_THERMAL: case MSR_IA32_X2APIC_LVT_PERF: case MSR_IA32_X2APIC_LVT_LINT0: case MSR_IA32_X2APIC_LVT_LINT1: case MSR_IA32_X2APIC_LVT_ERROR: case MSR_IA32_X2APIC_TIMER_ICR: case MSR_IA32_X2APIC_TIMER_DCR: { PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu); uint16_t const offReg = X2APIC_GET_XAPIC_OFF(u32Reg); *pu64Value = apicReadRaw32(pXApicPage, offReg); break; } /* Write-only MSRs: */ case MSR_IA32_X2APIC_SELF_IPI: case MSR_IA32_X2APIC_EOI: { rcStrict = apicMsrAccessError(pVCpu, u32Reg, APICMSRACCESS_READ_WRITE_ONLY); break; } /* * Windows guest using Hyper-V x2APIC MSR compatibility mode tries to read the "high" * LDR bits, which is quite absurd (as it's a 32-bit register) using this invalid MSR * index (0x80E), see @bugref{8382#c175}. */ case MSR_IA32_X2APIC_LDR + 1: { if (pApic->fHyperVCompatMode) *pu64Value = 0; else rcStrict = apicMsrAccessError(pVCpu, u32Reg, APICMSRACCESS_READ_RSVD_OR_UNKNOWN); break; } /* Reserved MSRs: */ case MSR_IA32_X2APIC_LVT_CMCI: default: { rcStrict = apicMsrAccessError(pVCpu, u32Reg, APICMSRACCESS_READ_RSVD_OR_UNKNOWN); break; } } } else rcStrict = apicMsrAccessError(pVCpu, u32Reg, APICMSRACCESS_INVALID_READ_MODE); return rcStrict; } /** * Writes an APIC MSR. * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param u32Reg The MSR being written. * @param u64Value The value to write. */ VMM_INT_DECL(VBOXSTRICTRC) APICWriteMsr(PVMCPU pVCpu, uint32_t u32Reg, uint64_t u64Value) { /* * Validate. */ VMCPU_ASSERT_EMT(pVCpu); Assert(u32Reg >= MSR_IA32_X2APIC_ID && u32Reg <= MSR_IA32_X2APIC_SELF_IPI); /* * Is the APIC enabled? */ PCAPIC pApic = VM_TO_APIC(pVCpu->CTX_SUFF(pVM)); if (APICIsEnabled(pVCpu)) { /* likely */ } else { return apicMsrAccessError(pVCpu, u32Reg, pApic->enmMaxMode == PDMAPICMODE_NONE ? APICMSRACCESS_WRITE_DISALLOWED_CONFIG : APICMSRACCESS_WRITE_RSVD_OR_UNKNOWN); } #ifndef IN_RING3 if (pApic->fRZEnabled) { /* likely */ } else return VINF_CPUM_R3_MSR_WRITE; #endif STAM_COUNTER_INC(&pVCpu->apic.s.CTX_SUFF_Z(StatMsrWrite)); /* * In x2APIC mode, we need to raise #GP(0) for writes to reserved bits, unlike MMIO * accesses where they are ignored. Hence, we need to validate each register before * invoking the generic/xAPIC write functions. * * Bits 63:32 of all registers except the ICR are reserved, we'll handle this common * case first and handle validating the remaining bits on a per-register basis. * See Intel spec. 10.12.1.2 "x2APIC Register Address Space". */ if ( u32Reg != MSR_IA32_X2APIC_ICR && RT_HI_U32(u64Value)) return apicMsrAccessError(pVCpu, u32Reg, APICMSRACCESS_WRITE_RSVD_BITS); uint32_t u32Value = RT_LO_U32(u64Value); VBOXSTRICTRC rcStrict = VINF_SUCCESS; if (RT_LIKELY( XAPIC_IN_X2APIC_MODE(pVCpu) || pApic->fHyperVCompatMode)) { switch (u32Reg) { case MSR_IA32_X2APIC_TPR: { rcStrict = apicSetTprEx(pVCpu, u32Value, false /* fForceX2ApicBehaviour */); break; } case MSR_IA32_X2APIC_ICR: { rcStrict = apicSetIcr(pVCpu, u64Value, VINF_CPUM_R3_MSR_WRITE); break; } case MSR_IA32_X2APIC_SVR: { rcStrict = apicSetSvr(pVCpu, u32Value); break; } case MSR_IA32_X2APIC_ESR: { rcStrict = apicSetEsr(pVCpu, u32Value); break; } case MSR_IA32_X2APIC_TIMER_DCR: { rcStrict = apicSetTimerDcr(pVCpu, u32Value); break; } case MSR_IA32_X2APIC_LVT_TIMER: case MSR_IA32_X2APIC_LVT_THERMAL: case MSR_IA32_X2APIC_LVT_PERF: case MSR_IA32_X2APIC_LVT_LINT0: case MSR_IA32_X2APIC_LVT_LINT1: case MSR_IA32_X2APIC_LVT_ERROR: { rcStrict = apicSetLvtEntry(pVCpu, X2APIC_GET_XAPIC_OFF(u32Reg), u32Value); break; } case MSR_IA32_X2APIC_TIMER_ICR: { rcStrict = apicSetTimerIcr(pVCpu, VINF_CPUM_R3_MSR_WRITE, u32Value); break; } /* Write-only MSRs: */ case MSR_IA32_X2APIC_SELF_IPI: { uint8_t const uVector = XAPIC_SELF_IPI_GET_VECTOR(u32Value); apicPostInterrupt(pVCpu, uVector, XAPICTRIGGERMODE_EDGE, 0 /* uSrcTag */); rcStrict = VINF_SUCCESS; break; } case MSR_IA32_X2APIC_EOI: { rcStrict = apicSetEoi(pVCpu, u32Value, VINF_CPUM_R3_MSR_WRITE, false /* fForceX2ApicBehaviour */); break; } /* * Windows guest using Hyper-V x2APIC MSR compatibility mode tries to write the "high" * LDR bits, which is quite absurd (as it's a 32-bit register) using this invalid MSR * index (0x80E). The write value was 0xffffffff on a Windows 8.1 64-bit guest. We can * safely ignore this nonsense, See @bugref{8382#c7}. */ case MSR_IA32_X2APIC_LDR + 1: { if (pApic->fHyperVCompatMode) rcStrict = VINF_SUCCESS; else rcStrict = apicMsrAccessError(pVCpu, u32Reg, APICMSRACCESS_WRITE_RSVD_OR_UNKNOWN); break; } /* Special-treament (read-only normally, but not with Hyper-V) */ case MSR_IA32_X2APIC_LDR: { if (pApic->fHyperVCompatMode) { rcStrict = apicSetLdr(pVCpu, u32Value); break; } } RT_FALL_THRU(); /* Read-only MSRs: */ case MSR_IA32_X2APIC_ID: case MSR_IA32_X2APIC_VERSION: case MSR_IA32_X2APIC_PPR: case MSR_IA32_X2APIC_ISR0: case MSR_IA32_X2APIC_ISR1: case MSR_IA32_X2APIC_ISR2: case MSR_IA32_X2APIC_ISR3: case MSR_IA32_X2APIC_ISR4: case MSR_IA32_X2APIC_ISR5: case MSR_IA32_X2APIC_ISR6: case MSR_IA32_X2APIC_ISR7: case MSR_IA32_X2APIC_TMR0: case MSR_IA32_X2APIC_TMR1: case MSR_IA32_X2APIC_TMR2: case MSR_IA32_X2APIC_TMR3: case MSR_IA32_X2APIC_TMR4: case MSR_IA32_X2APIC_TMR5: case MSR_IA32_X2APIC_TMR6: case MSR_IA32_X2APIC_TMR7: case MSR_IA32_X2APIC_IRR0: case MSR_IA32_X2APIC_IRR1: case MSR_IA32_X2APIC_IRR2: case MSR_IA32_X2APIC_IRR3: case MSR_IA32_X2APIC_IRR4: case MSR_IA32_X2APIC_IRR5: case MSR_IA32_X2APIC_IRR6: case MSR_IA32_X2APIC_IRR7: case MSR_IA32_X2APIC_TIMER_CCR: { rcStrict = apicMsrAccessError(pVCpu, u32Reg, APICMSRACCESS_WRITE_READ_ONLY); break; } /* Reserved MSRs: */ case MSR_IA32_X2APIC_LVT_CMCI: default: { rcStrict = apicMsrAccessError(pVCpu, u32Reg, APICMSRACCESS_WRITE_RSVD_OR_UNKNOWN); break; } } } else rcStrict = apicMsrAccessError(pVCpu, u32Reg, APICMSRACCESS_INVALID_WRITE_MODE); return rcStrict; } /** * Sets the APIC base MSR. * * @returns Strict VBox status code. * @retval VINF_SUCCESS * @retval VINF_CPUM_R3_MSR_WRITE * @retval VERR_CPUM_RAISE_GP_0 * * @param pVCpu The cross context virtual CPU structure. * @param u64BaseMsr The value to set. */ VMM_INT_DECL(VBOXSTRICTRC) APICSetBaseMsr(PVMCPU pVCpu, uint64_t u64BaseMsr) { Assert(pVCpu); #ifdef IN_RING3 PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu); PAPIC pApic = VM_TO_APIC(pVCpu->CTX_SUFF(pVM)); APICMODE enmOldMode = apicGetMode(pApicCpu->uApicBaseMsr); APICMODE enmNewMode = apicGetMode(u64BaseMsr); uint64_t uBaseMsr = pApicCpu->uApicBaseMsr; Log2(("APIC%u: ApicSetBaseMsr: u64BaseMsr=%#RX64 enmNewMode=%s enmOldMode=%s\n", pVCpu->idCpu, u64BaseMsr, apicGetModeName(enmNewMode), apicGetModeName(enmOldMode))); /* * We do not support re-mapping the APIC base address because: * - We'll have to manage all the mappings ourselves in the APIC (reference counting based unmapping etc.) * i.e. we can only unmap the MMIO region if no other APIC is mapped on that location. * - It's unclear how/if IOM can fallback to handling regions as regular memory (if the MMIO * region remains mapped but doesn't belong to the called VCPU's APIC). */ /** @todo Handle per-VCPU APIC base relocation. */ if (MSR_IA32_APICBASE_GET_ADDR(uBaseMsr) != MSR_IA32_APICBASE_ADDR) { LogRelMax(5, ("APIC%u: Attempt to relocate base to %#RGp, unsupported -> #GP(0)\n", pVCpu->idCpu, MSR_IA32_APICBASE_GET_ADDR(uBaseMsr))); return VERR_CPUM_RAISE_GP_0; } /* Don't allow enabling xAPIC/x2APIC if the VM is configured with the APIC disabled. */ if (pApic->enmMaxMode == PDMAPICMODE_NONE) { LogRel(("APIC%u: Disallowing APIC base MSR write as the VM is configured with APIC disabled!\n", pVCpu->idCpu)); return apicMsrAccessError(pVCpu, MSR_IA32_APICBASE, APICMSRACCESS_WRITE_DISALLOWED_CONFIG); } /* * Act on state transition. */ if (enmNewMode != enmOldMode) { switch (enmNewMode) { case APICMODE_DISABLED: { /* * The APIC state needs to be reset (especially the APIC ID as x2APIC APIC ID bit layout * is different). We can start with a clean slate identical to the state after a power-up/reset. * * See Intel spec. 10.4.3 "Enabling or Disabling the Local APIC". * * We'll also manually manage the APIC base MSR here. We want a single-point of commit * at the end of this function rather than updating it in apicR3ResetCpu. This means we also * need to update the CPUID leaf ourselves. */ apicR3ResetCpu(pVCpu, false /* fResetApicBaseMsr */); uBaseMsr &= ~(MSR_IA32_APICBASE_EN | MSR_IA32_APICBASE_EXTD); CPUMSetGuestCpuIdPerCpuApicFeature(pVCpu, false /*fVisible*/); LogRel(("APIC%u: Switched mode to disabled\n", pVCpu->idCpu)); break; } case APICMODE_XAPIC: { if (enmOldMode != APICMODE_DISABLED) { LogRel(("APIC%u: Can only transition to xAPIC state from disabled state\n", pVCpu->idCpu)); return apicMsrAccessError(pVCpu, MSR_IA32_APICBASE, APICMSRACCESS_WRITE_INVALID); } uBaseMsr |= MSR_IA32_APICBASE_EN; CPUMSetGuestCpuIdPerCpuApicFeature(pVCpu, true /*fVisible*/); LogRel(("APIC%u: Switched mode to xAPIC\n", pVCpu->idCpu)); break; } case APICMODE_X2APIC: { if (pApic->enmMaxMode != PDMAPICMODE_X2APIC) { LogRel(("APIC%u: Disallowing transition to x2APIC mode as the VM is configured with the x2APIC disabled!\n", pVCpu->idCpu)); return apicMsrAccessError(pVCpu, MSR_IA32_APICBASE, APICMSRACCESS_WRITE_INVALID); } if (enmOldMode != APICMODE_XAPIC) { LogRel(("APIC%u: Can only transition to x2APIC state from xAPIC state\n", pVCpu->idCpu)); return apicMsrAccessError(pVCpu, MSR_IA32_APICBASE, APICMSRACCESS_WRITE_INVALID); } uBaseMsr |= MSR_IA32_APICBASE_EN | MSR_IA32_APICBASE_EXTD; /* * The APIC ID needs updating when entering x2APIC mode. * Software written APIC ID in xAPIC mode isn't preserved. * The APIC ID becomes read-only to software in x2APIC mode. * * See Intel spec. 10.12.5.1 "x2APIC States". */ PX2APICPAGE pX2ApicPage = VMCPU_TO_X2APICPAGE(pVCpu); ASMMemZero32(&pX2ApicPage->id, sizeof(pX2ApicPage->id)); pX2ApicPage->id.u32ApicId = pVCpu->idCpu; /* * LDR initialization occurs when entering x2APIC mode. * See Intel spec. 10.12.10.2 "Deriving Logical x2APIC ID from the Local x2APIC ID". */ pX2ApicPage->ldr.u32LogicalApicId = ((pX2ApicPage->id.u32ApicId & UINT32_C(0xffff0)) << 16) | (UINT32_C(1) << pX2ApicPage->id.u32ApicId & UINT32_C(0xf)); LogRel(("APIC%u: Switched mode to x2APIC\n", pVCpu->idCpu)); break; } case APICMODE_INVALID: default: { Log(("APIC%u: Invalid state transition attempted\n", pVCpu->idCpu)); return apicMsrAccessError(pVCpu, MSR_IA32_APICBASE, APICMSRACCESS_WRITE_INVALID); } } } ASMAtomicWriteU64(&pApicCpu->uApicBaseMsr, uBaseMsr); return VINF_SUCCESS; #else /* !IN_RING3 */ RT_NOREF_PV(pVCpu); RT_NOREF_PV(u64BaseMsr); return VINF_CPUM_R3_MSR_WRITE; #endif /* IN_RING3 */ } /** * Gets the APIC base MSR (no checks are performed wrt APIC hardware or its * state). * * @returns The base MSR value. * @param pVCpu The cross context virtual CPU structure. */ VMM_INT_DECL(uint64_t) APICGetBaseMsrNoCheck(PVMCPU pVCpu) { VMCPU_ASSERT_EMT_OR_NOT_RUNNING(pVCpu); PCAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu); return pApicCpu->uApicBaseMsr; } /** * Gets the APIC base MSR. * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param pu64Value Where to store the MSR value. */ VMM_INT_DECL(VBOXSTRICTRC) APICGetBaseMsr(PVMCPU pVCpu, uint64_t *pu64Value) { VMCPU_ASSERT_EMT_OR_NOT_RUNNING(pVCpu); PCAPIC pApic = VM_TO_APIC(pVCpu->CTX_SUFF(pVM)); if (pApic->enmMaxMode != PDMAPICMODE_NONE) { *pu64Value = APICGetBaseMsrNoCheck(pVCpu); return VINF_SUCCESS; } #ifdef IN_RING3 LogRelMax(5, ("APIC%u: Reading APIC base MSR (%#x) when there is no APIC -> #GP(0)\n", pVCpu->idCpu, MSR_IA32_APICBASE)); return VERR_CPUM_RAISE_GP_0; #else return VINF_CPUM_R3_MSR_WRITE; #endif } /** * Sets the TPR (Task Priority Register). * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param u8Tpr The TPR value to set. */ VMMDECL(int) APICSetTpr(PVMCPU pVCpu, uint8_t u8Tpr) { if (APICIsEnabled(pVCpu)) return VBOXSTRICTRC_VAL(apicSetTprEx(pVCpu, u8Tpr, false /* fForceX2ApicBehaviour */)); return VERR_PDM_NO_APIC_INSTANCE; } /** * Gets the highest priority pending interrupt. * * @returns true if any interrupt is pending, false otherwise. * @param pVCpu The cross context virtual CPU structure. * @param pu8PendingIntr Where to store the interrupt vector if the * interrupt is pending (optional, can be NULL). */ static bool apicGetHighestPendingInterrupt(PVMCPU pVCpu, uint8_t *pu8PendingIntr) { PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpu); int const irrv = apicGetHighestSetBitInReg(&pXApicPage->irr, -1); if (irrv >= 0) { Assert(irrv <= (int)UINT8_MAX); if (pu8PendingIntr) *pu8PendingIntr = (uint8_t)irrv; return true; } return false; } /** * Gets the APIC TPR (Task Priority Register). * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param pu8Tpr Where to store the TPR. * @param pfPending Where to store whether there is a pending interrupt * (optional, can be NULL). * @param pu8PendingIntr Where to store the highest-priority pending * interrupt (optional, can be NULL). */ VMMDECL(int) APICGetTpr(PVMCPU pVCpu, uint8_t *pu8Tpr, bool *pfPending, uint8_t *pu8PendingIntr) { VMCPU_ASSERT_EMT(pVCpu); if (APICIsEnabled(pVCpu)) { PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpu); if (pfPending) { /* * Just return whatever the highest pending interrupt is in the IRR. * The caller is responsible for figuring out if it's masked by the TPR etc. */ *pfPending = apicGetHighestPendingInterrupt(pVCpu, pu8PendingIntr); } *pu8Tpr = pXApicPage->tpr.u8Tpr; return VINF_SUCCESS; } *pu8Tpr = 0; return VERR_PDM_NO_APIC_INSTANCE; } /** * Gets the APIC timer frequency. * * @returns Strict VBox status code. * @param pVM The cross context VM structure. * @param pu64Value Where to store the timer frequency. */ VMM_INT_DECL(int) APICGetTimerFreq(PVM pVM, uint64_t *pu64Value) { /* * Validate. */ Assert(pVM); AssertPtrReturn(pu64Value, VERR_INVALID_PARAMETER); PVMCPU pVCpu = &pVM->aCpus[0]; if (APICIsEnabled(pVCpu)) { PCAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu); *pu64Value = TMTimerGetFreq(pApicCpu->CTX_SUFF(pTimer)); return VINF_SUCCESS; } return VERR_PDM_NO_APIC_INSTANCE; } /** * Delivers an interrupt message via the system bus. * * @returns VBox status code. * @param pVM The cross context VM structure. * @param uDest The destination mask. * @param uDestMode The destination mode. * @param uDeliveryMode The delivery mode. * @param uVector The interrupt vector. * @param uPolarity The interrupt line polarity. * @param uTriggerMode The trigger mode. * @param uSrcTag The interrupt source tag (debugging). */ VMM_INT_DECL(int) APICBusDeliver(PVM pVM, uint8_t uDest, uint8_t uDestMode, uint8_t uDeliveryMode, uint8_t uVector, uint8_t uPolarity, uint8_t uTriggerMode, uint32_t uSrcTag) { NOREF(uPolarity); /* * If the APIC isn't enabled, do nothing and pretend success. */ if (APICIsEnabled(&pVM->aCpus[0])) { /* likely */ } else return VINF_SUCCESS; /* * The destination field (mask) in the IO APIC redirectable table entry is 8-bits. * Hence, the broadcast mask is 0xff. * See IO APIC spec. 3.2.4. "IOREDTBL[23:0] - I/O Redirectable Table Registers". */ XAPICTRIGGERMODE enmTriggerMode = (XAPICTRIGGERMODE)uTriggerMode; XAPICDELIVERYMODE enmDeliveryMode = (XAPICDELIVERYMODE)uDeliveryMode; XAPICDESTMODE enmDestMode = (XAPICDESTMODE)uDestMode; uint32_t fDestMask = uDest; uint32_t fBroadcastMask = UINT32_C(0xff); Log2(("APIC: apicBusDeliver: fDestMask=%#x enmDestMode=%s enmTriggerMode=%s enmDeliveryMode=%s uVector=%#x\n", fDestMask, apicGetDestModeName(enmDestMode), apicGetTriggerModeName(enmTriggerMode), apicGetDeliveryModeName(enmDeliveryMode), uVector)); bool fIntrAccepted; VMCPUSET DestCpuSet; apicGetDestCpuSet(pVM, fDestMask, fBroadcastMask, enmDestMode, enmDeliveryMode, &DestCpuSet); VBOXSTRICTRC rcStrict = apicSendIntr(pVM, NULL /* pVCpu */, uVector, enmTriggerMode, enmDeliveryMode, &DestCpuSet, &fIntrAccepted, uSrcTag, VINF_SUCCESS /* rcRZ */); if (fIntrAccepted) return VBOXSTRICTRC_VAL(rcStrict); return VERR_APIC_INTR_DISCARDED; } /** * Assert/de-assert the local APIC's LINT0/LINT1 interrupt pins. * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param u8Pin The interrupt pin (0 for LINT0 or 1 for LINT1). * @param u8Level The level (0 for low or 1 for high). * @param rcRZ The return code if the operation cannot be performed in * the current context. */ VMM_INT_DECL(VBOXSTRICTRC) APICLocalInterrupt(PVMCPU pVCpu, uint8_t u8Pin, uint8_t u8Level, int rcRZ) { AssertReturn(u8Pin <= 1, VERR_INVALID_PARAMETER); AssertReturn(u8Level <= 1, VERR_INVALID_PARAMETER); VBOXSTRICTRC rcStrict = VINF_SUCCESS; /* If the APIC is enabled, the interrupt is subject to LVT programming. */ if (APICIsEnabled(pVCpu)) { PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpu); /* Pick the LVT entry corresponding to the interrupt pin. */ static const uint16_t s_au16LvtOffsets[] = { XAPIC_OFF_LVT_LINT0, XAPIC_OFF_LVT_LINT1 }; Assert(u8Pin < RT_ELEMENTS(s_au16LvtOffsets)); uint16_t const offLvt = s_au16LvtOffsets[u8Pin]; uint32_t const uLvt = apicReadRaw32(pXApicPage, offLvt); /* If software hasn't masked the interrupt in the LVT entry, proceed interrupt processing. */ if (!XAPIC_LVT_IS_MASKED(uLvt)) { XAPICDELIVERYMODE const enmDeliveryMode = XAPIC_LVT_GET_DELIVERY_MODE(uLvt); XAPICTRIGGERMODE enmTriggerMode = XAPIC_LVT_GET_TRIGGER_MODE(uLvt); switch (enmDeliveryMode) { case XAPICDELIVERYMODE_INIT: { /** @todo won't work in R0/RC because callers don't care about rcRZ. */ AssertMsgFailed(("INIT through LINT0/LINT1 is not yet supported\n")); } RT_FALL_THRU(); case XAPICDELIVERYMODE_FIXED: { PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu); uint8_t const uVector = XAPIC_LVT_GET_VECTOR(uLvt); bool fActive = RT_BOOL(u8Level & 1); bool volatile *pfActiveLine = u8Pin == 0 ? &pApicCpu->fActiveLint0 : &pApicCpu->fActiveLint1; /** @todo Polarity is busted elsewhere, we need to fix that * first. See @bugref{8386#c7}. */ #if 0 uint8_t const u8Polarity = XAPIC_LVT_GET_POLARITY(uLvt); fActive ^= u8Polarity; */ #endif if (!fActive) { ASMAtomicCmpXchgBool(pfActiveLine, false, true); break; } /* Level-sensitive interrupts are not supported for LINT1. See Intel spec. 10.5.1 "Local Vector Table". */ if (offLvt == XAPIC_OFF_LVT_LINT1) enmTriggerMode = XAPICTRIGGERMODE_EDGE; /** @todo figure out what "If the local APIC is not used in conjunction with an I/O APIC and fixed delivery mode is selected; the Pentium 4, Intel Xeon, and P6 family processors will always use level-sensitive triggering, regardless if edge-sensitive triggering is selected." means. */ bool fSendIntr; if (enmTriggerMode == XAPICTRIGGERMODE_EDGE) { /* Recognize and send the interrupt only on an edge transition. */ fSendIntr = ASMAtomicCmpXchgBool(pfActiveLine, true, false); } else { /* For level-triggered interrupts, redundant interrupts are not a problem. */ Assert(enmTriggerMode == XAPICTRIGGERMODE_LEVEL); ASMAtomicCmpXchgBool(pfActiveLine, true, false); /* Only when the remote IRR isn't set, set it and send the interrupt. */ if (!(pXApicPage->lvt_lint0.all.u32LvtLint0 & XAPIC_LVT_REMOTE_IRR)) { Assert(offLvt == XAPIC_OFF_LVT_LINT0); ASMAtomicOrU32((volatile uint32_t *)&pXApicPage->lvt_lint0.all.u32LvtLint0, XAPIC_LVT_REMOTE_IRR); fSendIntr = true; } else fSendIntr = false; } if (fSendIntr) { VMCPUSET DestCpuSet; VMCPUSET_EMPTY(&DestCpuSet); VMCPUSET_ADD(&DestCpuSet, pVCpu->idCpu); rcStrict = apicSendIntr(pVCpu->CTX_SUFF(pVM), pVCpu, uVector, enmTriggerMode, enmDeliveryMode, &DestCpuSet, NULL /* pfIntrAccepted */, 0 /* uSrcTag */, rcRZ); } break; } case XAPICDELIVERYMODE_SMI: case XAPICDELIVERYMODE_NMI: { VMCPUSET DestCpuSet; VMCPUSET_EMPTY(&DestCpuSet); VMCPUSET_ADD(&DestCpuSet, pVCpu->idCpu); uint8_t const uVector = XAPIC_LVT_GET_VECTOR(uLvt); rcStrict = apicSendIntr(pVCpu->CTX_SUFF(pVM), pVCpu, uVector, enmTriggerMode, enmDeliveryMode, &DestCpuSet, NULL /* pfIntrAccepted */, 0 /* uSrcTag */, rcRZ); break; } case XAPICDELIVERYMODE_EXTINT: { Log2(("APIC%u: apicLocalInterrupt: %s ExtINT through LINT%u\n", pVCpu->idCpu, u8Level ? "Raising" : "Lowering", u8Pin)); if (u8Level) apicSetInterruptFF(pVCpu, PDMAPICIRQ_EXTINT); else apicClearInterruptFF(pVCpu, PDMAPICIRQ_EXTINT); break; } /* Reserved/unknown delivery modes: */ case XAPICDELIVERYMODE_LOWEST_PRIO: case XAPICDELIVERYMODE_STARTUP: default: { rcStrict = VERR_INTERNAL_ERROR_3; AssertMsgFailed(("APIC%u: LocalInterrupt: Invalid delivery mode %#x (%s) on LINT%d\n", pVCpu->idCpu, enmDeliveryMode, apicGetDeliveryModeName(enmDeliveryMode), u8Pin)); break; } } } } else { /* The APIC is hardware disabled. The CPU behaves as though there is no on-chip APIC. */ if (u8Pin == 0) { /* LINT0 behaves as an external interrupt pin. */ Log2(("APIC%u: apicLocalInterrupt: APIC hardware-disabled, %s INTR\n", pVCpu->idCpu, u8Level ? "raising" : "lowering")); if (u8Level) apicSetInterruptFF(pVCpu, PDMAPICIRQ_EXTINT); else apicClearInterruptFF(pVCpu, PDMAPICIRQ_EXTINT); } else { /* LINT1 behaves as NMI. */ Log2(("APIC%u: apicLocalInterrupt: APIC hardware-disabled, raising NMI\n", pVCpu->idCpu)); apicSetInterruptFF(pVCpu, PDMAPICIRQ_NMI); } } return rcStrict; } /** * Gets the next highest-priority interrupt from the APIC, marking it as an * "in-service" interrupt. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param pu8Vector Where to store the vector. * @param puSrcTag Where to store the interrupt source tag (debugging). */ VMM_INT_DECL(int) APICGetInterrupt(PVMCPU pVCpu, uint8_t *pu8Vector, uint32_t *puSrcTag) { VMCPU_ASSERT_EMT(pVCpu); Assert(pu8Vector); LogFlow(("APIC%u: apicGetInterrupt:\n", pVCpu->idCpu)); PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu); bool const fApicHwEnabled = APICIsEnabled(pVCpu); if ( fApicHwEnabled && pXApicPage->svr.u.fApicSoftwareEnable) { int const irrv = apicGetHighestSetBitInReg(&pXApicPage->irr, -1); if (RT_LIKELY(irrv >= 0)) { Assert(irrv <= (int)UINT8_MAX); uint8_t const uVector = irrv; /* * This can happen if the APIC receives an interrupt when the CPU has interrupts * disabled but the TPR is raised by the guest before re-enabling interrupts. */ uint8_t const uTpr = pXApicPage->tpr.u8Tpr; if ( uTpr > 0 && XAPIC_TPR_GET_TP(uVector) <= XAPIC_TPR_GET_TP(uTpr)) { Log2(("APIC%u: apicGetInterrupt: Interrupt masked. uVector=%#x uTpr=%#x SpuriousVector=%#x\n", pVCpu->idCpu, uVector, uTpr, pXApicPage->svr.u.u8SpuriousVector)); *pu8Vector = uVector; *puSrcTag = 0; STAM_COUNTER_INC(&pVCpu->apic.s.StatMaskedByTpr); return VERR_APIC_INTR_MASKED_BY_TPR; } /* * The PPR should be up-to-date at this point through apicSetEoi(). * We're on EMT so no parallel updates possible. * Subject the pending vector to PPR prioritization. */ uint8_t const uPpr = pXApicPage->ppr.u8Ppr; if ( !uPpr || XAPIC_PPR_GET_PP(uVector) > XAPIC_PPR_GET_PP(uPpr)) { apicClearVectorInReg(&pXApicPage->irr, uVector); apicSetVectorInReg(&pXApicPage->isr, uVector); apicUpdatePpr(pVCpu); apicSignalNextPendingIntr(pVCpu); /* Retrieve the interrupt source tag associated with this interrupt. */ PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu); AssertCompile(RT_ELEMENTS(pApicCpu->auSrcTags) > UINT8_MAX); *puSrcTag = pApicCpu->auSrcTags[uVector]; pApicCpu->auSrcTags[uVector] = 0; Log2(("APIC%u: apicGetInterrupt: Valid Interrupt. uVector=%#x\n", pVCpu->idCpu, uVector)); *pu8Vector = uVector; return VINF_SUCCESS; } else { STAM_COUNTER_INC(&pVCpu->apic.s.StatMaskedByPpr); Log2(("APIC%u: apicGetInterrupt: Interrupt's priority is not higher than the PPR. uVector=%#x PPR=%#x\n", pVCpu->idCpu, uVector, uPpr)); } } else Log2(("APIC%u: apicGetInterrupt: No pending bits in IRR\n", pVCpu->idCpu)); } else Log2(("APIC%u: apicGetInterrupt: APIC %s disabled\n", pVCpu->idCpu, !fApicHwEnabled ? "hardware" : "software")); *pu8Vector = 0; *puSrcTag = 0; return VERR_APIC_INTR_NOT_PENDING; } /** * @callback_method_impl{FNIOMMMIOREAD} */ APICBOTHCBDECL(int) apicReadMmio(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void *pv, unsigned cb) { NOREF(pvUser); Assert(!(GCPhysAddr & 0xf)); Assert(cb == 4); RT_NOREF_PV(cb); PAPICDEV pApicDev = PDMINS_2_DATA(pDevIns, PAPICDEV); PVMCPU pVCpu = PDMDevHlpGetVMCPU(pDevIns); uint16_t offReg = GCPhysAddr & 0xff0; uint32_t uValue = 0; STAM_COUNTER_INC(&pVCpu->apic.s.CTX_SUFF_Z(StatMmioRead)); int rc = VBOXSTRICTRC_VAL(apicReadRegister(pApicDev, pVCpu, offReg, &uValue)); *(uint32_t *)pv = uValue; Log2(("APIC%u: apicReadMmio: offReg=%#RX16 uValue=%#RX32\n", pVCpu->idCpu, offReg, uValue)); return rc; } /** * @callback_method_impl{FNIOMMMIOWRITE} */ APICBOTHCBDECL(int) apicWriteMmio(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void const *pv, unsigned cb) { NOREF(pvUser); Assert(!(GCPhysAddr & 0xf)); Assert(cb == 4); RT_NOREF_PV(cb); PAPICDEV pApicDev = PDMINS_2_DATA(pDevIns, PAPICDEV); PVMCPU pVCpu = PDMDevHlpGetVMCPU(pDevIns); uint16_t offReg = GCPhysAddr & 0xff0; uint32_t uValue = *(uint32_t *)pv; STAM_COUNTER_INC(&pVCpu->apic.s.CTX_SUFF_Z(StatMmioWrite)); Log2(("APIC%u: apicWriteMmio: offReg=%#RX16 uValue=%#RX32\n", pVCpu->idCpu, offReg, uValue)); int rc = VBOXSTRICTRC_VAL(apicWriteRegister(pApicDev, pVCpu, offReg, uValue)); return rc; } /** * Sets the interrupt pending force-flag and pokes the EMT if required. * * @param pVCpu The cross context virtual CPU structure. * @param enmType The IRQ type. */ VMM_INT_DECL(void) apicSetInterruptFF(PVMCPU pVCpu, PDMAPICIRQ enmType) { switch (enmType) { case PDMAPICIRQ_HARDWARE: VMCPU_ASSERT_EMT_OR_NOT_RUNNING(pVCpu); VMCPU_FF_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC); break; case PDMAPICIRQ_UPDATE_PENDING: VMCPU_FF_SET(pVCpu, VMCPU_FF_UPDATE_APIC); break; case PDMAPICIRQ_NMI: VMCPU_FF_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI); break; case PDMAPICIRQ_SMI: VMCPU_FF_SET(pVCpu, VMCPU_FF_INTERRUPT_SMI); break; case PDMAPICIRQ_EXTINT: VMCPU_FF_SET(pVCpu, VMCPU_FF_INTERRUPT_PIC); break; default: AssertMsgFailed(("enmType=%d\n", enmType)); break; } /* * We need to wake up the target CPU if we're not on EMT. */ #if defined(IN_RING0) PVM pVM = pVCpu->CTX_SUFF(pVM); VMCPUID idCpu = pVCpu->idCpu; if ( enmType != PDMAPICIRQ_HARDWARE && VMMGetCpuId(pVM) != idCpu) { switch (VMCPU_GET_STATE(pVCpu)) { case VMCPUSTATE_STARTED_EXEC: GVMMR0SchedPokeNoGVMNoLock(pVM, idCpu); break; case VMCPUSTATE_STARTED_HALTED: GVMMR0SchedWakeUpNoGVMNoLock(pVM, idCpu); break; default: break; /* nothing to do in other states. */ } } #elif defined(IN_RING3) # ifdef VBOX_WITH_REM REMR3NotifyInterruptSet(pVCpu->CTX_SUFF(pVM), pVCpu); # endif if (enmType != PDMAPICIRQ_HARDWARE) VMR3NotifyCpuFFU(pVCpu->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM | VMNOTIFYFF_FLAGS_POKE); #endif } /** * Clears the interrupt pending force-flag. * * @param pVCpu The cross context virtual CPU structure. * @param enmType The IRQ type. */ VMM_INT_DECL(void) apicClearInterruptFF(PVMCPU pVCpu, PDMAPICIRQ enmType) { /* NMI/SMI can't be cleared. */ switch (enmType) { case PDMAPICIRQ_HARDWARE: VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_APIC); break; case PDMAPICIRQ_EXTINT: VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_PIC); break; default: AssertMsgFailed(("enmType=%d\n", enmType)); break; } #if defined(IN_RING3) && defined(VBOX_WITH_REM) REMR3NotifyInterruptClear(pVCpu->CTX_SUFF(pVM), pVCpu); #endif } /** * Posts an interrupt to a target APIC. * * This function handles interrupts received from the system bus or * interrupts generated locally from the LVT or via a self IPI. * * Don't use this function to try and deliver ExtINT style interrupts. * * @returns true if the interrupt was accepted, false otherwise. * @param pVCpu The cross context virtual CPU structure. * @param uVector The vector of the interrupt to be posted. * @param enmTriggerMode The trigger mode of the interrupt. * @param uSrcTag The interrupt source tag (debugging). * * @thread Any. */ VMM_INT_DECL(bool) apicPostInterrupt(PVMCPU pVCpu, uint8_t uVector, XAPICTRIGGERMODE enmTriggerMode, uint32_t uSrcTag) { Assert(pVCpu); Assert(uVector > XAPIC_ILLEGAL_VECTOR_END); PVM pVM = pVCpu->CTX_SUFF(pVM); PCAPIC pApic = VM_TO_APIC(pVM); PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu); bool fAccepted = true; STAM_PROFILE_START(&pApicCpu->StatPostIntr, a); /* * Only post valid interrupt vectors. * See Intel spec. 10.5.2 "Valid Interrupt Vectors". */ if (RT_LIKELY(uVector > XAPIC_ILLEGAL_VECTOR_END)) { /* * If the interrupt is already pending in the IRR we can skip the * potential expensive operation of poking the guest EMT out of execution. */ PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpu); if (!apicTestVectorInReg(&pXApicPage->irr, uVector)) /* PAV */ { /* Update the interrupt source tag (debugging). */ if (!pApicCpu->auSrcTags[uVector]) pApicCpu->auSrcTags[uVector] = uSrcTag; else pApicCpu->auSrcTags[uVector] |= RT_BIT_32(31); Log2(("APIC: apicPostInterrupt: SrcCpu=%u TargetCpu=%u uVector=%#x\n", VMMGetCpuId(pVM), pVCpu->idCpu, uVector)); if (enmTriggerMode == XAPICTRIGGERMODE_EDGE) { if (pApic->fPostedIntrsEnabled) { /** @todo posted-interrupt call to hardware */ } else { apicSetVectorInPib(pApicCpu->CTX_SUFF(pvApicPib), uVector); uint32_t const fAlreadySet = apicSetNotificationBitInPib((PAPICPIB)pApicCpu->CTX_SUFF(pvApicPib)); if (!fAlreadySet) { Log2(("APIC: apicPostInterrupt: Setting UPDATE_APIC FF for edge-triggered intr. uVector=%#x\n", uVector)); apicSetInterruptFF(pVCpu, PDMAPICIRQ_UPDATE_PENDING); } } } else { /* * Level-triggered interrupts requires updating of the TMR and thus cannot be * delivered asynchronously. */ apicSetVectorInPib(&pApicCpu->ApicPibLevel, uVector); uint32_t const fAlreadySet = apicSetNotificationBitInPib(&pApicCpu->ApicPibLevel); if (!fAlreadySet) { Log2(("APIC: apicPostInterrupt: Setting UPDATE_APIC FF for level-triggered intr. uVector=%#x\n", uVector)); apicSetInterruptFF(pVCpu, PDMAPICIRQ_UPDATE_PENDING); } } } else { Log2(("APIC: apicPostInterrupt: SrcCpu=%u TargetCpu=%u. Vector %#x Already in IRR, skipping\n", VMMGetCpuId(pVM), pVCpu->idCpu, uVector)); STAM_COUNTER_INC(&pApicCpu->StatPostIntrAlreadyPending); } } else { fAccepted = false; apicSetError(pVCpu, XAPIC_ESR_RECV_ILLEGAL_VECTOR); } STAM_PROFILE_STOP(&pApicCpu->StatPostIntr, a); return fAccepted; } /** * Starts the APIC timer. * * @param pVCpu The cross context virtual CPU structure. * @param uInitialCount The timer's Initial-Count Register (ICR), must be > * 0. * @thread Any. */ VMM_INT_DECL(void) apicStartTimer(PVMCPU pVCpu, uint32_t uInitialCount) { Assert(pVCpu); PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu); Assert(TMTimerIsLockOwner(pApicCpu->CTX_SUFF(pTimer))); Assert(uInitialCount > 0); PCXAPICPAGE pXApicPage = APICCPU_TO_CXAPICPAGE(pApicCpu); uint8_t const uTimerShift = apicGetTimerShift(pXApicPage); uint64_t const cTicksToNext = (uint64_t)uInitialCount << uTimerShift; Log2(("APIC%u: apicStartTimer: uInitialCount=%#RX32 uTimerShift=%u cTicksToNext=%RU64\n", pVCpu->idCpu, uInitialCount, uTimerShift, cTicksToNext)); /* * The assumption here is that the timer doesn't tick during this call * and thus setting a relative time to fire next is accurate. The advantage * however is updating u64TimerInitial 'atomically' while setting the next * tick. */ PTMTIMER pTimer = pApicCpu->CTX_SUFF(pTimer); TMTimerSetRelative(pTimer, cTicksToNext, &pApicCpu->u64TimerInitial); apicHintTimerFreq(pApicCpu, uInitialCount, uTimerShift); } /** * Stops the APIC timer. * * @param pVCpu The cross context virtual CPU structure. * @thread Any. */ VMM_INT_DECL(void) apicStopTimer(PVMCPU pVCpu) { Assert(pVCpu); PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu); Assert(TMTimerIsLockOwner(pApicCpu->CTX_SUFF(pTimer))); Log2(("APIC%u: apicStopTimer\n", pVCpu->idCpu)); PTMTIMER pTimer = pApicCpu->CTX_SUFF(pTimer); TMTimerStop(pTimer); /* This will reset the hint, no need to explicitly call TMTimerSetFrequencyHint(). */ pApicCpu->uHintedTimerInitialCount = 0; pApicCpu->uHintedTimerShift = 0; } /** * Queues a pending interrupt as in-service. * * This function should only be needed without virtualized APIC * registers. With virtualized APIC registers, it's sufficient to keep * the interrupts pending in the IRR as the hardware takes care of * virtual interrupt delivery. * * @returns true if the interrupt was queued to in-service interrupts, * false otherwise. * @param pVCpu The cross context virtual CPU structure. * @param u8PendingIntr The pending interrupt to queue as * in-service. * * @remarks This assumes the caller has done the necessary checks and * is ready to take actually service the interrupt (TPR, * interrupt shadow etc.) */ VMM_INT_DECL(bool) APICQueueInterruptToService(PVMCPU pVCpu, uint8_t u8PendingIntr) { VMCPU_ASSERT_EMT(pVCpu); PVM pVM = pVCpu->CTX_SUFF(pVM); PAPIC pApic = VM_TO_APIC(pVM); Assert(!pApic->fVirtApicRegsEnabled); NOREF(pApic); PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu); bool const fIsPending = apicTestVectorInReg(&pXApicPage->irr, u8PendingIntr); if (fIsPending) { apicClearVectorInReg(&pXApicPage->irr, u8PendingIntr); apicSetVectorInReg(&pXApicPage->isr, u8PendingIntr); apicUpdatePpr(pVCpu); return true; } return false; } /** * De-queues a pending interrupt from in-service. * * This undoes APICQueueInterruptToService() for premature VM-exits before event * injection. * * @param pVCpu The cross context virtual CPU structure. * @param u8PendingIntr The pending interrupt to de-queue from * in-service. */ VMM_INT_DECL(void) APICDequeueInterruptFromService(PVMCPU pVCpu, uint8_t u8PendingIntr) { VMCPU_ASSERT_EMT(pVCpu); PVM pVM = pVCpu->CTX_SUFF(pVM); PAPIC pApic = VM_TO_APIC(pVM); Assert(!pApic->fVirtApicRegsEnabled); NOREF(pApic); PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu); bool const fInService = apicTestVectorInReg(&pXApicPage->isr, u8PendingIntr); if (fInService) { apicClearVectorInReg(&pXApicPage->isr, u8PendingIntr); apicSetVectorInReg(&pXApicPage->irr, u8PendingIntr); apicUpdatePpr(pVCpu); } } /** * Updates pending interrupts from the pending-interrupt bitmaps to the IRR. * * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(void) APICUpdatePendingInterrupts(PVMCPU pVCpu) { VMCPU_ASSERT_EMT_OR_NOT_RUNNING(pVCpu); PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu); PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu); bool fHasPendingIntrs = false; Log3(("APIC%u: APICUpdatePendingInterrupts:\n", pVCpu->idCpu)); STAM_PROFILE_START(&pApicCpu->StatUpdatePendingIntrs, a); /* Update edge-triggered pending interrupts. */ PAPICPIB pPib = (PAPICPIB)pApicCpu->CTX_SUFF(pvApicPib); for (;;) { uint32_t const fAlreadySet = apicClearNotificationBitInPib((PAPICPIB)pApicCpu->CTX_SUFF(pvApicPib)); if (!fAlreadySet) break; AssertCompile(RT_ELEMENTS(pXApicPage->irr.u) == 2 * RT_ELEMENTS(pPib->au64VectorBitmap)); for (size_t idxPib = 0, idxReg = 0; idxPib < RT_ELEMENTS(pPib->au64VectorBitmap); idxPib++, idxReg += 2) { uint64_t const u64Fragment = ASMAtomicXchgU64(&pPib->au64VectorBitmap[idxPib], 0); if (u64Fragment) { uint32_t const u32FragmentLo = RT_LO_U32(u64Fragment); uint32_t const u32FragmentHi = RT_HI_U32(u64Fragment); pXApicPage->irr.u[idxReg].u32Reg |= u32FragmentLo; pXApicPage->irr.u[idxReg + 1].u32Reg |= u32FragmentHi; pXApicPage->tmr.u[idxReg].u32Reg &= ~u32FragmentLo; pXApicPage->tmr.u[idxReg + 1].u32Reg &= ~u32FragmentHi; fHasPendingIntrs = true; } } } /* Update level-triggered pending interrupts. */ pPib = (PAPICPIB)&pApicCpu->ApicPibLevel; for (;;) { uint32_t const fAlreadySet = apicClearNotificationBitInPib((PAPICPIB)&pApicCpu->ApicPibLevel); if (!fAlreadySet) break; AssertCompile(RT_ELEMENTS(pXApicPage->irr.u) == 2 * RT_ELEMENTS(pPib->au64VectorBitmap)); for (size_t idxPib = 0, idxReg = 0; idxPib < RT_ELEMENTS(pPib->au64VectorBitmap); idxPib++, idxReg += 2) { uint64_t const u64Fragment = ASMAtomicXchgU64(&pPib->au64VectorBitmap[idxPib], 0); if (u64Fragment) { uint32_t const u32FragmentLo = RT_LO_U32(u64Fragment); uint32_t const u32FragmentHi = RT_HI_U32(u64Fragment); pXApicPage->irr.u[idxReg].u32Reg |= u32FragmentLo; pXApicPage->irr.u[idxReg + 1].u32Reg |= u32FragmentHi; pXApicPage->tmr.u[idxReg].u32Reg |= u32FragmentLo; pXApicPage->tmr.u[idxReg + 1].u32Reg |= u32FragmentHi; fHasPendingIntrs = true; } } } STAM_PROFILE_STOP(&pApicCpu->StatUpdatePendingIntrs, a); Log3(("APIC%u: APICUpdatePendingInterrupts: fHasPendingIntrs=%RTbool\n", pVCpu->idCpu, fHasPendingIntrs)); if ( fHasPendingIntrs && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC)) apicSignalNextPendingIntr(pVCpu); } /** * Gets the highest priority pending interrupt. * * @returns true if any interrupt is pending, false otherwise. * @param pVCpu The cross context virtual CPU structure. * @param pu8PendingIntr Where to store the interrupt vector if the * interrupt is pending. */ VMM_INT_DECL(bool) APICGetHighestPendingInterrupt(PVMCPU pVCpu, uint8_t *pu8PendingIntr) { VMCPU_ASSERT_EMT(pVCpu); return apicGetHighestPendingInterrupt(pVCpu, pu8PendingIntr); } /** * Posts an interrupt to a target APIC, Hyper-V interface. * * @returns true if the interrupt was accepted, false otherwise. * @param pVCpu The cross context virtual CPU structure. * @param uVector The vector of the interrupt to be posted. * @param fAutoEoi Whether this interrupt has automatic EOI * treatment. * @param enmTriggerMode The trigger mode of the interrupt. * * @thread Any. */ VMM_INT_DECL(void) APICHvSendInterrupt(PVMCPU pVCpu, uint8_t uVector, bool fAutoEoi, XAPICTRIGGERMODE enmTriggerMode) { Assert(pVCpu); Assert(!fAutoEoi); /** @todo AutoEOI. */ RT_NOREF(fAutoEoi); apicPostInterrupt(pVCpu, uVector, enmTriggerMode, 0 /* uSrcTag */); } /** * Sets the Task Priority Register (TPR), Hyper-V interface. * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param uTpr The TPR value to set. * * @remarks Validates like in x2APIC mode. */ VMM_INT_DECL(VBOXSTRICTRC) APICHvSetTpr(PVMCPU pVCpu, uint8_t uTpr) { Assert(pVCpu); VMCPU_ASSERT_EMT(pVCpu); return apicSetTprEx(pVCpu, uTpr, true /* fForceX2ApicBehaviour */); } /** * Gets the Task Priority Register (TPR), Hyper-V interface. * * @returns The TPR value. * @param pVCpu The cross context virtual CPU structure. */ VMM_INT_DECL(uint8_t) APICHvGetTpr(PVMCPU pVCpu) { Assert(pVCpu); VMCPU_ASSERT_EMT(pVCpu); /* * The APIC could be operating in xAPIC mode and thus we should not use the apicReadMsr() * interface which validates the APIC mode and will throw a #GP(0) if not in x2APIC mode. * We could use the apicReadRegister() MMIO interface, but why bother getting the PDMDEVINS * pointer, so just directly read the APIC page. */ PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpu); return apicReadRaw32(pXApicPage, XAPIC_OFF_TPR); } /** * Sets the Interrupt Command Register (ICR), Hyper-V interface. * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param uIcr The ICR value to set. */ VMM_INT_DECL(VBOXSTRICTRC) APICHvSetIcr(PVMCPU pVCpu, uint64_t uIcr) { Assert(pVCpu); VMCPU_ASSERT_EMT(pVCpu); return apicSetIcr(pVCpu, uIcr, VINF_CPUM_R3_MSR_WRITE); } /** * Gets the Interrupt Command Register (ICR), Hyper-V interface. * * @returns The ICR value. * @param pVCpu The cross context virtual CPU structure. */ VMM_INT_DECL(uint64_t) APICHvGetIcr(PVMCPU pVCpu) { Assert(pVCpu); VMCPU_ASSERT_EMT(pVCpu); return apicGetIcrNoCheck(pVCpu); } /** * Sets the End-Of-Interrupt (EOI) register, Hyper-V interface. * * @returns Strict VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param uEoi The EOI value. */ VMM_INT_DECL(VBOXSTRICTRC) APICHvSetEoi(PVMCPU pVCpu, uint32_t uEoi) { Assert(pVCpu); VMCPU_ASSERT_EMT_OR_NOT_RUNNING(pVCpu); return apicSetEoi(pVCpu, uEoi, VINF_CPUM_R3_MSR_WRITE, true /* fForceX2ApicBehaviour */); } /** * Gets the APIC page pointers for the specified VCPU. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. * @param pHCPhys Where to store the host-context physical address. * @param pR0Ptr Where to store the ring-0 address. * @param pR3Ptr Where to store the ring-3 address (optional). * @param pRCPtr Where to store the raw-mode context address * (optional). */ VMM_INT_DECL(int) APICGetApicPageForCpu(PVMCPU pVCpu, PRTHCPHYS pHCPhys, PRTR0PTR pR0Ptr, PRTR3PTR pR3Ptr, PRTRCPTR pRCPtr) { AssertReturn(pVCpu, VERR_INVALID_PARAMETER); AssertReturn(pHCPhys, VERR_INVALID_PARAMETER); AssertReturn(pR0Ptr, VERR_INVALID_PARAMETER); Assert(PDMHasApic(pVCpu->CTX_SUFF(pVM))); PCAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu); *pHCPhys = pApicCpu->HCPhysApicPage; *pR0Ptr = pApicCpu->pvApicPageR0; if (pR3Ptr) *pR3Ptr = pApicCpu->pvApicPageR3; if (pRCPtr) *pRCPtr = pApicCpu->pvApicPageRC; return VINF_SUCCESS; }