VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/CPUMAllRegs.cpp@ 7802

Last change on this file since 7802 was 7730, checked in by vboxsync, 17 years ago

Added CPUMSet/GetGuestEFER.
Corrected NX bit handling.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 43.5 KB
Line 
1/* $Id: CPUMAllRegs.cpp 7730 2008-04-03 16:30:35Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor(/Manager) - Gets and Sets.
4 */
5
6/*
7 * Copyright (C) 2006-2007 innotek GmbH
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Header Files *
21*******************************************************************************/
22#define LOG_GROUP LOG_GROUP_CPUM
23#include <VBox/cpum.h>
24#include <VBox/patm.h>
25#include <VBox/dbgf.h>
26#include <VBox/mm.h>
27#include "CPUMInternal.h"
28#include <VBox/vm.h>
29#include <VBox/err.h>
30#include <VBox/dis.h>
31#include <VBox/log.h>
32#include <iprt/assert.h>
33#include <iprt/asm.h>
34
35
36
37/** Disable stack frame pointer generation here. */
38#if defined(_MSC_VER) && !defined(DEBUG)
39# pragma optimize("y", off)
40#endif
41
42
43/**
44 * Sets or resets an alternative hypervisor context core.
45 *
46 * This is called when we get a hypervisor trap set switch the context
47 * core with the trap frame on the stack. It is called again to reset
48 * back to the default context core when resuming hypervisor execution.
49 *
50 * @param pVM The VM handle.
51 * @param pCtxCore Pointer to the alternative context core or NULL
52 * to go back to the default context core.
53 */
54CPUMDECL(void) CPUMHyperSetCtxCore(PVM pVM, PCPUMCTXCORE pCtxCore)
55{
56 LogFlow(("CPUMHyperSetCtxCore: %p/%p/%p -> %p\n", pVM->cpum.s.CTXALLSUFF(pHyperCore), pCtxCore));
57 if (!pCtxCore)
58 {
59 pCtxCore = CPUMCTX2CORE(&pVM->cpum.s.Hyper);
60 pVM->cpum.s.pHyperCoreR3 = (R3PTRTYPE(PCPUMCTXCORE))VM_R3_ADDR(pVM, pCtxCore);
61 pVM->cpum.s.pHyperCoreR0 = (R0PTRTYPE(PCPUMCTXCORE))VM_R0_ADDR(pVM, pCtxCore);
62 pVM->cpum.s.pHyperCoreGC = (GCPTRTYPE(PCPUMCTXCORE))VM_GUEST_ADDR(pVM, pCtxCore);
63 }
64 else
65 {
66 pVM->cpum.s.pHyperCoreR3 = (R3PTRTYPE(PCPUMCTXCORE))MMHyperCCToR3(pVM, pCtxCore);
67 pVM->cpum.s.pHyperCoreR0 = (R0PTRTYPE(PCPUMCTXCORE))MMHyperCCToR0(pVM, pCtxCore);
68 pVM->cpum.s.pHyperCoreGC = (GCPTRTYPE(PCPUMCTXCORE))MMHyperCCToGC(pVM, pCtxCore);
69 }
70}
71
72
73/**
74 * Gets the pointer to the internal CPUMCTXCORE structure for the hypervisor.
75 * This is only for reading in order to save a few calls.
76 *
77 * @param pVM Handle to the virtual machine.
78 */
79CPUMDECL(PCCPUMCTXCORE) CPUMGetHyperCtxCore(PVM pVM)
80{
81 return pVM->cpum.s.CTXALLSUFF(pHyperCore);
82}
83
84
85/**
86 * Queries the pointer to the internal CPUMCTX structure for the hypervisor.
87 *
88 * @returns VBox status code.
89 * @param pVM Handle to the virtual machine.
90 * @param ppCtx Receives the hyper CPUMCTX pointer when successful.
91 *
92 * @deprecated This will *not* (and has never) given the right picture of the
93 * hypervisor register state. With CPUMHyperSetCtxCore() this is
94 * getting much worse. So, use the individual functions for getting
95 * and esp. setting the hypervisor registers.
96 */
97CPUMDECL(int) CPUMQueryHyperCtxPtr(PVM pVM, PCPUMCTX *ppCtx)
98{
99 *ppCtx = &pVM->cpum.s.Hyper;
100 return VINF_SUCCESS;
101}
102
103CPUMDECL(void) CPUMSetHyperGDTR(PVM pVM, uint32_t addr, uint16_t limit)
104{
105 pVM->cpum.s.Hyper.gdtr.cbGdt = limit;
106 pVM->cpum.s.Hyper.gdtr.pGdt = addr;
107 pVM->cpum.s.Hyper.gdtrPadding = 0;
108 pVM->cpum.s.Hyper.gdtrPadding64 = 0;
109}
110
111CPUMDECL(void) CPUMSetHyperIDTR(PVM pVM, uint32_t addr, uint16_t limit)
112{
113 pVM->cpum.s.Hyper.idtr.cbIdt = limit;
114 pVM->cpum.s.Hyper.idtr.pIdt = addr;
115 pVM->cpum.s.Hyper.idtrPadding = 0;
116 pVM->cpum.s.Hyper.idtrPadding64 = 0;
117}
118
119CPUMDECL(void) CPUMSetHyperCR3(PVM pVM, uint32_t cr3)
120{
121 pVM->cpum.s.Hyper.cr3 = cr3;
122}
123
124CPUMDECL(void) CPUMSetHyperCS(PVM pVM, RTSEL SelCS)
125{
126 pVM->cpum.s.CTXALLSUFF(pHyperCore)->cs = SelCS;
127}
128
129CPUMDECL(void) CPUMSetHyperDS(PVM pVM, RTSEL SelDS)
130{
131 pVM->cpum.s.CTXALLSUFF(pHyperCore)->ds = SelDS;
132}
133
134CPUMDECL(void) CPUMSetHyperES(PVM pVM, RTSEL SelES)
135{
136 pVM->cpum.s.CTXALLSUFF(pHyperCore)->es = SelES;
137}
138
139CPUMDECL(void) CPUMSetHyperFS(PVM pVM, RTSEL SelFS)
140{
141 pVM->cpum.s.CTXALLSUFF(pHyperCore)->fs = SelFS;
142}
143
144CPUMDECL(void) CPUMSetHyperGS(PVM pVM, RTSEL SelGS)
145{
146 pVM->cpum.s.CTXALLSUFF(pHyperCore)->gs = SelGS;
147}
148
149CPUMDECL(void) CPUMSetHyperSS(PVM pVM, RTSEL SelSS)
150{
151 pVM->cpum.s.CTXALLSUFF(pHyperCore)->ss = SelSS;
152}
153
154CPUMDECL(void) CPUMSetHyperESP(PVM pVM, uint32_t u32ESP)
155{
156 pVM->cpum.s.CTXALLSUFF(pHyperCore)->esp = u32ESP;
157}
158
159CPUMDECL(int) CPUMSetHyperEFlags(PVM pVM, uint32_t Efl)
160{
161 pVM->cpum.s.CTXALLSUFF(pHyperCore)->eflags.u32 = Efl;
162 return VINF_SUCCESS;
163}
164
165CPUMDECL(void) CPUMSetHyperEIP(PVM pVM, uint32_t u32EIP)
166{
167 pVM->cpum.s.CTXALLSUFF(pHyperCore)->eip = u32EIP;
168}
169
170CPUMDECL(void) CPUMSetHyperTR(PVM pVM, RTSEL SelTR)
171{
172 pVM->cpum.s.Hyper.tr = SelTR;
173}
174
175CPUMDECL(void) CPUMSetHyperLDTR(PVM pVM, RTSEL SelLDTR)
176{
177 pVM->cpum.s.Hyper.ldtr = SelLDTR;
178}
179
180CPUMDECL(void) CPUMSetHyperDR0(PVM pVM, RTGCUINTREG uDr0)
181{
182 pVM->cpum.s.Hyper.dr0 = uDr0;
183 /** @todo in GC we must load it! */
184}
185
186CPUMDECL(void) CPUMSetHyperDR1(PVM pVM, RTGCUINTREG uDr1)
187{
188 pVM->cpum.s.Hyper.dr1 = uDr1;
189 /** @todo in GC we must load it! */
190}
191
192CPUMDECL(void) CPUMSetHyperDR2(PVM pVM, RTGCUINTREG uDr2)
193{
194 pVM->cpum.s.Hyper.dr2 = uDr2;
195 /** @todo in GC we must load it! */
196}
197
198CPUMDECL(void) CPUMSetHyperDR3(PVM pVM, RTGCUINTREG uDr3)
199{
200 pVM->cpum.s.Hyper.dr3 = uDr3;
201 /** @todo in GC we must load it! */
202}
203
204CPUMDECL(void) CPUMSetHyperDR6(PVM pVM, RTGCUINTREG uDr6)
205{
206 pVM->cpum.s.Hyper.dr6 = uDr6;
207 /** @todo in GC we must load it! */
208}
209
210CPUMDECL(void) CPUMSetHyperDR7(PVM pVM, RTGCUINTREG uDr7)
211{
212 pVM->cpum.s.Hyper.dr7 = uDr7;
213 /** @todo in GC we must load it! */
214}
215
216
217CPUMDECL(RTSEL) CPUMGetHyperCS(PVM pVM)
218{
219 return pVM->cpum.s.CTXALLSUFF(pHyperCore)->cs;
220}
221
222CPUMDECL(RTSEL) CPUMGetHyperDS(PVM pVM)
223{
224 return pVM->cpum.s.CTXALLSUFF(pHyperCore)->ds;
225}
226
227CPUMDECL(RTSEL) CPUMGetHyperES(PVM pVM)
228{
229 return pVM->cpum.s.CTXALLSUFF(pHyperCore)->es;
230}
231
232CPUMDECL(RTSEL) CPUMGetHyperFS(PVM pVM)
233{
234 return pVM->cpum.s.CTXALLSUFF(pHyperCore)->fs;
235}
236
237CPUMDECL(RTSEL) CPUMGetHyperGS(PVM pVM)
238{
239 return pVM->cpum.s.CTXALLSUFF(pHyperCore)->gs;
240}
241
242CPUMDECL(RTSEL) CPUMGetHyperSS(PVM pVM)
243{
244 return pVM->cpum.s.CTXALLSUFF(pHyperCore)->ss;
245}
246
247#if 0 /* these are not correct. */
248
249CPUMDECL(uint32_t) CPUMGetHyperCR0(PVM pVM)
250{
251 return pVM->cpum.s.Hyper.cr0;
252}
253
254CPUMDECL(uint32_t) CPUMGetHyperCR2(PVM pVM)
255{
256 return pVM->cpum.s.Hyper.cr2;
257}
258
259CPUMDECL(uint32_t) CPUMGetHyperCR3(PVM pVM)
260{
261 return pVM->cpum.s.Hyper.cr3;
262}
263
264CPUMDECL(uint32_t) CPUMGetHyperCR4(PVM pVM)
265{
266 return pVM->cpum.s.Hyper.cr4;
267}
268
269#endif /* not correct */
270
271CPUMDECL(uint32_t) CPUMGetHyperEAX(PVM pVM)
272{
273 return pVM->cpum.s.CTXALLSUFF(pHyperCore)->eax;
274}
275
276CPUMDECL(uint32_t) CPUMGetHyperEBX(PVM pVM)
277{
278 return pVM->cpum.s.CTXALLSUFF(pHyperCore)->ebx;
279}
280
281CPUMDECL(uint32_t) CPUMGetHyperECX(PVM pVM)
282{
283 return pVM->cpum.s.CTXALLSUFF(pHyperCore)->ecx;
284}
285
286CPUMDECL(uint32_t) CPUMGetHyperEDX(PVM pVM)
287{
288 return pVM->cpum.s.CTXALLSUFF(pHyperCore)->edx;
289}
290
291CPUMDECL(uint32_t) CPUMGetHyperESI(PVM pVM)
292{
293 return pVM->cpum.s.CTXALLSUFF(pHyperCore)->esi;
294}
295
296CPUMDECL(uint32_t) CPUMGetHyperEDI(PVM pVM)
297{
298 return pVM->cpum.s.CTXALLSUFF(pHyperCore)->edi;
299}
300
301CPUMDECL(uint32_t) CPUMGetHyperEBP(PVM pVM)
302{
303 return pVM->cpum.s.CTXALLSUFF(pHyperCore)->ebp;
304}
305
306CPUMDECL(uint32_t) CPUMGetHyperESP(PVM pVM)
307{
308 return pVM->cpum.s.CTXALLSUFF(pHyperCore)->esp;
309}
310
311CPUMDECL(uint32_t) CPUMGetHyperEFlags(PVM pVM)
312{
313 return pVM->cpum.s.CTXALLSUFF(pHyperCore)->eflags.u32;
314}
315
316CPUMDECL(uint32_t) CPUMGetHyperEIP(PVM pVM)
317{
318 return pVM->cpum.s.CTXALLSUFF(pHyperCore)->eip;
319}
320
321CPUMDECL(uint32_t) CPUMGetHyperIDTR(PVM pVM, uint16_t *pcbLimit)
322{
323 if (pcbLimit)
324 *pcbLimit = pVM->cpum.s.Hyper.idtr.cbIdt;
325 return pVM->cpum.s.Hyper.idtr.pIdt;
326}
327
328CPUMDECL(uint32_t) CPUMGetHyperGDTR(PVM pVM, uint16_t *pcbLimit)
329{
330 if (pcbLimit)
331 *pcbLimit = pVM->cpum.s.Hyper.gdtr.cbGdt;
332 return pVM->cpum.s.Hyper.gdtr.pGdt;
333}
334
335CPUMDECL(RTSEL) CPUMGetHyperLDTR(PVM pVM)
336{
337 return pVM->cpum.s.Hyper.ldtr;
338}
339
340CPUMDECL(RTGCUINTREG) CPUMGetHyperDR0(PVM pVM)
341{
342 return pVM->cpum.s.Hyper.dr0;
343}
344
345CPUMDECL(RTGCUINTREG) CPUMGetHyperDR1(PVM pVM)
346{
347 return pVM->cpum.s.Hyper.dr1;
348}
349
350CPUMDECL(RTGCUINTREG) CPUMGetHyperDR2(PVM pVM)
351{
352 return pVM->cpum.s.Hyper.dr2;
353}
354
355CPUMDECL(RTGCUINTREG) CPUMGetHyperDR3(PVM pVM)
356{
357 return pVM->cpum.s.Hyper.dr3;
358}
359
360CPUMDECL(RTGCUINTREG) CPUMGetHyperDR6(PVM pVM)
361{
362 return pVM->cpum.s.Hyper.dr6;
363}
364
365CPUMDECL(RTGCUINTREG) CPUMGetHyperDR7(PVM pVM)
366{
367 return pVM->cpum.s.Hyper.dr7;
368}
369
370
371/**
372 * Gets the pointer to the internal CPUMCTXCORE structure.
373 * This is only for reading in order to save a few calls.
374 *
375 * @param pVM Handle to the virtual machine.
376 */
377CPUMDECL(PCCPUMCTXCORE) CPUMGetGuestCtxCore(PVM pVM)
378{
379 return CPUMCTX2CORE(&pVM->cpum.s.Guest);
380}
381
382
383/**
384 * Sets the guest context core registers.
385 *
386 * @param pVM Handle to the virtual machine.
387 * @param pCtxCore The new context core values.
388 */
389CPUMDECL(void) CPUMSetGuestCtxCore(PVM pVM, PCCPUMCTXCORE pCtxCore)
390{
391 /** @todo #1410 requires selectors to be checked. */
392
393 PCPUMCTXCORE pCtxCoreDst CPUMCTX2CORE(&pVM->cpum.s.Guest);
394 *pCtxCoreDst = *pCtxCore;
395}
396
397
398/**
399 * Queries the pointer to the internal CPUMCTX structure
400 *
401 * @returns VBox status code.
402 * @param pVM Handle to the virtual machine.
403 * @param ppCtx Receives the CPUMCTX pointer when successful.
404 */
405CPUMDECL(int) CPUMQueryGuestCtxPtr(PVM pVM, PCPUMCTX *ppCtx)
406{
407 *ppCtx = &pVM->cpum.s.Guest;
408 return VINF_SUCCESS;
409}
410
411
412CPUMDECL(int) CPUMSetGuestGDTR(PVM pVM, uint32_t addr, uint16_t limit)
413{
414 pVM->cpum.s.Guest.gdtr.cbGdt = limit;
415 pVM->cpum.s.Guest.gdtr.pGdt = addr;
416 pVM->cpum.s.fChanged |= CPUM_CHANGED_GDTR;
417 return VINF_SUCCESS;
418}
419
420CPUMDECL(int) CPUMSetGuestIDTR(PVM pVM, uint32_t addr, uint16_t limit)
421{
422 pVM->cpum.s.Guest.idtr.cbIdt = limit;
423 pVM->cpum.s.Guest.idtr.pIdt = addr;
424 pVM->cpum.s.fChanged |= CPUM_CHANGED_IDTR;
425 return VINF_SUCCESS;
426}
427
428CPUMDECL(int) CPUMSetGuestTR(PVM pVM, uint16_t tr)
429{
430 pVM->cpum.s.Guest.tr = tr;
431 pVM->cpum.s.fChanged |= CPUM_CHANGED_TR;
432 return VINF_SUCCESS;
433}
434
435CPUMDECL(int) CPUMSetGuestLDTR(PVM pVM, uint16_t ldtr)
436{
437 pVM->cpum.s.Guest.ldtr = ldtr;
438 pVM->cpum.s.fChanged |= CPUM_CHANGED_LDTR;
439 return VINF_SUCCESS;
440}
441
442
443/**
444 * Set the guest CR0.
445 *
446 * When called in GC, the hyper CR0 may be updated if that is
447 * required. The caller only has to take special action if AM,
448 * WP, PG or PE changes.
449 *
450 * @returns VINF_SUCCESS (consider it void).
451 * @param pVM Pointer to the shared VM structure.
452 * @param cr0 The new CR0 value.
453 */
454CPUMDECL(int) CPUMSetGuestCR0(PVM pVM, uint32_t cr0)
455{
456#ifdef IN_GC
457 /*
458 * Check if we need to change hypervisor CR0 because
459 * of math stuff.
460 */
461 if ( (cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP))
462 != (pVM->cpum.s.Guest.cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP)))
463 {
464 if (!(pVM->cpum.s.fUseFlags & CPUM_USED_FPU))
465 {
466 /*
467 * We haven't saved the host FPU state yet, so TS and MT are both set
468 * and EM should be reflecting the guest EM (it always does this).
469 */
470 if ((cr0 & X86_CR0_EM) != (pVM->cpum.s.Guest.cr0 & X86_CR0_EM))
471 {
472 uint32_t HyperCR0 = ASMGetCR0();
473 AssertMsg((HyperCR0 & (X86_CR0_TS | X86_CR0_MP)) == (X86_CR0_TS | X86_CR0_MP), ("%#x\n", HyperCR0));
474 AssertMsg((HyperCR0 & X86_CR0_EM) == (pVM->cpum.s.Guest.cr0 & X86_CR0_EM), ("%#x\n", HyperCR0));
475 HyperCR0 &= ~X86_CR0_EM;
476 HyperCR0 |= cr0 & X86_CR0_EM;
477 Log(("CPUM New HyperCR0=%#x\n", HyperCR0));
478 ASMSetCR0(HyperCR0);
479 }
480#ifdef VBOX_STRICT
481 else
482 {
483 uint32_t HyperCR0 = ASMGetCR0();
484 AssertMsg((HyperCR0 & (X86_CR0_TS | X86_CR0_MP)) == (X86_CR0_TS | X86_CR0_MP), ("%#x\n", HyperCR0));
485 AssertMsg((HyperCR0 & X86_CR0_EM) == (pVM->cpum.s.Guest.cr0 & X86_CR0_EM), ("%#x\n", HyperCR0));
486 }
487#endif
488 }
489 else
490 {
491 /*
492 * Already saved the state, so we're just mirroring
493 * the guest flags.
494 */
495 uint32_t HyperCR0 = ASMGetCR0();
496 AssertMsg( (HyperCR0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP))
497 == (pVM->cpum.s.Guest.cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP)),
498 ("%#x %#x\n", HyperCR0, pVM->cpum.s.Guest.cr0));
499 HyperCR0 &= ~(X86_CR0_TS | X86_CR0_EM | X86_CR0_MP);
500 HyperCR0 |= cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP);
501 Log(("CPUM New HyperCR0=%#x\n", HyperCR0));
502 ASMSetCR0(HyperCR0);
503 }
504 }
505#endif
506
507 /*
508 * Check for changes causing TLB flushes (for REM).
509 * The caller is responsible for calling PGM when appropriate.
510 */
511 if ( (cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
512 != (pVM->cpum.s.Guest.cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)))
513 pVM->cpum.s.fChanged |= CPUM_CHANGED_GLOBAL_TLB_FLUSH;
514 pVM->cpum.s.fChanged |= CPUM_CHANGED_CR0;
515
516 pVM->cpum.s.Guest.cr0 = cr0 | X86_CR0_ET;
517 return VINF_SUCCESS;
518}
519
520CPUMDECL(int) CPUMSetGuestCR2(PVM pVM, uint32_t cr2)
521{
522 pVM->cpum.s.Guest.cr2 = cr2;
523 return VINF_SUCCESS;
524}
525
526CPUMDECL(int) CPUMSetGuestCR3(PVM pVM, uint32_t cr3)
527{
528 pVM->cpum.s.Guest.cr3 = cr3;
529 pVM->cpum.s.fChanged |= CPUM_CHANGED_CR3;
530 return VINF_SUCCESS;
531}
532
533CPUMDECL(int) CPUMSetGuestCR4(PVM pVM, uint32_t cr4)
534{
535 if ( (cr4 & (X86_CR4_PGE | X86_CR4_PAE | X86_CR4_PSE))
536 != (pVM->cpum.s.Guest.cr4 & (X86_CR4_PGE | X86_CR4_PAE | X86_CR4_PSE)))
537 pVM->cpum.s.fChanged |= CPUM_CHANGED_GLOBAL_TLB_FLUSH;
538 pVM->cpum.s.fChanged |= CPUM_CHANGED_CR4;
539 if (!CPUMSupportsFXSR(pVM))
540 cr4 &= ~X86_CR4_OSFSXR;
541 pVM->cpum.s.Guest.cr4 = cr4;
542 return VINF_SUCCESS;
543}
544
545CPUMDECL(int) CPUMSetGuestEFlags(PVM pVM, uint32_t eflags)
546{
547 pVM->cpum.s.Guest.eflags.u32 = eflags;
548 return VINF_SUCCESS;
549}
550
551CPUMDECL(int) CPUMSetGuestEIP(PVM pVM, uint32_t eip)
552{
553 pVM->cpum.s.Guest.eip = eip;
554 return VINF_SUCCESS;
555}
556
557CPUMDECL(int) CPUMSetGuestEAX(PVM pVM, uint32_t eax)
558{
559 pVM->cpum.s.Guest.eax = eax;
560 return VINF_SUCCESS;
561}
562
563CPUMDECL(int) CPUMSetGuestEBX(PVM pVM, uint32_t ebx)
564{
565 pVM->cpum.s.Guest.ebx = ebx;
566 return VINF_SUCCESS;
567}
568
569CPUMDECL(int) CPUMSetGuestECX(PVM pVM, uint32_t ecx)
570{
571 pVM->cpum.s.Guest.ecx = ecx;
572 return VINF_SUCCESS;
573}
574
575CPUMDECL(int) CPUMSetGuestEDX(PVM pVM, uint32_t edx)
576{
577 pVM->cpum.s.Guest.edx = edx;
578 return VINF_SUCCESS;
579}
580
581CPUMDECL(int) CPUMSetGuestESP(PVM pVM, uint32_t esp)
582{
583 pVM->cpum.s.Guest.esp = esp;
584 return VINF_SUCCESS;
585}
586
587CPUMDECL(int) CPUMSetGuestEBP(PVM pVM, uint32_t ebp)
588{
589 pVM->cpum.s.Guest.ebp = ebp;
590 return VINF_SUCCESS;
591}
592
593CPUMDECL(int) CPUMSetGuestESI(PVM pVM, uint32_t esi)
594{
595 pVM->cpum.s.Guest.esi = esi;
596 return VINF_SUCCESS;
597}
598
599CPUMDECL(int) CPUMSetGuestEDI(PVM pVM, uint32_t edi)
600{
601 pVM->cpum.s.Guest.edi = edi;
602 return VINF_SUCCESS;
603}
604
605CPUMDECL(int) CPUMSetGuestSS(PVM pVM, uint16_t ss)
606{
607 pVM->cpum.s.Guest.ss = ss;
608 return VINF_SUCCESS;
609}
610
611CPUMDECL(int) CPUMSetGuestCS(PVM pVM, uint16_t cs)
612{
613 pVM->cpum.s.Guest.cs = cs;
614 return VINF_SUCCESS;
615}
616
617CPUMDECL(int) CPUMSetGuestDS(PVM pVM, uint16_t ds)
618{
619 pVM->cpum.s.Guest.ds = ds;
620 return VINF_SUCCESS;
621}
622
623CPUMDECL(int) CPUMSetGuestES(PVM pVM, uint16_t es)
624{
625 pVM->cpum.s.Guest.es = es;
626 return VINF_SUCCESS;
627}
628
629CPUMDECL(int) CPUMSetGuestFS(PVM pVM, uint16_t fs)
630{
631 pVM->cpum.s.Guest.fs = fs;
632 return VINF_SUCCESS;
633}
634
635CPUMDECL(int) CPUMSetGuestGS(PVM pVM, uint16_t gs)
636{
637 pVM->cpum.s.Guest.gs = gs;
638 return VINF_SUCCESS;
639}
640
641CPUMDECL(void) CPUMSetGuestEFER(PVM pVM, uint64_t val)
642{
643 pVM->cpum.s.Guest.msrEFER = val;
644}
645
646CPUMDECL(uint32_t) CPUMGetGuestIDTR(PVM pVM, uint16_t *pcbLimit)
647{
648 if (pcbLimit)
649 *pcbLimit = pVM->cpum.s.Guest.idtr.cbIdt;
650 return pVM->cpum.s.Guest.idtr.pIdt;
651}
652
653CPUMDECL(RTSEL) CPUMGetGuestTR(PVM pVM)
654{
655 return pVM->cpum.s.Guest.tr;
656}
657
658CPUMDECL(RTSEL) CPUMGetGuestCS(PVM pVM)
659{
660 return pVM->cpum.s.Guest.cs;
661}
662
663CPUMDECL(RTSEL) CPUMGetGuestDS(PVM pVM)
664{
665 return pVM->cpum.s.Guest.ds;
666}
667
668CPUMDECL(RTSEL) CPUMGetGuestES(PVM pVM)
669{
670 return pVM->cpum.s.Guest.es;
671}
672
673CPUMDECL(RTSEL) CPUMGetGuestFS(PVM pVM)
674{
675 return pVM->cpum.s.Guest.fs;
676}
677
678CPUMDECL(RTSEL) CPUMGetGuestGS(PVM pVM)
679{
680 return pVM->cpum.s.Guest.gs;
681}
682
683CPUMDECL(RTSEL) CPUMGetGuestSS(PVM pVM)
684{
685 return pVM->cpum.s.Guest.ss;
686}
687
688CPUMDECL(RTSEL) CPUMGetGuestLDTR(PVM pVM)
689{
690 return pVM->cpum.s.Guest.ldtr;
691}
692
693CPUMDECL(uint32_t) CPUMGetGuestCR0(PVM pVM)
694{
695 return pVM->cpum.s.Guest.cr0;
696}
697
698CPUMDECL(uint32_t) CPUMGetGuestCR2(PVM pVM)
699{
700 return pVM->cpum.s.Guest.cr2;
701}
702
703CPUMDECL(uint32_t) CPUMGetGuestCR3(PVM pVM)
704{
705 return pVM->cpum.s.Guest.cr3;
706}
707
708CPUMDECL(uint32_t) CPUMGetGuestCR4(PVM pVM)
709{
710 return pVM->cpum.s.Guest.cr4;
711}
712
713CPUMDECL(void) CPUMGetGuestGDTR(PVM pVM, PVBOXGDTR pGDTR)
714{
715 *pGDTR = pVM->cpum.s.Guest.gdtr;
716}
717
718CPUMDECL(uint32_t) CPUMGetGuestEIP(PVM pVM)
719{
720 return pVM->cpum.s.Guest.eip;
721}
722
723CPUMDECL(uint32_t) CPUMGetGuestEAX(PVM pVM)
724{
725 return pVM->cpum.s.Guest.eax;
726}
727
728CPUMDECL(uint32_t) CPUMGetGuestEBX(PVM pVM)
729{
730 return pVM->cpum.s.Guest.ebx;
731}
732
733CPUMDECL(uint32_t) CPUMGetGuestECX(PVM pVM)
734{
735 return pVM->cpum.s.Guest.ecx;
736}
737
738CPUMDECL(uint32_t) CPUMGetGuestEDX(PVM pVM)
739{
740 return pVM->cpum.s.Guest.edx;
741}
742
743CPUMDECL(uint32_t) CPUMGetGuestESI(PVM pVM)
744{
745 return pVM->cpum.s.Guest.esi;
746}
747
748CPUMDECL(uint32_t) CPUMGetGuestEDI(PVM pVM)
749{
750 return pVM->cpum.s.Guest.edi;
751}
752
753CPUMDECL(uint32_t) CPUMGetGuestESP(PVM pVM)
754{
755 return pVM->cpum.s.Guest.esp;
756}
757
758CPUMDECL(uint32_t) CPUMGetGuestEBP(PVM pVM)
759{
760 return pVM->cpum.s.Guest.ebp;
761}
762
763CPUMDECL(uint32_t) CPUMGetGuestEFlags(PVM pVM)
764{
765 return pVM->cpum.s.Guest.eflags.u32;
766}
767
768CPUMDECL(CPUMSELREGHID *) CPUMGetGuestTRHid(PVM pVM)
769{
770 return &pVM->cpum.s.Guest.trHid;
771}
772
773//@todo: crx should be an array
774CPUMDECL(int) CPUMGetGuestCRx(PVM pVM, uint32_t iReg, uint32_t *pValue)
775{
776 switch (iReg)
777 {
778 case USE_REG_CR0:
779 *pValue = pVM->cpum.s.Guest.cr0;
780 break;
781 case USE_REG_CR2:
782 *pValue = pVM->cpum.s.Guest.cr2;
783 break;
784 case USE_REG_CR3:
785 *pValue = pVM->cpum.s.Guest.cr3;
786 break;
787 case USE_REG_CR4:
788 *pValue = pVM->cpum.s.Guest.cr4;
789 break;
790 default:
791 return VERR_INVALID_PARAMETER;
792 }
793 return VINF_SUCCESS;
794}
795
796CPUMDECL(RTUINTREG) CPUMGetGuestDR0(PVM pVM)
797{
798 return pVM->cpum.s.Guest.dr0;
799}
800
801CPUMDECL(RTUINTREG) CPUMGetGuestDR1(PVM pVM)
802{
803 return pVM->cpum.s.Guest.dr1;
804}
805
806CPUMDECL(RTUINTREG) CPUMGetGuestDR2(PVM pVM)
807{
808 return pVM->cpum.s.Guest.dr2;
809}
810
811CPUMDECL(RTUINTREG) CPUMGetGuestDR3(PVM pVM)
812{
813 return pVM->cpum.s.Guest.dr3;
814}
815
816CPUMDECL(RTUINTREG) CPUMGetGuestDR6(PVM pVM)
817{
818 return pVM->cpum.s.Guest.dr6;
819}
820
821CPUMDECL(RTUINTREG) CPUMGetGuestDR7(PVM pVM)
822{
823 return pVM->cpum.s.Guest.dr7;
824}
825
826/** @todo drx should be an array */
827CPUMDECL(int) CPUMGetGuestDRx(PVM pVM, uint32_t iReg, uint32_t *pValue)
828{
829 switch (iReg)
830 {
831 case USE_REG_DR0:
832 *pValue = pVM->cpum.s.Guest.dr0;
833 break;
834 case USE_REG_DR1:
835 *pValue = pVM->cpum.s.Guest.dr1;
836 break;
837 case USE_REG_DR2:
838 *pValue = pVM->cpum.s.Guest.dr2;
839 break;
840 case USE_REG_DR3:
841 *pValue = pVM->cpum.s.Guest.dr3;
842 break;
843 case USE_REG_DR4:
844 case USE_REG_DR6:
845 *pValue = pVM->cpum.s.Guest.dr6;
846 break;
847 case USE_REG_DR5:
848 case USE_REG_DR7:
849 *pValue = pVM->cpum.s.Guest.dr7;
850 break;
851
852 default:
853 return VERR_INVALID_PARAMETER;
854 }
855 return VINF_SUCCESS;
856}
857
858CPUMDECL(uint64_t) CPUMGetGuestEFER(PVM pVM)
859{
860 return pVM->cpum.s.Guest.msrEFER;
861}
862
863/**
864 * Gets a CpuId leaf.
865 *
866 * @param pVM The VM handle.
867 * @param iLeaf The CPUID leaf to get.
868 * @param pEax Where to store the EAX value.
869 * @param pEbx Where to store the EBX value.
870 * @param pEcx Where to store the ECX value.
871 * @param pEdx Where to store the EDX value.
872 */
873CPUMDECL(void) CPUMGetGuestCpuId(PVM pVM, uint32_t iLeaf, uint32_t *pEax, uint32_t *pEbx, uint32_t *pEcx, uint32_t *pEdx)
874{
875 PCCPUMCPUID pCpuId;
876 if (iLeaf < ELEMENTS(pVM->cpum.s.aGuestCpuIdStd))
877 pCpuId = &pVM->cpum.s.aGuestCpuIdStd[iLeaf];
878 else if (iLeaf - UINT32_C(0x80000000) < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt))
879 pCpuId = &pVM->cpum.s.aGuestCpuIdExt[iLeaf - UINT32_C(0x80000000)];
880 else if (iLeaf - UINT32_C(0xc0000000) < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur))
881 pCpuId = &pVM->cpum.s.aGuestCpuIdCentaur[iLeaf - UINT32_C(0xc0000000)];
882 else
883 pCpuId = &pVM->cpum.s.GuestCpuIdDef;
884
885 *pEax = pCpuId->eax;
886 *pEbx = pCpuId->ebx;
887 *pEcx = pCpuId->ecx;
888 *pEdx = pCpuId->edx;
889 Log2(("CPUMGetGuestCpuId: iLeaf=%#010x %RX32 %RX32 %RX32 %RX32\n", iLeaf, *pEax, *pEbx, *pEcx, *pEdx));
890}
891
892/**
893 * Gets a pointer to the array of standard CPUID leafs.
894 *
895 * CPUMGetGuestCpuIdStdMax() give the size of the array.
896 *
897 * @returns Pointer to the standard CPUID leafs (read-only).
898 * @param pVM The VM handle.
899 * @remark Intended for PATM.
900 */
901CPUMDECL(GCPTRTYPE(PCCPUMCPUID)) CPUMGetGuestCpuIdStdGCPtr(PVM pVM)
902{
903 return GCPTRTYPE(PCCPUMCPUID)VM_GUEST_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdStd[0]);
904}
905
906/**
907 * Gets a pointer to the array of extended CPUID leafs.
908 *
909 * CPUMGetGuestCpuIdExtMax() give the size of the array.
910 *
911 * @returns Pointer to the extended CPUID leafs (read-only).
912 * @param pVM The VM handle.
913 * @remark Intended for PATM.
914 */
915CPUMDECL(GCPTRTYPE(PCCPUMCPUID)) CPUMGetGuestCpuIdExtGCPtr(PVM pVM)
916{
917 return GCPTRTYPE(PCCPUMCPUID)VM_GUEST_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdExt[0]);
918}
919
920/**
921 * Gets a pointer to the array of centaur CPUID leafs.
922 *
923 * CPUMGetGuestCpuIdCentaurMax() give the size of the array.
924 *
925 * @returns Pointer to the centaur CPUID leafs (read-only).
926 * @param pVM The VM handle.
927 * @remark Intended for PATM.
928 */
929CPUMDECL(GCPTRTYPE(PCCPUMCPUID)) CPUMGetGuestCpuIdCentaurGCPtr(PVM pVM)
930{
931 return GCPTRTYPE(PCCPUMCPUID)VM_GUEST_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdCentaur[0]);
932}
933
934/**
935 * Gets a pointer to the default CPUID leaf.
936 *
937 * @returns Pointer to the default CPUID leaf (read-only).
938 * @param pVM The VM handle.
939 * @remark Intended for PATM.
940 */
941CPUMDECL(GCPTRTYPE(PCCPUMCPUID)) CPUMGetGuestCpuIdDefGCPtr(PVM pVM)
942{
943 return GCPTRTYPE(PCCPUMCPUID)VM_GUEST_ADDR(pVM, &pVM->cpum.s.GuestCpuIdDef);
944}
945
946/**
947 * Gets a number of standard CPUID leafs.
948 *
949 * @returns Number of leafs.
950 * @param pVM The VM handle.
951 * @remark Intended for PATM.
952 */
953CPUMDECL(uint32_t) CPUMGetGuestCpuIdStdMax(PVM pVM)
954{
955 return RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd);
956}
957
958/**
959 * Gets a number of extended CPUID leafs.
960 *
961 * @returns Number of leafs.
962 * @param pVM The VM handle.
963 * @remark Intended for PATM.
964 */
965CPUMDECL(uint32_t) CPUMGetGuestCpuIdExtMax(PVM pVM)
966{
967 return RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt);
968}
969
970/**
971 * Gets a number of centaur CPUID leafs.
972 *
973 * @returns Number of leafs.
974 * @param pVM The VM handle.
975 * @remark Intended for PATM.
976 */
977CPUMDECL(uint32_t) CPUMGetGuestCpuIdCentaurMax(PVM pVM)
978{
979 return RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur);
980}
981
982/**
983 * Sets a CPUID feature bit.
984 *
985 * @param pVM The VM Handle.
986 * @param enmFeature The feature to set.
987 */
988CPUMDECL(void) CPUMSetGuestCpuIdFeature(PVM pVM, CPUMCPUIDFEATURE enmFeature)
989{
990 switch (enmFeature)
991 {
992 /*
993 * Set the APIC bit in both feature masks.
994 */
995 case CPUMCPUIDFEATURE_APIC:
996 if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1)
997 pVM->cpum.s.aGuestCpuIdStd[1].edx |= X86_CPUID_FEATURE_EDX_APIC;
998 if ( pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001
999 && pVM->cpum.s.aGuestCpuIdExt[1].edx)
1000 pVM->cpum.s.aGuestCpuIdExt[1].edx |= X86_CPUID_AMD_FEATURE_EDX_APIC;
1001 Log(("CPUMSetGuestCpuIdFeature: Enabled APIC\n"));
1002 break;
1003
1004 /*
1005 * Set the sysenter/sysexit bit in both feature masks.
1006 * Assumes the caller knows what it's doing! (host must support these)
1007 */
1008 case CPUMCPUIDFEATURE_SEP:
1009 {
1010 if (!(ASMCpuId_EDX(1) & X86_CPUID_FEATURE_EDX_SEP))
1011 {
1012 AssertMsgFailed(("ERROR: Can't turn on SEP when the host doesn't support it!!\n"));
1013 return;
1014 }
1015
1016 if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1)
1017 pVM->cpum.s.aGuestCpuIdStd[1].edx |= X86_CPUID_FEATURE_EDX_SEP;
1018 if ( pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001
1019 && pVM->cpum.s.aGuestCpuIdExt[1].edx)
1020 pVM->cpum.s.aGuestCpuIdExt[1].edx |= X86_CPUID_AMD_FEATURE_EDX_SEP;
1021 Log(("CPUMSetGuestCpuIdFeature: Enabled sysenter/exit\n"));
1022 break;
1023 }
1024
1025 /*
1026 * Set the PAE bit in both feature masks.
1027 * Assumes the caller knows what it's doing! (host must support these)
1028 */
1029 case CPUMCPUIDFEATURE_PAE:
1030 {
1031 if (!(ASMCpuId_EDX(1) & X86_CPUID_FEATURE_EDX_PAE))
1032 {
1033 AssertMsgFailed(("ERROR: Can't turn on PAE when the host doesn't support it!!\n"));
1034 return;
1035 }
1036
1037 if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1)
1038 pVM->cpum.s.aGuestCpuIdStd[1].edx |= X86_CPUID_FEATURE_EDX_PAE;
1039 if ( pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001
1040 && pVM->cpum.s.aGuestCpuIdExt[1].edx)
1041 pVM->cpum.s.aGuestCpuIdExt[1].edx |= X86_CPUID_AMD_FEATURE_EDX_PAE;
1042 Log(("CPUMSetGuestCpuIdFeature: Enabled PAE\n"));
1043 break;
1044 }
1045
1046 /*
1047 * Set the LONG MODE bit in the extended feature mask.
1048 * Assumes the caller knows what it's doing! (host must support these)
1049 */
1050 case CPUMCPUIDFEATURE_LONG_MODE:
1051 {
1052 if ( pVM->cpum.s.aGuestCpuIdExt[0].eax < 0x80000001
1053 || !(ASMCpuId_EDX(0x80000001) & X86_CPUID_AMD_FEATURE_EDX_LONG_MODE))
1054 {
1055 AssertMsgFailed(("ERROR: Can't turn on LONG MODE when the host doesn't support it!!\n"));
1056 return;
1057 }
1058
1059 if ( pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001
1060 && pVM->cpum.s.aGuestCpuIdExt[1].edx)
1061 pVM->cpum.s.aGuestCpuIdExt[1].edx |= X86_CPUID_AMD_FEATURE_EDX_LONG_MODE;
1062 Log(("CPUMSetGuestCpuIdFeature: Enabled LONG MODE\n"));
1063 break;
1064 }
1065
1066 default:
1067 AssertMsgFailed(("enmFeature=%d\n", enmFeature));
1068 break;
1069 }
1070}
1071
1072/**
1073 * Clears a CPUID feature bit.
1074 *
1075 * @param pVM The VM Handle.
1076 * @param enmFeature The feature to clear.
1077 */
1078CPUMDECL(void) CPUMClearGuestCpuIdFeature(PVM pVM, CPUMCPUIDFEATURE enmFeature)
1079{
1080 switch (enmFeature)
1081 {
1082 /*
1083 * Set the APIC bit in both feature masks.
1084 */
1085 case CPUMCPUIDFEATURE_APIC:
1086 if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1)
1087 pVM->cpum.s.aGuestCpuIdStd[1].edx &= ~X86_CPUID_FEATURE_EDX_APIC;
1088 if (pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001)
1089 pVM->cpum.s.aGuestCpuIdExt[1].edx &= ~X86_CPUID_AMD_FEATURE_EDX_APIC;
1090 Log(("CPUMSetGuestCpuIdFeature: Disabled APIC\n"));
1091 break;
1092
1093 default:
1094 AssertMsgFailed(("enmFeature=%d\n", enmFeature));
1095 break;
1096 }
1097}
1098
1099
1100
1101CPUMDECL(int) CPUMSetGuestDR0(PVM pVM, RTGCUINTREG uDr0)
1102{
1103 pVM->cpum.s.Guest.dr0 = uDr0;
1104 return CPUMRecalcHyperDRx(pVM);
1105}
1106
1107CPUMDECL(int) CPUMSetGuestDR1(PVM pVM, RTGCUINTREG uDr1)
1108{
1109 pVM->cpum.s.Guest.dr1 = uDr1;
1110 return CPUMRecalcHyperDRx(pVM);
1111}
1112
1113CPUMDECL(int) CPUMSetGuestDR2(PVM pVM, RTGCUINTREG uDr2)
1114{
1115 pVM->cpum.s.Guest.dr2 = uDr2;
1116 return CPUMRecalcHyperDRx(pVM);
1117}
1118
1119CPUMDECL(int) CPUMSetGuestDR3(PVM pVM, RTGCUINTREG uDr3)
1120{
1121 pVM->cpum.s.Guest.dr3 = uDr3;
1122 return CPUMRecalcHyperDRx(pVM);
1123}
1124
1125CPUMDECL(int) CPUMSetGuestDR6(PVM pVM, RTGCUINTREG uDr6)
1126{
1127 pVM->cpum.s.Guest.dr6 = uDr6;
1128 return CPUMRecalcHyperDRx(pVM);
1129}
1130
1131CPUMDECL(int) CPUMSetGuestDR7(PVM pVM, RTGCUINTREG uDr7)
1132{
1133 pVM->cpum.s.Guest.dr7 = uDr7;
1134 return CPUMRecalcHyperDRx(pVM);
1135}
1136
1137/** @todo drx should be an array */
1138CPUMDECL(int) CPUMSetGuestDRx(PVM pVM, uint32_t iReg, uint32_t Value)
1139{
1140 switch (iReg)
1141 {
1142 case USE_REG_DR0:
1143 pVM->cpum.s.Guest.dr0 = Value;
1144 break;
1145 case USE_REG_DR1:
1146 pVM->cpum.s.Guest.dr1 = Value;
1147 break;
1148 case USE_REG_DR2:
1149 pVM->cpum.s.Guest.dr2 = Value;
1150 break;
1151 case USE_REG_DR3:
1152 pVM->cpum.s.Guest.dr3 = Value;
1153 break;
1154 case USE_REG_DR4:
1155 case USE_REG_DR6:
1156 pVM->cpum.s.Guest.dr6 = Value;
1157 break;
1158 case USE_REG_DR5:
1159 case USE_REG_DR7:
1160 pVM->cpum.s.Guest.dr7 = Value;
1161 break;
1162
1163 default:
1164 return VERR_INVALID_PARAMETER;
1165 }
1166 return CPUMRecalcHyperDRx(pVM);
1167}
1168
1169
1170/**
1171 * Recalculates the hypvervisor DRx register values based on
1172 * current guest registers and DBGF breakpoints.
1173 *
1174 * This is called whenever a guest DRx register is modified and when DBGF
1175 * sets a hardware breakpoint. In guest context this function will reload
1176 * any (hyper) DRx registers which comes out with a different value.
1177 *
1178 * @returns VINF_SUCCESS.
1179 * @param pVM The VM handle.
1180 */
1181CPUMDECL(int) CPUMRecalcHyperDRx(PVM pVM)
1182{
1183 /*
1184 * Compare the DR7s first.
1185 *
1186 * We only care about the enabled flags. The GE and LE flags are always
1187 * set and we don't care if the guest doesn't set them. GD is virtualized
1188 * when we dispatch #DB, we never enable it.
1189 */
1190 const RTGCUINTREG uDbgfDr7 = DBGFBpGetDR7(pVM);
1191#ifdef CPUM_VIRTUALIZE_DRX
1192 const RTGCUINTREG uGstDr7 = CPUMGetGuestDR7(pVM);
1193#else
1194 const RTGCUINTREG uGstDr7 = 0;
1195#endif
1196 if ((uGstDr7 | uDbgfDr7) & X86_DR7_ENABLED_MASK)
1197 {
1198 /*
1199 * Ok, something is enabled. Recalc each of the breakpoints.
1200 * Straight forward code, not optimized/minimized in any way.
1201 */
1202 RTGCUINTREG uNewDr7 = X86_DR7_GE | X86_DR7_LE | X86_DR7_MB1_MASK;
1203
1204 /* bp 0 */
1205 RTGCUINTREG uNewDr0;
1206 if (uDbgfDr7 & (X86_DR7_L0 | X86_DR7_G0))
1207 {
1208 uNewDr7 |= uDbgfDr7 & (X86_DR7_L0 | X86_DR7_G0 | X86_DR7_RW0_MASK | X86_DR7_LEN0_MASK);
1209 uNewDr0 = DBGFBpGetDR0(pVM);
1210 }
1211 else if (uGstDr7 & (X86_DR7_L0 | X86_DR7_G0))
1212 {
1213 uNewDr7 |= uGstDr7 & (X86_DR7_L0 | X86_DR7_G0 | X86_DR7_RW0_MASK | X86_DR7_LEN0_MASK);
1214 uNewDr0 = CPUMGetGuestDR0(pVM);
1215 }
1216 else
1217 uNewDr0 = pVM->cpum.s.Hyper.dr0;
1218
1219 /* bp 1 */
1220 RTGCUINTREG uNewDr1;
1221 if (uDbgfDr7 & (X86_DR7_L1 | X86_DR7_G1))
1222 {
1223 uNewDr7 |= uDbgfDr7 & (X86_DR7_L1 | X86_DR7_G1 | X86_DR7_RW1_MASK | X86_DR7_LEN1_MASK);
1224 uNewDr1 = DBGFBpGetDR1(pVM);
1225 }
1226 else if (uGstDr7 & (X86_DR7_L1 | X86_DR7_G1))
1227 {
1228 uNewDr7 |= uGstDr7 & (X86_DR7_L1 | X86_DR7_G1 | X86_DR7_RW1_MASK | X86_DR7_LEN1_MASK);
1229 uNewDr1 = CPUMGetGuestDR1(pVM);
1230 }
1231 else
1232 uNewDr1 = pVM->cpum.s.Hyper.dr1;
1233
1234 /* bp 2 */
1235 RTGCUINTREG uNewDr2;
1236 if (uDbgfDr7 & (X86_DR7_L2 | X86_DR7_G2))
1237 {
1238 uNewDr7 |= uDbgfDr7 & (X86_DR7_L2 | X86_DR7_G2 | X86_DR7_RW2_MASK | X86_DR7_LEN2_MASK);
1239 uNewDr2 = DBGFBpGetDR2(pVM);
1240 }
1241 else if (uGstDr7 & (X86_DR7_L2 | X86_DR7_G2))
1242 {
1243 uNewDr7 |= uGstDr7 & (X86_DR7_L2 | X86_DR7_G2 | X86_DR7_RW2_MASK | X86_DR7_LEN2_MASK);
1244 uNewDr2 = CPUMGetGuestDR2(pVM);
1245 }
1246 else
1247 uNewDr2 = pVM->cpum.s.Hyper.dr2;
1248
1249 /* bp 3 */
1250 RTGCUINTREG uNewDr3;
1251 if (uDbgfDr7 & (X86_DR7_L3 | X86_DR7_G3))
1252 {
1253 uNewDr7 |= uDbgfDr7 & (X86_DR7_L3 | X86_DR7_G3 | X86_DR7_RW3_MASK | X86_DR7_LEN3_MASK);
1254 uNewDr3 = DBGFBpGetDR3(pVM);
1255 }
1256 else if (uGstDr7 & (X86_DR7_L3 | X86_DR7_G3))
1257 {
1258 uNewDr7 |= uGstDr7 & (X86_DR7_L3 | X86_DR7_G3 | X86_DR7_RW3_MASK | X86_DR7_LEN3_MASK);
1259 uNewDr3 = CPUMGetGuestDR3(pVM);
1260 }
1261 else
1262 uNewDr3 = pVM->cpum.s.Hyper.dr3;
1263
1264 /*
1265 * Apply the updates.
1266 */
1267#ifdef IN_GC
1268 if (!(pVM->cpum.s.fUseFlags & CPUM_USE_DEBUG_REGS))
1269 {
1270 /** @todo save host DBx registers. */
1271 }
1272#endif
1273 pVM->cpum.s.fUseFlags |= CPUM_USE_DEBUG_REGS;
1274 if (uNewDr3 != pVM->cpum.s.Hyper.dr3)
1275 CPUMSetHyperDR3(pVM, uNewDr3);
1276 if (uNewDr2 != pVM->cpum.s.Hyper.dr2)
1277 CPUMSetHyperDR2(pVM, uNewDr2);
1278 if (uNewDr1 != pVM->cpum.s.Hyper.dr1)
1279 CPUMSetHyperDR1(pVM, uNewDr1);
1280 if (uNewDr0 != pVM->cpum.s.Hyper.dr0)
1281 CPUMSetHyperDR0(pVM, uNewDr0);
1282 if (uNewDr7 != pVM->cpum.s.Hyper.dr7)
1283 CPUMSetHyperDR7(pVM, uNewDr7);
1284 }
1285 else
1286 {
1287#ifdef IN_GC
1288 if (pVM->cpum.s.fUseFlags & CPUM_USE_DEBUG_REGS)
1289 {
1290 /** @todo restore host DBx registers. */
1291 }
1292#endif
1293 pVM->cpum.s.fUseFlags &= ~CPUM_USE_DEBUG_REGS;
1294 }
1295 Log2(("CPUMRecalcHyperDRx: fUseFlags=%#x %RGr %RGr %RGr %RGr %RGr %RGr\n",
1296 pVM->cpum.s.fUseFlags, pVM->cpum.s.Hyper.dr0, pVM->cpum.s.Hyper.dr1,
1297 pVM->cpum.s.Hyper.dr2, pVM->cpum.s.Hyper.dr3, pVM->cpum.s.Hyper.dr6,
1298 pVM->cpum.s.Hyper.dr7));
1299
1300 return VINF_SUCCESS;
1301}
1302
1303#ifndef IN_RING0 /** @todo I don't think we need this in R0, so move it to CPUMAll.cpp? */
1304
1305/**
1306 * Transforms the guest CPU state to raw-ring mode.
1307 *
1308 * This function will change the any of the cs and ss register with DPL=0 to DPL=1.
1309 *
1310 * @returns VBox status. (recompiler failure)
1311 * @param pVM VM handle.
1312 * @param pCtxCore The context core (for trap usage).
1313 * @see @ref pg_raw
1314 */
1315CPUMDECL(int) CPUMRawEnter(PVM pVM, PCPUMCTXCORE pCtxCore)
1316{
1317 Assert(!pVM->cpum.s.fRawEntered);
1318 if (!pCtxCore)
1319 pCtxCore = CPUMCTX2CORE(&pVM->cpum.s.Guest);
1320
1321 /*
1322 * Are we in Ring-0?
1323 */
1324 if ( pCtxCore->ss && (pCtxCore->ss & X86_SEL_RPL) == 0
1325 && !pCtxCore->eflags.Bits.u1VM)
1326 {
1327 /*
1328 * Enter execution mode.
1329 */
1330 PATMRawEnter(pVM, pCtxCore);
1331
1332 /*
1333 * Set CPL to Ring-1.
1334 */
1335 pCtxCore->ss |= 1;
1336 if (pCtxCore->cs && (pCtxCore->cs & X86_SEL_RPL) == 0)
1337 pCtxCore->cs |= 1;
1338 }
1339 else
1340 {
1341 AssertMsg((pCtxCore->ss & X86_SEL_RPL) >= 2 || pCtxCore->eflags.Bits.u1VM,
1342 ("ring-1 code not supported\n"));
1343 /*
1344 * PATM takes care of IOPL and IF flags for Ring-3 and Ring-2 code as well.
1345 */
1346 PATMRawEnter(pVM, pCtxCore);
1347 }
1348
1349 /*
1350 * Assert sanity.
1351 */
1352 AssertMsg((pCtxCore->eflags.u32 & X86_EFL_IF), ("X86_EFL_IF is clear\n"));
1353 AssertReleaseMsg( pCtxCore->eflags.Bits.u2IOPL < (unsigned)(pCtxCore->ss & X86_SEL_RPL)
1354 || pCtxCore->eflags.Bits.u1VM,
1355 ("X86_EFL_IOPL=%d CPL=%d\n", pCtxCore->eflags.Bits.u2IOPL, pCtxCore->ss & X86_SEL_RPL));
1356 Assert((pVM->cpum.s.Guest.cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) == (X86_CR0_PG | X86_CR0_PE | X86_CR0_WP));
1357 pCtxCore->eflags.u32 |= X86_EFL_IF; /* paranoia */
1358
1359 pVM->cpum.s.fRawEntered = true;
1360 return VINF_SUCCESS;
1361}
1362
1363
1364/**
1365 * Transforms the guest CPU state from raw-ring mode to correct values.
1366 *
1367 * This function will change any selector registers with DPL=1 to DPL=0.
1368 *
1369 * @returns Adjusted rc.
1370 * @param pVM VM handle.
1371 * @param rc Raw mode return code
1372 * @param pCtxCore The context core (for trap usage).
1373 * @see @ref pg_raw
1374 */
1375CPUMDECL(int) CPUMRawLeave(PVM pVM, PCPUMCTXCORE pCtxCore, int rc)
1376{
1377 /*
1378 * Don't leave if we've already left (in GC).
1379 */
1380 Assert(pVM->cpum.s.fRawEntered);
1381 if (!pVM->cpum.s.fRawEntered)
1382 return rc;
1383 pVM->cpum.s.fRawEntered = false;
1384
1385 PCPUMCTX pCtx = &pVM->cpum.s.Guest;
1386 if (!pCtxCore)
1387 pCtxCore = CPUMCTX2CORE(pCtx);
1388 Assert(pCtxCore->eflags.Bits.u1VM || (pCtxCore->ss & X86_SEL_RPL));
1389 AssertMsg(pCtxCore->eflags.Bits.u1VM || pCtxCore->eflags.Bits.u2IOPL < (unsigned)(pCtxCore->ss & X86_SEL_RPL),
1390 ("X86_EFL_IOPL=%d CPL=%d\n", pCtxCore->eflags.Bits.u2IOPL, pCtxCore->ss & X86_SEL_RPL));
1391
1392 /*
1393 * Are we executing in raw ring-1?
1394 */
1395 if ( (pCtxCore->ss & X86_SEL_RPL) == 1
1396 && !pCtxCore->eflags.Bits.u1VM)
1397 {
1398 /*
1399 * Leave execution mode.
1400 */
1401 PATMRawLeave(pVM, pCtxCore, rc);
1402 /* Not quite sure if this is really required, but shouldn't harm (too much anyways). */
1403 /** @todo See what happens if we remove this. */
1404 if ((pCtxCore->ds & X86_SEL_RPL) == 1)
1405 pCtxCore->ds &= ~X86_SEL_RPL;
1406 if ((pCtxCore->es & X86_SEL_RPL) == 1)
1407 pCtxCore->es &= ~X86_SEL_RPL;
1408 if ((pCtxCore->fs & X86_SEL_RPL) == 1)
1409 pCtxCore->fs &= ~X86_SEL_RPL;
1410 if ((pCtxCore->gs & X86_SEL_RPL) == 1)
1411 pCtxCore->gs &= ~X86_SEL_RPL;
1412
1413 /*
1414 * Ring-1 selector => Ring-0.
1415 */
1416 pCtxCore->ss &= ~X86_SEL_RPL;
1417 if ((pCtxCore->cs & X86_SEL_RPL) == 1)
1418 pCtxCore->cs &= ~X86_SEL_RPL;
1419 }
1420 else
1421 {
1422 /*
1423 * PATM is taking care of the IOPL and IF flags for us.
1424 */
1425 PATMRawLeave(pVM, pCtxCore, rc);
1426 if (!pCtxCore->eflags.Bits.u1VM)
1427 {
1428 /** @todo See what happens if we remove this. */
1429 if ((pCtxCore->ds & X86_SEL_RPL) == 1)
1430 pCtxCore->ds &= ~X86_SEL_RPL;
1431 if ((pCtxCore->es & X86_SEL_RPL) == 1)
1432 pCtxCore->es &= ~X86_SEL_RPL;
1433 if ((pCtxCore->fs & X86_SEL_RPL) == 1)
1434 pCtxCore->fs &= ~X86_SEL_RPL;
1435 if ((pCtxCore->gs & X86_SEL_RPL) == 1)
1436 pCtxCore->gs &= ~X86_SEL_RPL;
1437 }
1438 }
1439
1440 return rc;
1441}
1442
1443/**
1444 * Updates the EFLAGS while we're in raw-mode.
1445 *
1446 * @param pVM The VM handle.
1447 * @param pCtxCore The context core.
1448 * @param eflags The new EFLAGS value.
1449 */
1450CPUMDECL(void) CPUMRawSetEFlags(PVM pVM, PCPUMCTXCORE pCtxCore, uint32_t eflags)
1451{
1452 if (!pVM->cpum.s.fRawEntered)
1453 {
1454 pCtxCore->eflags.u32 = eflags;
1455 return;
1456 }
1457 PATMRawSetEFlags(pVM, pCtxCore, eflags);
1458}
1459
1460#endif /* !IN_RING0 */
1461
1462/**
1463 * Gets the EFLAGS while we're in raw-mode.
1464 *
1465 * @returns The eflags.
1466 * @param pVM The VM handle.
1467 * @param pCtxCore The context core.
1468 */
1469CPUMDECL(uint32_t) CPUMRawGetEFlags(PVM pVM, PCPUMCTXCORE pCtxCore)
1470{
1471#ifdef IN_RING0
1472 return pCtxCore->eflags.u32;
1473#else
1474 if (!pVM->cpum.s.fRawEntered)
1475 return pCtxCore->eflags.u32;
1476 return PATMRawGetEFlags(pVM, pCtxCore);
1477#endif
1478}
1479
1480
1481
1482
1483/**
1484 * Gets and resets the changed flags (CPUM_CHANGED_*).
1485 * Only REM should call this function.
1486 *
1487 * @returns The changed flags.
1488 * @param pVM The VM handle.
1489 */
1490CPUMDECL(unsigned) CPUMGetAndClearChangedFlagsREM(PVM pVM)
1491{
1492 unsigned fFlags = pVM->cpum.s.fChanged;
1493 pVM->cpum.s.fChanged = 0;
1494 /** @todo change the switcher to use the fChanged flags. */
1495 if (pVM->cpum.s.fUseFlags & CPUM_USED_FPU_SINCE_REM)
1496 {
1497 fFlags |= CPUM_CHANGED_FPU_REM;
1498 pVM->cpum.s.fUseFlags &= ~CPUM_USED_FPU_SINCE_REM;
1499 }
1500 return fFlags;
1501}
1502
1503/**
1504 * Sets the specified changed flags (CPUM_CHANGED_*).
1505 *
1506 * @param pVM The VM handle.
1507 */
1508CPUMDECL(void) CPUMSetChangedFlags(PVM pVM, uint32_t fChangedFlags)
1509{
1510 pVM->cpum.s.fChanged |= fChangedFlags;
1511}
1512
1513/**
1514 * Checks if the CPU supports the FXSAVE and FXRSTOR instruction.
1515 * @returns true if supported.
1516 * @returns false if not supported.
1517 * @param pVM The VM handle.
1518 */
1519CPUMDECL(bool) CPUMSupportsFXSR(PVM pVM)
1520{
1521 return pVM->cpum.s.CPUFeatures.edx.u1FXSR != 0;
1522}
1523
1524
1525/**
1526 * Checks if the host OS uses the SYSENTER / SYSEXIT instructions.
1527 * @returns true if used.
1528 * @returns false if not used.
1529 * @param pVM The VM handle.
1530 */
1531CPUMDECL(bool) CPUMIsHostUsingSysEnter(PVM pVM)
1532{
1533 return (pVM->cpum.s.fUseFlags & CPUM_USE_SYSENTER) != 0;
1534}
1535
1536
1537/**
1538 * Checks if the host OS uses the SYSCALL / SYSRET instructions.
1539 * @returns true if used.
1540 * @returns false if not used.
1541 * @param pVM The VM handle.
1542 */
1543CPUMDECL(bool) CPUMIsHostUsingSysCall(PVM pVM)
1544{
1545 return (pVM->cpum.s.fUseFlags & CPUM_USE_SYSCALL) != 0;
1546}
1547
1548
1549#ifndef IN_RING3
1550/**
1551 * Lazily sync in the FPU/XMM state
1552 *
1553 * @returns VBox status code.
1554 * @param pVM VM handle.
1555 */
1556CPUMDECL(int) CPUMHandleLazyFPU(PVM pVM)
1557{
1558 return CPUMHandleLazyFPUAsm(&pVM->cpum.s);
1559}
1560
1561
1562/**
1563 * Restore host FPU/XMM state
1564 *
1565 * @returns VBox status code.
1566 * @param pVM VM handle.
1567 */
1568CPUMDECL(int) CPUMRestoreHostFPUState(PVM pVM)
1569{
1570 Assert(pVM->cpum.s.CPUFeatures.edx.u1FXSR);
1571 return CPUMRestoreHostFPUStateAsm(&pVM->cpum.s);
1572}
1573#endif /* !IN_RING3 */
1574
1575
1576/**
1577 * Checks if we activated the FPU/XMM state of the guest OS
1578 * @returns true if we did.
1579 * @returns false if not.
1580 * @param pVM The VM handle.
1581 */
1582CPUMDECL(bool) CPUMIsGuestFPUStateActive(PVM pVM)
1583{
1584 return (pVM->cpum.s.fUseFlags & CPUM_USED_FPU) != 0;
1585}
1586
1587
1588/**
1589 * Deactivate the FPU/XMM state of the guest OS
1590 * @param pVM The VM handle.
1591 */
1592CPUMDECL(void) CPUMDeactivateGuestFPUState(PVM pVM)
1593{
1594 pVM->cpum.s.fUseFlags &= ~CPUM_USED_FPU;
1595}
1596
1597
1598/**
1599 * Checks if the hidden selector registers are valid
1600 * @returns true if they are.
1601 * @returns false if not.
1602 * @param pVM The VM handle.
1603 */
1604CPUMDECL(bool) CPUMAreHiddenSelRegsValid(PVM pVM)
1605{
1606 return !!pVM->cpum.s.fValidHiddenSelRegs; /** @todo change fValidHiddenSelRegs to bool! */
1607}
1608
1609
1610/**
1611 * Checks if the hidden selector registers are valid
1612 * @param pVM The VM handle.
1613 * @param fValid Valid or not
1614 */
1615CPUMDECL(void) CPUMSetHiddenSelRegsValid(PVM pVM, bool fValid)
1616{
1617 pVM->cpum.s.fValidHiddenSelRegs = fValid;
1618}
1619
1620
1621/**
1622 * Get the current privilege level of the guest.
1623 *
1624 * @returns cpl
1625 * @param pVM VM Handle.
1626 * @param pRegFrame Trap register frame.
1627 */
1628CPUMDECL(uint32_t) CPUMGetGuestCPL(PVM pVM, PCPUMCTXCORE pCtxCore)
1629{
1630 uint32_t cpl;
1631
1632 if (CPUMAreHiddenSelRegsValid(pVM))
1633 cpl = pCtxCore->ssHid.Attr.n.u2Dpl;
1634 else if (RT_LIKELY(pVM->cpum.s.Guest.cr0 & X86_CR0_PE))
1635 {
1636 if (RT_LIKELY(!pCtxCore->eflags.Bits.u1VM))
1637 {
1638 cpl = (pCtxCore->ss & X86_SEL_RPL);
1639#ifndef IN_RING0
1640 if (cpl == 1)
1641 cpl = 0;
1642#endif
1643 }
1644 else
1645 cpl = 3;
1646 }
1647 else
1648 cpl = 0; /* real mode; cpl is zero */
1649
1650 return cpl;
1651}
1652
1653
1654/**
1655 * Gets the current guest CPU mode.
1656 *
1657 * If paging mode is what you need, check out PGMGetGuestMode().
1658 *
1659 * @returns The CPU mode.
1660 * @param pVM The VM handle.
1661 */
1662CPUMDECL(CPUMMODE) CPUMGetGuestMode(PVM pVM)
1663{
1664 CPUMMODE enmMode;
1665 if (!(pVM->cpum.s.Guest.cr0 & X86_CR0_PE))
1666 enmMode = CPUMMODE_REAL;
1667 else //GUEST64 if (!(pVM->cpum.s.Guest.efer & MSR_K6_EFER_LMA)
1668 enmMode = CPUMMODE_PROTECTED;
1669//GUEST64 else
1670//GUEST64 enmMode = CPUMMODE_LONG;
1671
1672 return enmMode;
1673}
1674
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette