VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/APICAll.cpp@ 87626

Last change on this file since 87626 was 85965, checked in by vboxsync, 4 years ago

VMM/APIC: Added some release stats.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Author Date Id Revision
File size: 128.6 KB
Line 
1/* $Id: APICAll.cpp 85965 2020-08-31 23:47:31Z vboxsync $ */
2/** @file
3 * APIC - Advanced Programmable Interrupt Controller - All Contexts.
4 */
5
6/*
7 * Copyright (C) 2016-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_DEV_APIC
23#define VMCPU_INCL_CPUM_GST_CTX /* for macOS hack */
24#include "APICInternal.h"
25#include <VBox/vmm/apic.h>
26#include <VBox/vmm/pdmdev.h>
27#include <VBox/vmm/pdmapi.h>
28#include <VBox/vmm/vmcc.h>
29#include <VBox/vmm/vmm.h>
30#include <VBox/vmm/vmcpuset.h>
31#ifdef IN_RING0
32# include <VBox/vmm/gvmm.h>
33#endif
34
35
36/*********************************************************************************************************************************
37* Internal Functions *
38*********************************************************************************************************************************/
39static void apicSetInterruptFF(PVMCPUCC pVCpu, PDMAPICIRQ enmType);
40static void apicStopTimer(PVMCPUCC pVCpu);
41
42
43/*********************************************************************************************************************************
44* Global Variables *
45*********************************************************************************************************************************/
46#if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4
47/** An ordered array of valid LVT masks. */
48static const uint32_t g_au32LvtValidMasks[] =
49{
50 XAPIC_LVT_TIMER_VALID,
51 XAPIC_LVT_THERMAL_VALID,
52 XAPIC_LVT_PERF_VALID,
53 XAPIC_LVT_LINT_VALID, /* LINT0 */
54 XAPIC_LVT_LINT_VALID, /* LINT1 */
55 XAPIC_LVT_ERROR_VALID
56};
57#endif
58
59#if 0
60/** @todo CMCI */
61static const uint32_t g_au32LvtExtValidMask[] =
62{
63 XAPIC_LVT_CMCI_VALID
64};
65#endif
66
67
68/**
69 * Checks if a vector is set in an APIC 256-bit sparse register.
70 *
71 * @returns true if the specified vector is set, false otherwise.
72 * @param pApicReg The APIC 256-bit spare register.
73 * @param uVector The vector to check if set.
74 */
75DECLINLINE(bool) apicTestVectorInReg(const volatile XAPIC256BITREG *pApicReg, uint8_t uVector)
76{
77 const volatile uint8_t *pbBitmap = (const volatile uint8_t *)&pApicReg->u[0];
78 return ASMBitTest(pbBitmap + XAPIC_REG256_VECTOR_OFF(uVector), XAPIC_REG256_VECTOR_BIT(uVector));
79}
80
81
82/**
83 * Sets the vector in an APIC 256-bit sparse register.
84 *
85 * @param pApicReg The APIC 256-bit spare register.
86 * @param uVector The vector to set.
87 */
88DECLINLINE(void) apicSetVectorInReg(volatile XAPIC256BITREG *pApicReg, uint8_t uVector)
89{
90 volatile uint8_t *pbBitmap = (volatile uint8_t *)&pApicReg->u[0];
91 ASMAtomicBitSet(pbBitmap + XAPIC_REG256_VECTOR_OFF(uVector), XAPIC_REG256_VECTOR_BIT(uVector));
92}
93
94
95/**
96 * Clears the vector in an APIC 256-bit sparse register.
97 *
98 * @param pApicReg The APIC 256-bit spare register.
99 * @param uVector The vector to clear.
100 */
101DECLINLINE(void) apicClearVectorInReg(volatile XAPIC256BITREG *pApicReg, uint8_t uVector)
102{
103 volatile uint8_t *pbBitmap = (volatile uint8_t *)&pApicReg->u[0];
104 ASMAtomicBitClear(pbBitmap + XAPIC_REG256_VECTOR_OFF(uVector), XAPIC_REG256_VECTOR_BIT(uVector));
105}
106
107
108#if 0 /* unused */
109/**
110 * Checks if a vector is set in an APIC Pending-Interrupt Bitmap (PIB).
111 *
112 * @returns true if the specified vector is set, false otherwise.
113 * @param pvPib Opaque pointer to the PIB.
114 * @param uVector The vector to check if set.
115 */
116DECLINLINE(bool) apicTestVectorInPib(volatile void *pvPib, uint8_t uVector)
117{
118 return ASMBitTest(pvPib, uVector);
119}
120#endif /* unused */
121
122
123/**
124 * Atomically sets the PIB notification bit.
125 *
126 * @returns non-zero if the bit was already set, 0 otherwise.
127 * @param pApicPib Pointer to the PIB.
128 */
129DECLINLINE(uint32_t) apicSetNotificationBitInPib(PAPICPIB pApicPib)
130{
131 return ASMAtomicXchgU32(&pApicPib->fOutstandingNotification, RT_BIT_32(31));
132}
133
134
135/**
136 * Atomically tests and clears the PIB notification bit.
137 *
138 * @returns non-zero if the bit was already set, 0 otherwise.
139 * @param pApicPib Pointer to the PIB.
140 */
141DECLINLINE(uint32_t) apicClearNotificationBitInPib(PAPICPIB pApicPib)
142{
143 return ASMAtomicXchgU32(&pApicPib->fOutstandingNotification, UINT32_C(0));
144}
145
146
147/**
148 * Sets the vector in an APIC Pending-Interrupt Bitmap (PIB).
149 *
150 * @param pvPib Opaque pointer to the PIB.
151 * @param uVector The vector to set.
152 */
153DECLINLINE(void) apicSetVectorInPib(volatile void *pvPib, uint8_t uVector)
154{
155 ASMAtomicBitSet(pvPib, uVector);
156}
157
158#if 0 /* unused */
159/**
160 * Clears the vector in an APIC Pending-Interrupt Bitmap (PIB).
161 *
162 * @param pvPib Opaque pointer to the PIB.
163 * @param uVector The vector to clear.
164 */
165DECLINLINE(void) apicClearVectorInPib(volatile void *pvPib, uint8_t uVector)
166{
167 ASMAtomicBitClear(pvPib, uVector);
168}
169#endif /* unused */
170
171#if 0 /* unused */
172/**
173 * Atomically OR's a fragment (32 vectors) into an APIC 256-bit sparse
174 * register.
175 *
176 * @param pApicReg The APIC 256-bit spare register.
177 * @param idxFragment The index of the 32-bit fragment in @a
178 * pApicReg.
179 * @param u32Fragment The 32-bit vector fragment to OR.
180 */
181DECLINLINE(void) apicOrVectorsToReg(volatile XAPIC256BITREG *pApicReg, size_t idxFragment, uint32_t u32Fragment)
182{
183 Assert(idxFragment < RT_ELEMENTS(pApicReg->u));
184 ASMAtomicOrU32(&pApicReg->u[idxFragment].u32Reg, u32Fragment);
185}
186#endif /* unused */
187
188
189#if 0 /* unused */
190/**
191 * Atomically AND's a fragment (32 vectors) into an APIC
192 * 256-bit sparse register.
193 *
194 * @param pApicReg The APIC 256-bit spare register.
195 * @param idxFragment The index of the 32-bit fragment in @a
196 * pApicReg.
197 * @param u32Fragment The 32-bit vector fragment to AND.
198 */
199DECLINLINE(void) apicAndVectorsToReg(volatile XAPIC256BITREG *pApicReg, size_t idxFragment, uint32_t u32Fragment)
200{
201 Assert(idxFragment < RT_ELEMENTS(pApicReg->u));
202 ASMAtomicAndU32(&pApicReg->u[idxFragment].u32Reg, u32Fragment);
203}
204#endif /* unused */
205
206
207/**
208 * Reports and returns appropriate error code for invalid MSR accesses.
209 *
210 * @returns VERR_CPUM_RAISE_GP_0
211 *
212 * @param pVCpu The cross context virtual CPU structure.
213 * @param u32Reg The MSR being accessed.
214 * @param enmAccess The invalid-access type.
215 */
216static int apicMsrAccessError(PVMCPUCC pVCpu, uint32_t u32Reg, APICMSRACCESS enmAccess)
217{
218 static struct
219 {
220 const char *pszBefore; /* The error message before printing the MSR index */
221 const char *pszAfter; /* The error message after printing the MSR index */
222 } const s_aAccess[] =
223 {
224 /* enmAccess pszBefore pszAfter */
225 /* 0 */ { "read MSR", " while not in x2APIC mode" },
226 /* 1 */ { "write MSR", " while not in x2APIC mode" },
227 /* 2 */ { "read reserved/unknown MSR", "" },
228 /* 3 */ { "write reserved/unknown MSR", "" },
229 /* 4 */ { "read write-only MSR", "" },
230 /* 5 */ { "write read-only MSR", "" },
231 /* 6 */ { "read reserved bits of MSR", "" },
232 /* 7 */ { "write reserved bits of MSR", "" },
233 /* 8 */ { "write an invalid value to MSR", "" },
234 /* 9 */ { "write MSR", " disallowed by configuration" },
235 /* 10 */ { "read MSR", " disallowed by configuration" },
236 };
237 AssertCompile(RT_ELEMENTS(s_aAccess) == APICMSRACCESS_COUNT);
238
239 size_t const i = enmAccess;
240 Assert(i < RT_ELEMENTS(s_aAccess));
241 if (pVCpu->apic.s.cLogMaxAccessError++ < 5)
242 LogRel(("APIC%u: Attempt to %s (%#x)%s -> #GP(0)\n", pVCpu->idCpu, s_aAccess[i].pszBefore, u32Reg, s_aAccess[i].pszAfter));
243 return VERR_CPUM_RAISE_GP_0;
244}
245
246
247/**
248 * Gets the descriptive APIC mode.
249 *
250 * @returns The name.
251 * @param enmMode The xAPIC mode.
252 */
253const char *apicGetModeName(APICMODE enmMode)
254{
255 switch (enmMode)
256 {
257 case APICMODE_DISABLED: return "Disabled";
258 case APICMODE_XAPIC: return "xAPIC";
259 case APICMODE_X2APIC: return "x2APIC";
260 default: break;
261 }
262 return "Invalid";
263}
264
265
266/**
267 * Gets the descriptive destination format name.
268 *
269 * @returns The destination format name.
270 * @param enmDestFormat The destination format.
271 */
272const char *apicGetDestFormatName(XAPICDESTFORMAT enmDestFormat)
273{
274 switch (enmDestFormat)
275 {
276 case XAPICDESTFORMAT_FLAT: return "Flat";
277 case XAPICDESTFORMAT_CLUSTER: return "Cluster";
278 default: break;
279 }
280 return "Invalid";
281}
282
283
284/**
285 * Gets the descriptive delivery mode name.
286 *
287 * @returns The delivery mode name.
288 * @param enmDeliveryMode The delivery mode.
289 */
290const char *apicGetDeliveryModeName(XAPICDELIVERYMODE enmDeliveryMode)
291{
292 switch (enmDeliveryMode)
293 {
294 case XAPICDELIVERYMODE_FIXED: return "Fixed";
295 case XAPICDELIVERYMODE_LOWEST_PRIO: return "Lowest-priority";
296 case XAPICDELIVERYMODE_SMI: return "SMI";
297 case XAPICDELIVERYMODE_NMI: return "NMI";
298 case XAPICDELIVERYMODE_INIT: return "INIT";
299 case XAPICDELIVERYMODE_STARTUP: return "SIPI";
300 case XAPICDELIVERYMODE_EXTINT: return "ExtINT";
301 default: break;
302 }
303 return "Invalid";
304}
305
306
307/**
308 * Gets the descriptive destination mode name.
309 *
310 * @returns The destination mode name.
311 * @param enmDestMode The destination mode.
312 */
313const char *apicGetDestModeName(XAPICDESTMODE enmDestMode)
314{
315 switch (enmDestMode)
316 {
317 case XAPICDESTMODE_PHYSICAL: return "Physical";
318 case XAPICDESTMODE_LOGICAL: return "Logical";
319 default: break;
320 }
321 return "Invalid";
322}
323
324
325/**
326 * Gets the descriptive trigger mode name.
327 *
328 * @returns The trigger mode name.
329 * @param enmTriggerMode The trigger mode.
330 */
331const char *apicGetTriggerModeName(XAPICTRIGGERMODE enmTriggerMode)
332{
333 switch (enmTriggerMode)
334 {
335 case XAPICTRIGGERMODE_EDGE: return "Edge";
336 case XAPICTRIGGERMODE_LEVEL: return "Level";
337 default: break;
338 }
339 return "Invalid";
340}
341
342
343/**
344 * Gets the destination shorthand name.
345 *
346 * @returns The destination shorthand name.
347 * @param enmDestShorthand The destination shorthand.
348 */
349const char *apicGetDestShorthandName(XAPICDESTSHORTHAND enmDestShorthand)
350{
351 switch (enmDestShorthand)
352 {
353 case XAPICDESTSHORTHAND_NONE: return "None";
354 case XAPICDESTSHORTHAND_SELF: return "Self";
355 case XAPIDDESTSHORTHAND_ALL_INCL_SELF: return "All including self";
356 case XAPICDESTSHORTHAND_ALL_EXCL_SELF: return "All excluding self";
357 default: break;
358 }
359 return "Invalid";
360}
361
362
363/**
364 * Gets the timer mode name.
365 *
366 * @returns The timer mode name.
367 * @param enmTimerMode The timer mode.
368 */
369const char *apicGetTimerModeName(XAPICTIMERMODE enmTimerMode)
370{
371 switch (enmTimerMode)
372 {
373 case XAPICTIMERMODE_ONESHOT: return "One-shot";
374 case XAPICTIMERMODE_PERIODIC: return "Periodic";
375 case XAPICTIMERMODE_TSC_DEADLINE: return "TSC deadline";
376 default: break;
377 }
378 return "Invalid";
379}
380
381
382/**
383 * Gets the APIC mode given the base MSR value.
384 *
385 * @returns The APIC mode.
386 * @param uApicBaseMsr The APIC Base MSR value.
387 */
388APICMODE apicGetMode(uint64_t uApicBaseMsr)
389{
390 uint32_t const uMode = (uApicBaseMsr >> 10) & UINT64_C(3);
391 APICMODE const enmMode = (APICMODE)uMode;
392#ifdef VBOX_STRICT
393 /* Paranoia. */
394 switch (uMode)
395 {
396 case APICMODE_DISABLED:
397 case APICMODE_INVALID:
398 case APICMODE_XAPIC:
399 case APICMODE_X2APIC:
400 break;
401 default:
402 AssertMsgFailed(("Invalid mode"));
403 }
404#endif
405 return enmMode;
406}
407
408
409/**
410 * Returns whether the APIC is hardware enabled or not.
411 *
412 * @returns true if enabled, false otherwise.
413 * @param pVCpu The cross context virtual CPU structure.
414 */
415VMM_INT_DECL(bool) APICIsEnabled(PCVMCPUCC pVCpu)
416{
417 PCAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
418 return RT_BOOL(pApicCpu->uApicBaseMsr & MSR_IA32_APICBASE_EN);
419}
420
421
422/**
423 * Finds the most significant set bit in an APIC 256-bit sparse register.
424 *
425 * @returns @a rcNotFound if no bit was set, 0-255 otherwise.
426 * @param pReg The APIC 256-bit sparse register.
427 * @param rcNotFound What to return when no bit is set.
428 */
429static int apicGetHighestSetBitInReg(volatile const XAPIC256BITREG *pReg, int rcNotFound)
430{
431 ssize_t const cFragments = RT_ELEMENTS(pReg->u);
432 unsigned const uFragmentShift = 5;
433 AssertCompile(1 << uFragmentShift == sizeof(pReg->u[0].u32Reg) * 8);
434 for (ssize_t i = cFragments - 1; i >= 0; i--)
435 {
436 uint32_t const uFragment = pReg->u[i].u32Reg;
437 if (uFragment)
438 {
439 unsigned idxSetBit = ASMBitLastSetU32(uFragment);
440 --idxSetBit;
441 idxSetBit |= i << uFragmentShift;
442 return idxSetBit;
443 }
444 }
445 return rcNotFound;
446}
447
448
449/**
450 * Reads a 32-bit register at a specified offset.
451 *
452 * @returns The value at the specified offset.
453 * @param pXApicPage The xAPIC page.
454 * @param offReg The offset of the register being read.
455 */
456DECLINLINE(uint32_t) apicReadRaw32(PCXAPICPAGE pXApicPage, uint16_t offReg)
457{
458 Assert(offReg < sizeof(*pXApicPage) - sizeof(uint32_t));
459 uint8_t const *pbXApic = (const uint8_t *)pXApicPage;
460 uint32_t const uValue = *(const uint32_t *)(pbXApic + offReg);
461 return uValue;
462}
463
464
465/**
466 * Writes a 32-bit register at a specified offset.
467 *
468 * @param pXApicPage The xAPIC page.
469 * @param offReg The offset of the register being written.
470 * @param uReg The value of the register.
471 */
472DECLINLINE(void) apicWriteRaw32(PXAPICPAGE pXApicPage, uint16_t offReg, uint32_t uReg)
473{
474 Assert(offReg < sizeof(*pXApicPage) - sizeof(uint32_t));
475 uint8_t *pbXApic = (uint8_t *)pXApicPage;
476 *(uint32_t *)(pbXApic + offReg) = uReg;
477}
478
479
480/**
481 * Sets an error in the internal ESR of the specified APIC.
482 *
483 * @param pVCpu The cross context virtual CPU structure.
484 * @param uError The error.
485 * @thread Any.
486 */
487DECLINLINE(void) apicSetError(PVMCPUCC pVCpu, uint32_t uError)
488{
489 PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
490 ASMAtomicOrU32(&pApicCpu->uEsrInternal, uError);
491}
492
493
494/**
495 * Clears all errors in the internal ESR.
496 *
497 * @returns The value of the internal ESR before clearing.
498 * @param pVCpu The cross context virtual CPU structure.
499 */
500DECLINLINE(uint32_t) apicClearAllErrors(PVMCPUCC pVCpu)
501{
502 VMCPU_ASSERT_EMT(pVCpu);
503 PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
504 return ASMAtomicXchgU32(&pApicCpu->uEsrInternal, 0);
505}
506
507
508/**
509 * Signals the guest if a pending interrupt is ready to be serviced.
510 *
511 * @param pVCpu The cross context virtual CPU structure.
512 */
513static void apicSignalNextPendingIntr(PVMCPUCC pVCpu)
514{
515 VMCPU_ASSERT_EMT_OR_NOT_RUNNING(pVCpu);
516
517 PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpu);
518 if (pXApicPage->svr.u.fApicSoftwareEnable)
519 {
520 int const irrv = apicGetHighestSetBitInReg(&pXApicPage->irr, -1 /* rcNotFound */);
521 if (irrv >= 0)
522 {
523 Assert(irrv <= (int)UINT8_MAX);
524 uint8_t const uVector = irrv;
525 uint8_t const uPpr = pXApicPage->ppr.u8Ppr;
526 if ( !uPpr
527 || XAPIC_PPR_GET_PP(uVector) > XAPIC_PPR_GET_PP(uPpr))
528 {
529 Log2(("APIC%u: apicSignalNextPendingIntr: Signalling pending interrupt. uVector=%#x\n", pVCpu->idCpu, uVector));
530 apicSetInterruptFF(pVCpu, PDMAPICIRQ_HARDWARE);
531 }
532 else
533 {
534 Log2(("APIC%u: apicSignalNextPendingIntr: Nothing to signal. uVector=%#x uPpr=%#x uTpr=%#x\n", pVCpu->idCpu,
535 uVector, uPpr, pXApicPage->tpr.u8Tpr));
536 }
537 }
538 }
539 else
540 {
541 Log2(("APIC%u: apicSignalNextPendingIntr: APIC software-disabled, clearing pending interrupt\n", pVCpu->idCpu));
542 apicClearInterruptFF(pVCpu, PDMAPICIRQ_HARDWARE);
543 }
544}
545
546
547/**
548 * Sets the Spurious-Interrupt Vector Register (SVR).
549 *
550 * @returns VINF_SUCCESS or VERR_CPUM_RAISE_GP_0.
551 * @param pVCpu The cross context virtual CPU structure.
552 * @param uSvr The SVR value.
553 */
554static int apicSetSvr(PVMCPUCC pVCpu, uint32_t uSvr)
555{
556 VMCPU_ASSERT_EMT(pVCpu);
557
558 uint32_t uValidMask = XAPIC_SVR_VALID;
559 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
560 if (pXApicPage->version.u.fEoiBroadcastSupression)
561 uValidMask |= XAPIC_SVR_SUPRESS_EOI_BROADCAST;
562
563 if ( XAPIC_IN_X2APIC_MODE(pVCpu)
564 && (uSvr & ~uValidMask))
565 return apicMsrAccessError(pVCpu, MSR_IA32_X2APIC_SVR, APICMSRACCESS_WRITE_RSVD_BITS);
566
567 Log2(("APIC%u: apicSetSvr: uSvr=%#RX32\n", pVCpu->idCpu, uSvr));
568 apicWriteRaw32(pXApicPage, XAPIC_OFF_SVR, uSvr);
569 if (!pXApicPage->svr.u.fApicSoftwareEnable)
570 {
571 /** @todo CMCI. */
572 pXApicPage->lvt_timer.u.u1Mask = 1;
573#if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4
574 pXApicPage->lvt_thermal.u.u1Mask = 1;
575#endif
576 pXApicPage->lvt_perf.u.u1Mask = 1;
577 pXApicPage->lvt_lint0.u.u1Mask = 1;
578 pXApicPage->lvt_lint1.u.u1Mask = 1;
579 pXApicPage->lvt_error.u.u1Mask = 1;
580 }
581
582 apicSignalNextPendingIntr(pVCpu);
583 return VINF_SUCCESS;
584}
585
586
587/**
588 * Sends an interrupt to one or more APICs.
589 *
590 * @returns Strict VBox status code.
591 * @param pVM The cross context VM structure.
592 * @param pVCpu The cross context virtual CPU structure, can be
593 * NULL if the source of the interrupt is not an
594 * APIC (for e.g. a bus).
595 * @param uVector The interrupt vector.
596 * @param enmTriggerMode The trigger mode.
597 * @param enmDeliveryMode The delivery mode.
598 * @param pDestCpuSet The destination CPU set.
599 * @param pfIntrAccepted Where to store whether this interrupt was
600 * accepted by the target APIC(s) or not.
601 * Optional, can be NULL.
602 * @param uSrcTag The interrupt source tag (debugging).
603 * @param rcRZ The return code if the operation cannot be
604 * performed in the current context.
605 */
606static VBOXSTRICTRC apicSendIntr(PVMCC pVM, PVMCPUCC pVCpu, uint8_t uVector, XAPICTRIGGERMODE enmTriggerMode,
607 XAPICDELIVERYMODE enmDeliveryMode, PCVMCPUSET pDestCpuSet, bool *pfIntrAccepted,
608 uint32_t uSrcTag, int rcRZ)
609{
610 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
611 VMCPUID const cCpus = pVM->cCpus;
612 bool fAccepted = false;
613 switch (enmDeliveryMode)
614 {
615 case XAPICDELIVERYMODE_FIXED:
616 {
617 for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++)
618 if (VMCPUSET_IS_PRESENT(pDestCpuSet, idCpu))
619 {
620 PVMCPUCC pItVCpu = pVM->CTX_SUFF(apCpus)[idCpu];
621 if (APICIsEnabled(pItVCpu))
622 fAccepted = apicPostInterrupt(pItVCpu, uVector, enmTriggerMode, uSrcTag);
623 }
624 break;
625 }
626
627 case XAPICDELIVERYMODE_LOWEST_PRIO:
628 {
629 VMCPUID const idCpu = VMCPUSET_FIND_FIRST_PRESENT(pDestCpuSet);
630 AssertMsgBreak(idCpu < pVM->cCpus, ("APIC: apicSendIntr: No CPU found for lowest-priority delivery mode! idCpu=%u\n", idCpu));
631 PVMCPUCC pVCpuDst = pVM->CTX_SUFF(apCpus)[idCpu];
632 if (APICIsEnabled(pVCpuDst))
633 fAccepted = apicPostInterrupt(pVCpuDst, uVector, enmTriggerMode, uSrcTag);
634 else
635 AssertMsgFailed(("APIC: apicSendIntr: Target APIC not enabled in lowest-priority delivery mode! idCpu=%u\n", idCpu));
636 break;
637 }
638
639 case XAPICDELIVERYMODE_SMI:
640 {
641 for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++)
642 if (VMCPUSET_IS_PRESENT(pDestCpuSet, idCpu))
643 {
644 Log2(("APIC: apicSendIntr: Raising SMI on VCPU%u\n", idCpu));
645 apicSetInterruptFF(pVM->CTX_SUFF(apCpus)[idCpu], PDMAPICIRQ_SMI);
646 fAccepted = true;
647 }
648 break;
649 }
650
651 case XAPICDELIVERYMODE_NMI:
652 {
653 for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++)
654 if (VMCPUSET_IS_PRESENT(pDestCpuSet, idCpu))
655 {
656 PVMCPUCC pItVCpu = pVM->CTX_SUFF(apCpus)[idCpu];
657 if (APICIsEnabled(pItVCpu))
658 {
659 Log2(("APIC: apicSendIntr: Raising NMI on VCPU%u\n", idCpu));
660 apicSetInterruptFF(pItVCpu, PDMAPICIRQ_NMI);
661 fAccepted = true;
662 }
663 }
664 break;
665 }
666
667 case XAPICDELIVERYMODE_INIT:
668 {
669#ifdef IN_RING3
670 for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++)
671 if (VMCPUSET_IS_PRESENT(pDestCpuSet, idCpu))
672 {
673 Log2(("APIC: apicSendIntr: Issuing INIT to VCPU%u\n", idCpu));
674 VMMR3SendInitIpi(pVM, idCpu);
675 fAccepted = true;
676 }
677#else
678 /* We need to return to ring-3 to deliver the INIT. */
679 rcStrict = rcRZ;
680 fAccepted = true;
681#endif
682 break;
683 }
684
685 case XAPICDELIVERYMODE_STARTUP:
686 {
687#ifdef IN_RING3
688 for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++)
689 if (VMCPUSET_IS_PRESENT(pDestCpuSet, idCpu))
690 {
691 Log2(("APIC: apicSendIntr: Issuing SIPI to VCPU%u\n", idCpu));
692 VMMR3SendStartupIpi(pVM, idCpu, uVector);
693 fAccepted = true;
694 }
695#else
696 /* We need to return to ring-3 to deliver the SIPI. */
697 rcStrict = rcRZ;
698 fAccepted = true;
699 Log2(("APIC: apicSendIntr: SIPI issued, returning to RZ. rc=%Rrc\n", rcRZ));
700#endif
701 break;
702 }
703
704 case XAPICDELIVERYMODE_EXTINT:
705 {
706 for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++)
707 if (VMCPUSET_IS_PRESENT(pDestCpuSet, idCpu))
708 {
709 Log2(("APIC: apicSendIntr: Raising EXTINT on VCPU%u\n", idCpu));
710 apicSetInterruptFF(pVM->CTX_SUFF(apCpus)[idCpu], PDMAPICIRQ_EXTINT);
711 fAccepted = true;
712 }
713 break;
714 }
715
716 default:
717 {
718 AssertMsgFailed(("APIC: apicSendIntr: Unsupported delivery mode %#x (%s)\n", enmDeliveryMode,
719 apicGetDeliveryModeName(enmDeliveryMode)));
720 break;
721 }
722 }
723
724 /*
725 * If an illegal vector is programmed, set the 'send illegal vector' error here if the
726 * interrupt is being sent by an APIC.
727 *
728 * The 'receive illegal vector' will be set on the target APIC when the interrupt
729 * gets generated, see apicPostInterrupt().
730 *
731 * See Intel spec. 10.5.3 "Error Handling".
732 */
733 if ( rcStrict != rcRZ
734 && pVCpu)
735 {
736 /*
737 * Flag only errors when the delivery mode is fixed and not others.
738 *
739 * Ubuntu 10.04-3 amd64 live CD with 2 VCPUs gets upset as it sends an SIPI to the
740 * 2nd VCPU with vector 6 and checks the ESR for no errors, see @bugref{8245#c86}.
741 */
742 /** @todo The spec says this for LVT, but not explcitly for ICR-lo
743 * but it probably is true. */
744 if (enmDeliveryMode == XAPICDELIVERYMODE_FIXED)
745 {
746 if (RT_UNLIKELY(uVector <= XAPIC_ILLEGAL_VECTOR_END))
747 apicSetError(pVCpu, XAPIC_ESR_SEND_ILLEGAL_VECTOR);
748 }
749 }
750
751 if (pfIntrAccepted)
752 *pfIntrAccepted = fAccepted;
753
754 return rcStrict;
755}
756
757
758/**
759 * Checks if this APIC belongs to a logical destination.
760 *
761 * @returns true if the APIC belongs to the logical
762 * destination, false otherwise.
763 * @param pVCpu The cross context virtual CPU structure.
764 * @param fDest The destination mask.
765 *
766 * @thread Any.
767 */
768static bool apicIsLogicalDest(PVMCPUCC pVCpu, uint32_t fDest)
769{
770 if (XAPIC_IN_X2APIC_MODE(pVCpu))
771 {
772 /*
773 * Flat logical mode is not supported in x2APIC mode.
774 * In clustered logical mode, the 32-bit logical ID in the LDR is interpreted as follows:
775 * - High 16 bits is the cluster ID.
776 * - Low 16 bits: each bit represents a unique APIC within the cluster.
777 */
778 PCX2APICPAGE pX2ApicPage = VMCPU_TO_CX2APICPAGE(pVCpu);
779 uint32_t const u32Ldr = pX2ApicPage->ldr.u32LogicalApicId;
780 if (X2APIC_LDR_GET_CLUSTER_ID(u32Ldr) == (fDest & X2APIC_LDR_CLUSTER_ID))
781 return RT_BOOL(u32Ldr & fDest & X2APIC_LDR_LOGICAL_ID);
782 return false;
783 }
784
785#if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4
786 /*
787 * In both flat and clustered logical mode, a destination mask of all set bits indicates a broadcast.
788 * See AMD spec. 16.6.1 "Receiving System and IPI Interrupts".
789 */
790 Assert(!XAPIC_IN_X2APIC_MODE(pVCpu));
791 if ((fDest & XAPIC_LDR_FLAT_LOGICAL_ID) == XAPIC_LDR_FLAT_LOGICAL_ID)
792 return true;
793
794 PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpu);
795 XAPICDESTFORMAT enmDestFormat = (XAPICDESTFORMAT)pXApicPage->dfr.u.u4Model;
796 if (enmDestFormat == XAPICDESTFORMAT_FLAT)
797 {
798 /* The destination mask is interpreted as a bitmap of 8 unique logical APIC IDs. */
799 uint8_t const u8Ldr = pXApicPage->ldr.u.u8LogicalApicId;
800 return RT_BOOL(u8Ldr & fDest & XAPIC_LDR_FLAT_LOGICAL_ID);
801 }
802
803 /*
804 * In clustered logical mode, the 8-bit logical ID in the LDR is interpreted as follows:
805 * - High 4 bits is the cluster ID.
806 * - Low 4 bits: each bit represents a unique APIC within the cluster.
807 */
808 Assert(enmDestFormat == XAPICDESTFORMAT_CLUSTER);
809 uint8_t const u8Ldr = pXApicPage->ldr.u.u8LogicalApicId;
810 if (XAPIC_LDR_CLUSTERED_GET_CLUSTER_ID(u8Ldr) == (fDest & XAPIC_LDR_CLUSTERED_CLUSTER_ID))
811 return RT_BOOL(u8Ldr & fDest & XAPIC_LDR_CLUSTERED_LOGICAL_ID);
812 return false;
813#else
814# error "Implement Pentium and P6 family APIC architectures"
815#endif
816}
817
818
819/**
820 * Figures out the set of destination CPUs for a given destination mode, format
821 * and delivery mode setting.
822 *
823 * @param pVM The cross context VM structure.
824 * @param fDestMask The destination mask.
825 * @param fBroadcastMask The broadcast mask.
826 * @param enmDestMode The destination mode.
827 * @param enmDeliveryMode The delivery mode.
828 * @param pDestCpuSet The destination CPU set to update.
829 */
830static void apicGetDestCpuSet(PVMCC pVM, uint32_t fDestMask, uint32_t fBroadcastMask, XAPICDESTMODE enmDestMode,
831 XAPICDELIVERYMODE enmDeliveryMode, PVMCPUSET pDestCpuSet)
832{
833 VMCPUSET_EMPTY(pDestCpuSet);
834
835 /*
836 * Physical destination mode only supports either a broadcast or a single target.
837 * - Broadcast with lowest-priority delivery mode is not supported[1], we deliver it
838 * as a regular broadcast like in fixed delivery mode.
839 * - For a single target, lowest-priority delivery mode makes no sense. We deliver
840 * to the target like in fixed delivery mode.
841 *
842 * [1] See Intel spec. 10.6.2.1 "Physical Destination Mode".
843 */
844 if ( enmDestMode == XAPICDESTMODE_PHYSICAL
845 && enmDeliveryMode == XAPICDELIVERYMODE_LOWEST_PRIO)
846 {
847 AssertMsgFailed(("APIC: Lowest-priority delivery using physical destination mode!"));
848 enmDeliveryMode = XAPICDELIVERYMODE_FIXED;
849 }
850
851 uint32_t const cCpus = pVM->cCpus;
852 if (enmDeliveryMode == XAPICDELIVERYMODE_LOWEST_PRIO)
853 {
854 Assert(enmDestMode == XAPICDESTMODE_LOGICAL);
855#if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4
856 VMCPUID idCpuLowestTpr = NIL_VMCPUID;
857 uint8_t u8LowestTpr = UINT8_C(0xff);
858 for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++)
859 {
860 PVMCPUCC pVCpuDst = pVM->CTX_SUFF(apCpus)[idCpu];
861 if (apicIsLogicalDest(pVCpuDst, fDestMask))
862 {
863 PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpuDst);
864 uint8_t const u8Tpr = pXApicPage->tpr.u8Tpr; /* PAV */
865
866 /*
867 * If there is a tie for lowest priority, the local APIC with the highest ID is chosen.
868 * Hence the use of "<=" in the check below.
869 * See AMD spec. 16.6.2 "Lowest Priority Messages and Arbitration".
870 */
871 if (u8Tpr <= u8LowestTpr)
872 {
873 u8LowestTpr = u8Tpr;
874 idCpuLowestTpr = idCpu;
875 }
876 }
877 }
878 if (idCpuLowestTpr != NIL_VMCPUID)
879 VMCPUSET_ADD(pDestCpuSet, idCpuLowestTpr);
880#else
881# error "Implement Pentium and P6 family APIC architectures"
882#endif
883 return;
884 }
885
886 /*
887 * x2APIC:
888 * - In both physical and logical destination mode, a destination mask of 0xffffffff implies a broadcast[1].
889 * xAPIC:
890 * - In physical destination mode, a destination mask of 0xff implies a broadcast[2].
891 * - In both flat and clustered logical mode, a destination mask of 0xff implies a broadcast[3].
892 *
893 * [1] See Intel spec. 10.12.9 "ICR Operation in x2APIC Mode".
894 * [2] See Intel spec. 10.6.2.1 "Physical Destination Mode".
895 * [2] See AMD spec. 16.6.1 "Receiving System and IPI Interrupts".
896 */
897 if ((fDestMask & fBroadcastMask) == fBroadcastMask)
898 {
899 VMCPUSET_FILL(pDestCpuSet);
900 return;
901 }
902
903 if (enmDestMode == XAPICDESTMODE_PHYSICAL)
904 {
905 /* The destination mask is interpreted as the physical APIC ID of a single target. */
906#if 1
907 /* Since our physical APIC ID is read-only to software, set the corresponding bit in the CPU set. */
908 if (RT_LIKELY(fDestMask < cCpus))
909 VMCPUSET_ADD(pDestCpuSet, fDestMask);
910#else
911 /* The physical APIC ID may not match our VCPU ID, search through the list of targets. */
912 for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++)
913 {
914 PVMCPUCC pVCpuDst = &pVM->aCpus[idCpu];
915 if (XAPIC_IN_X2APIC_MODE(pVCpuDst))
916 {
917 PCX2APICPAGE pX2ApicPage = VMCPU_TO_CX2APICPAGE(pVCpuDst);
918 if (pX2ApicPage->id.u32ApicId == fDestMask)
919 VMCPUSET_ADD(pDestCpuSet, pVCpuDst->idCpu);
920 }
921 else
922 {
923 PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpuDst);
924 if (pXApicPage->id.u8ApicId == (uint8_t)fDestMask)
925 VMCPUSET_ADD(pDestCpuSet, pVCpuDst->idCpu);
926 }
927 }
928#endif
929 }
930 else
931 {
932 Assert(enmDestMode == XAPICDESTMODE_LOGICAL);
933
934 /* A destination mask of all 0's implies no target APICs (since it's interpreted as a bitmap or partial bitmap). */
935 if (RT_UNLIKELY(!fDestMask))
936 return;
937
938 /* The destination mask is interpreted as a bitmap of software-programmable logical APIC ID of the target APICs. */
939 for (VMCPUID idCpu = 0; idCpu < cCpus; idCpu++)
940 {
941 PVMCPUCC pVCpuDst = pVM->CTX_SUFF(apCpus)[idCpu];
942 if (apicIsLogicalDest(pVCpuDst, fDestMask))
943 VMCPUSET_ADD(pDestCpuSet, pVCpuDst->idCpu);
944 }
945 }
946}
947
948
949/**
950 * Sends an Interprocessor Interrupt (IPI) using values from the Interrupt
951 * Command Register (ICR).
952 *
953 * @returns VBox status code.
954 * @param pVCpu The cross context virtual CPU structure.
955 * @param rcRZ The return code if the operation cannot be
956 * performed in the current context.
957 */
958DECLINLINE(VBOXSTRICTRC) apicSendIpi(PVMCPUCC pVCpu, int rcRZ)
959{
960 VMCPU_ASSERT_EMT(pVCpu);
961
962 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
963 XAPICDELIVERYMODE const enmDeliveryMode = (XAPICDELIVERYMODE)pXApicPage->icr_lo.u.u3DeliveryMode;
964 XAPICDESTMODE const enmDestMode = (XAPICDESTMODE)pXApicPage->icr_lo.u.u1DestMode;
965 XAPICINITLEVEL const enmInitLevel = (XAPICINITLEVEL)pXApicPage->icr_lo.u.u1Level;
966 XAPICTRIGGERMODE const enmTriggerMode = (XAPICTRIGGERMODE)pXApicPage->icr_lo.u.u1TriggerMode;
967 XAPICDESTSHORTHAND const enmDestShorthand = (XAPICDESTSHORTHAND)pXApicPage->icr_lo.u.u2DestShorthand;
968 uint8_t const uVector = pXApicPage->icr_lo.u.u8Vector;
969
970 PX2APICPAGE pX2ApicPage = VMCPU_TO_X2APICPAGE(pVCpu);
971 uint32_t const fDest = XAPIC_IN_X2APIC_MODE(pVCpu) ? pX2ApicPage->icr_hi.u32IcrHi : pXApicPage->icr_hi.u.u8Dest;
972 Log5(("apicSendIpi: delivery=%u mode=%u init=%u trigger=%u short=%u vector=%#x fDest=%#x\n",
973 enmDeliveryMode, enmDestMode, enmInitLevel, enmTriggerMode, enmDestShorthand, uVector, fDest));
974
975#if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4
976 /*
977 * INIT Level De-assert is not support on Pentium 4 and Xeon processors.
978 * Apparently, this also applies to NMI, SMI, lowest-priority and fixed delivery modes,
979 * see @bugref{8245#c116}.
980 *
981 * See AMD spec. 16.5 "Interprocessor Interrupts (IPI)" for a table of valid ICR combinations.
982 */
983 if ( enmTriggerMode == XAPICTRIGGERMODE_LEVEL
984 && enmInitLevel == XAPICINITLEVEL_DEASSERT
985 && ( enmDeliveryMode == XAPICDELIVERYMODE_FIXED
986 || enmDeliveryMode == XAPICDELIVERYMODE_LOWEST_PRIO
987 || enmDeliveryMode == XAPICDELIVERYMODE_SMI
988 || enmDeliveryMode == XAPICDELIVERYMODE_NMI
989 || enmDeliveryMode == XAPICDELIVERYMODE_INIT))
990 {
991 Log2(("APIC%u: %s level de-assert unsupported, ignoring!\n", pVCpu->idCpu, apicGetDeliveryModeName(enmDeliveryMode)));
992 return VINF_SUCCESS;
993 }
994#else
995# error "Implement Pentium and P6 family APIC architectures"
996#endif
997
998 /*
999 * The destination and delivery modes are ignored/by-passed when a destination shorthand is specified.
1000 * See Intel spec. 10.6.2.3 "Broadcast/Self Delivery Mode".
1001 */
1002 VMCPUSET DestCpuSet;
1003 switch (enmDestShorthand)
1004 {
1005 case XAPICDESTSHORTHAND_NONE:
1006 {
1007 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1008 uint32_t const fBroadcastMask = XAPIC_IN_X2APIC_MODE(pVCpu) ? X2APIC_ID_BROADCAST_MASK : XAPIC_ID_BROADCAST_MASK;
1009 apicGetDestCpuSet(pVM, fDest, fBroadcastMask, enmDestMode, enmDeliveryMode, &DestCpuSet);
1010 break;
1011 }
1012
1013 case XAPICDESTSHORTHAND_SELF:
1014 {
1015 VMCPUSET_EMPTY(&DestCpuSet);
1016 VMCPUSET_ADD(&DestCpuSet, pVCpu->idCpu);
1017 break;
1018 }
1019
1020 case XAPIDDESTSHORTHAND_ALL_INCL_SELF:
1021 {
1022 VMCPUSET_FILL(&DestCpuSet);
1023 break;
1024 }
1025
1026 case XAPICDESTSHORTHAND_ALL_EXCL_SELF:
1027 {
1028 VMCPUSET_FILL(&DestCpuSet);
1029 VMCPUSET_DEL(&DestCpuSet, pVCpu->idCpu);
1030 break;
1031 }
1032 }
1033
1034 return apicSendIntr(pVCpu->CTX_SUFF(pVM), pVCpu, uVector, enmTriggerMode, enmDeliveryMode, &DestCpuSet,
1035 NULL /* pfIntrAccepted */, 0 /* uSrcTag */, rcRZ);
1036}
1037
1038
1039/**
1040 * Sets the Interrupt Command Register (ICR) high dword.
1041 *
1042 * @returns Strict VBox status code.
1043 * @param pVCpu The cross context virtual CPU structure.
1044 * @param uIcrHi The ICR high dword.
1045 */
1046static VBOXSTRICTRC apicSetIcrHi(PVMCPUCC pVCpu, uint32_t uIcrHi)
1047{
1048 VMCPU_ASSERT_EMT(pVCpu);
1049 Assert(!XAPIC_IN_X2APIC_MODE(pVCpu));
1050
1051 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1052 pXApicPage->icr_hi.all.u32IcrHi = uIcrHi & XAPIC_ICR_HI_DEST;
1053 STAM_COUNTER_INC(&pVCpu->apic.s.StatIcrHiWrite);
1054 Log2(("APIC%u: apicSetIcrHi: uIcrHi=%#RX32\n", pVCpu->idCpu, pXApicPage->icr_hi.all.u32IcrHi));
1055
1056 return VINF_SUCCESS;
1057}
1058
1059
1060/**
1061 * Sets the Interrupt Command Register (ICR) low dword.
1062 *
1063 * @returns Strict VBox status code.
1064 * @param pVCpu The cross context virtual CPU structure.
1065 * @param uIcrLo The ICR low dword.
1066 * @param rcRZ The return code if the operation cannot be performed
1067 * in the current context.
1068 * @param fUpdateStat Whether to update the ICR low write statistics
1069 * counter.
1070 */
1071static VBOXSTRICTRC apicSetIcrLo(PVMCPUCC pVCpu, uint32_t uIcrLo, int rcRZ, bool fUpdateStat)
1072{
1073 VMCPU_ASSERT_EMT(pVCpu);
1074
1075 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1076 pXApicPage->icr_lo.all.u32IcrLo = uIcrLo & XAPIC_ICR_LO_WR_VALID;
1077 Log2(("APIC%u: apicSetIcrLo: uIcrLo=%#RX32\n", pVCpu->idCpu, pXApicPage->icr_lo.all.u32IcrLo));
1078
1079 if (fUpdateStat)
1080 STAM_COUNTER_INC(&pVCpu->apic.s.StatIcrLoWrite);
1081 RT_NOREF(fUpdateStat);
1082
1083 return apicSendIpi(pVCpu, rcRZ);
1084}
1085
1086
1087/**
1088 * Sets the Interrupt Command Register (ICR).
1089 *
1090 * @returns Strict VBox status code.
1091 * @param pVCpu The cross context virtual CPU structure.
1092 * @param u64Icr The ICR (High and Low combined).
1093 * @param rcRZ The return code if the operation cannot be performed
1094 * in the current context.
1095 *
1096 * @remarks This function is used by both x2APIC interface and the Hyper-V
1097 * interface, see APICHvSetIcr. The Hyper-V spec isn't clear what
1098 * happens when invalid bits are set. For the time being, it will
1099 * \#GP like a regular x2APIC access.
1100 */
1101static VBOXSTRICTRC apicSetIcr(PVMCPUCC pVCpu, uint64_t u64Icr, int rcRZ)
1102{
1103 VMCPU_ASSERT_EMT(pVCpu);
1104
1105 /* Validate. */
1106 uint32_t const uLo = RT_LO_U32(u64Icr);
1107 if (RT_LIKELY(!(uLo & ~XAPIC_ICR_LO_WR_VALID)))
1108 {
1109 /* Update high dword first, then update the low dword which sends the IPI. */
1110 PX2APICPAGE pX2ApicPage = VMCPU_TO_X2APICPAGE(pVCpu);
1111 pX2ApicPage->icr_hi.u32IcrHi = RT_HI_U32(u64Icr);
1112 STAM_COUNTER_INC(&pVCpu->apic.s.StatIcrFullWrite);
1113 return apicSetIcrLo(pVCpu, uLo, rcRZ, false /* fUpdateStat */);
1114 }
1115 return apicMsrAccessError(pVCpu, MSR_IA32_X2APIC_ICR, APICMSRACCESS_WRITE_RSVD_BITS);
1116}
1117
1118
1119/**
1120 * Sets the Error Status Register (ESR).
1121 *
1122 * @returns VINF_SUCCESS or VERR_CPUM_RAISE_GP_0.
1123 * @param pVCpu The cross context virtual CPU structure.
1124 * @param uEsr The ESR value.
1125 */
1126static int apicSetEsr(PVMCPUCC pVCpu, uint32_t uEsr)
1127{
1128 VMCPU_ASSERT_EMT(pVCpu);
1129
1130 Log2(("APIC%u: apicSetEsr: uEsr=%#RX32\n", pVCpu->idCpu, uEsr));
1131
1132 if ( XAPIC_IN_X2APIC_MODE(pVCpu)
1133 && (uEsr & ~XAPIC_ESR_WO_VALID))
1134 return apicMsrAccessError(pVCpu, MSR_IA32_X2APIC_ESR, APICMSRACCESS_WRITE_RSVD_BITS);
1135
1136 /*
1137 * Writes to the ESR causes the internal state to be updated in the register,
1138 * clearing the original state. See AMD spec. 16.4.6 "APIC Error Interrupts".
1139 */
1140 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1141 pXApicPage->esr.all.u32Errors = apicClearAllErrors(pVCpu);
1142 return VINF_SUCCESS;
1143}
1144
1145
1146/**
1147 * Updates the Processor Priority Register (PPR).
1148 *
1149 * @param pVCpu The cross context virtual CPU structure.
1150 */
1151static void apicUpdatePpr(PVMCPUCC pVCpu)
1152{
1153 VMCPU_ASSERT_EMT(pVCpu);
1154
1155 /* See Intel spec 10.8.3.1 "Task and Processor Priorities". */
1156 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1157 uint8_t const uIsrv = apicGetHighestSetBitInReg(&pXApicPage->isr, 0 /* rcNotFound */);
1158 uint8_t uPpr;
1159 if (XAPIC_TPR_GET_TP(pXApicPage->tpr.u8Tpr) >= XAPIC_PPR_GET_PP(uIsrv))
1160 uPpr = pXApicPage->tpr.u8Tpr;
1161 else
1162 uPpr = XAPIC_PPR_GET_PP(uIsrv);
1163 pXApicPage->ppr.u8Ppr = uPpr;
1164}
1165
1166
1167/**
1168 * Gets the Processor Priority Register (PPR).
1169 *
1170 * @returns The PPR value.
1171 * @param pVCpu The cross context virtual CPU structure.
1172 */
1173static uint8_t apicGetPpr(PVMCPUCC pVCpu)
1174{
1175 VMCPU_ASSERT_EMT(pVCpu);
1176 STAM_COUNTER_INC(&pVCpu->apic.s.StatTprRead);
1177
1178 /*
1179 * With virtualized APIC registers or with TPR virtualization, the hardware may
1180 * update ISR/TPR transparently. We thus re-calculate the PPR which may be out of sync.
1181 * See Intel spec. 29.2.2 "Virtual-Interrupt Delivery".
1182 *
1183 * In all other instances, whenever the TPR or ISR changes, we need to update the PPR
1184 * as well (e.g. like we do manually in apicR3InitIpi and by calling apicUpdatePpr).
1185 */
1186 PCAPIC pApic = VM_TO_APIC(pVCpu->CTX_SUFF(pVM));
1187 if (pApic->fVirtApicRegsEnabled) /** @todo re-think this */
1188 apicUpdatePpr(pVCpu);
1189 PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpu);
1190 return pXApicPage->ppr.u8Ppr;
1191}
1192
1193
1194/**
1195 * Sets the Task Priority Register (TPR).
1196 *
1197 * @returns VINF_SUCCESS or VERR_CPUM_RAISE_GP_0.
1198 * @param pVCpu The cross context virtual CPU structure.
1199 * @param uTpr The TPR value.
1200 * @param fForceX2ApicBehaviour Pretend the APIC is in x2APIC mode during
1201 * this write.
1202 */
1203static int apicSetTprEx(PVMCPUCC pVCpu, uint32_t uTpr, bool fForceX2ApicBehaviour)
1204{
1205 VMCPU_ASSERT_EMT(pVCpu);
1206
1207 Log2(("APIC%u: apicSetTprEx: uTpr=%#RX32\n", pVCpu->idCpu, uTpr));
1208 STAM_COUNTER_INC(&pVCpu->apic.s.StatTprWrite);
1209
1210 bool const fX2ApicMode = XAPIC_IN_X2APIC_MODE(pVCpu) || fForceX2ApicBehaviour;
1211 if ( fX2ApicMode
1212 && (uTpr & ~XAPIC_TPR_VALID))
1213 return apicMsrAccessError(pVCpu, MSR_IA32_X2APIC_TPR, APICMSRACCESS_WRITE_RSVD_BITS);
1214
1215 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1216 pXApicPage->tpr.u8Tpr = uTpr;
1217 apicUpdatePpr(pVCpu);
1218 apicSignalNextPendingIntr(pVCpu);
1219 return VINF_SUCCESS;
1220}
1221
1222
1223/**
1224 * Sets the End-Of-Interrupt (EOI) register.
1225 *
1226 * @returns Strict VBox status code.
1227 * @param pVCpu The cross context virtual CPU structure.
1228 * @param uEoi The EOI value.
1229 * @param rcBusy The busy return code when the write cannot
1230 * be completed successfully in this context.
1231 * @param fForceX2ApicBehaviour Pretend the APIC is in x2APIC mode during
1232 * this write.
1233 */
1234static VBOXSTRICTRC apicSetEoi(PVMCPUCC pVCpu, uint32_t uEoi, int rcBusy, bool fForceX2ApicBehaviour)
1235{
1236 VMCPU_ASSERT_EMT(pVCpu);
1237
1238 Log2(("APIC%u: apicSetEoi: uEoi=%#RX32\n", pVCpu->idCpu, uEoi));
1239 STAM_COUNTER_INC(&pVCpu->apic.s.StatEoiWrite);
1240
1241 bool const fX2ApicMode = XAPIC_IN_X2APIC_MODE(pVCpu) || fForceX2ApicBehaviour;
1242 if ( fX2ApicMode
1243 && (uEoi & ~XAPIC_EOI_WO_VALID))
1244 return apicMsrAccessError(pVCpu, MSR_IA32_X2APIC_EOI, APICMSRACCESS_WRITE_RSVD_BITS);
1245
1246 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1247 int isrv = apicGetHighestSetBitInReg(&pXApicPage->isr, -1 /* rcNotFound */);
1248 if (isrv >= 0)
1249 {
1250 /*
1251 * Broadcast the EOI to the I/O APIC(s).
1252 *
1253 * We'll handle the EOI broadcast first as there is tiny chance we get rescheduled to
1254 * ring-3 due to contention on the I/O APIC lock. This way we don't mess with the rest
1255 * of the APIC state and simply restart the EOI write operation from ring-3.
1256 */
1257 Assert(isrv <= (int)UINT8_MAX);
1258 uint8_t const uVector = isrv;
1259 bool const fLevelTriggered = apicTestVectorInReg(&pXApicPage->tmr, uVector);
1260 if (fLevelTriggered)
1261 {
1262 VBOXSTRICTRC rc = PDMIoApicBroadcastEoi(pVCpu->CTX_SUFF(pVM), uVector);
1263 if (rc == VINF_SUCCESS)
1264 { /* likely */ }
1265 else
1266 return rcBusy;
1267
1268 /*
1269 * Clear the vector from the TMR.
1270 *
1271 * The broadcast to I/O APIC can re-trigger new interrupts to arrive via the bus. However,
1272 * APICUpdatePendingInterrupts() which updates TMR can only be done from EMT which we
1273 * currently are on, so no possibility of concurrent updates.
1274 */
1275 apicClearVectorInReg(&pXApicPage->tmr, uVector);
1276
1277 /*
1278 * Clear the remote IRR bit for level-triggered, fixed mode LINT0 interrupt.
1279 * The LINT1 pin does not support level-triggered interrupts.
1280 * See Intel spec. 10.5.1 "Local Vector Table".
1281 */
1282 uint32_t const uLvtLint0 = pXApicPage->lvt_lint0.all.u32LvtLint0;
1283 if ( XAPIC_LVT_GET_REMOTE_IRR(uLvtLint0)
1284 && XAPIC_LVT_GET_VECTOR(uLvtLint0) == uVector
1285 && XAPIC_LVT_GET_DELIVERY_MODE(uLvtLint0) == XAPICDELIVERYMODE_FIXED)
1286 {
1287 ASMAtomicAndU32((volatile uint32_t *)&pXApicPage->lvt_lint0.all.u32LvtLint0, ~XAPIC_LVT_REMOTE_IRR);
1288 Log2(("APIC%u: apicSetEoi: Cleared remote-IRR for LINT0. uVector=%#x\n", pVCpu->idCpu, uVector));
1289 }
1290
1291 Log2(("APIC%u: apicSetEoi: Cleared level triggered interrupt from TMR. uVector=%#x\n", pVCpu->idCpu, uVector));
1292 }
1293
1294 /*
1295 * Mark interrupt as serviced, update the PPR and signal pending interrupts.
1296 */
1297 Log2(("APIC%u: apicSetEoi: Clearing interrupt from ISR. uVector=%#x\n", pVCpu->idCpu, uVector));
1298 apicClearVectorInReg(&pXApicPage->isr, uVector);
1299 apicUpdatePpr(pVCpu);
1300 apicSignalNextPendingIntr(pVCpu);
1301 }
1302 else
1303 {
1304#ifdef DEBUG_ramshankar
1305 /** @todo Figure out if this is done intentionally by guests or is a bug
1306 * in our emulation. Happened with Win10 SMP VM during reboot after
1307 * installation of guest additions with 3D support. */
1308 AssertMsgFailed(("APIC%u: apicSetEoi: Failed to find any ISR bit\n", pVCpu->idCpu));
1309#endif
1310 }
1311
1312 return VINF_SUCCESS;
1313}
1314
1315
1316/**
1317 * Sets the Logical Destination Register (LDR).
1318 *
1319 * @returns Strict VBox status code.
1320 * @param pVCpu The cross context virtual CPU structure.
1321 * @param uLdr The LDR value.
1322 *
1323 * @remarks LDR is read-only in x2APIC mode.
1324 */
1325static VBOXSTRICTRC apicSetLdr(PVMCPUCC pVCpu, uint32_t uLdr)
1326{
1327 VMCPU_ASSERT_EMT(pVCpu);
1328 PCAPIC pApic = VM_TO_APIC(pVCpu->CTX_SUFF(pVM));
1329 Assert(!XAPIC_IN_X2APIC_MODE(pVCpu) || pApic->fHyperVCompatMode); RT_NOREF_PV(pApic);
1330
1331 Log2(("APIC%u: apicSetLdr: uLdr=%#RX32\n", pVCpu->idCpu, uLdr));
1332
1333 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1334 apicWriteRaw32(pXApicPage, XAPIC_OFF_LDR, uLdr & XAPIC_LDR_VALID);
1335 return VINF_SUCCESS;
1336}
1337
1338
1339/**
1340 * Sets the Destination Format Register (DFR).
1341 *
1342 * @returns Strict VBox status code.
1343 * @param pVCpu The cross context virtual CPU structure.
1344 * @param uDfr The DFR value.
1345 *
1346 * @remarks DFR is not available in x2APIC mode.
1347 */
1348static VBOXSTRICTRC apicSetDfr(PVMCPUCC pVCpu, uint32_t uDfr)
1349{
1350 VMCPU_ASSERT_EMT(pVCpu);
1351 Assert(!XAPIC_IN_X2APIC_MODE(pVCpu));
1352
1353 uDfr &= XAPIC_DFR_VALID;
1354 uDfr |= XAPIC_DFR_RSVD_MB1;
1355
1356 Log2(("APIC%u: apicSetDfr: uDfr=%#RX32\n", pVCpu->idCpu, uDfr));
1357
1358 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1359 apicWriteRaw32(pXApicPage, XAPIC_OFF_DFR, uDfr);
1360 return VINF_SUCCESS;
1361}
1362
1363
1364/**
1365 * Sets the Timer Divide Configuration Register (DCR).
1366 *
1367 * @returns Strict VBox status code.
1368 * @param pVCpu The cross context virtual CPU structure.
1369 * @param uTimerDcr The timer DCR value.
1370 */
1371static VBOXSTRICTRC apicSetTimerDcr(PVMCPUCC pVCpu, uint32_t uTimerDcr)
1372{
1373 VMCPU_ASSERT_EMT(pVCpu);
1374 if ( XAPIC_IN_X2APIC_MODE(pVCpu)
1375 && (uTimerDcr & ~XAPIC_TIMER_DCR_VALID))
1376 return apicMsrAccessError(pVCpu, MSR_IA32_X2APIC_TIMER_DCR, APICMSRACCESS_WRITE_RSVD_BITS);
1377
1378 Log2(("APIC%u: apicSetTimerDcr: uTimerDcr=%#RX32\n", pVCpu->idCpu, uTimerDcr));
1379
1380 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1381 apicWriteRaw32(pXApicPage, XAPIC_OFF_TIMER_DCR, uTimerDcr);
1382 return VINF_SUCCESS;
1383}
1384
1385
1386/**
1387 * Gets the timer's Current Count Register (CCR).
1388 *
1389 * @returns VBox status code.
1390 * @param pDevIns The device instance.
1391 * @param pVCpu The cross context virtual CPU structure.
1392 * @param rcBusy The busy return code for the timer critical section.
1393 * @param puValue Where to store the LVT timer CCR.
1394 */
1395static VBOXSTRICTRC apicGetTimerCcr(PPDMDEVINS pDevIns, PVMCPUCC pVCpu, int rcBusy, uint32_t *puValue)
1396{
1397 VMCPU_ASSERT_EMT(pVCpu);
1398 Assert(puValue);
1399
1400 PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpu);
1401 *puValue = 0;
1402
1403 /* In TSC-deadline mode, CCR returns 0, see Intel spec. 10.5.4.1 "TSC-Deadline Mode". */
1404 if (pXApicPage->lvt_timer.u.u2TimerMode == XAPIC_TIMER_MODE_TSC_DEADLINE)
1405 return VINF_SUCCESS;
1406
1407 /* If the initial-count register is 0, CCR returns 0 as it cannot exceed the ICR. */
1408 uint32_t const uInitialCount = pXApicPage->timer_icr.u32InitialCount;
1409 if (!uInitialCount)
1410 return VINF_SUCCESS;
1411
1412 /*
1413 * Reading the virtual-sync clock requires locking its timer because it's not
1414 * a simple atomic operation, see tmVirtualSyncGetEx().
1415 *
1416 * We also need to lock before reading the timer CCR, see apicR3TimerCallback().
1417 */
1418 PCAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
1419 TMTIMERHANDLE hTimer = pApicCpu->hTimer;
1420
1421 VBOXSTRICTRC rc = PDMDevHlpTimerLockClock(pDevIns, hTimer, rcBusy);
1422 if (rc == VINF_SUCCESS)
1423 {
1424 /* If the current-count register is 0, it implies the timer expired. */
1425 uint32_t const uCurrentCount = pXApicPage->timer_ccr.u32CurrentCount;
1426 if (uCurrentCount)
1427 {
1428 uint64_t const cTicksElapsed = PDMDevHlpTimerGet(pDevIns, hTimer) - pApicCpu->u64TimerInitial;
1429 PDMDevHlpTimerUnlockClock(pDevIns, hTimer);
1430 uint8_t const uTimerShift = apicGetTimerShift(pXApicPage);
1431 uint64_t const uDelta = cTicksElapsed >> uTimerShift;
1432 if (uInitialCount > uDelta)
1433 *puValue = uInitialCount - uDelta;
1434 }
1435 else
1436 PDMDevHlpTimerUnlockClock(pDevIns, hTimer);
1437 }
1438 return rc;
1439}
1440
1441
1442/**
1443 * Sets the timer's Initial-Count Register (ICR).
1444 *
1445 * @returns Strict VBox status code.
1446 * @param pDevIns The device instance.
1447 * @param pVCpu The cross context virtual CPU structure.
1448 * @param rcBusy The busy return code for the timer critical section.
1449 * @param uInitialCount The timer ICR.
1450 */
1451static VBOXSTRICTRC apicSetTimerIcr(PPDMDEVINS pDevIns, PVMCPUCC pVCpu, int rcBusy, uint32_t uInitialCount)
1452{
1453 VMCPU_ASSERT_EMT(pVCpu);
1454
1455 PAPIC pApic = VM_TO_APIC(pVCpu->CTX_SUFF(pVM));
1456 PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
1457 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1458
1459 Log2(("APIC%u: apicSetTimerIcr: uInitialCount=%#RX32\n", pVCpu->idCpu, uInitialCount));
1460 STAM_COUNTER_INC(&pApicCpu->StatTimerIcrWrite);
1461
1462 /* In TSC-deadline mode, timer ICR writes are ignored, see Intel spec. 10.5.4.1 "TSC-Deadline Mode". */
1463 if ( pApic->fSupportsTscDeadline
1464 && pXApicPage->lvt_timer.u.u2TimerMode == XAPIC_TIMER_MODE_TSC_DEADLINE)
1465 return VINF_SUCCESS;
1466
1467 /*
1468 * The timer CCR may be modified by apicR3TimerCallback() in parallel,
1469 * so obtain the lock -before- updating it here to be consistent with the
1470 * timer ICR. We rely on CCR being consistent in apicGetTimerCcr().
1471 */
1472 TMTIMERHANDLE hTimer = pApicCpu->hTimer;
1473 VBOXSTRICTRC rc = PDMDevHlpTimerLockClock(pDevIns, hTimer, rcBusy);
1474 if (rc == VINF_SUCCESS)
1475 {
1476 pXApicPage->timer_icr.u32InitialCount = uInitialCount;
1477 pXApicPage->timer_ccr.u32CurrentCount = uInitialCount;
1478 if (uInitialCount)
1479 apicStartTimer(pVCpu, uInitialCount);
1480 else
1481 apicStopTimer(pVCpu);
1482 PDMDevHlpTimerUnlockClock(pDevIns, hTimer);
1483 }
1484 return rc;
1485}
1486
1487
1488/**
1489 * Sets an LVT entry.
1490 *
1491 * @returns Strict VBox status code.
1492 * @param pVCpu The cross context virtual CPU structure.
1493 * @param offLvt The LVT entry offset in the xAPIC page.
1494 * @param uLvt The LVT value to set.
1495 */
1496static VBOXSTRICTRC apicSetLvtEntry(PVMCPUCC pVCpu, uint16_t offLvt, uint32_t uLvt)
1497{
1498 VMCPU_ASSERT_EMT(pVCpu);
1499
1500#if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4
1501 AssertMsg( offLvt == XAPIC_OFF_LVT_TIMER
1502 || offLvt == XAPIC_OFF_LVT_THERMAL
1503 || offLvt == XAPIC_OFF_LVT_PERF
1504 || offLvt == XAPIC_OFF_LVT_LINT0
1505 || offLvt == XAPIC_OFF_LVT_LINT1
1506 || offLvt == XAPIC_OFF_LVT_ERROR,
1507 ("APIC%u: apicSetLvtEntry: invalid offset, offLvt=%#RX16, uLvt=%#RX32\n", pVCpu->idCpu, offLvt, uLvt));
1508
1509 /*
1510 * If TSC-deadline mode isn't support, ignore the bit in xAPIC mode
1511 * and raise #GP(0) in x2APIC mode.
1512 */
1513 PCAPIC pApic = VM_TO_APIC(pVCpu->CTX_SUFF(pVM));
1514 if (offLvt == XAPIC_OFF_LVT_TIMER)
1515 {
1516 if ( !pApic->fSupportsTscDeadline
1517 && (uLvt & XAPIC_LVT_TIMER_TSCDEADLINE))
1518 {
1519 if (XAPIC_IN_X2APIC_MODE(pVCpu))
1520 return apicMsrAccessError(pVCpu, XAPIC_GET_X2APIC_MSR(offLvt), APICMSRACCESS_WRITE_RSVD_BITS);
1521 uLvt &= ~XAPIC_LVT_TIMER_TSCDEADLINE;
1522 /** @todo TSC-deadline timer mode transition */
1523 }
1524 }
1525
1526 /*
1527 * Validate rest of the LVT bits.
1528 */
1529 uint16_t const idxLvt = (offLvt - XAPIC_OFF_LVT_START) >> 4;
1530 AssertReturn(idxLvt < RT_ELEMENTS(g_au32LvtValidMasks), VERR_OUT_OF_RANGE);
1531
1532 /*
1533 * For x2APIC, disallow setting of invalid/reserved bits.
1534 * For xAPIC, mask out invalid/reserved bits (i.e. ignore them).
1535 */
1536 if ( XAPIC_IN_X2APIC_MODE(pVCpu)
1537 && (uLvt & ~g_au32LvtValidMasks[idxLvt]))
1538 return apicMsrAccessError(pVCpu, XAPIC_GET_X2APIC_MSR(offLvt), APICMSRACCESS_WRITE_RSVD_BITS);
1539
1540 uLvt &= g_au32LvtValidMasks[idxLvt];
1541
1542 /*
1543 * In the software-disabled state, LVT mask-bit must remain set and attempts to clear the mask
1544 * bit must be ignored. See Intel spec. 10.4.7.2 "Local APIC State After It Has Been Software Disabled".
1545 */
1546 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1547 if (!pXApicPage->svr.u.fApicSoftwareEnable)
1548 uLvt |= XAPIC_LVT_MASK;
1549
1550 /*
1551 * It is unclear whether we should signal a 'send illegal vector' error here and ignore updating
1552 * the LVT entry when the delivery mode is 'fixed'[1] or update it in addition to signalling the
1553 * error or not signal the error at all. For now, we'll allow setting illegal vectors into the LVT
1554 * but set the 'send illegal vector' error here. The 'receive illegal vector' error will be set if
1555 * the interrupt for the vector happens to be generated, see apicPostInterrupt().
1556 *
1557 * [1] See Intel spec. 10.5.2 "Valid Interrupt Vectors".
1558 */
1559 if (RT_UNLIKELY( XAPIC_LVT_GET_VECTOR(uLvt) <= XAPIC_ILLEGAL_VECTOR_END
1560 && XAPIC_LVT_GET_DELIVERY_MODE(uLvt) == XAPICDELIVERYMODE_FIXED))
1561 apicSetError(pVCpu, XAPIC_ESR_SEND_ILLEGAL_VECTOR);
1562
1563 Log2(("APIC%u: apicSetLvtEntry: offLvt=%#RX16 uLvt=%#RX32\n", pVCpu->idCpu, offLvt, uLvt));
1564
1565 apicWriteRaw32(pXApicPage, offLvt, uLvt);
1566 return VINF_SUCCESS;
1567#else
1568# error "Implement Pentium and P6 family APIC architectures"
1569#endif /* XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4 */
1570}
1571
1572
1573#if 0
1574/**
1575 * Sets an LVT entry in the extended LVT range.
1576 *
1577 * @returns VBox status code.
1578 * @param pVCpu The cross context virtual CPU structure.
1579 * @param offLvt The LVT entry offset in the xAPIC page.
1580 * @param uValue The LVT value to set.
1581 */
1582static int apicSetLvtExtEntry(PVMCPUCC pVCpu, uint16_t offLvt, uint32_t uLvt)
1583{
1584 VMCPU_ASSERT_EMT(pVCpu);
1585 AssertMsg(offLvt == XAPIC_OFF_CMCI, ("APIC%u: apicSetLvt1Entry: invalid offset %#RX16\n", pVCpu->idCpu, offLvt));
1586
1587 /** @todo support CMCI. */
1588 return VERR_NOT_IMPLEMENTED;
1589}
1590#endif
1591
1592
1593/**
1594 * Hints TM about the APIC timer frequency.
1595 *
1596 * @param pDevIns The device instance.
1597 * @param pApicCpu The APIC CPU state.
1598 * @param uInitialCount The new initial count.
1599 * @param uTimerShift The new timer shift.
1600 * @thread Any.
1601 */
1602void apicHintTimerFreq(PPDMDEVINS pDevIns, PAPICCPU pApicCpu, uint32_t uInitialCount, uint8_t uTimerShift)
1603{
1604 Assert(pApicCpu);
1605
1606 if ( pApicCpu->uHintedTimerInitialCount != uInitialCount
1607 || pApicCpu->uHintedTimerShift != uTimerShift)
1608 {
1609 uint32_t uHz;
1610 if (uInitialCount)
1611 {
1612 uint64_t cTicksPerPeriod = (uint64_t)uInitialCount << uTimerShift;
1613 uHz = PDMDevHlpTimerGetFreq(pDevIns, pApicCpu->hTimer) / cTicksPerPeriod;
1614 }
1615 else
1616 uHz = 0;
1617
1618 PDMDevHlpTimerSetFrequencyHint(pDevIns, pApicCpu->hTimer, uHz);
1619 pApicCpu->uHintedTimerInitialCount = uInitialCount;
1620 pApicCpu->uHintedTimerShift = uTimerShift;
1621 }
1622}
1623
1624
1625/**
1626 * Gets the Interrupt Command Register (ICR), without performing any interface
1627 * checks.
1628 *
1629 * @returns The ICR value.
1630 * @param pVCpu The cross context virtual CPU structure.
1631 */
1632DECLINLINE(uint64_t) apicGetIcrNoCheck(PVMCPUCC pVCpu)
1633{
1634 PCX2APICPAGE pX2ApicPage = VMCPU_TO_CX2APICPAGE(pVCpu);
1635 uint64_t const uHi = pX2ApicPage->icr_hi.u32IcrHi;
1636 uint64_t const uLo = pX2ApicPage->icr_lo.all.u32IcrLo;
1637 uint64_t const uIcr = RT_MAKE_U64(uLo, uHi);
1638 return uIcr;
1639}
1640
1641
1642/**
1643 * Reads an APIC register.
1644 *
1645 * @returns VBox status code.
1646 * @param pDevIns The device instance.
1647 * @param pVCpu The cross context virtual CPU structure.
1648 * @param offReg The offset of the register being read.
1649 * @param puValue Where to store the register value.
1650 */
1651DECLINLINE(VBOXSTRICTRC) apicReadRegister(PPDMDEVINS pDevIns, PVMCPUCC pVCpu, uint16_t offReg, uint32_t *puValue)
1652{
1653 VMCPU_ASSERT_EMT(pVCpu);
1654 Assert(offReg <= XAPIC_OFF_MAX_VALID);
1655
1656 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1657 uint32_t uValue = 0;
1658 VBOXSTRICTRC rc = VINF_SUCCESS;
1659 switch (offReg)
1660 {
1661 case XAPIC_OFF_ID:
1662 case XAPIC_OFF_VERSION:
1663 case XAPIC_OFF_TPR:
1664 case XAPIC_OFF_EOI:
1665 case XAPIC_OFF_RRD:
1666 case XAPIC_OFF_LDR:
1667 case XAPIC_OFF_DFR:
1668 case XAPIC_OFF_SVR:
1669 case XAPIC_OFF_ISR0: case XAPIC_OFF_ISR1: case XAPIC_OFF_ISR2: case XAPIC_OFF_ISR3:
1670 case XAPIC_OFF_ISR4: case XAPIC_OFF_ISR5: case XAPIC_OFF_ISR6: case XAPIC_OFF_ISR7:
1671 case XAPIC_OFF_TMR0: case XAPIC_OFF_TMR1: case XAPIC_OFF_TMR2: case XAPIC_OFF_TMR3:
1672 case XAPIC_OFF_TMR4: case XAPIC_OFF_TMR5: case XAPIC_OFF_TMR6: case XAPIC_OFF_TMR7:
1673 case XAPIC_OFF_IRR0: case XAPIC_OFF_IRR1: case XAPIC_OFF_IRR2: case XAPIC_OFF_IRR3:
1674 case XAPIC_OFF_IRR4: case XAPIC_OFF_IRR5: case XAPIC_OFF_IRR6: case XAPIC_OFF_IRR7:
1675 case XAPIC_OFF_ESR:
1676 case XAPIC_OFF_ICR_LO:
1677 case XAPIC_OFF_ICR_HI:
1678 case XAPIC_OFF_LVT_TIMER:
1679#if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4
1680 case XAPIC_OFF_LVT_THERMAL:
1681#endif
1682 case XAPIC_OFF_LVT_PERF:
1683 case XAPIC_OFF_LVT_LINT0:
1684 case XAPIC_OFF_LVT_LINT1:
1685 case XAPIC_OFF_LVT_ERROR:
1686 case XAPIC_OFF_TIMER_ICR:
1687 case XAPIC_OFF_TIMER_DCR:
1688 {
1689 Assert( !XAPIC_IN_X2APIC_MODE(pVCpu)
1690 || ( offReg != XAPIC_OFF_DFR
1691 && offReg != XAPIC_OFF_ICR_HI
1692 && offReg != XAPIC_OFF_EOI));
1693 uValue = apicReadRaw32(pXApicPage, offReg);
1694 Log2(("APIC%u: apicReadRegister: offReg=%#x uValue=%#x\n", pVCpu->idCpu, offReg, uValue));
1695 break;
1696 }
1697
1698 case XAPIC_OFF_PPR:
1699 {
1700 uValue = apicGetPpr(pVCpu);
1701 break;
1702 }
1703
1704 case XAPIC_OFF_TIMER_CCR:
1705 {
1706 Assert(!XAPIC_IN_X2APIC_MODE(pVCpu));
1707 rc = apicGetTimerCcr(pDevIns, pVCpu, VINF_IOM_R3_MMIO_READ, &uValue);
1708 break;
1709 }
1710
1711 case XAPIC_OFF_APR:
1712 {
1713#if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4
1714 /* Unsupported on Pentium 4 and Xeon CPUs, invalid in x2APIC mode. */
1715 Assert(!XAPIC_IN_X2APIC_MODE(pVCpu));
1716#else
1717# error "Implement Pentium and P6 family APIC architectures"
1718#endif
1719 break;
1720 }
1721
1722 default:
1723 {
1724 Assert(!XAPIC_IN_X2APIC_MODE(pVCpu));
1725 rc = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "VCPU[%u]: offReg=%#RX16\n", pVCpu->idCpu, offReg);
1726 apicSetError(pVCpu, XAPIC_ESR_ILLEGAL_REG_ADDRESS);
1727 break;
1728 }
1729 }
1730
1731 *puValue = uValue;
1732 return rc;
1733}
1734
1735
1736/**
1737 * Writes an APIC register.
1738 *
1739 * @returns Strict VBox status code.
1740 * @param pDevIns The device instance.
1741 * @param pVCpu The cross context virtual CPU structure.
1742 * @param offReg The offset of the register being written.
1743 * @param uValue The register value.
1744 */
1745DECLINLINE(VBOXSTRICTRC) apicWriteRegister(PPDMDEVINS pDevIns, PVMCPUCC pVCpu, uint16_t offReg, uint32_t uValue)
1746{
1747 VMCPU_ASSERT_EMT(pVCpu);
1748 Assert(offReg <= XAPIC_OFF_MAX_VALID);
1749 Assert(!XAPIC_IN_X2APIC_MODE(pVCpu));
1750
1751 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
1752 switch (offReg)
1753 {
1754 case XAPIC_OFF_TPR:
1755 {
1756 rcStrict = apicSetTprEx(pVCpu, uValue, false /* fForceX2ApicBehaviour */);
1757 break;
1758 }
1759
1760 case XAPIC_OFF_LVT_TIMER:
1761#if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4
1762 case XAPIC_OFF_LVT_THERMAL:
1763#endif
1764 case XAPIC_OFF_LVT_PERF:
1765 case XAPIC_OFF_LVT_LINT0:
1766 case XAPIC_OFF_LVT_LINT1:
1767 case XAPIC_OFF_LVT_ERROR:
1768 {
1769 rcStrict = apicSetLvtEntry(pVCpu, offReg, uValue);
1770 break;
1771 }
1772
1773 case XAPIC_OFF_TIMER_ICR:
1774 {
1775 rcStrict = apicSetTimerIcr(pDevIns, pVCpu, VINF_IOM_R3_MMIO_WRITE, uValue);
1776 break;
1777 }
1778
1779 case XAPIC_OFF_EOI:
1780 {
1781 rcStrict = apicSetEoi(pVCpu, uValue, VINF_IOM_R3_MMIO_WRITE, false /* fForceX2ApicBehaviour */);
1782 break;
1783 }
1784
1785 case XAPIC_OFF_LDR:
1786 {
1787 rcStrict = apicSetLdr(pVCpu, uValue);
1788 break;
1789 }
1790
1791 case XAPIC_OFF_DFR:
1792 {
1793 rcStrict = apicSetDfr(pVCpu, uValue);
1794 break;
1795 }
1796
1797 case XAPIC_OFF_SVR:
1798 {
1799 rcStrict = apicSetSvr(pVCpu, uValue);
1800 break;
1801 }
1802
1803 case XAPIC_OFF_ICR_LO:
1804 {
1805 rcStrict = apicSetIcrLo(pVCpu, uValue, VINF_IOM_R3_MMIO_WRITE, true /* fUpdateStat */);
1806 break;
1807 }
1808
1809 case XAPIC_OFF_ICR_HI:
1810 {
1811 rcStrict = apicSetIcrHi(pVCpu, uValue);
1812 break;
1813 }
1814
1815 case XAPIC_OFF_TIMER_DCR:
1816 {
1817 rcStrict = apicSetTimerDcr(pVCpu, uValue);
1818 break;
1819 }
1820
1821 case XAPIC_OFF_ESR:
1822 {
1823 rcStrict = apicSetEsr(pVCpu, uValue);
1824 break;
1825 }
1826
1827 case XAPIC_OFF_APR:
1828 case XAPIC_OFF_RRD:
1829 {
1830#if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4
1831 /* Unsupported on Pentium 4 and Xeon CPUs but writes do -not- set an illegal register access error. */
1832#else
1833# error "Implement Pentium and P6 family APIC architectures"
1834#endif
1835 break;
1836 }
1837
1838 /* Read-only, write ignored: */
1839 case XAPIC_OFF_VERSION:
1840 case XAPIC_OFF_ID:
1841 break;
1842
1843 /* Unavailable/reserved in xAPIC mode: */
1844 case X2APIC_OFF_SELF_IPI:
1845 /* Read-only registers: */
1846 case XAPIC_OFF_PPR:
1847 case XAPIC_OFF_ISR0: case XAPIC_OFF_ISR1: case XAPIC_OFF_ISR2: case XAPIC_OFF_ISR3:
1848 case XAPIC_OFF_ISR4: case XAPIC_OFF_ISR5: case XAPIC_OFF_ISR6: case XAPIC_OFF_ISR7:
1849 case XAPIC_OFF_TMR0: case XAPIC_OFF_TMR1: case XAPIC_OFF_TMR2: case XAPIC_OFF_TMR3:
1850 case XAPIC_OFF_TMR4: case XAPIC_OFF_TMR5: case XAPIC_OFF_TMR6: case XAPIC_OFF_TMR7:
1851 case XAPIC_OFF_IRR0: case XAPIC_OFF_IRR1: case XAPIC_OFF_IRR2: case XAPIC_OFF_IRR3:
1852 case XAPIC_OFF_IRR4: case XAPIC_OFF_IRR5: case XAPIC_OFF_IRR6: case XAPIC_OFF_IRR7:
1853 case XAPIC_OFF_TIMER_CCR:
1854 default:
1855 {
1856 rcStrict = PDMDevHlpDBGFStop(pDevIns, RT_SRC_POS, "APIC%u: offReg=%#RX16\n", pVCpu->idCpu, offReg);
1857 apicSetError(pVCpu, XAPIC_ESR_ILLEGAL_REG_ADDRESS);
1858 break;
1859 }
1860 }
1861
1862 return rcStrict;
1863}
1864
1865
1866/**
1867 * Reads an APIC MSR.
1868 *
1869 * @returns Strict VBox status code.
1870 * @param pVCpu The cross context virtual CPU structure.
1871 * @param u32Reg The MSR being read.
1872 * @param pu64Value Where to store the read value.
1873 */
1874VMM_INT_DECL(VBOXSTRICTRC) APICReadMsr(PVMCPUCC pVCpu, uint32_t u32Reg, uint64_t *pu64Value)
1875{
1876 /*
1877 * Validate.
1878 */
1879 VMCPU_ASSERT_EMT(pVCpu);
1880 Assert(u32Reg >= MSR_IA32_X2APIC_ID && u32Reg <= MSR_IA32_X2APIC_SELF_IPI);
1881 Assert(pu64Value);
1882
1883 /*
1884 * Is the APIC enabled?
1885 */
1886 PCAPIC pApic = VM_TO_APIC(pVCpu->CTX_SUFF(pVM));
1887 if (APICIsEnabled(pVCpu))
1888 { /* likely */ }
1889 else
1890 return apicMsrAccessError(pVCpu, u32Reg, pApic->enmMaxMode == PDMAPICMODE_NONE ?
1891 APICMSRACCESS_READ_DISALLOWED_CONFIG : APICMSRACCESS_READ_RSVD_OR_UNKNOWN);
1892
1893#ifndef IN_RING3
1894 if (pApic->CTXALLMID(f,Enabled))
1895 { /* likely */}
1896 else
1897 return VINF_CPUM_R3_MSR_READ;
1898#endif
1899
1900 STAM_COUNTER_INC(&pVCpu->apic.s.CTX_SUFF_Z(StatMsrRead));
1901
1902 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
1903 if (RT_LIKELY( XAPIC_IN_X2APIC_MODE(pVCpu)
1904 || pApic->fHyperVCompatMode))
1905 {
1906 switch (u32Reg)
1907 {
1908 /* Special handling for x2APIC: */
1909 case MSR_IA32_X2APIC_ICR:
1910 {
1911 *pu64Value = apicGetIcrNoCheck(pVCpu);
1912 break;
1913 }
1914
1915 /* Special handling, compatible with xAPIC: */
1916 case MSR_IA32_X2APIC_TIMER_CCR:
1917 {
1918 uint32_t uValue;
1919 rcStrict = apicGetTimerCcr(VMCPU_TO_DEVINS(pVCpu), pVCpu, VINF_CPUM_R3_MSR_READ, &uValue);
1920 *pu64Value = uValue;
1921 break;
1922 }
1923
1924 /* Special handling, compatible with xAPIC: */
1925 case MSR_IA32_X2APIC_PPR:
1926 {
1927 *pu64Value = apicGetPpr(pVCpu);
1928 break;
1929 }
1930
1931 /* Raw read, compatible with xAPIC: */
1932 case MSR_IA32_X2APIC_ID:
1933 {
1934 STAM_COUNTER_INC(&pVCpu->apic.s.StatIdMsrRead);
1935 /* Horrible macOS hack (sample rdmsr addres: 0008:ffffff801686f21a). */
1936 if ( !pApic->fMacOSWorkaround
1937 || pVCpu->cpum.GstCtx.cs.Sel != 8
1938 || pVCpu->cpum.GstCtx.rip < UINT64_C(0xffffff8000000000))
1939 { /* likely */ }
1940 else
1941 {
1942 PCX2APICPAGE pX2ApicPage = VMCPU_TO_CX2APICPAGE(pVCpu);
1943 uint32_t const idApic = pX2ApicPage->id.u32ApicId;
1944 *pu64Value = (idApic << 24) | idApic;
1945 Log(("APIC: Applying macOS hack to MSR_IA32_X2APIC_ID: %#RX64\n", *pu64Value));
1946 break;
1947 }
1948 RT_FALL_THRU();
1949 }
1950 case MSR_IA32_X2APIC_VERSION:
1951 case MSR_IA32_X2APIC_TPR:
1952 case MSR_IA32_X2APIC_LDR:
1953 case MSR_IA32_X2APIC_SVR:
1954 case MSR_IA32_X2APIC_ISR0: case MSR_IA32_X2APIC_ISR1: case MSR_IA32_X2APIC_ISR2: case MSR_IA32_X2APIC_ISR3:
1955 case MSR_IA32_X2APIC_ISR4: case MSR_IA32_X2APIC_ISR5: case MSR_IA32_X2APIC_ISR6: case MSR_IA32_X2APIC_ISR7:
1956 case MSR_IA32_X2APIC_TMR0: case MSR_IA32_X2APIC_TMR1: case MSR_IA32_X2APIC_TMR2: case MSR_IA32_X2APIC_TMR3:
1957 case MSR_IA32_X2APIC_TMR4: case MSR_IA32_X2APIC_TMR5: case MSR_IA32_X2APIC_TMR6: case MSR_IA32_X2APIC_TMR7:
1958 case MSR_IA32_X2APIC_IRR0: case MSR_IA32_X2APIC_IRR1: case MSR_IA32_X2APIC_IRR2: case MSR_IA32_X2APIC_IRR3:
1959 case MSR_IA32_X2APIC_IRR4: case MSR_IA32_X2APIC_IRR5: case MSR_IA32_X2APIC_IRR6: case MSR_IA32_X2APIC_IRR7:
1960 case MSR_IA32_X2APIC_ESR:
1961 case MSR_IA32_X2APIC_LVT_TIMER:
1962 case MSR_IA32_X2APIC_LVT_THERMAL:
1963 case MSR_IA32_X2APIC_LVT_PERF:
1964 case MSR_IA32_X2APIC_LVT_LINT0:
1965 case MSR_IA32_X2APIC_LVT_LINT1:
1966 case MSR_IA32_X2APIC_LVT_ERROR:
1967 case MSR_IA32_X2APIC_TIMER_ICR:
1968 case MSR_IA32_X2APIC_TIMER_DCR:
1969 {
1970 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
1971 uint16_t const offReg = X2APIC_GET_XAPIC_OFF(u32Reg);
1972 *pu64Value = apicReadRaw32(pXApicPage, offReg);
1973 break;
1974 }
1975
1976 /* Write-only MSRs: */
1977 case MSR_IA32_X2APIC_SELF_IPI:
1978 case MSR_IA32_X2APIC_EOI:
1979 {
1980 rcStrict = apicMsrAccessError(pVCpu, u32Reg, APICMSRACCESS_READ_WRITE_ONLY);
1981 break;
1982 }
1983
1984 /*
1985 * Windows guest using Hyper-V x2APIC MSR compatibility mode tries to read the "high"
1986 * LDR bits, which is quite absurd (as it's a 32-bit register) using this invalid MSR
1987 * index (0x80E), see @bugref{8382#c175}.
1988 */
1989 case MSR_IA32_X2APIC_LDR + 1:
1990 {
1991 if (pApic->fHyperVCompatMode)
1992 *pu64Value = 0;
1993 else
1994 rcStrict = apicMsrAccessError(pVCpu, u32Reg, APICMSRACCESS_READ_RSVD_OR_UNKNOWN);
1995 break;
1996 }
1997
1998 /* Reserved MSRs: */
1999 case MSR_IA32_X2APIC_LVT_CMCI:
2000 default:
2001 {
2002 rcStrict = apicMsrAccessError(pVCpu, u32Reg, APICMSRACCESS_READ_RSVD_OR_UNKNOWN);
2003 break;
2004 }
2005 }
2006 }
2007 else
2008 rcStrict = apicMsrAccessError(pVCpu, u32Reg, APICMSRACCESS_INVALID_READ_MODE);
2009
2010 return rcStrict;
2011}
2012
2013
2014/**
2015 * Writes an APIC MSR.
2016 *
2017 * @returns Strict VBox status code.
2018 * @param pVCpu The cross context virtual CPU structure.
2019 * @param u32Reg The MSR being written.
2020 * @param u64Value The value to write.
2021 */
2022VMM_INT_DECL(VBOXSTRICTRC) APICWriteMsr(PVMCPUCC pVCpu, uint32_t u32Reg, uint64_t u64Value)
2023{
2024 /*
2025 * Validate.
2026 */
2027 VMCPU_ASSERT_EMT(pVCpu);
2028 Assert(u32Reg >= MSR_IA32_X2APIC_ID && u32Reg <= MSR_IA32_X2APIC_SELF_IPI);
2029
2030 /*
2031 * Is the APIC enabled?
2032 */
2033 PCAPIC pApic = VM_TO_APIC(pVCpu->CTX_SUFF(pVM));
2034 if (APICIsEnabled(pVCpu))
2035 { /* likely */ }
2036 else
2037 return apicMsrAccessError(pVCpu, u32Reg, pApic->enmMaxMode == PDMAPICMODE_NONE ?
2038 APICMSRACCESS_WRITE_DISALLOWED_CONFIG : APICMSRACCESS_WRITE_RSVD_OR_UNKNOWN);
2039
2040#ifndef IN_RING3
2041 if (pApic->CTXALLMID(f,Enabled))
2042 { /* likely */ }
2043 else
2044 return VINF_CPUM_R3_MSR_WRITE;
2045#endif
2046
2047 STAM_COUNTER_INC(&pVCpu->apic.s.CTX_SUFF_Z(StatMsrWrite));
2048
2049 /*
2050 * In x2APIC mode, we need to raise #GP(0) for writes to reserved bits, unlike MMIO
2051 * accesses where they are ignored. Hence, we need to validate each register before
2052 * invoking the generic/xAPIC write functions.
2053 *
2054 * Bits 63:32 of all registers except the ICR are reserved, we'll handle this common
2055 * case first and handle validating the remaining bits on a per-register basis.
2056 * See Intel spec. 10.12.1.2 "x2APIC Register Address Space".
2057 */
2058 if ( u32Reg != MSR_IA32_X2APIC_ICR
2059 && RT_HI_U32(u64Value))
2060 return apicMsrAccessError(pVCpu, u32Reg, APICMSRACCESS_WRITE_RSVD_BITS);
2061
2062 uint32_t u32Value = RT_LO_U32(u64Value);
2063 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
2064 if (RT_LIKELY( XAPIC_IN_X2APIC_MODE(pVCpu)
2065 || pApic->fHyperVCompatMode))
2066 {
2067 switch (u32Reg)
2068 {
2069 case MSR_IA32_X2APIC_TPR:
2070 {
2071 rcStrict = apicSetTprEx(pVCpu, u32Value, false /* fForceX2ApicBehaviour */);
2072 break;
2073 }
2074
2075 case MSR_IA32_X2APIC_ICR:
2076 {
2077 rcStrict = apicSetIcr(pVCpu, u64Value, VINF_CPUM_R3_MSR_WRITE);
2078 break;
2079 }
2080
2081 case MSR_IA32_X2APIC_SVR:
2082 {
2083 rcStrict = apicSetSvr(pVCpu, u32Value);
2084 break;
2085 }
2086
2087 case MSR_IA32_X2APIC_ESR:
2088 {
2089 rcStrict = apicSetEsr(pVCpu, u32Value);
2090 break;
2091 }
2092
2093 case MSR_IA32_X2APIC_TIMER_DCR:
2094 {
2095 rcStrict = apicSetTimerDcr(pVCpu, u32Value);
2096 break;
2097 }
2098
2099 case MSR_IA32_X2APIC_LVT_TIMER:
2100 case MSR_IA32_X2APIC_LVT_THERMAL:
2101 case MSR_IA32_X2APIC_LVT_PERF:
2102 case MSR_IA32_X2APIC_LVT_LINT0:
2103 case MSR_IA32_X2APIC_LVT_LINT1:
2104 case MSR_IA32_X2APIC_LVT_ERROR:
2105 {
2106 rcStrict = apicSetLvtEntry(pVCpu, X2APIC_GET_XAPIC_OFF(u32Reg), u32Value);
2107 break;
2108 }
2109
2110 case MSR_IA32_X2APIC_TIMER_ICR:
2111 {
2112 rcStrict = apicSetTimerIcr(VMCPU_TO_DEVINS(pVCpu), pVCpu, VINF_CPUM_R3_MSR_WRITE, u32Value);
2113 break;
2114 }
2115
2116 /* Write-only MSRs: */
2117 case MSR_IA32_X2APIC_SELF_IPI:
2118 {
2119 uint8_t const uVector = XAPIC_SELF_IPI_GET_VECTOR(u32Value);
2120 apicPostInterrupt(pVCpu, uVector, XAPICTRIGGERMODE_EDGE, 0 /* uSrcTag */);
2121 rcStrict = VINF_SUCCESS;
2122 break;
2123 }
2124
2125 case MSR_IA32_X2APIC_EOI:
2126 {
2127 rcStrict = apicSetEoi(pVCpu, u32Value, VINF_CPUM_R3_MSR_WRITE, false /* fForceX2ApicBehaviour */);
2128 break;
2129 }
2130
2131 /*
2132 * Windows guest using Hyper-V x2APIC MSR compatibility mode tries to write the "high"
2133 * LDR bits, which is quite absurd (as it's a 32-bit register) using this invalid MSR
2134 * index (0x80E). The write value was 0xffffffff on a Windows 8.1 64-bit guest. We can
2135 * safely ignore this nonsense, See @bugref{8382#c7}.
2136 */
2137 case MSR_IA32_X2APIC_LDR + 1:
2138 {
2139 if (pApic->fHyperVCompatMode)
2140 rcStrict = VINF_SUCCESS;
2141 else
2142 rcStrict = apicMsrAccessError(pVCpu, u32Reg, APICMSRACCESS_WRITE_RSVD_OR_UNKNOWN);
2143 break;
2144 }
2145
2146 /* Special-treament (read-only normally, but not with Hyper-V) */
2147 case MSR_IA32_X2APIC_LDR:
2148 {
2149 if (pApic->fHyperVCompatMode)
2150 {
2151 rcStrict = apicSetLdr(pVCpu, u32Value);
2152 break;
2153 }
2154 }
2155 RT_FALL_THRU();
2156 /* Read-only MSRs: */
2157 case MSR_IA32_X2APIC_ID:
2158 case MSR_IA32_X2APIC_VERSION:
2159 case MSR_IA32_X2APIC_PPR:
2160 case MSR_IA32_X2APIC_ISR0: case MSR_IA32_X2APIC_ISR1: case MSR_IA32_X2APIC_ISR2: case MSR_IA32_X2APIC_ISR3:
2161 case MSR_IA32_X2APIC_ISR4: case MSR_IA32_X2APIC_ISR5: case MSR_IA32_X2APIC_ISR6: case MSR_IA32_X2APIC_ISR7:
2162 case MSR_IA32_X2APIC_TMR0: case MSR_IA32_X2APIC_TMR1: case MSR_IA32_X2APIC_TMR2: case MSR_IA32_X2APIC_TMR3:
2163 case MSR_IA32_X2APIC_TMR4: case MSR_IA32_X2APIC_TMR5: case MSR_IA32_X2APIC_TMR6: case MSR_IA32_X2APIC_TMR7:
2164 case MSR_IA32_X2APIC_IRR0: case MSR_IA32_X2APIC_IRR1: case MSR_IA32_X2APIC_IRR2: case MSR_IA32_X2APIC_IRR3:
2165 case MSR_IA32_X2APIC_IRR4: case MSR_IA32_X2APIC_IRR5: case MSR_IA32_X2APIC_IRR6: case MSR_IA32_X2APIC_IRR7:
2166 case MSR_IA32_X2APIC_TIMER_CCR:
2167 {
2168 rcStrict = apicMsrAccessError(pVCpu, u32Reg, APICMSRACCESS_WRITE_READ_ONLY);
2169 break;
2170 }
2171
2172 /* Reserved MSRs: */
2173 case MSR_IA32_X2APIC_LVT_CMCI:
2174 default:
2175 {
2176 rcStrict = apicMsrAccessError(pVCpu, u32Reg, APICMSRACCESS_WRITE_RSVD_OR_UNKNOWN);
2177 break;
2178 }
2179 }
2180 }
2181 else
2182 rcStrict = apicMsrAccessError(pVCpu, u32Reg, APICMSRACCESS_INVALID_WRITE_MODE);
2183
2184 return rcStrict;
2185}
2186
2187
2188/**
2189 * Resets the APIC base MSR.
2190 *
2191 * @param pVCpu The cross context virtual CPU structure.
2192 */
2193static void apicResetBaseMsr(PVMCPUCC pVCpu)
2194{
2195 /*
2196 * Initialize the APIC base MSR. The APIC enable-bit is set upon power-up or reset[1].
2197 *
2198 * A Reset (in xAPIC and x2APIC mode) brings up the local APIC in xAPIC mode.
2199 * An INIT IPI does -not- cause a transition between xAPIC and x2APIC mode[2].
2200 *
2201 * [1] See AMD spec. 14.1.3 "Processor Initialization State"
2202 * [2] See Intel spec. 10.12.5.1 "x2APIC States".
2203 */
2204 VMCPU_ASSERT_EMT_OR_NOT_RUNNING(pVCpu);
2205
2206 /* Construct. */
2207 PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
2208 PAPIC pApic = VM_TO_APIC(pVCpu->CTX_SUFF(pVM));
2209 uint64_t uApicBaseMsr = MSR_IA32_APICBASE_ADDR;
2210 if (pVCpu->idCpu == 0)
2211 uApicBaseMsr |= MSR_IA32_APICBASE_BSP;
2212
2213 /* If the VM was configured with no APIC, don't enable xAPIC mode, obviously. */
2214 if (pApic->enmMaxMode != PDMAPICMODE_NONE)
2215 {
2216 uApicBaseMsr |= MSR_IA32_APICBASE_EN;
2217
2218 /*
2219 * While coming out of a reset the APIC is enabled and in xAPIC mode. If software had previously
2220 * disabled the APIC (which results in the CPUID bit being cleared as well) we re-enable it here.
2221 * See Intel spec. 10.12.5.1 "x2APIC States".
2222 */
2223 if (CPUMSetGuestCpuIdPerCpuApicFeature(pVCpu, true /*fVisible*/) == false)
2224 LogRel(("APIC%u: Resetting mode to xAPIC\n", pVCpu->idCpu));
2225 }
2226
2227 /* Commit. */
2228 ASMAtomicWriteU64(&pApicCpu->uApicBaseMsr, uApicBaseMsr);
2229}
2230
2231
2232/**
2233 * Initializes per-VCPU APIC to the state following an INIT reset
2234 * ("Wait-for-SIPI" state).
2235 *
2236 * @param pVCpu The cross context virtual CPU structure.
2237 */
2238void apicInitIpi(PVMCPUCC pVCpu)
2239{
2240 VMCPU_ASSERT_EMT_OR_NOT_RUNNING(pVCpu);
2241 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
2242
2243 /*
2244 * See Intel spec. 10.4.7.3 "Local APIC State After an INIT Reset (Wait-for-SIPI State)"
2245 * and AMD spec 16.3.2 "APIC Registers".
2246 *
2247 * The reason we don't simply zero out the entire APIC page and only set the non-zero members
2248 * is because there are some registers that are not touched by the INIT IPI (e.g. version)
2249 * operation and this function is only a subset of the reset operation.
2250 */
2251 RT_ZERO(pXApicPage->irr);
2252 RT_ZERO(pXApicPage->irr);
2253 RT_ZERO(pXApicPage->isr);
2254 RT_ZERO(pXApicPage->tmr);
2255 RT_ZERO(pXApicPage->icr_hi);
2256 RT_ZERO(pXApicPage->icr_lo);
2257 RT_ZERO(pXApicPage->ldr);
2258 RT_ZERO(pXApicPage->tpr);
2259 RT_ZERO(pXApicPage->ppr);
2260 RT_ZERO(pXApicPage->timer_icr);
2261 RT_ZERO(pXApicPage->timer_ccr);
2262 RT_ZERO(pXApicPage->timer_dcr);
2263
2264 pXApicPage->dfr.u.u4Model = XAPICDESTFORMAT_FLAT;
2265 pXApicPage->dfr.u.u28ReservedMb1 = UINT32_C(0xfffffff);
2266
2267 /** @todo CMCI. */
2268
2269 RT_ZERO(pXApicPage->lvt_timer);
2270 pXApicPage->lvt_timer.u.u1Mask = 1;
2271
2272#if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4
2273 RT_ZERO(pXApicPage->lvt_thermal);
2274 pXApicPage->lvt_thermal.u.u1Mask = 1;
2275#endif
2276
2277 RT_ZERO(pXApicPage->lvt_perf);
2278 pXApicPage->lvt_perf.u.u1Mask = 1;
2279
2280 RT_ZERO(pXApicPage->lvt_lint0);
2281 pXApicPage->lvt_lint0.u.u1Mask = 1;
2282
2283 RT_ZERO(pXApicPage->lvt_lint1);
2284 pXApicPage->lvt_lint1.u.u1Mask = 1;
2285
2286 RT_ZERO(pXApicPage->lvt_error);
2287 pXApicPage->lvt_error.u.u1Mask = 1;
2288
2289 RT_ZERO(pXApicPage->svr);
2290 pXApicPage->svr.u.u8SpuriousVector = 0xff;
2291
2292 /* The self-IPI register is reset to 0. See Intel spec. 10.12.5.1 "x2APIC States" */
2293 PX2APICPAGE pX2ApicPage = VMCPU_TO_X2APICPAGE(pVCpu);
2294 RT_ZERO(pX2ApicPage->self_ipi);
2295
2296 /* Clear the pending-interrupt bitmaps. */
2297 PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
2298 RT_BZERO(&pApicCpu->ApicPibLevel, sizeof(APICPIB));
2299 RT_BZERO(pApicCpu->CTX_SUFF(pvApicPib), sizeof(APICPIB));
2300
2301 /* Clear the interrupt line states for LINT0 and LINT1 pins. */
2302 pApicCpu->fActiveLint0 = false;
2303 pApicCpu->fActiveLint1 = false;
2304}
2305
2306
2307/**
2308 * Initializes per-VCPU APIC to the state following a power-up or hardware
2309 * reset.
2310 *
2311 * @param pVCpu The cross context virtual CPU structure.
2312 * @param fResetApicBaseMsr Whether to reset the APIC base MSR.
2313 */
2314void apicResetCpu(PVMCPUCC pVCpu, bool fResetApicBaseMsr)
2315{
2316 VMCPU_ASSERT_EMT_OR_NOT_RUNNING(pVCpu);
2317
2318 LogFlow(("APIC%u: apicR3ResetCpu: fResetApicBaseMsr=%RTbool\n", pVCpu->idCpu, fResetApicBaseMsr));
2319
2320#ifdef VBOX_STRICT
2321 /* Verify that the initial APIC ID reported via CPUID matches our VMCPU ID assumption. */
2322 uint32_t uEax, uEbx, uEcx, uEdx;
2323 uEax = uEbx = uEcx = uEdx = UINT32_MAX;
2324 CPUMGetGuestCpuId(pVCpu, 1, 0, &uEax, &uEbx, &uEcx, &uEdx);
2325 Assert(((uEbx >> 24) & 0xff) == pVCpu->idCpu);
2326#endif
2327
2328 /*
2329 * The state following a power-up or reset is a superset of the INIT state.
2330 * See Intel spec. 10.4.7.3 "Local APIC State After an INIT Reset ('Wait-for-SIPI' State)"
2331 */
2332 apicInitIpi(pVCpu);
2333
2334 /*
2335 * The APIC version register is read-only, so just initialize it here.
2336 * It is not clear from the specs, where exactly it is initialized.
2337 * The version determines the number of LVT entries and size of the APIC ID (8 bits for P4).
2338 */
2339 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
2340#if XAPIC_HARDWARE_VERSION == XAPIC_HARDWARE_VERSION_P4
2341 pXApicPage->version.u.u8MaxLvtEntry = XAPIC_MAX_LVT_ENTRIES_P4 - 1;
2342 pXApicPage->version.u.u8Version = XAPIC_HARDWARE_VERSION_P4;
2343 AssertCompile(sizeof(pXApicPage->id.u8ApicId) >= XAPIC_APIC_ID_BIT_COUNT_P4 / 8);
2344#else
2345# error "Implement Pentium and P6 family APIC architectures"
2346#endif
2347
2348 /** @todo It isn't clear in the spec. where exactly the default base address
2349 * is (re)initialized, atm we do it here in Reset. */
2350 if (fResetApicBaseMsr)
2351 apicResetBaseMsr(pVCpu);
2352
2353 /*
2354 * Initialize the APIC ID register to xAPIC format.
2355 */
2356 ASMMemZero32(&pXApicPage->id, sizeof(pXApicPage->id));
2357 pXApicPage->id.u8ApicId = pVCpu->idCpu;
2358}
2359
2360
2361/**
2362 * Sets the APIC base MSR.
2363 *
2364 * @returns VBox status code - no informational ones, esp. not
2365 * VINF_CPUM_R3_MSR_WRITE. Only the following two:
2366 * @retval VINF_SUCCESS
2367 * @retval VERR_CPUM_RAISE_GP_0
2368 *
2369 * @param pVCpu The cross context virtual CPU structure.
2370 * @param u64BaseMsr The value to set.
2371 */
2372VMM_INT_DECL(int) APICSetBaseMsr(PVMCPUCC pVCpu, uint64_t u64BaseMsr)
2373{
2374 Assert(pVCpu);
2375
2376 PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
2377 PAPIC pApic = VM_TO_APIC(pVCpu->CTX_SUFF(pVM));
2378 APICMODE enmOldMode = apicGetMode(pApicCpu->uApicBaseMsr);
2379 APICMODE enmNewMode = apicGetMode(u64BaseMsr);
2380 uint64_t uBaseMsr = pApicCpu->uApicBaseMsr;
2381
2382 Log2(("APIC%u: ApicSetBaseMsr: u64BaseMsr=%#RX64 enmNewMode=%s enmOldMode=%s\n", pVCpu->idCpu, u64BaseMsr,
2383 apicGetModeName(enmNewMode), apicGetModeName(enmOldMode)));
2384
2385 /*
2386 * We do not support re-mapping the APIC base address because:
2387 * - We'll have to manage all the mappings ourselves in the APIC (reference counting based unmapping etc.)
2388 * i.e. we can only unmap the MMIO region if no other APIC is mapped on that location.
2389 * - It's unclear how/if IOM can fallback to handling regions as regular memory (if the MMIO
2390 * region remains mapped but doesn't belong to the called VCPU's APIC).
2391 */
2392 /** @todo Handle per-VCPU APIC base relocation. */
2393 if (MSR_IA32_APICBASE_GET_ADDR(uBaseMsr) != MSR_IA32_APICBASE_ADDR)
2394 {
2395 if (pVCpu->apic.s.cLogMaxSetApicBaseAddr++ < 5)
2396 LogRel(("APIC%u: Attempt to relocate base to %#RGp, unsupported -> #GP(0)\n", pVCpu->idCpu,
2397 MSR_IA32_APICBASE_GET_ADDR(uBaseMsr)));
2398 return VERR_CPUM_RAISE_GP_0;
2399 }
2400
2401 /* Don't allow enabling xAPIC/x2APIC if the VM is configured with the APIC disabled. */
2402 if (pApic->enmMaxMode == PDMAPICMODE_NONE)
2403 {
2404 LogRel(("APIC%u: Disallowing APIC base MSR write as the VM is configured with APIC disabled!\n", pVCpu->idCpu));
2405 return apicMsrAccessError(pVCpu, MSR_IA32_APICBASE, APICMSRACCESS_WRITE_DISALLOWED_CONFIG);
2406 }
2407
2408 /*
2409 * Act on state transition.
2410 */
2411 if (enmNewMode != enmOldMode)
2412 {
2413 switch (enmNewMode)
2414 {
2415 case APICMODE_DISABLED:
2416 {
2417 /*
2418 * The APIC state needs to be reset (especially the APIC ID as x2APIC APIC ID bit layout
2419 * is different). We can start with a clean slate identical to the state after a power-up/reset.
2420 *
2421 * See Intel spec. 10.4.3 "Enabling or Disabling the Local APIC".
2422 *
2423 * We'll also manually manage the APIC base MSR here. We want a single-point of commit
2424 * at the end of this function rather than updating it in apicR3ResetCpu. This means we also
2425 * need to update the CPUID leaf ourselves.
2426 */
2427 apicResetCpu(pVCpu, false /* fResetApicBaseMsr */);
2428 uBaseMsr &= ~(MSR_IA32_APICBASE_EN | MSR_IA32_APICBASE_EXTD);
2429 CPUMSetGuestCpuIdPerCpuApicFeature(pVCpu, false /*fVisible*/);
2430 LogRel(("APIC%u: Switched mode to disabled\n", pVCpu->idCpu));
2431 break;
2432 }
2433
2434 case APICMODE_XAPIC:
2435 {
2436 if (enmOldMode != APICMODE_DISABLED)
2437 {
2438 LogRel(("APIC%u: Can only transition to xAPIC state from disabled state\n", pVCpu->idCpu));
2439 return apicMsrAccessError(pVCpu, MSR_IA32_APICBASE, APICMSRACCESS_WRITE_INVALID);
2440 }
2441
2442 uBaseMsr |= MSR_IA32_APICBASE_EN;
2443 CPUMSetGuestCpuIdPerCpuApicFeature(pVCpu, true /*fVisible*/);
2444 LogRel(("APIC%u: Switched mode to xAPIC\n", pVCpu->idCpu));
2445 break;
2446 }
2447
2448 case APICMODE_X2APIC:
2449 {
2450 if (pApic->enmMaxMode != PDMAPICMODE_X2APIC)
2451 {
2452 LogRel(("APIC%u: Disallowing transition to x2APIC mode as the VM is configured with the x2APIC disabled!\n",
2453 pVCpu->idCpu));
2454 return apicMsrAccessError(pVCpu, MSR_IA32_APICBASE, APICMSRACCESS_WRITE_INVALID);
2455 }
2456
2457 if (enmOldMode != APICMODE_XAPIC)
2458 {
2459 LogRel(("APIC%u: Can only transition to x2APIC state from xAPIC state\n", pVCpu->idCpu));
2460 return apicMsrAccessError(pVCpu, MSR_IA32_APICBASE, APICMSRACCESS_WRITE_INVALID);
2461 }
2462
2463 uBaseMsr |= MSR_IA32_APICBASE_EN | MSR_IA32_APICBASE_EXTD;
2464
2465 /*
2466 * The APIC ID needs updating when entering x2APIC mode.
2467 * Software written APIC ID in xAPIC mode isn't preserved.
2468 * The APIC ID becomes read-only to software in x2APIC mode.
2469 *
2470 * See Intel spec. 10.12.5.1 "x2APIC States".
2471 */
2472 PX2APICPAGE pX2ApicPage = VMCPU_TO_X2APICPAGE(pVCpu);
2473 ASMMemZero32(&pX2ApicPage->id, sizeof(pX2ApicPage->id));
2474 pX2ApicPage->id.u32ApicId = pVCpu->idCpu;
2475
2476 /*
2477 * LDR initialization occurs when entering x2APIC mode.
2478 * See Intel spec. 10.12.10.2 "Deriving Logical x2APIC ID from the Local x2APIC ID".
2479 */
2480 pX2ApicPage->ldr.u32LogicalApicId = ((pX2ApicPage->id.u32ApicId & UINT32_C(0xffff0)) << 16)
2481 | (UINT32_C(1) << pX2ApicPage->id.u32ApicId & UINT32_C(0xf));
2482
2483 LogRel(("APIC%u: Switched mode to x2APIC\n", pVCpu->idCpu));
2484 break;
2485 }
2486
2487 case APICMODE_INVALID:
2488 default:
2489 {
2490 Log(("APIC%u: Invalid state transition attempted\n", pVCpu->idCpu));
2491 return apicMsrAccessError(pVCpu, MSR_IA32_APICBASE, APICMSRACCESS_WRITE_INVALID);
2492 }
2493 }
2494 }
2495
2496 ASMAtomicWriteU64(&pApicCpu->uApicBaseMsr, uBaseMsr);
2497 return VINF_SUCCESS;
2498}
2499
2500
2501/**
2502 * Gets the APIC base MSR (no checks are performed wrt APIC hardware or its
2503 * state).
2504 *
2505 * @returns The base MSR value.
2506 * @param pVCpu The cross context virtual CPU structure.
2507 */
2508VMM_INT_DECL(uint64_t) APICGetBaseMsrNoCheck(PCVMCPUCC pVCpu)
2509{
2510 VMCPU_ASSERT_EMT_OR_NOT_RUNNING(pVCpu);
2511 PCAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
2512 return pApicCpu->uApicBaseMsr;
2513}
2514
2515
2516/**
2517 * Gets the APIC base MSR.
2518 *
2519 * @returns Strict VBox status code.
2520 * @param pVCpu The cross context virtual CPU structure.
2521 * @param pu64Value Where to store the MSR value.
2522 */
2523VMM_INT_DECL(VBOXSTRICTRC) APICGetBaseMsr(PVMCPUCC pVCpu, uint64_t *pu64Value)
2524{
2525 VMCPU_ASSERT_EMT_OR_NOT_RUNNING(pVCpu);
2526
2527 PCAPIC pApic = VM_TO_APIC(pVCpu->CTX_SUFF(pVM));
2528 if (pApic->enmMaxMode != PDMAPICMODE_NONE)
2529 {
2530 *pu64Value = APICGetBaseMsrNoCheck(pVCpu);
2531 return VINF_SUCCESS;
2532 }
2533
2534 if (pVCpu->apic.s.cLogMaxGetApicBaseAddr++ < 5)
2535 LogRel(("APIC%u: Reading APIC base MSR (%#x) when there is no APIC -> #GP(0)\n", pVCpu->idCpu, MSR_IA32_APICBASE));
2536 return VERR_CPUM_RAISE_GP_0;
2537}
2538
2539
2540/**
2541 * Sets the TPR (Task Priority Register).
2542 *
2543 * @retval VINF_SUCCESS
2544 * @retval VERR_CPUM_RAISE_GP_0
2545 * @retval VERR_PDM_NO_APIC_INSTANCE
2546 *
2547 * @param pVCpu The cross context virtual CPU structure.
2548 * @param u8Tpr The TPR value to set.
2549 */
2550VMMDECL(int) APICSetTpr(PVMCPUCC pVCpu, uint8_t u8Tpr)
2551{
2552 if (APICIsEnabled(pVCpu))
2553 return apicSetTprEx(pVCpu, u8Tpr, false /* fForceX2ApicBehaviour */);
2554 return VERR_PDM_NO_APIC_INSTANCE;
2555}
2556
2557
2558/**
2559 * Gets the highest priority pending interrupt.
2560 *
2561 * @returns true if any interrupt is pending, false otherwise.
2562 * @param pVCpu The cross context virtual CPU structure.
2563 * @param pu8PendingIntr Where to store the interrupt vector if the
2564 * interrupt is pending (optional, can be NULL).
2565 */
2566static bool apicGetHighestPendingInterrupt(PCVMCPUCC pVCpu, uint8_t *pu8PendingIntr)
2567{
2568 PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpu);
2569 int const irrv = apicGetHighestSetBitInReg(&pXApicPage->irr, -1);
2570 if (irrv >= 0)
2571 {
2572 Assert(irrv <= (int)UINT8_MAX);
2573 if (pu8PendingIntr)
2574 *pu8PendingIntr = (uint8_t)irrv;
2575 return true;
2576 }
2577 return false;
2578}
2579
2580
2581/**
2582 * Gets the APIC TPR (Task Priority Register).
2583 *
2584 * @returns VBox status code.
2585 * @param pVCpu The cross context virtual CPU structure.
2586 * @param pu8Tpr Where to store the TPR.
2587 * @param pfPending Where to store whether there is a pending interrupt
2588 * (optional, can be NULL).
2589 * @param pu8PendingIntr Where to store the highest-priority pending
2590 * interrupt (optional, can be NULL).
2591 */
2592VMMDECL(int) APICGetTpr(PCVMCPUCC pVCpu, uint8_t *pu8Tpr, bool *pfPending, uint8_t *pu8PendingIntr)
2593{
2594 VMCPU_ASSERT_EMT(pVCpu);
2595 if (APICIsEnabled(pVCpu))
2596 {
2597 PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpu);
2598 if (pfPending)
2599 {
2600 /*
2601 * Just return whatever the highest pending interrupt is in the IRR.
2602 * The caller is responsible for figuring out if it's masked by the TPR etc.
2603 */
2604 *pfPending = apicGetHighestPendingInterrupt(pVCpu, pu8PendingIntr);
2605 }
2606
2607 *pu8Tpr = pXApicPage->tpr.u8Tpr;
2608 return VINF_SUCCESS;
2609 }
2610
2611 *pu8Tpr = 0;
2612 return VERR_PDM_NO_APIC_INSTANCE;
2613}
2614
2615
2616/**
2617 * Gets the APIC timer frequency.
2618 *
2619 * @returns Strict VBox status code.
2620 * @param pVM The cross context VM structure.
2621 * @param pu64Value Where to store the timer frequency.
2622 */
2623VMM_INT_DECL(int) APICGetTimerFreq(PVMCC pVM, uint64_t *pu64Value)
2624{
2625 /*
2626 * Validate.
2627 */
2628 Assert(pVM);
2629 AssertPtrReturn(pu64Value, VERR_INVALID_PARAMETER);
2630
2631 PVMCPUCC pVCpu = pVM->CTX_SUFF(apCpus)[0];
2632 if (APICIsEnabled(pVCpu))
2633 {
2634 PCAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
2635 *pu64Value = PDMDevHlpTimerGetFreq(VMCPU_TO_DEVINS(pVCpu), pApicCpu->hTimer);
2636 return VINF_SUCCESS;
2637 }
2638 return VERR_PDM_NO_APIC_INSTANCE;
2639}
2640
2641
2642/**
2643 * Delivers an interrupt message via the system bus.
2644 *
2645 * @returns VBox status code.
2646 * @param pVM The cross context VM structure.
2647 * @param uDest The destination mask.
2648 * @param uDestMode The destination mode.
2649 * @param uDeliveryMode The delivery mode.
2650 * @param uVector The interrupt vector.
2651 * @param uPolarity The interrupt line polarity.
2652 * @param uTriggerMode The trigger mode.
2653 * @param uSrcTag The interrupt source tag (debugging).
2654 */
2655VMM_INT_DECL(int) APICBusDeliver(PVMCC pVM, uint8_t uDest, uint8_t uDestMode, uint8_t uDeliveryMode, uint8_t uVector,
2656 uint8_t uPolarity, uint8_t uTriggerMode, uint32_t uSrcTag)
2657{
2658 NOREF(uPolarity);
2659
2660 /*
2661 * If the APIC isn't enabled, do nothing and pretend success.
2662 */
2663 if (APICIsEnabled(pVM->CTX_SUFF(apCpus)[0]))
2664 { /* likely */ }
2665 else
2666 return VINF_SUCCESS;
2667
2668 /*
2669 * The destination field (mask) in the IO APIC redirectable table entry is 8-bits.
2670 * Hence, the broadcast mask is 0xff.
2671 * See IO APIC spec. 3.2.4. "IOREDTBL[23:0] - I/O Redirectable Table Registers".
2672 */
2673 XAPICTRIGGERMODE enmTriggerMode = (XAPICTRIGGERMODE)uTriggerMode;
2674 XAPICDELIVERYMODE enmDeliveryMode = (XAPICDELIVERYMODE)uDeliveryMode;
2675 XAPICDESTMODE enmDestMode = (XAPICDESTMODE)uDestMode;
2676 uint32_t fDestMask = uDest;
2677 uint32_t fBroadcastMask = UINT32_C(0xff);
2678
2679 Log2(("APIC: apicBusDeliver: fDestMask=%#x enmDestMode=%s enmTriggerMode=%s enmDeliveryMode=%s uVector=%#x\n", fDestMask,
2680 apicGetDestModeName(enmDestMode), apicGetTriggerModeName(enmTriggerMode), apicGetDeliveryModeName(enmDeliveryMode),
2681 uVector));
2682
2683 bool fIntrAccepted;
2684 VMCPUSET DestCpuSet;
2685 apicGetDestCpuSet(pVM, fDestMask, fBroadcastMask, enmDestMode, enmDeliveryMode, &DestCpuSet);
2686 VBOXSTRICTRC rcStrict = apicSendIntr(pVM, NULL /* pVCpu */, uVector, enmTriggerMode, enmDeliveryMode, &DestCpuSet,
2687 &fIntrAccepted, uSrcTag, VINF_SUCCESS /* rcRZ */);
2688 if (fIntrAccepted)
2689 return VBOXSTRICTRC_VAL(rcStrict);
2690 return VERR_APIC_INTR_DISCARDED;
2691}
2692
2693
2694/**
2695 * Assert/de-assert the local APIC's LINT0/LINT1 interrupt pins.
2696 *
2697 * @returns Strict VBox status code.
2698 * @param pVCpu The cross context virtual CPU structure.
2699 * @param u8Pin The interrupt pin (0 for LINT0 or 1 for LINT1).
2700 * @param u8Level The level (0 for low or 1 for high).
2701 * @param rcRZ The return code if the operation cannot be performed in
2702 * the current context.
2703 *
2704 * @note All callers totally ignores the status code!
2705 */
2706VMM_INT_DECL(VBOXSTRICTRC) APICLocalInterrupt(PVMCPUCC pVCpu, uint8_t u8Pin, uint8_t u8Level, int rcRZ)
2707{
2708 AssertReturn(u8Pin <= 1, VERR_INVALID_PARAMETER);
2709 AssertReturn(u8Level <= 1, VERR_INVALID_PARAMETER);
2710
2711 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
2712
2713 /* If the APIC is enabled, the interrupt is subject to LVT programming. */
2714 if (APICIsEnabled(pVCpu))
2715 {
2716 PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpu);
2717
2718 /* Pick the LVT entry corresponding to the interrupt pin. */
2719 static const uint16_t s_au16LvtOffsets[] =
2720 {
2721 XAPIC_OFF_LVT_LINT0,
2722 XAPIC_OFF_LVT_LINT1
2723 };
2724 Assert(u8Pin < RT_ELEMENTS(s_au16LvtOffsets));
2725 uint16_t const offLvt = s_au16LvtOffsets[u8Pin];
2726 uint32_t const uLvt = apicReadRaw32(pXApicPage, offLvt);
2727
2728 /* If software hasn't masked the interrupt in the LVT entry, proceed interrupt processing. */
2729 if (!XAPIC_LVT_IS_MASKED(uLvt))
2730 {
2731 XAPICDELIVERYMODE const enmDeliveryMode = XAPIC_LVT_GET_DELIVERY_MODE(uLvt);
2732 XAPICTRIGGERMODE enmTriggerMode = XAPIC_LVT_GET_TRIGGER_MODE(uLvt);
2733
2734 switch (enmDeliveryMode)
2735 {
2736 case XAPICDELIVERYMODE_INIT:
2737 {
2738 /** @todo won't work in R0/RC because callers don't care about rcRZ. */
2739 AssertMsgFailed(("INIT through LINT0/LINT1 is not yet supported\n"));
2740 }
2741 RT_FALL_THRU();
2742 case XAPICDELIVERYMODE_FIXED:
2743 {
2744 PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
2745 uint8_t const uVector = XAPIC_LVT_GET_VECTOR(uLvt);
2746 bool fActive = RT_BOOL(u8Level & 1);
2747 bool volatile *pfActiveLine = u8Pin == 0 ? &pApicCpu->fActiveLint0 : &pApicCpu->fActiveLint1;
2748 /** @todo Polarity is busted elsewhere, we need to fix that
2749 * first. See @bugref{8386#c7}. */
2750#if 0
2751 uint8_t const u8Polarity = XAPIC_LVT_GET_POLARITY(uLvt);
2752 fActive ^= u8Polarity; */
2753#endif
2754 if (!fActive)
2755 {
2756 ASMAtomicCmpXchgBool(pfActiveLine, false, true);
2757 break;
2758 }
2759
2760 /* Level-sensitive interrupts are not supported for LINT1. See Intel spec. 10.5.1 "Local Vector Table". */
2761 if (offLvt == XAPIC_OFF_LVT_LINT1)
2762 enmTriggerMode = XAPICTRIGGERMODE_EDGE;
2763 /** @todo figure out what "If the local APIC is not used in conjunction with an I/O APIC and fixed
2764 delivery mode is selected; the Pentium 4, Intel Xeon, and P6 family processors will always
2765 use level-sensitive triggering, regardless if edge-sensitive triggering is selected."
2766 means. */
2767
2768 bool fSendIntr;
2769 if (enmTriggerMode == XAPICTRIGGERMODE_EDGE)
2770 {
2771 /* Recognize and send the interrupt only on an edge transition. */
2772 fSendIntr = ASMAtomicCmpXchgBool(pfActiveLine, true, false);
2773 }
2774 else
2775 {
2776 /* For level-triggered interrupts, redundant interrupts are not a problem. */
2777 Assert(enmTriggerMode == XAPICTRIGGERMODE_LEVEL);
2778 ASMAtomicCmpXchgBool(pfActiveLine, true, false);
2779
2780 /* Only when the remote IRR isn't set, set it and send the interrupt. */
2781 if (!(pXApicPage->lvt_lint0.all.u32LvtLint0 & XAPIC_LVT_REMOTE_IRR))
2782 {
2783 Assert(offLvt == XAPIC_OFF_LVT_LINT0);
2784 ASMAtomicOrU32((volatile uint32_t *)&pXApicPage->lvt_lint0.all.u32LvtLint0, XAPIC_LVT_REMOTE_IRR);
2785 fSendIntr = true;
2786 }
2787 else
2788 fSendIntr = false;
2789 }
2790
2791 if (fSendIntr)
2792 {
2793 VMCPUSET DestCpuSet;
2794 VMCPUSET_EMPTY(&DestCpuSet);
2795 VMCPUSET_ADD(&DestCpuSet, pVCpu->idCpu);
2796 rcStrict = apicSendIntr(pVCpu->CTX_SUFF(pVM), pVCpu, uVector, enmTriggerMode, enmDeliveryMode,
2797 &DestCpuSet, NULL /* pfIntrAccepted */, 0 /* uSrcTag */, rcRZ);
2798 }
2799 break;
2800 }
2801
2802 case XAPICDELIVERYMODE_SMI:
2803 case XAPICDELIVERYMODE_NMI:
2804 {
2805 VMCPUSET DestCpuSet;
2806 VMCPUSET_EMPTY(&DestCpuSet);
2807 VMCPUSET_ADD(&DestCpuSet, pVCpu->idCpu);
2808 uint8_t const uVector = XAPIC_LVT_GET_VECTOR(uLvt);
2809 rcStrict = apicSendIntr(pVCpu->CTX_SUFF(pVM), pVCpu, uVector, enmTriggerMode, enmDeliveryMode, &DestCpuSet,
2810 NULL /* pfIntrAccepted */, 0 /* uSrcTag */, rcRZ);
2811 break;
2812 }
2813
2814 case XAPICDELIVERYMODE_EXTINT:
2815 {
2816 Log2(("APIC%u: apicLocalInterrupt: %s ExtINT through LINT%u\n", pVCpu->idCpu,
2817 u8Level ? "Raising" : "Lowering", u8Pin));
2818 if (u8Level)
2819 apicSetInterruptFF(pVCpu, PDMAPICIRQ_EXTINT);
2820 else
2821 apicClearInterruptFF(pVCpu, PDMAPICIRQ_EXTINT);
2822 break;
2823 }
2824
2825 /* Reserved/unknown delivery modes: */
2826 case XAPICDELIVERYMODE_LOWEST_PRIO:
2827 case XAPICDELIVERYMODE_STARTUP:
2828 default:
2829 {
2830 AssertMsgFailed(("APIC%u: LocalInterrupt: Invalid delivery mode %#x (%s) on LINT%d\n", pVCpu->idCpu,
2831 enmDeliveryMode, apicGetDeliveryModeName(enmDeliveryMode), u8Pin));
2832 rcStrict = VERR_INTERNAL_ERROR_3;
2833 break;
2834 }
2835 }
2836 }
2837 }
2838 else
2839 {
2840 /* The APIC is hardware disabled. The CPU behaves as though there is no on-chip APIC. */
2841 if (u8Pin == 0)
2842 {
2843 /* LINT0 behaves as an external interrupt pin. */
2844 Log2(("APIC%u: apicLocalInterrupt: APIC hardware-disabled, %s INTR\n", pVCpu->idCpu,
2845 u8Level ? "raising" : "lowering"));
2846 if (u8Level)
2847 apicSetInterruptFF(pVCpu, PDMAPICIRQ_EXTINT);
2848 else
2849 apicClearInterruptFF(pVCpu, PDMAPICIRQ_EXTINT);
2850 }
2851 else
2852 {
2853 /* LINT1 behaves as NMI. */
2854 Log2(("APIC%u: apicLocalInterrupt: APIC hardware-disabled, raising NMI\n", pVCpu->idCpu));
2855 apicSetInterruptFF(pVCpu, PDMAPICIRQ_NMI);
2856 }
2857 }
2858
2859 return rcStrict;
2860}
2861
2862
2863/**
2864 * Gets the next highest-priority interrupt from the APIC, marking it as an
2865 * "in-service" interrupt.
2866 *
2867 * @returns VBox status code.
2868 * @param pVCpu The cross context virtual CPU structure.
2869 * @param pu8Vector Where to store the vector.
2870 * @param puSrcTag Where to store the interrupt source tag (debugging).
2871 */
2872VMM_INT_DECL(int) APICGetInterrupt(PVMCPUCC pVCpu, uint8_t *pu8Vector, uint32_t *puSrcTag)
2873{
2874 VMCPU_ASSERT_EMT(pVCpu);
2875 Assert(pu8Vector);
2876
2877 LogFlow(("APIC%u: apicGetInterrupt:\n", pVCpu->idCpu));
2878
2879 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
2880 bool const fApicHwEnabled = APICIsEnabled(pVCpu);
2881 if ( fApicHwEnabled
2882 && pXApicPage->svr.u.fApicSoftwareEnable)
2883 {
2884 int const irrv = apicGetHighestSetBitInReg(&pXApicPage->irr, -1);
2885 if (RT_LIKELY(irrv >= 0))
2886 {
2887 Assert(irrv <= (int)UINT8_MAX);
2888 uint8_t const uVector = irrv;
2889
2890 /*
2891 * This can happen if the APIC receives an interrupt when the CPU has interrupts
2892 * disabled but the TPR is raised by the guest before re-enabling interrupts.
2893 */
2894 uint8_t const uTpr = pXApicPage->tpr.u8Tpr;
2895 if ( uTpr > 0
2896 && XAPIC_TPR_GET_TP(uVector) <= XAPIC_TPR_GET_TP(uTpr))
2897 {
2898 Log2(("APIC%u: apicGetInterrupt: Interrupt masked. uVector=%#x uTpr=%#x SpuriousVector=%#x\n", pVCpu->idCpu,
2899 uVector, uTpr, pXApicPage->svr.u.u8SpuriousVector));
2900 *pu8Vector = uVector;
2901 *puSrcTag = 0;
2902 STAM_COUNTER_INC(&pVCpu->apic.s.StatMaskedByTpr);
2903 return VERR_APIC_INTR_MASKED_BY_TPR;
2904 }
2905
2906 /*
2907 * The PPR should be up-to-date at this point through apicSetEoi().
2908 * We're on EMT so no parallel updates possible.
2909 * Subject the pending vector to PPR prioritization.
2910 */
2911 uint8_t const uPpr = pXApicPage->ppr.u8Ppr;
2912 if ( !uPpr
2913 || XAPIC_PPR_GET_PP(uVector) > XAPIC_PPR_GET_PP(uPpr))
2914 {
2915 apicClearVectorInReg(&pXApicPage->irr, uVector);
2916 apicSetVectorInReg(&pXApicPage->isr, uVector);
2917 apicUpdatePpr(pVCpu);
2918 apicSignalNextPendingIntr(pVCpu);
2919
2920 /* Retrieve the interrupt source tag associated with this interrupt. */
2921 PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
2922 AssertCompile(RT_ELEMENTS(pApicCpu->auSrcTags) > UINT8_MAX);
2923 *puSrcTag = pApicCpu->auSrcTags[uVector];
2924 pApicCpu->auSrcTags[uVector] = 0;
2925
2926 Log2(("APIC%u: apicGetInterrupt: Valid Interrupt. uVector=%#x\n", pVCpu->idCpu, uVector));
2927 *pu8Vector = uVector;
2928 return VINF_SUCCESS;
2929 }
2930 else
2931 {
2932 STAM_COUNTER_INC(&pVCpu->apic.s.StatMaskedByPpr);
2933 Log2(("APIC%u: apicGetInterrupt: Interrupt's priority is not higher than the PPR. uVector=%#x PPR=%#x\n",
2934 pVCpu->idCpu, uVector, uPpr));
2935 }
2936 }
2937 else
2938 Log2(("APIC%u: apicGetInterrupt: No pending bits in IRR\n", pVCpu->idCpu));
2939 }
2940 else
2941 Log2(("APIC%u: apicGetInterrupt: APIC %s disabled\n", pVCpu->idCpu, !fApicHwEnabled ? "hardware" : "software"));
2942
2943 *pu8Vector = 0;
2944 *puSrcTag = 0;
2945 return VERR_APIC_INTR_NOT_PENDING;
2946}
2947
2948
2949/**
2950 * @callback_method_impl{FNIOMMMIONEWREAD}
2951 */
2952DECLCALLBACK(VBOXSTRICTRC) apicReadMmio(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS off, void *pv, unsigned cb)
2953{
2954 NOREF(pvUser);
2955 Assert(!(off & 0xf));
2956 Assert(cb == 4); RT_NOREF_PV(cb);
2957
2958 PVMCPUCC pVCpu = PDMDevHlpGetVMCPU(pDevIns);
2959 uint16_t offReg = off & 0xff0;
2960 uint32_t uValue = 0;
2961
2962 STAM_COUNTER_INC(&pVCpu->apic.s.CTX_SUFF_Z(StatMmioRead));
2963
2964 VBOXSTRICTRC rc = VBOXSTRICTRC_VAL(apicReadRegister(pDevIns, pVCpu, offReg, &uValue));
2965 *(uint32_t *)pv = uValue;
2966
2967 Log2(("APIC%u: apicReadMmio: offReg=%#RX16 uValue=%#RX32\n", pVCpu->idCpu, offReg, uValue));
2968 return rc;
2969}
2970
2971
2972/**
2973 * @callback_method_impl{FNIOMMMIONEWWRITE}
2974 */
2975DECLCALLBACK(VBOXSTRICTRC) apicWriteMmio(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS off, void const *pv, unsigned cb)
2976{
2977 NOREF(pvUser);
2978 Assert(!(off & 0xf));
2979 Assert(cb == 4); RT_NOREF_PV(cb);
2980
2981 PVMCPUCC pVCpu = PDMDevHlpGetVMCPU(pDevIns);
2982 uint16_t offReg = off & 0xff0;
2983 uint32_t uValue = *(uint32_t *)pv;
2984
2985 STAM_COUNTER_INC(&pVCpu->apic.s.CTX_SUFF_Z(StatMmioWrite));
2986
2987 Log2(("APIC%u: apicWriteMmio: offReg=%#RX16 uValue=%#RX32\n", pVCpu->idCpu, offReg, uValue));
2988
2989 return apicWriteRegister(pDevIns, pVCpu, offReg, uValue);
2990}
2991
2992
2993/**
2994 * Sets the interrupt pending force-flag and pokes the EMT if required.
2995 *
2996 * @param pVCpu The cross context virtual CPU structure.
2997 * @param enmType The IRQ type.
2998 */
2999static void apicSetInterruptFF(PVMCPUCC pVCpu, PDMAPICIRQ enmType)
3000{
3001#ifdef IN_RING3
3002 /* IRQ state should be loaded as-is by "LoadExec". Changes can be made from LoadDone. */
3003 Assert(pVCpu->pVMR3->enmVMState != VMSTATE_LOADING || PDMR3HasLoadedState(pVCpu->pVMR3));
3004#endif
3005
3006 switch (enmType)
3007 {
3008 case PDMAPICIRQ_HARDWARE:
3009 VMCPU_ASSERT_EMT_OR_NOT_RUNNING(pVCpu);
3010 VMCPU_FF_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC);
3011 break;
3012 case PDMAPICIRQ_UPDATE_PENDING: VMCPU_FF_SET(pVCpu, VMCPU_FF_UPDATE_APIC); break;
3013 case PDMAPICIRQ_NMI: VMCPU_FF_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI); break;
3014 case PDMAPICIRQ_SMI: VMCPU_FF_SET(pVCpu, VMCPU_FF_INTERRUPT_SMI); break;
3015 case PDMAPICIRQ_EXTINT: VMCPU_FF_SET(pVCpu, VMCPU_FF_INTERRUPT_PIC); break;
3016 default:
3017 AssertMsgFailed(("enmType=%d\n", enmType));
3018 break;
3019 }
3020
3021 /*
3022 * We need to wake up the target CPU if we're not on EMT.
3023 */
3024#if defined(IN_RING0)
3025 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3026 VMCPUID idCpu = pVCpu->idCpu;
3027 if ( enmType != PDMAPICIRQ_HARDWARE
3028 && VMMGetCpuId(pVM) != idCpu)
3029 {
3030 switch (VMCPU_GET_STATE(pVCpu))
3031 {
3032 case VMCPUSTATE_STARTED_EXEC:
3033 GVMMR0SchedPokeNoGVMNoLock(pVM, idCpu);
3034 break;
3035
3036 case VMCPUSTATE_STARTED_HALTED:
3037 GVMMR0SchedWakeUpNoGVMNoLock(pVM, idCpu);
3038 break;
3039
3040 default:
3041 break; /* nothing to do in other states. */
3042 }
3043 }
3044#elif defined(IN_RING3)
3045 if (enmType != PDMAPICIRQ_HARDWARE)
3046 VMR3NotifyCpuFFU(pVCpu->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM | VMNOTIFYFF_FLAGS_POKE);
3047#endif
3048}
3049
3050
3051/**
3052 * Clears the interrupt pending force-flag.
3053 *
3054 * @param pVCpu The cross context virtual CPU structure.
3055 * @param enmType The IRQ type.
3056 */
3057void apicClearInterruptFF(PVMCPUCC pVCpu, PDMAPICIRQ enmType)
3058{
3059#ifdef IN_RING3
3060 /* IRQ state should be loaded as-is by "LoadExec". Changes can be made from LoadDone. */
3061 Assert(pVCpu->pVMR3->enmVMState != VMSTATE_LOADING || PDMR3HasLoadedState(pVCpu->pVMR3));
3062#endif
3063
3064 /* NMI/SMI can't be cleared. */
3065 switch (enmType)
3066 {
3067 case PDMAPICIRQ_HARDWARE: VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_APIC); break;
3068 case PDMAPICIRQ_EXTINT: VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_PIC); break;
3069 default:
3070 AssertMsgFailed(("enmType=%d\n", enmType));
3071 break;
3072 }
3073}
3074
3075
3076/**
3077 * Posts an interrupt to a target APIC.
3078 *
3079 * This function handles interrupts received from the system bus or
3080 * interrupts generated locally from the LVT or via a self IPI.
3081 *
3082 * Don't use this function to try and deliver ExtINT style interrupts.
3083 *
3084 * @returns true if the interrupt was accepted, false otherwise.
3085 * @param pVCpu The cross context virtual CPU structure.
3086 * @param uVector The vector of the interrupt to be posted.
3087 * @param enmTriggerMode The trigger mode of the interrupt.
3088 * @param uSrcTag The interrupt source tag (debugging).
3089 *
3090 * @thread Any.
3091 */
3092bool apicPostInterrupt(PVMCPUCC pVCpu, uint8_t uVector, XAPICTRIGGERMODE enmTriggerMode, uint32_t uSrcTag)
3093{
3094 Assert(pVCpu);
3095 Assert(uVector > XAPIC_ILLEGAL_VECTOR_END);
3096
3097 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3098 PCAPIC pApic = VM_TO_APIC(pVM);
3099 PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
3100 bool fAccepted = true;
3101
3102 STAM_PROFILE_START(&pApicCpu->StatPostIntr, a);
3103 STAM_REL_COUNTER_INC(&pApicCpu->StatPostIntrCnt);
3104 STAM_REL_COUNTER_INC(&pApicCpu->aStatVectors[uVector]);
3105
3106 /*
3107 * Only post valid interrupt vectors.
3108 * See Intel spec. 10.5.2 "Valid Interrupt Vectors".
3109 */
3110 if (RT_LIKELY(uVector > XAPIC_ILLEGAL_VECTOR_END))
3111 {
3112 /*
3113 * If the interrupt is already pending in the IRR we can skip the
3114 * potential expensive operation of poking the guest EMT out of execution.
3115 */
3116 PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpu);
3117 if (!apicTestVectorInReg(&pXApicPage->irr, uVector)) /* PAV */
3118 {
3119 /* Update the interrupt source tag (debugging). */
3120 if (!pApicCpu->auSrcTags[uVector])
3121 pApicCpu->auSrcTags[uVector] = uSrcTag;
3122 else
3123 pApicCpu->auSrcTags[uVector] |= RT_BIT_32(31);
3124
3125 Log2(("APIC: apicPostInterrupt: SrcCpu=%u TargetCpu=%u uVector=%#x\n", VMMGetCpuId(pVM), pVCpu->idCpu, uVector));
3126 if (enmTriggerMode == XAPICTRIGGERMODE_EDGE)
3127 {
3128 if (pApic->fPostedIntrsEnabled)
3129 { /** @todo posted-interrupt call to hardware */ }
3130 else
3131 {
3132 apicSetVectorInPib(pApicCpu->CTX_SUFF(pvApicPib), uVector);
3133 uint32_t const fAlreadySet = apicSetNotificationBitInPib((PAPICPIB)pApicCpu->CTX_SUFF(pvApicPib));
3134 if (!fAlreadySet)
3135 {
3136 Log2(("APIC: apicPostInterrupt: Setting UPDATE_APIC FF for edge-triggered intr. uVector=%#x\n", uVector));
3137 apicSetInterruptFF(pVCpu, PDMAPICIRQ_UPDATE_PENDING);
3138 }
3139 }
3140 }
3141 else
3142 {
3143 /*
3144 * Level-triggered interrupts requires updating of the TMR and thus cannot be
3145 * delivered asynchronously.
3146 */
3147 apicSetVectorInPib(&pApicCpu->ApicPibLevel, uVector);
3148 uint32_t const fAlreadySet = apicSetNotificationBitInPib(&pApicCpu->ApicPibLevel);
3149 if (!fAlreadySet)
3150 {
3151 Log2(("APIC: apicPostInterrupt: Setting UPDATE_APIC FF for level-triggered intr. uVector=%#x\n", uVector));
3152 apicSetInterruptFF(pVCpu, PDMAPICIRQ_UPDATE_PENDING);
3153 }
3154 }
3155 }
3156 else
3157 {
3158 Log2(("APIC: apicPostInterrupt: SrcCpu=%u TargetCpu=%u. Vector %#x Already in IRR, skipping\n", VMMGetCpuId(pVM),
3159 pVCpu->idCpu, uVector));
3160 STAM_COUNTER_INC(&pApicCpu->StatPostIntrAlreadyPending);
3161 }
3162 }
3163 else
3164 {
3165 fAccepted = false;
3166 apicSetError(pVCpu, XAPIC_ESR_RECV_ILLEGAL_VECTOR);
3167 }
3168
3169 STAM_PROFILE_STOP(&pApicCpu->StatPostIntr, a);
3170 return fAccepted;
3171}
3172
3173
3174/**
3175 * Starts the APIC timer.
3176 *
3177 * @param pVCpu The cross context virtual CPU structure.
3178 * @param uInitialCount The timer's Initial-Count Register (ICR), must be >
3179 * 0.
3180 * @thread Any.
3181 */
3182void apicStartTimer(PVMCPUCC pVCpu, uint32_t uInitialCount)
3183{
3184 Assert(pVCpu);
3185 PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
3186 PPDMDEVINS pDevIns = VMCPU_TO_DEVINS(pVCpu);
3187 Assert(PDMDevHlpTimerIsLockOwner(pDevIns, pApicCpu->hTimer));
3188 Assert(uInitialCount > 0);
3189
3190 PCXAPICPAGE pXApicPage = APICCPU_TO_CXAPICPAGE(pApicCpu);
3191 uint8_t const uTimerShift = apicGetTimerShift(pXApicPage);
3192 uint64_t const cTicksToNext = (uint64_t)uInitialCount << uTimerShift;
3193
3194 Log2(("APIC%u: apicStartTimer: uInitialCount=%#RX32 uTimerShift=%u cTicksToNext=%RU64\n", pVCpu->idCpu, uInitialCount,
3195 uTimerShift, cTicksToNext));
3196
3197 /*
3198 * The assumption here is that the timer doesn't tick during this call
3199 * and thus setting a relative time to fire next is accurate. The advantage
3200 * however is updating u64TimerInitial 'atomically' while setting the next
3201 * tick.
3202 */
3203 PDMDevHlpTimerSetRelative(pDevIns, pApicCpu->hTimer, cTicksToNext, &pApicCpu->u64TimerInitial);
3204 apicHintTimerFreq(pDevIns, pApicCpu, uInitialCount, uTimerShift);
3205}
3206
3207
3208/**
3209 * Stops the APIC timer.
3210 *
3211 * @param pVCpu The cross context virtual CPU structure.
3212 * @thread Any.
3213 */
3214static void apicStopTimer(PVMCPUCC pVCpu)
3215{
3216 Assert(pVCpu);
3217 PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
3218 PPDMDEVINS pDevIns = VMCPU_TO_DEVINS(pVCpu);
3219 Assert(PDMDevHlpTimerIsLockOwner(pDevIns, pApicCpu->hTimer));
3220
3221 Log2(("APIC%u: apicStopTimer\n", pVCpu->idCpu));
3222
3223 PDMDevHlpTimerStop(pDevIns, pApicCpu->hTimer); /* This will reset the hint, no need to explicitly call TMTimerSetFrequencyHint(). */
3224 pApicCpu->uHintedTimerInitialCount = 0;
3225 pApicCpu->uHintedTimerShift = 0;
3226}
3227
3228
3229/**
3230 * Queues a pending interrupt as in-service.
3231 *
3232 * This function should only be needed without virtualized APIC
3233 * registers. With virtualized APIC registers, it's sufficient to keep
3234 * the interrupts pending in the IRR as the hardware takes care of
3235 * virtual interrupt delivery.
3236 *
3237 * @returns true if the interrupt was queued to in-service interrupts,
3238 * false otherwise.
3239 * @param pVCpu The cross context virtual CPU structure.
3240 * @param u8PendingIntr The pending interrupt to queue as
3241 * in-service.
3242 *
3243 * @remarks This assumes the caller has done the necessary checks and
3244 * is ready to take actually service the interrupt (TPR,
3245 * interrupt shadow etc.)
3246 */
3247VMM_INT_DECL(bool) APICQueueInterruptToService(PVMCPUCC pVCpu, uint8_t u8PendingIntr)
3248{
3249 VMCPU_ASSERT_EMT(pVCpu);
3250
3251 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3252 PAPIC pApic = VM_TO_APIC(pVM);
3253 Assert(!pApic->fVirtApicRegsEnabled);
3254 NOREF(pApic);
3255
3256 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
3257 bool const fIsPending = apicTestVectorInReg(&pXApicPage->irr, u8PendingIntr);
3258 if (fIsPending)
3259 {
3260 apicClearVectorInReg(&pXApicPage->irr, u8PendingIntr);
3261 apicSetVectorInReg(&pXApicPage->isr, u8PendingIntr);
3262 apicUpdatePpr(pVCpu);
3263 return true;
3264 }
3265 return false;
3266}
3267
3268
3269/**
3270 * De-queues a pending interrupt from in-service.
3271 *
3272 * This undoes APICQueueInterruptToService() for premature VM-exits before event
3273 * injection.
3274 *
3275 * @param pVCpu The cross context virtual CPU structure.
3276 * @param u8PendingIntr The pending interrupt to de-queue from
3277 * in-service.
3278 */
3279VMM_INT_DECL(void) APICDequeueInterruptFromService(PVMCPUCC pVCpu, uint8_t u8PendingIntr)
3280{
3281 VMCPU_ASSERT_EMT(pVCpu);
3282
3283 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
3284 PAPIC pApic = VM_TO_APIC(pVM);
3285 Assert(!pApic->fVirtApicRegsEnabled);
3286 NOREF(pApic);
3287
3288 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
3289 bool const fInService = apicTestVectorInReg(&pXApicPage->isr, u8PendingIntr);
3290 if (fInService)
3291 {
3292 apicClearVectorInReg(&pXApicPage->isr, u8PendingIntr);
3293 apicSetVectorInReg(&pXApicPage->irr, u8PendingIntr);
3294 apicUpdatePpr(pVCpu);
3295 }
3296}
3297
3298
3299/**
3300 * Updates pending interrupts from the pending-interrupt bitmaps to the IRR.
3301 *
3302 * @param pVCpu The cross context virtual CPU structure.
3303 *
3304 * @note NEM/win is ASSUMING the an up to date TPR is not required here.
3305 */
3306VMMDECL(void) APICUpdatePendingInterrupts(PVMCPUCC pVCpu)
3307{
3308 VMCPU_ASSERT_EMT_OR_NOT_RUNNING(pVCpu);
3309
3310 PAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
3311 PXAPICPAGE pXApicPage = VMCPU_TO_XAPICPAGE(pVCpu);
3312 bool fHasPendingIntrs = false;
3313
3314 Log3(("APIC%u: APICUpdatePendingInterrupts:\n", pVCpu->idCpu));
3315 STAM_PROFILE_START(&pApicCpu->StatUpdatePendingIntrs, a);
3316
3317 /* Update edge-triggered pending interrupts. */
3318 PAPICPIB pPib = (PAPICPIB)pApicCpu->CTX_SUFF(pvApicPib);
3319 for (;;)
3320 {
3321 uint32_t const fAlreadySet = apicClearNotificationBitInPib((PAPICPIB)pApicCpu->CTX_SUFF(pvApicPib));
3322 if (!fAlreadySet)
3323 break;
3324
3325 AssertCompile(RT_ELEMENTS(pXApicPage->irr.u) == 2 * RT_ELEMENTS(pPib->au64VectorBitmap));
3326 for (size_t idxPib = 0, idxReg = 0; idxPib < RT_ELEMENTS(pPib->au64VectorBitmap); idxPib++, idxReg += 2)
3327 {
3328 uint64_t const u64Fragment = ASMAtomicXchgU64(&pPib->au64VectorBitmap[idxPib], 0);
3329 if (u64Fragment)
3330 {
3331 uint32_t const u32FragmentLo = RT_LO_U32(u64Fragment);
3332 uint32_t const u32FragmentHi = RT_HI_U32(u64Fragment);
3333
3334 pXApicPage->irr.u[idxReg].u32Reg |= u32FragmentLo;
3335 pXApicPage->irr.u[idxReg + 1].u32Reg |= u32FragmentHi;
3336
3337 pXApicPage->tmr.u[idxReg].u32Reg &= ~u32FragmentLo;
3338 pXApicPage->tmr.u[idxReg + 1].u32Reg &= ~u32FragmentHi;
3339 fHasPendingIntrs = true;
3340 }
3341 }
3342 }
3343
3344 /* Update level-triggered pending interrupts. */
3345 pPib = (PAPICPIB)&pApicCpu->ApicPibLevel;
3346 for (;;)
3347 {
3348 uint32_t const fAlreadySet = apicClearNotificationBitInPib((PAPICPIB)&pApicCpu->ApicPibLevel);
3349 if (!fAlreadySet)
3350 break;
3351
3352 AssertCompile(RT_ELEMENTS(pXApicPage->irr.u) == 2 * RT_ELEMENTS(pPib->au64VectorBitmap));
3353 for (size_t idxPib = 0, idxReg = 0; idxPib < RT_ELEMENTS(pPib->au64VectorBitmap); idxPib++, idxReg += 2)
3354 {
3355 uint64_t const u64Fragment = ASMAtomicXchgU64(&pPib->au64VectorBitmap[idxPib], 0);
3356 if (u64Fragment)
3357 {
3358 uint32_t const u32FragmentLo = RT_LO_U32(u64Fragment);
3359 uint32_t const u32FragmentHi = RT_HI_U32(u64Fragment);
3360
3361 pXApicPage->irr.u[idxReg].u32Reg |= u32FragmentLo;
3362 pXApicPage->irr.u[idxReg + 1].u32Reg |= u32FragmentHi;
3363
3364 pXApicPage->tmr.u[idxReg].u32Reg |= u32FragmentLo;
3365 pXApicPage->tmr.u[idxReg + 1].u32Reg |= u32FragmentHi;
3366 fHasPendingIntrs = true;
3367 }
3368 }
3369 }
3370
3371 STAM_PROFILE_STOP(&pApicCpu->StatUpdatePendingIntrs, a);
3372 Log3(("APIC%u: APICUpdatePendingInterrupts: fHasPendingIntrs=%RTbool\n", pVCpu->idCpu, fHasPendingIntrs));
3373
3374 if ( fHasPendingIntrs
3375 && !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC))
3376 apicSignalNextPendingIntr(pVCpu);
3377}
3378
3379
3380/**
3381 * Gets the highest priority pending interrupt.
3382 *
3383 * @returns true if any interrupt is pending, false otherwise.
3384 * @param pVCpu The cross context virtual CPU structure.
3385 * @param pu8PendingIntr Where to store the interrupt vector if the
3386 * interrupt is pending.
3387 */
3388VMM_INT_DECL(bool) APICGetHighestPendingInterrupt(PVMCPUCC pVCpu, uint8_t *pu8PendingIntr)
3389{
3390 VMCPU_ASSERT_EMT(pVCpu);
3391 return apicGetHighestPendingInterrupt(pVCpu, pu8PendingIntr);
3392}
3393
3394
3395/**
3396 * Posts an interrupt to a target APIC, Hyper-V interface.
3397 *
3398 * @returns true if the interrupt was accepted, false otherwise.
3399 * @param pVCpu The cross context virtual CPU structure.
3400 * @param uVector The vector of the interrupt to be posted.
3401 * @param fAutoEoi Whether this interrupt has automatic EOI
3402 * treatment.
3403 * @param enmTriggerMode The trigger mode of the interrupt.
3404 *
3405 * @thread Any.
3406 */
3407VMM_INT_DECL(void) APICHvSendInterrupt(PVMCPUCC pVCpu, uint8_t uVector, bool fAutoEoi, XAPICTRIGGERMODE enmTriggerMode)
3408{
3409 Assert(pVCpu);
3410 Assert(!fAutoEoi); /** @todo AutoEOI. */
3411 RT_NOREF(fAutoEoi);
3412 apicPostInterrupt(pVCpu, uVector, enmTriggerMode, 0 /* uSrcTag */);
3413}
3414
3415
3416/**
3417 * Sets the Task Priority Register (TPR), Hyper-V interface.
3418 *
3419 * @returns Strict VBox status code.
3420 * @param pVCpu The cross context virtual CPU structure.
3421 * @param uTpr The TPR value to set.
3422 *
3423 * @remarks Validates like in x2APIC mode.
3424 */
3425VMM_INT_DECL(VBOXSTRICTRC) APICHvSetTpr(PVMCPUCC pVCpu, uint8_t uTpr)
3426{
3427 Assert(pVCpu);
3428 VMCPU_ASSERT_EMT(pVCpu);
3429 return apicSetTprEx(pVCpu, uTpr, true /* fForceX2ApicBehaviour */);
3430}
3431
3432
3433/**
3434 * Gets the Task Priority Register (TPR), Hyper-V interface.
3435 *
3436 * @returns The TPR value.
3437 * @param pVCpu The cross context virtual CPU structure.
3438 */
3439VMM_INT_DECL(uint8_t) APICHvGetTpr(PVMCPUCC pVCpu)
3440{
3441 Assert(pVCpu);
3442 VMCPU_ASSERT_EMT(pVCpu);
3443
3444 /*
3445 * The APIC could be operating in xAPIC mode and thus we should not use the apicReadMsr()
3446 * interface which validates the APIC mode and will throw a #GP(0) if not in x2APIC mode.
3447 * We could use the apicReadRegister() MMIO interface, but why bother getting the PDMDEVINS
3448 * pointer, so just directly read the APIC page.
3449 */
3450 PCXAPICPAGE pXApicPage = VMCPU_TO_CXAPICPAGE(pVCpu);
3451 return apicReadRaw32(pXApicPage, XAPIC_OFF_TPR);
3452}
3453
3454
3455/**
3456 * Sets the Interrupt Command Register (ICR), Hyper-V interface.
3457 *
3458 * @returns Strict VBox status code.
3459 * @param pVCpu The cross context virtual CPU structure.
3460 * @param uIcr The ICR value to set.
3461 */
3462VMM_INT_DECL(VBOXSTRICTRC) APICHvSetIcr(PVMCPUCC pVCpu, uint64_t uIcr)
3463{
3464 Assert(pVCpu);
3465 VMCPU_ASSERT_EMT(pVCpu);
3466 return apicSetIcr(pVCpu, uIcr, VINF_CPUM_R3_MSR_WRITE);
3467}
3468
3469
3470/**
3471 * Gets the Interrupt Command Register (ICR), Hyper-V interface.
3472 *
3473 * @returns The ICR value.
3474 * @param pVCpu The cross context virtual CPU structure.
3475 */
3476VMM_INT_DECL(uint64_t) APICHvGetIcr(PVMCPUCC pVCpu)
3477{
3478 Assert(pVCpu);
3479 VMCPU_ASSERT_EMT(pVCpu);
3480 return apicGetIcrNoCheck(pVCpu);
3481}
3482
3483
3484/**
3485 * Sets the End-Of-Interrupt (EOI) register, Hyper-V interface.
3486 *
3487 * @returns Strict VBox status code.
3488 * @param pVCpu The cross context virtual CPU structure.
3489 * @param uEoi The EOI value.
3490 */
3491VMM_INT_DECL(VBOXSTRICTRC) APICHvSetEoi(PVMCPUCC pVCpu, uint32_t uEoi)
3492{
3493 Assert(pVCpu);
3494 VMCPU_ASSERT_EMT_OR_NOT_RUNNING(pVCpu);
3495 return apicSetEoi(pVCpu, uEoi, VINF_CPUM_R3_MSR_WRITE, true /* fForceX2ApicBehaviour */);
3496}
3497
3498
3499/**
3500 * Gets the APIC page pointers for the specified VCPU.
3501 *
3502 * @returns VBox status code.
3503 * @param pVCpu The cross context virtual CPU structure.
3504 * @param pHCPhys Where to store the host-context physical address.
3505 * @param pR0Ptr Where to store the ring-0 address.
3506 * @param pR3Ptr Where to store the ring-3 address (optional).
3507 */
3508VMM_INT_DECL(int) APICGetApicPageForCpu(PCVMCPUCC pVCpu, PRTHCPHYS pHCPhys, PRTR0PTR pR0Ptr, PRTR3PTR pR3Ptr)
3509{
3510 AssertReturn(pVCpu, VERR_INVALID_PARAMETER);
3511 AssertReturn(pHCPhys, VERR_INVALID_PARAMETER);
3512 AssertReturn(pR0Ptr, VERR_INVALID_PARAMETER);
3513
3514 Assert(PDMHasApic(pVCpu->CTX_SUFF(pVM)));
3515
3516 PCAPICCPU pApicCpu = VMCPU_TO_APICCPU(pVCpu);
3517 *pHCPhys = pApicCpu->HCPhysApicPage;
3518 *pR0Ptr = pApicCpu->pvApicPageR0;
3519 if (pR3Ptr)
3520 *pR3Ptr = pApicCpu->pvApicPageR3;
3521 return VINF_SUCCESS;
3522}
3523
3524#ifndef IN_RING3
3525
3526/**
3527 * @callback_method_impl{PDMDEVREGR0,pfnConstruct}
3528 */
3529static DECLCALLBACK(int) apicRZConstruct(PPDMDEVINS pDevIns)
3530{
3531 PDMDEV_CHECK_VERSIONS_RETURN(pDevIns);
3532 PAPICDEV pThis = PDMDEVINS_2_DATA(pDevIns, PAPICDEV);
3533 PVMCC pVM = PDMDevHlpGetVM(pDevIns);
3534
3535 pVM->apicr0.s.pDevInsR0 = pDevIns;
3536
3537 int rc = PDMDevHlpSetDeviceCritSect(pDevIns, PDMDevHlpCritSectGetNop(pDevIns));
3538 AssertRCReturn(rc, rc);
3539
3540 rc = PDMDevHlpApicSetUpContext(pDevIns);
3541 AssertRCReturn(rc, rc);
3542
3543 rc = PDMDevHlpMmioSetUpContext(pDevIns, pThis->hMmio, apicWriteMmio, apicReadMmio, NULL /*pvUser*/);
3544 AssertRCReturn(rc, rc);
3545
3546 return VINF_SUCCESS;
3547}
3548#endif /* !IN_RING3 */
3549
3550/**
3551 * APIC device registration structure.
3552 */
3553const PDMDEVREG g_DeviceAPIC =
3554{
3555 /* .u32Version = */ PDM_DEVREG_VERSION,
3556 /* .uReserved0 = */ 0,
3557 /* .szName = */ "apic",
3558 /* .fFlags = */ PDM_DEVREG_FLAGS_DEFAULT_BITS | PDM_DEVREG_FLAGS_RZ | PDM_DEVREG_FLAGS_NEW_STYLE
3559 | PDM_DEVREG_FLAGS_REQUIRE_R0 | PDM_DEVREG_FLAGS_REQUIRE_RC,
3560 /* .fClass = */ PDM_DEVREG_CLASS_PIC,
3561 /* .cMaxInstances = */ 1,
3562 /* .uSharedVersion = */ 42,
3563 /* .cbInstanceShared = */ sizeof(APICDEV),
3564 /* .cbInstanceCC = */ 0,
3565 /* .cbInstanceRC = */ 0,
3566 /* .cMaxPciDevices = */ 0,
3567 /* .cMaxMsixVectors = */ 0,
3568 /* .pszDescription = */ "Advanced Programmable Interrupt Controller",
3569#if defined(IN_RING3)
3570 /* .szRCMod = */ "VMMRC.rc",
3571 /* .szR0Mod = */ "VMMR0.r0",
3572 /* .pfnConstruct = */ apicR3Construct,
3573 /* .pfnDestruct = */ apicR3Destruct,
3574 /* .pfnRelocate = */ apicR3Relocate,
3575 /* .pfnMemSetup = */ NULL,
3576 /* .pfnPowerOn = */ NULL,
3577 /* .pfnReset = */ apicR3Reset,
3578 /* .pfnSuspend = */ NULL,
3579 /* .pfnResume = */ NULL,
3580 /* .pfnAttach = */ NULL,
3581 /* .pfnDetach = */ NULL,
3582 /* .pfnQueryInterface = */ NULL,
3583 /* .pfnInitComplete = */ apicR3InitComplete,
3584 /* .pfnPowerOff = */ NULL,
3585 /* .pfnSoftReset = */ NULL,
3586 /* .pfnReserved0 = */ NULL,
3587 /* .pfnReserved1 = */ NULL,
3588 /* .pfnReserved2 = */ NULL,
3589 /* .pfnReserved3 = */ NULL,
3590 /* .pfnReserved4 = */ NULL,
3591 /* .pfnReserved5 = */ NULL,
3592 /* .pfnReserved6 = */ NULL,
3593 /* .pfnReserved7 = */ NULL,
3594#elif defined(IN_RING0)
3595 /* .pfnEarlyConstruct = */ NULL,
3596 /* .pfnConstruct = */ apicRZConstruct,
3597 /* .pfnDestruct = */ NULL,
3598 /* .pfnFinalDestruct = */ NULL,
3599 /* .pfnRequest = */ NULL,
3600 /* .pfnReserved0 = */ NULL,
3601 /* .pfnReserved1 = */ NULL,
3602 /* .pfnReserved2 = */ NULL,
3603 /* .pfnReserved3 = */ NULL,
3604 /* .pfnReserved4 = */ NULL,
3605 /* .pfnReserved5 = */ NULL,
3606 /* .pfnReserved6 = */ NULL,
3607 /* .pfnReserved7 = */ NULL,
3608#elif defined(IN_RC)
3609 /* .pfnConstruct = */ apicRZConstruct,
3610 /* .pfnReserved0 = */ NULL,
3611 /* .pfnReserved1 = */ NULL,
3612 /* .pfnReserved2 = */ NULL,
3613 /* .pfnReserved3 = */ NULL,
3614 /* .pfnReserved4 = */ NULL,
3615 /* .pfnReserved5 = */ NULL,
3616 /* .pfnReserved6 = */ NULL,
3617 /* .pfnReserved7 = */ NULL,
3618#else
3619# error "Not in IN_RING3, IN_RING0 or IN_RC!"
3620#endif
3621 /* .u32VersionEnd = */ PDM_DEVREG_VERSION
3622};
3623
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette