VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/APICAll.cpp@ 60999

Last change on this file since 60999 was 60916, checked in by vboxsync, 9 years ago

APIC: Allow trigger mode bit for LINTx LVTs.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 96.2 KB
Line 
1/* $Id: APICAll.cpp 60916 2016-05-10 07:37:05Z vboxsync $ */
2/** @file
3 * APIC - Advanced Programmable Interrupt Controller - All Contexts.
4 */
5
6/*
7 * Copyright (C) 2016 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_DEV_APIC
23#include "APICInternal.h"
24#include <VBox/vmm/pdmdev.h>
25#include <VBox/vmm/vm.h>
26#include <VBox/vmm/vmcpuset.h>
27
28/*********************************************************************************************************************************
29* Global Variables *
30*********************************************************************************************************************************/
31#if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4
32/** An ordered array of valid LVT masks. */
33static const uint32_t g_au32LvtValidMasks[] =
34{
35 XAPIC_LVT_TIMER_VALID,
36 XAPIC_LVT_THERMAL_VALID,
37 XAPIC_LVT_PERF_VALID,
38 XAPIC_LVT_LINT_VALID, /* LINT0 */
39 XAPIC_LVT_LINT_VALID, /* LINT1 */
40 XAPIC_LVT_ERROR_VALID
41};
42#endif
43
44#if 0
45/** @todo CMCI */
46static const uint32_t g_au32LvtExtValidMask[] =
47{
48 XAPIC_LVT_CMCI
49};
50#endif
51
52
53/**
54 * Checks if a vector is set in an APIC 256-bit sparse register.
55 *
56 * @returns true if the specified vector is set, false otherwise.
57 * @param pApicReg The APIC 256-bit spare register.
58 * @param uVector The vector to check if set.
59 */
60DECLINLINE(bool) apicTestVectorInReg(const volatile XAPIC256BITREG *pApicReg, uint8_t uVector)
61{
62 const volatile uint8_t *pbBitmap = (const volatile uint8_t *)&pApicReg->u[0];
63 return ASMBitTest(pbBitmap + XAPIC_REG256_VECTOR_OFF(uVector), XAPIC_REG256_VECTOR_BIT(uVector));
64}
65
66
67/**
68 * Sets the vector in an APIC 256-bit sparse register.
69 *
70 * @param pApicReg The APIC 256-bit spare register.
71 * @param uVector The vector to set.
72 */
73DECLINLINE(void) apicSetVectorInReg(volatile XAPIC256BITREG *pApicReg, uint8_t uVector)
74{
75 volatile uint8_t *pbBitmap = (volatile uint8_t *)&pApicReg->u[0];
76 ASMAtomicBitSet(pbBitmap + XAPIC_REG256_VECTOR_OFF(uVector), XAPIC_REG256_VECTOR_BIT(uVector));
77}
78
79
80/**
81 * Clears the vector in an APIC 256-bit sparse register.
82 *
83 * @param pApicReg The APIC 256-bit spare register.
84 * @param uVector The vector to clear.
85 */
86DECLINLINE(void) apicClearVectorInReg(volatile XAPIC256BITREG *pApicReg, uint8_t uVector)
87{
88 volatile uint8_t *pbBitmap = (volatile uint8_t *)&pApicReg->u[0];
89 ASMAtomicBitClear(pbBitmap + XAPIC_REG256_VECTOR_OFF(uVector), XAPIC_REG256_VECTOR_BIT(uVector));
90}
91
92
93/**
94 * Checks if a vector is set in an APIC Pending-Interrupt Bitmap (PIB).
95 *
96 * @returns true if the specified vector is set, false otherwise.
97 * @param pvPib Opaque pointer to the PIB.
98 * @param uVector The vector to check if set.
99 */
100DECLINLINE(bool) apicTestVectorInPib(volatile void *pvPib, uint8_t uVector)
101{
102 return ASMBitTest(pvPib, uVector);
103}
104
105
106/**
107 * Atomically sets the PIB notification bit.
108 *
109 * @returns non-zero if the bit was already set, 0 otherwise.
110 * @param pApicPib Pointer to the PIB.
111 */
112DECLINLINE(uint32_t) apicSetNotificationBitInPib(PAPICPIB pApicPib)
113{
114 return ASMAtomicXchgU32(&pApicPib->fOutstandingNotification, RT_BIT_32(31));
115}
116
117
118/**
119 * Atomically tests and clears the PIB notification bit.
120 *
121 * @returns non-zero if the bit was already set, 0 otherwise.
122 * @param pApicPib Pointer to the PIB.
123 */
124DECLINLINE(uint32_t) apicClearNotificationBitInPib(PAPICPIB pApicPib)
125{
126 return ASMAtomicXchgU32(&pApicPib->fOutstandingNotification, UINT32_C(0));
127}
128
129
130/**
131 * Sets the vector in an APIC Pending-Interrupt Bitmap (PIB).
132 *
133 * @param pvPib Opaque pointer to the PIB.
134 * @param uVector The vector to set.
135 */
136DECLINLINE(void) apicSetVectorInPib(volatile void *pvPib, uint8_t uVector)
137{
138 ASMAtomicBitSet(pvPib, uVector);
139}
140
141
142/**
143 * Clears the vector in an APIC Pending-Interrupt Bitmap (PIB).
144 *
145 * @param pvPib Opaque pointer to the PIB.
146 * @param uVector The vector to clear.
147 */
148DECLINLINE(void) apicClearVectorInPib(volatile void *pvPib, uint8_t uVector)
149{
150 ASMAtomicBitClear(pvPib, uVector);
151}
152
153
154/**
155 * Atomically OR's a fragment (32 vectors) into an APIC 256-bit sparse
156 * register.
157 *
158 * @param pApicReg The APIC 256-bit spare register.
159 * @param idxFragment The index of the 32-bit fragment in @a
160 * pApicReg.
161 * @param u32Fragment The 32-bit vector fragment to OR.
162 */
163DECLINLINE(void) apicOrVectorsToReg(volatile XAPIC256BITREG *pApicReg, size_t idxFragment, uint32_t u32Fragment)
164{
165 Assert(idxFragment < RT_ELEMENTS(pApicReg->u));
166 ASMAtomicOrU32(&pApicReg->u[idxFragment].u32Reg, u32Fragment);
167}
168
169
170/**
171 * Atomically AND's a fragment (32 vectors) into an APIC
172 * 256-bit sparse register.
173 *
174 * @param pApicReg The APIC 256-bit spare register.
175 * @param idxFragment The index of the 32-bit fragment in @a
176 * pApicReg.
177 * @param u32Fragment The 32-bit vector fragment to AND.
178 */
179DECLINLINE(void) apicAndVectorsToReg(volatile XAPIC256BITREG *pApicReg, size_t idxFragment, uint32_t u32Fragment)
180{
181 Assert(idxFragment < RT_ELEMENTS(pApicReg->u));
182 ASMAtomicAndU32(&pApicReg->u[idxFragment].u32Reg, u32Fragment);
183}
184
185
186/**
187 * Reports and returns appropriate error code for invalid MSR accesses.
188 *
189 * @returns Strict VBox status code.
190 * @retval VINF_CPUM_R3_MSR_WRITE if the MSR write could not be serviced in the
191 * current context (raw-mode or ring-0).
192 * @retval VINF_CPUM_R3_MSR_READ if the MSR read could not be serviced in the
193 * current context (raw-mode or ring-0).
194 * @retval VERR_CPUM_RAISE_GP_0 on failure, the caller is expected to take the
195 * appropriate actions.
196 *
197 * @param pVCpu The cross context virtual CPU structure.
198 * @param u32Reg The MSR being accessed.
199 * @param enmAccess The invalid-access type.
200 */
201static VBOXSTRICTRC apicMsrAccessError(PVMCPU pVCpu, uint32_t u32Reg, APICMSRACCESS enmAccess)
202{
203 static struct
204 {
205 const char *pszBefore; /* The error message before printing the MSR index */
206 const char *pszAfter; /* The error message after printing the MSR index */
207 int rcRZ; /* The RZ error code */
208 } const s_aAccess[] =
209 {
210 { "read MSR", " while not in x2APIC mode", VINF_CPUM_R3_MSR_READ },
211 { "write MSR", " while not in x2APIC mode", VINF_CPUM_R3_MSR_WRITE },
212 { "read reserved/unknown MSR", "", VINF_CPUM_R3_MSR_READ },
213 { "write reserved/unknown MSR", "", VINF_CPUM_R3_MSR_WRITE },
214 { "read write-only MSR", "", VINF_CPUM_R3_MSR_READ },
215 { "write read-only MSR", "", VINF_CPUM_R3_MSR_WRITE },
216 { "read reserved bits of MSR", "", VINF_CPUM_R3_MSR_READ },
217 { "write reserved bits of MSR", "", VINF_CPUM_R3_MSR_WRITE },
218 { "write an invalid value to MSR", "", VINF_CPUM_R3_MSR_WRITE },
219 { "write MSR", "disallowed by configuration", VINF_CPUM_R3_MSR_WRITE }
220 };
221 AssertCompile(RT_ELEMENTS(s_aAccess) == APICMSRACCESS_COUNT);
222
223 size_t const i = enmAccess;
224 Assert(i < RT_ELEMENTS(s_aAccess));
225#ifdef IN_RING3
226 LogRelMax(5, ("APIC%u: Attempt to %s (%#x)%s -> #GP(0)\n", pVCpu->idCpu, s_aAccess[i].pszBefore, u32Reg,
227 s_aAccess[i].pszAfter));
228 return VERR_CPUM_RAISE_GP_0;
229#else
230 return s_aAccess[i].rcRZ;
231#endif
232}
233
234
235/**
236 * Gets the descriptive APIC mode.
237 *
238 * @returns The name.
239 * @param enmMode The xAPIC mode.
240 */
241const char *apicGetModeName(APICMODE enmMode)
242{
243 switch (enmMode)
244 {
245 case APICMODE_DISABLED: return "Disabled";
246 case APICMODE_XAPIC: return "xAPIC";
247 case APICMODE_X2APIC: return "x2APIC";
248 default: break;
249 }
250 return "Invalid";
251}
252
253
254/**
255 * Gets the descriptive destination format name.
256 *
257 * @returns The destination format name.
258 * @param enmDestFormat The destination format.
259 */
260const char *apicGetDestFormatName(XAPICDESTFORMAT enmDestFormat)
261{
262 switch (enmDestFormat)
263 {
264 case XAPICDESTFORMAT_FLAT: return "Flat";
265 case XAPICDESTFORMAT_CLUSTER: return "Cluster";
266 default: break;
267 }
268 return "Invalid";
269}
270
271
272/**
273 * Gets the descriptive delivery mode name.
274 *
275 * @returns The delivery mode name.
276 * @param enmDeliveryMode The delivery mode.
277 */
278const char *apicGetDeliveryModeName(XAPICDELIVERYMODE enmDeliveryMode)
279{
280 switch (enmDeliveryMode)
281 {
282 case XAPICDELIVERYMODE_FIXED: return "Fixed";
283 case XAPICDELIVERYMODE_LOWEST_PRIO: return "Lowest-priority";
284 case XAPICDELIVERYMODE_SMI: return "SMI";
285 case XAPICDELIVERYMODE_NMI: return "NMI";
286 case XAPICDELIVERYMODE_INIT: return "INIT";
287 case XAPICDELIVERYMODE_STARTUP: return "SIPI";
288 case XAPICDELIVERYMODE_EXTINT: return "ExtINT";
289 default: break;
290 }
291 return "Invalid";
292}
293
294
295/**
296 * Gets the descriptive destination mode name.
297 *
298 * @returns The destination mode name.
299 * @param enmDestMode The destination mode.
300 */
301const char *apicGetDestModeName(XAPICDESTMODE enmDestMode)
302{
303 switch (enmDestMode)
304 {
305 case XAPICDESTMODE_PHYSICAL: return "Physical";
306 case XAPICDESTMODE_LOGICAL: return "Logical";
307 default: break;
308 }
309 return "Invalid";
310}
311
312
313/**
314 * Gets the descriptive trigger mode name.
315 *
316 * @returns The trigger mode name.
317 * @param enmTriggerMode The trigger mode.
318 */
319const char *apicGetTriggerModeName(XAPICTRIGGERMODE enmTriggerMode)
320{
321 switch (enmTriggerMode)
322 {
323 case XAPICTRIGGERMODE_EDGE: return "Edge";
324 case XAPICTRIGGERMODE_LEVEL: return "Level";
325 default: break;
326 }
327 return "Invalid";
328}
329
330
331/**
332 * Gets the destination shorthand name.
333 *
334 * @returns The destination shorthand name.
335 * @param enmDestShorthand The destination shorthand.
336 */
337const char *apicGetDestShorthandName(XAPICDESTSHORTHAND enmDestShorthand)
338{
339 switch (enmDestShorthand)
340 {
341 case XAPICDESTSHORTHAND_NONE: return "None";
342 case XAPICDESTSHORTHAND_SELF: return "Self";
343 case XAPIDDESTSHORTHAND_ALL_INCL_SELF: return "All including self";
344 case XAPICDESTSHORTHAND_ALL_EXCL_SELF: return "All excluding self";
345 default: break;
346 }
347 return "Invalid";
348}
349
350
351/**
352 * Gets the timer mode name.
353 *
354 * @returns The timer mode name.
355 * @param enmTimerMode The timer mode.
356 */
357const char *apicGetTimerModeName(XAPICTIMERMODE enmTimerMode)
358{
359 switch (enmTimerMode)
360 {
361 case XAPICTIMERMODE_ONESHOT: return "One-shot";
362 case XAPICTIMERMODE_PERIODIC: return "Periodic";
363 case XAPICTIMERMODE_TSC_DEADLINE: return "TSC deadline";
364 default: break;
365 }
366 return "Invalid";
367}
368
369
370/**
371 * Gets the APIC mode given the base MSR value.
372 *
373 * @returns The APIC mode.
374 * @param uApicBaseMsr The APIC Base MSR value.
375 */
376APICMODE apicGetMode(uint64_t uApicBaseMsr)
377{
378 uint32_t const uMode = MSR_APICBASE_GET_MODE(uApicBaseMsr);
379 APICMODE const enmMode = (APICMODE)uMode;
380#ifdef VBOX_STRICT
381 /* Paranoia. */
382 switch (uMode)
383 {
384 case APICMODE_DISABLED:
385 case APICMODE_INVALID:
386 case APICMODE_XAPIC:
387 case APICMODE_X2APIC:
388 break;
389 default:
390 AssertMsgFailed(("Invalid mode"));
391 }
392#endif
393 return enmMode;
394}
395
396
397/**
398 * Returns whether the APIC is hardware enabled or not.
399 *
400 * @returns true if enabled, false otherwise.
401 */
402DECLINLINE(bool) apicIsEnabled(PVMCPU pVCpu)
403{
404 PCAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
405 return MSR_APICBASE_IS_ENABLED(pApicCpu->uApicBaseMsr);
406}
407
408
409/**
410 * Finds the most significant set bit in an APIC 256-bit sparse register.
411 *
412 * @returns @a rcNotFound if no bit was set, 0-255 otherwise.
413 * @param pReg The APIC 256-bit sparse register.
414 * @param rcNotFound What to return when no bit is set.
415 */
416static int apicGetHighestSetBit(volatile const XAPIC256BITREG *pReg, int rcNotFound)
417{
418 ssize_t const cFragments = RT_ELEMENTS(pReg->u);
419 unsigned const uFragmentShift = 5;
420 AssertCompile(1 << uFragmentShift == sizeof(pReg->u[0].u32Reg) * 8);
421 for (ssize_t i = cFragments - 1; i >= 0; i--)
422 {
423 uint32_t const uFragment = pReg->u[i].u32Reg;
424 if (uFragment)
425 {
426 unsigned idxSetBit = ASMBitLastSetU32(uFragment);
427 --idxSetBit;
428 idxSetBit |= i << uFragmentShift;
429 return idxSetBit;
430 }
431 }
432 return rcNotFound;
433}
434
435
436/**
437 * Reads a 32-bit register at a specified offset.
438 *
439 * @returns The value at the specified offset.
440 * @param pXApicPage The xAPIC page.
441 * @param offReg The offset of the register being read.
442 */
443DECLINLINE(uint32_t) apicReadRaw32(PCXAPICPAGE pXApicPage, uint16_t offReg)
444{
445 Assert(offReg < sizeof(*pXApicPage) - sizeof(uint32_t));
446 uint8_t const *pbXApic = (const uint8_t *)pXApicPage;
447 uint32_t const uValue = *(const uint32_t *)(pbXApic + offReg);
448 return uValue;
449}
450
451
452/**
453 * Writes a 32-bit register at a specified offset.
454 *
455 * @param pXApicPage The xAPIC page.
456 * @param offReg The offset of the register being written.
457 * @param uReg The value of the register.
458 */
459DECLINLINE(void) apicWriteRaw32(PXAPICPAGE pXApicPage, uint16_t offReg, uint32_t uReg)
460{
461 Assert(offReg < sizeof(*pXApicPage) - sizeof(uint32_t));
462 uint8_t *pbXApic = (uint8_t *)pXApicPage;
463 *(uint32_t *)(pbXApic + offReg) = uReg;
464}
465
466
467/**
468 * Sets an error in the internal ESR of the specified APIC.
469 *
470 * @param pVCpu The cross context virtual CPU structure.
471 * @param uError The error.
472 * @thread Any.
473 */
474DECLINLINE(void) apicSetError(PVMCPU pVCpu, uint32_t uError)
475{
476 PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
477 ASMAtomicOrU32(&pApicCpu->uEsrInternal, uError);
478}
479
480
481/**
482 * Clears all errors in the internal ESR.
483 *
484 * @returns The value of the internal ESR before clearing.
485 * @param pVCpu The cross context virtual CPU structure.
486 */
487DECLINLINE(uint32_t) apicClearAllErrors(PVMCPU pVCpu)
488{
489 VMCPU_ASSERT_EMT(pVCpu);
490 PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
491 return ASMAtomicXchgU32(&pApicCpu->uEsrInternal, 0);
492}
493
494
495/**
496 * Signals the guest if a pending interrupt is ready to be serviced.
497 *
498 * @param pVCpu The cross context virtual CPU structure.
499 */
500static void apicSignalNextPendingIntr(PVMCPU pVCpu)
501{
502 VMCPU_ASSERT_EMT(pVCpu);
503
504 PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpu);
505 if (pXApicPage->svr.u.fApicSoftwareEnable)
506 {
507 int const irrv = apicGetHighestSetBit(&pXApicPage->irr, -1 /* rcNotFound */);
508 if (irrv >= 0)
509 {
510 Assert(irrv <= (int)UINT8_MAX);
511 uint8_t const uVector = irrv;
512 uint8_t const uPpr = pXApicPage->ppr.u8Ppr;
513 if ( !uPpr
514 || XAPIC_PPR_GET_PP(uVector) > XAPIC_PPR_GET_PP(uPpr))
515 {
516 Log2(("APIC%u: apicSignalNextPendingIntr: Signaling pending interrupt. uVector=%#x\n", pVCpu->idCpu, uVector));
517 APICSetInterruptFF(pVCpu, PDMAPICIRQ_HARDWARE);
518 }
519 else
520 {
521 Log2(("APIC%u: apicSignalNextPendingIntr: Nothing to signal. uVector=%#x uPpr=%#x uTpr=%#x\n", pVCpu->idCpu,
522 uVector, uPpr, pXApicPage->tpr.u8Tpr));
523 }
524 }
525 }
526 else
527 {
528 Log2(("APIC%u: apicSignalNextPendingIntr: APIC software-disabled, clearing pending interrupt\n", pVCpu->idCpu));
529 APICClearInterruptFF(pVCpu, PDMAPICIRQ_HARDWARE);
530 }
531}
532
533
534/**
535 * Sets the Spurious-Interrupt Vector Register (SVR).
536 *
537 * @returns Strict VBox status code.
538 * @param pVCpu The cross context virtual CPU structure.
539 * @param uSvr The SVR value.
540 */
541static VBOXSTRICTRC apicSetSvr(PVMCPU pVCpu, uint32_t uSvr)
542{
543 VMCPU_ASSERT_EMT(pVCpu);
544
545 uint32_t uValidMask = XAPIC_SVR;
546 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
547 if (pXApicPage->version.u.fEoiBroadcastSupression)
548 uValidMask |= XAPIC_SVR_SUPRESS_EOI_BROADCAST;
549
550 if ( XAPIC_IN_X2APIC_MODE(pVCpu)
551 && (uSvr & ~uValidMask))
552 return apicMsrAccessError(pVCpu, MSR_IA32_X2APIC_SVR, APICMSRACCESS_WRITE_RSVD_BITS);
553
554 Log2(("APIC%u: apicSetSvr: uSvr=%#RX32\n", pVCpu->idCpu, uSvr));
555 apicWriteRaw32(pXApicPage, XAPIC_OFF_SVR, uSvr);
556 if (!pXApicPage->svr.u.fApicSoftwareEnable)
557 {
558 /** @todo CMCI. */
559 pXApicPage->lvt_timer.u.u1Mask = 1;
560#if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4
561 pXApicPage->lvt_thermal.u.u1Mask = 1;
562#endif
563 pXApicPage->lvt_perf.u.u1Mask = 1;
564 pXApicPage->lvt_lint0.u.u1Mask = 1;
565 pXApicPage->lvt_lint1.u.u1Mask = 1;
566 pXApicPage->lvt_error.u.u1Mask = 1;
567 }
568
569 apicSignalNextPendingIntr(pVCpu);
570 return VINF_SUCCESS;
571}
572
573
574/**
575 * Sends an interrupt to one or more APICs.
576 *
577 * @returns Strict VBox status code.
578 * @param pVM The cross context VM structure.
579 * @param pVCpu The cross context virtual CPU structure, can be
580 * NULL if the source of the interrupt is not an
581 * APIC (for e.g. a bus).
582 * @param uVector The interrupt vector.
583 * @param enmTriggerMode The trigger mode.
584 * @param enmDeliveryMode The delivery mode.
585 * @param pDestCpuSet The destination CPU set.
586 * @param rcRZ The return code if the operation cannot be
587 * performed in the current context.
588 */
589static VBOXSTRICTRC apicSendIntr(PVM pVM, PVMCPU pVCpu, uint8_t uVector, XAPICTRIGGERMODE enmTriggerMode,
590 XAPICDELIVERYMODE enmDeliveryMode, PCVMCPUSET pDestCpuSet, int rcRZ)
591{
592 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
593 VMCPUID const cCpus = pVM->cCpus;
594 switch (enmDeliveryMode)
595 {
596 case XAPICDELIVERYMODE_FIXED:
597 {
598 for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++)
599 {
600 if ( VMCPUSET_IS_PRESENT(pDestCpuSet, idCpu)
601 && apicIsEnabled(&pVM->aCpus[idCpu]))
602 APICPostInterrupt(&pVM->aCpus[idCpu], uVector, enmTriggerMode);
603 }
604 break;
605 }
606
607 case XAPICDELIVERYMODE_LOWEST_PRIO:
608 {
609 VMCPUID const idCpu = VMCPUSET_FIND_FIRST_PRESENT(pDestCpuSet);
610 if ( idCpu < pVM->cCpus
611 && apicIsEnabled(&pVM->aCpus[idCpu]))
612 APICPostInterrupt(&pVM->aCpus[idCpu], uVector, enmTriggerMode);
613 else
614 Log2(("APIC: apicSendIntr: No CPU found for lowest-priority delivery mode!\n"));
615 break;
616 }
617
618 case XAPICDELIVERYMODE_SMI:
619 {
620 for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++)
621 {
622 if (VMCPUSET_IS_PRESENT(pDestCpuSet, idCpu))
623 {
624 Log2(("APIC: apicSendIntr: Raising SMI on VCPU%u\n", idCpu));
625 APICSetInterruptFF(&pVM->aCpus[idCpu], PDMAPICIRQ_SMI);
626 }
627 }
628 break;
629 }
630
631 case XAPICDELIVERYMODE_NMI:
632 {
633 for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++)
634 {
635 if ( VMCPUSET_IS_PRESENT(pDestCpuSet, idCpu)
636 && apicIsEnabled(&pVM->aCpus[idCpu]))
637 {
638 Log2(("APIC: apicSendIntr: Raising NMI on VCPU%u\n", idCpu));
639 APICSetInterruptFF(&pVM->aCpus[idCpu], PDMAPICIRQ_NMI);
640 }
641 }
642 break;
643 }
644
645 case XAPICDELIVERYMODE_INIT:
646 {
647#ifdef IN_RING3
648 for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++)
649 if (VMCPUSET_IS_PRESENT(pDestCpuSet, idCpu))
650 {
651 Log2(("APIC: apicSendIntr: Issuing INIT to VCPU%u\n", idCpu));
652 VMMR3SendInitIpi(pVM, idCpu);
653 }
654#else
655 /* We need to return to ring-3 to deliver the INIT. */
656 rcStrict = rcRZ;
657#endif
658 break;
659 }
660
661 case XAPICDELIVERYMODE_STARTUP:
662 {
663#ifdef IN_RING3
664 for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++)
665 if (VMCPUSET_IS_PRESENT(pDestCpuSet, idCpu))
666 {
667 Log2(("APIC: apicSendIntr: Issuing SIPI to VCPU%u\n", idCpu));
668 VMMR3SendStartupIpi(pVM, idCpu, uVector);
669 }
670#else
671 /* We need to return to ring-3 to deliver the SIPI. */
672 rcStrict = rcRZ;
673 Log2(("APIC: apicSendIntr: SIPI issued, returning to RZ. rc=%Rrc\n", rcRZ));
674#endif
675 break;
676 }
677
678 case XAPICDELIVERYMODE_EXTINT:
679 {
680 for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++)
681 if (VMCPUSET_IS_PRESENT(pDestCpuSet, idCpu))
682 {
683 Log2(("APIC: apicSendIntr: Raising EXTINT on VCPU%u\n", idCpu));
684 APICSetInterruptFF(&pVM->aCpus[idCpu], PDMAPICIRQ_EXTINT);
685 }
686 break;
687 }
688
689 default:
690 {
691 AssertMsgFailed(("APIC: apicSendIntr: Unsupported delivery mode %#x (%s)\n", enmDeliveryMode,
692 apicGetDeliveryModeName(enmDeliveryMode)));
693 break;
694 }
695 }
696
697 /*
698 * If an illegal vector is programmed, set the 'send illegal vector' error here if the
699 * interrupt is being sent by an APIC.
700 *
701 * The 'receive illegal vector' will be set on the target APIC when the interrupt
702 * gets generated, see APICPostInterrupt().
703 *
704 * See Intel spec. 10.5.3 "Error Handling".
705 */
706 if ( rcStrict != rcRZ
707 && pVCpu)
708 {
709 /*
710 * Flag only errors when the delivery mode is fixed and not others.
711 *
712 * Ubuntu 10.04-3 amd64 live CD with 2 VCPUs gets upset as it sends an SIPI to the
713 * 2nd VCPU with vector 6 and checks the ESR for no errors, see @bugref{8245#c86}.
714 */
715 /** @todo The spec says this for LVT, but not explcitly for ICR-lo
716 * but it probably is true. */
717 if (enmDeliveryMode == XAPICDELIVERYMODE_FIXED)
718 {
719 if (RT_UNLIKELY(uVector <= XAPIC_ILLEGAL_VECTOR_END))
720 apicSetError(pVCpu, XAPIC_ESR_SEND_ILLEGAL_VECTOR);
721 }
722 }
723 return rcStrict;
724}
725
726
727/**
728 * Checks if this APIC belongs to a logical destination.
729 *
730 * @returns true if the APIC belongs to the logical
731 * destination, false otherwise.
732 * @param pVCpu The cross context virtual CPU structure.
733 * @param fDest The destination mask.
734 *
735 * @thread Any.
736 */
737static bool apicIsLogicalDest(PVMCPU pVCpu, uint32_t fDest)
738{
739 if (XAPIC_IN_X2APIC_MODE(pVCpu))
740 {
741 /*
742 * Flat logical mode is not supported in x2APIC mode.
743 * In clustered logical mode, the 32-bit logical ID in the LDR is interpreted as follows:
744 * - High 16 bits is the cluster ID.
745 * - Low 16 bits: each bit represents a unique APIC within the cluster.
746 */
747 PCX2APICPAGE pX2ApicPage = VMCPU_TO_CX2APICPAGE(pVCpu);
748 uint32_t const u32Ldr = pX2ApicPage->ldr.u32LogicalApicId;
749 if (X2APIC_LDR_GET_CLUSTER_ID(u32Ldr) == (fDest & X2APIC_LDR_CLUSTER_ID))
750 return RT_BOOL(u32Ldr & fDest & X2APIC_LDR_LOGICAL_ID);
751 return false;
752 }
753
754#if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4
755 /*
756 * In both flat and clustered logical mode, a destination mask of all set bits indicates a broadcast.
757 * See AMD spec. 16.6.1 "Receiving System and IPI Interrupts".
758 */
759 Assert(!XAPIC_IN_X2APIC_MODE(pVCpu));
760 if ((fDest & XAPIC_LDR_FLAT_LOGICAL_ID) == XAPIC_LDR_FLAT_LOGICAL_ID)
761 return true;
762
763 PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpu);
764 XAPICDESTFORMAT enmDestFormat = (XAPICDESTFORMAT)pXApicPage->dfr.u.u4Model;
765 if (enmDestFormat == XAPICDESTFORMAT_FLAT)
766 {
767 /* The destination mask is interpreted as a bitmap of 8 unique logical APIC IDs. */
768 uint8_t const u8Ldr = pXApicPage->ldr.u.u8LogicalApicId;
769 return RT_BOOL(u8Ldr & fDest & XAPIC_LDR_FLAT_LOGICAL_ID);
770 }
771
772 /*
773 * In clustered logical mode, the 8-bit logical ID in the LDR is interpreted as follows:
774 * - High 4 bits is the cluster ID.
775 * - Low 4 bits: each bit represents a unique APIC within the cluster.
776 */
777 Assert(enmDestFormat == XAPICDESTFORMAT_CLUSTER);
778 uint8_t const u8Ldr = pXApicPage->ldr.u.u8LogicalApicId;
779 if (XAPIC_LDR_CLUSTERED_GET_CLUSTER_ID(u8Ldr) == (fDest & XAPIC_LDR_CLUSTERED_CLUSTER_ID))
780 return RT_BOOL(u8Ldr & fDest & XAPIC_LDR_CLUSTERED_LOGICAL_ID);
781 return false;
782#else
783# error "Implement Pentium and P6 family APIC architectures"
784#endif
785}
786
787
788/**
789 * Figures out the set of destination CPUs for a given destination mode, format
790 * and delivery mode setting.
791 *
792 * @param pVM The cross context VM structure.
793 * @param fDestMask The destination mask.
794 * @param fBroadcastMask The broadcast mask.
795 * @param enmDestMode The destination mode.
796 * @param enmDeliveryMode The delivery mode.
797 * @param pDestCpuSet The destination CPU set to update.
798 */
799static void apicGetDestCpuSet(PVM pVM, uint32_t fDestMask, uint32_t fBroadcastMask, XAPICDESTMODE enmDestMode,
800 XAPICDELIVERYMODE enmDeliveryMode, PVMCPUSET pDestCpuSet)
801{
802 VMCPUSET_EMPTY(pDestCpuSet);
803
804 /*
805 * Physical destination mode only supports either a broadcast or a single target.
806 * - Broadcast with lowest-priority delivery mode is not supported[1], we deliver it
807 * as a regular broadcast like in fixed delivery mode.
808 * - For a single target, lowest-priority delivery mode makes no sense. We deliver
809 * to the target like in fixed delivery mode.
810 *
811 * [1] See Intel spec. 10.6.2.1 "Physical Destination Mode".
812 */
813 if ( enmDestMode == XAPICDESTMODE_PHYSICAL
814 && enmDeliveryMode == XAPICDELIVERYMODE_LOWEST_PRIO)
815 {
816 AssertMsgFailed(("APIC: Lowest-priority delivery using physical destination mode!"));
817 enmDeliveryMode = XAPICDELIVERYMODE_FIXED;
818 }
819
820 uint32_t const cCpus = pVM->cCpus;
821 if (enmDeliveryMode == XAPICDELIVERYMODE_LOWEST_PRIO)
822 {
823 Assert(enmDestMode == XAPICDESTMODE_LOGICAL);
824#if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4
825 VMCPUID idCpuLowestTpr = NIL_VMCPUID;
826 uint8_t u8LowestTpr = UINT8_C(0xff);
827 for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++)
828 {
829 PVMCPU pVCpuDest = &pVM->aCpus[idCpu];
830 if (apicIsLogicalDest(pVCpuDest, fDestMask))
831 {
832 PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpuDest);
833 uint8_t const u8Tpr = pXApicPage->tpr.u8Tpr; /* PAV */
834
835 /*
836 * If there is a tie for lowest priority, the local APIC with the highest ID is chosen.
837 * Hence the use of "<=" in the check below.
838 * See AMD spec. 16.6.2 "Lowest Priority Messages and Arbitration".
839 */
840 if (u8Tpr <= u8LowestTpr)
841 {
842 u8LowestTpr = u8Tpr;
843 idCpuLowestTpr = idCpu;
844 }
845 }
846 }
847 if (idCpuLowestTpr != NIL_VMCPUID)
848 VMCPUSET_ADD(pDestCpuSet, idCpuLowestTpr);
849#else
850# error "Implement Pentium and P6 family APIC architectures"
851#endif
852 return;
853 }
854
855 /*
856 * x2APIC:
857 * - In both physical and logical destination mode, a destination mask of 0xffffffff implies a broadcast[1].
858 * xAPIC:
859 * - In physical destination mode, a destination mask of 0xff implies a broadcast[2].
860 * - In both flat and clustered logical mode, a destination mask of 0xff implies a broadcast[3].
861 *
862 * [1] See Intel spec. 10.12.9 "ICR Operation in x2APIC Mode".
863 * [2] See Intel spec. 10.6.2.1 "Physical Destination Mode".
864 * [2] See AMD spec. 16.6.1 "Receiving System and IPI Interrupts".
865 */
866 if ((fDestMask & fBroadcastMask) == fBroadcastMask)
867 {
868 VMCPUSET_FILL(pDestCpuSet);
869 return;
870 }
871
872 if (enmDestMode == XAPICDESTMODE_PHYSICAL)
873 {
874 /* The destination mask is interpreted as the physical APIC ID of a single target. */
875#if 1
876 /* Since our physical APIC ID is read-only to software, set the corresponding bit in the CPU set. */
877 if (RT_LIKELY(fDestMask < cCpus))
878 VMCPUSET_ADD(pDestCpuSet, fDestMask);
879#else
880 /* The physical APIC ID may not match our VCPU ID, search through the list of targets. */
881 for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++)
882 {
883 PVMCPU pVCpuDest = &pVM->aCpus[idCpu];
884 if (XAPIC_IN_X2APIC_MODE(pVCpuDest))
885 {
886 PCX2APICPAGE pX2ApicPage = VMCPU_TO_CX2APICPAGE(pVCpuDest);
887 if (pX2ApicPage->id.u32ApicId == fDestMask)
888 VMCPUSET_ADD(pDestCpuSet, pVCpuDest->idCpu);
889 }
890 else
891 {
892 PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpuDest);
893 if (pXApicPage->id.u8ApicId == (uint8_t)fDestMask)
894 VMCPUSET_ADD(pDestCpuSet, pVCpuDest->idCpu);
895 }
896 }
897#endif
898 }
899 else
900 {
901 Assert(enmDestMode == XAPICDESTMODE_LOGICAL);
902
903 /* A destination mask of all 0's implies no target APICs (since it's interpreted as a bitmap or partial bitmap). */
904 if (RT_UNLIKELY(!fDestMask))
905 return;
906
907 /* The destination mask is interpreted as a bitmap of software-programmable logical APIC ID of the target APICs. */
908 for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++)
909 {
910 PVMCPU pVCpuDest = &pVM->aCpus[idCpu];
911 if (apicIsLogicalDest(pVCpuDest, fDestMask))
912 VMCPUSET_ADD(pDestCpuSet, pVCpuDest->idCpu);
913 }
914 }
915}
916
917
918/**
919 * Sends an Interprocessor Interrupt (IPI) using values from the Interrupt
920 * Command Register (ICR).
921 *
922 * @returns VBox status code.
923 * @param pVCpu The cross context virtual CPU structure.
924 * @param rcRZ The return code if the operation cannot be
925 * performed in the current context.
926 */
927DECLINLINE(VBOXSTRICTRC) apicSendIpi(PVMCPU pVCpu, int rcRZ)
928{
929 VMCPU_ASSERT_EMT(pVCpu);
930
931 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
932 XAPICDELIVERYMODE const enmDeliveryMode = (XAPICDELIVERYMODE)pXApicPage->icr_lo.u.u3DeliveryMode;
933 XAPICDESTMODE const enmDestMode = (XAPICDESTMODE)pXApicPage->icr_lo.u.u1DestMode;
934 XAPICINITLEVEL const enmInitLevel = (XAPICINITLEVEL)pXApicPage->icr_lo.u.u1Level;
935 XAPICTRIGGERMODE const enmTriggerMode = (XAPICTRIGGERMODE)pXApicPage->icr_lo.u.u1TriggerMode;
936 XAPICDESTSHORTHAND const enmDestShorthand = (XAPICDESTSHORTHAND)pXApicPage->icr_lo.u.u2DestShorthand;
937 uint8_t const uVector = pXApicPage->icr_lo.u.u8Vector;
938
939 PX2APICPAGE pX2ApicPage = VMCPU_TO_X2APICPAGE(pVCpu);
940 uint32_t const fDest = XAPIC_IN_X2APIC_MODE(pVCpu) ? pX2ApicPage->icr_hi.u32IcrHi : pXApicPage->icr_hi.u.u8Dest;
941
942#if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4
943 /*
944 * INIT Level De-assert is not support on Pentium 4 and Xeon processors.
945 * See AMD spec. 16.5 "Interprocessor Interrupts (IPI)" for a table of valid ICR combinations.
946 */
947 if (RT_UNLIKELY( enmDeliveryMode == XAPICDELIVERYMODE_INIT_LEVEL_DEASSERT
948 && enmInitLevel == XAPICINITLEVEL_DEASSERT
949 && enmTriggerMode == XAPICTRIGGERMODE_LEVEL))
950 {
951 Log2(("APIC%u: INIT level de-assert unsupported, ignoring!\n", pVCpu->idCpu));
952 return VINF_SUCCESS;
953 }
954#else
955# error "Implement Pentium and P6 family APIC architectures"
956#endif
957
958 /*
959 * The destination and delivery modes are ignored/by-passed when a destination shorthand is specified.
960 * See Intel spec. 10.6.2.3 "Broadcast/Self Delivery Mode".
961 */
962 VMCPUSET DestCpuSet;
963 switch (enmDestShorthand)
964 {
965 case XAPICDESTSHORTHAND_NONE:
966 {
967 PVM pVM = pVCpu->CTX_SUFF(pVM);
968 uint32_t const fBroadcastMask = XAPIC_IN_X2APIC_MODE(pVCpu) ? X2APIC_ID_BROADCAST_MASK : XAPIC_ID_BROADCAST_MASK;
969 apicGetDestCpuSet(pVM, fDest, fBroadcastMask, enmDestMode, enmDeliveryMode, &DestCpuSet);
970 break;
971 }
972
973 case XAPICDESTSHORTHAND_SELF:
974 {
975 VMCPUSET_EMPTY(&DestCpuSet);
976 VMCPUSET_ADD(&DestCpuSet, pVCpu->idCpu);
977 break;
978 }
979
980 case XAPIDDESTSHORTHAND_ALL_INCL_SELF:
981 {
982 VMCPUSET_FILL(&DestCpuSet);
983 break;
984 }
985
986 case XAPICDESTSHORTHAND_ALL_EXCL_SELF:
987 {
988 VMCPUSET_FILL(&DestCpuSet);
989 VMCPUSET_DEL(&DestCpuSet, pVCpu->idCpu);
990 break;
991 }
992 }
993
994 return apicSendIntr(pVCpu->CTX_SUFF(pVM), pVCpu, uVector, enmTriggerMode, enmDeliveryMode, &DestCpuSet, rcRZ);
995}
996
997
998/**
999 * Sets the Interrupt Command Register (ICR) high dword.
1000 *
1001 * @returns Strict VBox status code.
1002 * @param pVCpu The cross context virtual CPU structure.
1003 * @param uIcrHi The ICR high dword.
1004 */
1005static VBOXSTRICTRC apicSetIcrHi(PVMCPU pVCpu, uint32_t uIcrHi)
1006{
1007 VMCPU_ASSERT_EMT(pVCpu);
1008 Assert(!XAPIC_IN_X2APIC_MODE(pVCpu));
1009
1010 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1011 pXApicPage->icr_hi.all.u32IcrHi = uIcrHi & XAPIC_ICR_HI_DEST;
1012 Log2(("APIC%u: apicSetIcrHi: uIcrHi=%#RX32\n", pVCpu->idCpu, pXApicPage->icr_hi.all.u32IcrHi));
1013
1014 return VINF_SUCCESS;
1015}
1016
1017
1018/**
1019 * Sets the Interrupt Command Register (ICR) low dword.
1020 *
1021 * @returns Strict VBox status code.
1022 * @param pVCpu The cross context virtual CPU structure.
1023 * @param uIcrLo The ICR low dword.
1024 * @param rcRZ The return code if the operation cannot be performed
1025 * in the current context.
1026 */
1027static VBOXSTRICTRC apicSetIcrLo(PVMCPU pVCpu, uint32_t uIcrLo, int rcRZ)
1028{
1029 VMCPU_ASSERT_EMT(pVCpu);
1030
1031 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1032 pXApicPage->icr_lo.all.u32IcrLo = uIcrLo & XAPIC_ICR_LO_WR;
1033 Log2(("APIC%u: apicSetIcrLo: uIcrLo=%#RX32\n", pVCpu->idCpu, pXApicPage->icr_lo.all.u32IcrLo));
1034
1035 return apicSendIpi(pVCpu, rcRZ);
1036}
1037
1038
1039/**
1040 * Sets the Interrupt Command Register (ICR).
1041 *
1042 * @returns Strict VBox status code.
1043 * @param pVCpu The cross context virtual CPU structure.
1044 * @param u64Icr The ICR (High and Low combined).
1045 * @param rcRZ The return code if the operation cannot be performed
1046 * in the current context.
1047 */
1048static VBOXSTRICTRC apicSetIcr(PVMCPU pVCpu, uint64_t u64Icr, int rcRZ)
1049{
1050 VMCPU_ASSERT_EMT(pVCpu);
1051 Assert(XAPIC_IN_X2APIC_MODE(pVCpu));
1052
1053 /* Validate. */
1054 uint32_t const uLo = RT_LO_U32(u64Icr);
1055 if (RT_LIKELY(!(uLo & ~XAPIC_ICR_LO_WR)))
1056 {
1057 /* Update high dword first, then update the low dword which sends the IPI. */
1058 PX2APICPAGE pX2ApicPage = VMCPU_TO_X2APICPAGE(pVCpu);
1059 pX2ApicPage->icr_hi.u32IcrHi = RT_HI_U32(u64Icr);
1060 return apicSetIcrLo(pVCpu, uLo, rcRZ);
1061 }
1062 return apicMsrAccessError(pVCpu, MSR_IA32_X2APIC_ICR, APICMSRACCESS_WRITE_RSVD_BITS);
1063}
1064
1065
1066/**
1067 * Sets the Error Status Register (ESR).
1068 *
1069 * @returns Strict VBox status code.
1070 * @param pVCpu The cross context virtual CPU structure.
1071 * @param uEsr The ESR value.
1072 */
1073static VBOXSTRICTRC apicSetEsr(PVMCPU pVCpu, uint32_t uEsr)
1074{
1075 VMCPU_ASSERT_EMT(pVCpu);
1076
1077 Log2(("APIC%u: apicSetEsr: uEsr=%#RX32\n", pVCpu->idCpu, uEsr));
1078
1079 if ( XAPIC_IN_X2APIC_MODE(pVCpu)
1080 && (uEsr & ~XAPIC_ESR_WO))
1081 return apicMsrAccessError(pVCpu, MSR_IA32_X2APIC_ESR, APICMSRACCESS_WRITE_RSVD_BITS);
1082
1083 /*
1084 * Writes to the ESR causes the internal state to be updated in the register,
1085 * clearing the original state. See AMD spec. 16.4.6 "APIC Error Interrupts".
1086 */
1087 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1088 pXApicPage->esr.all.u32Errors = apicClearAllErrors(pVCpu);
1089 return VINF_SUCCESS;
1090}
1091
1092
1093/**
1094 * Updates the Processor Priority Register (PPR).
1095 *
1096 * @param pVCpu The cross context virtual CPU structure.
1097 */
1098static void apicUpdatePpr(PVMCPU pVCpu)
1099{
1100 VMCPU_ASSERT_EMT(pVCpu);
1101
1102 /* See Intel spec 10.8.3.1 "Task and Processor Priorities". */
1103 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1104 uint8_t const uIsrv = apicGetHighestSetBit(&pXApicPage->isr, 0 /* rcNotFound */);
1105 uint8_t uPpr;
1106 if (XAPIC_TPR_GET_TP(pXApicPage->tpr.u8Tpr) >= XAPIC_PPR_GET_PP(uIsrv))
1107 uPpr = pXApicPage->tpr.u8Tpr;
1108 else
1109 uPpr = XAPIC_PPR_GET_PP(uIsrv);
1110 pXApicPage->ppr.u8Ppr = uPpr;
1111}
1112
1113
1114/**
1115 * Gets the Processor Priority Register (PPR).
1116 *
1117 * @returns The PPR value.
1118 * @param pVCpu The cross context virtual CPU structure.
1119 */
1120static uint8_t apicGetPpr(PVMCPU pVCpu)
1121{
1122 VMCPU_ASSERT_EMT(pVCpu);
1123 STAM_COUNTER_INC(&pVCpu->apic.s.StatTprRead);
1124
1125 /*
1126 * With virtualized APIC registers or with TPR virtualization, the hardware may
1127 * update ISR/TPR transparently. We thus re-calculate the PPR which may be out of sync.
1128 * See Intel spec. 29.2.2 "Virtual-Interrupt Delivery".
1129 */
1130 PCAPIC pApic = VM_TO_APIC(pVCpu->CTX_SUFF(pVM));
1131 if (pApic->fVirtApicRegsEnabled) /** @todo re-think this */
1132 apicUpdatePpr(pVCpu);
1133 PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpu);
1134 return pXApicPage->ppr.u8Ppr;
1135}
1136
1137
1138/**
1139 * Sets the Task Priority Register (TPR).
1140 *
1141 * @returns Strict VBox status code.
1142 * @param pVCpu The cross context virtual CPU structure.
1143 * @param uTpr The TPR value.
1144 */
1145static VBOXSTRICTRC apicSetTpr(PVMCPU pVCpu, uint32_t uTpr)
1146{
1147 VMCPU_ASSERT_EMT(pVCpu);
1148
1149 Log2(("APIC%u: apicSetTpr: uTpr=%#RX32\n", pVCpu->idCpu, uTpr));
1150 STAM_COUNTER_INC(&pVCpu->apic.s.StatTprWrite);
1151
1152 if ( XAPIC_IN_X2APIC_MODE(pVCpu)
1153 && (uTpr & ~XAPIC_TPR))
1154 return apicMsrAccessError(pVCpu, MSR_IA32_X2APIC_TPR, APICMSRACCESS_WRITE_RSVD_BITS);
1155
1156 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1157 pXApicPage->tpr.u8Tpr = uTpr;
1158 apicUpdatePpr(pVCpu);
1159 apicSignalNextPendingIntr(pVCpu);
1160 return VINF_SUCCESS;
1161}
1162
1163
1164/**
1165 * Sets the End-Of-Interrupt (EOI) register.
1166 *
1167 * @returns Strict VBox status code.
1168 * @param pVCpu The cross context virtual CPU structure.
1169 * @param uEoi The EOI value.
1170 */
1171static VBOXSTRICTRC apicSetEoi(PVMCPU pVCpu, uint32_t uEoi)
1172{
1173 VMCPU_ASSERT_EMT(pVCpu);
1174
1175 Log2(("APIC%u: apicSetEoi: uEoi=%#RX32\n", pVCpu->idCpu, uEoi));
1176 STAM_COUNTER_INC(&pVCpu->apic.s.StatEoiWrite);
1177
1178 if ( XAPIC_IN_X2APIC_MODE(pVCpu)
1179 && (uEoi & ~XAPIC_EOI_WO))
1180 return apicMsrAccessError(pVCpu, MSR_IA32_X2APIC_EOI, APICMSRACCESS_WRITE_RSVD_BITS);
1181
1182 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1183 int isrv = apicGetHighestSetBit(&pXApicPage->isr, -1 /* rcNotFound */);
1184 if (isrv >= 0)
1185 {
1186 Assert(isrv <= (int)UINT8_MAX);
1187 uint8_t const uVector = isrv;
1188 apicClearVectorInReg(&pXApicPage->isr, uVector);
1189 apicUpdatePpr(pVCpu);
1190 Log2(("APIC%u: apicSetEoi: Cleared interrupt from ISR. uVector=%#x\n", pVCpu->idCpu, uVector));
1191
1192 bool fLevelTriggered = apicTestVectorInReg(&pXApicPage->tmr, uVector);
1193 if (fLevelTriggered)
1194 {
1195 /** @todo We need to broadcast EOI to IO APICs here. */
1196 apicClearVectorInReg(&pXApicPage->tmr, uVector);
1197 Log2(("APIC%u: apicSetEoi: Cleared level triggered interrupt from TMR. uVector=%#x\n", pVCpu->idCpu, uVector));
1198 }
1199
1200 apicSignalNextPendingIntr(pVCpu);
1201 }
1202
1203 return VINF_SUCCESS;
1204}
1205
1206
1207/**
1208 * Sets the Logical Destination Register (LDR).
1209 *
1210 * @returns Strict VBox status code.
1211 * @param pVCpu The cross context virtual CPU structure.
1212 * @param uLdr The LDR value.
1213 *
1214 * @remarks LDR is read-only in x2APIC mode.
1215 */
1216static VBOXSTRICTRC apicSetLdr(PVMCPU pVCpu, uint32_t uLdr)
1217{
1218 VMCPU_ASSERT_EMT(pVCpu);
1219 Assert(!XAPIC_IN_X2APIC_MODE(pVCpu));
1220
1221 Log2(("APIC%u: apicSetLdr: uLdr=%#RX32\n", pVCpu->idCpu, uLdr));
1222
1223 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1224 apicWriteRaw32(pXApicPage, XAPIC_OFF_LDR, uLdr & XAPIC_LDR);
1225 return VINF_SUCCESS;
1226}
1227
1228
1229/**
1230 * Sets the Destination Format Register (DFR).
1231 *
1232 * @returns Strict VBox status code.
1233 * @param pVCpu The cross context virtual CPU structure.
1234 * @param uDfr The DFR value.
1235 *
1236 * @remarks DFR is not available in x2APIC mode.
1237 */
1238static VBOXSTRICTRC apicSetDfr(PVMCPU pVCpu, uint32_t uDfr)
1239{
1240 VMCPU_ASSERT_EMT(pVCpu);
1241 Assert(!XAPIC_IN_X2APIC_MODE(pVCpu));
1242
1243 uDfr &= XAPIC_DFR;
1244 uDfr |= XAPIC_DFR_RSVD_MB1;
1245
1246 Log2(("APIC%u: apicSetDfr: uDfr=%#RX32\n", pVCpu->idCpu, uDfr));
1247
1248 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1249 apicWriteRaw32(pXApicPage, XAPIC_OFF_DFR, uDfr);
1250 return VINF_SUCCESS;
1251}
1252
1253
1254/**
1255 * Sets the Timer Divide Configuration Register (DCR).
1256 *
1257 * @returns Strict VBox status code.
1258 * @param pVCpu The cross context virtual CPU structure.
1259 * @param uTimerDcr The timer DCR value.
1260 */
1261static VBOXSTRICTRC apicSetTimerDcr(PVMCPU pVCpu, uint32_t uTimerDcr)
1262{
1263 VMCPU_ASSERT_EMT(pVCpu);
1264 if ( XAPIC_IN_X2APIC_MODE(pVCpu)
1265 && (uTimerDcr & ~XAPIC_TIMER_DCR))
1266 return apicMsrAccessError(pVCpu, MSR_IA32_X2APIC_TIMER_DCR, APICMSRACCESS_WRITE_RSVD_BITS);
1267
1268 Log2(("APIC%u: apicSetTimerDcr: uTimerDcr=%#RX32\n", pVCpu->idCpu, uTimerDcr));
1269
1270 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1271 apicWriteRaw32(pXApicPage, XAPIC_OFF_TIMER_DCR, uTimerDcr);
1272 return VINF_SUCCESS;
1273}
1274
1275
1276/**
1277 * Gets the timer's Current Count Register (CCR).
1278 *
1279 * @returns VBox status code.
1280 * @param pVCpu The cross context virtual CPU structure.
1281 * @param rcBusy The busy return code for the timer critical section.
1282 * @param puValue Where to store the LVT timer CCR.
1283 */
1284static VBOXSTRICTRC apicGetTimerCcr(PVMCPU pVCpu, int rcBusy, uint32_t *puValue)
1285{
1286 VMCPU_ASSERT_EMT(pVCpu);
1287 Assert(puValue);
1288
1289 PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpu);
1290 *puValue = 0;
1291
1292 /* In TSC-deadline mode, CCR returns 0, see Intel spec. 10.5.4.1 "TSC-Deadline Mode". */
1293 if (pXApicPage->lvt_timer.u.u2TimerMode == XAPIC_TIMER_MODE_TSC_DEADLINE)
1294 return VINF_SUCCESS;
1295
1296 /* If the initial-count register is 0, CCR returns 0 as it cannot exceed the ICR. */
1297 uint32_t const uInitialCount = pXApicPage->timer_icr.u32InitialCount;
1298 if (!uInitialCount)
1299 return VINF_SUCCESS;
1300
1301 /*
1302 * Reading the virtual-sync clock requires locking its timer because it's not
1303 * a simple atomic operation, see tmVirtualSyncGetEx().
1304 *
1305 * We also need to lock before reading the timer CCR, see apicR3TimerCallback().
1306 */
1307 PCAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
1308 PTMTIMER pTimer = pApicCpu->CTX_SUFF(pTimer);
1309
1310 int rc = TMTimerLock(pTimer, rcBusy);
1311 if (rc == VINF_SUCCESS)
1312 {
1313 /* If the current-count register is 0, it implies the timer expired. */
1314 uint32_t const uCurrentCount = pXApicPage->timer_ccr.u32CurrentCount;
1315 if (uCurrentCount)
1316 {
1317 uint64_t const cTicksElapsed = TMTimerGet(pApicCpu->CTX_SUFF(pTimer)) - pApicCpu->u64TimerInitial;
1318 TMTimerUnlock(pTimer);
1319 uint8_t const uTimerShift = apicGetTimerShift(pXApicPage);
1320 uint64_t const uDelta = cTicksElapsed >> uTimerShift;
1321 if (uInitialCount > uDelta)
1322 *puValue = uInitialCount - uDelta;
1323 }
1324 else
1325 TMTimerUnlock(pTimer);
1326 }
1327 return rc;
1328}
1329
1330
1331/**
1332 * Sets the timer's Initial-Count Register (ICR).
1333 *
1334 * @returns Strict VBox status code.
1335 * @param pVCpu The cross context virtual CPU structure.
1336 * @param rcBusy The busy return code for the timer critical section.
1337 * @param uInitialCount The timer ICR.
1338 */
1339static VBOXSTRICTRC apicSetTimerIcr(PVMCPU pVCpu, int rcBusy, uint32_t uInitialCount)
1340{
1341 VMCPU_ASSERT_EMT(pVCpu);
1342
1343 PAPIC pApic = VM_TO_APIC(pVCpu->CTX_SUFF(pVM));
1344 PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
1345 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1346 PTMTIMER pTimer = pApicCpu->CTX_SUFF(pTimer);
1347
1348 /* In TSC-deadline mode, timer ICR writes are ignored, see Intel spec. 10.5.4.1 "TSC-Deadline Mode". */
1349 if ( pApic->fSupportsTscDeadline
1350 && pXApicPage->lvt_timer.u.u2TimerMode == XAPIC_TIMER_MODE_TSC_DEADLINE)
1351 return VINF_SUCCESS;
1352
1353 Log2(("APIC%u: apicSetTimerIcr: uInitialCount=%#RX32\n", pVCpu->idCpu, uInitialCount));
1354
1355 /*
1356 * The timer CCR may be modified by apicR3TimerCallback() in parallel,
1357 * so obtain the lock -before- updating it here to be consistent with the
1358 * timer ICR. We rely on CCR being consistent in apicGetTimerCcr().
1359 */
1360 int rc = TMTimerLock(pTimer, rcBusy);
1361 if (rc == VINF_SUCCESS)
1362 {
1363 pXApicPage->timer_icr.u32InitialCount = uInitialCount;
1364 pXApicPage->timer_ccr.u32CurrentCount = uInitialCount;
1365 if (uInitialCount)
1366 APICStartTimer(pVCpu, uInitialCount);
1367 else
1368 APICStopTimer(pVCpu);
1369 TMTimerUnlock(pTimer);
1370 }
1371 return rc;
1372}
1373
1374
1375/**
1376 * Sets an LVT entry.
1377 *
1378 * @returns Strict VBox status code.
1379 * @param pVCpu The cross context virtual CPU structure.
1380 * @param offLvt The LVT entry offset in the xAPIC page.
1381 * @param uLvt The LVT value to set.
1382 */
1383static VBOXSTRICTRC apicSetLvtEntry(PVMCPU pVCpu, uint16_t offLvt, uint32_t uLvt)
1384{
1385 VMCPU_ASSERT_EMT(pVCpu);
1386
1387#if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4
1388 AssertMsg( offLvt == XAPIC_OFF_LVT_TIMER
1389 || offLvt == XAPIC_OFF_LVT_THERMAL
1390 || offLvt == XAPIC_OFF_LVT_PERF
1391 || offLvt == XAPIC_OFF_LVT_LINT0
1392 || offLvt == XAPIC_OFF_LVT_LINT1
1393 || offLvt == XAPIC_OFF_LVT_ERROR,
1394 ("APIC%u: apicSetLvtEntry: invalid offset, offLvt=%#RX16, uLvt=%#RX32\n", pVCpu->idCpu, offLvt, uLvt));
1395
1396 /*
1397 * If TSC-deadline mode isn't support, ignore the bit in xAPIC mode
1398 * and raise #GP(0) in x2APIC mode.
1399 */
1400 PCAPIC pApic = VM_TO_APIC(pVCpu->CTX_SUFF(pVM));
1401 if (offLvt == XAPIC_OFF_LVT_TIMER)
1402 {
1403 if ( !pApic->fSupportsTscDeadline
1404 && (uLvt & XAPIC_LVT_TIMER_TSCDEADLINE))
1405 {
1406 if (XAPIC_IN_X2APIC_MODE(pVCpu))
1407 return apicMsrAccessError(pVCpu, XAPIC_GET_X2APIC_MSR(offLvt), APICMSRACCESS_WRITE_RSVD_BITS);
1408 uLvt &= ~XAPIC_LVT_TIMER_TSCDEADLINE;
1409 /** @todo TSC-deadline timer mode transition */
1410 }
1411 }
1412
1413 /*
1414 * Validate rest of the LVT bits.
1415 */
1416 uint16_t const idxLvt = (offLvt - XAPIC_OFF_LVT_START) >> 4;
1417 AssertReturn(idxLvt < RT_ELEMENTS(g_au32LvtValidMasks), VERR_OUT_OF_RANGE);
1418
1419 /*
1420 * For x2APIC, disallow setting of invalid/reserved bits.
1421 * For xAPIC, mask out invalid/reserved bits (i.e. ignore them).
1422 */
1423 if ( XAPIC_IN_X2APIC_MODE(pVCpu)
1424 && (uLvt & ~g_au32LvtValidMasks[idxLvt]))
1425 return apicMsrAccessError(pVCpu, XAPIC_GET_X2APIC_MSR(offLvt), APICMSRACCESS_WRITE_RSVD_BITS);
1426
1427 uLvt &= g_au32LvtValidMasks[idxLvt];
1428
1429 /*
1430 * In the software-disabled state, LVT mask-bit must remain set and attempts to clear the mask
1431 * bit must be ignored. See Intel spec. 10.4.7.2 "Local APIC State After It Has Been Software Disabled".
1432 */
1433 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1434 if (!pXApicPage->svr.u.fApicSoftwareEnable)
1435 uLvt |= XAPIC_LVT_MASK;
1436
1437 /*
1438 * It is unclear whether we should signal a 'send illegal vector' error here and ignore updating
1439 * the LVT entry when the delivery mode is 'fixed'[1] or update it in addition to signaling the
1440 * error or not signal the error at all. For now, we'll allow setting illegal vectors into the LVT
1441 * but set the 'send illegal vector' error here. The 'receive illegal vector' error will be set if
1442 * the interrupt for the vector happens to be generated, see APICPostInterrupt().
1443 *
1444 * [1] See Intel spec. 10.5.2 "Valid Interrupt Vectors".
1445 */
1446 if (RT_UNLIKELY( XAPIC_LVT_GET_VECTOR(uLvt) <= XAPIC_ILLEGAL_VECTOR_END
1447 && XAPIC_LVT_GET_DELIVERY_MODE(uLvt) == XAPICDELIVERYMODE_FIXED))
1448 apicSetError(pVCpu, XAPIC_ESR_SEND_ILLEGAL_VECTOR);
1449
1450 Log2(("APIC%u: apicSetLvtEntry: offLvt=%#RX16 uLvt=%#RX32\n", pVCpu->idCpu, offLvt, uLvt));
1451
1452 apicWriteRaw32(pXApicPage, offLvt, uLvt);
1453 return VINF_SUCCESS;
1454#else
1455# error "Implement Pentium and P6 family APIC architectures"
1456#endif /* XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4 */
1457}
1458
1459
1460#if 0
1461/**
1462 * Sets an LVT entry in the extended LVT range.
1463 *
1464 * @returns VBox status code.
1465 * @param pVCpu The cross context virtual CPU structure.
1466 * @param offLvt The LVT entry offset in the xAPIC page.
1467 * @param uValue The LVT value to set.
1468 */
1469static int apicSetLvtExtEntry(PVMCPU pVCpu, uint16_t offLvt, uint32_t uLvt)
1470{
1471 VMCPU_ASSERT_EMT(pVCpu);
1472 AssertMsg(offLvt == XAPIC_OFF_CMCI, ("APIC%u: apicSetLvt1Entry: invalid offset %#RX16\n", pVCpu->idCpu, offLvt));
1473
1474 /** @todo support CMCI. */
1475 return VERR_NOT_IMPLEMENTED;
1476}
1477#endif
1478
1479
1480/**
1481 * Hints TM about the APIC timer frequency.
1482 *
1483 * @param pApicCpu The APIC CPU state.
1484 * @param uInitialCount The new initial count.
1485 * @param uTimerShift The new timer shift.
1486 * @thread Any.
1487 */
1488void apicHintTimerFreq(PAPICCPU pApicCpu, uint32_t uInitialCount, uint8_t uTimerShift)
1489{
1490 Assert(pApicCpu);
1491
1492 if ( pApicCpu->uHintedTimerInitialCount != uInitialCount
1493 || pApicCpu->uHintedTimerShift != uTimerShift)
1494 {
1495 uint32_t uHz;
1496 if (uInitialCount)
1497 {
1498 uint64_t cTicksPerPeriod = (uint64_t)uInitialCount << uTimerShift;
1499 uHz = TMTimerGetFreq(pApicCpu->CTX_SUFF(pTimer)) / cTicksPerPeriod;
1500 }
1501 else
1502 uHz = 0;
1503
1504 TMTimerSetFrequencyHint(pApicCpu->CTX_SUFF(pTimer), uHz);
1505 pApicCpu->uHintedTimerInitialCount = uInitialCount;
1506 pApicCpu->uHintedTimerShift = uTimerShift;
1507 }
1508}
1509
1510
1511/**
1512 * Reads an APIC register.
1513 *
1514 * @returns VBox status code.
1515 * @param pApicDev The APIC device instance.
1516 * @param pVCpu The cross context virtual CPU structure.
1517 * @param offReg The offset of the register being read.
1518 * @param puValue Where to store the register value.
1519 */
1520static int apicReadRegister(PAPICDEV pApicDev, PVMCPU pVCpu, uint16_t offReg, uint32_t *puValue)
1521{
1522 VMCPU_ASSERT_EMT(pVCpu);
1523 Assert(offReg <= XAPIC_OFF_MAX_VALID);
1524
1525 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1526 uint32_t uValue = 0;
1527 int rc = VINF_SUCCESS;
1528 switch (offReg)
1529 {
1530 case XAPIC_OFF_ID:
1531 case XAPIC_OFF_VERSION:
1532 case XAPIC_OFF_TPR:
1533 case XAPIC_OFF_EOI:
1534 case XAPIC_OFF_RRD:
1535 case XAPIC_OFF_LDR:
1536 case XAPIC_OFF_DFR:
1537 case XAPIC_OFF_SVR:
1538 case XAPIC_OFF_ISR0: case XAPIC_OFF_ISR1: case XAPIC_OFF_ISR2: case XAPIC_OFF_ISR3:
1539 case XAPIC_OFF_ISR4: case XAPIC_OFF_ISR5: case XAPIC_OFF_ISR6: case XAPIC_OFF_ISR7:
1540 case XAPIC_OFF_TMR0: case XAPIC_OFF_TMR1: case XAPIC_OFF_TMR2: case XAPIC_OFF_TMR3:
1541 case XAPIC_OFF_TMR4: case XAPIC_OFF_TMR5: case XAPIC_OFF_TMR6: case XAPIC_OFF_TMR7:
1542 case XAPIC_OFF_IRR0: case XAPIC_OFF_IRR1: case XAPIC_OFF_IRR2: case XAPIC_OFF_IRR3:
1543 case XAPIC_OFF_IRR4: case XAPIC_OFF_IRR5: case XAPIC_OFF_IRR6: case XAPIC_OFF_IRR7:
1544 case XAPIC_OFF_ESR:
1545 case XAPIC_OFF_ICR_LO:
1546 case XAPIC_OFF_ICR_HI:
1547 case XAPIC_OFF_LVT_TIMER:
1548#if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4
1549 case XAPIC_OFF_LVT_THERMAL:
1550#endif
1551 case XAPIC_OFF_LVT_PERF:
1552 case XAPIC_OFF_LVT_LINT0:
1553 case XAPIC_OFF_LVT_LINT1:
1554 case XAPIC_OFF_LVT_ERROR:
1555 case XAPIC_OFF_TIMER_ICR:
1556 case XAPIC_OFF_TIMER_DCR:
1557 {
1558 Assert( !XAPIC_IN_X2APIC_MODE(pVCpu)
1559 || ( offReg != XAPIC_OFF_DFR
1560 && offReg != XAPIC_OFF_ICR_HI
1561 && offReg != XAPIC_OFF_EOI));
1562 uValue = apicReadRaw32(pXApicPage, offReg);
1563 Log2(("APIC%u: apicReadRegister: offReg=%#x uValue=%#x\n", pVCpu->idCpu, offReg, uValue));
1564 break;
1565 }
1566
1567 case XAPIC_OFF_PPR:
1568 {
1569 uValue = apicGetPpr(pVCpu);
1570 break;
1571 }
1572
1573 case XAPIC_OFF_TIMER_CCR:
1574 {
1575 Assert(!XAPIC_IN_X2APIC_MODE(pVCpu));
1576 rc = VBOXSTRICTRC_VAL(apicGetTimerCcr(pVCpu, VINF_IOM_R3_MMIO_READ, &uValue));
1577 break;
1578 }
1579
1580 case XAPIC_OFF_APR:
1581 {
1582#if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4
1583 /* Unsupported on Pentium 4 and Xeon CPUs, invalid in x2APIC mode. */
1584 Assert(!XAPIC_IN_X2APIC_MODE(pVCpu));
1585#else
1586# error "Implement Pentium and P6 family APIC architectures"
1587#endif
1588 break;
1589 }
1590
1591 default:
1592 {
1593 Assert(!XAPIC_IN_X2APIC_MODE(pVCpu));
1594 rc = PDMDevHlpDBGFStop(pApicDev->CTX_SUFF(pDevIns), RT_SRC_POS, "VCPU[%u]: offReg=%#RX16\n", pVCpu->idCpu, offReg);
1595 apicSetError(pVCpu, XAPIC_ESR_ILLEGAL_REG_ADDRESS);
1596 break;
1597 }
1598 }
1599
1600 *puValue = uValue;
1601 return rc;
1602}
1603
1604
1605/**
1606 * Writes an APIC register.
1607 *
1608 * @returns Strict VBox status code.
1609 * @param pApicDev The APIC device instance.
1610 * @param pVCpu The cross context virtual CPU structure.
1611 * @param offReg The offset of the register being written.
1612 * @param uValue The register value.
1613 */
1614static VBOXSTRICTRC apicWriteRegister(PAPICDEV pApicDev, PVMCPU pVCpu, uint16_t offReg, uint32_t uValue)
1615{
1616 VMCPU_ASSERT_EMT(pVCpu);
1617 Assert(offReg <= XAPIC_OFF_MAX_VALID);
1618 Assert(!XAPIC_IN_X2APIC_MODE(pVCpu));
1619
1620 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
1621 switch (offReg)
1622 {
1623 case XAPIC_OFF_TPR:
1624 {
1625 rcStrict = apicSetTpr(pVCpu, uValue);
1626 break;
1627 }
1628
1629 case XAPIC_OFF_LVT_TIMER:
1630#if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4
1631 case XAPIC_OFF_LVT_THERMAL:
1632#endif
1633 case XAPIC_OFF_LVT_PERF:
1634 case XAPIC_OFF_LVT_LINT0:
1635 case XAPIC_OFF_LVT_LINT1:
1636 case XAPIC_OFF_LVT_ERROR:
1637 {
1638 rcStrict = apicSetLvtEntry(pVCpu, offReg, uValue);
1639 break;
1640 }
1641
1642 case XAPIC_OFF_TIMER_ICR:
1643 {
1644 rcStrict = apicSetTimerIcr(pVCpu, VINF_IOM_R3_MMIO_WRITE, uValue);
1645 break;
1646 }
1647
1648 case XAPIC_OFF_EOI:
1649 {
1650 rcStrict = apicSetEoi(pVCpu, uValue);
1651 break;
1652 }
1653
1654 case XAPIC_OFF_LDR:
1655 {
1656 rcStrict = apicSetLdr(pVCpu, uValue);
1657 break;
1658 }
1659
1660 case XAPIC_OFF_DFR:
1661 {
1662 rcStrict = apicSetDfr(pVCpu, uValue);
1663 break;
1664 }
1665
1666 case XAPIC_OFF_SVR:
1667 {
1668 rcStrict = apicSetSvr(pVCpu, uValue);
1669 break;
1670 }
1671
1672 case XAPIC_OFF_ICR_LO:
1673 {
1674 rcStrict = apicSetIcrLo(pVCpu, uValue, VINF_IOM_R3_MMIO_WRITE);
1675 break;
1676 }
1677
1678 case XAPIC_OFF_ICR_HI:
1679 {
1680 rcStrict = apicSetIcrHi(pVCpu, uValue);
1681 break;
1682 }
1683
1684 case XAPIC_OFF_TIMER_DCR:
1685 {
1686 rcStrict = apicSetTimerDcr(pVCpu, uValue);
1687 break;
1688 }
1689
1690 case XAPIC_OFF_ESR:
1691 {
1692 rcStrict = apicSetEsr(pVCpu, uValue);
1693 break;
1694 }
1695
1696 case XAPIC_OFF_APR:
1697 case XAPIC_OFF_RRD:
1698 {
1699#if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4
1700 /* Unsupported on Pentium 4 and Xeon CPUs but writes do -not- set an illegal register access error. */
1701#else
1702# error "Implement Pentium and P6 family APIC architectures"
1703#endif
1704 break;
1705 }
1706
1707 /* Read-only, write ignored: */
1708 case XAPIC_OFF_VERSION:
1709 case XAPIC_OFF_ID:
1710 break;
1711
1712 /* Unavailable/reserved in xAPIC mode: */
1713 case X2APIC_OFF_SELF_IPI:
1714 /* Read-only registers: */
1715 case XAPIC_OFF_PPR:
1716 case XAPIC_OFF_ISR0: case XAPIC_OFF_ISR1: case XAPIC_OFF_ISR2: case XAPIC_OFF_ISR3:
1717 case XAPIC_OFF_ISR4: case XAPIC_OFF_ISR5: case XAPIC_OFF_ISR6: case XAPIC_OFF_ISR7:
1718 case XAPIC_OFF_TMR0: case XAPIC_OFF_TMR1: case XAPIC_OFF_TMR2: case XAPIC_OFF_TMR3:
1719 case XAPIC_OFF_TMR4: case XAPIC_OFF_TMR5: case XAPIC_OFF_TMR6: case XAPIC_OFF_TMR7:
1720 case XAPIC_OFF_IRR0: case XAPIC_OFF_IRR1: case XAPIC_OFF_IRR2: case XAPIC_OFF_IRR3:
1721 case XAPIC_OFF_IRR4: case XAPIC_OFF_IRR5: case XAPIC_OFF_IRR6: case XAPIC_OFF_IRR7:
1722 case XAPIC_OFF_TIMER_CCR:
1723 default:
1724 {
1725 rcStrict = PDMDevHlpDBGFStop(pApicDev->CTX_SUFF(pDevIns), RT_SRC_POS, "APIC%u: offReg=%#RX16\n", pVCpu->idCpu,
1726 offReg);
1727 apicSetError(pVCpu, XAPIC_ESR_ILLEGAL_REG_ADDRESS);
1728 break;
1729 }
1730 }
1731
1732 return rcStrict;
1733}
1734
1735
1736/**
1737 * @interface_method_impl{PDMAPICREG,pfnReadMsrR3}
1738 */
1739VMMDECL(VBOXSTRICTRC) APICReadMsr(PPDMDEVINS pDevIns, PVMCPU pVCpu, uint32_t u32Reg, uint64_t *pu64Value)
1740{
1741 /*
1742 * Validate.
1743 */
1744 VMCPU_ASSERT_EMT(pVCpu);
1745 Assert(u32Reg >= MSR_IA32_X2APIC_START && u32Reg <= MSR_IA32_X2APIC_END);
1746 Assert(pu64Value);
1747
1748 PCAPIC pApic = VM_TO_APIC(pVCpu->CTX_SUFF(pVM));
1749 if (pApic->fRZEnabled)
1750 { /* likely */}
1751 else
1752 return VINF_CPUM_R3_MSR_READ;
1753
1754 STAM_COUNTER_INC(&pVCpu->apic.s.CTX_SUFF(StatMsrRead));
1755
1756 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
1757 if (RT_LIKELY(XAPIC_IN_X2APIC_MODE(pVCpu)))
1758 {
1759 switch (u32Reg)
1760 {
1761 /* Special handling for x2APIC: */
1762 case MSR_IA32_X2APIC_ICR:
1763 {
1764 PCX2APICPAGE pX2ApicPage = VMCPU_TO_CX2APICPAGE(pVCpu);
1765 uint64_t const uHi = pX2ApicPage->icr_hi.u32IcrHi;
1766 uint64_t const uLo = pX2ApicPage->icr_lo.all.u32IcrLo;
1767 *pu64Value = RT_MAKE_U64(uLo, uHi);
1768 break;
1769 }
1770
1771 /* Special handling, compatible with xAPIC: */
1772 case MSR_IA32_X2APIC_TIMER_CCR:
1773 {
1774 uint32_t uValue;
1775 rcStrict = apicGetTimerCcr(pVCpu, VINF_CPUM_R3_MSR_READ, &uValue);
1776 *pu64Value = uValue;
1777 break;
1778 }
1779
1780 /* Special handling, compatible with xAPIC: */
1781 case MSR_IA32_X2APIC_PPR:
1782 {
1783 *pu64Value = apicGetPpr(pVCpu);
1784 break;
1785 }
1786
1787 /* Raw read, compatible with xAPIC: */
1788 case MSR_IA32_X2APIC_ID:
1789 case MSR_IA32_X2APIC_VERSION:
1790 case MSR_IA32_X2APIC_TPR:
1791 case MSR_IA32_X2APIC_LDR:
1792 case MSR_IA32_X2APIC_SVR:
1793 case MSR_IA32_X2APIC_ISR0: case MSR_IA32_X2APIC_ISR1: case MSR_IA32_X2APIC_ISR2: case MSR_IA32_X2APIC_ISR3:
1794 case MSR_IA32_X2APIC_ISR4: case MSR_IA32_X2APIC_ISR5: case MSR_IA32_X2APIC_ISR6: case MSR_IA32_X2APIC_ISR7:
1795 case MSR_IA32_X2APIC_TMR0: case MSR_IA32_X2APIC_TMR1: case MSR_IA32_X2APIC_TMR2: case MSR_IA32_X2APIC_TMR3:
1796 case MSR_IA32_X2APIC_TMR4: case MSR_IA32_X2APIC_TMR5: case MSR_IA32_X2APIC_TMR6: case MSR_IA32_X2APIC_TMR7:
1797 case MSR_IA32_X2APIC_IRR0: case MSR_IA32_X2APIC_IRR1: case MSR_IA32_X2APIC_IRR2: case MSR_IA32_X2APIC_IRR3:
1798 case MSR_IA32_X2APIC_IRR4: case MSR_IA32_X2APIC_IRR5: case MSR_IA32_X2APIC_IRR6: case MSR_IA32_X2APIC_IRR7:
1799 case MSR_IA32_X2APIC_ESR:
1800 case MSR_IA32_X2APIC_LVT_TIMER:
1801 case MSR_IA32_X2APIC_LVT_THERMAL:
1802 case MSR_IA32_X2APIC_LVT_PERF:
1803 case MSR_IA32_X2APIC_LVT_LINT0:
1804 case MSR_IA32_X2APIC_LVT_LINT1:
1805 case MSR_IA32_X2APIC_LVT_ERROR:
1806 case MSR_IA32_X2APIC_TIMER_ICR:
1807 case MSR_IA32_X2APIC_TIMER_DCR:
1808 {
1809 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1810 uint16_t const offReg = X2APIC_GET_XAPIC_OFF(u32Reg);
1811 *pu64Value = apicReadRaw32(pXApicPage, offReg);
1812 break;
1813 }
1814
1815 /* Write-only MSRs: */
1816 case MSR_IA32_X2APIC_SELF_IPI:
1817 case MSR_IA32_X2APIC_EOI:
1818 {
1819 rcStrict = apicMsrAccessError(pVCpu, u32Reg, APICMSRACCESS_READ_WRITE_ONLY);
1820 break;
1821 }
1822
1823 /* Reserved MSRs: */
1824 case MSR_IA32_X2APIC_LVT_CMCI:
1825 default:
1826 {
1827 rcStrict = apicMsrAccessError(pVCpu, u32Reg, APICMSRACCESS_READ_RSVD_OR_UNKNOWN);
1828 break;
1829 }
1830 }
1831 }
1832 else
1833 rcStrict = apicMsrAccessError(pVCpu, u32Reg, APICMSRACCESS_INVALID_READ_MODE);
1834
1835 return rcStrict;
1836}
1837
1838
1839/**
1840 * @interface_method_impl{PDMAPICREG,pfnWriteMsrR3}
1841 */
1842VMMDECL(VBOXSTRICTRC) APICWriteMsr(PPDMDEVINS pDevIns, PVMCPU pVCpu, uint32_t u32Reg, uint64_t u64Value)
1843{
1844 /*
1845 * Validate.
1846 */
1847 VMCPU_ASSERT_EMT(pVCpu);
1848 Assert(u32Reg >= MSR_IA32_X2APIC_START && u32Reg <= MSR_IA32_X2APIC_END);
1849
1850 PCAPIC pApic = VM_TO_APIC(pVCpu->CTX_SUFF(pVM));
1851 if (pApic->fRZEnabled)
1852 { /* likely */ }
1853 else
1854 return VINF_CPUM_R3_MSR_WRITE;
1855
1856 STAM_COUNTER_INC(&pVCpu->apic.s.CTX_SUFF(StatMsrWrite));
1857
1858 /*
1859 * In x2APIC mode, we need to raise #GP(0) for writes to reserved bits, unlike MMIO
1860 * accesses where they are ignored. Hence, we need to validate each register before
1861 * invoking the generic/xAPIC write functions.
1862 *
1863 * Bits 63:32 of all registers except the ICR are reserved, we'll handle this common
1864 * case first and handle validating the remaining bits on a per-register basis.
1865 * See Intel spec. 10.12.1.2 "x2APIC Register Address Space".
1866 */
1867 if ( u32Reg != MSR_IA32_X2APIC_ICR
1868 && RT_HI_U32(u64Value))
1869 return apicMsrAccessError(pVCpu, u32Reg, APICMSRACCESS_WRITE_RSVD_BITS);
1870
1871 uint32_t u32Value = RT_LO_U32(u64Value);
1872 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
1873 if (RT_LIKELY(XAPIC_IN_X2APIC_MODE(pVCpu)))
1874 {
1875 switch (u32Reg)
1876 {
1877 case MSR_IA32_X2APIC_TPR:
1878 {
1879 rcStrict = apicSetTpr(pVCpu, u32Value);
1880 break;
1881 }
1882
1883 case MSR_IA32_X2APIC_ICR:
1884 {
1885 rcStrict = apicSetIcr(pVCpu, u64Value, VINF_CPUM_R3_MSR_WRITE);
1886 break;
1887 }
1888
1889 case MSR_IA32_X2APIC_SVR:
1890 {
1891 rcStrict = apicSetSvr(pVCpu, u32Value);
1892 break;
1893 }
1894
1895 case MSR_IA32_X2APIC_ESR:
1896 {
1897 rcStrict = apicSetEsr(pVCpu, u32Value);
1898 break;
1899 }
1900
1901 case MSR_IA32_X2APIC_TIMER_DCR:
1902 {
1903 rcStrict = apicSetTimerDcr(pVCpu, u32Value);
1904 break;
1905 }
1906
1907 case MSR_IA32_X2APIC_LVT_TIMER:
1908 case MSR_IA32_X2APIC_LVT_THERMAL:
1909 case MSR_IA32_X2APIC_LVT_PERF:
1910 case MSR_IA32_X2APIC_LVT_LINT0:
1911 case MSR_IA32_X2APIC_LVT_LINT1:
1912 case MSR_IA32_X2APIC_LVT_ERROR:
1913 {
1914 rcStrict = apicSetLvtEntry(pVCpu, X2APIC_GET_XAPIC_OFF(u32Reg), u32Value);
1915 break;
1916 }
1917
1918 case MSR_IA32_X2APIC_TIMER_ICR:
1919 {
1920 rcStrict = apicSetTimerIcr(pVCpu, VINF_CPUM_R3_MSR_WRITE, u32Value);
1921 break;
1922 }
1923
1924 /* Write-only MSRs: */
1925 case MSR_IA32_X2APIC_SELF_IPI:
1926 {
1927 uint8_t const uVector = XAPIC_SELF_IPI_GET_VECTOR(u32Value);
1928 APICPostInterrupt(pVCpu, uVector, XAPICTRIGGERMODE_EDGE);
1929 rcStrict = VINF_SUCCESS;
1930 break;
1931 }
1932
1933 case MSR_IA32_X2APIC_EOI:
1934 {
1935 rcStrict = apicSetEoi(pVCpu, u32Value);
1936 break;
1937 }
1938
1939 /* Read-only MSRs: */
1940 case MSR_IA32_X2APIC_ID:
1941 case MSR_IA32_X2APIC_VERSION:
1942 case MSR_IA32_X2APIC_PPR:
1943 case MSR_IA32_X2APIC_LDR:
1944 case MSR_IA32_X2APIC_ISR0: case MSR_IA32_X2APIC_ISR1: case MSR_IA32_X2APIC_ISR2: case MSR_IA32_X2APIC_ISR3:
1945 case MSR_IA32_X2APIC_ISR4: case MSR_IA32_X2APIC_ISR5: case MSR_IA32_X2APIC_ISR6: case MSR_IA32_X2APIC_ISR7:
1946 case MSR_IA32_X2APIC_TMR0: case MSR_IA32_X2APIC_TMR1: case MSR_IA32_X2APIC_TMR2: case MSR_IA32_X2APIC_TMR3:
1947 case MSR_IA32_X2APIC_TMR4: case MSR_IA32_X2APIC_TMR5: case MSR_IA32_X2APIC_TMR6: case MSR_IA32_X2APIC_TMR7:
1948 case MSR_IA32_X2APIC_IRR0: case MSR_IA32_X2APIC_IRR1: case MSR_IA32_X2APIC_IRR2: case MSR_IA32_X2APIC_IRR3:
1949 case MSR_IA32_X2APIC_IRR4: case MSR_IA32_X2APIC_IRR5: case MSR_IA32_X2APIC_IRR6: case MSR_IA32_X2APIC_IRR7:
1950 case MSR_IA32_X2APIC_TIMER_CCR:
1951 {
1952 rcStrict = apicMsrAccessError(pVCpu, u32Reg, APICMSRACCESS_WRITE_READ_ONLY);
1953 break;
1954 }
1955
1956 /* Reserved MSRs: */
1957 case MSR_IA32_X2APIC_LVT_CMCI:
1958 default:
1959 {
1960 rcStrict = apicMsrAccessError(pVCpu, u32Reg, APICMSRACCESS_WRITE_RSVD_OR_UNKNOWN);
1961 break;
1962 }
1963 }
1964 }
1965 else
1966 rcStrict = apicMsrAccessError(pVCpu, u32Reg, APICMSRACCESS_INVALID_WRITE_MODE);
1967
1968 return rcStrict;
1969}
1970
1971
1972/**
1973 * @interface_method_impl{PDMAPICREG,pfnSetBaseMsrR3}
1974 */
1975VMMDECL(VBOXSTRICTRC) APICSetBaseMsr(PPDMDEVINS pDevIns, PVMCPU pVCpu, uint64_t u64BaseMsr)
1976{
1977 Assert(pVCpu);
1978 NOREF(pDevIns);
1979
1980#ifdef IN_RING3
1981 PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
1982 PAPIC pApic = VM_TO_APIC(pVCpu->CTX_SUFF(pVM));
1983 APICMODE enmOldMode = apicGetMode(pApicCpu->uApicBaseMsr);
1984 APICMODE enmNewMode = apicGetMode(u64BaseMsr);
1985 uint64_t uBaseMsr = pApicCpu->uApicBaseMsr;
1986
1987 Log2(("APIC%u: ApicSetBaseMsr: u64BaseMsr=%#RX64 enmNewMode=%s enmOldMode=%s\n", pVCpu->idCpu, u64BaseMsr,
1988 apicGetModeName(enmNewMode), apicGetModeName(enmOldMode)));
1989
1990 /*
1991 * We do not support re-mapping the APIC base address because:
1992 * - We'll have to manage all the mappings ourselves in the APIC (reference counting based unmapping etc.)
1993 * i.e. we can only unmap the MMIO region if no other APIC is mapped on that location.
1994 * - It's unclear how/if IOM can fallback to handling regions as regular memory (if the MMIO
1995 * region remains mapped but doesn't belong to the called VCPU's APIC).
1996 */
1997 /** @todo Handle per-VCPU APIC base relocation. */
1998 if (MSR_APICBASE_GET_PHYSADDR(uBaseMsr) != XAPIC_APICBASE_PHYSADDR)
1999 {
2000 LogRelMax(5, ("APIC%u: Attempt to relocate base to %#RGp, unsupported -> #GP(0)\n", pVCpu->idCpu,
2001 MSR_APICBASE_GET_PHYSADDR(uBaseMsr)));
2002 return VERR_CPUM_RAISE_GP_0;
2003 }
2004
2005 /* Don't allow enabling xAPIC/x2APIC if the VM is configured with the APIC disabled. */
2006 if (pApic->enmOriginalMode == APICMODE_DISABLED)
2007 {
2008 LogRel(("APIC%u: Disallowing APIC base MSR write as the VM config is configured with APIC disabled!\n"));
2009 return apicMsrAccessError(pVCpu, MSR_IA32_APICBASE, APICMSRACCESS_WRITE_DISALLOWED_CONFIG);
2010 }
2011
2012 /*
2013 * Act on state transition.
2014 */
2015 /** @todo We need to update the CPUID according to the state, which we
2016 * currently don't do as CPUMSetGuestCpuIdFeature() is setting
2017 * per-VM CPUID bits while we need per-VCPU specific bits. */
2018 if (enmNewMode != enmOldMode)
2019 {
2020 switch (enmNewMode)
2021 {
2022 case APICMODE_DISABLED:
2023 {
2024 /*
2025 * The APIC state needs to be reset (especially the APIC ID as x2APIC APIC ID bit layout
2026 * is different). We can start with a clean slate identical to the state after a power-up/reset.
2027 *
2028 * See Intel spec. 10.4.3 "Enabling or Disabling the Local APIC".
2029 *
2030 * We'll also manually manage the APIC base MSR here. We want a single-point of commit
2031 * at the end of this function rather than touching it in APICR3Reset. This means we also
2032 * need to update the CPUID leaf ourselves.
2033 */
2034 APICR3Reset(pVCpu, false /* fResetApicBaseMsr */);
2035 uBaseMsr &= ~(MSR_APICBASE_XAPIC_ENABLE_BIT | MSR_APICBASE_X2APIC_ENABLE_BIT);
2036 CPUMClearGuestCpuIdFeature(pVCpu->CTX_SUFF(pVM), CPUMCPUIDFEATURE_APIC);
2037 LogRel(("APIC%u: Switched mode to disabled\n", pVCpu->idCpu));
2038 break;
2039 }
2040
2041 case APICMODE_XAPIC:
2042 {
2043 if (enmOldMode != APICMODE_DISABLED)
2044 {
2045 LogRel(("APIC%u: Can only transition to xAPIC state from disabled state\n", pVCpu->idCpu));
2046 return apicMsrAccessError(pVCpu, MSR_IA32_APICBASE, APICMSRACCESS_WRITE_INVALID);
2047 }
2048
2049 uBaseMsr |= MSR_APICBASE_XAPIC_ENABLE_BIT;
2050 CPUMSetGuestCpuIdFeature(pVCpu->CTX_SUFF(pVM), CPUMCPUIDFEATURE_APIC);
2051 LogRel(("APIC%u: Switched mode to xAPIC\n", pVCpu->idCpu));
2052 break;
2053 }
2054
2055 case APICMODE_X2APIC:
2056 {
2057 if (enmOldMode != APICMODE_XAPIC)
2058 {
2059 LogRel(("APIC%u: Can only transition to x2APIC state from xAPIC state\n", pVCpu->idCpu));
2060 return apicMsrAccessError(pVCpu, MSR_IA32_APICBASE, APICMSRACCESS_WRITE_INVALID);
2061 }
2062
2063 /* Don't allow enabling x2APIC if the VM is configured with the APIC disabled. */
2064 uBaseMsr |= MSR_APICBASE_XAPIC_ENABLE_BIT | MSR_APICBASE_X2APIC_ENABLE_BIT;
2065
2066 /*
2067 * The APIC ID needs updating when entering x2APIC mode.
2068 * Software written APIC ID in xAPIC mode isn't preseved.
2069 * The APIC ID becomes read-only to software in x2APIC mode.
2070 *
2071 * See Intel spec. 10.12.5.1 "x2APIC States".
2072 */
2073 PX2APICPAGE pX2ApicPage = VMCPU_TO_X2APICPAGE(pVCpu);
2074 ASMMemZero32(&pX2ApicPage->id, sizeof(pX2ApicPage->id));
2075 pX2ApicPage->id.u32ApicId = pVCpu->idCpu;
2076
2077 /*
2078 * LDR initialization occurs when entering x2APIC mode.
2079 * See Intel spec. 10.12.10.2 "Deriving Logical x2APIC ID from the Local x2APIC ID".
2080 */
2081 pX2ApicPage->ldr.u32LogicalApicId = ((pX2ApicPage->id.u32ApicId & UINT32_C(0xffff0)) << 16)
2082 | (UINT32_C(1) << pX2ApicPage->id.u32ApicId & UINT32_C(0xf));
2083
2084 LogRel(("APIC%u: Switched mode to x2APIC\n", pVCpu->idCpu));
2085 break;
2086 }
2087
2088 case APICMODE_INVALID:
2089 default:
2090 {
2091 Log(("APIC%u: Invalid state transition attempted\n", pVCpu->idCpu));
2092 return apicMsrAccessError(pVCpu, MSR_IA32_APICBASE, APICMSRACCESS_WRITE_INVALID);
2093 }
2094 }
2095 }
2096
2097 ASMAtomicWriteU64(&pApicCpu->uApicBaseMsr, uBaseMsr);
2098 return VINF_SUCCESS;
2099#else /* !IN_RING3 */
2100 return VINF_CPUM_R3_MSR_WRITE;
2101#endif /* IN_RING3 */
2102}
2103
2104
2105/**
2106 * @interface_method_impl{PDMAPICREG,pfnGetBaseMsrR3}
2107 */
2108VMMDECL(uint64_t) APICGetBaseMsr(PPDMDEVINS pDevIns, PVMCPU pVCpu)
2109{
2110 VMCPU_ASSERT_EMT_OR_NOT_RUNNING(pVCpu);
2111
2112 PCAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
2113 return pApicCpu->uApicBaseMsr;
2114}
2115
2116
2117/**
2118 * @interface_method_impl{PDMAPICREG,pfnSetTprR3}
2119 */
2120VMMDECL(void) APICSetTpr(PPDMDEVINS pDevIns, PVMCPU pVCpu, uint8_t u8Tpr)
2121{
2122 apicSetTpr(pVCpu, u8Tpr);
2123}
2124
2125
2126/**
2127 * Gets the highest priority pending interrupt.
2128 *
2129 * @returns true if any interrupt is pending, false otherwise.
2130 * @param pVCpu The cross context virtual CPU structure.
2131 * @param pu8PendingIntr Where to store the interrupt vector if the
2132 * interrupt is pending (optional, can be NULL).
2133 */
2134static bool apicGetHighestPendingInterrupt(PVMCPU pVCpu, uint8_t *pu8PendingIntr)
2135{
2136 PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpu);
2137 int const irrv = apicGetHighestSetBit(&pXApicPage->irr, -1);
2138 if (irrv >= 0)
2139 {
2140 Assert(irrv <= (int)UINT8_MAX);
2141 if (pu8PendingIntr)
2142 *pu8PendingIntr = (uint8_t)irrv;
2143 return true;
2144 }
2145 return false;
2146}
2147
2148
2149/**
2150 * @interface_method_impl{PDMAPICREG,pfnGetTprR3}
2151 */
2152VMMDECL(uint8_t) APICGetTpr(PPDMDEVINS pDevIns, PVMCPU pVCpu, bool *pfPending, uint8_t *pu8PendingIntr)
2153{
2154 VMCPU_ASSERT_EMT(pVCpu);
2155 PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpu);
2156
2157 if (pfPending)
2158 {
2159 /*
2160 * Just return whatever the highest pending interrupt is in the IRR.
2161 * The caller is responsible for figuring out if it's masked by the TPR etc.
2162 */
2163 *pfPending = apicGetHighestPendingInterrupt(pVCpu, pu8PendingIntr);
2164 }
2165
2166 return pXApicPage->tpr.u8Tpr;
2167}
2168
2169
2170/**
2171 * @interface_method_impl{PDMAPICREG,pfnGetTimerFreqR3}
2172 */
2173VMMDECL(uint64_t) APICGetTimerFreq(PPDMDEVINS pDevIns)
2174{
2175 PVM pVM = PDMDevHlpGetVM(pDevIns);
2176 PVMCPU pVCpu = &pVM->aCpus[0];
2177 PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
2178 uint64_t uTimer = TMTimerGetFreq(pApicCpu->CTX_SUFF(pTimer));
2179 return uTimer;
2180}
2181
2182
2183/**
2184 * @interface_method_impl{PDMAPICREG,pfnBusDeliverR3}
2185 * @remarks This is a private interface between the IOAPIC and the APIC.
2186 */
2187VMMDECL(int) APICBusDeliver(PPDMDEVINS pDevIns, uint8_t uDest, uint8_t uDestMode, uint8_t uDeliveryMode, uint8_t uVector,
2188 uint8_t uPolarity, uint8_t uTriggerMode, uint32_t uTagSrc)
2189{
2190 NOREF(uPolarity);
2191 NOREF(uTagSrc);
2192 PVM pVM = PDMDevHlpGetVM(pDevIns);
2193
2194 /*
2195 * The destination field (mask) in the IO APIC redirectable table entry is 8-bits.
2196 * Hence, the broadcast mask is 0xff.
2197 * See IO APIC spec. 3.2.4. "IOREDTBL[23:0] - I/O Redirectable Table Registers".
2198 */
2199 XAPICTRIGGERMODE enmTriggerMode = (XAPICTRIGGERMODE)uTriggerMode;
2200 XAPICDELIVERYMODE enmDeliveryMode = (XAPICDELIVERYMODE)uDeliveryMode;
2201 XAPICDESTMODE enmDestMode = (XAPICDESTMODE)uDestMode;
2202 uint32_t fDestMask = uDest;
2203 uint32_t fBroadcastMask = UINT32_C(0xff);
2204
2205 Log2(("APIC: apicBusDeliver: fDestMask=%#x enmDestMode=%s enmTriggerMode=%s enmDeliveryMode=%s uVector=%#x\n", fDestMask,
2206 apicGetDestModeName(enmDestMode), apicGetTriggerModeName(enmTriggerMode), apicGetDeliveryModeName(enmDeliveryMode),
2207 uVector));
2208
2209 VMCPUSET DestCpuSet;
2210 apicGetDestCpuSet(pVM, fDestMask, fBroadcastMask, enmDestMode, enmDeliveryMode, &DestCpuSet);
2211 VBOXSTRICTRC rcStrict = apicSendIntr(pVM, NULL /* pVCpu */, uVector, enmTriggerMode, enmDeliveryMode, &DestCpuSet,
2212 VINF_SUCCESS /* rcRZ */);
2213 return VBOXSTRICTRC_VAL(rcStrict);
2214}
2215
2216
2217/**
2218 * @interface_method_impl{PDMAPICREG,pfnLocalInterruptR3}
2219 * @remarks This is a private interface between the PIC and the APIC.
2220 */
2221VMMDECL(VBOXSTRICTRC) APICLocalInterrupt(PPDMDEVINS pDevIns, PVMCPU pVCpu, uint8_t u8Pin, uint8_t u8Level, int rcRZ)
2222{
2223 NOREF(pDevIns);
2224 AssertReturn(u8Pin <= 1, VERR_INVALID_PARAMETER);
2225 AssertReturn(u8Level <= 1, VERR_INVALID_PARAMETER);
2226
2227 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
2228
2229 /* If the APIC is enabled, the interrupt is subject to LVT programming. */
2230 if (apicIsEnabled(pVCpu))
2231 {
2232 PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpu);
2233
2234 /* Pick the LVT entry corresponding to the interrupt pin. */
2235 static const uint16_t s_au16LvtOffsets[] =
2236 {
2237 XAPIC_OFF_LVT_LINT0,
2238 XAPIC_OFF_LVT_LINT1
2239 };
2240 Assert(u8Pin < RT_ELEMENTS(s_au16LvtOffsets));
2241 uint16_t const offLvt = s_au16LvtOffsets[u8Pin];
2242 uint32_t const uLvt = apicReadRaw32(pXApicPage, offLvt);
2243
2244 /* If software hasn't masked the interrupt in the LVT entry, proceed interrupt processing. */
2245 if (!XAPIC_LVT_IS_MASKED(uLvt))
2246 {
2247 XAPICDELIVERYMODE const enmDeliveryMode = XAPIC_LVT_GET_DELIVERY_MODE(uLvt);
2248 XAPICTRIGGERMODE enmTriggerMode = XAPIC_LVT_GET_TRIGGER_MODE(uLvt);
2249
2250 switch (enmDeliveryMode)
2251 {
2252 case XAPICDELIVERYMODE_INIT:
2253 {
2254 /** @todo won't work in R0/RC because callers don't care about rcRZ. */
2255 AssertMsgFailed(("INIT through LINT0/LINT1 is not yet supported\n"));
2256 /* fallthru */
2257 }
2258 case XAPICDELIVERYMODE_FIXED:
2259 {
2260 /* Level-sensitive interrupts are not supported for LINT1. See Intel spec. 10.5.1 "Local Vector Table". */
2261 if (offLvt == XAPIC_OFF_LVT_LINT1)
2262 enmTriggerMode = XAPICTRIGGERMODE_EDGE;
2263 /** @todo figure out what "If the local APIC is not used in conjunction with an I/O APIC and fixed
2264 delivery mode is selected; the Pentium 4, Intel Xeon, and P6 family processors will always
2265 use level-sensitive triggering, regardless if edge-sensitive triggering is selected."
2266 means. */
2267 /* fallthru */
2268 }
2269 case XAPICDELIVERYMODE_SMI:
2270 case XAPICDELIVERYMODE_NMI:
2271 {
2272 VMCPUSET DestCpuSet;
2273 VMCPUSET_EMPTY(&DestCpuSet);
2274 VMCPUSET_ADD(&DestCpuSet, pVCpu->idCpu);
2275 uint8_t const uVector = XAPIC_LVT_GET_VECTOR(uLvt);
2276 rcStrict = apicSendIntr(pVCpu->CTX_SUFF(pVM), pVCpu, uVector, enmTriggerMode, enmDeliveryMode, &DestCpuSet,
2277 rcRZ);
2278 break;
2279 }
2280
2281 case XAPICDELIVERYMODE_EXTINT:
2282 {
2283 Log2(("APIC%u: APICLocalInterrupt: %s ExtINT through LINT%u\n", pVCpu->idCpu,
2284 u8Level ? "Raising" : "Lowering", u8Pin));
2285 if (u8Level)
2286 APICSetInterruptFF(pVCpu, PDMAPICIRQ_EXTINT);
2287 else
2288 APICClearInterruptFF(pVCpu, PDMAPICIRQ_EXTINT);
2289 break;
2290 }
2291
2292 /* Reserved/unknown delivery modes: */
2293 case XAPICDELIVERYMODE_LOWEST_PRIO:
2294 case XAPICDELIVERYMODE_STARTUP:
2295 default:
2296 {
2297 rcStrict = VERR_INTERNAL_ERROR_3;
2298 AssertMsgFailed(("APIC%u: LocalInterrupt: Invalid delivery mode %#x (%s) on LINT%d\n", pVCpu->idCpu,
2299 enmDeliveryMode, apicGetDeliveryModeName(enmDeliveryMode), u8Pin));
2300 break;
2301 }
2302 }
2303 }
2304 }
2305 else
2306 {
2307 /* The APIC is hardware disabled. The CPU behaves as though there is no on-chip APIC. */
2308 if (u8Pin == 0)
2309 {
2310 /* LINT0 behaves as an external interrupt pin. */
2311 Log2(("APIC%u: APICLocalInterrupt: APIC hardware-disabled, %s INTR\n", pVCpu->idCpu,
2312 u8Level ? "raising" : "lowering"));
2313 if (u8Level)
2314 APICSetInterruptFF(pVCpu, PDMAPICIRQ_EXTINT);
2315 else
2316 APICClearInterruptFF(pVCpu, PDMAPICIRQ_EXTINT);
2317 }
2318 else
2319 {
2320 /* LINT1 behaves as NMI. */
2321 Log2(("APIC%u: APICLocalInterrupt: APIC hardware-disabled, raising NMI\n", pVCpu->idCpu));
2322 APICSetInterruptFF(pVCpu, PDMAPICIRQ_NMI);
2323 }
2324 }
2325
2326 return rcStrict;
2327}
2328
2329
2330/**
2331 * @interface_method_impl{PDMAPICREG,pfnGetInterruptR3}
2332 */
2333VMMDECL(int) APICGetInterrupt(PPDMDEVINS pDevIns, PVMCPU pVCpu, uint8_t *pu8Vector, uint32_t *pu32TagSrc)
2334{
2335 VMCPU_ASSERT_EMT(pVCpu);
2336 Assert(pu8Vector);
2337 NOREF(pu32TagSrc);
2338
2339 LogFlow(("APIC%u: APICGetInterrupt:\n", pVCpu->idCpu));
2340
2341 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
2342 bool const fApicHwEnabled = apicIsEnabled(pVCpu);
2343 if ( fApicHwEnabled
2344 && pXApicPage->svr.u.fApicSoftwareEnable)
2345 {
2346 int const irrv = apicGetHighestSetBit(&pXApicPage->irr, -1);
2347 if (RT_LIKELY(irrv >= 0))
2348 {
2349 Assert(irrv <= (int)UINT8_MAX);
2350 uint8_t const uVector = irrv;
2351
2352 /*
2353 * This can happen if the APIC receives an interrupt when the CPU has interrupts
2354 * disabled but the TPR is raised by the guest before re-enabling interrupts.
2355 */
2356 uint8_t const uTpr = pXApicPage->tpr.u8Tpr;
2357 if ( uTpr > 0
2358 && XAPIC_TPR_GET_TP(uVector) <= XAPIC_TPR_GET_TP(uTpr))
2359 {
2360 Log2(("APIC%u: APICGetInterrupt: Interrupt masked. uVector=%#x uTpr=%#x SpuriousVector=%#x\n", pVCpu->idCpu,
2361 uVector, uTpr, pXApicPage->svr.u.u8SpuriousVector));
2362 *pu8Vector = uVector;
2363 STAM_COUNTER_INC(&pVCpu->apic.s.StatMaskedByTpr);
2364 return VERR_APIC_INTR_MASKED_BY_TPR;
2365 }
2366
2367 /*
2368 * The PPR should be up-to-date at this point through apicSetEoi().
2369 * We're on EMT so no parallel updates possible.
2370 * Subject the pending vector to PPR prioritization.
2371 */
2372 uint8_t const uPpr = pXApicPage->ppr.u8Ppr;
2373 if ( !uPpr
2374 || XAPIC_PPR_GET_PP(uVector) > XAPIC_PPR_GET_PP(uPpr))
2375 {
2376 apicClearVectorInReg(&pXApicPage->irr, uVector);
2377 apicSetVectorInReg(&pXApicPage->isr, uVector);
2378 apicUpdatePpr(pVCpu);
2379 apicSignalNextPendingIntr(pVCpu);
2380
2381 Log2(("APIC%u: APICGetInterrupt: Valid Interrupt. uVector=%#x\n", pVCpu->idCpu, uVector));
2382 *pu8Vector = uVector;
2383 return VINF_SUCCESS;
2384 }
2385 else
2386 {
2387 STAM_COUNTER_INC(&pVCpu->apic.s.StatMaskedByPpr);
2388 Log2(("APIC%u: APICGetInterrupt: Interrupt's priority is not higher than the PPR. uVector=%#x PPR=%#x\n",
2389 pVCpu->idCpu, uVector, uPpr));
2390 }
2391 }
2392 else
2393 Log2(("APIC%u: APICGetInterrupt: No pending bits in IRR\n", pVCpu->idCpu));
2394 }
2395 else
2396 Log2(("APIC%u: APICGetInterrupt: APIC %s disabled\n", pVCpu->idCpu, !fApicHwEnabled ? "hardware" : "software"));
2397
2398 return VERR_APIC_INTR_NOT_PENDING;
2399}
2400
2401
2402/**
2403 * @callback_method_impl{FNIOMMMIOREAD}
2404 */
2405VMMDECL(int) APICReadMmio(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void *pv, unsigned cb)
2406{
2407 NOREF(pvUser);
2408 Assert(!(GCPhysAddr & 0xf));
2409 Assert(cb == 4);
2410
2411 PAPICDEV pApicDev = PDMINS_2_DATA(pDevIns, PAPICDEV);
2412 PVMCPU pVCpu = PDMDevHlpGetVMCPU(pDevIns);
2413 uint16_t offReg = (GCPhysAddr & 0xff0);
2414 uint32_t uValue = 0;
2415
2416 STAM_COUNTER_INC(&pVCpu->apic.s.CTX_SUFF(StatMmioRead));
2417
2418 int rc = apicReadRegister(pApicDev, pVCpu, offReg, &uValue);
2419 *(uint32_t *)pv = uValue;
2420
2421 Log2(("APIC%u: APICReadMmio: offReg=%#RX16 uValue=%#RX32\n", pVCpu->idCpu, offReg, uValue));
2422 return rc;
2423}
2424
2425
2426/**
2427 * @callback_method_impl{FNIOMMMIOWRITE}
2428 */
2429VMMDECL(int) APICWriteMmio(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS GCPhysAddr, void const *pv, unsigned cb)
2430{
2431 NOREF(pvUser);
2432 Assert(!(GCPhysAddr & 0xf));
2433 Assert(cb == 4);
2434
2435 PAPICDEV pApicDev = PDMINS_2_DATA(pDevIns, PAPICDEV);
2436 PVMCPU pVCpu = PDMDevHlpGetVMCPU(pDevIns);
2437 uint16_t offReg = (GCPhysAddr & 0xff0);
2438 uint32_t uValue = *(uint32_t *)pv;
2439
2440 STAM_COUNTER_INC(&pVCpu->apic.s.CTX_SUFF(StatMmioWrite));
2441
2442 Log2(("APIC%u: APICWriteMmio: offReg=%#RX16 uValue=%#RX32\n", pVCpu->idCpu, offReg, uValue));
2443
2444 int rc = VBOXSTRICTRC_VAL(apicWriteRegister(pApicDev, pVCpu, offReg, uValue));
2445 return rc;
2446}
2447
2448
2449/**
2450 * Sets the interrupt pending force-flag and pokes the EMT if required.
2451 *
2452 * @param pVCpu The cross context virtual CPU structure.
2453 * @param enmType The IRQ type.
2454 */
2455VMMDECL(void) APICSetInterruptFF(PVMCPU pVCpu, PDMAPICIRQ enmType)
2456{
2457 PVM pVM = pVCpu->CTX_SUFF(pVM);
2458 PAPICDEV pApicDev = VM_TO_APICDEV(pVM);
2459 CTX_SUFF(pApicDev->pApicHlp)->pfnSetInterruptFF(pApicDev->CTX_SUFF(pDevIns), enmType, pVCpu->idCpu);
2460}
2461
2462
2463/**
2464 * Clears the interrupt pending force-flag.
2465 *
2466 * @param pVCpu The cross context virtual CPU structure.
2467 * @param enmType The IRQ type.
2468 */
2469VMMDECL(void) APICClearInterruptFF(PVMCPU pVCpu, PDMAPICIRQ enmType)
2470{
2471 PVM pVM = pVCpu->CTX_SUFF(pVM);
2472 PAPICDEV pApicDev = VM_TO_APICDEV(pVM);
2473 pApicDev->CTX_SUFF(pApicHlp)->pfnClearInterruptFF(pApicDev->CTX_SUFF(pDevIns), enmType, pVCpu->idCpu);
2474}
2475
2476
2477/**
2478 * Posts an interrupt to a target APIC.
2479 *
2480 * This function handles interrupts received from the system bus or
2481 * interrupts generated locally from the LVT or via a self IPI.
2482 *
2483 * Don't use this function to try and deliver ExtINT style interrupts.
2484 *
2485 * @param pVCpu The cross context virtual CPU structure.
2486 * @param uVector The vector of the interrupt to be posted.
2487 * @param enmTriggerMode The trigger mode of the interrupt.
2488 *
2489 * @thread Any.
2490 */
2491VMM_INT_DECL(void) APICPostInterrupt(PVMCPU pVCpu, uint8_t uVector, XAPICTRIGGERMODE enmTriggerMode)
2492{
2493 Assert(pVCpu);
2494 Assert(uVector > XAPIC_ILLEGAL_VECTOR_END);
2495
2496 PVM pVM = pVCpu->CTX_SUFF(pVM);
2497 PCAPIC pApic = VM_TO_APIC(pVM);
2498 PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
2499
2500 STAM_PROFILE_START(&pApicCpu->StatPostIntr, a);
2501
2502 /*
2503 * Only post valid interrupt vectors.
2504 * See Intel spec. 10.5.2 "Valid Interrupt Vectors".
2505 */
2506 if (RT_LIKELY(uVector > XAPIC_ILLEGAL_VECTOR_END))
2507 {
2508 /*
2509 * If the interrupt is already pending in the IRR we can skip the
2510 * potential expensive operation of poking the guest EMT out of execution.
2511 */
2512 PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpu);
2513 if (!apicTestVectorInReg(&pXApicPage->irr, uVector)) /* PAV */
2514 {
2515 Log2(("APIC: APICPostInterrupt: SrcCpu=%u TargetCpu=%u uVector=%#x\n", VMMGetCpuId(pVM), pVCpu->idCpu, uVector));
2516 if (enmTriggerMode == XAPICTRIGGERMODE_EDGE)
2517 {
2518 if (pApic->fPostedIntrsEnabled)
2519 { /** @todo posted-interrupt call to hardware */ }
2520 else
2521 {
2522 apicSetVectorInPib(pApicCpu->CTX_SUFF(pvApicPib), uVector);
2523 uint32_t const fAlreadySet = apicSetNotificationBitInPib((PAPICPIB)pApicCpu->CTX_SUFF(pvApicPib));
2524 if (!fAlreadySet)
2525 {
2526 Log2(("APIC: APICPostInterrupt: Setting UPDATE_APIC FF for edge-triggered intr. uVector=%#x\n", uVector));
2527 APICSetInterruptFF(pVCpu, PDMAPICIRQ_UPDATE_PENDING);
2528 }
2529 }
2530 }
2531 else
2532 {
2533 /*
2534 * Level-triggered interrupts requires updating of the TMR and thus cannot be
2535 * delivered asynchronously.
2536 */
2537 apicSetVectorInPib(&pApicCpu->ApicPibLevel, uVector);
2538 uint32_t const fAlreadySet = apicSetNotificationBitInPib(&pApicCpu->ApicPibLevel);
2539 if (!fAlreadySet)
2540 {
2541 Log2(("APIC: APICPostInterrupt: Setting UPDATE_APIC FF for level-triggered intr. uVector=%#x\n", uVector));
2542 APICSetInterruptFF(pVCpu, PDMAPICIRQ_UPDATE_PENDING);
2543 }
2544 }
2545 }
2546 else
2547 {
2548 Log2(("APIC: APICPostInterrupt: SrcCpu=%u TargetCpu=%u. Vector %#x Already in IRR, skipping\n", VMMGetCpuId(pVM),
2549 pVCpu->idCpu, uVector));
2550 STAM_COUNTER_INC(&pApicCpu->StatPostIntrAlreadyPending);
2551 }
2552 }
2553 else
2554 apicSetError(pVCpu, XAPIC_ESR_RECV_ILLEGAL_VECTOR);
2555
2556 STAM_PROFILE_STOP(&pApicCpu->StatPostIntr, a);
2557}
2558
2559
2560/**
2561 * Starts the APIC timer.
2562 *
2563 * @param pVCpu The cross context virtual CPU structure.
2564 * @param uInitialCount The timer's Initial-Count Register (ICR), must be >
2565 * 0.
2566 * @thread Any.
2567 */
2568VMM_INT_DECL(void) APICStartTimer(PVMCPU pVCpu, uint32_t uInitialCount)
2569{
2570 Assert(pVCpu);
2571 PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
2572 Assert(TMTimerIsLockOwner(pApicCpu->CTX_SUFF(pTimer)));
2573 Assert(uInitialCount > 0);
2574
2575 PCXAPICPAGE pXApicPage = APICCPU_TO_CXAPICPAGE(pApicCpu);
2576 uint8_t const uTimerShift = apicGetTimerShift(pXApicPage);
2577 uint64_t const cTicksToNext = (uint64_t)uInitialCount << uTimerShift;
2578
2579 Log2(("APIC%u: APICStartTimer: uInitialCount=%#RX32 uTimerShift=%u cTicksToNext=%RU64\n", pVCpu->idCpu, uInitialCount,
2580 uTimerShift, cTicksToNext));
2581
2582 /*
2583 * The assumption here is that the timer doesn't tick during this call
2584 * and thus setting a relative time to fire next is accurate. The advantage
2585 * however is updating u64TimerInitial 'atomically' while setting the next
2586 * tick.
2587 */
2588 PTMTIMER pTimer = pApicCpu->CTX_SUFF(pTimer);
2589 TMTimerSetRelative(pTimer, cTicksToNext, &pApicCpu->u64TimerInitial);
2590 apicHintTimerFreq(pApicCpu, uInitialCount, uTimerShift);
2591}
2592
2593
2594/**
2595 * Stops the APIC timer.
2596 *
2597 * @param pVCpu The cross context virtual CPU structure.
2598 * @thread Any.
2599 */
2600VMM_INT_DECL(void) APICStopTimer(PVMCPU pVCpu)
2601{
2602 Assert(pVCpu);
2603 PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
2604 Assert(TMTimerIsLockOwner(pApicCpu->CTX_SUFF(pTimer)));
2605
2606 Log2(("APIC%u: APICStopTimer\n", pVCpu->idCpu));
2607
2608 PTMTIMER pTimer = pApicCpu->CTX_SUFF(pTimer);
2609 TMTimerStop(pTimer); /* This will reset the hint, no need to explicitly call TMTimerSetFrequencyHint(). */
2610 pApicCpu->uHintedTimerInitialCount = 0;
2611 pApicCpu->uHintedTimerShift = 0;
2612}
2613
2614
2615/**
2616 * Queues a pending interrupt as in-service.
2617 *
2618 * This function should only be needed without virtualized APIC
2619 * registers. With virtualized APIC registers, it's sufficient to keep
2620 * the interrupts pending in the IRR as the hardware takes care of
2621 * virtual interrupt delivery.
2622 *
2623 * @returns true if the interrupt was queued to in-service interrupts,
2624 * false otherwise.
2625 * @param pVCpu The cross context virtual CPU structure.
2626 * @param u8PendingIntr The pending interrupt to queue as
2627 * in-service.
2628 *
2629 * @remarks This assumes the caller has done the necessary checks and
2630 * is ready to take actually service the interrupt (TPR,
2631 * interrupt shadow etc.)
2632 */
2633VMMDECL(bool) APICQueueInterruptToService(PVMCPU pVCpu, uint8_t u8PendingIntr)
2634{
2635 VMCPU_ASSERT_EMT(pVCpu);
2636
2637 PVM pVM = pVCpu->CTX_SUFF(pVM);
2638 PAPIC pApic = VM_TO_APIC(pVM);
2639 Assert(!pApic->fVirtApicRegsEnabled);
2640 NOREF(pApic);
2641
2642 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
2643 bool const fIsPending = apicTestVectorInReg(&pXApicPage->irr, u8PendingIntr);
2644 if (fIsPending)
2645 {
2646 apicClearVectorInReg(&pXApicPage->irr, u8PendingIntr);
2647 apicSetVectorInReg(&pXApicPage->isr, u8PendingIntr);
2648 apicUpdatePpr(pVCpu);
2649 return true;
2650 }
2651 return false;
2652}
2653
2654
2655/**
2656 * Dequeues a pending interrupt from in-service.
2657 *
2658 * This undoes APICQueueInterruptToService() for premature VM-exits before event
2659 * injection.
2660 *
2661 * @param pVCpu The cross context virtual CPU structure.
2662 * @param u8PendingIntr The pending interrupt to dequeue from
2663 * in-service.
2664 */
2665VMMDECL(void) APICDequeueInterruptFromService(PVMCPU pVCpu, uint8_t u8PendingIntr)
2666{
2667 VMCPU_ASSERT_EMT(pVCpu);
2668
2669 PVM pVM = pVCpu->CTX_SUFF(pVM);
2670 PAPIC pApic = VM_TO_APIC(pVM);
2671 Assert(!pApic->fVirtApicRegsEnabled);
2672 NOREF(pApic);
2673
2674 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
2675 bool const fInService = apicTestVectorInReg(&pXApicPage->isr, u8PendingIntr);
2676 if (fInService)
2677 {
2678 apicClearVectorInReg(&pXApicPage->isr, u8PendingIntr);
2679 apicSetVectorInReg(&pXApicPage->irr, u8PendingIntr);
2680 apicUpdatePpr(pVCpu);
2681 }
2682}
2683
2684
2685/**
2686 * Updates pending interrupts from the pending-interrupt bitmaps to the IRR.
2687 *
2688 * @param pVCpu The cross context virtual CPU structure.
2689 */
2690VMMDECL(void) APICUpdatePendingInterrupts(PVMCPU pVCpu)
2691{
2692 VMCPU_ASSERT_EMT_OR_NOT_RUNNING(pVCpu);
2693
2694 PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
2695 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
2696 bool fHasPendingIntrs = false;
2697
2698 Log3(("APIC%u: APICUpdatePendingInterrupts:\n", pVCpu->idCpu));
2699 STAM_PROFILE_START(&pApicCpu->StatUpdatePendingIntrs, a);
2700
2701 /* Update edge-triggered pending interrupts. */
2702 for (;;)
2703 {
2704 uint32_t const fAlreadySet = apicClearNotificationBitInPib((PAPICPIB)pApicCpu->CTX_SUFF(pvApicPib));
2705 if (!fAlreadySet)
2706 break;
2707
2708 PAPICPIB pPib = (PAPICPIB)pApicCpu->CTX_SUFF(pvApicPib);
2709 AssertCompile(RT_ELEMENTS(pXApicPage->irr.u) == 2 * RT_ELEMENTS(pPib->aVectorBitmap));
2710
2711 for (size_t idxPib = 0, idxReg = 0; idxPib < RT_ELEMENTS(pPib->aVectorBitmap); idxPib++, idxReg += 2)
2712 {
2713 uint64_t const u64Fragment = ASMAtomicXchgU64(&pPib->aVectorBitmap[idxPib], 0);
2714 if (u64Fragment)
2715 {
2716 uint32_t const u32FragmentLo = RT_LO_U32(u64Fragment);
2717 uint32_t const u32FragmentHi = RT_HI_U32(u64Fragment);
2718
2719 pXApicPage->irr.u[idxReg].u32Reg |= u32FragmentLo;
2720 pXApicPage->irr.u[idxReg + 1].u32Reg |= u32FragmentHi;
2721
2722 pXApicPage->tmr.u[idxReg].u32Reg &= ~u32FragmentLo;
2723 pXApicPage->tmr.u[idxReg + 1].u32Reg &= ~u32FragmentHi;
2724 fHasPendingIntrs = true;
2725 }
2726 }
2727 }
2728
2729 /* Update level-triggered pending interrupts. */
2730 for (;;)
2731 {
2732 uint32_t const fAlreadySet = apicClearNotificationBitInPib((PAPICPIB)&pApicCpu->ApicPibLevel);
2733 if (!fAlreadySet)
2734 break;
2735
2736 PAPICPIB pPib = (PAPICPIB)&pApicCpu->ApicPibLevel;
2737 AssertCompile(RT_ELEMENTS(pXApicPage->irr.u) == 2 * RT_ELEMENTS(pPib->aVectorBitmap));
2738
2739 for (size_t idxPib = 0, idxReg = 0; idxPib < RT_ELEMENTS(pPib->aVectorBitmap); idxPib++, idxReg += 2)
2740 {
2741 uint64_t const u64Fragment = ASMAtomicXchgU64(&pPib->aVectorBitmap[idxPib], 0);
2742 if (u64Fragment)
2743 {
2744 uint32_t const u32FragmentLo = RT_LO_U32(u64Fragment);
2745 uint32_t const u32FragmentHi = RT_HI_U32(u64Fragment);
2746
2747 pXApicPage->irr.u[idxReg].u32Reg |= u32FragmentLo;
2748 pXApicPage->irr.u[idxReg + 1].u32Reg |= u32FragmentHi;
2749
2750 pXApicPage->tmr.u[idxReg].u32Reg |= u32FragmentLo;
2751 pXApicPage->tmr.u[idxReg + 1].u32Reg |= u32FragmentHi;
2752 fHasPendingIntrs = true;
2753 }
2754 }
2755 }
2756
2757 STAM_PROFILE_STOP(&pApicCpu->StatUpdatePendingIntrs, a);
2758 Log3(("APIC%u: APICUpdatePendingInterrupts: fHasPendingIntrs=%RTbool\n", pVCpu->idCpu, fHasPendingIntrs));
2759
2760 if ( fHasPendingIntrs
2761 && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INTERRUPT_APIC))
2762 apicSignalNextPendingIntr(pVCpu);
2763}
2764
2765
2766/**
2767 * Gets the highest priority pending interrupt.
2768 *
2769 * @returns true if any interrupt is pending, false otherwise.
2770 * @param pVCpu The cross context virtual CPU structure.
2771 * @param pu8PendingIntr Where to store the interrupt vector if the
2772 * interrupt is pending.
2773 */
2774VMMDECL(bool) APICGetHighestPendingInterrupt(PVMCPU pVCpu, uint8_t *pu8PendingIntr)
2775{
2776 VMCPU_ASSERT_EMT(pVCpu);
2777 return apicGetHighestPendingInterrupt(pVCpu, pu8PendingIntr);
2778}
2779
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette