/* $Id: CPUMAllRegs.cpp 74101 2018-09-06 04:30:45Z vboxsync $ */ /** @file * CPUM - CPU Monitor(/Manager) - Getters and Setters. */ /* * Copyright (C) 2006-2017 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_CPUM #include #include #include #include #include #include #include #ifndef IN_RC # include # include #endif #if defined(VBOX_WITH_RAW_MODE) && !defined(IN_RING0) # include #endif #include "CPUMInternal.h" #include #include #include #include #include #include #include #include #include #ifdef IN_RING3 # include #endif /** Disable stack frame pointer generation here. */ #if defined(_MSC_VER) && !defined(DEBUG) && defined(RT_ARCH_X86) # pragma optimize("y", off) #endif AssertCompile2MemberOffsets(VM, cpum.s.HostFeatures, cpum.ro.HostFeatures); AssertCompile2MemberOffsets(VM, cpum.s.GuestFeatures, cpum.ro.GuestFeatures); /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ /** * Converts a CPUMCPU::Guest pointer into a VMCPU pointer. * * @returns Pointer to the Virtual CPU. * @param a_pGuestCtx Pointer to the guest context. */ #define CPUM_GUEST_CTX_TO_VMCPU(a_pGuestCtx) RT_FROM_MEMBER(a_pGuestCtx, VMCPU, cpum.s.Guest) /** * Lazily loads the hidden parts of a selector register when using raw-mode. */ #if defined(VBOX_WITH_RAW_MODE) && !defined(IN_RING0) # define CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(a_pVCpu, a_pSReg) \ do \ { \ if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(a_pVCpu, a_pSReg)) \ cpumGuestLazyLoadHiddenSelectorReg(a_pVCpu, a_pSReg); \ } while (0) #else # define CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(a_pVCpu, a_pSReg) \ Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(a_pVCpu, a_pSReg)); #endif /** @def CPUM_INT_ASSERT_NOT_EXTRN * Macro for asserting that @a a_fNotExtrn are present. * * @param a_pVCpu The cross context virtual CPU structure of the calling EMT. * @param a_fNotExtrn Mask of CPUMCTX_EXTRN_XXX bits to check. */ #define CPUM_INT_ASSERT_NOT_EXTRN(a_pVCpu, a_fNotExtrn) \ AssertMsg(!((a_pVCpu)->cpum.s.Guest.fExtrn & (a_fNotExtrn)), \ ("%#RX64; a_fNotExtrn=%#RX64\n", (a_pVCpu)->cpum.s.Guest.fExtrn, (a_fNotExtrn))) #ifdef VBOX_WITH_RAW_MODE_NOT_R0 /** * Does the lazy hidden selector register loading. * * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param pSReg The selector register to lazily load hidden parts of. */ static void cpumGuestLazyLoadHiddenSelectorReg(PVMCPU pVCpu, PCPUMSELREG pSReg) { Assert(!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, pSReg)); Assert(VM_IS_RAW_MODE_ENABLED(pVCpu->CTX_SUFF(pVM))); Assert((uintptr_t)(pSReg - &pVCpu->cpum.s.Guest.es) < X86_SREG_COUNT); if (pVCpu->cpum.s.Guest.eflags.Bits.u1VM) { /* V8086 mode - Tightly controlled environment, no question about the limit or flags. */ pSReg->Attr.u = 0; pSReg->Attr.n.u4Type = pSReg == &pVCpu->cpum.s.Guest.cs ? X86_SEL_TYPE_ER_ACC : X86_SEL_TYPE_RW_ACC; pSReg->Attr.n.u1DescType = 1; /* code/data segment */ pSReg->Attr.n.u2Dpl = 3; pSReg->Attr.n.u1Present = 1; pSReg->u32Limit = 0x0000ffff; pSReg->u64Base = (uint32_t)pSReg->Sel << 4; pSReg->ValidSel = pSReg->Sel; pSReg->fFlags = CPUMSELREG_FLAGS_VALID; /** @todo Check what the accessed bit should be (VT-x and AMD-V). */ } else if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE)) { /* Real mode - leave the limit and flags alone here, at least for now. */ pSReg->u64Base = (uint32_t)pSReg->Sel << 4; pSReg->ValidSel = pSReg->Sel; pSReg->fFlags = CPUMSELREG_FLAGS_VALID; } else { /* Protected mode - get it from the selector descriptor tables. */ if (!(pSReg->Sel & X86_SEL_MASK_OFF_RPL)) { Assert(!CPUMIsGuestInLongMode(pVCpu)); pSReg->Sel = 0; pSReg->u64Base = 0; pSReg->u32Limit = 0; pSReg->Attr.u = 0; pSReg->ValidSel = 0; pSReg->fFlags = CPUMSELREG_FLAGS_VALID; /** @todo see todo in iemHlpLoadNullDataSelectorProt. */ } else SELMLoadHiddenSelectorReg(pVCpu, &pVCpu->cpum.s.Guest, pSReg); } } /** * Makes sure the hidden CS and SS selector registers are valid, loading them if * necessary. * * @param pVCpu The cross context virtual CPU structure of the calling EMT. */ VMM_INT_DECL(void) CPUMGuestLazyLoadHiddenCsAndSs(PVMCPU pVCpu) { CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs); CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.ss); } /** * Loads a the hidden parts of a selector register. * * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param pSReg The selector register to lazily load hidden parts of. */ VMM_INT_DECL(void) CPUMGuestLazyLoadHiddenSelectorReg(PVMCPU pVCpu, PCPUMSELREG pSReg) { CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, pSReg); } #endif /* VBOX_WITH_RAW_MODE_NOT_R0 */ /** * Obsolete. * * We don't support nested hypervisor context interrupts or traps. Life is much * simpler when we don't. It's also slightly faster at times. * * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(PCCPUMCTXCORE) CPUMGetHyperCtxCore(PVMCPU pVCpu) { return CPUMCTX2CORE(&pVCpu->cpum.s.Hyper); } /** * Gets the pointer to the hypervisor CPU context structure of a virtual CPU. * * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(PCPUMCTX) CPUMGetHyperCtxPtr(PVMCPU pVCpu) { return &pVCpu->cpum.s.Hyper; } VMMDECL(void) CPUMSetHyperGDTR(PVMCPU pVCpu, uint32_t addr, uint16_t limit) { pVCpu->cpum.s.Hyper.gdtr.cbGdt = limit; pVCpu->cpum.s.Hyper.gdtr.pGdt = addr; } VMMDECL(void) CPUMSetHyperIDTR(PVMCPU pVCpu, uint32_t addr, uint16_t limit) { pVCpu->cpum.s.Hyper.idtr.cbIdt = limit; pVCpu->cpum.s.Hyper.idtr.pIdt = addr; } VMMDECL(void) CPUMSetHyperCR3(PVMCPU pVCpu, uint32_t cr3) { pVCpu->cpum.s.Hyper.cr3 = cr3; #ifdef IN_RC /* Update the current CR3. */ ASMSetCR3(cr3); #endif } VMMDECL(uint32_t) CPUMGetHyperCR3(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.cr3; } VMMDECL(void) CPUMSetHyperCS(PVMCPU pVCpu, RTSEL SelCS) { pVCpu->cpum.s.Hyper.cs.Sel = SelCS; } VMMDECL(void) CPUMSetHyperDS(PVMCPU pVCpu, RTSEL SelDS) { pVCpu->cpum.s.Hyper.ds.Sel = SelDS; } VMMDECL(void) CPUMSetHyperES(PVMCPU pVCpu, RTSEL SelES) { pVCpu->cpum.s.Hyper.es.Sel = SelES; } VMMDECL(void) CPUMSetHyperFS(PVMCPU pVCpu, RTSEL SelFS) { pVCpu->cpum.s.Hyper.fs.Sel = SelFS; } VMMDECL(void) CPUMSetHyperGS(PVMCPU pVCpu, RTSEL SelGS) { pVCpu->cpum.s.Hyper.gs.Sel = SelGS; } VMMDECL(void) CPUMSetHyperSS(PVMCPU pVCpu, RTSEL SelSS) { pVCpu->cpum.s.Hyper.ss.Sel = SelSS; } VMMDECL(void) CPUMSetHyperESP(PVMCPU pVCpu, uint32_t u32ESP) { pVCpu->cpum.s.Hyper.esp = u32ESP; } VMMDECL(void) CPUMSetHyperEDX(PVMCPU pVCpu, uint32_t u32ESP) { pVCpu->cpum.s.Hyper.esp = u32ESP; } VMMDECL(int) CPUMSetHyperEFlags(PVMCPU pVCpu, uint32_t Efl) { pVCpu->cpum.s.Hyper.eflags.u32 = Efl; return VINF_SUCCESS; } VMMDECL(void) CPUMSetHyperEIP(PVMCPU pVCpu, uint32_t u32EIP) { pVCpu->cpum.s.Hyper.eip = u32EIP; } /** * Used by VMMR3RawRunGC to reinitialize the general raw-mode context registers, * EFLAGS and EIP prior to resuming guest execution. * * All general register not given as a parameter will be set to 0. The EFLAGS * register will be set to sane values for C/C++ code execution with interrupts * disabled and IOPL 0. * * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param u32EIP The EIP value. * @param u32ESP The ESP value. * @param u32EAX The EAX value. * @param u32EDX The EDX value. */ VMM_INT_DECL(void) CPUMSetHyperState(PVMCPU pVCpu, uint32_t u32EIP, uint32_t u32ESP, uint32_t u32EAX, uint32_t u32EDX) { pVCpu->cpum.s.Hyper.eip = u32EIP; pVCpu->cpum.s.Hyper.esp = u32ESP; pVCpu->cpum.s.Hyper.eax = u32EAX; pVCpu->cpum.s.Hyper.edx = u32EDX; pVCpu->cpum.s.Hyper.ecx = 0; pVCpu->cpum.s.Hyper.ebx = 0; pVCpu->cpum.s.Hyper.ebp = 0; pVCpu->cpum.s.Hyper.esi = 0; pVCpu->cpum.s.Hyper.edi = 0; pVCpu->cpum.s.Hyper.eflags.u = X86_EFL_1; } VMMDECL(void) CPUMSetHyperTR(PVMCPU pVCpu, RTSEL SelTR) { pVCpu->cpum.s.Hyper.tr.Sel = SelTR; } VMMDECL(void) CPUMSetHyperLDTR(PVMCPU pVCpu, RTSEL SelLDTR) { pVCpu->cpum.s.Hyper.ldtr.Sel = SelLDTR; } /** @def MAYBE_LOAD_DRx * Macro for updating DRx values in raw-mode and ring-0 contexts. */ #ifdef IN_RING0 # if HC_ARCH_BITS == 32 && defined(VBOX_WITH_64_BITS_GUESTS) # define MAYBE_LOAD_DRx(a_pVCpu, a_fnLoad, a_uValue) \ do { \ if (!CPUMIsGuestInLongModeEx(&(a_pVCpu)->cpum.s.Guest)) \ a_fnLoad(a_uValue); \ else \ (a_pVCpu)->cpum.s.fUseFlags |= CPUM_SYNC_DEBUG_REGS_HYPER; \ } while (0) # else # define MAYBE_LOAD_DRx(a_pVCpu, a_fnLoad, a_uValue) \ do { \ a_fnLoad(a_uValue); \ } while (0) # endif #elif defined(IN_RC) # define MAYBE_LOAD_DRx(a_pVCpu, a_fnLoad, a_uValue) \ do { \ if ((a_pVCpu)->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HYPER) \ { a_fnLoad(a_uValue); } \ } while (0) #else # define MAYBE_LOAD_DRx(a_pVCpu, a_fnLoad, a_uValue) do { } while (0) #endif VMMDECL(void) CPUMSetHyperDR0(PVMCPU pVCpu, RTGCUINTREG uDr0) { pVCpu->cpum.s.Hyper.dr[0] = uDr0; MAYBE_LOAD_DRx(pVCpu, ASMSetDR0, uDr0); } VMMDECL(void) CPUMSetHyperDR1(PVMCPU pVCpu, RTGCUINTREG uDr1) { pVCpu->cpum.s.Hyper.dr[1] = uDr1; MAYBE_LOAD_DRx(pVCpu, ASMSetDR1, uDr1); } VMMDECL(void) CPUMSetHyperDR2(PVMCPU pVCpu, RTGCUINTREG uDr2) { pVCpu->cpum.s.Hyper.dr[2] = uDr2; MAYBE_LOAD_DRx(pVCpu, ASMSetDR2, uDr2); } VMMDECL(void) CPUMSetHyperDR3(PVMCPU pVCpu, RTGCUINTREG uDr3) { pVCpu->cpum.s.Hyper.dr[3] = uDr3; MAYBE_LOAD_DRx(pVCpu, ASMSetDR3, uDr3); } VMMDECL(void) CPUMSetHyperDR6(PVMCPU pVCpu, RTGCUINTREG uDr6) { pVCpu->cpum.s.Hyper.dr[6] = uDr6; } VMMDECL(void) CPUMSetHyperDR7(PVMCPU pVCpu, RTGCUINTREG uDr7) { pVCpu->cpum.s.Hyper.dr[7] = uDr7; #ifdef IN_RC MAYBE_LOAD_DRx(pVCpu, ASMSetDR7, uDr7); #endif } VMMDECL(RTSEL) CPUMGetHyperCS(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.cs.Sel; } VMMDECL(RTSEL) CPUMGetHyperDS(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.ds.Sel; } VMMDECL(RTSEL) CPUMGetHyperES(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.es.Sel; } VMMDECL(RTSEL) CPUMGetHyperFS(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.fs.Sel; } VMMDECL(RTSEL) CPUMGetHyperGS(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.gs.Sel; } VMMDECL(RTSEL) CPUMGetHyperSS(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.ss.Sel; } VMMDECL(uint32_t) CPUMGetHyperEAX(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.eax; } VMMDECL(uint32_t) CPUMGetHyperEBX(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.ebx; } VMMDECL(uint32_t) CPUMGetHyperECX(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.ecx; } VMMDECL(uint32_t) CPUMGetHyperEDX(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.edx; } VMMDECL(uint32_t) CPUMGetHyperESI(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.esi; } VMMDECL(uint32_t) CPUMGetHyperEDI(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.edi; } VMMDECL(uint32_t) CPUMGetHyperEBP(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.ebp; } VMMDECL(uint32_t) CPUMGetHyperESP(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.esp; } VMMDECL(uint32_t) CPUMGetHyperEFlags(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.eflags.u32; } VMMDECL(uint32_t) CPUMGetHyperEIP(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.eip; } VMMDECL(uint64_t) CPUMGetHyperRIP(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.rip; } VMMDECL(uint32_t) CPUMGetHyperIDTR(PVMCPU pVCpu, uint16_t *pcbLimit) { if (pcbLimit) *pcbLimit = pVCpu->cpum.s.Hyper.idtr.cbIdt; return pVCpu->cpum.s.Hyper.idtr.pIdt; } VMMDECL(uint32_t) CPUMGetHyperGDTR(PVMCPU pVCpu, uint16_t *pcbLimit) { if (pcbLimit) *pcbLimit = pVCpu->cpum.s.Hyper.gdtr.cbGdt; return pVCpu->cpum.s.Hyper.gdtr.pGdt; } VMMDECL(RTSEL) CPUMGetHyperLDTR(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.ldtr.Sel; } VMMDECL(RTGCUINTREG) CPUMGetHyperDR0(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.dr[0]; } VMMDECL(RTGCUINTREG) CPUMGetHyperDR1(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.dr[1]; } VMMDECL(RTGCUINTREG) CPUMGetHyperDR2(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.dr[2]; } VMMDECL(RTGCUINTREG) CPUMGetHyperDR3(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.dr[3]; } VMMDECL(RTGCUINTREG) CPUMGetHyperDR6(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.dr[6]; } VMMDECL(RTGCUINTREG) CPUMGetHyperDR7(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.dr[7]; } /** * Gets the pointer to the internal CPUMCTXCORE structure. * This is only for reading in order to save a few calls. * * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(PCCPUMCTXCORE) CPUMGetGuestCtxCore(PVMCPU pVCpu) { return CPUMCTX2CORE(&pVCpu->cpum.s.Guest); } /** * Queries the pointer to the internal CPUMCTX structure. * * @returns The CPUMCTX pointer. * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(PCPUMCTX) CPUMQueryGuestCtxPtr(PVMCPU pVCpu) { return &pVCpu->cpum.s.Guest; } /** * Queries the pointer to the internal CPUMCTXMSRS structure. * * This is for NEM only. * * @returns The CPUMCTX pointer. * @param pVCpu The cross context virtual CPU structure. */ VMM_INT_DECL(PCPUMCTXMSRS) CPUMQueryGuestCtxMsrsPtr(PVMCPU pVCpu) { return &pVCpu->cpum.s.GuestMsrs; } VMMDECL(int) CPUMSetGuestGDTR(PVMCPU pVCpu, uint64_t GCPtrBase, uint16_t cbLimit) { #ifdef VBOX_WITH_RAW_MODE_NOT_R0 if (VM_IS_RAW_MODE_ENABLED(pVCpu->CTX_SUFF(pVM))) VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT); #endif pVCpu->cpum.s.Guest.gdtr.cbGdt = cbLimit; pVCpu->cpum.s.Guest.gdtr.pGdt = GCPtrBase; pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_GDTR; pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GDTR; return VINF_SUCCESS; /* formality, consider it void. */ } VMMDECL(int) CPUMSetGuestIDTR(PVMCPU pVCpu, uint64_t GCPtrBase, uint16_t cbLimit) { #ifdef VBOX_WITH_RAW_MODE_NOT_R0 if (VM_IS_RAW_MODE_ENABLED(pVCpu->CTX_SUFF(pVM))) VMCPU_FF_SET(pVCpu, VMCPU_FF_TRPM_SYNC_IDT); #endif pVCpu->cpum.s.Guest.idtr.cbIdt = cbLimit; pVCpu->cpum.s.Guest.idtr.pIdt = GCPtrBase; pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_IDTR; pVCpu->cpum.s.fChanged |= CPUM_CHANGED_IDTR; return VINF_SUCCESS; /* formality, consider it void. */ } VMMDECL(int) CPUMSetGuestTR(PVMCPU pVCpu, uint16_t tr) { #ifdef VBOX_WITH_RAW_MODE_NOT_R0 if (VM_IS_RAW_MODE_ENABLED(pVCpu->CTX_SUFF(pVM))) VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS); #endif pVCpu->cpum.s.Guest.tr.Sel = tr; pVCpu->cpum.s.fChanged |= CPUM_CHANGED_TR; return VINF_SUCCESS; /* formality, consider it void. */ } VMMDECL(int) CPUMSetGuestLDTR(PVMCPU pVCpu, uint16_t ldtr) { #ifdef VBOX_WITH_RAW_MODE_NOT_R0 if ( ( ldtr != 0 || pVCpu->cpum.s.Guest.ldtr.Sel != 0) && VM_IS_RAW_MODE_ENABLED(pVCpu->CTX_SUFF(pVM))) VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT); #endif pVCpu->cpum.s.Guest.ldtr.Sel = ldtr; /* The caller will set more hidden bits if it has them. */ pVCpu->cpum.s.Guest.ldtr.ValidSel = 0; pVCpu->cpum.s.Guest.ldtr.fFlags = 0; pVCpu->cpum.s.fChanged |= CPUM_CHANGED_LDTR; return VINF_SUCCESS; /* formality, consider it void. */ } /** * Set the guest CR0. * * When called in GC, the hyper CR0 may be updated if that is * required. The caller only has to take special action if AM, * WP, PG or PE changes. * * @returns VINF_SUCCESS (consider it void). * @param pVCpu The cross context virtual CPU structure. * @param cr0 The new CR0 value. */ VMMDECL(int) CPUMSetGuestCR0(PVMCPU pVCpu, uint64_t cr0) { #ifdef IN_RC /* * Check if we need to change hypervisor CR0 because * of math stuff. */ if ( (cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP)) != (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP))) { if (!(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST)) { /* * We haven't loaded the guest FPU state yet, so TS and MT are both set * and EM should be reflecting the guest EM (it always does this). */ if ((cr0 & X86_CR0_EM) != (pVCpu->cpum.s.Guest.cr0 & X86_CR0_EM)) { uint32_t HyperCR0 = ASMGetCR0(); AssertMsg((HyperCR0 & (X86_CR0_TS | X86_CR0_MP)) == (X86_CR0_TS | X86_CR0_MP), ("%#x\n", HyperCR0)); AssertMsg((HyperCR0 & X86_CR0_EM) == (pVCpu->cpum.s.Guest.cr0 & X86_CR0_EM), ("%#x\n", HyperCR0)); HyperCR0 &= ~X86_CR0_EM; HyperCR0 |= cr0 & X86_CR0_EM; Log(("CPUM: New HyperCR0=%#x\n", HyperCR0)); ASMSetCR0(HyperCR0); } # ifdef VBOX_STRICT else { uint32_t HyperCR0 = ASMGetCR0(); AssertMsg((HyperCR0 & (X86_CR0_TS | X86_CR0_MP)) == (X86_CR0_TS | X86_CR0_MP), ("%#x\n", HyperCR0)); AssertMsg((HyperCR0 & X86_CR0_EM) == (pVCpu->cpum.s.Guest.cr0 & X86_CR0_EM), ("%#x\n", HyperCR0)); } # endif } else { /* * Already loaded the guest FPU state, so we're just mirroring * the guest flags. */ uint32_t HyperCR0 = ASMGetCR0(); AssertMsg( (HyperCR0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP)) == (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP)), ("%#x %#x\n", HyperCR0, pVCpu->cpum.s.Guest.cr0)); HyperCR0 &= ~(X86_CR0_TS | X86_CR0_EM | X86_CR0_MP); HyperCR0 |= cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP); Log(("CPUM: New HyperCR0=%#x\n", HyperCR0)); ASMSetCR0(HyperCR0); } } #endif /* IN_RC */ /* * Check for changes causing TLB flushes (for REM). * The caller is responsible for calling PGM when appropriate. */ if ( (cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) != (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))) pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GLOBAL_TLB_FLUSH; pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR0; /* * Let PGM know if the WP goes from 0 to 1 (netware WP0+RO+US hack) */ if (((cr0 ^ pVCpu->cpum.s.Guest.cr0) & X86_CR0_WP) && (cr0 & X86_CR0_WP)) PGMCr0WpEnabled(pVCpu); /* The ET flag is settable on a 386 and hardwired on 486+. */ if ( !(cr0 & X86_CR0_ET) && pVCpu->CTX_SUFF(pVM)->cpum.s.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386) cr0 |= X86_CR0_ET; pVCpu->cpum.s.Guest.cr0 = cr0; pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR0; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestCR2(PVMCPU pVCpu, uint64_t cr2) { pVCpu->cpum.s.Guest.cr2 = cr2; pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR2; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestCR3(PVMCPU pVCpu, uint64_t cr3) { pVCpu->cpum.s.Guest.cr3 = cr3; pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR3; pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR3; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestCR4(PVMCPU pVCpu, uint64_t cr4) { /* Note! We don't bother with OSXSAVE and legacy CPUID patches. */ if ( (cr4 & (X86_CR4_PGE | X86_CR4_PAE | X86_CR4_PSE)) != (pVCpu->cpum.s.Guest.cr4 & (X86_CR4_PGE | X86_CR4_PAE | X86_CR4_PSE))) pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GLOBAL_TLB_FLUSH; pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR4; pVCpu->cpum.s.Guest.cr4 = cr4; pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR4; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestEFlags(PVMCPU pVCpu, uint32_t eflags) { pVCpu->cpum.s.Guest.eflags.u32 = eflags; pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_RFLAGS; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestEIP(PVMCPU pVCpu, uint32_t eip) { pVCpu->cpum.s.Guest.eip = eip; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestEAX(PVMCPU pVCpu, uint32_t eax) { pVCpu->cpum.s.Guest.eax = eax; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestEBX(PVMCPU pVCpu, uint32_t ebx) { pVCpu->cpum.s.Guest.ebx = ebx; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestECX(PVMCPU pVCpu, uint32_t ecx) { pVCpu->cpum.s.Guest.ecx = ecx; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestEDX(PVMCPU pVCpu, uint32_t edx) { pVCpu->cpum.s.Guest.edx = edx; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestESP(PVMCPU pVCpu, uint32_t esp) { pVCpu->cpum.s.Guest.esp = esp; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestEBP(PVMCPU pVCpu, uint32_t ebp) { pVCpu->cpum.s.Guest.ebp = ebp; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestESI(PVMCPU pVCpu, uint32_t esi) { pVCpu->cpum.s.Guest.esi = esi; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestEDI(PVMCPU pVCpu, uint32_t edi) { pVCpu->cpum.s.Guest.edi = edi; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestSS(PVMCPU pVCpu, uint16_t ss) { pVCpu->cpum.s.Guest.ss.Sel = ss; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestCS(PVMCPU pVCpu, uint16_t cs) { pVCpu->cpum.s.Guest.cs.Sel = cs; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestDS(PVMCPU pVCpu, uint16_t ds) { pVCpu->cpum.s.Guest.ds.Sel = ds; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestES(PVMCPU pVCpu, uint16_t es) { pVCpu->cpum.s.Guest.es.Sel = es; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestFS(PVMCPU pVCpu, uint16_t fs) { pVCpu->cpum.s.Guest.fs.Sel = fs; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestGS(PVMCPU pVCpu, uint16_t gs) { pVCpu->cpum.s.Guest.gs.Sel = gs; return VINF_SUCCESS; } VMMDECL(void) CPUMSetGuestEFER(PVMCPU pVCpu, uint64_t val) { pVCpu->cpum.s.Guest.msrEFER = val; pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_EFER; } VMMDECL(RTGCPTR) CPUMGetGuestIDTR(PVMCPU pVCpu, uint16_t *pcbLimit) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_IDTR); if (pcbLimit) *pcbLimit = pVCpu->cpum.s.Guest.idtr.cbIdt; return pVCpu->cpum.s.Guest.idtr.pIdt; } VMMDECL(RTSEL) CPUMGetGuestTR(PVMCPU pVCpu, PCPUMSELREGHID pHidden) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_TR); if (pHidden) *pHidden = pVCpu->cpum.s.Guest.tr; return pVCpu->cpum.s.Guest.tr.Sel; } VMMDECL(RTSEL) CPUMGetGuestCS(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CS); return pVCpu->cpum.s.Guest.cs.Sel; } VMMDECL(RTSEL) CPUMGetGuestDS(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DS); return pVCpu->cpum.s.Guest.ds.Sel; } VMMDECL(RTSEL) CPUMGetGuestES(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_ES); return pVCpu->cpum.s.Guest.es.Sel; } VMMDECL(RTSEL) CPUMGetGuestFS(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_FS); return pVCpu->cpum.s.Guest.fs.Sel; } VMMDECL(RTSEL) CPUMGetGuestGS(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_GS); return pVCpu->cpum.s.Guest.gs.Sel; } VMMDECL(RTSEL) CPUMGetGuestSS(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_SS); return pVCpu->cpum.s.Guest.ss.Sel; } VMMDECL(uint64_t) CPUMGetGuestFlatPC(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER); CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs); if ( !CPUMIsGuestInLongMode(pVCpu) || !pVCpu->cpum.s.Guest.cs.Attr.n.u1Long) return pVCpu->cpum.s.Guest.eip + (uint32_t)pVCpu->cpum.s.Guest.cs.u64Base; return pVCpu->cpum.s.Guest.rip + pVCpu->cpum.s.Guest.cs.u64Base; } VMMDECL(uint64_t) CPUMGetGuestFlatSP(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER); CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.ss); if ( !CPUMIsGuestInLongMode(pVCpu) || !pVCpu->cpum.s.Guest.cs.Attr.n.u1Long) return pVCpu->cpum.s.Guest.eip + (uint32_t)pVCpu->cpum.s.Guest.ss.u64Base; return pVCpu->cpum.s.Guest.rip + pVCpu->cpum.s.Guest.ss.u64Base; } VMMDECL(RTSEL) CPUMGetGuestLDTR(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_LDTR); return pVCpu->cpum.s.Guest.ldtr.Sel; } VMMDECL(RTSEL) CPUMGetGuestLdtrEx(PVMCPU pVCpu, uint64_t *pGCPtrBase, uint32_t *pcbLimit) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_LDTR); *pGCPtrBase = pVCpu->cpum.s.Guest.ldtr.u64Base; *pcbLimit = pVCpu->cpum.s.Guest.ldtr.u32Limit; return pVCpu->cpum.s.Guest.ldtr.Sel; } VMMDECL(uint64_t) CPUMGetGuestCR0(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0); return pVCpu->cpum.s.Guest.cr0; } VMMDECL(uint64_t) CPUMGetGuestCR2(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR2); return pVCpu->cpum.s.Guest.cr2; } VMMDECL(uint64_t) CPUMGetGuestCR3(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR3); return pVCpu->cpum.s.Guest.cr3; } VMMDECL(uint64_t) CPUMGetGuestCR4(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4); return pVCpu->cpum.s.Guest.cr4; } VMMDECL(uint64_t) CPUMGetGuestCR8(PVMCPU pVCpu) { uint64_t u64; int rc = CPUMGetGuestCRx(pVCpu, DISCREG_CR8, &u64); if (RT_FAILURE(rc)) u64 = 0; return u64; } VMMDECL(void) CPUMGetGuestGDTR(PVMCPU pVCpu, PVBOXGDTR pGDTR) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_GDTR); *pGDTR = pVCpu->cpum.s.Guest.gdtr; } VMMDECL(uint32_t) CPUMGetGuestEIP(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RIP); return pVCpu->cpum.s.Guest.eip; } VMMDECL(uint64_t) CPUMGetGuestRIP(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RIP); return pVCpu->cpum.s.Guest.rip; } VMMDECL(uint32_t) CPUMGetGuestEAX(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RAX); return pVCpu->cpum.s.Guest.eax; } VMMDECL(uint32_t) CPUMGetGuestEBX(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RBX); return pVCpu->cpum.s.Guest.ebx; } VMMDECL(uint32_t) CPUMGetGuestECX(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RCX); return pVCpu->cpum.s.Guest.ecx; } VMMDECL(uint32_t) CPUMGetGuestEDX(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RDX); return pVCpu->cpum.s.Guest.edx; } VMMDECL(uint32_t) CPUMGetGuestESI(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RSI); return pVCpu->cpum.s.Guest.esi; } VMMDECL(uint32_t) CPUMGetGuestEDI(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RDI); return pVCpu->cpum.s.Guest.edi; } VMMDECL(uint32_t) CPUMGetGuestESP(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RSP); return pVCpu->cpum.s.Guest.esp; } VMMDECL(uint32_t) CPUMGetGuestEBP(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RBP); return pVCpu->cpum.s.Guest.ebp; } VMMDECL(uint32_t) CPUMGetGuestEFlags(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RFLAGS); return pVCpu->cpum.s.Guest.eflags.u32; } VMMDECL(int) CPUMGetGuestCRx(PVMCPU pVCpu, unsigned iReg, uint64_t *pValue) { switch (iReg) { case DISCREG_CR0: CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0); *pValue = pVCpu->cpum.s.Guest.cr0; break; case DISCREG_CR2: CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR2); *pValue = pVCpu->cpum.s.Guest.cr2; break; case DISCREG_CR3: CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR3); *pValue = pVCpu->cpum.s.Guest.cr3; break; case DISCREG_CR4: CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4); *pValue = pVCpu->cpum.s.Guest.cr4; break; case DISCREG_CR8: { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_APIC_TPR); uint8_t u8Tpr; int rc = APICGetTpr(pVCpu, &u8Tpr, NULL /* pfPending */, NULL /* pu8PendingIrq */); if (RT_FAILURE(rc)) { AssertMsg(rc == VERR_PDM_NO_APIC_INSTANCE, ("%Rrc\n", rc)); *pValue = 0; return rc; } *pValue = u8Tpr >> 4; /* bits 7-4 contain the task priority that go in cr8, bits 3-0 */ break; } default: return VERR_INVALID_PARAMETER; } return VINF_SUCCESS; } VMMDECL(uint64_t) CPUMGetGuestDR0(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3); return pVCpu->cpum.s.Guest.dr[0]; } VMMDECL(uint64_t) CPUMGetGuestDR1(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3); return pVCpu->cpum.s.Guest.dr[1]; } VMMDECL(uint64_t) CPUMGetGuestDR2(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3); return pVCpu->cpum.s.Guest.dr[2]; } VMMDECL(uint64_t) CPUMGetGuestDR3(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3); return pVCpu->cpum.s.Guest.dr[3]; } VMMDECL(uint64_t) CPUMGetGuestDR6(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR6); return pVCpu->cpum.s.Guest.dr[6]; } VMMDECL(uint64_t) CPUMGetGuestDR7(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR7); return pVCpu->cpum.s.Guest.dr[7]; } VMMDECL(int) CPUMGetGuestDRx(PVMCPU pVCpu, uint32_t iReg, uint64_t *pValue) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR_MASK); AssertReturn(iReg <= DISDREG_DR7, VERR_INVALID_PARAMETER); /* DR4 is an alias for DR6, and DR5 is an alias for DR7. */ if (iReg == 4 || iReg == 5) iReg += 2; *pValue = pVCpu->cpum.s.Guest.dr[iReg]; return VINF_SUCCESS; } VMMDECL(uint64_t) CPUMGetGuestEFER(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_EFER); return pVCpu->cpum.s.Guest.msrEFER; } /** * Looks up a CPUID leaf in the CPUID leaf array, no subleaf. * * @returns Pointer to the leaf if found, NULL if not. * * @param pVM The cross context VM structure. * @param uLeaf The leaf to get. */ PCPUMCPUIDLEAF cpumCpuIdGetLeaf(PVM pVM, uint32_t uLeaf) { unsigned iEnd = pVM->cpum.s.GuestInfo.cCpuIdLeaves; if (iEnd) { unsigned iStart = 0; PCPUMCPUIDLEAF paLeaves = pVM->cpum.s.GuestInfo.CTX_SUFF(paCpuIdLeaves); for (;;) { unsigned i = iStart + (iEnd - iStart) / 2U; if (uLeaf < paLeaves[i].uLeaf) { if (i <= iStart) return NULL; iEnd = i; } else if (uLeaf > paLeaves[i].uLeaf) { i += 1; if (i >= iEnd) return NULL; iStart = i; } else { if (RT_LIKELY(paLeaves[i].fSubLeafMask == 0 && paLeaves[i].uSubLeaf == 0)) return &paLeaves[i]; /* This shouldn't normally happen. But in case the it does due to user configuration overrids or something, just return the first sub-leaf. */ AssertMsgFailed(("uLeaf=%#x fSubLeafMask=%#x uSubLeaf=%#x\n", uLeaf, paLeaves[i].fSubLeafMask, paLeaves[i].uSubLeaf)); while ( paLeaves[i].uSubLeaf != 0 && i > 0 && uLeaf == paLeaves[i - 1].uLeaf) i--; return &paLeaves[i]; } } } return NULL; } /** * Looks up a CPUID leaf in the CPUID leaf array. * * @returns Pointer to the leaf if found, NULL if not. * * @param pVM The cross context VM structure. * @param uLeaf The leaf to get. * @param uSubLeaf The subleaf, if applicable. Just pass 0 if it * isn't. * @param pfExactSubLeafHit Whether we've got an exact subleaf hit or not. */ PCPUMCPUIDLEAF cpumCpuIdGetLeafEx(PVM pVM, uint32_t uLeaf, uint32_t uSubLeaf, bool *pfExactSubLeafHit) { unsigned iEnd = pVM->cpum.s.GuestInfo.cCpuIdLeaves; if (iEnd) { unsigned iStart = 0; PCPUMCPUIDLEAF paLeaves = pVM->cpum.s.GuestInfo.CTX_SUFF(paCpuIdLeaves); for (;;) { unsigned i = iStart + (iEnd - iStart) / 2U; if (uLeaf < paLeaves[i].uLeaf) { if (i <= iStart) return NULL; iEnd = i; } else if (uLeaf > paLeaves[i].uLeaf) { i += 1; if (i >= iEnd) return NULL; iStart = i; } else { uSubLeaf &= paLeaves[i].fSubLeafMask; if (uSubLeaf == paLeaves[i].uSubLeaf) *pfExactSubLeafHit = true; else { /* Find the right subleaf. We return the last one before uSubLeaf if we don't find an exact match. */ if (uSubLeaf < paLeaves[i].uSubLeaf) while ( i > 0 && uLeaf == paLeaves[i - 1].uLeaf && uSubLeaf <= paLeaves[i - 1].uSubLeaf) i--; else while ( i + 1 < pVM->cpum.s.GuestInfo.cCpuIdLeaves && uLeaf == paLeaves[i + 1].uLeaf && uSubLeaf >= paLeaves[i + 1].uSubLeaf) i++; *pfExactSubLeafHit = uSubLeaf == paLeaves[i].uSubLeaf; } return &paLeaves[i]; } } } *pfExactSubLeafHit = false; return NULL; } /** * Gets a CPUID leaf. * * @param pVCpu The cross context virtual CPU structure. * @param uLeaf The CPUID leaf to get. * @param uSubLeaf The CPUID sub-leaf to get, if applicable. * @param pEax Where to store the EAX value. * @param pEbx Where to store the EBX value. * @param pEcx Where to store the ECX value. * @param pEdx Where to store the EDX value. */ VMMDECL(void) CPUMGetGuestCpuId(PVMCPU pVCpu, uint32_t uLeaf, uint32_t uSubLeaf, uint32_t *pEax, uint32_t *pEbx, uint32_t *pEcx, uint32_t *pEdx) { bool fExactSubLeafHit; PVM pVM = pVCpu->CTX_SUFF(pVM); PCCPUMCPUIDLEAF pLeaf = cpumCpuIdGetLeafEx(pVM, uLeaf, uSubLeaf, &fExactSubLeafHit); if (pLeaf) { AssertMsg(pLeaf->uLeaf == uLeaf, ("%#x %#x\n", pLeaf->uLeaf, uLeaf)); if (fExactSubLeafHit) { *pEax = pLeaf->uEax; *pEbx = pLeaf->uEbx; *pEcx = pLeaf->uEcx; *pEdx = pLeaf->uEdx; /* * Deal with CPU specific information. */ if (pLeaf->fFlags & ( CPUMCPUIDLEAF_F_CONTAINS_APIC_ID | CPUMCPUIDLEAF_F_CONTAINS_OSXSAVE | CPUMCPUIDLEAF_F_CONTAINS_APIC )) { if (uLeaf == 1) { /* EBX: Bits 31-24: Initial APIC ID. */ Assert(pVCpu->idCpu <= 255); AssertMsg((pLeaf->uEbx >> 24) == 0, ("%#x\n", pLeaf->uEbx)); /* raw-mode assumption */ *pEbx = (pLeaf->uEbx & UINT32_C(0x00ffffff)) | (pVCpu->idCpu << 24); /* EDX: Bit 9: AND with APICBASE.EN. */ if (!pVCpu->cpum.s.fCpuIdApicFeatureVisible && (pLeaf->fFlags & CPUMCPUIDLEAF_F_CONTAINS_APIC)) *pEdx &= ~X86_CPUID_FEATURE_EDX_APIC; /* ECX: Bit 27: CR4.OSXSAVE mirror. */ *pEcx = (pLeaf->uEcx & ~X86_CPUID_FEATURE_ECX_OSXSAVE) | (pVCpu->cpum.s.Guest.cr4 & X86_CR4_OSXSAVE ? X86_CPUID_FEATURE_ECX_OSXSAVE : 0); } else if (uLeaf == 0xb) { /* EDX: Initial extended APIC ID. */ AssertMsg(pLeaf->uEdx == 0, ("%#x\n", pLeaf->uEdx)); /* raw-mode assumption */ *pEdx = pVCpu->idCpu; Assert(!(pLeaf->fFlags & ~(CPUMCPUIDLEAF_F_CONTAINS_APIC_ID | CPUMCPUIDLEAF_F_INTEL_TOPOLOGY_SUBLEAVES))); } else if (uLeaf == UINT32_C(0x8000001e)) { /* EAX: Initial extended APIC ID. */ AssertMsg(pLeaf->uEax == 0, ("%#x\n", pLeaf->uEax)); /* raw-mode assumption */ *pEax = pVCpu->idCpu; Assert(!(pLeaf->fFlags & ~CPUMCPUIDLEAF_F_CONTAINS_APIC_ID)); } else if (uLeaf == UINT32_C(0x80000001)) { /* EDX: Bit 9: AND with APICBASE.EN. */ if (!pVCpu->cpum.s.fCpuIdApicFeatureVisible) *pEdx &= ~X86_CPUID_AMD_FEATURE_EDX_APIC; Assert(!(pLeaf->fFlags & ~CPUMCPUIDLEAF_F_CONTAINS_APIC)); } else AssertMsgFailed(("uLeaf=%#x\n", uLeaf)); } } /* * Out of range sub-leaves aren't quite as easy and pretty as we emulate * them here, but we do the best we can here... */ else { *pEax = *pEbx = *pEcx = *pEdx = 0; if (pLeaf->fFlags & CPUMCPUIDLEAF_F_INTEL_TOPOLOGY_SUBLEAVES) { *pEcx = uSubLeaf & 0xff; *pEdx = pVCpu->idCpu; } } } else { /* * Different CPUs have different ways of dealing with unknown CPUID leaves. */ switch (pVM->cpum.s.GuestInfo.enmUnknownCpuIdMethod) { default: AssertFailed(); RT_FALL_THRU(); case CPUMUNKNOWNCPUID_DEFAULTS: case CPUMUNKNOWNCPUID_LAST_STD_LEAF: /* ASSUME this is executed */ case CPUMUNKNOWNCPUID_LAST_STD_LEAF_WITH_ECX: /** @todo Implement CPUMUNKNOWNCPUID_LAST_STD_LEAF_WITH_ECX */ *pEax = pVM->cpum.s.GuestInfo.DefCpuId.uEax; *pEbx = pVM->cpum.s.GuestInfo.DefCpuId.uEbx; *pEcx = pVM->cpum.s.GuestInfo.DefCpuId.uEcx; *pEdx = pVM->cpum.s.GuestInfo.DefCpuId.uEdx; break; case CPUMUNKNOWNCPUID_PASSTHRU: *pEax = uLeaf; *pEbx = 0; *pEcx = uSubLeaf; *pEdx = 0; break; } } Log2(("CPUMGetGuestCpuId: uLeaf=%#010x/%#010x %RX32 %RX32 %RX32 %RX32\n", uLeaf, uSubLeaf, *pEax, *pEbx, *pEcx, *pEdx)); } /** * Sets the visibility of the X86_CPUID_FEATURE_EDX_APIC and * X86_CPUID_AMD_FEATURE_EDX_APIC CPUID bits. * * @returns Previous value. * @param pVCpu The cross context virtual CPU structure to make the * change on. Usually the calling EMT. * @param fVisible Whether to make it visible (true) or hide it (false). * * @remarks This is "VMMDECL" so that it still links with * the old APIC code which is in VBoxDD2 and not in * the VMM module. */ VMMDECL(bool) CPUMSetGuestCpuIdPerCpuApicFeature(PVMCPU pVCpu, bool fVisible) { bool fOld = pVCpu->cpum.s.fCpuIdApicFeatureVisible; pVCpu->cpum.s.fCpuIdApicFeatureVisible = fVisible; #ifdef VBOX_WITH_RAW_MODE_NOT_R0 /* * Patch manager saved state legacy pain. */ PVM pVM = pVCpu->CTX_SUFF(pVM); PCPUMCPUIDLEAF pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x00000001)); if (pLeaf) { if (fVisible || (pLeaf->fFlags & CPUMCPUIDLEAF_F_CONTAINS_APIC)) pVM->cpum.s.aGuestCpuIdPatmStd[1].uEdx = pLeaf->uEdx; else pVM->cpum.s.aGuestCpuIdPatmStd[1].uEdx = pLeaf->uEdx & ~X86_CPUID_FEATURE_EDX_APIC; } pLeaf = cpumCpuIdGetLeaf(pVM, UINT32_C(0x80000001)); if (pLeaf) { if (fVisible || (pLeaf->fFlags & CPUMCPUIDLEAF_F_CONTAINS_APIC)) pVM->cpum.s.aGuestCpuIdPatmExt[1].uEdx = pLeaf->uEdx; else pVM->cpum.s.aGuestCpuIdPatmExt[1].uEdx = pLeaf->uEdx & ~X86_CPUID_AMD_FEATURE_EDX_APIC; } #endif return fOld; } /** * Gets the host CPU vendor. * * @returns CPU vendor. * @param pVM The cross context VM structure. */ VMMDECL(CPUMCPUVENDOR) CPUMGetHostCpuVendor(PVM pVM) { return (CPUMCPUVENDOR)pVM->cpum.s.HostFeatures.enmCpuVendor; } /** * Gets the CPU vendor. * * @returns CPU vendor. * @param pVM The cross context VM structure. */ VMMDECL(CPUMCPUVENDOR) CPUMGetGuestCpuVendor(PVM pVM) { return (CPUMCPUVENDOR)pVM->cpum.s.GuestFeatures.enmCpuVendor; } VMMDECL(int) CPUMSetGuestDR0(PVMCPU pVCpu, uint64_t uDr0) { pVCpu->cpum.s.Guest.dr[0] = uDr0; return CPUMRecalcHyperDRx(pVCpu, 0, false); } VMMDECL(int) CPUMSetGuestDR1(PVMCPU pVCpu, uint64_t uDr1) { pVCpu->cpum.s.Guest.dr[1] = uDr1; return CPUMRecalcHyperDRx(pVCpu, 1, false); } VMMDECL(int) CPUMSetGuestDR2(PVMCPU pVCpu, uint64_t uDr2) { pVCpu->cpum.s.Guest.dr[2] = uDr2; return CPUMRecalcHyperDRx(pVCpu, 2, false); } VMMDECL(int) CPUMSetGuestDR3(PVMCPU pVCpu, uint64_t uDr3) { pVCpu->cpum.s.Guest.dr[3] = uDr3; return CPUMRecalcHyperDRx(pVCpu, 3, false); } VMMDECL(int) CPUMSetGuestDR6(PVMCPU pVCpu, uint64_t uDr6) { pVCpu->cpum.s.Guest.dr[6] = uDr6; pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_DR6; return VINF_SUCCESS; /* No need to recalc. */ } VMMDECL(int) CPUMSetGuestDR7(PVMCPU pVCpu, uint64_t uDr7) { pVCpu->cpum.s.Guest.dr[7] = uDr7; pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_DR7; return CPUMRecalcHyperDRx(pVCpu, 7, false); } VMMDECL(int) CPUMSetGuestDRx(PVMCPU pVCpu, uint32_t iReg, uint64_t Value) { AssertReturn(iReg <= DISDREG_DR7, VERR_INVALID_PARAMETER); /* DR4 is an alias for DR6, and DR5 is an alias for DR7. */ if (iReg == 4 || iReg == 5) iReg += 2; pVCpu->cpum.s.Guest.dr[iReg] = Value; return CPUMRecalcHyperDRx(pVCpu, iReg, false); } /** * Recalculates the hypervisor DRx register values based on current guest * registers and DBGF breakpoints, updating changed registers depending on the * context. * * This is called whenever a guest DRx register is modified (any context) and * when DBGF sets a hardware breakpoint (ring-3 only, rendezvous). * * In raw-mode context this function will reload any (hyper) DRx registers which * comes out with a different value. It may also have to save the host debug * registers if that haven't been done already. In this context though, we'll * be intercepting and emulating all DRx accesses, so the hypervisor DRx values * are only important when breakpoints are actually enabled. * * In ring-0 (HM) context DR0-3 will be relocated by us, while DR7 will be * reloaded by the HM code if it changes. Further more, we will only use the * combined register set when the VBox debugger is actually using hardware BPs, * when it isn't we'll keep the guest DR0-3 + (maybe) DR6 loaded (DR6 doesn't * concern us here). * * In ring-3 we won't be loading anything, so well calculate hypervisor values * all the time. * * @returns VINF_SUCCESS. * @param pVCpu The cross context virtual CPU structure. * @param iGstReg The guest debug register number that was modified. * UINT8_MAX if not guest register. * @param fForceHyper Used in HM to force hyper registers because of single * stepping. */ VMMDECL(int) CPUMRecalcHyperDRx(PVMCPU pVCpu, uint8_t iGstReg, bool fForceHyper) { PVM pVM = pVCpu->CTX_SUFF(pVM); #ifndef IN_RING0 RT_NOREF_PV(iGstReg); #endif /* * Compare the DR7s first. * * We only care about the enabled flags. GD is virtualized when we * dispatch the #DB, we never enable it. The DBGF DR7 value is will * always have the LE and GE bits set, so no need to check and disable * stuff if they're cleared like we have to for the guest DR7. */ RTGCUINTREG uGstDr7 = CPUMGetGuestDR7(pVCpu); /** @todo This isn't correct. BPs work without setting LE and GE under AMD-V. They are also documented as unsupported by P6+. */ if (!(uGstDr7 & (X86_DR7_LE | X86_DR7_GE))) uGstDr7 = 0; else if (!(uGstDr7 & X86_DR7_LE)) uGstDr7 &= ~X86_DR7_LE_ALL; else if (!(uGstDr7 & X86_DR7_GE)) uGstDr7 &= ~X86_DR7_GE_ALL; const RTGCUINTREG uDbgfDr7 = DBGFBpGetDR7(pVM); #ifdef IN_RING0 if (!fForceHyper && (pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HYPER)) fForceHyper = true; #endif if ( (!VM_IS_RAW_MODE_ENABLED(pVCpu->CTX_SUFF(pVM)) && !fForceHyper ? uDbgfDr7 : (uGstDr7 | uDbgfDr7)) & X86_DR7_ENABLED_MASK) { Assert(!CPUMIsGuestDebugStateActive(pVCpu)); #ifdef IN_RC bool const fRawModeEnabled = true; #elif defined(IN_RING3) bool const fRawModeEnabled = VM_IS_RAW_MODE_ENABLED(pVM); #endif /* * Ok, something is enabled. Recalc each of the breakpoints, taking * the VM debugger ones of the guest ones. In raw-mode context we will * not allow breakpoints with values inside the hypervisor area. */ RTGCUINTREG uNewDr7 = X86_DR7_GE | X86_DR7_LE | X86_DR7_RA1_MASK; /* bp 0 */ RTGCUINTREG uNewDr0; if (uDbgfDr7 & (X86_DR7_L0 | X86_DR7_G0)) { uNewDr7 |= uDbgfDr7 & (X86_DR7_L0 | X86_DR7_G0 | X86_DR7_RW0_MASK | X86_DR7_LEN0_MASK); uNewDr0 = DBGFBpGetDR0(pVM); } else if (uGstDr7 & (X86_DR7_L0 | X86_DR7_G0)) { uNewDr0 = CPUMGetGuestDR0(pVCpu); #ifndef IN_RING0 if (fRawModeEnabled && MMHyperIsInsideArea(pVM, uNewDr0)) uNewDr0 = 0; else #endif uNewDr7 |= uGstDr7 & (X86_DR7_L0 | X86_DR7_G0 | X86_DR7_RW0_MASK | X86_DR7_LEN0_MASK); } else uNewDr0 = 0; /* bp 1 */ RTGCUINTREG uNewDr1; if (uDbgfDr7 & (X86_DR7_L1 | X86_DR7_G1)) { uNewDr7 |= uDbgfDr7 & (X86_DR7_L1 | X86_DR7_G1 | X86_DR7_RW1_MASK | X86_DR7_LEN1_MASK); uNewDr1 = DBGFBpGetDR1(pVM); } else if (uGstDr7 & (X86_DR7_L1 | X86_DR7_G1)) { uNewDr1 = CPUMGetGuestDR1(pVCpu); #ifndef IN_RING0 if (fRawModeEnabled && MMHyperIsInsideArea(pVM, uNewDr1)) uNewDr1 = 0; else #endif uNewDr7 |= uGstDr7 & (X86_DR7_L1 | X86_DR7_G1 | X86_DR7_RW1_MASK | X86_DR7_LEN1_MASK); } else uNewDr1 = 0; /* bp 2 */ RTGCUINTREG uNewDr2; if (uDbgfDr7 & (X86_DR7_L2 | X86_DR7_G2)) { uNewDr7 |= uDbgfDr7 & (X86_DR7_L2 | X86_DR7_G2 | X86_DR7_RW2_MASK | X86_DR7_LEN2_MASK); uNewDr2 = DBGFBpGetDR2(pVM); } else if (uGstDr7 & (X86_DR7_L2 | X86_DR7_G2)) { uNewDr2 = CPUMGetGuestDR2(pVCpu); #ifndef IN_RING0 if (fRawModeEnabled && MMHyperIsInsideArea(pVM, uNewDr2)) uNewDr2 = 0; else #endif uNewDr7 |= uGstDr7 & (X86_DR7_L2 | X86_DR7_G2 | X86_DR7_RW2_MASK | X86_DR7_LEN2_MASK); } else uNewDr2 = 0; /* bp 3 */ RTGCUINTREG uNewDr3; if (uDbgfDr7 & (X86_DR7_L3 | X86_DR7_G3)) { uNewDr7 |= uDbgfDr7 & (X86_DR7_L3 | X86_DR7_G3 | X86_DR7_RW3_MASK | X86_DR7_LEN3_MASK); uNewDr3 = DBGFBpGetDR3(pVM); } else if (uGstDr7 & (X86_DR7_L3 | X86_DR7_G3)) { uNewDr3 = CPUMGetGuestDR3(pVCpu); #ifndef IN_RING0 if (fRawModeEnabled && MMHyperIsInsideArea(pVM, uNewDr3)) uNewDr3 = 0; else #endif uNewDr7 |= uGstDr7 & (X86_DR7_L3 | X86_DR7_G3 | X86_DR7_RW3_MASK | X86_DR7_LEN3_MASK); } else uNewDr3 = 0; /* * Apply the updates. */ #ifdef IN_RC /* Make sure to save host registers first. */ if (!(pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HOST)) { if (!(pVCpu->cpum.s.fUseFlags & CPUM_USE_DEBUG_REGS_HOST)) { pVCpu->cpum.s.Host.dr6 = ASMGetDR6(); pVCpu->cpum.s.Host.dr7 = ASMGetDR7(); } pVCpu->cpum.s.Host.dr0 = ASMGetDR0(); pVCpu->cpum.s.Host.dr1 = ASMGetDR1(); pVCpu->cpum.s.Host.dr2 = ASMGetDR2(); pVCpu->cpum.s.Host.dr3 = ASMGetDR3(); pVCpu->cpum.s.fUseFlags |= CPUM_USED_DEBUG_REGS_HOST | CPUM_USE_DEBUG_REGS_HYPER | CPUM_USED_DEBUG_REGS_HYPER; /* We haven't loaded any hyper DRxes yet, so we'll have to load them all now. */ pVCpu->cpum.s.Hyper.dr[0] = uNewDr0; ASMSetDR0(uNewDr0); pVCpu->cpum.s.Hyper.dr[1] = uNewDr1; ASMSetDR1(uNewDr1); pVCpu->cpum.s.Hyper.dr[2] = uNewDr2; ASMSetDR2(uNewDr2); pVCpu->cpum.s.Hyper.dr[3] = uNewDr3; ASMSetDR3(uNewDr3); ASMSetDR6(X86_DR6_INIT_VAL); pVCpu->cpum.s.Hyper.dr[7] = uNewDr7; ASMSetDR7(uNewDr7); } else #endif { pVCpu->cpum.s.fUseFlags |= CPUM_USE_DEBUG_REGS_HYPER; if (uNewDr3 != pVCpu->cpum.s.Hyper.dr[3]) CPUMSetHyperDR3(pVCpu, uNewDr3); if (uNewDr2 != pVCpu->cpum.s.Hyper.dr[2]) CPUMSetHyperDR2(pVCpu, uNewDr2); if (uNewDr1 != pVCpu->cpum.s.Hyper.dr[1]) CPUMSetHyperDR1(pVCpu, uNewDr1); if (uNewDr0 != pVCpu->cpum.s.Hyper.dr[0]) CPUMSetHyperDR0(pVCpu, uNewDr0); if (uNewDr7 != pVCpu->cpum.s.Hyper.dr[7]) CPUMSetHyperDR7(pVCpu, uNewDr7); } } #ifdef IN_RING0 else if (CPUMIsGuestDebugStateActive(pVCpu)) { /* * Reload the register that was modified. Normally this won't happen * as we won't intercept DRx writes when not having the hyper debug * state loaded, but in case we do for some reason we'll simply deal * with it. */ switch (iGstReg) { case 0: ASMSetDR0(CPUMGetGuestDR0(pVCpu)); break; case 1: ASMSetDR1(CPUMGetGuestDR1(pVCpu)); break; case 2: ASMSetDR2(CPUMGetGuestDR2(pVCpu)); break; case 3: ASMSetDR3(CPUMGetGuestDR3(pVCpu)); break; default: AssertReturn(iGstReg != UINT8_MAX, VERR_INTERNAL_ERROR_3); } } #endif else { /* * No active debug state any more. In raw-mode this means we have to * make sure DR7 has everything disabled now, if we armed it already. * In ring-0 we might end up here when just single stepping. */ #if defined(IN_RC) || defined(IN_RING0) if (pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HYPER) { # ifdef IN_RC ASMSetDR7(X86_DR7_INIT_VAL); # endif if (pVCpu->cpum.s.Hyper.dr[0]) ASMSetDR0(0); if (pVCpu->cpum.s.Hyper.dr[1]) ASMSetDR1(0); if (pVCpu->cpum.s.Hyper.dr[2]) ASMSetDR2(0); if (pVCpu->cpum.s.Hyper.dr[3]) ASMSetDR3(0); pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_DEBUG_REGS_HYPER; } #endif pVCpu->cpum.s.fUseFlags &= ~CPUM_USE_DEBUG_REGS_HYPER; /* Clear all the registers. */ pVCpu->cpum.s.Hyper.dr[7] = X86_DR7_RA1_MASK; pVCpu->cpum.s.Hyper.dr[3] = 0; pVCpu->cpum.s.Hyper.dr[2] = 0; pVCpu->cpum.s.Hyper.dr[1] = 0; pVCpu->cpum.s.Hyper.dr[0] = 0; } Log2(("CPUMRecalcHyperDRx: fUseFlags=%#x %RGr %RGr %RGr %RGr %RGr %RGr\n", pVCpu->cpum.s.fUseFlags, pVCpu->cpum.s.Hyper.dr[0], pVCpu->cpum.s.Hyper.dr[1], pVCpu->cpum.s.Hyper.dr[2], pVCpu->cpum.s.Hyper.dr[3], pVCpu->cpum.s.Hyper.dr[6], pVCpu->cpum.s.Hyper.dr[7])); return VINF_SUCCESS; } /** * Set the guest XCR0 register. * * Will load additional state if the FPU state is already loaded (in ring-0 & * raw-mode context). * * @returns VINF_SUCCESS on success, VERR_CPUM_RAISE_GP_0 on invalid input * value. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param uNewValue The new value. * @thread EMT(pVCpu) */ VMM_INT_DECL(int) CPUMSetGuestXcr0(PVMCPU pVCpu, uint64_t uNewValue) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_XCRx); if ( (uNewValue & ~pVCpu->CTX_SUFF(pVM)->cpum.s.fXStateGuestMask) == 0 /* The X87 bit cannot be cleared. */ && (uNewValue & XSAVE_C_X87) /* AVX requires SSE. */ && (uNewValue & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM /* AVX-512 requires YMM, SSE and all of its three components to be enabled. */ && ( (uNewValue & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0 || (uNewValue & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI) ) ) { pVCpu->cpum.s.Guest.aXcr[0] = uNewValue; /* If more state components are enabled, we need to take care to load them if the FPU/SSE state is already loaded. May otherwise leak host state to the guest. */ uint64_t fNewComponents = ~pVCpu->cpum.s.Guest.fXStateMask & uNewValue; if (fNewComponents) { #if defined(IN_RING0) || defined(IN_RC) if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST) { if (pVCpu->cpum.s.Guest.fXStateMask != 0) /* Adding more components. */ ASMXRstor(pVCpu->cpum.s.Guest.CTX_SUFF(pXState), fNewComponents); else { /* We're switching from FXSAVE/FXRSTOR to XSAVE/XRSTOR. */ pVCpu->cpum.s.Guest.fXStateMask |= XSAVE_C_X87 | XSAVE_C_SSE; if (uNewValue & ~(XSAVE_C_X87 | XSAVE_C_SSE)) ASMXRstor(pVCpu->cpum.s.Guest.CTX_SUFF(pXState), uNewValue & ~(XSAVE_C_X87 | XSAVE_C_SSE)); } } #endif pVCpu->cpum.s.Guest.fXStateMask |= uNewValue; } return VINF_SUCCESS; } return VERR_CPUM_RAISE_GP_0; } /** * Tests if the guest has No-Execute Page Protection Enabled (NXE). * * @returns true if in real mode, otherwise false. * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(bool) CPUMIsGuestNXEnabled(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_EFER); return !!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE); } /** * Tests if the guest has the Page Size Extension enabled (PSE). * * @returns true if in real mode, otherwise false. * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(bool) CPUMIsGuestPageSizeExtEnabled(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4); /* PAE or AMD64 implies support for big pages regardless of CR4.PSE */ return !!(pVCpu->cpum.s.Guest.cr4 & (X86_CR4_PSE | X86_CR4_PAE)); } /** * Tests if the guest has the paging enabled (PG). * * @returns true if in real mode, otherwise false. * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(bool) CPUMIsGuestPagingEnabled(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0); return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PG); } /** * Tests if the guest has the paging enabled (PG). * * @returns true if in real mode, otherwise false. * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(bool) CPUMIsGuestR0WriteProtEnabled(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0); return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_WP); } /** * Tests if the guest is running in real mode or not. * * @returns true if in real mode, otherwise false. * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(bool) CPUMIsGuestInRealMode(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0); return !(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE); } /** * Tests if the guest is running in real or virtual 8086 mode. * * @returns @c true if it is, @c false if not. * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(bool) CPUMIsGuestInRealOrV86Mode(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS); return !(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE) || pVCpu->cpum.s.Guest.eflags.Bits.u1VM; /** @todo verify that this cannot be set in long mode. */ } /** * Tests if the guest is running in protected or not. * * @returns true if in protected mode, otherwise false. * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(bool) CPUMIsGuestInProtectedMode(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0); return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE); } /** * Tests if the guest is running in paged protected or not. * * @returns true if in paged protected mode, otherwise false. * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(bool) CPUMIsGuestInPagedProtectedMode(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0); return (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG); } /** * Tests if the guest is running in long mode or not. * * @returns true if in long mode, otherwise false. * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(bool) CPUMIsGuestInLongMode(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_EFER); return (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA) == MSR_K6_EFER_LMA; } /** * Tests if the guest is running in PAE mode or not. * * @returns true if in PAE mode, otherwise false. * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(bool) CPUMIsGuestInPAEMode(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER); /* Intel mentions EFER.LMA and EFER.LME in different parts of their spec. We shall use EFER.LMA rather than EFER.LME as it reflects if the CPU has entered paging with EFER.LME set. */ return (pVCpu->cpum.s.Guest.cr4 & X86_CR4_PAE) && (pVCpu->cpum.s.Guest.cr0 & X86_CR0_PG) && !(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA); } /** * Tests if the guest is running in 64 bits mode or not. * * @returns true if in 64 bits protected mode, otherwise false. * @param pVCpu The cross context virtual CPU structure of the calling EMT. */ VMMDECL(bool) CPUMIsGuestIn64BitCode(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER); if (!CPUMIsGuestInLongMode(pVCpu)) return false; CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs); return pVCpu->cpum.s.Guest.cs.Attr.n.u1Long; } /** * Helper for CPUMIsGuestIn64BitCodeEx that handles lazy resolving of hidden CS * registers. * * @returns true if in 64 bits protected mode, otherwise false. * @param pCtx Pointer to the current guest CPU context. */ VMM_INT_DECL(bool) CPUMIsGuestIn64BitCodeSlow(PCPUMCTX pCtx) { return CPUMIsGuestIn64BitCode(CPUM_GUEST_CTX_TO_VMCPU(pCtx)); } #ifdef VBOX_WITH_RAW_MODE_NOT_R0 /** * * @returns @c true if we've entered raw-mode and selectors with RPL=1 are * really RPL=0, @c false if we've not (RPL=1 really is RPL=1). * @param pVCpu The cross context virtual CPU structure of the calling EMT. */ VMM_INT_DECL(bool) CPUMIsGuestInRawMode(PVMCPU pVCpu) { return pVCpu->cpum.s.fRawEntered; } /** * Transforms the guest CPU state to raw-ring mode. * * This function will change the any of the cs and ss register with DPL=0 to DPL=1. * * @returns VBox status code. (recompiler failure) * @param pVCpu The cross context virtual CPU structure. * @see @ref pg_raw */ VMM_INT_DECL(int) CPUMRawEnter(PVMCPU pVCpu) { PVM pVM = pVCpu->CTX_SUFF(pVM); Assert(!pVCpu->cpum.s.fRawEntered); Assert(!pVCpu->cpum.s.fRemEntered); PCPUMCTX pCtx = &pVCpu->cpum.s.Guest; /* * Are we in Ring-0? */ if ( pCtx->ss.Sel && (pCtx->ss.Sel & X86_SEL_RPL) == 0 && !pCtx->eflags.Bits.u1VM) { /* * Enter execution mode. */ PATMRawEnter(pVM, pCtx); /* * Set CPL to Ring-1. */ pCtx->ss.Sel |= 1; if ( pCtx->cs.Sel && (pCtx->cs.Sel & X86_SEL_RPL) == 0) pCtx->cs.Sel |= 1; } else { # ifdef VBOX_WITH_RAW_RING1 if ( EMIsRawRing1Enabled(pVM) && !pCtx->eflags.Bits.u1VM && (pCtx->ss.Sel & X86_SEL_RPL) == 1) { /* Set CPL to Ring-2. */ pCtx->ss.Sel = (pCtx->ss.Sel & ~X86_SEL_RPL) | 2; if (pCtx->cs.Sel && (pCtx->cs.Sel & X86_SEL_RPL) == 1) pCtx->cs.Sel = (pCtx->cs.Sel & ~X86_SEL_RPL) | 2; } # else AssertMsg((pCtx->ss.Sel & X86_SEL_RPL) >= 2 || pCtx->eflags.Bits.u1VM, ("ring-1 code not supported\n")); # endif /* * PATM takes care of IOPL and IF flags for Ring-3 and Ring-2 code as well. */ PATMRawEnter(pVM, pCtx); } /* * Assert sanity. */ AssertMsg((pCtx->eflags.u32 & X86_EFL_IF), ("X86_EFL_IF is clear\n")); AssertReleaseMsg(pCtx->eflags.Bits.u2IOPL == 0, ("X86_EFL_IOPL=%d CPL=%d\n", pCtx->eflags.Bits.u2IOPL, pCtx->ss.Sel & X86_SEL_RPL)); Assert((pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PG | X86_CR0_PE)) == (X86_CR0_PG | X86_CR0_PE)); pCtx->eflags.u32 |= X86_EFL_IF; /* paranoia */ pVCpu->cpum.s.fRawEntered = true; return VINF_SUCCESS; } /** * Transforms the guest CPU state from raw-ring mode to correct values. * * This function will change any selector registers with DPL=1 to DPL=0. * * @returns Adjusted rc. * @param pVCpu The cross context virtual CPU structure. * @param rc Raw mode return code * @see @ref pg_raw */ VMM_INT_DECL(int) CPUMRawLeave(PVMCPU pVCpu, int rc) { PVM pVM = pVCpu->CTX_SUFF(pVM); /* * Don't leave if we've already left (in RC). */ Assert(!pVCpu->cpum.s.fRemEntered); if (!pVCpu->cpum.s.fRawEntered) return rc; pVCpu->cpum.s.fRawEntered = false; PCPUMCTX pCtx = &pVCpu->cpum.s.Guest; Assert(pCtx->eflags.Bits.u1VM || (pCtx->ss.Sel & X86_SEL_RPL)); AssertMsg(pCtx->eflags.Bits.u1VM || pCtx->eflags.Bits.u2IOPL < (unsigned)(pCtx->ss.Sel & X86_SEL_RPL), ("X86_EFL_IOPL=%d CPL=%d\n", pCtx->eflags.Bits.u2IOPL, pCtx->ss.Sel & X86_SEL_RPL)); /* * Are we executing in raw ring-1? */ if ( (pCtx->ss.Sel & X86_SEL_RPL) == 1 && !pCtx->eflags.Bits.u1VM) { /* * Leave execution mode. */ PATMRawLeave(pVM, pCtx, rc); /* Not quite sure if this is really required, but shouldn't harm (too much anyways). */ /** @todo See what happens if we remove this. */ if ((pCtx->ds.Sel & X86_SEL_RPL) == 1) pCtx->ds.Sel &= ~X86_SEL_RPL; if ((pCtx->es.Sel & X86_SEL_RPL) == 1) pCtx->es.Sel &= ~X86_SEL_RPL; if ((pCtx->fs.Sel & X86_SEL_RPL) == 1) pCtx->fs.Sel &= ~X86_SEL_RPL; if ((pCtx->gs.Sel & X86_SEL_RPL) == 1) pCtx->gs.Sel &= ~X86_SEL_RPL; /* * Ring-1 selector => Ring-0. */ pCtx->ss.Sel &= ~X86_SEL_RPL; if ((pCtx->cs.Sel & X86_SEL_RPL) == 1) pCtx->cs.Sel &= ~X86_SEL_RPL; } else { /* * PATM is taking care of the IOPL and IF flags for us. */ PATMRawLeave(pVM, pCtx, rc); if (!pCtx->eflags.Bits.u1VM) { # ifdef VBOX_WITH_RAW_RING1 if ( EMIsRawRing1Enabled(pVM) && (pCtx->ss.Sel & X86_SEL_RPL) == 2) { /* Not quite sure if this is really required, but shouldn't harm (too much anyways). */ /** @todo See what happens if we remove this. */ if ((pCtx->ds.Sel & X86_SEL_RPL) == 2) pCtx->ds.Sel = (pCtx->ds.Sel & ~X86_SEL_RPL) | 1; if ((pCtx->es.Sel & X86_SEL_RPL) == 2) pCtx->es.Sel = (pCtx->es.Sel & ~X86_SEL_RPL) | 1; if ((pCtx->fs.Sel & X86_SEL_RPL) == 2) pCtx->fs.Sel = (pCtx->fs.Sel & ~X86_SEL_RPL) | 1; if ((pCtx->gs.Sel & X86_SEL_RPL) == 2) pCtx->gs.Sel = (pCtx->gs.Sel & ~X86_SEL_RPL) | 1; /* * Ring-2 selector => Ring-1. */ pCtx->ss.Sel = (pCtx->ss.Sel & ~X86_SEL_RPL) | 1; if ((pCtx->cs.Sel & X86_SEL_RPL) == 2) pCtx->cs.Sel = (pCtx->cs.Sel & ~X86_SEL_RPL) | 1; } else { # endif /** @todo See what happens if we remove this. */ if ((pCtx->ds.Sel & X86_SEL_RPL) == 1) pCtx->ds.Sel &= ~X86_SEL_RPL; if ((pCtx->es.Sel & X86_SEL_RPL) == 1) pCtx->es.Sel &= ~X86_SEL_RPL; if ((pCtx->fs.Sel & X86_SEL_RPL) == 1) pCtx->fs.Sel &= ~X86_SEL_RPL; if ((pCtx->gs.Sel & X86_SEL_RPL) == 1) pCtx->gs.Sel &= ~X86_SEL_RPL; # ifdef VBOX_WITH_RAW_RING1 } # endif } } return rc; } #endif /* VBOX_WITH_RAW_MODE_NOT_R0 */ /** * Updates the EFLAGS while we're in raw-mode. * * @param pVCpu The cross context virtual CPU structure. * @param fEfl The new EFLAGS value. */ VMMDECL(void) CPUMRawSetEFlags(PVMCPU pVCpu, uint32_t fEfl) { #ifdef VBOX_WITH_RAW_MODE_NOT_R0 if (pVCpu->cpum.s.fRawEntered) PATMRawSetEFlags(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.s.Guest, fEfl); else #endif pVCpu->cpum.s.Guest.eflags.u32 = fEfl; } /** * Gets the EFLAGS while we're in raw-mode. * * @returns The eflags. * @param pVCpu The cross context virtual CPU structure of the calling EMT. */ VMMDECL(uint32_t) CPUMRawGetEFlags(PVMCPU pVCpu) { #ifdef VBOX_WITH_RAW_MODE_NOT_R0 if (pVCpu->cpum.s.fRawEntered) return PATMRawGetEFlags(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.s.Guest); #endif return pVCpu->cpum.s.Guest.eflags.u32; } /** * Sets the specified changed flags (CPUM_CHANGED_*). * * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param fChangedAdd The changed flags to add. */ VMMDECL(void) CPUMSetChangedFlags(PVMCPU pVCpu, uint32_t fChangedAdd) { pVCpu->cpum.s.fChanged |= fChangedAdd; } /** * Checks if the CPU supports the XSAVE and XRSTOR instruction. * * @returns true if supported. * @returns false if not supported. * @param pVM The cross context VM structure. */ VMMDECL(bool) CPUMSupportsXSave(PVM pVM) { return pVM->cpum.s.HostFeatures.fXSaveRstor != 0; } /** * Checks if the host OS uses the SYSENTER / SYSEXIT instructions. * @returns true if used. * @returns false if not used. * @param pVM The cross context VM structure. */ VMMDECL(bool) CPUMIsHostUsingSysEnter(PVM pVM) { return RT_BOOL(pVM->cpum.s.fHostUseFlags & CPUM_USE_SYSENTER); } /** * Checks if the host OS uses the SYSCALL / SYSRET instructions. * @returns true if used. * @returns false if not used. * @param pVM The cross context VM structure. */ VMMDECL(bool) CPUMIsHostUsingSysCall(PVM pVM) { return RT_BOOL(pVM->cpum.s.fHostUseFlags & CPUM_USE_SYSCALL); } #ifdef IN_RC /** * Lazily sync in the FPU/XMM state. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(int) CPUMHandleLazyFPU(PVMCPU pVCpu) { return cpumHandleLazyFPUAsm(&pVCpu->cpum.s); } #endif /* !IN_RC */ /** * Checks if we activated the FPU/XMM state of the guest OS. * * This differs from CPUMIsGuestFPUStateLoaded() in that it refers to the next * time we'll be executing guest code, so it may return true for 64-on-32 when * we still haven't actually loaded the FPU status, just scheduled it to be * loaded the next time we go thru the world switcher (CPUM_SYNC_FPU_STATE). * * @returns true / false. * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(bool) CPUMIsGuestFPUStateActive(PVMCPU pVCpu) { return RT_BOOL(pVCpu->cpum.s.fUseFlags & (CPUM_USED_FPU_GUEST | CPUM_SYNC_FPU_STATE)); } /** * Checks if we've really loaded the FPU/XMM state of the guest OS. * * @returns true / false. * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(bool) CPUMIsGuestFPUStateLoaded(PVMCPU pVCpu) { return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST); } /** * Checks if we saved the FPU/XMM state of the host OS. * * @returns true / false. * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(bool) CPUMIsHostFPUStateSaved(PVMCPU pVCpu) { return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_HOST); } /** * Checks if the guest debug state is active. * * @returns boolean * @param pVCpu The cross context virtual CPU structure of the calling EMT. */ VMMDECL(bool) CPUMIsGuestDebugStateActive(PVMCPU pVCpu) { return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_GUEST); } /** * Checks if the guest debug state is to be made active during the world-switch * (currently only used for the 32->64 switcher case). * * @returns boolean * @param pVCpu The cross context virtual CPU structure of the calling EMT. */ VMMDECL(bool) CPUMIsGuestDebugStateActivePending(PVMCPU pVCpu) { return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_SYNC_DEBUG_REGS_GUEST); } /** * Checks if the hyper debug state is active. * * @returns boolean * @param pVCpu The cross context virtual CPU structure of the calling EMT. */ VMMDECL(bool) CPUMIsHyperDebugStateActive(PVMCPU pVCpu) { return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HYPER); } /** * Checks if the hyper debug state is to be made active during the world-switch * (currently only used for the 32->64 switcher case). * * @returns boolean * @param pVCpu The cross context virtual CPU structure of the calling EMT. */ VMMDECL(bool) CPUMIsHyperDebugStateActivePending(PVMCPU pVCpu) { return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_SYNC_DEBUG_REGS_HYPER); } /** * Mark the guest's debug state as inactive. * * @returns boolean * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @todo This API doesn't make sense any more. */ VMMDECL(void) CPUMDeactivateGuestDebugState(PVMCPU pVCpu) { Assert(!(pVCpu->cpum.s.fUseFlags & (CPUM_USED_DEBUG_REGS_GUEST | CPUM_USED_DEBUG_REGS_HYPER | CPUM_USED_DEBUG_REGS_HOST))); NOREF(pVCpu); } /** * Get the current privilege level of the guest. * * @returns CPL * @param pVCpu The cross context virtual CPU structure of the calling EMT. */ VMMDECL(uint32_t) CPUMGetGuestCPL(PVMCPU pVCpu) { /* * CPL can reliably be found in SS.DPL (hidden regs valid) or SS if not. * * Note! We used to check CS.DPL here, assuming it was always equal to * CPL even if a conforming segment was loaded. But this turned out to * only apply to older AMD-V. With VT-x we had an ACP2 regression * during install after a far call to ring 2 with VT-x. Then on newer * AMD-V CPUs we have to move the VMCB.guest.u8CPL into cs.Attr.n.u2Dpl * as well as ss.Attr.n.u2Dpl to make this (and other) code work right. * * So, forget CS.DPL, always use SS.DPL. * * Note! The SS RPL is always equal to the CPL, while the CS RPL * isn't necessarily equal if the segment is conforming. * See section 4.11.1 in the AMD manual. * * Update: Where the heck does it say CS.RPL can differ from CPL other than * right after real->prot mode switch and when in V8086 mode? That * section says the RPL specified in a direct transfere (call, jmp, * ret) is not the one loaded into CS. Besides, if CS.RPL != CPL * it would be impossible for an exception handle or the iret * instruction to figure out whether SS:ESP are part of the frame * or not. VBox or qemu bug must've lead to this misconception. * * Update2: On an AMD bulldozer system here, I've no trouble loading a null * selector into SS with an RPL other than the CPL when CPL != 3 and * we're in 64-bit mode. The intel dev box doesn't allow this, on * RPL = CPL. Weird. */ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS); uint32_t uCpl; if (pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE) { if (!pVCpu->cpum.s.Guest.eflags.Bits.u1VM) { if (CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.s.Guest.ss)) uCpl = pVCpu->cpum.s.Guest.ss.Attr.n.u2Dpl; else { uCpl = (pVCpu->cpum.s.Guest.ss.Sel & X86_SEL_RPL); #ifdef VBOX_WITH_RAW_MODE_NOT_R0 # ifdef VBOX_WITH_RAW_RING1 if (pVCpu->cpum.s.fRawEntered) { if ( uCpl == 2 && EMIsRawRing1Enabled(pVCpu->CTX_SUFF(pVM))) uCpl = 1; else if (uCpl == 1) uCpl = 0; } Assert(uCpl != 2); /* ring 2 support not allowed anymore. */ # else if (uCpl == 1) uCpl = 0; # endif #endif } } else uCpl = 3; /* V86 has CPL=3; REM doesn't set DPL=3 in V8086 mode. See @bugref{5130}. */ } else uCpl = 0; /* Real mode is zero; CPL set to 3 for VT-x real-mode emulation. */ return uCpl; } /** * Gets the current guest CPU mode. * * If paging mode is what you need, check out PGMGetGuestMode(). * * @returns The CPU mode. * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(CPUMMODE) CPUMGetGuestMode(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER); CPUMMODE enmMode; if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE)) enmMode = CPUMMODE_REAL; else if (!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA)) enmMode = CPUMMODE_PROTECTED; else enmMode = CPUMMODE_LONG; return enmMode; } /** * Figure whether the CPU is currently executing 16, 32 or 64 bit code. * * @returns 16, 32 or 64. * @param pVCpu The cross context virtual CPU structure of the calling EMT. */ VMMDECL(uint32_t) CPUMGetGuestCodeBits(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS); if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE)) return 16; if (pVCpu->cpum.s.Guest.eflags.Bits.u1VM) { Assert(!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA)); return 16; } CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs); if ( pVCpu->cpum.s.Guest.cs.Attr.n.u1Long && (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA)) return 64; if (pVCpu->cpum.s.Guest.cs.Attr.n.u1DefBig) return 32; return 16; } VMMDECL(DISCPUMODE) CPUMGetGuestDisMode(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS); if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE)) return DISCPUMODE_16BIT; if (pVCpu->cpum.s.Guest.eflags.Bits.u1VM) { Assert(!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA)); return DISCPUMODE_16BIT; } CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs); if ( pVCpu->cpum.s.Guest.cs.Attr.n.u1Long && (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA)) return DISCPUMODE_64BIT; if (pVCpu->cpum.s.Guest.cs.Attr.n.u1DefBig) return DISCPUMODE_32BIT; return DISCPUMODE_16BIT; } /** * Gets the guest MXCSR_MASK value. * * This does not access the x87 state, but the value we determined at VM * initialization. * * @returns MXCSR mask. * @param pVM The cross context VM structure. */ VMMDECL(uint32_t) CPUMGetGuestMxCsrMask(PVM pVM) { return pVM->cpum.s.GuestInfo.fMxCsrMask; } /** * Checks whether the SVM nested-guest is in a state to receive physical (APIC) * interrupts. * * @returns VBox status code. * @retval true if it's ready, false otherwise. * * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param pCtx The guest-CPU context. * * @sa hmR0SvmCanNstGstTakePhysIntr. */ VMM_INT_DECL(bool) CPUMCanSvmNstGstTakePhysIntr(PVMCPU pVCpu, PCCPUMCTX pCtx) { /** @todo Optimization: Avoid this function call and use a pointer to the * relevant eflags instead (setup during VMRUN instruction emulation). */ #ifdef IN_RC RT_NOREF2(pVCpu, pCtx); AssertReleaseFailedReturn(false); #else Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx)); Assert(pCtx->hwvirt.fGif); X86EFLAGS fEFlags; if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, pCtx)) fEFlags.u = pCtx->hwvirt.svm.HostState.rflags.u; else fEFlags.u = pCtx->eflags.u; return fEFlags.Bits.u1IF; #endif } /** * Checks whether the SVM nested-guest is in a state to receive virtual (setup * for injection by VMRUN instruction) interrupts. * * @returns VBox status code. * @retval true if it's ready, false otherwise. * * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param pCtx The guest-CPU context. */ VMM_INT_DECL(bool) CPUMCanSvmNstGstTakeVirtIntr(PVMCPU pVCpu, PCCPUMCTX pCtx) { #ifdef IN_RC RT_NOREF2(pVCpu, pCtx); AssertReleaseFailedReturn(false); #else Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx)); Assert(pCtx->hwvirt.fGif); PCSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl; PCSVMINTCTRL pVmcbIntCtrl = &pVmcbCtrl->IntCtrl; if ( !pVmcbIntCtrl->n.u1IgnoreTPR && pVmcbIntCtrl->n.u4VIntrPrio <= pVmcbIntCtrl->n.u8VTPR) return false; X86EFLAGS fEFlags; if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, pCtx)) fEFlags.u = pCtx->eflags.u; else fEFlags.u = pCtx->hwvirt.svm.HostState.rflags.u; return fEFlags.Bits.u1IF; #endif } /** * Gets the pending SVM nested-guest interrupt. * * @returns The nested-guest interrupt to inject. * @param pCtx The guest-CPU context. */ VMM_INT_DECL(uint8_t) CPUMGetSvmNstGstInterrupt(PCCPUMCTX pCtx) { #ifdef IN_RC RT_NOREF(pCtx); AssertReleaseFailedReturn(0); #else PCSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl; return pVmcbCtrl->IntCtrl.n.u8VIntrVector; #endif } /** * Gets the SVM nested-guest virtual GIF. * * @returns The nested-guest virtual GIF. * @param pCtx The guest-CPU context. */ VMM_INT_DECL(bool) CPUMGetSvmNstGstVGif(PCCPUMCTX pCtx) { #ifdef IN_RC RT_NOREF(pCtx); AssertReleaseFailedReturn(false); #else PCSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.CTX_SUFF(pVmcb)->ctrl; PCSVMINTCTRL pVmcbIntCtrl = &pVmcbCtrl->IntCtrl; if (pVmcbIntCtrl->n.u1VGifEnable) return pVmcbIntCtrl->n.u1VGif; return true; #endif } /** * Restores the host-state from the host-state save area as part of a \#VMEXIT. * * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param pCtx The guest-CPU context. */ VMM_INT_DECL(void) CPUMSvmVmExitRestoreHostState(PVMCPU pVCpu, PCPUMCTX pCtx) { /* * Reload the guest's "host state". */ PSVMHOSTSTATE pHostState = &pCtx->hwvirt.svm.HostState; pCtx->es = pHostState->es; pCtx->cs = pHostState->cs; pCtx->ss = pHostState->ss; pCtx->ds = pHostState->ds; pCtx->gdtr = pHostState->gdtr; pCtx->idtr = pHostState->idtr; CPUMSetGuestEferMsrNoChecks(pVCpu, pCtx->msrEFER, pHostState->uEferMsr); CPUMSetGuestCR0(pVCpu, pHostState->uCr0 | X86_CR0_PE); pCtx->cr3 = pHostState->uCr3; CPUMSetGuestCR4(pVCpu, pHostState->uCr4); pCtx->rflags = pHostState->rflags; pCtx->rflags.Bits.u1VM = 0; pCtx->rip = pHostState->uRip; pCtx->rsp = pHostState->uRsp; pCtx->rax = pHostState->uRax; pCtx->dr[7] &= ~(X86_DR7_ENABLED_MASK | X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK); pCtx->dr[7] |= X86_DR7_RA1_MASK; Assert(pCtx->ss.Attr.n.u2Dpl == 0); /** @todo if RIP is not canonical or outside the CS segment limit, we need to * raise \#GP(0) in the guest. */ /** @todo check the loaded host-state for consistency. Figure out what * exactly this involves? */ } /** * Saves the host-state to the host-state save area as part of a VMRUN. * * @param pCtx The guest-CPU context. * @param cbInstr The length of the VMRUN instruction in bytes. */ VMM_INT_DECL(void) CPUMSvmVmRunSaveHostState(PCPUMCTX pCtx, uint8_t cbInstr) { PSVMHOSTSTATE pHostState = &pCtx->hwvirt.svm.HostState; pHostState->es = pCtx->es; pHostState->cs = pCtx->cs; pHostState->ss = pCtx->ss; pHostState->ds = pCtx->ds; pHostState->gdtr = pCtx->gdtr; pHostState->idtr = pCtx->idtr; pHostState->uEferMsr = pCtx->msrEFER; pHostState->uCr0 = pCtx->cr0; pHostState->uCr3 = pCtx->cr3; pHostState->uCr4 = pCtx->cr4; pHostState->rflags = pCtx->rflags; pHostState->uRip = pCtx->rip + cbInstr; pHostState->uRsp = pCtx->rsp; pHostState->uRax = pCtx->rax; } /** * Applies the TSC offset of a nested-guest if any and returns the new TSC * value for the guest (or nested-guest). * * @returns The TSC offset after applying any nested-guest TSC offset. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param uTicks The guest TSC. * * @sa HMSvmNstGstApplyTscOffset. */ VMM_INT_DECL(uint64_t) CPUMApplyNestedGuestTscOffset(PVMCPU pVCpu, uint64_t uTicks) { #ifndef IN_RC PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest; if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx)) { if (!HMHasGuestSvmVmcbCached(pVCpu)) { PCSVMVMCB pVmcb = pCtx->hwvirt.svm.CTX_SUFF(pVmcb); return uTicks + pVmcb->ctrl.u64TSCOffset; } return HMSvmNstGstApplyTscOffset(pVCpu, uTicks); } /** @todo Intel. */ #else RT_NOREF(pVCpu); #endif return uTicks; } /** * Used to dynamically imports state residing in NEM or HM. * * This is a worker for the CPUM_IMPORT_EXTRN_RET() macro and various IEM ones. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure of the calling thread. * @param fExtrnImport The fields to import. * @thread EMT(pVCpu) */ VMM_INT_DECL(int) CPUMImportGuestStateOnDemand(PVMCPU pVCpu, uint64_t fExtrnImport) { VMCPU_ASSERT_EMT(pVCpu); if (pVCpu->cpum.s.Guest.fExtrn & fExtrnImport) { #ifndef IN_RC switch (pVCpu->cpum.s.Guest.fExtrn & CPUMCTX_EXTRN_KEEPER_MASK) { case CPUMCTX_EXTRN_KEEPER_NEM: { int rc = NEMImportStateOnDemand(pVCpu, fExtrnImport); Assert(rc == VINF_SUCCESS || RT_FAILURE_NP(rc)); return rc; } case CPUMCTX_EXTRN_KEEPER_HM: { #ifdef IN_RING0 int rc = HMR0ImportStateOnDemand(pVCpu, fExtrnImport); Assert(rc == VINF_SUCCESS || RT_FAILURE_NP(rc)); return rc; #else AssertLogRelMsgFailed(("TODO Fetch HM state: %#RX64 vs %#RX64\n", pVCpu->cpum.s.Guest.fExtrn, fExtrnImport)); return VINF_SUCCESS; #endif } default: AssertLogRelMsgFailedReturn(("%#RX64 vs %#RX64\n", pVCpu->cpum.s.Guest.fExtrn, fExtrnImport), VERR_CPUM_IPE_2); } #else AssertLogRelMsgFailedReturn(("%#RX64 vs %#RX64\n", pVCpu->cpum.s.Guest.fExtrn, fExtrnImport), VERR_CPUM_IPE_2); #endif } return VINF_SUCCESS; }