/* $Id: CPUMAllRegs.cpp 17106 2009-02-25 00:35:15Z vboxsync $ */ /** @file * CPUM - CPU Monitor(/Manager) - Getters and Setters. */ /* * Copyright (C) 2006-2007 Sun Microsystems, Inc. * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa * Clara, CA 95054 USA or visit http://www.sun.com if you need * additional information or have any questions. */ /******************************************************************************* * Header Files * *******************************************************************************/ #define LOG_GROUP LOG_GROUP_CPUM #include #include #include #include #include "CPUMInternal.h" #include #include #include #include #include #include #ifdef IN_RING3 #include #endif /** Disable stack frame pointer generation here. */ #if defined(_MSC_VER) && !defined(DEBUG) # pragma optimize("y", off) #endif /** * Sets or resets an alternative hypervisor context core. * * This is called when we get a hypervisor trap set switch the context * core with the trap frame on the stack. It is called again to reset * back to the default context core when resuming hypervisor execution. * * @param pVM The VM handle. * @param pCtxCore Pointer to the alternative context core or NULL * to go back to the default context core. */ VMMDECL(void) CPUMHyperSetCtxCore(PVM pVM, PCPUMCTXCORE pCtxCore) { LogFlow(("CPUMHyperSetCtxCore: %p/%p/%p -> %p\n", pVM->cpum.s.CTX_SUFF(pHyperCore), pCtxCore)); if (!pCtxCore) { pCtxCore = CPUMCTX2CORE(&pVM->cpum.s.Hyper); pVM->cpum.s.pHyperCoreR3 = (R3PTRTYPE(PCPUMCTXCORE))VM_R3_ADDR(pVM, pCtxCore); pVM->cpum.s.pHyperCoreR0 = (R0PTRTYPE(PCPUMCTXCORE))VM_R0_ADDR(pVM, pCtxCore); pVM->cpum.s.pHyperCoreRC = (RCPTRTYPE(PCPUMCTXCORE))VM_RC_ADDR(pVM, pCtxCore); } else { pVM->cpum.s.pHyperCoreR3 = (R3PTRTYPE(PCPUMCTXCORE))MMHyperCCToR3(pVM, pCtxCore); pVM->cpum.s.pHyperCoreR0 = (R0PTRTYPE(PCPUMCTXCORE))MMHyperCCToR0(pVM, pCtxCore); pVM->cpum.s.pHyperCoreRC = (RCPTRTYPE(PCPUMCTXCORE))MMHyperCCToRC(pVM, pCtxCore); } } /** * Gets the pointer to the internal CPUMCTXCORE structure for the hypervisor. * This is only for reading in order to save a few calls. * * @param pVM Handle to the virtual machine. */ VMMDECL(PCCPUMCTXCORE) CPUMGetHyperCtxCore(PVM pVM) { return pVM->cpum.s.CTX_SUFF(pHyperCore); } /** * Queries the pointer to the internal CPUMCTX structure for the hypervisor. * * @returns VBox status code. * @param pVM Handle to the virtual machine. * @param ppCtx Receives the hyper CPUMCTX pointer when successful. * * @deprecated This will *not* (and has never) given the right picture of the * hypervisor register state. With CPUMHyperSetCtxCore() this is * getting much worse. So, use the individual functions for getting * and esp. setting the hypervisor registers. */ VMMDECL(int) CPUMQueryHyperCtxPtr(PVM pVM, PCPUMCTX *ppCtx) { *ppCtx = &pVM->cpum.s.Hyper; return VINF_SUCCESS; } VMMDECL(void) CPUMSetHyperGDTR(PVM pVM, uint32_t addr, uint16_t limit) { pVM->cpum.s.Hyper.gdtr.cbGdt = limit; pVM->cpum.s.Hyper.gdtr.pGdt = addr; pVM->cpum.s.Hyper.gdtrPadding = 0; } VMMDECL(void) CPUMSetHyperIDTR(PVM pVM, uint32_t addr, uint16_t limit) { pVM->cpum.s.Hyper.idtr.cbIdt = limit; pVM->cpum.s.Hyper.idtr.pIdt = addr; pVM->cpum.s.Hyper.idtrPadding = 0; } VMMDECL(void) CPUMSetHyperCR3(PVM pVM, uint32_t cr3) { pVM->cpum.s.Hyper.cr3 = cr3; #ifdef IN_RC /* Update the current CR3. */ ASMSetCR3(cr3); #endif } VMMDECL(uint32_t) CPUMGetHyperCR3(PVM pVM) { return pVM->cpum.s.Hyper.cr3; } VMMDECL(void) CPUMSetHyperCS(PVM pVM, RTSEL SelCS) { pVM->cpum.s.CTX_SUFF(pHyperCore)->cs = SelCS; } VMMDECL(void) CPUMSetHyperDS(PVM pVM, RTSEL SelDS) { pVM->cpum.s.CTX_SUFF(pHyperCore)->ds = SelDS; } VMMDECL(void) CPUMSetHyperES(PVM pVM, RTSEL SelES) { pVM->cpum.s.CTX_SUFF(pHyperCore)->es = SelES; } VMMDECL(void) CPUMSetHyperFS(PVM pVM, RTSEL SelFS) { pVM->cpum.s.CTX_SUFF(pHyperCore)->fs = SelFS; } VMMDECL(void) CPUMSetHyperGS(PVM pVM, RTSEL SelGS) { pVM->cpum.s.CTX_SUFF(pHyperCore)->gs = SelGS; } VMMDECL(void) CPUMSetHyperSS(PVM pVM, RTSEL SelSS) { pVM->cpum.s.CTX_SUFF(pHyperCore)->ss = SelSS; } VMMDECL(void) CPUMSetHyperESP(PVM pVM, uint32_t u32ESP) { pVM->cpum.s.CTX_SUFF(pHyperCore)->esp = u32ESP; } VMMDECL(int) CPUMSetHyperEFlags(PVM pVM, uint32_t Efl) { pVM->cpum.s.CTX_SUFF(pHyperCore)->eflags.u32 = Efl; return VINF_SUCCESS; } VMMDECL(void) CPUMSetHyperEIP(PVM pVM, uint32_t u32EIP) { pVM->cpum.s.CTX_SUFF(pHyperCore)->eip = u32EIP; } VMMDECL(void) CPUMSetHyperTR(PVM pVM, RTSEL SelTR) { pVM->cpum.s.Hyper.tr = SelTR; } VMMDECL(void) CPUMSetHyperLDTR(PVM pVM, RTSEL SelLDTR) { pVM->cpum.s.Hyper.ldtr = SelLDTR; } VMMDECL(void) CPUMSetHyperDR0(PVM pVM, RTGCUINTREG uDr0) { pVM->cpum.s.Hyper.dr[0] = uDr0; /** @todo in GC we must load it! */ } VMMDECL(void) CPUMSetHyperDR1(PVM pVM, RTGCUINTREG uDr1) { pVM->cpum.s.Hyper.dr[1] = uDr1; /** @todo in GC we must load it! */ } VMMDECL(void) CPUMSetHyperDR2(PVM pVM, RTGCUINTREG uDr2) { pVM->cpum.s.Hyper.dr[2] = uDr2; /** @todo in GC we must load it! */ } VMMDECL(void) CPUMSetHyperDR3(PVM pVM, RTGCUINTREG uDr3) { pVM->cpum.s.Hyper.dr[3] = uDr3; /** @todo in GC we must load it! */ } VMMDECL(void) CPUMSetHyperDR6(PVM pVM, RTGCUINTREG uDr6) { pVM->cpum.s.Hyper.dr[6] = uDr6; /** @todo in GC we must load it! */ } VMMDECL(void) CPUMSetHyperDR7(PVM pVM, RTGCUINTREG uDr7) { pVM->cpum.s.Hyper.dr[7] = uDr7; /** @todo in GC we must load it! */ } VMMDECL(RTSEL) CPUMGetHyperCS(PVM pVM) { return pVM->cpum.s.CTX_SUFF(pHyperCore)->cs; } VMMDECL(RTSEL) CPUMGetHyperDS(PVM pVM) { return pVM->cpum.s.CTX_SUFF(pHyperCore)->ds; } VMMDECL(RTSEL) CPUMGetHyperES(PVM pVM) { return pVM->cpum.s.CTX_SUFF(pHyperCore)->es; } VMMDECL(RTSEL) CPUMGetHyperFS(PVM pVM) { return pVM->cpum.s.CTX_SUFF(pHyperCore)->fs; } VMMDECL(RTSEL) CPUMGetHyperGS(PVM pVM) { return pVM->cpum.s.CTX_SUFF(pHyperCore)->gs; } VMMDECL(RTSEL) CPUMGetHyperSS(PVM pVM) { return pVM->cpum.s.CTX_SUFF(pHyperCore)->ss; } VMMDECL(uint32_t) CPUMGetHyperEAX(PVM pVM) { return pVM->cpum.s.CTX_SUFF(pHyperCore)->eax; } VMMDECL(uint32_t) CPUMGetHyperEBX(PVM pVM) { return pVM->cpum.s.CTX_SUFF(pHyperCore)->ebx; } VMMDECL(uint32_t) CPUMGetHyperECX(PVM pVM) { return pVM->cpum.s.CTX_SUFF(pHyperCore)->ecx; } VMMDECL(uint32_t) CPUMGetHyperEDX(PVM pVM) { return pVM->cpum.s.CTX_SUFF(pHyperCore)->edx; } VMMDECL(uint32_t) CPUMGetHyperESI(PVM pVM) { return pVM->cpum.s.CTX_SUFF(pHyperCore)->esi; } VMMDECL(uint32_t) CPUMGetHyperEDI(PVM pVM) { return pVM->cpum.s.CTX_SUFF(pHyperCore)->edi; } VMMDECL(uint32_t) CPUMGetHyperEBP(PVM pVM) { return pVM->cpum.s.CTX_SUFF(pHyperCore)->ebp; } VMMDECL(uint32_t) CPUMGetHyperESP(PVM pVM) { return pVM->cpum.s.CTX_SUFF(pHyperCore)->esp; } VMMDECL(uint32_t) CPUMGetHyperEFlags(PVM pVM) { return pVM->cpum.s.CTX_SUFF(pHyperCore)->eflags.u32; } VMMDECL(uint32_t) CPUMGetHyperEIP(PVM pVM) { return pVM->cpum.s.CTX_SUFF(pHyperCore)->eip; } VMMDECL(uint64_t) CPUMGetHyperRIP(PVM pVM) { return pVM->cpum.s.CTX_SUFF(pHyperCore)->rip; } VMMDECL(uint32_t) CPUMGetHyperIDTR(PVM pVM, uint16_t *pcbLimit) { if (pcbLimit) *pcbLimit = pVM->cpum.s.Hyper.idtr.cbIdt; return pVM->cpum.s.Hyper.idtr.pIdt; } VMMDECL(uint32_t) CPUMGetHyperGDTR(PVM pVM, uint16_t *pcbLimit) { if (pcbLimit) *pcbLimit = pVM->cpum.s.Hyper.gdtr.cbGdt; return pVM->cpum.s.Hyper.gdtr.pGdt; } VMMDECL(RTSEL) CPUMGetHyperLDTR(PVM pVM) { return pVM->cpum.s.Hyper.ldtr; } VMMDECL(RTGCUINTREG) CPUMGetHyperDR0(PVM pVM) { return pVM->cpum.s.Hyper.dr[0]; } VMMDECL(RTGCUINTREG) CPUMGetHyperDR1(PVM pVM) { return pVM->cpum.s.Hyper.dr[1]; } VMMDECL(RTGCUINTREG) CPUMGetHyperDR2(PVM pVM) { return pVM->cpum.s.Hyper.dr[2]; } VMMDECL(RTGCUINTREG) CPUMGetHyperDR3(PVM pVM) { return pVM->cpum.s.Hyper.dr[3]; } VMMDECL(RTGCUINTREG) CPUMGetHyperDR6(PVM pVM) { return pVM->cpum.s.Hyper.dr[6]; } VMMDECL(RTGCUINTREG) CPUMGetHyperDR7(PVM pVM) { return pVM->cpum.s.Hyper.dr[7]; } /** * Gets the pointer to the internal CPUMCTXCORE structure. * This is only for reading in order to save a few calls. * * @param pVM Handle to the virtual machine. */ VMMDECL(PCCPUMCTXCORE) CPUMGetGuestCtxCore(PVM pVM) { VM_ASSERT_EMT(pVM); return CPUMCTX2CORE(&pVM->aCpus[VMMGetCpuId(pVM)].cpum.s.Guest); } /** * Gets the pointer to the internal CPUMCTXCORE structure. * This is only for reading in order to save a few calls. * * @param pVM Handle to the virtual machine. */ VMMDECL(PCCPUMCTXCORE) CPUMGetGuestCtxCoreEx(PVM pVM, PVMCPU pVCpu) { return CPUMCTX2CORE(&pVCpu->cpum.s.Guest); } /** * Sets the guest context core registers. * * @param pVM Handle to the virtual machine. * @param pCtxCore The new context core values. */ VMMDECL(void) CPUMSetGuestCtxCore(PVM pVM, PCCPUMCTXCORE pCtxCore) { /** @todo #1410 requires selectors to be checked. (huh? 1410?) */ PCPUMCTXCORE pCtxCoreDst = CPUMCTX2CORE(&pVM->aCpus[VMMGetCpuId(pVM)].cpum.s.Guest); *pCtxCoreDst = *pCtxCore; /* Mask away invalid parts of the cpu context. */ if (!CPUMIsGuestInLongMode(pVM)) { uint64_t u64Mask = UINT64_C(0xffffffff); pCtxCoreDst->rip &= u64Mask; pCtxCoreDst->rax &= u64Mask; pCtxCoreDst->rbx &= u64Mask; pCtxCoreDst->rcx &= u64Mask; pCtxCoreDst->rdx &= u64Mask; pCtxCoreDst->rsi &= u64Mask; pCtxCoreDst->rdi &= u64Mask; pCtxCoreDst->rbp &= u64Mask; pCtxCoreDst->rsp &= u64Mask; pCtxCoreDst->rflags.u &= u64Mask; pCtxCoreDst->r8 = 0; pCtxCoreDst->r9 = 0; pCtxCoreDst->r10 = 0; pCtxCoreDst->r11 = 0; pCtxCoreDst->r12 = 0; pCtxCoreDst->r13 = 0; pCtxCoreDst->r14 = 0; pCtxCoreDst->r15 = 0; } } /** * Queries the pointer to the internal CPUMCTX structure * * @returns The CPUMCTX pointer. * @param pVM Handle to the virtual machine. */ VMMDECL(PCPUMCTX) CPUMQueryGuestCtxPtr(PVM pVM) { return &pVM->aCpus[VMMGetCpuId(pVM)].cpum.s.Guest; } static PCPUMCPU cpumGetCpumCpu(PVM pVM) { RTCPUID idCpu = VMMGetCpuId(pVM); return &pVM->aCpus[idCpu].cpum.s; } VMMDECL(PCPUMCTX) CPUMQueryGuestCtxPtrEx(PVM pVM, PVMCPU pVCpu) { Assert(pVCpu->idCpu < pVM->cCPUs); return &pVCpu->cpum.s.Guest; } VMMDECL(int) CPUMSetGuestGDTR(PVM pVM, uint32_t addr, uint16_t limit) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); pCpumCpu->Guest.gdtr.cbGdt = limit; pCpumCpu->Guest.gdtr.pGdt = addr; pCpumCpu->fChanged |= CPUM_CHANGED_GDTR; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestIDTR(PVM pVM, uint32_t addr, uint16_t limit) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); pCpumCpu->Guest.idtr.cbIdt = limit; pCpumCpu->Guest.idtr.pIdt = addr; pCpumCpu->fChanged |= CPUM_CHANGED_IDTR; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestTR(PVM pVM, uint16_t tr) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); AssertMsgFailed(("Need to load the hidden bits too!\n")); pCpumCpu->Guest.tr = tr; pCpumCpu->fChanged |= CPUM_CHANGED_TR; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestLDTR(PVM pVM, uint16_t ldtr) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); pCpumCpu->Guest.ldtr = ldtr; pCpumCpu->fChanged |= CPUM_CHANGED_LDTR; return VINF_SUCCESS; } /** * Set the guest CR0. * * When called in GC, the hyper CR0 may be updated if that is * required. The caller only has to take special action if AM, * WP, PG or PE changes. * * @returns VINF_SUCCESS (consider it void). * @param pVM Pointer to the shared VM structure. * @param cr0 The new CR0 value. */ VMMDECL(int) CPUMSetGuestCR0(PVM pVM, uint64_t cr0) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); #ifdef IN_RC /* * Check if we need to change hypervisor CR0 because * of math stuff. */ if ( (cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP)) != (pCpumCpu->Guest.cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP))) { if (!(pCpumCpu->fUseFlags & CPUM_USED_FPU)) { /* * We haven't saved the host FPU state yet, so TS and MT are both set * and EM should be reflecting the guest EM (it always does this). */ if ((cr0 & X86_CR0_EM) != (pCpumCpu->Guest.cr0 & X86_CR0_EM)) { uint32_t HyperCR0 = ASMGetCR0(); AssertMsg((HyperCR0 & (X86_CR0_TS | X86_CR0_MP)) == (X86_CR0_TS | X86_CR0_MP), ("%#x\n", HyperCR0)); AssertMsg((HyperCR0 & X86_CR0_EM) == (pCpumCpu->Guest.cr0 & X86_CR0_EM), ("%#x\n", HyperCR0)); HyperCR0 &= ~X86_CR0_EM; HyperCR0 |= cr0 & X86_CR0_EM; Log(("CPUM New HyperCR0=%#x\n", HyperCR0)); ASMSetCR0(HyperCR0); } # ifdef VBOX_STRICT else { uint32_t HyperCR0 = ASMGetCR0(); AssertMsg((HyperCR0 & (X86_CR0_TS | X86_CR0_MP)) == (X86_CR0_TS | X86_CR0_MP), ("%#x\n", HyperCR0)); AssertMsg((HyperCR0 & X86_CR0_EM) == (pCpumCpu->Guest.cr0 & X86_CR0_EM), ("%#x\n", HyperCR0)); } # endif } else { /* * Already saved the state, so we're just mirroring * the guest flags. */ uint32_t HyperCR0 = ASMGetCR0(); AssertMsg( (HyperCR0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP)) == (pCpumCpu->Guest.cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP)), ("%#x %#x\n", HyperCR0, pCpumCpu->Guest.cr0)); HyperCR0 &= ~(X86_CR0_TS | X86_CR0_EM | X86_CR0_MP); HyperCR0 |= cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP); Log(("CPUM New HyperCR0=%#x\n", HyperCR0)); ASMSetCR0(HyperCR0); } } #endif /* IN_RC */ /* * Check for changes causing TLB flushes (for REM). * The caller is responsible for calling PGM when appropriate. */ if ( (cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) != (pCpumCpu->Guest.cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))) pCpumCpu->fChanged |= CPUM_CHANGED_GLOBAL_TLB_FLUSH; pCpumCpu->fChanged |= CPUM_CHANGED_CR0; pCpumCpu->Guest.cr0 = cr0 | X86_CR0_ET; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestCR2(PVM pVM, uint64_t cr2) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); pCpumCpu->Guest.cr2 = cr2; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestCR3(PVM pVM, uint64_t cr3) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); pCpumCpu->Guest.cr3 = cr3; pCpumCpu->fChanged |= CPUM_CHANGED_CR3; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestCR4(PVM pVM, uint64_t cr4) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); if ( (cr4 & (X86_CR4_PGE | X86_CR4_PAE | X86_CR4_PSE)) != (pCpumCpu->Guest.cr4 & (X86_CR4_PGE | X86_CR4_PAE | X86_CR4_PSE))) pCpumCpu->fChanged |= CPUM_CHANGED_GLOBAL_TLB_FLUSH; pCpumCpu->fChanged |= CPUM_CHANGED_CR4; if (!CPUMSupportsFXSR(pVM)) cr4 &= ~X86_CR4_OSFSXR; pCpumCpu->Guest.cr4 = cr4; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestEFlags(PVM pVM, uint32_t eflags) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); pCpumCpu->Guest.eflags.u32 = eflags; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestEIP(PVM pVM, uint32_t eip) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); pCpumCpu->Guest.eip = eip; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestEAX(PVM pVM, uint32_t eax) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); pCpumCpu->Guest.eax = eax; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestEBX(PVM pVM, uint32_t ebx) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); pCpumCpu->Guest.ebx = ebx; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestECX(PVM pVM, uint32_t ecx) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); pCpumCpu->Guest.ecx = ecx; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestEDX(PVM pVM, uint32_t edx) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); pCpumCpu->Guest.edx = edx; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestESP(PVM pVM, uint32_t esp) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); pCpumCpu->Guest.esp = esp; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestEBP(PVM pVM, uint32_t ebp) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); pCpumCpu->Guest.ebp = ebp; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestESI(PVM pVM, uint32_t esi) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); pCpumCpu->Guest.esi = esi; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestEDI(PVM pVM, uint32_t edi) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); pCpumCpu->Guest.edi = edi; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestSS(PVM pVM, uint16_t ss) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); pCpumCpu->Guest.ss = ss; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestCS(PVM pVM, uint16_t cs) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); pCpumCpu->Guest.cs = cs; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestDS(PVM pVM, uint16_t ds) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); pCpumCpu->Guest.ds = ds; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestES(PVM pVM, uint16_t es) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); pCpumCpu->Guest.es = es; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestFS(PVM pVM, uint16_t fs) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); pCpumCpu->Guest.fs = fs; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestGS(PVM pVM, uint16_t gs) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); pCpumCpu->Guest.gs = gs; return VINF_SUCCESS; } VMMDECL(void) CPUMSetGuestEFER(PVM pVM, uint64_t val) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); pCpumCpu->Guest.msrEFER = val; } VMMDECL(uint64_t) CPUMGetGuestMsr(PVM pVM, unsigned idMsr) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); uint64_t u64 = 0; switch (idMsr) { case MSR_IA32_CR_PAT: u64 = pCpumCpu->Guest.msrPAT; break; case MSR_IA32_SYSENTER_CS: u64 = pCpumCpu->Guest.SysEnter.cs; break; case MSR_IA32_SYSENTER_EIP: u64 = pCpumCpu->Guest.SysEnter.eip; break; case MSR_IA32_SYSENTER_ESP: u64 = pCpumCpu->Guest.SysEnter.esp; break; case MSR_K6_EFER: u64 = pCpumCpu->Guest.msrEFER; break; case MSR_K8_SF_MASK: u64 = pCpumCpu->Guest.msrSFMASK; break; case MSR_K6_STAR: u64 = pCpumCpu->Guest.msrSTAR; break; case MSR_K8_LSTAR: u64 = pCpumCpu->Guest.msrLSTAR; break; case MSR_K8_CSTAR: u64 = pCpumCpu->Guest.msrCSTAR; break; case MSR_K8_KERNEL_GS_BASE: u64 = pCpumCpu->Guest.msrKERNELGSBASE; break; case MSR_K8_TSC_AUX: u64 = pCpumCpu->GuestMsr.msr.tscAux; break; /* fs & gs base skipped on purpose as the current context might not be up-to-date. */ default: AssertFailed(); break; } return u64; } VMMDECL(void) CPUMSetGuestMsr(PVM pVM, unsigned idMsr, uint64_t valMsr) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); /* On purpose only a limited number of MSRs; use the emulation function to update the others. */ switch (idMsr) { case MSR_K8_TSC_AUX: pCpumCpu->GuestMsr.msr.tscAux = valMsr; break; default: AssertFailed(); break; } } VMMDECL(RTGCPTR) CPUMGetGuestIDTR(PVM pVM, uint16_t *pcbLimit) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); if (pcbLimit) *pcbLimit = pCpumCpu->Guest.idtr.cbIdt; return pCpumCpu->Guest.idtr.pIdt; } VMMDECL(RTSEL) CPUMGetGuestTR(PVM pVM, PCPUMSELREGHID pHidden) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); if (pHidden) *pHidden = pCpumCpu->Guest.trHid; return pCpumCpu->Guest.tr; } VMMDECL(RTSEL) CPUMGetGuestCS(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); return pCpumCpu->Guest.cs; } VMMDECL(RTSEL) CPUMGetGuestDS(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); return pCpumCpu->Guest.ds; } VMMDECL(RTSEL) CPUMGetGuestES(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); return pCpumCpu->Guest.es; } VMMDECL(RTSEL) CPUMGetGuestFS(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); return pCpumCpu->Guest.fs; } VMMDECL(RTSEL) CPUMGetGuestGS(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); return pCpumCpu->Guest.gs; } VMMDECL(RTSEL) CPUMGetGuestSS(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); return pCpumCpu->Guest.ss; } VMMDECL(RTSEL) CPUMGetGuestLDTR(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); return pCpumCpu->Guest.ldtr; } VMMDECL(uint64_t) CPUMGetGuestCR0(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); return pCpumCpu->Guest.cr0; } VMMDECL(uint64_t) CPUMGetGuestCR2(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); return pCpumCpu->Guest.cr2; } VMMDECL(uint64_t) CPUMGetGuestCR3(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); return pCpumCpu->Guest.cr3; } VMMDECL(uint64_t) CPUMGetGuestCR4(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); return pCpumCpu->Guest.cr4; } VMMDECL(void) CPUMGetGuestGDTR(PVM pVM, PVBOXGDTR pGDTR) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); *pGDTR = pCpumCpu->Guest.gdtr; } VMMDECL(uint32_t) CPUMGetGuestEIP(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); return pCpumCpu->Guest.eip; } VMMDECL(uint64_t) CPUMGetGuestRIP(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); return pCpumCpu->Guest.rip; } VMMDECL(uint32_t) CPUMGetGuestEAX(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); return pCpumCpu->Guest.eax; } VMMDECL(uint32_t) CPUMGetGuestEBX(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); return pCpumCpu->Guest.ebx; } VMMDECL(uint32_t) CPUMGetGuestECX(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); return pCpumCpu->Guest.ecx; } VMMDECL(uint32_t) CPUMGetGuestEDX(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); return pCpumCpu->Guest.edx; } VMMDECL(uint32_t) CPUMGetGuestESI(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); return pCpumCpu->Guest.esi; } VMMDECL(uint32_t) CPUMGetGuestEDI(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); return pCpumCpu->Guest.edi; } VMMDECL(uint32_t) CPUMGetGuestESP(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); return pCpumCpu->Guest.esp; } VMMDECL(uint32_t) CPUMGetGuestEBP(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); return pCpumCpu->Guest.ebp; } VMMDECL(uint32_t) CPUMGetGuestEFlags(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); return pCpumCpu->Guest.eflags.u32; } ///@todo: crx should be an array VMMDECL(int) CPUMGetGuestCRx(PVM pVM, unsigned iReg, uint64_t *pValue) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); switch (iReg) { case USE_REG_CR0: *pValue = pCpumCpu->Guest.cr0; break; case USE_REG_CR2: *pValue = pCpumCpu->Guest.cr2; break; case USE_REG_CR3: *pValue = pCpumCpu->Guest.cr3; break; case USE_REG_CR4: *pValue = pCpumCpu->Guest.cr4; break; default: return VERR_INVALID_PARAMETER; } return VINF_SUCCESS; } VMMDECL(uint64_t) CPUMGetGuestDR0(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); return pCpumCpu->Guest.dr[0]; } VMMDECL(uint64_t) CPUMGetGuestDR1(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); return pCpumCpu->Guest.dr[1]; } VMMDECL(uint64_t) CPUMGetGuestDR2(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); return pCpumCpu->Guest.dr[2]; } VMMDECL(uint64_t) CPUMGetGuestDR3(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); return pCpumCpu->Guest.dr[3]; } VMMDECL(uint64_t) CPUMGetGuestDR6(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); return pCpumCpu->Guest.dr[6]; } VMMDECL(uint64_t) CPUMGetGuestDR7(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); return pCpumCpu->Guest.dr[7]; } VMMDECL(int) CPUMGetGuestDRx(PVM pVM, uint32_t iReg, uint64_t *pValue) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); AssertReturn(iReg <= USE_REG_DR7, VERR_INVALID_PARAMETER); /* DR4 is an alias for DR6, and DR5 is an alias for DR7. */ if (iReg == 4 || iReg == 5) iReg += 2; *pValue = pCpumCpu->Guest.dr[iReg]; return VINF_SUCCESS; } VMMDECL(uint64_t) CPUMGetGuestEFER(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); return pCpumCpu->Guest.msrEFER; } /** * Gets a CpuId leaf. * * @param pVM The VM handle. * @param iLeaf The CPUID leaf to get. * @param pEax Where to store the EAX value. * @param pEbx Where to store the EBX value. * @param pEcx Where to store the ECX value. * @param pEdx Where to store the EDX value. */ VMMDECL(void) CPUMGetGuestCpuId(PVM pVM, uint32_t iLeaf, uint32_t *pEax, uint32_t *pEbx, uint32_t *pEcx, uint32_t *pEdx) { PCCPUMCPUID pCpuId; if (iLeaf < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd)) pCpuId = &pVM->cpum.s.aGuestCpuIdStd[iLeaf]; else if (iLeaf - UINT32_C(0x80000000) < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt)) pCpuId = &pVM->cpum.s.aGuestCpuIdExt[iLeaf - UINT32_C(0x80000000)]; else if (iLeaf - UINT32_C(0xc0000000) < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur)) pCpuId = &pVM->cpum.s.aGuestCpuIdCentaur[iLeaf - UINT32_C(0xc0000000)]; else pCpuId = &pVM->cpum.s.GuestCpuIdDef; *pEax = pCpuId->eax; *pEbx = pCpuId->ebx; *pEcx = pCpuId->ecx; *pEdx = pCpuId->edx; Log2(("CPUMGetGuestCpuId: iLeaf=%#010x %RX32 %RX32 %RX32 %RX32\n", iLeaf, *pEax, *pEbx, *pEcx, *pEdx)); } /** * Gets a pointer to the array of standard CPUID leafs. * * CPUMGetGuestCpuIdStdMax() give the size of the array. * * @returns Pointer to the standard CPUID leafs (read-only). * @param pVM The VM handle. * @remark Intended for PATM. */ VMMDECL(RCPTRTYPE(PCCPUMCPUID)) CPUMGetGuestCpuIdStdRCPtr(PVM pVM) { return RCPTRTYPE(PCCPUMCPUID)VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdStd[0]); } /** * Gets a pointer to the array of extended CPUID leafs. * * CPUMGetGuestCpuIdExtMax() give the size of the array. * * @returns Pointer to the extended CPUID leafs (read-only). * @param pVM The VM handle. * @remark Intended for PATM. */ VMMDECL(RCPTRTYPE(PCCPUMCPUID)) CPUMGetGuestCpuIdExtRCPtr(PVM pVM) { return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdExt[0]); } /** * Gets a pointer to the array of centaur CPUID leafs. * * CPUMGetGuestCpuIdCentaurMax() give the size of the array. * * @returns Pointer to the centaur CPUID leafs (read-only). * @param pVM The VM handle. * @remark Intended for PATM. */ VMMDECL(RCPTRTYPE(PCCPUMCPUID)) CPUMGetGuestCpuIdCentaurRCPtr(PVM pVM) { return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdCentaur[0]); } /** * Gets a pointer to the default CPUID leaf. * * @returns Pointer to the default CPUID leaf (read-only). * @param pVM The VM handle. * @remark Intended for PATM. */ VMMDECL(RCPTRTYPE(PCCPUMCPUID)) CPUMGetGuestCpuIdDefRCPtr(PVM pVM) { return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.GuestCpuIdDef); } /** * Gets a number of standard CPUID leafs. * * @returns Number of leafs. * @param pVM The VM handle. * @remark Intended for PATM. */ VMMDECL(uint32_t) CPUMGetGuestCpuIdStdMax(PVM pVM) { return RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd); } /** * Gets a number of extended CPUID leafs. * * @returns Number of leafs. * @param pVM The VM handle. * @remark Intended for PATM. */ VMMDECL(uint32_t) CPUMGetGuestCpuIdExtMax(PVM pVM) { return RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt); } /** * Gets a number of centaur CPUID leafs. * * @returns Number of leafs. * @param pVM The VM handle. * @remark Intended for PATM. */ VMMDECL(uint32_t) CPUMGetGuestCpuIdCentaurMax(PVM pVM) { return RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur); } /** * Sets a CPUID feature bit. * * @param pVM The VM Handle. * @param enmFeature The feature to set. */ VMMDECL(void) CPUMSetGuestCpuIdFeature(PVM pVM, CPUMCPUIDFEATURE enmFeature) { switch (enmFeature) { /* * Set the APIC bit in both feature masks. */ case CPUMCPUIDFEATURE_APIC: if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1) pVM->cpum.s.aGuestCpuIdStd[1].edx |= X86_CPUID_FEATURE_EDX_APIC; if ( pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001 && pVM->cpum.s.enmCPUVendor == CPUMCPUVENDOR_AMD) pVM->cpum.s.aGuestCpuIdExt[1].edx |= X86_CPUID_AMD_FEATURE_EDX_APIC; LogRel(("CPUMSetGuestCpuIdFeature: Enabled APIC\n")); break; /* * Set the x2APIC bit in the standard feature mask. */ case CPUMCPUIDFEATURE_X2APIC: if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1) pVM->cpum.s.aGuestCpuIdStd[1].ecx |= X86_CPUID_FEATURE_ECX_X2APIC; LogRel(("CPUMSetGuestCpuIdFeature: Enabled x2APIC\n")); break; /* * Set the sysenter/sysexit bit in the standard feature mask. * Assumes the caller knows what it's doing! (host must support these) */ case CPUMCPUIDFEATURE_SEP: { if (!(ASMCpuId_EDX(1) & X86_CPUID_FEATURE_EDX_SEP)) { AssertMsgFailed(("ERROR: Can't turn on SEP when the host doesn't support it!!\n")); return; } if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1) pVM->cpum.s.aGuestCpuIdStd[1].edx |= X86_CPUID_FEATURE_EDX_SEP; LogRel(("CPUMSetGuestCpuIdFeature: Enabled sysenter/exit\n")); break; } /* * Set the syscall/sysret bit in the extended feature mask. * Assumes the caller knows what it's doing! (host must support these) */ case CPUMCPUIDFEATURE_SYSCALL: { if ( pVM->cpum.s.aGuestCpuIdExt[0].eax < 0x80000001 || !(ASMCpuId_EDX(0x80000001) & X86_CPUID_AMD_FEATURE_EDX_SEP)) { #if HC_ARCH_BITS == 32 /* X86_CPUID_AMD_FEATURE_EDX_SEP not set it seems in 32 bits mode. * Even when the cpu is capable of doing so in 64 bits mode. */ if ( pVM->cpum.s.aGuestCpuIdExt[0].eax < 0x80000001 || !(ASMCpuId_EDX(0x80000001) & X86_CPUID_AMD_FEATURE_EDX_LONG_MODE) || !(ASMCpuId_EDX(1) & X86_CPUID_FEATURE_EDX_SEP)) #endif { LogRel(("WARNING: Can't turn on SYSCALL/SYSRET when the host doesn't support it!!\n")); return; } } /* Valid for both Intel and AMD CPUs, although only in 64 bits mode for Intel. */ pVM->cpum.s.aGuestCpuIdExt[1].edx |= X86_CPUID_AMD_FEATURE_EDX_SEP; LogRel(("CPUMSetGuestCpuIdFeature: Enabled syscall/ret\n")); break; } /* * Set the PAE bit in both feature masks. * Assumes the caller knows what it's doing! (host must support these) */ case CPUMCPUIDFEATURE_PAE: { if (!(ASMCpuId_EDX(1) & X86_CPUID_FEATURE_EDX_PAE)) { LogRel(("WARNING: Can't turn on PAE when the host doesn't support it!!\n")); return; } if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1) pVM->cpum.s.aGuestCpuIdStd[1].edx |= X86_CPUID_FEATURE_EDX_PAE; if ( pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001 && pVM->cpum.s.enmCPUVendor == CPUMCPUVENDOR_AMD) pVM->cpum.s.aGuestCpuIdExt[1].edx |= X86_CPUID_AMD_FEATURE_EDX_PAE; LogRel(("CPUMSetGuestCpuIdFeature: Enabled PAE\n")); break; } /* * Set the LONG MODE bit in the extended feature mask. * Assumes the caller knows what it's doing! (host must support these) */ case CPUMCPUIDFEATURE_LONG_MODE: { if ( pVM->cpum.s.aGuestCpuIdExt[0].eax < 0x80000001 || !(ASMCpuId_EDX(0x80000001) & X86_CPUID_AMD_FEATURE_EDX_LONG_MODE)) { LogRel(("WARNING: Can't turn on LONG MODE when the host doesn't support it!!\n")); return; } /* Valid for both Intel and AMD. */ pVM->cpum.s.aGuestCpuIdExt[1].edx |= X86_CPUID_AMD_FEATURE_EDX_LONG_MODE; LogRel(("CPUMSetGuestCpuIdFeature: Enabled LONG MODE\n")); break; } /* * Set the NXE bit in the extended feature mask. * Assumes the caller knows what it's doing! (host must support these) */ case CPUMCPUIDFEATURE_NXE: { if ( pVM->cpum.s.aGuestCpuIdExt[0].eax < 0x80000001 || !(ASMCpuId_EDX(0x80000001) & X86_CPUID_AMD_FEATURE_EDX_NX)) { LogRel(("WARNING: Can't turn on NXE when the host doesn't support it!!\n")); return; } /* Valid for both Intel and AMD. */ pVM->cpum.s.aGuestCpuIdExt[1].edx |= X86_CPUID_AMD_FEATURE_EDX_NX; LogRel(("CPUMSetGuestCpuIdFeature: Enabled NXE\n")); break; } case CPUMCPUIDFEATURE_LAHF: { if ( pVM->cpum.s.aGuestCpuIdExt[0].eax < 0x80000001 || !(ASMCpuId_ECX(0x80000001) & X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF)) { LogRel(("WARNING: Can't turn on LAHF/SAHF when the host doesn't support it!!\n")); return; } pVM->cpum.s.aGuestCpuIdExt[1].ecx |= X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF; LogRel(("CPUMSetGuestCpuIdFeature: Enabled LAHF/SAHF\n")); break; } case CPUMCPUIDFEATURE_PAT: { if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1) pVM->cpum.s.aGuestCpuIdStd[1].edx |= X86_CPUID_FEATURE_EDX_PAT; if ( pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001 && pVM->cpum.s.enmCPUVendor == CPUMCPUVENDOR_AMD) pVM->cpum.s.aGuestCpuIdExt[1].edx |= X86_CPUID_AMD_FEATURE_EDX_PAT; LogRel(("CPUMClearGuestCpuIdFeature: Enabled PAT\n")); break; } case CPUMCPUIDFEATURE_RDTSCP: { if ( pVM->cpum.s.aGuestCpuIdExt[0].eax < 0x80000001 || !(ASMCpuId_EDX(0x80000001) & X86_CPUID_AMD_FEATURE_EDX_RDTSCP)) { LogRel(("WARNING: Can't turn on RDTSCP when the host doesn't support it!!\n")); return; } /* Valid for AMD only (for now). */ pVM->cpum.s.aGuestCpuIdExt[1].edx |= X86_CPUID_AMD_FEATURE_EDX_RDTSCP; LogRel(("CPUMSetGuestCpuIdFeature: Enabled RDTSCP.\n")); break; } default: AssertMsgFailed(("enmFeature=%d\n", enmFeature)); break; } PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); pCpumCpu->fChanged |= CPUM_CHANGED_CPUID; } /** * Queries a CPUID feature bit. * * @returns boolean for feature presence * @param pVM The VM Handle. * @param enmFeature The feature to query. */ VMMDECL(bool) CPUMGetGuestCpuIdFeature(PVM pVM, CPUMCPUIDFEATURE enmFeature) { switch (enmFeature) { case CPUMCPUIDFEATURE_PAE: { if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1) return !!(pVM->cpum.s.aGuestCpuIdStd[1].edx & X86_CPUID_FEATURE_EDX_PAE); break; } case CPUMCPUIDFEATURE_RDTSCP: { if (pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001) return !!(pVM->cpum.s.aGuestCpuIdExt[1].edx & X86_CPUID_AMD_FEATURE_EDX_RDTSCP); break; } case CPUMCPUIDFEATURE_LONG_MODE: { if (pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001) return !!(pVM->cpum.s.aGuestCpuIdExt[1].edx & X86_CPUID_AMD_FEATURE_EDX_LONG_MODE); break; } default: AssertMsgFailed(("enmFeature=%d\n", enmFeature)); break; } return false; } /** * Clears a CPUID feature bit. * * @param pVM The VM Handle. * @param enmFeature The feature to clear. */ VMMDECL(void) CPUMClearGuestCpuIdFeature(PVM pVM, CPUMCPUIDFEATURE enmFeature) { switch (enmFeature) { /* * Set the APIC bit in both feature masks. */ case CPUMCPUIDFEATURE_APIC: if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1) pVM->cpum.s.aGuestCpuIdStd[1].edx &= ~X86_CPUID_FEATURE_EDX_APIC; if ( pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001 && pVM->cpum.s.enmCPUVendor == CPUMCPUVENDOR_AMD) pVM->cpum.s.aGuestCpuIdExt[1].edx &= ~X86_CPUID_AMD_FEATURE_EDX_APIC; Log(("CPUMSetGuestCpuIdFeature: Disabled APIC\n")); break; /* * Clear the x2APIC bit in the standard feature mask. */ case CPUMCPUIDFEATURE_X2APIC: if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1) pVM->cpum.s.aGuestCpuIdStd[1].ecx &= ~X86_CPUID_FEATURE_ECX_X2APIC; LogRel(("CPUMSetGuestCpuIdFeature: Disabled x2APIC\n")); break; case CPUMCPUIDFEATURE_PAE: { if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1) pVM->cpum.s.aGuestCpuIdStd[1].edx &= ~X86_CPUID_FEATURE_EDX_PAE; if ( pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001 && pVM->cpum.s.enmCPUVendor == CPUMCPUVENDOR_AMD) pVM->cpum.s.aGuestCpuIdExt[1].edx &= ~X86_CPUID_AMD_FEATURE_EDX_PAE; LogRel(("CPUMClearGuestCpuIdFeature: Disabled PAE!\n")); break; } case CPUMCPUIDFEATURE_PAT: { if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1) pVM->cpum.s.aGuestCpuIdStd[1].edx &= ~X86_CPUID_FEATURE_EDX_PAT; if ( pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001 && pVM->cpum.s.enmCPUVendor == CPUMCPUVENDOR_AMD) pVM->cpum.s.aGuestCpuIdExt[1].edx &= ~X86_CPUID_AMD_FEATURE_EDX_PAT; LogRel(("CPUMClearGuestCpuIdFeature: Disabled PAT!\n")); break; } case CPUMCPUIDFEATURE_LONG_MODE: { if (pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001) pVM->cpum.s.aGuestCpuIdExt[1].edx &= ~X86_CPUID_AMD_FEATURE_EDX_LONG_MODE; break; } case CPUMCPUIDFEATURE_LAHF: { if (pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001) pVM->cpum.s.aGuestCpuIdExt[1].ecx &= ~X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF; break; } default: AssertMsgFailed(("enmFeature=%d\n", enmFeature)); break; } PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); pCpumCpu->fChanged |= CPUM_CHANGED_CPUID; } /** * Gets the CPU vendor * * @returns CPU vendor * @param pVM The VM handle. */ VMMDECL(CPUMCPUVENDOR) CPUMGetCPUVendor(PVM pVM) { return pVM->cpum.s.enmCPUVendor; } VMMDECL(int) CPUMSetGuestDR0(PVM pVM, uint64_t uDr0) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); pCpumCpu->Guest.dr[0] = uDr0; return CPUMRecalcHyperDRx(pVM); } VMMDECL(int) CPUMSetGuestDR1(PVM pVM, uint64_t uDr1) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); pCpumCpu->Guest.dr[1] = uDr1; return CPUMRecalcHyperDRx(pVM); } VMMDECL(int) CPUMSetGuestDR2(PVM pVM, uint64_t uDr2) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); pCpumCpu->Guest.dr[2] = uDr2; return CPUMRecalcHyperDRx(pVM); } VMMDECL(int) CPUMSetGuestDR3(PVM pVM, uint64_t uDr3) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); pCpumCpu->Guest.dr[3] = uDr3; return CPUMRecalcHyperDRx(pVM); } VMMDECL(int) CPUMSetGuestDR6(PVM pVM, uint64_t uDr6) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); pCpumCpu->Guest.dr[6] = uDr6; return CPUMRecalcHyperDRx(pVM); } VMMDECL(int) CPUMSetGuestDR7(PVM pVM, uint64_t uDr7) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); pCpumCpu->Guest.dr[7] = uDr7; return CPUMRecalcHyperDRx(pVM); } VMMDECL(int) CPUMSetGuestDRx(PVM pVM, uint32_t iReg, uint64_t Value) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); AssertReturn(iReg <= USE_REG_DR7, VERR_INVALID_PARAMETER); /* DR4 is an alias for DR6, and DR5 is an alias for DR7. */ if (iReg == 4 || iReg == 5) iReg += 2; pCpumCpu->Guest.dr[iReg] = Value; return CPUMRecalcHyperDRx(pVM); } /** * Recalculates the hypvervisor DRx register values based on * current guest registers and DBGF breakpoints. * * This is called whenever a guest DRx register is modified and when DBGF * sets a hardware breakpoint. In guest context this function will reload * any (hyper) DRx registers which comes out with a different value. * * @returns VINF_SUCCESS. * @param pVM The VM handle. */ VMMDECL(int) CPUMRecalcHyperDRx(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); /* * Compare the DR7s first. * * We only care about the enabled flags. The GE and LE flags are always * set and we don't care if the guest doesn't set them. GD is virtualized * when we dispatch #DB, we never enable it. */ const RTGCUINTREG uDbgfDr7 = DBGFBpGetDR7(pVM); #ifdef CPUM_VIRTUALIZE_DRX const RTGCUINTREG uGstDr7 = CPUMGetGuestDR7(pVM); #else const RTGCUINTREG uGstDr7 = 0; #endif if ((uGstDr7 | uDbgfDr7) & X86_DR7_ENABLED_MASK) { /* * Ok, something is enabled. Recalc each of the breakpoints. * Straight forward code, not optimized/minimized in any way. */ RTGCUINTREG uNewDr7 = X86_DR7_GE | X86_DR7_LE | X86_DR7_MB1_MASK; /* bp 0 */ RTGCUINTREG uNewDr0; if (uDbgfDr7 & (X86_DR7_L0 | X86_DR7_G0)) { uNewDr7 |= uDbgfDr7 & (X86_DR7_L0 | X86_DR7_G0 | X86_DR7_RW0_MASK | X86_DR7_LEN0_MASK); uNewDr0 = DBGFBpGetDR0(pVM); } else if (uGstDr7 & (X86_DR7_L0 | X86_DR7_G0)) { uNewDr7 |= uGstDr7 & (X86_DR7_L0 | X86_DR7_G0 | X86_DR7_RW0_MASK | X86_DR7_LEN0_MASK); uNewDr0 = CPUMGetGuestDR0(pVM); } else uNewDr0 = pVM->cpum.s.Hyper.dr[0]; /* bp 1 */ RTGCUINTREG uNewDr1; if (uDbgfDr7 & (X86_DR7_L1 | X86_DR7_G1)) { uNewDr7 |= uDbgfDr7 & (X86_DR7_L1 | X86_DR7_G1 | X86_DR7_RW1_MASK | X86_DR7_LEN1_MASK); uNewDr1 = DBGFBpGetDR1(pVM); } else if (uGstDr7 & (X86_DR7_L1 | X86_DR7_G1)) { uNewDr7 |= uGstDr7 & (X86_DR7_L1 | X86_DR7_G1 | X86_DR7_RW1_MASK | X86_DR7_LEN1_MASK); uNewDr1 = CPUMGetGuestDR1(pVM); } else uNewDr1 = pVM->cpum.s.Hyper.dr[1]; /* bp 2 */ RTGCUINTREG uNewDr2; if (uDbgfDr7 & (X86_DR7_L2 | X86_DR7_G2)) { uNewDr7 |= uDbgfDr7 & (X86_DR7_L2 | X86_DR7_G2 | X86_DR7_RW2_MASK | X86_DR7_LEN2_MASK); uNewDr2 = DBGFBpGetDR2(pVM); } else if (uGstDr7 & (X86_DR7_L2 | X86_DR7_G2)) { uNewDr7 |= uGstDr7 & (X86_DR7_L2 | X86_DR7_G2 | X86_DR7_RW2_MASK | X86_DR7_LEN2_MASK); uNewDr2 = CPUMGetGuestDR2(pVM); } else uNewDr2 = pVM->cpum.s.Hyper.dr[2]; /* bp 3 */ RTGCUINTREG uNewDr3; if (uDbgfDr7 & (X86_DR7_L3 | X86_DR7_G3)) { uNewDr7 |= uDbgfDr7 & (X86_DR7_L3 | X86_DR7_G3 | X86_DR7_RW3_MASK | X86_DR7_LEN3_MASK); uNewDr3 = DBGFBpGetDR3(pVM); } else if (uGstDr7 & (X86_DR7_L3 | X86_DR7_G3)) { uNewDr7 |= uGstDr7 & (X86_DR7_L3 | X86_DR7_G3 | X86_DR7_RW3_MASK | X86_DR7_LEN3_MASK); uNewDr3 = CPUMGetGuestDR3(pVM); } else uNewDr3 = pVM->cpum.s.Hyper.dr[3]; /* * Apply the updates. */ #ifdef IN_RC if (!(pCpumCpu->fUseFlags & CPUM_USE_DEBUG_REGS)) { /** @todo save host DBx registers. */ } #endif pCpumCpu->fUseFlags |= CPUM_USE_DEBUG_REGS; if (uNewDr3 != pVM->cpum.s.Hyper.dr[3]) CPUMSetHyperDR3(pVM, uNewDr3); if (uNewDr2 != pVM->cpum.s.Hyper.dr[2]) CPUMSetHyperDR2(pVM, uNewDr2); if (uNewDr1 != pVM->cpum.s.Hyper.dr[1]) CPUMSetHyperDR1(pVM, uNewDr1); if (uNewDr0 != pVM->cpum.s.Hyper.dr[0]) CPUMSetHyperDR0(pVM, uNewDr0); if (uNewDr7 != pVM->cpum.s.Hyper.dr[7]) CPUMSetHyperDR7(pVM, uNewDr7); } else { #ifdef IN_RC if (pCpumCpu->fUseFlags & CPUM_USE_DEBUG_REGS) { /** @todo restore host DBx registers. */ } #endif pCpumCpu->fUseFlags &= ~CPUM_USE_DEBUG_REGS; } Log2(("CPUMRecalcHyperDRx: fUseFlags=%#x %RGr %RGr %RGr %RGr %RGr %RGr\n", pCpumCpu->fUseFlags, pVM->cpum.s.Hyper.dr[0], pVM->cpum.s.Hyper.dr[1], pVM->cpum.s.Hyper.dr[2], pVM->cpum.s.Hyper.dr[3], pVM->cpum.s.Hyper.dr[6], pVM->cpum.s.Hyper.dr[7])); return VINF_SUCCESS; } #ifndef IN_RING0 /** @todo I don't think we need this in R0, so move it to CPUMAll.cpp? */ /** * Transforms the guest CPU state to raw-ring mode. * * This function will change the any of the cs and ss register with DPL=0 to DPL=1. * * @returns VBox status. (recompiler failure) * @param pVM VM handle. * @param pCtxCore The context core (for trap usage). * @see @ref pg_raw */ VMMDECL(int) CPUMRawEnter(PVM pVM, PCPUMCTXCORE pCtxCore) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); Assert(!pVM->cpum.s.fRawEntered); if (!pCtxCore) pCtxCore = CPUMCTX2CORE(&pCpumCpu->Guest); /* * Are we in Ring-0? */ if ( pCtxCore->ss && (pCtxCore->ss & X86_SEL_RPL) == 0 && !pCtxCore->eflags.Bits.u1VM) { /* * Enter execution mode. */ PATMRawEnter(pVM, pCtxCore); /* * Set CPL to Ring-1. */ pCtxCore->ss |= 1; if (pCtxCore->cs && (pCtxCore->cs & X86_SEL_RPL) == 0) pCtxCore->cs |= 1; } else { AssertMsg((pCtxCore->ss & X86_SEL_RPL) >= 2 || pCtxCore->eflags.Bits.u1VM, ("ring-1 code not supported\n")); /* * PATM takes care of IOPL and IF flags for Ring-3 and Ring-2 code as well. */ PATMRawEnter(pVM, pCtxCore); } /* * Assert sanity. */ AssertMsg((pCtxCore->eflags.u32 & X86_EFL_IF), ("X86_EFL_IF is clear\n")); AssertReleaseMsg( pCtxCore->eflags.Bits.u2IOPL < (unsigned)(pCtxCore->ss & X86_SEL_RPL) || pCtxCore->eflags.Bits.u1VM, ("X86_EFL_IOPL=%d CPL=%d\n", pCtxCore->eflags.Bits.u2IOPL, pCtxCore->ss & X86_SEL_RPL)); Assert((pCpumCpu->Guest.cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) == (X86_CR0_PG | X86_CR0_PE | X86_CR0_WP)); pCtxCore->eflags.u32 |= X86_EFL_IF; /* paranoia */ pVM->cpum.s.fRawEntered = true; return VINF_SUCCESS; } /** * Transforms the guest CPU state from raw-ring mode to correct values. * * This function will change any selector registers with DPL=1 to DPL=0. * * @returns Adjusted rc. * @param pVM VM handle. * @param rc Raw mode return code * @param pCtxCore The context core (for trap usage). * @see @ref pg_raw */ VMMDECL(int) CPUMRawLeave(PVM pVM, PCPUMCTXCORE pCtxCore, int rc) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); /* * Don't leave if we've already left (in GC). */ Assert(pVM->cpum.s.fRawEntered); if (!pVM->cpum.s.fRawEntered) return rc; pVM->cpum.s.fRawEntered = false; PCPUMCTX pCtx = &pCpumCpu->Guest; if (!pCtxCore) pCtxCore = CPUMCTX2CORE(pCtx); Assert(pCtxCore->eflags.Bits.u1VM || (pCtxCore->ss & X86_SEL_RPL)); AssertMsg(pCtxCore->eflags.Bits.u1VM || pCtxCore->eflags.Bits.u2IOPL < (unsigned)(pCtxCore->ss & X86_SEL_RPL), ("X86_EFL_IOPL=%d CPL=%d\n", pCtxCore->eflags.Bits.u2IOPL, pCtxCore->ss & X86_SEL_RPL)); /* * Are we executing in raw ring-1? */ if ( (pCtxCore->ss & X86_SEL_RPL) == 1 && !pCtxCore->eflags.Bits.u1VM) { /* * Leave execution mode. */ PATMRawLeave(pVM, pCtxCore, rc); /* Not quite sure if this is really required, but shouldn't harm (too much anyways). */ /** @todo See what happens if we remove this. */ if ((pCtxCore->ds & X86_SEL_RPL) == 1) pCtxCore->ds &= ~X86_SEL_RPL; if ((pCtxCore->es & X86_SEL_RPL) == 1) pCtxCore->es &= ~X86_SEL_RPL; if ((pCtxCore->fs & X86_SEL_RPL) == 1) pCtxCore->fs &= ~X86_SEL_RPL; if ((pCtxCore->gs & X86_SEL_RPL) == 1) pCtxCore->gs &= ~X86_SEL_RPL; /* * Ring-1 selector => Ring-0. */ pCtxCore->ss &= ~X86_SEL_RPL; if ((pCtxCore->cs & X86_SEL_RPL) == 1) pCtxCore->cs &= ~X86_SEL_RPL; } else { /* * PATM is taking care of the IOPL and IF flags for us. */ PATMRawLeave(pVM, pCtxCore, rc); if (!pCtxCore->eflags.Bits.u1VM) { /** @todo See what happens if we remove this. */ if ((pCtxCore->ds & X86_SEL_RPL) == 1) pCtxCore->ds &= ~X86_SEL_RPL; if ((pCtxCore->es & X86_SEL_RPL) == 1) pCtxCore->es &= ~X86_SEL_RPL; if ((pCtxCore->fs & X86_SEL_RPL) == 1) pCtxCore->fs &= ~X86_SEL_RPL; if ((pCtxCore->gs & X86_SEL_RPL) == 1) pCtxCore->gs &= ~X86_SEL_RPL; } } return rc; } /** * Updates the EFLAGS while we're in raw-mode. * * @param pVM The VM handle. * @param pCtxCore The context core. * @param eflags The new EFLAGS value. */ VMMDECL(void) CPUMRawSetEFlags(PVM pVM, PCPUMCTXCORE pCtxCore, uint32_t eflags) { if (!pVM->cpum.s.fRawEntered) { pCtxCore->eflags.u32 = eflags; return; } PATMRawSetEFlags(pVM, pCtxCore, eflags); } #endif /* !IN_RING0 */ /** * Gets the EFLAGS while we're in raw-mode. * * @returns The eflags. * @param pVM The VM handle. * @param pCtxCore The context core. */ VMMDECL(uint32_t) CPUMRawGetEFlags(PVM pVM, PCPUMCTXCORE pCtxCore) { #ifdef IN_RING0 return pCtxCore->eflags.u32; #else if (!pVM->cpum.s.fRawEntered) return pCtxCore->eflags.u32; return PATMRawGetEFlags(pVM, pCtxCore); #endif } /** * Gets and resets the changed flags (CPUM_CHANGED_*). * Only REM should call this function. * * @returns The changed flags. * @param pVM The VM handle. */ VMMDECL(unsigned) CPUMGetAndClearChangedFlagsREM(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); unsigned fFlags = pCpumCpu->fChanged; pCpumCpu->fChanged = 0; /** @todo change the switcher to use the fChanged flags. */ if (pCpumCpu->fUseFlags & CPUM_USED_FPU_SINCE_REM) { fFlags |= CPUM_CHANGED_FPU_REM; pCpumCpu->fUseFlags &= ~CPUM_USED_FPU_SINCE_REM; } return fFlags; } /** * Sets the specified changed flags (CPUM_CHANGED_*). * * @param pVM The VM handle. */ VMMDECL(void) CPUMSetChangedFlags(PVM pVM, uint32_t fChangedFlags) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); pCpumCpu->fChanged |= fChangedFlags; } /** * Checks if the CPU supports the FXSAVE and FXRSTOR instruction. * @returns true if supported. * @returns false if not supported. * @param pVM The VM handle. */ VMMDECL(bool) CPUMSupportsFXSR(PVM pVM) { return pVM->cpum.s.CPUFeatures.edx.u1FXSR != 0; } /** * Checks if the host OS uses the SYSENTER / SYSEXIT instructions. * @returns true if used. * @returns false if not used. * @param pVM The VM handle. */ VMMDECL(bool) CPUMIsHostUsingSysEnter(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); return (pCpumCpu->fUseFlags & CPUM_USE_SYSENTER) != 0; } /** * Checks if the host OS uses the SYSCALL / SYSRET instructions. * @returns true if used. * @returns false if not used. * @param pVM The VM handle. */ VMMDECL(bool) CPUMIsHostUsingSysCall(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); return (pCpumCpu->fUseFlags & CPUM_USE_SYSCALL) != 0; } #ifndef IN_RING3 /** * Lazily sync in the FPU/XMM state * * @returns VBox status code. * @param pVM VM handle. * @param pVCpu VMCPU handle */ VMMDECL(int) CPUMHandleLazyFPU(PVM pVM, PVMCPU pVCpu) { return cpumHandleLazyFPUAsm(&pVCpu->cpum.s); } #endif /* !IN_RING3 */ /** * Checks if we activated the FPU/XMM state of the guest OS * @returns true if we did. * @returns false if not. * @param pVCpu The VMCPU handle. */ VMMDECL(bool) CPUMIsGuestFPUStateActive(PVMCPU pVCpu) { return (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU) != 0; } /** * Deactivate the FPU/XMM state of the guest OS * @param pVM The VM handle. */ VMMDECL(void) CPUMDeactivateGuestFPUState(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); pCpumCpu->fUseFlags &= ~CPUM_USED_FPU; } /** * Checks if the guest debug state is active * * @returns boolean * @param pVM VM handle. */ VMMDECL(bool) CPUMIsGuestDebugStateActive(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); return (pCpumCpu->fUseFlags & CPUM_USE_DEBUG_REGS) != 0; } /** * Mark the guest's debug state as inactive * * @returns boolean * @param pVM VM handle. */ VMMDECL(void) CPUMDeactivateGuestDebugState(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); pCpumCpu->fUseFlags &= ~CPUM_USE_DEBUG_REGS; } /** * Checks if the hidden selector registers are valid * @returns true if they are. * @returns false if not. * @param pVM The VM handle. */ VMMDECL(bool) CPUMAreHiddenSelRegsValid(PVM pVM) { return !!pVM->cpum.s.fValidHiddenSelRegs; /** @todo change fValidHiddenSelRegs to bool! */ } /** * Checks if the hidden selector registers are valid * @param pVM The VM handle. * @param fValid Valid or not */ VMMDECL(void) CPUMSetHiddenSelRegsValid(PVM pVM, bool fValid) { pVM->cpum.s.fValidHiddenSelRegs = fValid; } /** * Get the current privilege level of the guest. * * @returns cpl * @param pVM VM Handle. * @param pRegFrame Trap register frame. */ VMMDECL(uint32_t) CPUMGetGuestCPL(PVM pVM, PCPUMCTXCORE pCtxCore) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); uint32_t cpl; if (CPUMAreHiddenSelRegsValid(pVM)) { /* * The hidden CS.DPL register is always equal to the CPL, it is * not affected by loading a conforming coding segment. * * This only seems to apply to AMD-V; in the VT-x case we *do* need to look * at SS. (ACP2 regression during install after a far call to ring 2) */ if (RT_LIKELY(pCpumCpu->Guest.cr0 & X86_CR0_PE)) cpl = pCtxCore->ssHid.Attr.n.u2Dpl; else cpl = 0; /* CPL set to 3 for VT-x real-mode emulation. */ } else if (RT_LIKELY(pCpumCpu->Guest.cr0 & X86_CR0_PE)) { if (RT_LIKELY(!pCtxCore->eflags.Bits.u1VM)) { /* * The SS RPL is always equal to the CPL, while the CS RPL * isn't necessarily equal if the segment is conforming. * See section 4.11.1 in the AMD manual. */ cpl = (pCtxCore->ss & X86_SEL_RPL); #ifndef IN_RING0 if (cpl == 1) cpl = 0; #endif } else cpl = 3; } else cpl = 0; /* real mode; cpl is zero */ return cpl; } /** * Gets the current guest CPU mode. * * If paging mode is what you need, check out PGMGetGuestMode(). * * @returns The CPU mode. * @param pVM The VM handle. */ VMMDECL(CPUMMODE) CPUMGetGuestMode(PVM pVM) { PCPUMCPU pCpumCpu = cpumGetCpumCpu(pVM); CPUMMODE enmMode; if (!(pCpumCpu->Guest.cr0 & X86_CR0_PE)) enmMode = CPUMMODE_REAL; else if (!(pCpumCpu->Guest.msrEFER & MSR_K6_EFER_LMA)) enmMode = CPUMMODE_PROTECTED; else enmMode = CPUMMODE_LONG; return enmMode; }