1 | /* $Id: CPUMAllRegs.cpp 70948 2018-02-10 15:38:12Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * CPUM - CPU Monitor(/Manager) - Getters and Setters.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2006-2017 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.virtualbox.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | /*********************************************************************************************************************************
|
---|
20 | * Header Files *
|
---|
21 | *********************************************************************************************************************************/
|
---|
22 | #define LOG_GROUP LOG_GROUP_CPUM
|
---|
23 | #include <VBox/vmm/cpum.h>
|
---|
24 | #include <VBox/vmm/patm.h>
|
---|
25 | #include <VBox/vmm/dbgf.h>
|
---|
26 | #include <VBox/vmm/apic.h>
|
---|
27 | #include <VBox/vmm/pgm.h>
|
---|
28 | #include <VBox/vmm/mm.h>
|
---|
29 | #include <VBox/vmm/em.h>
|
---|
30 | #if defined(VBOX_WITH_RAW_MODE) && !defined(IN_RING0)
|
---|
31 | # include <VBox/vmm/selm.h>
|
---|
32 | #endif
|
---|
33 | #include "CPUMInternal.h"
|
---|
34 | #include <VBox/vmm/vm.h>
|
---|
35 | #include <VBox/err.h>
|
---|
36 | #include <VBox/dis.h>
|
---|
37 | #include <VBox/log.h>
|
---|
38 | #include <VBox/vmm/hm.h>
|
---|
39 | #include <VBox/vmm/tm.h>
|
---|
40 | #include <iprt/assert.h>
|
---|
41 | #include <iprt/asm.h>
|
---|
42 | #include <iprt/asm-amd64-x86.h>
|
---|
43 | #ifdef IN_RING3
|
---|
44 | #include <iprt/thread.h>
|
---|
45 | #endif
|
---|
46 |
|
---|
47 | /** Disable stack frame pointer generation here. */
|
---|
48 | #if defined(_MSC_VER) && !defined(DEBUG) && defined(RT_ARCH_X86)
|
---|
49 | # pragma optimize("y", off)
|
---|
50 | #endif
|
---|
51 |
|
---|
52 | AssertCompile2MemberOffsets(VM, cpum.s.HostFeatures, cpum.ro.HostFeatures);
|
---|
53 | AssertCompile2MemberOffsets(VM, cpum.s.GuestFeatures, cpum.ro.GuestFeatures);
|
---|
54 |
|
---|
55 |
|
---|
56 | /*********************************************************************************************************************************
|
---|
57 | * Defined Constants And Macros *
|
---|
58 | *********************************************************************************************************************************/
|
---|
59 | /**
|
---|
60 | * Converts a CPUMCPU::Guest pointer into a VMCPU pointer.
|
---|
61 | *
|
---|
62 | * @returns Pointer to the Virtual CPU.
|
---|
63 | * @param a_pGuestCtx Pointer to the guest context.
|
---|
64 | */
|
---|
65 | #define CPUM_GUEST_CTX_TO_VMCPU(a_pGuestCtx) RT_FROM_MEMBER(a_pGuestCtx, VMCPU, cpum.s.Guest)
|
---|
66 |
|
---|
67 | /**
|
---|
68 | * Lazily loads the hidden parts of a selector register when using raw-mode.
|
---|
69 | */
|
---|
70 | #if defined(VBOX_WITH_RAW_MODE) && !defined(IN_RING0)
|
---|
71 | # define CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(a_pVCpu, a_pSReg) \
|
---|
72 | do \
|
---|
73 | { \
|
---|
74 | if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(a_pVCpu, a_pSReg)) \
|
---|
75 | cpumGuestLazyLoadHiddenSelectorReg(a_pVCpu, a_pSReg); \
|
---|
76 | } while (0)
|
---|
77 | #else
|
---|
78 | # define CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(a_pVCpu, a_pSReg) \
|
---|
79 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(a_pVCpu, a_pSReg));
|
---|
80 | #endif
|
---|
81 |
|
---|
82 |
|
---|
83 |
|
---|
84 | #ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
85 |
|
---|
86 | /**
|
---|
87 | * Does the lazy hidden selector register loading.
|
---|
88 | *
|
---|
89 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
90 | * @param pSReg The selector register to lazily load hidden parts of.
|
---|
91 | */
|
---|
92 | static void cpumGuestLazyLoadHiddenSelectorReg(PVMCPU pVCpu, PCPUMSELREG pSReg)
|
---|
93 | {
|
---|
94 | Assert(!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg));
|
---|
95 | Assert(VM_IS_RAW_MODE_ENABLED(pVCpu->CTX_SUFF(pVM)));
|
---|
96 | Assert((uintptr_t)(pSReg - &pVCpu->cpum.s.Guest.es) < X86_SREG_COUNT);
|
---|
97 |
|
---|
98 | if (pVCpu->cpum.s.Guest.eflags.Bits.u1VM)
|
---|
99 | {
|
---|
100 | /* V8086 mode - Tightly controlled environment, no question about the limit or flags. */
|
---|
101 | pSReg->Attr.u = 0;
|
---|
102 | pSReg->Attr.n.u4Type = pSReg == &pVCpu->cpum.s.Guest.cs ? X86_SEL_TYPE_ER_ACC : X86_SEL_TYPE_RW_ACC;
|
---|
103 | pSReg->Attr.n.u1DescType = 1; /* code/data segment */
|
---|
104 | pSReg->Attr.n.u2Dpl = 3;
|
---|
105 | pSReg->Attr.n.u1Present = 1;
|
---|
106 | pSReg->u32Limit = 0x0000ffff;
|
---|
107 | pSReg->u64Base = (uint32_t)pSReg->Sel << 4;
|
---|
108 | pSReg->ValidSel = pSReg->Sel;
|
---|
109 | pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
110 | /** @todo Check what the accessed bit should be (VT-x and AMD-V). */
|
---|
111 | }
|
---|
112 | else if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE))
|
---|
113 | {
|
---|
114 | /* Real mode - leave the limit and flags alone here, at least for now. */
|
---|
115 | pSReg->u64Base = (uint32_t)pSReg->Sel << 4;
|
---|
116 | pSReg->ValidSel = pSReg->Sel;
|
---|
117 | pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
118 | }
|
---|
119 | else
|
---|
120 | {
|
---|
121 | /* Protected mode - get it from the selector descriptor tables. */
|
---|
122 | if (!(pSReg->Sel & X86_SEL_MASK_OFF_RPL))
|
---|
123 | {
|
---|
124 | Assert(!CPUMIsGuestInLongMode(pVCpu));
|
---|
125 | pSReg->Sel = 0;
|
---|
126 | pSReg->u64Base = 0;
|
---|
127 | pSReg->u32Limit = 0;
|
---|
128 | pSReg->Attr.u = 0;
|
---|
129 | pSReg->ValidSel = 0;
|
---|
130 | pSReg->fFlags = CPUMSELREG_FLAGS_VALID;
|
---|
131 | /** @todo see todo in iemHlpLoadNullDataSelectorProt. */
|
---|
132 | }
|
---|
133 | else
|
---|
134 | SELMLoadHiddenSelectorReg(pVCpu, &pVCpu->cpum.s.Guest, pSReg);
|
---|
135 | }
|
---|
136 | }
|
---|
137 |
|
---|
138 |
|
---|
139 | /**
|
---|
140 | * Makes sure the hidden CS and SS selector registers are valid, loading them if
|
---|
141 | * necessary.
|
---|
142 | *
|
---|
143 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
144 | */
|
---|
145 | VMM_INT_DECL(void) CPUMGuestLazyLoadHiddenCsAndSs(PVMCPU pVCpu)
|
---|
146 | {
|
---|
147 | CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs);
|
---|
148 | CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.ss);
|
---|
149 | }
|
---|
150 |
|
---|
151 |
|
---|
152 | /**
|
---|
153 | * Loads a the hidden parts of a selector register.
|
---|
154 | *
|
---|
155 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
156 | * @param pSReg The selector register to lazily load hidden parts of.
|
---|
157 | */
|
---|
158 | VMM_INT_DECL(void) CPUMGuestLazyLoadHiddenSelectorReg(PVMCPU pVCpu, PCPUMSELREG pSReg)
|
---|
159 | {
|
---|
160 | CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, pSReg);
|
---|
161 | }
|
---|
162 |
|
---|
163 | #endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
|
---|
164 |
|
---|
165 |
|
---|
166 | /**
|
---|
167 | * Obsolete.
|
---|
168 | *
|
---|
169 | * We don't support nested hypervisor context interrupts or traps. Life is much
|
---|
170 | * simpler when we don't. It's also slightly faster at times.
|
---|
171 | *
|
---|
172 | * @param pVCpu The cross context virtual CPU structure.
|
---|
173 | */
|
---|
174 | VMMDECL(PCCPUMCTXCORE) CPUMGetHyperCtxCore(PVMCPU pVCpu)
|
---|
175 | {
|
---|
176 | return CPUMCTX2CORE(&pVCpu->cpum.s.Hyper);
|
---|
177 | }
|
---|
178 |
|
---|
179 |
|
---|
180 | /**
|
---|
181 | * Gets the pointer to the hypervisor CPU context structure of a virtual CPU.
|
---|
182 | *
|
---|
183 | * @param pVCpu The cross context virtual CPU structure.
|
---|
184 | */
|
---|
185 | VMMDECL(PCPUMCTX) CPUMGetHyperCtxPtr(PVMCPU pVCpu)
|
---|
186 | {
|
---|
187 | return &pVCpu->cpum.s.Hyper;
|
---|
188 | }
|
---|
189 |
|
---|
190 |
|
---|
191 | VMMDECL(void) CPUMSetHyperGDTR(PVMCPU pVCpu, uint32_t addr, uint16_t limit)
|
---|
192 | {
|
---|
193 | pVCpu->cpum.s.Hyper.gdtr.cbGdt = limit;
|
---|
194 | pVCpu->cpum.s.Hyper.gdtr.pGdt = addr;
|
---|
195 | }
|
---|
196 |
|
---|
197 |
|
---|
198 | VMMDECL(void) CPUMSetHyperIDTR(PVMCPU pVCpu, uint32_t addr, uint16_t limit)
|
---|
199 | {
|
---|
200 | pVCpu->cpum.s.Hyper.idtr.cbIdt = limit;
|
---|
201 | pVCpu->cpum.s.Hyper.idtr.pIdt = addr;
|
---|
202 | }
|
---|
203 |
|
---|
204 |
|
---|
205 | VMMDECL(void) CPUMSetHyperCR3(PVMCPU pVCpu, uint32_t cr3)
|
---|
206 | {
|
---|
207 | pVCpu->cpum.s.Hyper.cr3 = cr3;
|
---|
208 |
|
---|
209 | #ifdef IN_RC
|
---|
210 | /* Update the current CR3. */
|
---|
211 | ASMSetCR3(cr3);
|
---|
212 | #endif
|
---|
213 | }
|
---|
214 |
|
---|
215 | VMMDECL(uint32_t) CPUMGetHyperCR3(PVMCPU pVCpu)
|
---|
216 | {
|
---|
217 | return pVCpu->cpum.s.Hyper.cr3;
|
---|
218 | }
|
---|
219 |
|
---|
220 |
|
---|
221 | VMMDECL(void) CPUMSetHyperCS(PVMCPU pVCpu, RTSEL SelCS)
|
---|
222 | {
|
---|
223 | pVCpu->cpum.s.Hyper.cs.Sel = SelCS;
|
---|
224 | }
|
---|
225 |
|
---|
226 |
|
---|
227 | VMMDECL(void) CPUMSetHyperDS(PVMCPU pVCpu, RTSEL SelDS)
|
---|
228 | {
|
---|
229 | pVCpu->cpum.s.Hyper.ds.Sel = SelDS;
|
---|
230 | }
|
---|
231 |
|
---|
232 |
|
---|
233 | VMMDECL(void) CPUMSetHyperES(PVMCPU pVCpu, RTSEL SelES)
|
---|
234 | {
|
---|
235 | pVCpu->cpum.s.Hyper.es.Sel = SelES;
|
---|
236 | }
|
---|
237 |
|
---|
238 |
|
---|
239 | VMMDECL(void) CPUMSetHyperFS(PVMCPU pVCpu, RTSEL SelFS)
|
---|
240 | {
|
---|
241 | pVCpu->cpum.s.Hyper.fs.Sel = SelFS;
|
---|
242 | }
|
---|
243 |
|
---|
244 |
|
---|
245 | VMMDECL(void) CPUMSetHyperGS(PVMCPU pVCpu, RTSEL SelGS)
|
---|
246 | {
|
---|
247 | pVCpu->cpum.s.Hyper.gs.Sel = SelGS;
|
---|
248 | }
|
---|
249 |
|
---|
250 |
|
---|
251 | VMMDECL(void) CPUMSetHyperSS(PVMCPU pVCpu, RTSEL SelSS)
|
---|
252 | {
|
---|
253 | pVCpu->cpum.s.Hyper.ss.Sel = SelSS;
|
---|
254 | }
|
---|
255 |
|
---|
256 |
|
---|
257 | VMMDECL(void) CPUMSetHyperESP(PVMCPU pVCpu, uint32_t u32ESP)
|
---|
258 | {
|
---|
259 | pVCpu->cpum.s.Hyper.esp = u32ESP;
|
---|
260 | }
|
---|
261 |
|
---|
262 |
|
---|
263 | VMMDECL(void) CPUMSetHyperEDX(PVMCPU pVCpu, uint32_t u32ESP)
|
---|
264 | {
|
---|
265 | pVCpu->cpum.s.Hyper.esp = u32ESP;
|
---|
266 | }
|
---|
267 |
|
---|
268 |
|
---|
269 | VMMDECL(int) CPUMSetHyperEFlags(PVMCPU pVCpu, uint32_t Efl)
|
---|
270 | {
|
---|
271 | pVCpu->cpum.s.Hyper.eflags.u32 = Efl;
|
---|
272 | return VINF_SUCCESS;
|
---|
273 | }
|
---|
274 |
|
---|
275 |
|
---|
276 | VMMDECL(void) CPUMSetHyperEIP(PVMCPU pVCpu, uint32_t u32EIP)
|
---|
277 | {
|
---|
278 | pVCpu->cpum.s.Hyper.eip = u32EIP;
|
---|
279 | }
|
---|
280 |
|
---|
281 |
|
---|
282 | /**
|
---|
283 | * Used by VMMR3RawRunGC to reinitialize the general raw-mode context registers,
|
---|
284 | * EFLAGS and EIP prior to resuming guest execution.
|
---|
285 | *
|
---|
286 | * All general register not given as a parameter will be set to 0. The EFLAGS
|
---|
287 | * register will be set to sane values for C/C++ code execution with interrupts
|
---|
288 | * disabled and IOPL 0.
|
---|
289 | *
|
---|
290 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
291 | * @param u32EIP The EIP value.
|
---|
292 | * @param u32ESP The ESP value.
|
---|
293 | * @param u32EAX The EAX value.
|
---|
294 | * @param u32EDX The EDX value.
|
---|
295 | */
|
---|
296 | VMM_INT_DECL(void) CPUMSetHyperState(PVMCPU pVCpu, uint32_t u32EIP, uint32_t u32ESP, uint32_t u32EAX, uint32_t u32EDX)
|
---|
297 | {
|
---|
298 | pVCpu->cpum.s.Hyper.eip = u32EIP;
|
---|
299 | pVCpu->cpum.s.Hyper.esp = u32ESP;
|
---|
300 | pVCpu->cpum.s.Hyper.eax = u32EAX;
|
---|
301 | pVCpu->cpum.s.Hyper.edx = u32EDX;
|
---|
302 | pVCpu->cpum.s.Hyper.ecx = 0;
|
---|
303 | pVCpu->cpum.s.Hyper.ebx = 0;
|
---|
304 | pVCpu->cpum.s.Hyper.ebp = 0;
|
---|
305 | pVCpu->cpum.s.Hyper.esi = 0;
|
---|
306 | pVCpu->cpum.s.Hyper.edi = 0;
|
---|
307 | pVCpu->cpum.s.Hyper.eflags.u = X86_EFL_1;
|
---|
308 | }
|
---|
309 |
|
---|
310 |
|
---|
311 | VMMDECL(void) CPUMSetHyperTR(PVMCPU pVCpu, RTSEL SelTR)
|
---|
312 | {
|
---|
313 | pVCpu->cpum.s.Hyper.tr.Sel = SelTR;
|
---|
314 | }
|
---|
315 |
|
---|
316 |
|
---|
317 | VMMDECL(void) CPUMSetHyperLDTR(PVMCPU pVCpu, RTSEL SelLDTR)
|
---|
318 | {
|
---|
319 | pVCpu->cpum.s.Hyper.ldtr.Sel = SelLDTR;
|
---|
320 | }
|
---|
321 |
|
---|
322 |
|
---|
323 | /** @def MAYBE_LOAD_DRx
|
---|
324 | * Macro for updating DRx values in raw-mode and ring-0 contexts.
|
---|
325 | */
|
---|
326 | #ifdef IN_RING0
|
---|
327 | # if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS)
|
---|
328 | # define MAYBE_LOAD_DRx(a_pVCpu, a_fnLoad, a_uValue) \
|
---|
329 | do { \
|
---|
330 | if (!CPUMIsGuestInLongModeEx(&(a_pVCpu)->cpum.s.Guest)) \
|
---|
331 | a_fnLoad(a_uValue); \
|
---|
332 | else \
|
---|
333 | (a_pVCpu)->cpum.s.fUseFlags |= CPUM_SYNC_DEBUG_REGS_HYPER; \
|
---|
334 | } while (0)
|
---|
335 | # else
|
---|
336 | # define MAYBE_LOAD_DRx(a_pVCpu, a_fnLoad, a_uValue) \
|
---|
337 | do { \
|
---|
338 | a_fnLoad(a_uValue); \
|
---|
339 | } while (0)
|
---|
340 | # endif
|
---|
341 |
|
---|
342 | #elif defined(IN_RC)
|
---|
343 | # define MAYBE_LOAD_DRx(a_pVCpu, a_fnLoad, a_uValue) \
|
---|
344 | do { \
|
---|
345 | if ((a_pVCpu)->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HYPER) \
|
---|
346 | { a_fnLoad(a_uValue); } \
|
---|
347 | } while (0)
|
---|
348 |
|
---|
349 | #else
|
---|
350 | # define MAYBE_LOAD_DRx(a_pVCpu, a_fnLoad, a_uValue) do { } while (0)
|
---|
351 | #endif
|
---|
352 |
|
---|
353 | VMMDECL(void) CPUMSetHyperDR0(PVMCPU pVCpu, RTGCUINTREG uDr0)
|
---|
354 | {
|
---|
355 | pVCpu->cpum.s.Hyper.dr[0] = uDr0;
|
---|
356 | MAYBE_LOAD_DRx(pVCpu, ASMSetDR0, uDr0);
|
---|
357 | }
|
---|
358 |
|
---|
359 |
|
---|
360 | VMMDECL(void) CPUMSetHyperDR1(PVMCPU pVCpu, RTGCUINTREG uDr1)
|
---|
361 | {
|
---|
362 | pVCpu->cpum.s.Hyper.dr[1] = uDr1;
|
---|
363 | MAYBE_LOAD_DRx(pVCpu, ASMSetDR1, uDr1);
|
---|
364 | }
|
---|
365 |
|
---|
366 |
|
---|
367 | VMMDECL(void) CPUMSetHyperDR2(PVMCPU pVCpu, RTGCUINTREG uDr2)
|
---|
368 | {
|
---|
369 | pVCpu->cpum.s.Hyper.dr[2] = uDr2;
|
---|
370 | MAYBE_LOAD_DRx(pVCpu, ASMSetDR2, uDr2);
|
---|
371 | }
|
---|
372 |
|
---|
373 |
|
---|
374 | VMMDECL(void) CPUMSetHyperDR3(PVMCPU pVCpu, RTGCUINTREG uDr3)
|
---|
375 | {
|
---|
376 | pVCpu->cpum.s.Hyper.dr[3] = uDr3;
|
---|
377 | MAYBE_LOAD_DRx(pVCpu, ASMSetDR3, uDr3);
|
---|
378 | }
|
---|
379 |
|
---|
380 |
|
---|
381 | VMMDECL(void) CPUMSetHyperDR6(PVMCPU pVCpu, RTGCUINTREG uDr6)
|
---|
382 | {
|
---|
383 | pVCpu->cpum.s.Hyper.dr[6] = uDr6;
|
---|
384 | }
|
---|
385 |
|
---|
386 |
|
---|
387 | VMMDECL(void) CPUMSetHyperDR7(PVMCPU pVCpu, RTGCUINTREG uDr7)
|
---|
388 | {
|
---|
389 | pVCpu->cpum.s.Hyper.dr[7] = uDr7;
|
---|
390 | #ifdef IN_RC
|
---|
391 | MAYBE_LOAD_DRx(pVCpu, ASMSetDR7, uDr7);
|
---|
392 | #endif
|
---|
393 | }
|
---|
394 |
|
---|
395 |
|
---|
396 | VMMDECL(RTSEL) CPUMGetHyperCS(PVMCPU pVCpu)
|
---|
397 | {
|
---|
398 | return pVCpu->cpum.s.Hyper.cs.Sel;
|
---|
399 | }
|
---|
400 |
|
---|
401 |
|
---|
402 | VMMDECL(RTSEL) CPUMGetHyperDS(PVMCPU pVCpu)
|
---|
403 | {
|
---|
404 | return pVCpu->cpum.s.Hyper.ds.Sel;
|
---|
405 | }
|
---|
406 |
|
---|
407 |
|
---|
408 | VMMDECL(RTSEL) CPUMGetHyperES(PVMCPU pVCpu)
|
---|
409 | {
|
---|
410 | return pVCpu->cpum.s.Hyper.es.Sel;
|
---|
411 | }
|
---|
412 |
|
---|
413 |
|
---|
414 | VMMDECL(RTSEL) CPUMGetHyperFS(PVMCPU pVCpu)
|
---|
415 | {
|
---|
416 | return pVCpu->cpum.s.Hyper.fs.Sel;
|
---|
417 | }
|
---|
418 |
|
---|
419 |
|
---|
420 | VMMDECL(RTSEL) CPUMGetHyperGS(PVMCPU pVCpu)
|
---|
421 | {
|
---|
422 | return pVCpu->cpum.s.Hyper.gs.Sel;
|
---|
423 | }
|
---|
424 |
|
---|
425 |
|
---|
426 | VMMDECL(RTSEL) CPUMGetHyperSS(PVMCPU pVCpu)
|
---|
427 | {
|
---|
428 | return pVCpu->cpum.s.Hyper.ss.Sel;
|
---|
429 | }
|
---|
430 |
|
---|
431 |
|
---|
432 | VMMDECL(uint32_t) CPUMGetHyperEAX(PVMCPU pVCpu)
|
---|
433 | {
|
---|
434 | return pVCpu->cpum.s.Hyper.eax;
|
---|
435 | }
|
---|
436 |
|
---|
437 |
|
---|
438 | VMMDECL(uint32_t) CPUMGetHyperEBX(PVMCPU pVCpu)
|
---|
439 | {
|
---|
440 | return pVCpu->cpum.s.Hyper.ebx;
|
---|
441 | }
|
---|
442 |
|
---|
443 |
|
---|
444 | VMMDECL(uint32_t) CPUMGetHyperECX(PVMCPU pVCpu)
|
---|
445 | {
|
---|
446 | return pVCpu->cpum.s.Hyper.ecx;
|
---|
447 | }
|
---|
448 |
|
---|
449 |
|
---|
450 | VMMDECL(uint32_t) CPUMGetHyperEDX(PVMCPU pVCpu)
|
---|
451 | {
|
---|
452 | return pVCpu->cpum.s.Hyper.edx;
|
---|
453 | }
|
---|
454 |
|
---|
455 |
|
---|
456 | VMMDECL(uint32_t) CPUMGetHyperESI(PVMCPU pVCpu)
|
---|
457 | {
|
---|
458 | return pVCpu->cpum.s.Hyper.esi;
|
---|
459 | }
|
---|
460 |
|
---|
461 |
|
---|
462 | VMMDECL(uint32_t) CPUMGetHyperEDI(PVMCPU pVCpu)
|
---|
463 | {
|
---|
464 | return pVCpu->cpum.s.Hyper.edi;
|
---|
465 | }
|
---|
466 |
|
---|
467 |
|
---|
468 | VMMDECL(uint32_t) CPUMGetHyperEBP(PVMCPU pVCpu)
|
---|
469 | {
|
---|
470 | return pVCpu->cpum.s.Hyper.ebp;
|
---|
471 | }
|
---|
472 |
|
---|
473 |
|
---|
474 | VMMDECL(uint32_t) CPUMGetHyperESP(PVMCPU pVCpu)
|
---|
475 | {
|
---|
476 | return pVCpu->cpum.s.Hyper.esp;
|
---|
477 | }
|
---|
478 |
|
---|
479 |
|
---|
480 | VMMDECL(uint32_t) CPUMGetHyperEFlags(PVMCPU pVCpu)
|
---|
481 | {
|
---|
482 | return pVCpu->cpum.s.Hyper.eflags.u32;
|
---|
483 | }
|
---|
484 |
|
---|
485 |
|
---|
486 | VMMDECL(uint32_t) CPUMGetHyperEIP(PVMCPU pVCpu)
|
---|
487 | {
|
---|
488 | return pVCpu->cpum.s.Hyper.eip;
|
---|
489 | }
|
---|
490 |
|
---|
491 |
|
---|
492 | VMMDECL(uint64_t) CPUMGetHyperRIP(PVMCPU pVCpu)
|
---|
493 | {
|
---|
494 | return pVCpu->cpum.s.Hyper.rip;
|
---|
495 | }
|
---|
496 |
|
---|
497 |
|
---|
498 | VMMDECL(uint32_t) CPUMGetHyperIDTR(PVMCPU pVCpu, uint16_t *pcbLimit)
|
---|
499 | {
|
---|
500 | if (pcbLimit)
|
---|
501 | *pcbLimit = pVCpu->cpum.s.Hyper.idtr.cbIdt;
|
---|
502 | return pVCpu->cpum.s.Hyper.idtr.pIdt;
|
---|
503 | }
|
---|
504 |
|
---|
505 |
|
---|
506 | VMMDECL(uint32_t) CPUMGetHyperGDTR(PVMCPU pVCpu, uint16_t *pcbLimit)
|
---|
507 | {
|
---|
508 | if (pcbLimit)
|
---|
509 | *pcbLimit = pVCpu->cpum.s.Hyper.gdtr.cbGdt;
|
---|
510 | return pVCpu->cpum.s.Hyper.gdtr.pGdt;
|
---|
511 | }
|
---|
512 |
|
---|
513 |
|
---|
514 | VMMDECL(RTSEL) CPUMGetHyperLDTR(PVMCPU pVCpu)
|
---|
515 | {
|
---|
516 | return pVCpu->cpum.s.Hyper.ldtr.Sel;
|
---|
517 | }
|
---|
518 |
|
---|
519 |
|
---|
520 | VMMDECL(RTGCUINTREG) CPUMGetHyperDR0(PVMCPU pVCpu)
|
---|
521 | {
|
---|
522 | return pVCpu->cpum.s.Hyper.dr[0];
|
---|
523 | }
|
---|
524 |
|
---|
525 |
|
---|
526 | VMMDECL(RTGCUINTREG) CPUMGetHyperDR1(PVMCPU pVCpu)
|
---|
527 | {
|
---|
528 | return pVCpu->cpum.s.Hyper.dr[1];
|
---|
529 | }
|
---|
530 |
|
---|
531 |
|
---|
532 | VMMDECL(RTGCUINTREG) CPUMGetHyperDR2(PVMCPU pVCpu)
|
---|
533 | {
|
---|
534 | return pVCpu->cpum.s.Hyper.dr[2];
|
---|
535 | }
|
---|
536 |
|
---|
537 |
|
---|
538 | VMMDECL(RTGCUINTREG) CPUMGetHyperDR3(PVMCPU pVCpu)
|
---|
539 | {
|
---|
540 | return pVCpu->cpum.s.Hyper.dr[3];
|
---|
541 | }
|
---|
542 |
|
---|
543 |
|
---|
544 | VMMDECL(RTGCUINTREG) CPUMGetHyperDR6(PVMCPU pVCpu)
|
---|
545 | {
|
---|
546 | return pVCpu->cpum.s.Hyper.dr[6];
|
---|
547 | }
|
---|
548 |
|
---|
549 |
|
---|
550 | VMMDECL(RTGCUINTREG) CPUMGetHyperDR7(PVMCPU pVCpu)
|
---|
551 | {
|
---|
552 | return pVCpu->cpum.s.Hyper.dr[7];
|
---|
553 | }
|
---|
554 |
|
---|
555 |
|
---|
556 | /**
|
---|
557 | * Gets the pointer to the internal CPUMCTXCORE structure.
|
---|
558 | * This is only for reading in order to save a few calls.
|
---|
559 | *
|
---|
560 | * @param pVCpu The cross context virtual CPU structure.
|
---|
561 | */
|
---|
562 | VMMDECL(PCCPUMCTXCORE) CPUMGetGuestCtxCore(PVMCPU pVCpu)
|
---|
563 | {
|
---|
564 | return CPUMCTX2CORE(&pVCpu->cpum.s.Guest);
|
---|
565 | }
|
---|
566 |
|
---|
567 |
|
---|
568 | /**
|
---|
569 | * Queries the pointer to the internal CPUMCTX structure.
|
---|
570 | *
|
---|
571 | * @returns The CPUMCTX pointer.
|
---|
572 | * @param pVCpu The cross context virtual CPU structure.
|
---|
573 | */
|
---|
574 | VMMDECL(PCPUMCTX) CPUMQueryGuestCtxPtr(PVMCPU pVCpu)
|
---|
575 | {
|
---|
576 | return &pVCpu->cpum.s.Guest;
|
---|
577 | }
|
---|
578 |
|
---|
579 | VMMDECL(int) CPUMSetGuestGDTR(PVMCPU pVCpu, uint64_t GCPtrBase, uint16_t cbLimit)
|
---|
580 | {
|
---|
581 | #ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
582 | if (VM_IS_RAW_MODE_ENABLED(pVCpu->CTX_SUFF(pVM)))
|
---|
583 | VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
|
---|
584 | #endif
|
---|
585 | pVCpu->cpum.s.Guest.gdtr.cbGdt = cbLimit;
|
---|
586 | pVCpu->cpum.s.Guest.gdtr.pGdt = GCPtrBase;
|
---|
587 | pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GDTR;
|
---|
588 | return VINF_SUCCESS; /* formality, consider it void. */
|
---|
589 | }
|
---|
590 |
|
---|
591 | VMMDECL(int) CPUMSetGuestIDTR(PVMCPU pVCpu, uint64_t GCPtrBase, uint16_t cbLimit)
|
---|
592 | {
|
---|
593 | #ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
594 | if (VM_IS_RAW_MODE_ENABLED(pVCpu->CTX_SUFF(pVM)))
|
---|
595 | VMCPU_FF_SET(pVCpu, VMCPU_FF_TRPM_SYNC_IDT);
|
---|
596 | #endif
|
---|
597 | pVCpu->cpum.s.Guest.idtr.cbIdt = cbLimit;
|
---|
598 | pVCpu->cpum.s.Guest.idtr.pIdt = GCPtrBase;
|
---|
599 | pVCpu->cpum.s.fChanged |= CPUM_CHANGED_IDTR;
|
---|
600 | return VINF_SUCCESS; /* formality, consider it void. */
|
---|
601 | }
|
---|
602 |
|
---|
603 | VMMDECL(int) CPUMSetGuestTR(PVMCPU pVCpu, uint16_t tr)
|
---|
604 | {
|
---|
605 | #ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
606 | if (VM_IS_RAW_MODE_ENABLED(pVCpu->CTX_SUFF(pVM)))
|
---|
607 | VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
|
---|
608 | #endif
|
---|
609 | pVCpu->cpum.s.Guest.tr.Sel = tr;
|
---|
610 | pVCpu->cpum.s.fChanged |= CPUM_CHANGED_TR;
|
---|
611 | return VINF_SUCCESS; /* formality, consider it void. */
|
---|
612 | }
|
---|
613 |
|
---|
614 | VMMDECL(int) CPUMSetGuestLDTR(PVMCPU pVCpu, uint16_t ldtr)
|
---|
615 | {
|
---|
616 | #ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
617 | if ( ( ldtr != 0
|
---|
618 | || pVCpu->cpum.s.Guest.ldtr.Sel != 0)
|
---|
619 | && VM_IS_RAW_MODE_ENABLED(pVCpu->CTX_SUFF(pVM)))
|
---|
620 | VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
|
---|
621 | #endif
|
---|
622 | pVCpu->cpum.s.Guest.ldtr.Sel = ldtr;
|
---|
623 | /* The caller will set more hidden bits if it has them. */
|
---|
624 | pVCpu->cpum.s.Guest.ldtr.ValidSel = 0;
|
---|
625 | pVCpu->cpum.s.Guest.ldtr.fFlags = 0;
|
---|
626 | pVCpu->cpum.s.fChanged |= CPUM_CHANGED_LDTR;
|
---|
627 | return VINF_SUCCESS; /* formality, consider it void. */
|
---|
628 | }
|
---|
629 |
|
---|
630 |
|
---|
631 | /**
|
---|
632 | * Set the guest CR0.
|
---|
633 | *
|
---|
634 | * When called in GC, the hyper CR0 may be updated if that is
|
---|
635 | * required. The caller only has to take special action if AM,
|
---|
636 | * WP, PG or PE changes.
|
---|
637 | *
|
---|
638 | * @returns VINF_SUCCESS (consider it void).
|
---|
639 | * @param pVCpu The cross context virtual CPU structure.
|
---|
640 | * @param cr0 The new CR0 value.
|
---|
641 | */
|
---|
642 | VMMDECL(int) CPUMSetGuestCR0(PVMCPU pVCpu, uint64_t cr0)
|
---|
643 | {
|
---|
644 | #ifdef IN_RC
|
---|
645 | /*
|
---|
646 | * Check if we need to change hypervisor CR0 because
|
---|
647 | * of math stuff.
|
---|
648 | */
|
---|
649 | if ( (cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP))
|
---|
650 | != (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP)))
|
---|
651 | {
|
---|
652 | if (!(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST))
|
---|
653 | {
|
---|
654 | /*
|
---|
655 | * We haven't loaded the guest FPU state yet, so TS and MT are both set
|
---|
656 | * and EM should be reflecting the guest EM (it always does this).
|
---|
657 | */
|
---|
658 | if ((cr0 & X86_CR0_EM) != (pVCpu->cpum.s.Guest.cr0 & X86_CR0_EM))
|
---|
659 | {
|
---|
660 | uint32_t HyperCR0 = ASMGetCR0();
|
---|
661 | AssertMsg((HyperCR0 & (X86_CR0_TS | X86_CR0_MP)) == (X86_CR0_TS | X86_CR0_MP), ("%#x\n", HyperCR0));
|
---|
662 | AssertMsg((HyperCR0 & X86_CR0_EM) == (pVCpu->cpum.s.Guest.cr0 & X86_CR0_EM), ("%#x\n", HyperCR0));
|
---|
663 | HyperCR0 &= ~X86_CR0_EM;
|
---|
664 | HyperCR0 |= cr0 & X86_CR0_EM;
|
---|
665 | Log(("CPUM: New HyperCR0=%#x\n", HyperCR0));
|
---|
666 | ASMSetCR0(HyperCR0);
|
---|
667 | }
|
---|
668 | # ifdef VBOX_STRICT
|
---|
669 | else
|
---|
670 | {
|
---|
671 | uint32_t HyperCR0 = ASMGetCR0();
|
---|
672 | AssertMsg((HyperCR0 & (X86_CR0_TS | X86_CR0_MP)) == (X86_CR0_TS | X86_CR0_MP), ("%#x\n", HyperCR0));
|
---|
673 | AssertMsg((HyperCR0 & X86_CR0_EM) == (pVCpu->cpum.s.Guest.cr0 & X86_CR0_EM), ("%#x\n", HyperCR0));
|
---|
674 | }
|
---|
675 | # endif
|
---|
676 | }
|
---|
677 | else
|
---|
678 | {
|
---|
679 | /*
|
---|
680 | * Already loaded the guest FPU state, so we're just mirroring
|
---|
681 | * the guest flags.
|
---|
682 | */
|
---|
683 | uint32_t HyperCR0 = ASMGetCR0();
|
---|
684 | AssertMsg( (HyperCR0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP))
|
---|
685 | == (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP)),
|
---|
686 | ("%#x %#x\n", HyperCR0, pVCpu->cpum.s.Guest.cr0));
|
---|
687 | HyperCR0 &= ~(X86_CR0_TS | X86_CR0_EM | X86_CR0_MP);
|
---|
688 | HyperCR0 |= cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP);
|
---|
689 | Log(("CPUM: New HyperCR0=%#x\n", HyperCR0));
|
---|
690 | ASMSetCR0(HyperCR0);
|
---|
691 | }
|
---|
692 | }
|
---|
693 | #endif /* IN_RC */
|
---|
694 |
|
---|
695 | /*
|
---|
696 | * Check for changes causing TLB flushes (for REM).
|
---|
697 | * The caller is responsible for calling PGM when appropriate.
|
---|
698 | */
|
---|
699 | if ( (cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
|
---|
700 | != (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)))
|
---|
701 | pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GLOBAL_TLB_FLUSH;
|
---|
702 | pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR0;
|
---|
703 |
|
---|
704 | /*
|
---|
705 | * Let PGM know if the WP goes from 0 to 1 (netware WP0+RO+US hack)
|
---|
706 | */
|
---|
707 | if (((cr0 ^ pVCpu->cpum.s.Guest.cr0) & X86_CR0_WP) && (cr0 & X86_CR0_WP))
|
---|
708 | PGMCr0WpEnabled(pVCpu);
|
---|
709 |
|
---|
710 | /* The ET flag is settable on a 386 and hardwired on 486+. */
|
---|
711 | if ( !(cr0 & X86_CR0_ET)
|
---|
712 | && pVCpu->CTX_SUFF(pVM)->cpum.s.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386)
|
---|
713 | cr0 |= X86_CR0_ET;
|
---|
714 |
|
---|
715 | pVCpu->cpum.s.Guest.cr0 = cr0;
|
---|
716 | return VINF_SUCCESS;
|
---|
717 | }
|
---|
718 |
|
---|
719 |
|
---|
720 | VMMDECL(int) CPUMSetGuestCR2(PVMCPU pVCpu, uint64_t cr2)
|
---|
721 | {
|
---|
722 | pVCpu->cpum.s.Guest.cr2 = cr2;
|
---|
723 | return VINF_SUCCESS;
|
---|
724 | }
|
---|
725 |
|
---|
726 |
|
---|
727 | VMMDECL(int) CPUMSetGuestCR3(PVMCPU pVCpu, uint64_t cr3)
|
---|
728 | {
|
---|
729 | pVCpu->cpum.s.Guest.cr3 = cr3;
|
---|
730 | pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR3;
|
---|
731 | return VINF_SUCCESS;
|
---|
732 | }
|
---|
733 |
|
---|
734 |
|
---|
735 | VMMDECL(int) CPUMSetGuestCR4(PVMCPU pVCpu, uint64_t cr4)
|
---|
736 | {
|
---|
737 | /* Note! We don't bother with OSXSAVE and legacy CPUID patches. */
|
---|
738 |
|
---|
739 | if ( (cr4 & (X86_CR4_PGE | X86_CR4_PAE | X86_CR4_PSE))
|
---|
740 | != (pVCpu->cpum.s.Guest.cr4 & (X86_CR4_PGE | X86_CR4_PAE | X86_CR4_PSE)))
|
---|
741 | pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GLOBAL_TLB_FLUSH;
|
---|
742 |
|
---|
743 | pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR4;
|
---|
744 | pVCpu->cpum.s.Guest.cr4 = cr4;
|
---|
745 | return VINF_SUCCESS;
|
---|
746 | }
|
---|
747 |
|
---|
748 |
|
---|
749 | VMMDECL(int) CPUMSetGuestEFlags(PVMCPU pVCpu, uint32_t eflags)
|
---|
750 | {
|
---|
751 | pVCpu->cpum.s.Guest.eflags.u32 = eflags;
|
---|
752 | return VINF_SUCCESS;
|
---|
753 | }
|
---|
754 |
|
---|
755 |
|
---|
756 | VMMDECL(int) CPUMSetGuestEIP(PVMCPU pVCpu, uint32_t eip)
|
---|
757 | {
|
---|
758 | pVCpu->cpum.s.Guest.eip = eip;
|
---|
759 | return VINF_SUCCESS;
|
---|
760 | }
|
---|
761 |
|
---|
762 |
|
---|
763 | VMMDECL(int) CPUMSetGuestEAX(PVMCPU pVCpu, uint32_t eax)
|
---|
764 | {
|
---|
765 | pVCpu->cpum.s.Guest.eax = eax;
|
---|
766 | return VINF_SUCCESS;
|
---|
767 | }
|
---|
768 |
|
---|
769 |
|
---|
770 | VMMDECL(int) CPUMSetGuestEBX(PVMCPU pVCpu, uint32_t ebx)
|
---|
771 | {
|
---|
772 | pVCpu->cpum.s.Guest.ebx = ebx;
|
---|
773 | return VINF_SUCCESS;
|
---|
774 | }
|
---|
775 |
|
---|
776 |
|
---|
777 | VMMDECL(int) CPUMSetGuestECX(PVMCPU pVCpu, uint32_t ecx)
|
---|
778 | {
|
---|
779 | pVCpu->cpum.s.Guest.ecx = ecx;
|
---|
780 | return VINF_SUCCESS;
|
---|
781 | }
|
---|
782 |
|
---|
783 |
|
---|
784 | VMMDECL(int) CPUMSetGuestEDX(PVMCPU pVCpu, uint32_t edx)
|
---|
785 | {
|
---|
786 | pVCpu->cpum.s.Guest.edx = edx;
|
---|
787 | return VINF_SUCCESS;
|
---|
788 | }
|
---|
789 |
|
---|
790 |
|
---|
791 | VMMDECL(int) CPUMSetGuestESP(PVMCPU pVCpu, uint32_t esp)
|
---|
792 | {
|
---|
793 | pVCpu->cpum.s.Guest.esp = esp;
|
---|
794 | return VINF_SUCCESS;
|
---|
795 | }
|
---|
796 |
|
---|
797 |
|
---|
798 | VMMDECL(int) CPUMSetGuestEBP(PVMCPU pVCpu, uint32_t ebp)
|
---|
799 | {
|
---|
800 | pVCpu->cpum.s.Guest.ebp = ebp;
|
---|
801 | return VINF_SUCCESS;
|
---|
802 | }
|
---|
803 |
|
---|
804 |
|
---|
805 | VMMDECL(int) CPUMSetGuestESI(PVMCPU pVCpu, uint32_t esi)
|
---|
806 | {
|
---|
807 | pVCpu->cpum.s.Guest.esi = esi;
|
---|
808 | return VINF_SUCCESS;
|
---|
809 | }
|
---|
810 |
|
---|
811 |
|
---|
812 | VMMDECL(int) CPUMSetGuestEDI(PVMCPU pVCpu, uint32_t edi)
|
---|
813 | {
|
---|
814 | pVCpu->cpum.s.Guest.edi = edi;
|
---|
815 | return VINF_SUCCESS;
|
---|
816 | }
|
---|
817 |
|
---|
818 |
|
---|
819 | VMMDECL(int) CPUMSetGuestSS(PVMCPU pVCpu, uint16_t ss)
|
---|
820 | {
|
---|
821 | pVCpu->cpum.s.Guest.ss.Sel = ss;
|
---|
822 | return VINF_SUCCESS;
|
---|
823 | }
|
---|
824 |
|
---|
825 |
|
---|
826 | VMMDECL(int) CPUMSetGuestCS(PVMCPU pVCpu, uint16_t cs)
|
---|
827 | {
|
---|
828 | pVCpu->cpum.s.Guest.cs.Sel = cs;
|
---|
829 | return VINF_SUCCESS;
|
---|
830 | }
|
---|
831 |
|
---|
832 |
|
---|
833 | VMMDECL(int) CPUMSetGuestDS(PVMCPU pVCpu, uint16_t ds)
|
---|
834 | {
|
---|
835 | pVCpu->cpum.s.Guest.ds.Sel = ds;
|
---|
836 | return VINF_SUCCESS;
|
---|
837 | }
|
---|
838 |
|
---|
839 |
|
---|
840 | VMMDECL(int) CPUMSetGuestES(PVMCPU pVCpu, uint16_t es)
|
---|
841 | {
|
---|
842 | pVCpu->cpum.s.Guest.es.Sel = es;
|
---|
843 | return VINF_SUCCESS;
|
---|
844 | }
|
---|
845 |
|
---|
846 |
|
---|
847 | VMMDECL(int) CPUMSetGuestFS(PVMCPU pVCpu, uint16_t fs)
|
---|
848 | {
|
---|
849 | pVCpu->cpum.s.Guest.fs.Sel = fs;
|
---|
850 | return VINF_SUCCESS;
|
---|
851 | }
|
---|
852 |
|
---|
853 |
|
---|
854 | VMMDECL(int) CPUMSetGuestGS(PVMCPU pVCpu, uint16_t gs)
|
---|
855 | {
|
---|
856 | pVCpu->cpum.s.Guest.gs.Sel = gs;
|
---|
857 | return VINF_SUCCESS;
|
---|
858 | }
|
---|
859 |
|
---|
860 |
|
---|
861 | VMMDECL(void) CPUMSetGuestEFER(PVMCPU pVCpu, uint64_t val)
|
---|
862 | {
|
---|
863 | pVCpu->cpum.s.Guest.msrEFER = val;
|
---|
864 | }
|
---|
865 |
|
---|
866 |
|
---|
867 | VMMDECL(RTGCPTR) CPUMGetGuestIDTR(PVMCPU pVCpu, uint16_t *pcbLimit)
|
---|
868 | {
|
---|
869 | if (pcbLimit)
|
---|
870 | *pcbLimit = pVCpu->cpum.s.Guest.idtr.cbIdt;
|
---|
871 | return pVCpu->cpum.s.Guest.idtr.pIdt;
|
---|
872 | }
|
---|
873 |
|
---|
874 |
|
---|
875 | VMMDECL(RTSEL) CPUMGetGuestTR(PVMCPU pVCpu, PCPUMSELREGHID pHidden)
|
---|
876 | {
|
---|
877 | if (pHidden)
|
---|
878 | *pHidden = pVCpu->cpum.s.Guest.tr;
|
---|
879 | return pVCpu->cpum.s.Guest.tr.Sel;
|
---|
880 | }
|
---|
881 |
|
---|
882 |
|
---|
883 | VMMDECL(RTSEL) CPUMGetGuestCS(PVMCPU pVCpu)
|
---|
884 | {
|
---|
885 | return pVCpu->cpum.s.Guest.cs.Sel;
|
---|
886 | }
|
---|
887 |
|
---|
888 |
|
---|
889 | VMMDECL(RTSEL) CPUMGetGuestDS(PVMCPU pVCpu)
|
---|
890 | {
|
---|
891 | return pVCpu->cpum.s.Guest.ds.Sel;
|
---|
892 | }
|
---|
893 |
|
---|
894 |
|
---|
895 | VMMDECL(RTSEL) CPUMGetGuestES(PVMCPU pVCpu)
|
---|
896 | {
|
---|
897 | return pVCpu->cpum.s.Guest.es.Sel;
|
---|
898 | }
|
---|
899 |
|
---|
900 |
|
---|
901 | VMMDECL(RTSEL) CPUMGetGuestFS(PVMCPU pVCpu)
|
---|
902 | {
|
---|
903 | return pVCpu->cpum.s.Guest.fs.Sel;
|
---|
904 | }
|
---|
905 |
|
---|
906 |
|
---|
907 | VMMDECL(RTSEL) CPUMGetGuestGS(PVMCPU pVCpu)
|
---|
908 | {
|
---|
909 | return pVCpu->cpum.s.Guest.gs.Sel;
|
---|
910 | }
|
---|
911 |
|
---|
912 |
|
---|
913 | VMMDECL(RTSEL) CPUMGetGuestSS(PVMCPU pVCpu)
|
---|
914 | {
|
---|
915 | return pVCpu->cpum.s.Guest.ss.Sel;
|
---|
916 | }
|
---|
917 |
|
---|
918 |
|
---|
919 | VMMDECL(uint64_t) CPUMGetGuestFlatPC(PVMCPU pVCpu)
|
---|
920 | {
|
---|
921 | CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs);
|
---|
922 | if ( !CPUMIsGuestInLongMode(pVCpu)
|
---|
923 | || pVCpu->cpum.s.Guest.cs.Attr.n.u1Long)
|
---|
924 | return pVCpu->cpum.s.Guest.eip + (uint32_t)pVCpu->cpum.s.Guest.cs.u64Base;
|
---|
925 | return pVCpu->cpum.s.Guest.rip + pVCpu->cpum.s.Guest.cs.u64Base;
|
---|
926 | }
|
---|
927 |
|
---|
928 |
|
---|
929 | VMMDECL(uint64_t) CPUMGetGuestFlatSP(PVMCPU pVCpu)
|
---|
930 | {
|
---|
931 | CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.ss);
|
---|
932 | if ( !CPUMIsGuestInLongMode(pVCpu)
|
---|
933 | || pVCpu->cpum.s.Guest.ss.Attr.n.u1Long)
|
---|
934 | return pVCpu->cpum.s.Guest.eip + (uint32_t)pVCpu->cpum.s.Guest.ss.u64Base;
|
---|
935 | return pVCpu->cpum.s.Guest.rip + pVCpu->cpum.s.Guest.ss.u64Base;
|
---|
936 | }
|
---|
937 |
|
---|
938 |
|
---|
939 | VMMDECL(RTSEL) CPUMGetGuestLDTR(PVMCPU pVCpu)
|
---|
940 | {
|
---|
941 | return pVCpu->cpum.s.Guest.ldtr.Sel;
|
---|
942 | }
|
---|
943 |
|
---|
944 |
|
---|
945 | VMMDECL(RTSEL) CPUMGetGuestLdtrEx(PVMCPU pVCpu, uint64_t *pGCPtrBase, uint32_t *pcbLimit)
|
---|
946 | {
|
---|
947 | *pGCPtrBase = pVCpu->cpum.s.Guest.ldtr.u64Base;
|
---|
948 | *pcbLimit = pVCpu->cpum.s.Guest.ldtr.u32Limit;
|
---|
949 | return pVCpu->cpum.s.Guest.ldtr.Sel;
|
---|
950 | }
|
---|
951 |
|
---|
952 |
|
---|
953 | VMMDECL(uint64_t) CPUMGetGuestCR0(PVMCPU pVCpu)
|
---|
954 | {
|
---|
955 | return pVCpu->cpum.s.Guest.cr0;
|
---|
956 | }
|
---|
957 |
|
---|
958 |
|
---|
959 | VMMDECL(uint64_t) CPUMGetGuestCR2(PVMCPU pVCpu)
|
---|
960 | {
|
---|
961 | return pVCpu->cpum.s.Guest.cr2;
|
---|
962 | }
|
---|
963 |
|
---|
964 |
|
---|
965 | VMMDECL(uint64_t) CPUMGetGuestCR3(PVMCPU pVCpu)
|
---|
966 | {
|
---|
967 | return pVCpu->cpum.s.Guest.cr3;
|
---|
968 | }
|
---|
969 |
|
---|
970 |
|
---|
971 | VMMDECL(uint64_t) CPUMGetGuestCR4(PVMCPU pVCpu)
|
---|
972 | {
|
---|
973 | return pVCpu->cpum.s.Guest.cr4;
|
---|
974 | }
|
---|
975 |
|
---|
976 |
|
---|
977 | VMMDECL(uint64_t) CPUMGetGuestCR8(PVMCPU pVCpu)
|
---|
978 | {
|
---|
979 | uint64_t u64;
|
---|
980 | int rc = CPUMGetGuestCRx(pVCpu, DISCREG_CR8, &u64);
|
---|
981 | if (RT_FAILURE(rc))
|
---|
982 | u64 = 0;
|
---|
983 | return u64;
|
---|
984 | }
|
---|
985 |
|
---|
986 |
|
---|
987 | VMMDECL(void) CPUMGetGuestGDTR(PVMCPU pVCpu, PVBOXGDTR pGDTR)
|
---|
988 | {
|
---|
989 | *pGDTR = pVCpu->cpum.s.Guest.gdtr;
|
---|
990 | }
|
---|
991 |
|
---|
992 |
|
---|
993 | VMMDECL(uint32_t) CPUMGetGuestEIP(PVMCPU pVCpu)
|
---|
994 | {
|
---|
995 | return pVCpu->cpum.s.Guest.eip;
|
---|
996 | }
|
---|
997 |
|
---|
998 |
|
---|
999 | VMMDECL(uint64_t) CPUMGetGuestRIP(PVMCPU pVCpu)
|
---|
1000 | {
|
---|
1001 | return pVCpu->cpum.s.Guest.rip;
|
---|
1002 | }
|
---|
1003 |
|
---|
1004 |
|
---|
1005 | VMMDECL(uint32_t) CPUMGetGuestEAX(PVMCPU pVCpu)
|
---|
1006 | {
|
---|
1007 | return pVCpu->cpum.s.Guest.eax;
|
---|
1008 | }
|
---|
1009 |
|
---|
1010 |
|
---|
1011 | VMMDECL(uint32_t) CPUMGetGuestEBX(PVMCPU pVCpu)
|
---|
1012 | {
|
---|
1013 | return pVCpu->cpum.s.Guest.ebx;
|
---|
1014 | }
|
---|
1015 |
|
---|
1016 |
|
---|
1017 | VMMDECL(uint32_t) CPUMGetGuestECX(PVMCPU pVCpu)
|
---|
1018 | {
|
---|
1019 | return pVCpu->cpum.s.Guest.ecx;
|
---|
1020 | }
|
---|
1021 |
|
---|
1022 |
|
---|
1023 | VMMDECL(uint32_t) CPUMGetGuestEDX(PVMCPU pVCpu)
|
---|
1024 | {
|
---|
1025 | return pVCpu->cpum.s.Guest.edx;
|
---|
1026 | }
|
---|
1027 |
|
---|
1028 |
|
---|
1029 | VMMDECL(uint32_t) CPUMGetGuestESI(PVMCPU pVCpu)
|
---|
1030 | {
|
---|
1031 | return pVCpu->cpum.s.Guest.esi;
|
---|
1032 | }
|
---|
1033 |
|
---|
1034 |
|
---|
1035 | VMMDECL(uint32_t) CPUMGetGuestEDI(PVMCPU pVCpu)
|
---|
1036 | {
|
---|
1037 | return pVCpu->cpum.s.Guest.edi;
|
---|
1038 | }
|
---|
1039 |
|
---|
1040 |
|
---|
1041 | VMMDECL(uint32_t) CPUMGetGuestESP(PVMCPU pVCpu)
|
---|
1042 | {
|
---|
1043 | return pVCpu->cpum.s.Guest.esp;
|
---|
1044 | }
|
---|
1045 |
|
---|
1046 |
|
---|
1047 | VMMDECL(uint32_t) CPUMGetGuestEBP(PVMCPU pVCpu)
|
---|
1048 | {
|
---|
1049 | return pVCpu->cpum.s.Guest.ebp;
|
---|
1050 | }
|
---|
1051 |
|
---|
1052 |
|
---|
1053 | VMMDECL(uint32_t) CPUMGetGuestEFlags(PVMCPU pVCpu)
|
---|
1054 | {
|
---|
1055 | return pVCpu->cpum.s.Guest.eflags.u32;
|
---|
1056 | }
|
---|
1057 |
|
---|
1058 |
|
---|
1059 | VMMDECL(int) CPUMGetGuestCRx(PVMCPU pVCpu, unsigned iReg, uint64_t *pValue)
|
---|
1060 | {
|
---|
1061 | switch (iReg)
|
---|
1062 | {
|
---|
1063 | case DISCREG_CR0:
|
---|
1064 | *pValue = pVCpu->cpum.s.Guest.cr0;
|
---|
1065 | break;
|
---|
1066 |
|
---|
1067 | case DISCREG_CR2:
|
---|
1068 | *pValue = pVCpu->cpum.s.Guest.cr2;
|
---|
1069 | break;
|
---|
1070 |
|
---|
1071 | case DISCREG_CR3:
|
---|
1072 | *pValue = pVCpu->cpum.s.Guest.cr3;
|
---|
1073 | break;
|
---|
1074 |
|
---|
1075 | case DISCREG_CR4:
|
---|
1076 | *pValue = pVCpu->cpum.s.Guest.cr4;
|
---|
1077 | break;
|
---|
1078 |
|
---|
1079 | case DISCREG_CR8:
|
---|
1080 | {
|
---|
1081 | uint8_t u8Tpr;
|
---|
1082 | int rc = APICGetTpr(pVCpu, &u8Tpr, NULL /* pfPending */, NULL /* pu8PendingIrq */);
|
---|
1083 | if (RT_FAILURE(rc))
|
---|
1084 | {
|
---|
1085 | AssertMsg(rc == VERR_PDM_NO_APIC_INSTANCE, ("%Rrc\n", rc));
|
---|
1086 | *pValue = 0;
|
---|
1087 | return rc;
|
---|
1088 | }
|
---|
1089 | *pValue = u8Tpr >> 4; /* bits 7-4 contain the task priority that go in cr8, bits 3-0 */
|
---|
1090 | break;
|
---|
1091 | }
|
---|
1092 |
|
---|
1093 | default:
|
---|
1094 | return VERR_INVALID_PARAMETER;
|
---|
1095 | }
|
---|
1096 | return VINF_SUCCESS;
|
---|
1097 | }
|
---|
1098 |
|
---|
1099 |
|
---|
1100 | VMMDECL(uint64_t) CPUMGetGuestDR0(PVMCPU pVCpu)
|
---|
1101 | {
|
---|
1102 | return pVCpu->cpum.s.Guest.dr[0];
|
---|
1103 | }
|
---|
1104 |
|
---|
1105 |
|
---|
1106 | VMMDECL(uint64_t) CPUMGetGuestDR1(PVMCPU pVCpu)
|
---|
1107 | {
|
---|
1108 | return pVCpu->cpum.s.Guest.dr[1];
|
---|
1109 | }
|
---|
1110 |
|
---|
1111 |
|
---|
1112 | VMMDECL(uint64_t) CPUMGetGuestDR2(PVMCPU pVCpu)
|
---|
1113 | {
|
---|
1114 | return pVCpu->cpum.s.Guest.dr[2];
|
---|
1115 | }
|
---|
1116 |
|
---|
1117 |
|
---|
1118 | VMMDECL(uint64_t) CPUMGetGuestDR3(PVMCPU pVCpu)
|
---|
1119 | {
|
---|
1120 | return pVCpu->cpum.s.Guest.dr[3];
|
---|
1121 | }
|
---|
1122 |
|
---|
1123 |
|
---|
1124 | VMMDECL(uint64_t) CPUMGetGuestDR6(PVMCPU pVCpu)
|
---|
1125 | {
|
---|
1126 | return pVCpu->cpum.s.Guest.dr[6];
|
---|
1127 | }
|
---|
1128 |
|
---|
1129 |
|
---|
1130 | VMMDECL(uint64_t) CPUMGetGuestDR7(PVMCPU pVCpu)
|
---|
1131 | {
|
---|
1132 | return pVCpu->cpum.s.Guest.dr[7];
|
---|
1133 | }
|
---|
1134 |
|
---|
1135 |
|
---|
1136 | VMMDECL(int) CPUMGetGuestDRx(PVMCPU pVCpu, uint32_t iReg, uint64_t *pValue)
|
---|
1137 | {
|
---|
1138 | AssertReturn(iReg <= DISDREG_DR7, VERR_INVALID_PARAMETER);
|
---|
1139 | /* DR4 is an alias for DR6, and DR5 is an alias for DR7. */
|
---|
1140 | if (iReg == 4 || iReg == 5)
|
---|
1141 | iReg += 2;
|
---|
1142 | *pValue = pVCpu->cpum.s.Guest.dr[iReg];
|
---|
1143 | return VINF_SUCCESS;
|
---|
1144 | }
|
---|
1145 |
|
---|
1146 |
|
---|
1147 | VMMDECL(uint64_t) CPUMGetGuestEFER(PVMCPU pVCpu)
|
---|
1148 | {
|
---|
1149 | return pVCpu->cpum.s.Guest.msrEFER;
|
---|
1150 | }
|
---|
1151 |
|
---|
1152 |
|
---|
1153 | /**
|
---|
1154 | * Looks up a CPUID leaf in the CPUID leaf array, no subleaf.
|
---|
1155 | *
|
---|
1156 | * @returns Pointer to the leaf if found, NULL if not.
|
---|
1157 | *
|
---|
1158 | * @param pVM The cross context VM structure.
|
---|
1159 | * @param uLeaf The leaf to get.
|
---|
1160 | */
|
---|
1161 | PCPUMCPUIDLEAF cpumCpuIdGetLeaf(PVM pVM, uint32_t uLeaf)
|
---|
1162 | {
|
---|
1163 | unsigned iEnd = pVM->cpum.s.GuestInfo.cCpuIdLeaves;
|
---|
1164 | if (iEnd)
|
---|
1165 | {
|
---|
1166 | unsigned iStart = 0;
|
---|
1167 | PCPUMCPUIDLEAF paLeaves = pVM->cpum.s.GuestInfo.CTX_SUFF(paCpuIdLeaves);
|
---|
1168 | for (;;)
|
---|
1169 | {
|
---|
1170 | unsigned i = iStart + (iEnd - iStart) / 2U;
|
---|
1171 | if (uLeaf < paLeaves[i].uLeaf)
|
---|
1172 | {
|
---|
1173 | if (i <= iStart)
|
---|
1174 | return NULL;
|
---|
1175 | iEnd = i;
|
---|
1176 | }
|
---|
1177 | else if (uLeaf > paLeaves[i].uLeaf)
|
---|
1178 | {
|
---|
1179 | i += 1;
|
---|
1180 | if (i >= iEnd)
|
---|
1181 | return NULL;
|
---|
1182 | iStart = i;
|
---|
1183 | }
|
---|
1184 | else
|
---|
1185 | {
|
---|
1186 | if (RT_LIKELY(paLeaves[i].fSubLeafMask == 0 && paLeaves[i].uSubLeaf == 0))
|
---|
1187 | return &paLeaves[i];
|
---|
1188 |
|
---|
1189 | /* This shouldn't normally happen. But in case the it does due
|
---|
1190 | to user configuration overrids or something, just return the
|
---|
1191 | first sub-leaf. */
|
---|
1192 | AssertMsgFailed(("uLeaf=%#x fSubLeafMask=%#x uSubLeaf=%#x\n",
|
---|
1193 | uLeaf, paLeaves[i].fSubLeafMask, paLeaves[i].uSubLeaf));
|
---|
1194 | while ( paLeaves[i].uSubLeaf != 0
|
---|
1195 | && i > 0
|
---|
1196 | && uLeaf == paLeaves[i - 1].uLeaf)
|
---|
1197 | i--;
|
---|
1198 | return &paLeaves[i];
|
---|
1199 | }
|
---|
1200 | }
|
---|
1201 | }
|
---|
1202 |
|
---|
1203 | return NULL;
|
---|
1204 | }
|
---|
1205 |
|
---|
1206 |
|
---|
1207 | /**
|
---|
1208 | * Looks up a CPUID leaf in the CPUID leaf array.
|
---|
1209 | *
|
---|
1210 | * @returns Pointer to the leaf if found, NULL if not.
|
---|
1211 | *
|
---|
1212 | * @param pVM The cross context VM structure.
|
---|
1213 | * @param uLeaf The leaf to get.
|
---|
1214 | * @param uSubLeaf The subleaf, if applicable. Just pass 0 if it
|
---|
1215 | * isn't.
|
---|
1216 | * @param pfExactSubLeafHit Whether we've got an exact subleaf hit or not.
|
---|
1217 | */
|
---|
1218 | PCPUMCPUIDLEAF cpumCpuIdGetLeafEx(PVM pVM, uint32_t uLeaf, uint32_t uSubLeaf, bool *pfExactSubLeafHit)
|
---|
1219 | {
|
---|
1220 | unsigned iEnd = pVM->cpum.s.GuestInfo.cCpuIdLeaves;
|
---|
1221 | if (iEnd)
|
---|
1222 | {
|
---|
1223 | unsigned iStart = 0;
|
---|
1224 | PCPUMCPUIDLEAF paLeaves = pVM->cpum.s.GuestInfo.CTX_SUFF(paCpuIdLeaves);
|
---|
1225 | for (;;)
|
---|
1226 | {
|
---|
1227 | unsigned i = iStart + (iEnd - iStart) / 2U;
|
---|
1228 | if (uLeaf < paLeaves[i].uLeaf)
|
---|
1229 | {
|
---|
1230 | if (i <= iStart)
|
---|
1231 | return NULL;
|
---|
1232 | iEnd = i;
|
---|
1233 | }
|
---|
1234 | else if (uLeaf > paLeaves[i].uLeaf)
|
---|
1235 | {
|
---|
1236 | i += 1;
|
---|
1237 | if (i >= iEnd)
|
---|
1238 | return NULL;
|
---|
1239 | iStart = i;
|
---|
1240 | }
|
---|
1241 | else
|
---|
1242 | {
|
---|
1243 | uSubLeaf &= paLeaves[i].fSubLeafMask;
|
---|
1244 | if (uSubLeaf == paLeaves[i].uSubLeaf)
|
---|
1245 | *pfExactSubLeafHit = true;
|
---|
1246 | else
|
---|
1247 | {
|
---|
1248 | /* Find the right subleaf. We return the last one before
|
---|
1249 | uSubLeaf if we don't find an exact match. */
|
---|
1250 | if (uSubLeaf < paLeaves[i].uSubLeaf)
|
---|
1251 | while ( i > 0
|
---|
1252 | && uLeaf == paLeaves[i - 1].uLeaf
|
---|
1253 | && uSubLeaf <= paLeaves[i - 1].uSubLeaf)
|
---|
1254 | i--;
|
---|
1255 | else
|
---|
1256 | while ( i + 1 < pVM->cpum.s.GuestInfo.cCpuIdLeaves
|
---|
1257 | && uLeaf == paLeaves[i + 1].uLeaf
|
---|
1258 | && uSubLeaf >= paLeaves[i + 1].uSubLeaf)
|
---|
1259 | i++;
|
---|
1260 | *pfExactSubLeafHit = uSubLeaf == paLeaves[i].uSubLeaf;
|
---|
1261 | }
|
---|
1262 | return &paLeaves[i];
|
---|
1263 | }
|
---|
1264 | }
|
---|
1265 | }
|
---|
1266 |
|
---|
1267 | *pfExactSubLeafHit = false;
|
---|
1268 | return NULL;
|
---|
1269 | }
|
---|
1270 |
|
---|
1271 |
|
---|
1272 | /**
|
---|
1273 | * Gets a CPUID leaf.
|
---|
1274 | *
|
---|
1275 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1276 | * @param uLeaf The CPUID leaf to get.
|
---|
1277 | * @param uSubLeaf The CPUID sub-leaf to get, if applicable.
|
---|
1278 | * @param pEax Where to store the EAX value.
|
---|
1279 | * @param pEbx Where to store the EBX value.
|
---|
1280 | * @param pEcx Where to store the ECX value.
|
---|
1281 | * @param pEdx Where to store the EDX value.
|
---|
1282 | */
|
---|
1283 | VMMDECL(void) CPUMGetGuestCpuId(PVMCPU pVCpu, uint32_t uLeaf, uint32_t uSubLeaf,
|
---|
1284 | uint32_t *pEax, uint32_t *pEbx, uint32_t *pEcx, uint32_t *pEdx)
|
---|
1285 | {
|
---|
1286 | bool fExactSubLeafHit;
|
---|
1287 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1288 | PCCPUMCPUIDLEAF pLeaf = cpumCpuIdGetLeafEx(pVM, uLeaf, uSubLeaf, &fExactSubLeafHit);
|
---|
1289 | if (pLeaf)
|
---|
1290 | {
|
---|
1291 | AssertMsg(pLeaf->uLeaf == uLeaf, ("%#x %#x\n", pLeaf->uLeaf, uLeaf));
|
---|
1292 | if (fExactSubLeafHit)
|
---|
1293 | {
|
---|
1294 | *pEax = pLeaf->uEax;
|
---|
1295 | *pEbx = pLeaf->uEbx;
|
---|
1296 | *pEcx = pLeaf->uEcx;
|
---|
1297 | *pEdx = pLeaf->uEdx;
|
---|
1298 |
|
---|
1299 | /*
|
---|
1300 | * Deal with CPU specific information.
|
---|
1301 | */
|
---|
1302 | if (pLeaf->fFlags & ( CPUMCPUIDLEAF_F_CONTAINS_APIC_ID
|
---|
1303 | | CPUMCPUIDLEAF_F_CONTAINS_OSXSAVE
|
---|
1304 | | CPUMCPUIDLEAF_F_CONTAINS_APIC ))
|
---|
1305 | {
|
---|
1306 | if (uLeaf == 1)
|
---|
1307 | {
|
---|
1308 | /* EBX: Bits 31-24: Initial APIC ID. */
|
---|
1309 | Assert(pVCpu->idCpu <= 255);
|
---|
1310 | AssertMsg((pLeaf->uEbx >> 24) == 0, ("%#x\n", pLeaf->uEbx)); /* raw-mode assumption */
|
---|
1311 | *pEbx = (pLeaf->uEbx & UINT32_C(0x00ffffff)) | (pVCpu->idCpu << 24);
|
---|
1312 |
|
---|
1313 | /* EDX: Bit 9: AND with APICBASE.EN. */
|
---|
1314 | if (!pVCpu->cpum.s.fCpuIdApicFeatureVisible && (pLeaf->fFlags & CPUMCPUIDLEAF_F_CONTAINS_APIC))
|
---|
1315 | *pEdx &= ~X86_CPUID_FEATURE_EDX_APIC;
|
---|
1316 |
|
---|
1317 | /* ECX: Bit 27: CR4.OSXSAVE mirror. */
|
---|
1318 | *pEcx = (pLeaf->uEcx & ~X86_CPUID_FEATURE_ECX_OSXSAVE)
|
---|
1319 | | (pVCpu->cpum.s.Guest.cr4 & X86_CR4_OSXSAVE ? X86_CPUID_FEATURE_ECX_OSXSAVE : 0);
|
---|
1320 | }
|
---|
1321 | else if (uLeaf == 0xb)
|
---|
1322 | {
|
---|
1323 | /* EDX: Initial extended APIC ID. */
|
---|
1324 | AssertMsg(pLeaf->uEdx == 0, ("%#x\n", pLeaf->uEdx)); /* raw-mode assumption */
|
---|
1325 | *pEdx = pVCpu->idCpu;
|
---|
1326 | Assert(!(pLeaf->fFlags & ~(CPUMCPUIDLEAF_F_CONTAINS_APIC_ID | CPUMCPUIDLEAF_F_INTEL_TOPOLOGY_SUBLEAVES)));
|
---|
1327 | }
|
---|
1328 | else if (uLeaf == UINT32_C(0x8000001e))
|
---|
1329 | {
|
---|
1330 | /* EAX: Initial extended APIC ID. */
|
---|
1331 | AssertMsg(pLeaf->uEax == 0, ("%#x\n", pLeaf->uEax)); /* raw-mode assumption */
|
---|
1332 | *pEax = pVCpu->idCpu;
|
---|
1333 | Assert(!(pLeaf->fFlags & ~CPUMCPUIDLEAF_F_CONTAINS_APIC_ID));
|
---|
1334 | }
|
---|
1335 | else if (uLeaf == UINT32_C(0x80000001))
|
---|
1336 | {
|
---|
1337 | /* EDX: Bit 9: AND with APICBASE.EN. */
|
---|
1338 | if (!pVCpu->cpum.s.fCpuIdApicFeatureVisible)
|
---|
1339 | *pEdx &= ~X86_CPUID_AMD_FEATURE_EDX_APIC;
|
---|
1340 | Assert(!(pLeaf->fFlags & ~CPUMCPUIDLEAF_F_CONTAINS_APIC));
|
---|
1341 | }
|
---|
1342 | else
|
---|
1343 | AssertMsgFailed(("uLeaf=%#x\n", uLeaf));
|
---|
1344 | }
|
---|
1345 | }
|
---|
1346 | /*
|
---|
1347 | * Out of range sub-leaves aren't quite as easy and pretty as we emulate
|
---|
1348 | * them here, but we do the best we can here...
|
---|
1349 | */
|
---|
1350 | else
|
---|
1351 | {
|
---|
1352 | *pEax = *pEbx = *pEcx = *pEdx = 0;
|
---|
1353 | if (pLeaf->fFlags & CPUMCPUIDLEAF_F_INTEL_TOPOLOGY_SUBLEAVES)
|
---|
1354 | {
|
---|
1355 | *pEcx = uSubLeaf & 0xff;
|
---|
1356 | *pEdx = pVCpu->idCpu;
|
---|
1357 | }
|
---|
1358 | }
|
---|
1359 | }
|
---|
1360 | else
|
---|
1361 | {
|
---|
1362 | /*
|
---|
1363 | * Different CPUs have different ways of dealing with unknown CPUID leaves.
|
---|
1364 | */
|
---|
1365 | switch (pVM->cpum.s.GuestInfo.enmUnknownCpuIdMethod)
|
---|
1366 | {
|
---|
1367 | default:
|
---|
1368 | AssertFailed();
|
---|
1369 | RT_FALL_THRU();
|
---|
1370 | case CPUMUNKNOWNCPUID_DEFAULTS:
|
---|
1371 | case CPUMUNKNOWNCPUID_LAST_STD_LEAF: /* ASSUME this is executed */
|
---|
1372 | case CPUMUNKNOWNCPUID_LAST_STD_LEAF_WITH_ECX: /** @todo Implement CPUMUNKNOWNCPUID_LAST_STD_LEAF_WITH_ECX */
|
---|
1373 | *pEax = pVM->cpum.s.GuestInfo.DefCpuId.uEax;
|
---|
1374 | *pEbx = pVM->cpum.s.GuestInfo.DefCpuId.uEbx;
|
---|
1375 | *pEcx = pVM->cpum.s.GuestInfo.DefCpuId.uEcx;
|
---|
1376 | *pEdx = pVM->cpum.s.GuestInfo.DefCpuId.uEdx;
|
---|
1377 | break;
|
---|
1378 | case CPUMUNKNOWNCPUID_PASSTHRU:
|
---|
1379 | *pEax = uLeaf;
|
---|
1380 | *pEbx = 0;
|
---|
1381 | *pEcx = uSubLeaf;
|
---|
1382 | *pEdx = 0;
|
---|
1383 | break;
|
---|
1384 | }
|
---|
1385 | }
|
---|
1386 | Log2(("CPUMGetGuestCpuId: uLeaf=%#010x/%#010x %RX32 %RX32 %RX32 %RX32\n", uLeaf, uSubLeaf, *pEax, *pEbx, *pEcx, *pEdx));
|
---|
1387 | }
|
---|
1388 |
|
---|
1389 |
|
---|
1390 | /**
|
---|
1391 | * Sets the visibility of the X86_CPUID_FEATURE_EDX_APIC and
|
---|
1392 | * X86_CPUID_AMD_FEATURE_EDX_APIC CPUID bits.
|
---|
1393 | *
|
---|
1394 | * @returns Previous value.
|
---|
1395 | * @param pVCpu The cross context virtual CPU structure to make the
|
---|
1396 | * change on. Usually the calling EMT.
|
---|
1397 | * @param fVisible Whether to make it visible (true) or hide it (false).
|
---|
1398 | *
|
---|
1399 | * @remarks This is "VMMDECL" so that it still links with
|
---|
1400 | * the old APIC code which is in VBoxDD2 and not in
|
---|
1401 | * the VMM module.
|
---|
1402 | */
|
---|
1403 | VMMDECL(bool) CPUMSetGuestCpuIdPerCpuApicFeature(PVMCPU pVCpu, bool fVisible)
|
---|
1404 | {
|
---|
1405 | bool fOld = pVCpu->cpum.s.fCpuIdApicFeatureVisible;
|
---|
1406 | pVCpu->cpum.s.fCpuIdApicFeatureVisible = fVisible;
|
---|
1407 |
|
---|
1408 | #ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
1409 | /*
|
---|
1410 | * Patch manager saved state legacy pain.
|
---|
1411 | */
|
---|
1412 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1413 | PCPUMCPUIDLEAF pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x00000001));
|
---|
1414 | if (pLeaf)
|
---|
1415 | {
|
---|
1416 | if (fVisible || (pLeaf->fFlags & CPUMCPUIDLEAF_F_CONTAINS_APIC))
|
---|
1417 | pVM->cpum.s.aGuestCpuIdPatmStd[1].uEdx = pLeaf->uEdx;
|
---|
1418 | else
|
---|
1419 | pVM->cpum.s.aGuestCpuIdPatmStd[1].uEdx = pLeaf->uEdx & ~X86_CPUID_FEATURE_EDX_APIC;
|
---|
1420 | }
|
---|
1421 |
|
---|
1422 | pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x80000001));
|
---|
1423 | if (pLeaf)
|
---|
1424 | {
|
---|
1425 | if (fVisible || (pLeaf->fFlags & CPUMCPUIDLEAF_F_CONTAINS_APIC))
|
---|
1426 | pVM->cpum.s.aGuestCpuIdPatmExt[1].uEdx = pLeaf->uEdx;
|
---|
1427 | else
|
---|
1428 | pVM->cpum.s.aGuestCpuIdPatmExt[1].uEdx = pLeaf->uEdx & ~X86_CPUID_AMD_FEATURE_EDX_APIC;
|
---|
1429 | }
|
---|
1430 | #endif
|
---|
1431 |
|
---|
1432 | return fOld;
|
---|
1433 | }
|
---|
1434 |
|
---|
1435 |
|
---|
1436 | /**
|
---|
1437 | * Gets the host CPU vendor.
|
---|
1438 | *
|
---|
1439 | * @returns CPU vendor.
|
---|
1440 | * @param pVM The cross context VM structure.
|
---|
1441 | */
|
---|
1442 | VMMDECL(CPUMCPUVENDOR) CPUMGetHostCpuVendor(PVM pVM)
|
---|
1443 | {
|
---|
1444 | return (CPUMCPUVENDOR)pVM->cpum.s.HostFeatures.enmCpuVendor;
|
---|
1445 | }
|
---|
1446 |
|
---|
1447 |
|
---|
1448 | /**
|
---|
1449 | * Gets the CPU vendor.
|
---|
1450 | *
|
---|
1451 | * @returns CPU vendor.
|
---|
1452 | * @param pVM The cross context VM structure.
|
---|
1453 | */
|
---|
1454 | VMMDECL(CPUMCPUVENDOR) CPUMGetGuestCpuVendor(PVM pVM)
|
---|
1455 | {
|
---|
1456 | return (CPUMCPUVENDOR)pVM->cpum.s.GuestFeatures.enmCpuVendor;
|
---|
1457 | }
|
---|
1458 |
|
---|
1459 |
|
---|
1460 | VMMDECL(int) CPUMSetGuestDR0(PVMCPU pVCpu, uint64_t uDr0)
|
---|
1461 | {
|
---|
1462 | pVCpu->cpum.s.Guest.dr[0] = uDr0;
|
---|
1463 | return CPUMRecalcHyperDRx(pVCpu, 0, false);
|
---|
1464 | }
|
---|
1465 |
|
---|
1466 |
|
---|
1467 | VMMDECL(int) CPUMSetGuestDR1(PVMCPU pVCpu, uint64_t uDr1)
|
---|
1468 | {
|
---|
1469 | pVCpu->cpum.s.Guest.dr[1] = uDr1;
|
---|
1470 | return CPUMRecalcHyperDRx(pVCpu, 1, false);
|
---|
1471 | }
|
---|
1472 |
|
---|
1473 |
|
---|
1474 | VMMDECL(int) CPUMSetGuestDR2(PVMCPU pVCpu, uint64_t uDr2)
|
---|
1475 | {
|
---|
1476 | pVCpu->cpum.s.Guest.dr[2] = uDr2;
|
---|
1477 | return CPUMRecalcHyperDRx(pVCpu, 2, false);
|
---|
1478 | }
|
---|
1479 |
|
---|
1480 |
|
---|
1481 | VMMDECL(int) CPUMSetGuestDR3(PVMCPU pVCpu, uint64_t uDr3)
|
---|
1482 | {
|
---|
1483 | pVCpu->cpum.s.Guest.dr[3] = uDr3;
|
---|
1484 | return CPUMRecalcHyperDRx(pVCpu, 3, false);
|
---|
1485 | }
|
---|
1486 |
|
---|
1487 |
|
---|
1488 | VMMDECL(int) CPUMSetGuestDR6(PVMCPU pVCpu, uint64_t uDr6)
|
---|
1489 | {
|
---|
1490 | pVCpu->cpum.s.Guest.dr[6] = uDr6;
|
---|
1491 | return VINF_SUCCESS; /* No need to recalc. */
|
---|
1492 | }
|
---|
1493 |
|
---|
1494 |
|
---|
1495 | VMMDECL(int) CPUMSetGuestDR7(PVMCPU pVCpu, uint64_t uDr7)
|
---|
1496 | {
|
---|
1497 | pVCpu->cpum.s.Guest.dr[7] = uDr7;
|
---|
1498 | return CPUMRecalcHyperDRx(pVCpu, 7, false);
|
---|
1499 | }
|
---|
1500 |
|
---|
1501 |
|
---|
1502 | VMMDECL(int) CPUMSetGuestDRx(PVMCPU pVCpu, uint32_t iReg, uint64_t Value)
|
---|
1503 | {
|
---|
1504 | AssertReturn(iReg <= DISDREG_DR7, VERR_INVALID_PARAMETER);
|
---|
1505 | /* DR4 is an alias for DR6, and DR5 is an alias for DR7. */
|
---|
1506 | if (iReg == 4 || iReg == 5)
|
---|
1507 | iReg += 2;
|
---|
1508 | pVCpu->cpum.s.Guest.dr[iReg] = Value;
|
---|
1509 | return CPUMRecalcHyperDRx(pVCpu, iReg, false);
|
---|
1510 | }
|
---|
1511 |
|
---|
1512 |
|
---|
1513 | /**
|
---|
1514 | * Recalculates the hypervisor DRx register values based on current guest
|
---|
1515 | * registers and DBGF breakpoints, updating changed registers depending on the
|
---|
1516 | * context.
|
---|
1517 | *
|
---|
1518 | * This is called whenever a guest DRx register is modified (any context) and
|
---|
1519 | * when DBGF sets a hardware breakpoint (ring-3 only, rendezvous).
|
---|
1520 | *
|
---|
1521 | * In raw-mode context this function will reload any (hyper) DRx registers which
|
---|
1522 | * comes out with a different value. It may also have to save the host debug
|
---|
1523 | * registers if that haven't been done already. In this context though, we'll
|
---|
1524 | * be intercepting and emulating all DRx accesses, so the hypervisor DRx values
|
---|
1525 | * are only important when breakpoints are actually enabled.
|
---|
1526 | *
|
---|
1527 | * In ring-0 (HM) context DR0-3 will be relocated by us, while DR7 will be
|
---|
1528 | * reloaded by the HM code if it changes. Further more, we will only use the
|
---|
1529 | * combined register set when the VBox debugger is actually using hardware BPs,
|
---|
1530 | * when it isn't we'll keep the guest DR0-3 + (maybe) DR6 loaded (DR6 doesn't
|
---|
1531 | * concern us here).
|
---|
1532 | *
|
---|
1533 | * In ring-3 we won't be loading anything, so well calculate hypervisor values
|
---|
1534 | * all the time.
|
---|
1535 | *
|
---|
1536 | * @returns VINF_SUCCESS.
|
---|
1537 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1538 | * @param iGstReg The guest debug register number that was modified.
|
---|
1539 | * UINT8_MAX if not guest register.
|
---|
1540 | * @param fForceHyper Used in HM to force hyper registers because of single
|
---|
1541 | * stepping.
|
---|
1542 | */
|
---|
1543 | VMMDECL(int) CPUMRecalcHyperDRx(PVMCPU pVCpu, uint8_t iGstReg, bool fForceHyper)
|
---|
1544 | {
|
---|
1545 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1546 | #ifndef IN_RING0
|
---|
1547 | RT_NOREF_PV(iGstReg);
|
---|
1548 | #endif
|
---|
1549 |
|
---|
1550 | /*
|
---|
1551 | * Compare the DR7s first.
|
---|
1552 | *
|
---|
1553 | * We only care about the enabled flags. GD is virtualized when we
|
---|
1554 | * dispatch the #DB, we never enable it. The DBGF DR7 value is will
|
---|
1555 | * always have the LE and GE bits set, so no need to check and disable
|
---|
1556 | * stuff if they're cleared like we have to for the guest DR7.
|
---|
1557 | */
|
---|
1558 | RTGCUINTREG uGstDr7 = CPUMGetGuestDR7(pVCpu);
|
---|
1559 | if (!(uGstDr7 & (X86_DR7_LE | X86_DR7_GE)))
|
---|
1560 | uGstDr7 = 0;
|
---|
1561 | else if (!(uGstDr7 & X86_DR7_LE))
|
---|
1562 | uGstDr7 &= ~X86_DR7_LE_ALL;
|
---|
1563 | else if (!(uGstDr7 & X86_DR7_GE))
|
---|
1564 | uGstDr7 &= ~X86_DR7_GE_ALL;
|
---|
1565 |
|
---|
1566 | const RTGCUINTREG uDbgfDr7 = DBGFBpGetDR7(pVM);
|
---|
1567 |
|
---|
1568 | #ifdef IN_RING0
|
---|
1569 | if (!fForceHyper && (pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HYPER))
|
---|
1570 | fForceHyper = true;
|
---|
1571 | #endif
|
---|
1572 | if ( (!VM_IS_RAW_MODE_ENABLED(pVCpu->CTX_SUFF(pVM)) && !fForceHyper ? uDbgfDr7 : (uGstDr7 | uDbgfDr7))
|
---|
1573 | & X86_DR7_ENABLED_MASK)
|
---|
1574 | {
|
---|
1575 | Assert(!CPUMIsGuestDebugStateActive(pVCpu));
|
---|
1576 | #ifdef IN_RC
|
---|
1577 | bool const fRawModeEnabled = true;
|
---|
1578 | #elif defined(IN_RING3)
|
---|
1579 | bool const fRawModeEnabled = VM_IS_RAW_MODE_ENABLED(pVM);
|
---|
1580 | #endif
|
---|
1581 |
|
---|
1582 | /*
|
---|
1583 | * Ok, something is enabled. Recalc each of the breakpoints, taking
|
---|
1584 | * the VM debugger ones of the guest ones. In raw-mode context we will
|
---|
1585 | * not allow breakpoints with values inside the hypervisor area.
|
---|
1586 | */
|
---|
1587 | RTGCUINTREG uNewDr7 = X86_DR7_GE | X86_DR7_LE | X86_DR7_RA1_MASK;
|
---|
1588 |
|
---|
1589 | /* bp 0 */
|
---|
1590 | RTGCUINTREG uNewDr0;
|
---|
1591 | if (uDbgfDr7 & (X86_DR7_L0 | X86_DR7_G0))
|
---|
1592 | {
|
---|
1593 | uNewDr7 |= uDbgfDr7 & (X86_DR7_L0 | X86_DR7_G0 | X86_DR7_RW0_MASK | X86_DR7_LEN0_MASK);
|
---|
1594 | uNewDr0 = DBGFBpGetDR0(pVM);
|
---|
1595 | }
|
---|
1596 | else if (uGstDr7 & (X86_DR7_L0 | X86_DR7_G0))
|
---|
1597 | {
|
---|
1598 | uNewDr0 = CPUMGetGuestDR0(pVCpu);
|
---|
1599 | #ifndef IN_RING0
|
---|
1600 | if (fRawModeEnabled && MMHyperIsInsideArea(pVM, uNewDr0))
|
---|
1601 | uNewDr0 = 0;
|
---|
1602 | else
|
---|
1603 | #endif
|
---|
1604 | uNewDr7 |= uGstDr7 & (X86_DR7_L0 | X86_DR7_G0 | X86_DR7_RW0_MASK | X86_DR7_LEN0_MASK);
|
---|
1605 | }
|
---|
1606 | else
|
---|
1607 | uNewDr0 = 0;
|
---|
1608 |
|
---|
1609 | /* bp 1 */
|
---|
1610 | RTGCUINTREG uNewDr1;
|
---|
1611 | if (uDbgfDr7 & (X86_DR7_L1 | X86_DR7_G1))
|
---|
1612 | {
|
---|
1613 | uNewDr7 |= uDbgfDr7 & (X86_DR7_L1 | X86_DR7_G1 | X86_DR7_RW1_MASK | X86_DR7_LEN1_MASK);
|
---|
1614 | uNewDr1 = DBGFBpGetDR1(pVM);
|
---|
1615 | }
|
---|
1616 | else if (uGstDr7 & (X86_DR7_L1 | X86_DR7_G1))
|
---|
1617 | {
|
---|
1618 | uNewDr1 = CPUMGetGuestDR1(pVCpu);
|
---|
1619 | #ifndef IN_RING0
|
---|
1620 | if (fRawModeEnabled && MMHyperIsInsideArea(pVM, uNewDr1))
|
---|
1621 | uNewDr1 = 0;
|
---|
1622 | else
|
---|
1623 | #endif
|
---|
1624 | uNewDr7 |= uGstDr7 & (X86_DR7_L1 | X86_DR7_G1 | X86_DR7_RW1_MASK | X86_DR7_LEN1_MASK);
|
---|
1625 | }
|
---|
1626 | else
|
---|
1627 | uNewDr1 = 0;
|
---|
1628 |
|
---|
1629 | /* bp 2 */
|
---|
1630 | RTGCUINTREG uNewDr2;
|
---|
1631 | if (uDbgfDr7 & (X86_DR7_L2 | X86_DR7_G2))
|
---|
1632 | {
|
---|
1633 | uNewDr7 |= uDbgfDr7 & (X86_DR7_L2 | X86_DR7_G2 | X86_DR7_RW2_MASK | X86_DR7_LEN2_MASK);
|
---|
1634 | uNewDr2 = DBGFBpGetDR2(pVM);
|
---|
1635 | }
|
---|
1636 | else if (uGstDr7 & (X86_DR7_L2 | X86_DR7_G2))
|
---|
1637 | {
|
---|
1638 | uNewDr2 = CPUMGetGuestDR2(pVCpu);
|
---|
1639 | #ifndef IN_RING0
|
---|
1640 | if (fRawModeEnabled && MMHyperIsInsideArea(pVM, uNewDr2))
|
---|
1641 | uNewDr2 = 0;
|
---|
1642 | else
|
---|
1643 | #endif
|
---|
1644 | uNewDr7 |= uGstDr7 & (X86_DR7_L2 | X86_DR7_G2 | X86_DR7_RW2_MASK | X86_DR7_LEN2_MASK);
|
---|
1645 | }
|
---|
1646 | else
|
---|
1647 | uNewDr2 = 0;
|
---|
1648 |
|
---|
1649 | /* bp 3 */
|
---|
1650 | RTGCUINTREG uNewDr3;
|
---|
1651 | if (uDbgfDr7 & (X86_DR7_L3 | X86_DR7_G3))
|
---|
1652 | {
|
---|
1653 | uNewDr7 |= uDbgfDr7 & (X86_DR7_L3 | X86_DR7_G3 | X86_DR7_RW3_MASK | X86_DR7_LEN3_MASK);
|
---|
1654 | uNewDr3 = DBGFBpGetDR3(pVM);
|
---|
1655 | }
|
---|
1656 | else if (uGstDr7 & (X86_DR7_L3 | X86_DR7_G3))
|
---|
1657 | {
|
---|
1658 | uNewDr3 = CPUMGetGuestDR3(pVCpu);
|
---|
1659 | #ifndef IN_RING0
|
---|
1660 | if (fRawModeEnabled && MMHyperIsInsideArea(pVM, uNewDr3))
|
---|
1661 | uNewDr3 = 0;
|
---|
1662 | else
|
---|
1663 | #endif
|
---|
1664 | uNewDr7 |= uGstDr7 & (X86_DR7_L3 | X86_DR7_G3 | X86_DR7_RW3_MASK | X86_DR7_LEN3_MASK);
|
---|
1665 | }
|
---|
1666 | else
|
---|
1667 | uNewDr3 = 0;
|
---|
1668 |
|
---|
1669 | /*
|
---|
1670 | * Apply the updates.
|
---|
1671 | */
|
---|
1672 | #ifdef IN_RC
|
---|
1673 | /* Make sure to save host registers first. */
|
---|
1674 | if (!(pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HOST))
|
---|
1675 | {
|
---|
1676 | if (!(pVCpu->cpum.s.fUseFlags & CPUM_USE_DEBUG_REGS_HOST))
|
---|
1677 | {
|
---|
1678 | pVCpu->cpum.s.Host.dr6 = ASMGetDR6();
|
---|
1679 | pVCpu->cpum.s.Host.dr7 = ASMGetDR7();
|
---|
1680 | }
|
---|
1681 | pVCpu->cpum.s.Host.dr0 = ASMGetDR0();
|
---|
1682 | pVCpu->cpum.s.Host.dr1 = ASMGetDR1();
|
---|
1683 | pVCpu->cpum.s.Host.dr2 = ASMGetDR2();
|
---|
1684 | pVCpu->cpum.s.Host.dr3 = ASMGetDR3();
|
---|
1685 | pVCpu->cpum.s.fUseFlags |= CPUM_USED_DEBUG_REGS_HOST | CPUM_USE_DEBUG_REGS_HYPER | CPUM_USED_DEBUG_REGS_HYPER;
|
---|
1686 |
|
---|
1687 | /* We haven't loaded any hyper DRxes yet, so we'll have to load them all now. */
|
---|
1688 | pVCpu->cpum.s.Hyper.dr[0] = uNewDr0;
|
---|
1689 | ASMSetDR0(uNewDr0);
|
---|
1690 | pVCpu->cpum.s.Hyper.dr[1] = uNewDr1;
|
---|
1691 | ASMSetDR1(uNewDr1);
|
---|
1692 | pVCpu->cpum.s.Hyper.dr[2] = uNewDr2;
|
---|
1693 | ASMSetDR2(uNewDr2);
|
---|
1694 | pVCpu->cpum.s.Hyper.dr[3] = uNewDr3;
|
---|
1695 | ASMSetDR3(uNewDr3);
|
---|
1696 | ASMSetDR6(X86_DR6_INIT_VAL);
|
---|
1697 | pVCpu->cpum.s.Hyper.dr[7] = uNewDr7;
|
---|
1698 | ASMSetDR7(uNewDr7);
|
---|
1699 | }
|
---|
1700 | else
|
---|
1701 | #endif
|
---|
1702 | {
|
---|
1703 | pVCpu->cpum.s.fUseFlags |= CPUM_USE_DEBUG_REGS_HYPER;
|
---|
1704 | if (uNewDr3 != pVCpu->cpum.s.Hyper.dr[3])
|
---|
1705 | CPUMSetHyperDR3(pVCpu, uNewDr3);
|
---|
1706 | if (uNewDr2 != pVCpu->cpum.s.Hyper.dr[2])
|
---|
1707 | CPUMSetHyperDR2(pVCpu, uNewDr2);
|
---|
1708 | if (uNewDr1 != pVCpu->cpum.s.Hyper.dr[1])
|
---|
1709 | CPUMSetHyperDR1(pVCpu, uNewDr1);
|
---|
1710 | if (uNewDr0 != pVCpu->cpum.s.Hyper.dr[0])
|
---|
1711 | CPUMSetHyperDR0(pVCpu, uNewDr0);
|
---|
1712 | if (uNewDr7 != pVCpu->cpum.s.Hyper.dr[7])
|
---|
1713 | CPUMSetHyperDR7(pVCpu, uNewDr7);
|
---|
1714 | }
|
---|
1715 | }
|
---|
1716 | #ifdef IN_RING0
|
---|
1717 | else if (CPUMIsGuestDebugStateActive(pVCpu))
|
---|
1718 | {
|
---|
1719 | /*
|
---|
1720 | * Reload the register that was modified. Normally this won't happen
|
---|
1721 | * as we won't intercept DRx writes when not having the hyper debug
|
---|
1722 | * state loaded, but in case we do for some reason we'll simply deal
|
---|
1723 | * with it.
|
---|
1724 | */
|
---|
1725 | switch (iGstReg)
|
---|
1726 | {
|
---|
1727 | case 0: ASMSetDR0(CPUMGetGuestDR0(pVCpu)); break;
|
---|
1728 | case 1: ASMSetDR1(CPUMGetGuestDR1(pVCpu)); break;
|
---|
1729 | case 2: ASMSetDR2(CPUMGetGuestDR2(pVCpu)); break;
|
---|
1730 | case 3: ASMSetDR3(CPUMGetGuestDR3(pVCpu)); break;
|
---|
1731 | default:
|
---|
1732 | AssertReturn(iGstReg != UINT8_MAX, VERR_INTERNAL_ERROR_3);
|
---|
1733 | }
|
---|
1734 | }
|
---|
1735 | #endif
|
---|
1736 | else
|
---|
1737 | {
|
---|
1738 | /*
|
---|
1739 | * No active debug state any more. In raw-mode this means we have to
|
---|
1740 | * make sure DR7 has everything disabled now, if we armed it already.
|
---|
1741 | * In ring-0 we might end up here when just single stepping.
|
---|
1742 | */
|
---|
1743 | #if defined(IN_RC) || defined(IN_RING0)
|
---|
1744 | if (pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HYPER)
|
---|
1745 | {
|
---|
1746 | # ifdef IN_RC
|
---|
1747 | ASMSetDR7(X86_DR7_INIT_VAL);
|
---|
1748 | # endif
|
---|
1749 | if (pVCpu->cpum.s.Hyper.dr[0])
|
---|
1750 | ASMSetDR0(0);
|
---|
1751 | if (pVCpu->cpum.s.Hyper.dr[1])
|
---|
1752 | ASMSetDR1(0);
|
---|
1753 | if (pVCpu->cpum.s.Hyper.dr[2])
|
---|
1754 | ASMSetDR2(0);
|
---|
1755 | if (pVCpu->cpum.s.Hyper.dr[3])
|
---|
1756 | ASMSetDR3(0);
|
---|
1757 | pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_DEBUG_REGS_HYPER;
|
---|
1758 | }
|
---|
1759 | #endif
|
---|
1760 | pVCpu->cpum.s.fUseFlags &= ~CPUM_USE_DEBUG_REGS_HYPER;
|
---|
1761 |
|
---|
1762 | /* Clear all the registers. */
|
---|
1763 | pVCpu->cpum.s.Hyper.dr[7] = X86_DR7_RA1_MASK;
|
---|
1764 | pVCpu->cpum.s.Hyper.dr[3] = 0;
|
---|
1765 | pVCpu->cpum.s.Hyper.dr[2] = 0;
|
---|
1766 | pVCpu->cpum.s.Hyper.dr[1] = 0;
|
---|
1767 | pVCpu->cpum.s.Hyper.dr[0] = 0;
|
---|
1768 |
|
---|
1769 | }
|
---|
1770 | Log2(("CPUMRecalcHyperDRx: fUseFlags=%#x %RGr %RGr %RGr %RGr %RGr %RGr\n",
|
---|
1771 | pVCpu->cpum.s.fUseFlags, pVCpu->cpum.s.Hyper.dr[0], pVCpu->cpum.s.Hyper.dr[1],
|
---|
1772 | pVCpu->cpum.s.Hyper.dr[2], pVCpu->cpum.s.Hyper.dr[3], pVCpu->cpum.s.Hyper.dr[6],
|
---|
1773 | pVCpu->cpum.s.Hyper.dr[7]));
|
---|
1774 |
|
---|
1775 | return VINF_SUCCESS;
|
---|
1776 | }
|
---|
1777 |
|
---|
1778 |
|
---|
1779 | /**
|
---|
1780 | * Set the guest XCR0 register.
|
---|
1781 | *
|
---|
1782 | * Will load additional state if the FPU state is already loaded (in ring-0 &
|
---|
1783 | * raw-mode context).
|
---|
1784 | *
|
---|
1785 | * @returns VINF_SUCCESS on success, VERR_CPUM_RAISE_GP_0 on invalid input
|
---|
1786 | * value.
|
---|
1787 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
1788 | * @param uNewValue The new value.
|
---|
1789 | * @thread EMT(pVCpu)
|
---|
1790 | */
|
---|
1791 | VMM_INT_DECL(int) CPUMSetGuestXcr0(PVMCPU pVCpu, uint64_t uNewValue)
|
---|
1792 | {
|
---|
1793 | if ( (uNewValue & ~pVCpu->CTX_SUFF(pVM)->cpum.s.fXStateGuestMask) == 0
|
---|
1794 | /* The X87 bit cannot be cleared. */
|
---|
1795 | && (uNewValue & XSAVE_C_X87)
|
---|
1796 | /* AVX requires SSE. */
|
---|
1797 | && (uNewValue & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM
|
---|
1798 | /* AVX-512 requires YMM, SSE and all of its three components to be enabled. */
|
---|
1799 | && ( (uNewValue & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
|
---|
1800 | || (uNewValue & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
|
---|
1801 | == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI) )
|
---|
1802 | )
|
---|
1803 | {
|
---|
1804 | pVCpu->cpum.s.Guest.aXcr[0] = uNewValue;
|
---|
1805 |
|
---|
1806 | /* If more state components are enabled, we need to take care to load
|
---|
1807 | them if the FPU/SSE state is already loaded. May otherwise leak
|
---|
1808 | host state to the guest. */
|
---|
1809 | uint64_t fNewComponents = ~pVCpu->cpum.s.Guest.fXStateMask & uNewValue;
|
---|
1810 | if (fNewComponents)
|
---|
1811 | {
|
---|
1812 | #if defined(IN_RING0) || defined(IN_RC)
|
---|
1813 | if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST)
|
---|
1814 | {
|
---|
1815 | if (pVCpu->cpum.s.Guest.fXStateMask != 0)
|
---|
1816 | /* Adding more components. */
|
---|
1817 | ASMXRstor(pVCpu->cpum.s.Guest.CTX_SUFF(pXState), fNewComponents);
|
---|
1818 | else
|
---|
1819 | {
|
---|
1820 | /* We're switching from FXSAVE/FXRSTOR to XSAVE/XRSTOR. */
|
---|
1821 | pVCpu->cpum.s.Guest.fXStateMask |= XSAVE_C_X87 | XSAVE_C_SSE;
|
---|
1822 | if (uNewValue & ~(XSAVE_C_X87 | XSAVE_C_SSE))
|
---|
1823 | ASMXRstor(pVCpu->cpum.s.Guest.CTX_SUFF(pXState), uNewValue & ~(XSAVE_C_X87 | XSAVE_C_SSE));
|
---|
1824 | }
|
---|
1825 | }
|
---|
1826 | #endif
|
---|
1827 | pVCpu->cpum.s.Guest.fXStateMask |= uNewValue;
|
---|
1828 | }
|
---|
1829 | return VINF_SUCCESS;
|
---|
1830 | }
|
---|
1831 | return VERR_CPUM_RAISE_GP_0;
|
---|
1832 | }
|
---|
1833 |
|
---|
1834 |
|
---|
1835 | /**
|
---|
1836 | * Tests if the guest has No-Execute Page Protection Enabled (NXE).
|
---|
1837 | *
|
---|
1838 | * @returns true if in real mode, otherwise false.
|
---|
1839 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1840 | */
|
---|
1841 | VMMDECL(bool) CPUMIsGuestNXEnabled(PVMCPU pVCpu)
|
---|
1842 | {
|
---|
1843 | return !!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE);
|
---|
1844 | }
|
---|
1845 |
|
---|
1846 |
|
---|
1847 | /**
|
---|
1848 | * Tests if the guest has the Page Size Extension enabled (PSE).
|
---|
1849 | *
|
---|
1850 | * @returns true if in real mode, otherwise false.
|
---|
1851 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1852 | */
|
---|
1853 | VMMDECL(bool) CPUMIsGuestPageSizeExtEnabled(PVMCPU pVCpu)
|
---|
1854 | {
|
---|
1855 | /* PAE or AMD64 implies support for big pages regardless of CR4.PSE */
|
---|
1856 | return !!(pVCpu->cpum.s.Guest.cr4 & (X86_CR4_PSE | X86_CR4_PAE));
|
---|
1857 | }
|
---|
1858 |
|
---|
1859 |
|
---|
1860 | /**
|
---|
1861 | * Tests if the guest has the paging enabled (PG).
|
---|
1862 | *
|
---|
1863 | * @returns true if in real mode, otherwise false.
|
---|
1864 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1865 | */
|
---|
1866 | VMMDECL(bool) CPUMIsGuestPagingEnabled(PVMCPU pVCpu)
|
---|
1867 | {
|
---|
1868 | return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PG);
|
---|
1869 | }
|
---|
1870 |
|
---|
1871 |
|
---|
1872 | /**
|
---|
1873 | * Tests if the guest has the paging enabled (PG).
|
---|
1874 | *
|
---|
1875 | * @returns true if in real mode, otherwise false.
|
---|
1876 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1877 | */
|
---|
1878 | VMMDECL(bool) CPUMIsGuestR0WriteProtEnabled(PVMCPU pVCpu)
|
---|
1879 | {
|
---|
1880 | return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_WP);
|
---|
1881 | }
|
---|
1882 |
|
---|
1883 |
|
---|
1884 | /**
|
---|
1885 | * Tests if the guest is running in real mode or not.
|
---|
1886 | *
|
---|
1887 | * @returns true if in real mode, otherwise false.
|
---|
1888 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1889 | */
|
---|
1890 | VMMDECL(bool) CPUMIsGuestInRealMode(PVMCPU pVCpu)
|
---|
1891 | {
|
---|
1892 | return !(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE);
|
---|
1893 | }
|
---|
1894 |
|
---|
1895 |
|
---|
1896 | /**
|
---|
1897 | * Tests if the guest is running in real or virtual 8086 mode.
|
---|
1898 | *
|
---|
1899 | * @returns @c true if it is, @c false if not.
|
---|
1900 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1901 | */
|
---|
1902 | VMMDECL(bool) CPUMIsGuestInRealOrV86Mode(PVMCPU pVCpu)
|
---|
1903 | {
|
---|
1904 | return !(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE)
|
---|
1905 | || pVCpu->cpum.s.Guest.eflags.Bits.u1VM; /** @todo verify that this cannot be set in long mode. */
|
---|
1906 | }
|
---|
1907 |
|
---|
1908 |
|
---|
1909 | /**
|
---|
1910 | * Tests if the guest is running in protected or not.
|
---|
1911 | *
|
---|
1912 | * @returns true if in protected mode, otherwise false.
|
---|
1913 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1914 | */
|
---|
1915 | VMMDECL(bool) CPUMIsGuestInProtectedMode(PVMCPU pVCpu)
|
---|
1916 | {
|
---|
1917 | return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE);
|
---|
1918 | }
|
---|
1919 |
|
---|
1920 |
|
---|
1921 | /**
|
---|
1922 | * Tests if the guest is running in paged protected or not.
|
---|
1923 | *
|
---|
1924 | * @returns true if in paged protected mode, otherwise false.
|
---|
1925 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1926 | */
|
---|
1927 | VMMDECL(bool) CPUMIsGuestInPagedProtectedMode(PVMCPU pVCpu)
|
---|
1928 | {
|
---|
1929 | return (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG);
|
---|
1930 | }
|
---|
1931 |
|
---|
1932 |
|
---|
1933 | /**
|
---|
1934 | * Tests if the guest is running in long mode or not.
|
---|
1935 | *
|
---|
1936 | * @returns true if in long mode, otherwise false.
|
---|
1937 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1938 | */
|
---|
1939 | VMMDECL(bool) CPUMIsGuestInLongMode(PVMCPU pVCpu)
|
---|
1940 | {
|
---|
1941 | return (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA) == MSR_K6_EFER_LMA;
|
---|
1942 | }
|
---|
1943 |
|
---|
1944 |
|
---|
1945 | /**
|
---|
1946 | * Tests if the guest is running in PAE mode or not.
|
---|
1947 | *
|
---|
1948 | * @returns true if in PAE mode, otherwise false.
|
---|
1949 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1950 | */
|
---|
1951 | VMMDECL(bool) CPUMIsGuestInPAEMode(PVMCPU pVCpu)
|
---|
1952 | {
|
---|
1953 | /* Intel mentions EFER.LMA and EFER.LME in different parts of their spec. We shall use EFER.LMA rather
|
---|
1954 | than EFER.LME as it reflects if the CPU has entered paging with EFER.LME set. */
|
---|
1955 | return (pVCpu->cpum.s.Guest.cr4 & X86_CR4_PAE)
|
---|
1956 | && (pVCpu->cpum.s.Guest.cr0 & X86_CR0_PG)
|
---|
1957 | && !(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA);
|
---|
1958 | }
|
---|
1959 |
|
---|
1960 |
|
---|
1961 | /**
|
---|
1962 | * Tests if the guest is running in 64 bits mode or not.
|
---|
1963 | *
|
---|
1964 | * @returns true if in 64 bits protected mode, otherwise false.
|
---|
1965 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
1966 | */
|
---|
1967 | VMMDECL(bool) CPUMIsGuestIn64BitCode(PVMCPU pVCpu)
|
---|
1968 | {
|
---|
1969 | if (!CPUMIsGuestInLongMode(pVCpu))
|
---|
1970 | return false;
|
---|
1971 | CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs);
|
---|
1972 | return pVCpu->cpum.s.Guest.cs.Attr.n.u1Long;
|
---|
1973 | }
|
---|
1974 |
|
---|
1975 |
|
---|
1976 | /**
|
---|
1977 | * Helper for CPUMIsGuestIn64BitCodeEx that handles lazy resolving of hidden CS
|
---|
1978 | * registers.
|
---|
1979 | *
|
---|
1980 | * @returns true if in 64 bits protected mode, otherwise false.
|
---|
1981 | * @param pCtx Pointer to the current guest CPU context.
|
---|
1982 | */
|
---|
1983 | VMM_INT_DECL(bool) CPUMIsGuestIn64BitCodeSlow(PCPUMCTX pCtx)
|
---|
1984 | {
|
---|
1985 | return CPUMIsGuestIn64BitCode(CPUM_GUEST_CTX_TO_VMCPU(pCtx));
|
---|
1986 | }
|
---|
1987 |
|
---|
1988 | #ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
1989 |
|
---|
1990 | /**
|
---|
1991 | *
|
---|
1992 | * @returns @c true if we've entered raw-mode and selectors with RPL=1 are
|
---|
1993 | * really RPL=0, @c false if we've not (RPL=1 really is RPL=1).
|
---|
1994 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
1995 | */
|
---|
1996 | VMM_INT_DECL(bool) CPUMIsGuestInRawMode(PVMCPU pVCpu)
|
---|
1997 | {
|
---|
1998 | return pVCpu->cpum.s.fRawEntered;
|
---|
1999 | }
|
---|
2000 |
|
---|
2001 | /**
|
---|
2002 | * Transforms the guest CPU state to raw-ring mode.
|
---|
2003 | *
|
---|
2004 | * This function will change the any of the cs and ss register with DPL=0 to DPL=1.
|
---|
2005 | *
|
---|
2006 | * @returns VBox status code. (recompiler failure)
|
---|
2007 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2008 | * @see @ref pg_raw
|
---|
2009 | */
|
---|
2010 | VMM_INT_DECL(int) CPUMRawEnter(PVMCPU pVCpu)
|
---|
2011 | {
|
---|
2012 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2013 |
|
---|
2014 | Assert(!pVCpu->cpum.s.fRawEntered);
|
---|
2015 | Assert(!pVCpu->cpum.s.fRemEntered);
|
---|
2016 | PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
|
---|
2017 |
|
---|
2018 | /*
|
---|
2019 | * Are we in Ring-0?
|
---|
2020 | */
|
---|
2021 | if ( pCtx->ss.Sel
|
---|
2022 | && (pCtx->ss.Sel & X86_SEL_RPL) == 0
|
---|
2023 | && !pCtx->eflags.Bits.u1VM)
|
---|
2024 | {
|
---|
2025 | /*
|
---|
2026 | * Enter execution mode.
|
---|
2027 | */
|
---|
2028 | PATMRawEnter(pVM, pCtx);
|
---|
2029 |
|
---|
2030 | /*
|
---|
2031 | * Set CPL to Ring-1.
|
---|
2032 | */
|
---|
2033 | pCtx->ss.Sel |= 1;
|
---|
2034 | if ( pCtx->cs.Sel
|
---|
2035 | && (pCtx->cs.Sel & X86_SEL_RPL) == 0)
|
---|
2036 | pCtx->cs.Sel |= 1;
|
---|
2037 | }
|
---|
2038 | else
|
---|
2039 | {
|
---|
2040 | # ifdef VBOX_WITH_RAW_RING1
|
---|
2041 | if ( EMIsRawRing1Enabled(pVM)
|
---|
2042 | && !pCtx->eflags.Bits.u1VM
|
---|
2043 | && (pCtx->ss.Sel & X86_SEL_RPL) == 1)
|
---|
2044 | {
|
---|
2045 | /* Set CPL to Ring-2. */
|
---|
2046 | pCtx->ss.Sel = (pCtx->ss.Sel & ~X86_SEL_RPL) | 2;
|
---|
2047 | if (pCtx->cs.Sel && (pCtx->cs.Sel & X86_SEL_RPL) == 1)
|
---|
2048 | pCtx->cs.Sel = (pCtx->cs.Sel & ~X86_SEL_RPL) | 2;
|
---|
2049 | }
|
---|
2050 | # else
|
---|
2051 | AssertMsg((pCtx->ss.Sel & X86_SEL_RPL) >= 2 || pCtx->eflags.Bits.u1VM,
|
---|
2052 | ("ring-1 code not supported\n"));
|
---|
2053 | # endif
|
---|
2054 | /*
|
---|
2055 | * PATM takes care of IOPL and IF flags for Ring-3 and Ring-2 code as well.
|
---|
2056 | */
|
---|
2057 | PATMRawEnter(pVM, pCtx);
|
---|
2058 | }
|
---|
2059 |
|
---|
2060 | /*
|
---|
2061 | * Assert sanity.
|
---|
2062 | */
|
---|
2063 | AssertMsg((pCtx->eflags.u32 & X86_EFL_IF), ("X86_EFL_IF is clear\n"));
|
---|
2064 | AssertReleaseMsg(pCtx->eflags.Bits.u2IOPL == 0,
|
---|
2065 | ("X86_EFL_IOPL=%d CPL=%d\n", pCtx->eflags.Bits.u2IOPL, pCtx->ss.Sel & X86_SEL_RPL));
|
---|
2066 | Assert((pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PG | X86_CR0_PE)) == (X86_CR0_PG | X86_CR0_PE));
|
---|
2067 |
|
---|
2068 | pCtx->eflags.u32 |= X86_EFL_IF; /* paranoia */
|
---|
2069 |
|
---|
2070 | pVCpu->cpum.s.fRawEntered = true;
|
---|
2071 | return VINF_SUCCESS;
|
---|
2072 | }
|
---|
2073 |
|
---|
2074 |
|
---|
2075 | /**
|
---|
2076 | * Transforms the guest CPU state from raw-ring mode to correct values.
|
---|
2077 | *
|
---|
2078 | * This function will change any selector registers with DPL=1 to DPL=0.
|
---|
2079 | *
|
---|
2080 | * @returns Adjusted rc.
|
---|
2081 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2082 | * @param rc Raw mode return code
|
---|
2083 | * @see @ref pg_raw
|
---|
2084 | */
|
---|
2085 | VMM_INT_DECL(int) CPUMRawLeave(PVMCPU pVCpu, int rc)
|
---|
2086 | {
|
---|
2087 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2088 |
|
---|
2089 | /*
|
---|
2090 | * Don't leave if we've already left (in RC).
|
---|
2091 | */
|
---|
2092 | Assert(!pVCpu->cpum.s.fRemEntered);
|
---|
2093 | if (!pVCpu->cpum.s.fRawEntered)
|
---|
2094 | return rc;
|
---|
2095 | pVCpu->cpum.s.fRawEntered = false;
|
---|
2096 |
|
---|
2097 | PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
|
---|
2098 | Assert(pCtx->eflags.Bits.u1VM || (pCtx->ss.Sel & X86_SEL_RPL));
|
---|
2099 | AssertMsg(pCtx->eflags.Bits.u1VM || pCtx->eflags.Bits.u2IOPL < (unsigned)(pCtx->ss.Sel & X86_SEL_RPL),
|
---|
2100 | ("X86_EFL_IOPL=%d CPL=%d\n", pCtx->eflags.Bits.u2IOPL, pCtx->ss.Sel & X86_SEL_RPL));
|
---|
2101 |
|
---|
2102 | /*
|
---|
2103 | * Are we executing in raw ring-1?
|
---|
2104 | */
|
---|
2105 | if ( (pCtx->ss.Sel & X86_SEL_RPL) == 1
|
---|
2106 | && !pCtx->eflags.Bits.u1VM)
|
---|
2107 | {
|
---|
2108 | /*
|
---|
2109 | * Leave execution mode.
|
---|
2110 | */
|
---|
2111 | PATMRawLeave(pVM, pCtx, rc);
|
---|
2112 | /* Not quite sure if this is really required, but shouldn't harm (too much anyways). */
|
---|
2113 | /** @todo See what happens if we remove this. */
|
---|
2114 | if ((pCtx->ds.Sel & X86_SEL_RPL) == 1)
|
---|
2115 | pCtx->ds.Sel &= ~X86_SEL_RPL;
|
---|
2116 | if ((pCtx->es.Sel & X86_SEL_RPL) == 1)
|
---|
2117 | pCtx->es.Sel &= ~X86_SEL_RPL;
|
---|
2118 | if ((pCtx->fs.Sel & X86_SEL_RPL) == 1)
|
---|
2119 | pCtx->fs.Sel &= ~X86_SEL_RPL;
|
---|
2120 | if ((pCtx->gs.Sel & X86_SEL_RPL) == 1)
|
---|
2121 | pCtx->gs.Sel &= ~X86_SEL_RPL;
|
---|
2122 |
|
---|
2123 | /*
|
---|
2124 | * Ring-1 selector => Ring-0.
|
---|
2125 | */
|
---|
2126 | pCtx->ss.Sel &= ~X86_SEL_RPL;
|
---|
2127 | if ((pCtx->cs.Sel & X86_SEL_RPL) == 1)
|
---|
2128 | pCtx->cs.Sel &= ~X86_SEL_RPL;
|
---|
2129 | }
|
---|
2130 | else
|
---|
2131 | {
|
---|
2132 | /*
|
---|
2133 | * PATM is taking care of the IOPL and IF flags for us.
|
---|
2134 | */
|
---|
2135 | PATMRawLeave(pVM, pCtx, rc);
|
---|
2136 | if (!pCtx->eflags.Bits.u1VM)
|
---|
2137 | {
|
---|
2138 | # ifdef VBOX_WITH_RAW_RING1
|
---|
2139 | if ( EMIsRawRing1Enabled(pVM)
|
---|
2140 | && (pCtx->ss.Sel & X86_SEL_RPL) == 2)
|
---|
2141 | {
|
---|
2142 | /* Not quite sure if this is really required, but shouldn't harm (too much anyways). */
|
---|
2143 | /** @todo See what happens if we remove this. */
|
---|
2144 | if ((pCtx->ds.Sel & X86_SEL_RPL) == 2)
|
---|
2145 | pCtx->ds.Sel = (pCtx->ds.Sel & ~X86_SEL_RPL) | 1;
|
---|
2146 | if ((pCtx->es.Sel & X86_SEL_RPL) == 2)
|
---|
2147 | pCtx->es.Sel = (pCtx->es.Sel & ~X86_SEL_RPL) | 1;
|
---|
2148 | if ((pCtx->fs.Sel & X86_SEL_RPL) == 2)
|
---|
2149 | pCtx->fs.Sel = (pCtx->fs.Sel & ~X86_SEL_RPL) | 1;
|
---|
2150 | if ((pCtx->gs.Sel & X86_SEL_RPL) == 2)
|
---|
2151 | pCtx->gs.Sel = (pCtx->gs.Sel & ~X86_SEL_RPL) | 1;
|
---|
2152 |
|
---|
2153 | /*
|
---|
2154 | * Ring-2 selector => Ring-1.
|
---|
2155 | */
|
---|
2156 | pCtx->ss.Sel = (pCtx->ss.Sel & ~X86_SEL_RPL) | 1;
|
---|
2157 | if ((pCtx->cs.Sel & X86_SEL_RPL) == 2)
|
---|
2158 | pCtx->cs.Sel = (pCtx->cs.Sel & ~X86_SEL_RPL) | 1;
|
---|
2159 | }
|
---|
2160 | else
|
---|
2161 | {
|
---|
2162 | # endif
|
---|
2163 | /** @todo See what happens if we remove this. */
|
---|
2164 | if ((pCtx->ds.Sel & X86_SEL_RPL) == 1)
|
---|
2165 | pCtx->ds.Sel &= ~X86_SEL_RPL;
|
---|
2166 | if ((pCtx->es.Sel & X86_SEL_RPL) == 1)
|
---|
2167 | pCtx->es.Sel &= ~X86_SEL_RPL;
|
---|
2168 | if ((pCtx->fs.Sel & X86_SEL_RPL) == 1)
|
---|
2169 | pCtx->fs.Sel &= ~X86_SEL_RPL;
|
---|
2170 | if ((pCtx->gs.Sel & X86_SEL_RPL) == 1)
|
---|
2171 | pCtx->gs.Sel &= ~X86_SEL_RPL;
|
---|
2172 | # ifdef VBOX_WITH_RAW_RING1
|
---|
2173 | }
|
---|
2174 | # endif
|
---|
2175 | }
|
---|
2176 | }
|
---|
2177 |
|
---|
2178 | return rc;
|
---|
2179 | }
|
---|
2180 |
|
---|
2181 | #endif /* VBOX_WITH_RAW_MODE_NOT_R0 */
|
---|
2182 |
|
---|
2183 | /**
|
---|
2184 | * Updates the EFLAGS while we're in raw-mode.
|
---|
2185 | *
|
---|
2186 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2187 | * @param fEfl The new EFLAGS value.
|
---|
2188 | */
|
---|
2189 | VMMDECL(void) CPUMRawSetEFlags(PVMCPU pVCpu, uint32_t fEfl)
|
---|
2190 | {
|
---|
2191 | #ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
2192 | if (pVCpu->cpum.s.fRawEntered)
|
---|
2193 | PATMRawSetEFlags(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.s.Guest, fEfl);
|
---|
2194 | else
|
---|
2195 | #endif
|
---|
2196 | pVCpu->cpum.s.Guest.eflags.u32 = fEfl;
|
---|
2197 | }
|
---|
2198 |
|
---|
2199 |
|
---|
2200 | /**
|
---|
2201 | * Gets the EFLAGS while we're in raw-mode.
|
---|
2202 | *
|
---|
2203 | * @returns The eflags.
|
---|
2204 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
2205 | */
|
---|
2206 | VMMDECL(uint32_t) CPUMRawGetEFlags(PVMCPU pVCpu)
|
---|
2207 | {
|
---|
2208 | #ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
2209 | if (pVCpu->cpum.s.fRawEntered)
|
---|
2210 | return PATMRawGetEFlags(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.s.Guest);
|
---|
2211 | #endif
|
---|
2212 | return pVCpu->cpum.s.Guest.eflags.u32;
|
---|
2213 | }
|
---|
2214 |
|
---|
2215 |
|
---|
2216 | /**
|
---|
2217 | * Sets the specified changed flags (CPUM_CHANGED_*).
|
---|
2218 | *
|
---|
2219 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
2220 | * @param fChangedAdd The changed flags to add.
|
---|
2221 | */
|
---|
2222 | VMMDECL(void) CPUMSetChangedFlags(PVMCPU pVCpu, uint32_t fChangedAdd)
|
---|
2223 | {
|
---|
2224 | pVCpu->cpum.s.fChanged |= fChangedAdd;
|
---|
2225 | }
|
---|
2226 |
|
---|
2227 |
|
---|
2228 | /**
|
---|
2229 | * Checks if the CPU supports the XSAVE and XRSTOR instruction.
|
---|
2230 | *
|
---|
2231 | * @returns true if supported.
|
---|
2232 | * @returns false if not supported.
|
---|
2233 | * @param pVM The cross context VM structure.
|
---|
2234 | */
|
---|
2235 | VMMDECL(bool) CPUMSupportsXSave(PVM pVM)
|
---|
2236 | {
|
---|
2237 | return pVM->cpum.s.HostFeatures.fXSaveRstor != 0;
|
---|
2238 | }
|
---|
2239 |
|
---|
2240 |
|
---|
2241 | /**
|
---|
2242 | * Checks if the host OS uses the SYSENTER / SYSEXIT instructions.
|
---|
2243 | * @returns true if used.
|
---|
2244 | * @returns false if not used.
|
---|
2245 | * @param pVM The cross context VM structure.
|
---|
2246 | */
|
---|
2247 | VMMDECL(bool) CPUMIsHostUsingSysEnter(PVM pVM)
|
---|
2248 | {
|
---|
2249 | return RT_BOOL(pVM->cpum.s.fHostUseFlags & CPUM_USE_SYSENTER);
|
---|
2250 | }
|
---|
2251 |
|
---|
2252 |
|
---|
2253 | /**
|
---|
2254 | * Checks if the host OS uses the SYSCALL / SYSRET instructions.
|
---|
2255 | * @returns true if used.
|
---|
2256 | * @returns false if not used.
|
---|
2257 | * @param pVM The cross context VM structure.
|
---|
2258 | */
|
---|
2259 | VMMDECL(bool) CPUMIsHostUsingSysCall(PVM pVM)
|
---|
2260 | {
|
---|
2261 | return RT_BOOL(pVM->cpum.s.fHostUseFlags & CPUM_USE_SYSCALL);
|
---|
2262 | }
|
---|
2263 |
|
---|
2264 | #ifdef IN_RC
|
---|
2265 |
|
---|
2266 | /**
|
---|
2267 | * Lazily sync in the FPU/XMM state.
|
---|
2268 | *
|
---|
2269 | * @returns VBox status code.
|
---|
2270 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2271 | */
|
---|
2272 | VMMDECL(int) CPUMHandleLazyFPU(PVMCPU pVCpu)
|
---|
2273 | {
|
---|
2274 | return cpumHandleLazyFPUAsm(&pVCpu->cpum.s);
|
---|
2275 | }
|
---|
2276 |
|
---|
2277 | #endif /* !IN_RC */
|
---|
2278 |
|
---|
2279 | /**
|
---|
2280 | * Checks if we activated the FPU/XMM state of the guest OS.
|
---|
2281 | *
|
---|
2282 | * This differs from CPUMIsGuestFPUStateLoaded() in that it refers to the next
|
---|
2283 | * time we'll be executing guest code, so it may return true for 64-on-32 when
|
---|
2284 | * we still haven't actually loaded the FPU status, just scheduled it to be
|
---|
2285 | * loaded the next time we go thru the world switcher (CPUM_SYNC_FPU_STATE).
|
---|
2286 | *
|
---|
2287 | * @returns true / false.
|
---|
2288 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2289 | */
|
---|
2290 | VMMDECL(bool) CPUMIsGuestFPUStateActive(PVMCPU pVCpu)
|
---|
2291 | {
|
---|
2292 | return RT_BOOL(pVCpu->cpum.s.fUseFlags & (CPUM_USED_FPU_GUEST | CPUM_SYNC_FPU_STATE));
|
---|
2293 | }
|
---|
2294 |
|
---|
2295 |
|
---|
2296 | /**
|
---|
2297 | * Checks if we've really loaded the FPU/XMM state of the guest OS.
|
---|
2298 | *
|
---|
2299 | * @returns true / false.
|
---|
2300 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2301 | */
|
---|
2302 | VMMDECL(bool) CPUMIsGuestFPUStateLoaded(PVMCPU pVCpu)
|
---|
2303 | {
|
---|
2304 | return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST);
|
---|
2305 | }
|
---|
2306 |
|
---|
2307 |
|
---|
2308 | /**
|
---|
2309 | * Checks if we saved the FPU/XMM state of the host OS.
|
---|
2310 | *
|
---|
2311 | * @returns true / false.
|
---|
2312 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2313 | */
|
---|
2314 | VMMDECL(bool) CPUMIsHostFPUStateSaved(PVMCPU pVCpu)
|
---|
2315 | {
|
---|
2316 | return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_HOST);
|
---|
2317 | }
|
---|
2318 |
|
---|
2319 |
|
---|
2320 | /**
|
---|
2321 | * Checks if the guest debug state is active.
|
---|
2322 | *
|
---|
2323 | * @returns boolean
|
---|
2324 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
2325 | */
|
---|
2326 | VMMDECL(bool) CPUMIsGuestDebugStateActive(PVMCPU pVCpu)
|
---|
2327 | {
|
---|
2328 | return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_GUEST);
|
---|
2329 | }
|
---|
2330 |
|
---|
2331 |
|
---|
2332 | /**
|
---|
2333 | * Checks if the guest debug state is to be made active during the world-switch
|
---|
2334 | * (currently only used for the 32->64 switcher case).
|
---|
2335 | *
|
---|
2336 | * @returns boolean
|
---|
2337 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
2338 | */
|
---|
2339 | VMMDECL(bool) CPUMIsGuestDebugStateActivePending(PVMCPU pVCpu)
|
---|
2340 | {
|
---|
2341 | return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_SYNC_DEBUG_REGS_GUEST);
|
---|
2342 | }
|
---|
2343 |
|
---|
2344 |
|
---|
2345 | /**
|
---|
2346 | * Checks if the hyper debug state is active.
|
---|
2347 | *
|
---|
2348 | * @returns boolean
|
---|
2349 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
2350 | */
|
---|
2351 | VMMDECL(bool) CPUMIsHyperDebugStateActive(PVMCPU pVCpu)
|
---|
2352 | {
|
---|
2353 | return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HYPER);
|
---|
2354 | }
|
---|
2355 |
|
---|
2356 |
|
---|
2357 | /**
|
---|
2358 | * Checks if the hyper debug state is to be made active during the world-switch
|
---|
2359 | * (currently only used for the 32->64 switcher case).
|
---|
2360 | *
|
---|
2361 | * @returns boolean
|
---|
2362 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
2363 | */
|
---|
2364 | VMMDECL(bool) CPUMIsHyperDebugStateActivePending(PVMCPU pVCpu)
|
---|
2365 | {
|
---|
2366 | return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_SYNC_DEBUG_REGS_HYPER);
|
---|
2367 | }
|
---|
2368 |
|
---|
2369 |
|
---|
2370 | /**
|
---|
2371 | * Mark the guest's debug state as inactive.
|
---|
2372 | *
|
---|
2373 | * @returns boolean
|
---|
2374 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
2375 | * @todo This API doesn't make sense any more.
|
---|
2376 | */
|
---|
2377 | VMMDECL(void) CPUMDeactivateGuestDebugState(PVMCPU pVCpu)
|
---|
2378 | {
|
---|
2379 | Assert(!(pVCpu->cpum.s.fUseFlags & (CPUM_USED_DEBUG_REGS_GUEST | CPUM_USED_DEBUG_REGS_HYPER | CPUM_USED_DEBUG_REGS_HOST)));
|
---|
2380 | NOREF(pVCpu);
|
---|
2381 | }
|
---|
2382 |
|
---|
2383 |
|
---|
2384 | /**
|
---|
2385 | * Get the current privilege level of the guest.
|
---|
2386 | *
|
---|
2387 | * @returns CPL
|
---|
2388 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
2389 | */
|
---|
2390 | VMMDECL(uint32_t) CPUMGetGuestCPL(PVMCPU pVCpu)
|
---|
2391 | {
|
---|
2392 | /*
|
---|
2393 | * CPL can reliably be found in SS.DPL (hidden regs valid) or SS if not.
|
---|
2394 | *
|
---|
2395 | * Note! We used to check CS.DPL here, assuming it was always equal to
|
---|
2396 | * CPL even if a conforming segment was loaded. But this turned out to
|
---|
2397 | * only apply to older AMD-V. With VT-x we had an ACP2 regression
|
---|
2398 | * during install after a far call to ring 2 with VT-x. Then on newer
|
---|
2399 | * AMD-V CPUs we have to move the VMCB.guest.u8CPL into cs.Attr.n.u2Dpl
|
---|
2400 | * as well as ss.Attr.n.u2Dpl to make this (and other) code work right.
|
---|
2401 | *
|
---|
2402 | * So, forget CS.DPL, always use SS.DPL.
|
---|
2403 | *
|
---|
2404 | * Note! The SS RPL is always equal to the CPL, while the CS RPL
|
---|
2405 | * isn't necessarily equal if the segment is conforming.
|
---|
2406 | * See section 4.11.1 in the AMD manual.
|
---|
2407 | *
|
---|
2408 | * Update: Where the heck does it say CS.RPL can differ from CPL other than
|
---|
2409 | * right after real->prot mode switch and when in V8086 mode? That
|
---|
2410 | * section says the RPL specified in a direct transfere (call, jmp,
|
---|
2411 | * ret) is not the one loaded into CS. Besides, if CS.RPL != CPL
|
---|
2412 | * it would be impossible for an exception handle or the iret
|
---|
2413 | * instruction to figure out whether SS:ESP are part of the frame
|
---|
2414 | * or not. VBox or qemu bug must've lead to this misconception.
|
---|
2415 | *
|
---|
2416 | * Update2: On an AMD bulldozer system here, I've no trouble loading a null
|
---|
2417 | * selector into SS with an RPL other than the CPL when CPL != 3 and
|
---|
2418 | * we're in 64-bit mode. The intel dev box doesn't allow this, on
|
---|
2419 | * RPL = CPL. Weird.
|
---|
2420 | */
|
---|
2421 | uint32_t uCpl;
|
---|
2422 | if (pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE)
|
---|
2423 | {
|
---|
2424 | if (!pVCpu->cpum.s.Guest.eflags.Bits.u1VM)
|
---|
2425 | {
|
---|
2426 | if (CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.s.Guest.ss))
|
---|
2427 | uCpl = pVCpu->cpum.s.Guest.ss.Attr.n.u2Dpl;
|
---|
2428 | else
|
---|
2429 | {
|
---|
2430 | uCpl = (pVCpu->cpum.s.Guest.ss.Sel & X86_SEL_RPL);
|
---|
2431 | #ifdef VBOX_WITH_RAW_MODE_NOT_R0
|
---|
2432 | # ifdef VBOX_WITH_RAW_RING1
|
---|
2433 | if (pVCpu->cpum.s.fRawEntered)
|
---|
2434 | {
|
---|
2435 | if ( uCpl == 2
|
---|
2436 | && EMIsRawRing1Enabled(pVCpu->CTX_SUFF(pVM)))
|
---|
2437 | uCpl = 1;
|
---|
2438 | else if (uCpl == 1)
|
---|
2439 | uCpl = 0;
|
---|
2440 | }
|
---|
2441 | Assert(uCpl != 2); /* ring 2 support not allowed anymore. */
|
---|
2442 | # else
|
---|
2443 | if (uCpl == 1)
|
---|
2444 | uCpl = 0;
|
---|
2445 | # endif
|
---|
2446 | #endif
|
---|
2447 | }
|
---|
2448 | }
|
---|
2449 | else
|
---|
2450 | uCpl = 3; /* V86 has CPL=3; REM doesn't set DPL=3 in V8086 mode. See @bugref{5130}. */
|
---|
2451 | }
|
---|
2452 | else
|
---|
2453 | uCpl = 0; /* Real mode is zero; CPL set to 3 for VT-x real-mode emulation. */
|
---|
2454 | return uCpl;
|
---|
2455 | }
|
---|
2456 |
|
---|
2457 |
|
---|
2458 | /**
|
---|
2459 | * Gets the current guest CPU mode.
|
---|
2460 | *
|
---|
2461 | * If paging mode is what you need, check out PGMGetGuestMode().
|
---|
2462 | *
|
---|
2463 | * @returns The CPU mode.
|
---|
2464 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2465 | */
|
---|
2466 | VMMDECL(CPUMMODE) CPUMGetGuestMode(PVMCPU pVCpu)
|
---|
2467 | {
|
---|
2468 | CPUMMODE enmMode;
|
---|
2469 | if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE))
|
---|
2470 | enmMode = CPUMMODE_REAL;
|
---|
2471 | else if (!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA))
|
---|
2472 | enmMode = CPUMMODE_PROTECTED;
|
---|
2473 | else
|
---|
2474 | enmMode = CPUMMODE_LONG;
|
---|
2475 |
|
---|
2476 | return enmMode;
|
---|
2477 | }
|
---|
2478 |
|
---|
2479 |
|
---|
2480 | /**
|
---|
2481 | * Figure whether the CPU is currently executing 16, 32 or 64 bit code.
|
---|
2482 | *
|
---|
2483 | * @returns 16, 32 or 64.
|
---|
2484 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
2485 | */
|
---|
2486 | VMMDECL(uint32_t) CPUMGetGuestCodeBits(PVMCPU pVCpu)
|
---|
2487 | {
|
---|
2488 | if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE))
|
---|
2489 | return 16;
|
---|
2490 |
|
---|
2491 | if (pVCpu->cpum.s.Guest.eflags.Bits.u1VM)
|
---|
2492 | {
|
---|
2493 | Assert(!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA));
|
---|
2494 | return 16;
|
---|
2495 | }
|
---|
2496 |
|
---|
2497 | CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs);
|
---|
2498 | if ( pVCpu->cpum.s.Guest.cs.Attr.n.u1Long
|
---|
2499 | && (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA))
|
---|
2500 | return 64;
|
---|
2501 |
|
---|
2502 | if (pVCpu->cpum.s.Guest.cs.Attr.n.u1DefBig)
|
---|
2503 | return 32;
|
---|
2504 |
|
---|
2505 | return 16;
|
---|
2506 | }
|
---|
2507 |
|
---|
2508 |
|
---|
2509 | VMMDECL(DISCPUMODE) CPUMGetGuestDisMode(PVMCPU pVCpu)
|
---|
2510 | {
|
---|
2511 | if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE))
|
---|
2512 | return DISCPUMODE_16BIT;
|
---|
2513 |
|
---|
2514 | if (pVCpu->cpum.s.Guest.eflags.Bits.u1VM)
|
---|
2515 | {
|
---|
2516 | Assert(!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA));
|
---|
2517 | return DISCPUMODE_16BIT;
|
---|
2518 | }
|
---|
2519 |
|
---|
2520 | CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs);
|
---|
2521 | if ( pVCpu->cpum.s.Guest.cs.Attr.n.u1Long
|
---|
2522 | && (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA))
|
---|
2523 | return DISCPUMODE_64BIT;
|
---|
2524 |
|
---|
2525 | if (pVCpu->cpum.s.Guest.cs.Attr.n.u1DefBig)
|
---|
2526 | return DISCPUMODE_32BIT;
|
---|
2527 |
|
---|
2528 | return DISCPUMODE_16BIT;
|
---|
2529 | }
|
---|
2530 |
|
---|
2531 |
|
---|
2532 | /**
|
---|
2533 | * Gets the guest MXCSR_MASK value.
|
---|
2534 | *
|
---|
2535 | * This does not access the x87 state, but the value we determined at VM
|
---|
2536 | * initialization.
|
---|
2537 | *
|
---|
2538 | * @returns MXCSR mask.
|
---|
2539 | * @param pVM The cross context VM structure.
|
---|
2540 | */
|
---|
2541 | VMMDECL(uint32_t) CPUMGetGuestMxCsrMask(PVM pVM)
|
---|
2542 | {
|
---|
2543 | return pVM->cpum.s.GuestInfo.fMxCsrMask;
|
---|
2544 | }
|
---|
2545 |
|
---|
2546 |
|
---|
2547 | /**
|
---|
2548 | * Checks whether the SVM nested-guest is in a state to receive physical (APIC)
|
---|
2549 | * interrupts.
|
---|
2550 | *
|
---|
2551 | * @returns VBox status code.
|
---|
2552 | * @retval true if it's ready, false otherwise.
|
---|
2553 | *
|
---|
2554 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
2555 | * @param pCtx The guest-CPU context.
|
---|
2556 | *
|
---|
2557 | * @sa hmR0SvmCanNstGstTakePhysIntr.
|
---|
2558 | */
|
---|
2559 | VMM_INT_DECL(bool) CPUMCanSvmNstGstTakePhysIntr(PVMCPU pVCpu, PCCPUMCTX pCtx)
|
---|
2560 | {
|
---|
2561 | /** @todo Optimization: Avoid this function call and use a pointer to the
|
---|
2562 | * relevant eflags instead (setup during VMRUN instruction emulation). */
|
---|
2563 | #ifdef IN_RC
|
---|
2564 | RT_NOREF2(pVCpu, pCtx);
|
---|
2565 | AssertReleaseFailedReturn(false);
|
---|
2566 | #else
|
---|
2567 | Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
|
---|
2568 | Assert(pCtx->hwvirt.fGif);
|
---|
2569 |
|
---|
2570 | if (!pCtx->hwvirt.svm.fHMCachedVmcb)
|
---|
2571 | {
|
---|
2572 | PCSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
|
---|
2573 | X86EFLAGS fEFlags;
|
---|
2574 | if (pVmcbCtrl->IntCtrl.n.u1VIntrMasking)
|
---|
2575 | fEFlags.u = pCtx->hwvirt.svm.HostState.rflags.u;
|
---|
2576 | else
|
---|
2577 | fEFlags.u = pCtx->eflags.u;
|
---|
2578 |
|
---|
2579 | return fEFlags.Bits.u1IF;
|
---|
2580 | }
|
---|
2581 |
|
---|
2582 | return HMCanSvmNstGstTakePhysIntr(pVCpu, pCtx);
|
---|
2583 | #endif
|
---|
2584 | }
|
---|
2585 |
|
---|
2586 |
|
---|
2587 | /**
|
---|
2588 | * Checks whether the SVM nested-guest is in a state to receive virtual (setup
|
---|
2589 | * for injection by VMRUN instruction) interrupts.
|
---|
2590 | *
|
---|
2591 | * @returns VBox status code.
|
---|
2592 | * @retval true if it's ready, false otherwise.
|
---|
2593 | *
|
---|
2594 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
2595 | * @param pCtx The guest-CPU context.
|
---|
2596 | */
|
---|
2597 | VMM_INT_DECL(bool) CPUMCanSvmNstGstTakeVirtIntr(PVMCPU pVCpu, PCCPUMCTX pCtx)
|
---|
2598 | {
|
---|
2599 | #ifdef IN_RC
|
---|
2600 | RT_NOREF2(pVCpu, pCtx);
|
---|
2601 | AssertReleaseFailedReturn(false);
|
---|
2602 | #else
|
---|
2603 | Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
|
---|
2604 | Assert(pCtx->hwvirt.fGif);
|
---|
2605 |
|
---|
2606 | /*
|
---|
2607 | * Although at present, the V_TPR and V_INTR_PRIO fields are not modified
|
---|
2608 | * by SVM R0 code and we could inspect them directly here, we play it
|
---|
2609 | * safe and ask HM if it has cached the VMCB.
|
---|
2610 | */
|
---|
2611 | if (!pCtx->hwvirt.svm.fHMCachedVmcb)
|
---|
2612 | {
|
---|
2613 | PCSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
|
---|
2614 | if ( !pVmcbCtrl->IntCtrl.n.u1IgnoreTPR
|
---|
2615 | && pVmcbCtrl->IntCtrl.n.u4VIntrPrio <= pVmcbCtrl->IntCtrl.n.u8VTPR)
|
---|
2616 | return false;
|
---|
2617 |
|
---|
2618 | X86EFLAGS fEFlags;
|
---|
2619 | if (pVmcbCtrl->IntCtrl.n.u1VIntrMasking)
|
---|
2620 | fEFlags.u = pCtx->eflags.u;
|
---|
2621 | else
|
---|
2622 | fEFlags.u = pCtx->hwvirt.svm.HostState.rflags.u;
|
---|
2623 |
|
---|
2624 | return fEFlags.Bits.u1IF;
|
---|
2625 | }
|
---|
2626 |
|
---|
2627 | return HMCanSvmNstGstTakeVirtIntr(pVCpu, pCtx);
|
---|
2628 | #endif
|
---|
2629 | }
|
---|
2630 |
|
---|
2631 |
|
---|
2632 | /**
|
---|
2633 | * Gets the pending SVM nested-guest interrupt.
|
---|
2634 | *
|
---|
2635 | * @returns The nested-guest interrupt to inject.
|
---|
2636 | * @param pCtx The guest-CPU context.
|
---|
2637 | */
|
---|
2638 | VMM_INT_DECL(uint8_t) CPUMGetSvmNstGstInterrupt(PCCPUMCTX pCtx)
|
---|
2639 | {
|
---|
2640 | #ifdef IN_RC
|
---|
2641 | RT_NOREF(pCtx);
|
---|
2642 | AssertReleaseFailedReturn(0);
|
---|
2643 | #else
|
---|
2644 | PCSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl;
|
---|
2645 | return pVmcbCtrl->IntCtrl.n.u8VIntrVector;
|
---|
2646 | #endif
|
---|
2647 | }
|
---|
2648 |
|
---|
2649 |
|
---|
2650 | /**
|
---|
2651 | * Restores the host-state from the host-state save area as part of a \#VMEXIT.
|
---|
2652 | *
|
---|
2653 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
2654 | * @param pCtx The guest-CPU context.
|
---|
2655 | */
|
---|
2656 | VMM_INT_DECL(void) CPUMSvmVmExitRestoreHostState(PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
2657 | {
|
---|
2658 | /*
|
---|
2659 | * Reload the guest's "host state".
|
---|
2660 | */
|
---|
2661 | PSVMHOSTSTATE pHostState = &pCtx->hwvirt.svm.HostState;
|
---|
2662 | pCtx->es = pHostState->es;
|
---|
2663 | pCtx->cs = pHostState->cs;
|
---|
2664 | pCtx->ss = pHostState->ss;
|
---|
2665 | pCtx->ds = pHostState->ds;
|
---|
2666 | pCtx->gdtr = pHostState->gdtr;
|
---|
2667 | pCtx->idtr = pHostState->idtr;
|
---|
2668 | CPUMSetGuestMsrEferNoCheck(pVCpu, pCtx->msrEFER, pHostState->uEferMsr);
|
---|
2669 | CPUMSetGuestCR0(pVCpu, pHostState->uCr0 | X86_CR0_PE);
|
---|
2670 | pCtx->cr3 = pHostState->uCr3;
|
---|
2671 | CPUMSetGuestCR4(pVCpu, pHostState->uCr4);
|
---|
2672 | pCtx->rflags = pHostState->rflags;
|
---|
2673 | pCtx->rflags.Bits.u1VM = 0;
|
---|
2674 | pCtx->rip = pHostState->uRip;
|
---|
2675 | pCtx->rsp = pHostState->uRsp;
|
---|
2676 | pCtx->rax = pHostState->uRax;
|
---|
2677 | pCtx->dr[7] &= ~(X86_DR7_ENABLED_MASK | X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
|
---|
2678 | pCtx->dr[7] |= X86_DR7_RA1_MASK;
|
---|
2679 | Assert(pCtx->ss.Attr.n.u2Dpl == 0);
|
---|
2680 |
|
---|
2681 | /** @todo if RIP is not canonical or outside the CS segment limit, we need to
|
---|
2682 | * raise \#GP(0) in the guest. */
|
---|
2683 |
|
---|
2684 | /** @todo check the loaded host-state for consistency. Figure out what
|
---|
2685 | * exactly this involves? */
|
---|
2686 | }
|
---|
2687 |
|
---|
2688 |
|
---|
2689 | /**
|
---|
2690 | * Saves the host-state to the host-state save area as part of a VMRUN.
|
---|
2691 | *
|
---|
2692 | * @param pCtx The guest-CPU context.
|
---|
2693 | * @param cbInstr The length of the VMRUN instruction in bytes.
|
---|
2694 | */
|
---|
2695 | VMM_INT_DECL(void) CPUMSvmVmRunSaveHostState(PCPUMCTX pCtx, uint8_t cbInstr)
|
---|
2696 | {
|
---|
2697 | PSVMHOSTSTATE pHostState = &pCtx->hwvirt.svm.HostState;
|
---|
2698 | pHostState->es = pCtx->es;
|
---|
2699 | pHostState->cs = pCtx->cs;
|
---|
2700 | pHostState->ss = pCtx->ss;
|
---|
2701 | pHostState->ds = pCtx->ds;
|
---|
2702 | pHostState->gdtr = pCtx->gdtr;
|
---|
2703 | pHostState->idtr = pCtx->idtr;
|
---|
2704 | pHostState->uEferMsr = pCtx->msrEFER;
|
---|
2705 | pHostState->uCr0 = pCtx->cr0;
|
---|
2706 | pHostState->uCr3 = pCtx->cr3;
|
---|
2707 | pHostState->uCr4 = pCtx->cr4;
|
---|
2708 | pHostState->rflags = pCtx->rflags;
|
---|
2709 | pHostState->uRip = pCtx->rip + cbInstr;
|
---|
2710 | pHostState->uRsp = pCtx->rsp;
|
---|
2711 | pHostState->uRax = pCtx->rax;
|
---|
2712 | }
|
---|
2713 |
|
---|
2714 |
|
---|
2715 | /**
|
---|
2716 | * Applies the TSC offset of a nested-guest if any and returns the new TSC
|
---|
2717 | * value for the guest (or nested-guest).
|
---|
2718 | *
|
---|
2719 | * @returns The TSC offset after applying any nested-guest TSC offset.
|
---|
2720 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
2721 | * @param uTicks The guest TSC.
|
---|
2722 | *
|
---|
2723 | * @sa HMSvmNstGstApplyTscOffset.
|
---|
2724 | */
|
---|
2725 | VMM_INT_DECL(uint64_t) CPUMApplyNestedGuestTscOffset(PVMCPU pVCpu, uint64_t uTicks)
|
---|
2726 | {
|
---|
2727 | #ifndef IN_RC
|
---|
2728 | PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
|
---|
2729 | if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
|
---|
2730 | {
|
---|
2731 | if (!pCtx->hwvirt.svm.fHMCachedVmcb)
|
---|
2732 | {
|
---|
2733 | PCSVMVMCB pVmcb = pCtx->hwvirt.svm.CTX_SUFF(pVmcb);
|
---|
2734 | return uTicks + pVmcb->ctrl.u64TSCOffset;
|
---|
2735 | }
|
---|
2736 | return HMSvmNstGstApplyTscOffset(pVCpu, uTicks);
|
---|
2737 | }
|
---|
2738 |
|
---|
2739 | /** @todo Intel. */
|
---|
2740 | #else
|
---|
2741 | RT_NOREF(pVCpu);
|
---|
2742 | #endif
|
---|
2743 | return uTicks;
|
---|
2744 | }
|
---|
2745 |
|
---|