/* $Id: CPUMAllRegs.cpp 93725 2022-02-14 13:46:16Z vboxsync $ */ /** @file * CPUM - CPU Monitor(/Manager) - Getters and Setters. */ /* * Copyright (C) 2006-2022 Oracle Corporation * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. */ /********************************************************************************************************************************* * Header Files * *********************************************************************************************************************************/ #define LOG_GROUP LOG_GROUP_CPUM #include #include #include #include #include #include #include #include #include "CPUMInternal.h" #include #include #include #include #include #include #include #include #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) # include #endif #ifdef IN_RING3 # include #endif /** Disable stack frame pointer generation here. */ #if defined(_MSC_VER) && !defined(DEBUG) && defined(RT_ARCH_X86) # pragma optimize("y", off) #endif AssertCompile2MemberOffsets(VM, cpum.s.HostFeatures, cpum.ro.HostFeatures); AssertCompile2MemberOffsets(VM, cpum.s.GuestFeatures, cpum.ro.GuestFeatures); /********************************************************************************************************************************* * Defined Constants And Macros * *********************************************************************************************************************************/ /** * Converts a CPUMCPU::Guest pointer into a VMCPU pointer. * * @returns Pointer to the Virtual CPU. * @param a_pGuestCtx Pointer to the guest context. */ #define CPUM_GUEST_CTX_TO_VMCPU(a_pGuestCtx) RT_FROM_MEMBER(a_pGuestCtx, VMCPU, cpum.s.Guest) /** * Lazily loads the hidden parts of a selector register when using raw-mode. */ #define CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(a_pVCpu, a_pSReg) \ Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(a_pVCpu, a_pSReg)) /** @def CPUM_INT_ASSERT_NOT_EXTRN * Macro for asserting that @a a_fNotExtrn are present. * * @param a_pVCpu The cross context virtual CPU structure of the calling EMT. * @param a_fNotExtrn Mask of CPUMCTX_EXTRN_XXX bits to check. */ #define CPUM_INT_ASSERT_NOT_EXTRN(a_pVCpu, a_fNotExtrn) \ AssertMsg(!((a_pVCpu)->cpum.s.Guest.fExtrn & (a_fNotExtrn)), \ ("%#RX64; a_fNotExtrn=%#RX64\n", (a_pVCpu)->cpum.s.Guest.fExtrn, (a_fNotExtrn))) VMMDECL(void) CPUMSetHyperCR3(PVMCPU pVCpu, uint32_t cr3) { pVCpu->cpum.s.Hyper.cr3 = cr3; } VMMDECL(uint32_t) CPUMGetHyperCR3(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.cr3; } /** @def MAYBE_LOAD_DRx * Macro for updating DRx values in raw-mode and ring-0 contexts. */ #ifdef IN_RING0 # define MAYBE_LOAD_DRx(a_pVCpu, a_fnLoad, a_uValue) do { a_fnLoad(a_uValue); } while (0) #else # define MAYBE_LOAD_DRx(a_pVCpu, a_fnLoad, a_uValue) do { } while (0) #endif VMMDECL(void) CPUMSetHyperDR0(PVMCPU pVCpu, RTGCUINTREG uDr0) { pVCpu->cpum.s.Hyper.dr[0] = uDr0; MAYBE_LOAD_DRx(pVCpu, ASMSetDR0, uDr0); } VMMDECL(void) CPUMSetHyperDR1(PVMCPU pVCpu, RTGCUINTREG uDr1) { pVCpu->cpum.s.Hyper.dr[1] = uDr1; MAYBE_LOAD_DRx(pVCpu, ASMSetDR1, uDr1); } VMMDECL(void) CPUMSetHyperDR2(PVMCPU pVCpu, RTGCUINTREG uDr2) { pVCpu->cpum.s.Hyper.dr[2] = uDr2; MAYBE_LOAD_DRx(pVCpu, ASMSetDR2, uDr2); } VMMDECL(void) CPUMSetHyperDR3(PVMCPU pVCpu, RTGCUINTREG uDr3) { pVCpu->cpum.s.Hyper.dr[3] = uDr3; MAYBE_LOAD_DRx(pVCpu, ASMSetDR3, uDr3); } VMMDECL(void) CPUMSetHyperDR6(PVMCPU pVCpu, RTGCUINTREG uDr6) { pVCpu->cpum.s.Hyper.dr[6] = uDr6; } VMMDECL(void) CPUMSetHyperDR7(PVMCPU pVCpu, RTGCUINTREG uDr7) { pVCpu->cpum.s.Hyper.dr[7] = uDr7; } VMMDECL(RTGCUINTREG) CPUMGetHyperDR0(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.dr[0]; } VMMDECL(RTGCUINTREG) CPUMGetHyperDR1(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.dr[1]; } VMMDECL(RTGCUINTREG) CPUMGetHyperDR2(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.dr[2]; } VMMDECL(RTGCUINTREG) CPUMGetHyperDR3(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.dr[3]; } VMMDECL(RTGCUINTREG) CPUMGetHyperDR6(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.dr[6]; } VMMDECL(RTGCUINTREG) CPUMGetHyperDR7(PVMCPU pVCpu) { return pVCpu->cpum.s.Hyper.dr[7]; } /** * Gets the pointer to the internal CPUMCTXCORE structure. * This is only for reading in order to save a few calls. * * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(PCCPUMCTXCORE) CPUMGetGuestCtxCore(PVMCPU pVCpu) { return CPUMCTX2CORE(&pVCpu->cpum.s.Guest); } /** * Queries the pointer to the internal CPUMCTX structure. * * @returns The CPUMCTX pointer. * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(PCPUMCTX) CPUMQueryGuestCtxPtr(PVMCPU pVCpu) { return &pVCpu->cpum.s.Guest; } /** * Queries the pointer to the internal CPUMCTXMSRS structure. * * This is for NEM only. * * @returns The CPUMCTX pointer. * @param pVCpu The cross context virtual CPU structure. */ VMM_INT_DECL(PCPUMCTXMSRS) CPUMQueryGuestCtxMsrsPtr(PVMCPU pVCpu) { return &pVCpu->cpum.s.GuestMsrs; } VMMDECL(int) CPUMSetGuestGDTR(PVMCPU pVCpu, uint64_t GCPtrBase, uint16_t cbLimit) { pVCpu->cpum.s.Guest.gdtr.cbGdt = cbLimit; pVCpu->cpum.s.Guest.gdtr.pGdt = GCPtrBase; pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_GDTR; pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GDTR; return VINF_SUCCESS; /* formality, consider it void. */ } VMMDECL(int) CPUMSetGuestIDTR(PVMCPU pVCpu, uint64_t GCPtrBase, uint16_t cbLimit) { pVCpu->cpum.s.Guest.idtr.cbIdt = cbLimit; pVCpu->cpum.s.Guest.idtr.pIdt = GCPtrBase; pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_IDTR; pVCpu->cpum.s.fChanged |= CPUM_CHANGED_IDTR; return VINF_SUCCESS; /* formality, consider it void. */ } VMMDECL(int) CPUMSetGuestTR(PVMCPU pVCpu, uint16_t tr) { pVCpu->cpum.s.Guest.tr.Sel = tr; pVCpu->cpum.s.fChanged |= CPUM_CHANGED_TR; return VINF_SUCCESS; /* formality, consider it void. */ } VMMDECL(int) CPUMSetGuestLDTR(PVMCPU pVCpu, uint16_t ldtr) { pVCpu->cpum.s.Guest.ldtr.Sel = ldtr; /* The caller will set more hidden bits if it has them. */ pVCpu->cpum.s.Guest.ldtr.ValidSel = 0; pVCpu->cpum.s.Guest.ldtr.fFlags = 0; pVCpu->cpum.s.fChanged |= CPUM_CHANGED_LDTR; return VINF_SUCCESS; /* formality, consider it void. */ } /** * Set the guest CR0. * * When called in GC, the hyper CR0 may be updated if that is * required. The caller only has to take special action if AM, * WP, PG or PE changes. * * @returns VINF_SUCCESS (consider it void). * @param pVCpu The cross context virtual CPU structure. * @param cr0 The new CR0 value. */ VMMDECL(int) CPUMSetGuestCR0(PVMCPUCC pVCpu, uint64_t cr0) { /* * Check for changes causing TLB flushes (for REM). * The caller is responsible for calling PGM when appropriate. */ if ( (cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) != (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))) pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GLOBAL_TLB_FLUSH; pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR0; /* * Let PGM know if the WP goes from 0 to 1 (netware WP0+RO+US hack) */ if (((cr0 ^ pVCpu->cpum.s.Guest.cr0) & X86_CR0_WP) && (cr0 & X86_CR0_WP)) PGMCr0WpEnabled(pVCpu); /* The ET flag is settable on a 386 and hardwired on 486+. */ if ( !(cr0 & X86_CR0_ET) && pVCpu->CTX_SUFF(pVM)->cpum.s.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386) cr0 |= X86_CR0_ET; pVCpu->cpum.s.Guest.cr0 = cr0; pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR0; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestCR2(PVMCPU pVCpu, uint64_t cr2) { pVCpu->cpum.s.Guest.cr2 = cr2; pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR2; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestCR3(PVMCPU pVCpu, uint64_t cr3) { pVCpu->cpum.s.Guest.cr3 = cr3; pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR3; pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR3; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestCR4(PVMCPU pVCpu, uint64_t cr4) { /* Note! We don't bother with OSXSAVE and legacy CPUID patches. */ if ( (cr4 & (X86_CR4_PGE | X86_CR4_PAE | X86_CR4_PSE)) != (pVCpu->cpum.s.Guest.cr4 & (X86_CR4_PGE | X86_CR4_PAE | X86_CR4_PSE))) pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GLOBAL_TLB_FLUSH; pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR4; pVCpu->cpum.s.Guest.cr4 = cr4; pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR4; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestEFlags(PVMCPU pVCpu, uint32_t eflags) { pVCpu->cpum.s.Guest.eflags.u32 = eflags; pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_RFLAGS; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestEIP(PVMCPU pVCpu, uint32_t eip) { pVCpu->cpum.s.Guest.eip = eip; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestEAX(PVMCPU pVCpu, uint32_t eax) { pVCpu->cpum.s.Guest.eax = eax; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestEBX(PVMCPU pVCpu, uint32_t ebx) { pVCpu->cpum.s.Guest.ebx = ebx; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestECX(PVMCPU pVCpu, uint32_t ecx) { pVCpu->cpum.s.Guest.ecx = ecx; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestEDX(PVMCPU pVCpu, uint32_t edx) { pVCpu->cpum.s.Guest.edx = edx; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestESP(PVMCPU pVCpu, uint32_t esp) { pVCpu->cpum.s.Guest.esp = esp; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestEBP(PVMCPU pVCpu, uint32_t ebp) { pVCpu->cpum.s.Guest.ebp = ebp; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestESI(PVMCPU pVCpu, uint32_t esi) { pVCpu->cpum.s.Guest.esi = esi; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestEDI(PVMCPU pVCpu, uint32_t edi) { pVCpu->cpum.s.Guest.edi = edi; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestSS(PVMCPU pVCpu, uint16_t ss) { pVCpu->cpum.s.Guest.ss.Sel = ss; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestCS(PVMCPU pVCpu, uint16_t cs) { pVCpu->cpum.s.Guest.cs.Sel = cs; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestDS(PVMCPU pVCpu, uint16_t ds) { pVCpu->cpum.s.Guest.ds.Sel = ds; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestES(PVMCPU pVCpu, uint16_t es) { pVCpu->cpum.s.Guest.es.Sel = es; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestFS(PVMCPU pVCpu, uint16_t fs) { pVCpu->cpum.s.Guest.fs.Sel = fs; return VINF_SUCCESS; } VMMDECL(int) CPUMSetGuestGS(PVMCPU pVCpu, uint16_t gs) { pVCpu->cpum.s.Guest.gs.Sel = gs; return VINF_SUCCESS; } VMMDECL(void) CPUMSetGuestEFER(PVMCPU pVCpu, uint64_t val) { pVCpu->cpum.s.Guest.msrEFER = val; pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_EFER; } VMMDECL(RTGCPTR) CPUMGetGuestIDTR(PCVMCPU pVCpu, uint16_t *pcbLimit) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_IDTR); if (pcbLimit) *pcbLimit = pVCpu->cpum.s.Guest.idtr.cbIdt; return pVCpu->cpum.s.Guest.idtr.pIdt; } VMMDECL(RTSEL) CPUMGetGuestTR(PCVMCPU pVCpu, PCPUMSELREGHID pHidden) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_TR); if (pHidden) *pHidden = pVCpu->cpum.s.Guest.tr; return pVCpu->cpum.s.Guest.tr.Sel; } VMMDECL(RTSEL) CPUMGetGuestCS(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CS); return pVCpu->cpum.s.Guest.cs.Sel; } VMMDECL(RTSEL) CPUMGetGuestDS(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DS); return pVCpu->cpum.s.Guest.ds.Sel; } VMMDECL(RTSEL) CPUMGetGuestES(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_ES); return pVCpu->cpum.s.Guest.es.Sel; } VMMDECL(RTSEL) CPUMGetGuestFS(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_FS); return pVCpu->cpum.s.Guest.fs.Sel; } VMMDECL(RTSEL) CPUMGetGuestGS(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_GS); return pVCpu->cpum.s.Guest.gs.Sel; } VMMDECL(RTSEL) CPUMGetGuestSS(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_SS); return pVCpu->cpum.s.Guest.ss.Sel; } VMMDECL(uint64_t) CPUMGetGuestFlatPC(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER); CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs); if ( !CPUMIsGuestInLongMode(pVCpu) || !pVCpu->cpum.s.Guest.cs.Attr.n.u1Long) return pVCpu->cpum.s.Guest.eip + (uint32_t)pVCpu->cpum.s.Guest.cs.u64Base; return pVCpu->cpum.s.Guest.rip + pVCpu->cpum.s.Guest.cs.u64Base; } VMMDECL(uint64_t) CPUMGetGuestFlatSP(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER); CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.ss); if ( !CPUMIsGuestInLongMode(pVCpu) || !pVCpu->cpum.s.Guest.cs.Attr.n.u1Long) return pVCpu->cpum.s.Guest.eip + (uint32_t)pVCpu->cpum.s.Guest.ss.u64Base; return pVCpu->cpum.s.Guest.rip + pVCpu->cpum.s.Guest.ss.u64Base; } VMMDECL(RTSEL) CPUMGetGuestLDTR(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_LDTR); return pVCpu->cpum.s.Guest.ldtr.Sel; } VMMDECL(RTSEL) CPUMGetGuestLdtrEx(PCVMCPU pVCpu, uint64_t *pGCPtrBase, uint32_t *pcbLimit) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_LDTR); *pGCPtrBase = pVCpu->cpum.s.Guest.ldtr.u64Base; *pcbLimit = pVCpu->cpum.s.Guest.ldtr.u32Limit; return pVCpu->cpum.s.Guest.ldtr.Sel; } VMMDECL(uint64_t) CPUMGetGuestCR0(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0); return pVCpu->cpum.s.Guest.cr0; } VMMDECL(uint64_t) CPUMGetGuestCR2(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR2); return pVCpu->cpum.s.Guest.cr2; } VMMDECL(uint64_t) CPUMGetGuestCR3(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR3); return pVCpu->cpum.s.Guest.cr3; } VMMDECL(uint64_t) CPUMGetGuestCR4(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4); return pVCpu->cpum.s.Guest.cr4; } VMMDECL(uint64_t) CPUMGetGuestCR8(PCVMCPUCC pVCpu) { uint64_t u64; int rc = CPUMGetGuestCRx(pVCpu, DISCREG_CR8, &u64); if (RT_FAILURE(rc)) u64 = 0; return u64; } VMMDECL(void) CPUMGetGuestGDTR(PCVMCPU pVCpu, PVBOXGDTR pGDTR) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_GDTR); *pGDTR = pVCpu->cpum.s.Guest.gdtr; } VMMDECL(uint32_t) CPUMGetGuestEIP(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RIP); return pVCpu->cpum.s.Guest.eip; } VMMDECL(uint64_t) CPUMGetGuestRIP(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RIP); return pVCpu->cpum.s.Guest.rip; } VMMDECL(uint32_t) CPUMGetGuestEAX(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RAX); return pVCpu->cpum.s.Guest.eax; } VMMDECL(uint32_t) CPUMGetGuestEBX(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RBX); return pVCpu->cpum.s.Guest.ebx; } VMMDECL(uint32_t) CPUMGetGuestECX(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RCX); return pVCpu->cpum.s.Guest.ecx; } VMMDECL(uint32_t) CPUMGetGuestEDX(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RDX); return pVCpu->cpum.s.Guest.edx; } VMMDECL(uint32_t) CPUMGetGuestESI(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RSI); return pVCpu->cpum.s.Guest.esi; } VMMDECL(uint32_t) CPUMGetGuestEDI(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RDI); return pVCpu->cpum.s.Guest.edi; } VMMDECL(uint32_t) CPUMGetGuestESP(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RSP); return pVCpu->cpum.s.Guest.esp; } VMMDECL(uint32_t) CPUMGetGuestEBP(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RBP); return pVCpu->cpum.s.Guest.ebp; } VMMDECL(uint32_t) CPUMGetGuestEFlags(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RFLAGS); return pVCpu->cpum.s.Guest.eflags.u32; } VMMDECL(int) CPUMGetGuestCRx(PCVMCPUCC pVCpu, unsigned iReg, uint64_t *pValue) { switch (iReg) { case DISCREG_CR0: CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0); *pValue = pVCpu->cpum.s.Guest.cr0; break; case DISCREG_CR2: CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR2); *pValue = pVCpu->cpum.s.Guest.cr2; break; case DISCREG_CR3: CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR3); *pValue = pVCpu->cpum.s.Guest.cr3; break; case DISCREG_CR4: CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4); *pValue = pVCpu->cpum.s.Guest.cr4; break; case DISCREG_CR8: { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_APIC_TPR); uint8_t u8Tpr; int rc = APICGetTpr(pVCpu, &u8Tpr, NULL /* pfPending */, NULL /* pu8PendingIrq */); if (RT_FAILURE(rc)) { AssertMsg(rc == VERR_PDM_NO_APIC_INSTANCE, ("%Rrc\n", rc)); *pValue = 0; return rc; } *pValue = u8Tpr >> 4; /* bits 7-4 contain the task priority that go in cr8, bits 3-0 */ break; } default: return VERR_INVALID_PARAMETER; } return VINF_SUCCESS; } VMMDECL(uint64_t) CPUMGetGuestDR0(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3); return pVCpu->cpum.s.Guest.dr[0]; } VMMDECL(uint64_t) CPUMGetGuestDR1(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3); return pVCpu->cpum.s.Guest.dr[1]; } VMMDECL(uint64_t) CPUMGetGuestDR2(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3); return pVCpu->cpum.s.Guest.dr[2]; } VMMDECL(uint64_t) CPUMGetGuestDR3(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3); return pVCpu->cpum.s.Guest.dr[3]; } VMMDECL(uint64_t) CPUMGetGuestDR6(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR6); return pVCpu->cpum.s.Guest.dr[6]; } VMMDECL(uint64_t) CPUMGetGuestDR7(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR7); return pVCpu->cpum.s.Guest.dr[7]; } VMMDECL(int) CPUMGetGuestDRx(PCVMCPU pVCpu, uint32_t iReg, uint64_t *pValue) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR_MASK); AssertReturn(iReg <= DISDREG_DR7, VERR_INVALID_PARAMETER); /* DR4 is an alias for DR6, and DR5 is an alias for DR7. */ if (iReg == 4 || iReg == 5) iReg += 2; *pValue = pVCpu->cpum.s.Guest.dr[iReg]; return VINF_SUCCESS; } VMMDECL(uint64_t) CPUMGetGuestEFER(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_EFER); return pVCpu->cpum.s.Guest.msrEFER; } /** * Looks up a CPUID leaf in the CPUID leaf array, no subleaf. * * @returns Pointer to the leaf if found, NULL if not. * * @param pVM The cross context VM structure. * @param uLeaf The leaf to get. */ PCPUMCPUIDLEAF cpumCpuIdGetLeaf(PVM pVM, uint32_t uLeaf) { unsigned iEnd = RT_MIN(pVM->cpum.s.GuestInfo.cCpuIdLeaves, RT_ELEMENTS(pVM->cpum.s.GuestInfo.aCpuIdLeaves)); if (iEnd) { unsigned iStart = 0; PCPUMCPUIDLEAF paLeaves = pVM->cpum.s.GuestInfo.aCpuIdLeaves; for (;;) { unsigned i = iStart + (iEnd - iStart) / 2U; if (uLeaf < paLeaves[i].uLeaf) { if (i <= iStart) return NULL; iEnd = i; } else if (uLeaf > paLeaves[i].uLeaf) { i += 1; if (i >= iEnd) return NULL; iStart = i; } else { if (RT_LIKELY(paLeaves[i].fSubLeafMask == 0 && paLeaves[i].uSubLeaf == 0)) return &paLeaves[i]; /* This shouldn't normally happen. But in case the it does due to user configuration overrids or something, just return the first sub-leaf. */ AssertMsgFailed(("uLeaf=%#x fSubLeafMask=%#x uSubLeaf=%#x\n", uLeaf, paLeaves[i].fSubLeafMask, paLeaves[i].uSubLeaf)); while ( paLeaves[i].uSubLeaf != 0 && i > 0 && uLeaf == paLeaves[i - 1].uLeaf) i--; return &paLeaves[i]; } } } return NULL; } /** * Looks up a CPUID leaf in the CPUID leaf array. * * @returns Pointer to the leaf if found, NULL if not. * * @param pVM The cross context VM structure. * @param uLeaf The leaf to get. * @param uSubLeaf The subleaf, if applicable. Just pass 0 if it * isn't. * @param pfExactSubLeafHit Whether we've got an exact subleaf hit or not. */ PCPUMCPUIDLEAF cpumCpuIdGetLeafEx(PVM pVM, uint32_t uLeaf, uint32_t uSubLeaf, bool *pfExactSubLeafHit) { unsigned iEnd = RT_MIN(pVM->cpum.s.GuestInfo.cCpuIdLeaves, RT_ELEMENTS(pVM->cpum.s.GuestInfo.aCpuIdLeaves)); if (iEnd) { unsigned iStart = 0; PCPUMCPUIDLEAF paLeaves = pVM->cpum.s.GuestInfo.aCpuIdLeaves; for (;;) { unsigned i = iStart + (iEnd - iStart) / 2U; if (uLeaf < paLeaves[i].uLeaf) { if (i <= iStart) return NULL; iEnd = i; } else if (uLeaf > paLeaves[i].uLeaf) { i += 1; if (i >= iEnd) return NULL; iStart = i; } else { uSubLeaf &= paLeaves[i].fSubLeafMask; if (uSubLeaf == paLeaves[i].uSubLeaf) *pfExactSubLeafHit = true; else { /* Find the right subleaf. We return the last one before uSubLeaf if we don't find an exact match. */ if (uSubLeaf < paLeaves[i].uSubLeaf) while ( i > 0 && uLeaf == paLeaves[i - 1].uLeaf && uSubLeaf <= paLeaves[i - 1].uSubLeaf) i--; else while ( i + 1 < pVM->cpum.s.GuestInfo.cCpuIdLeaves && uLeaf == paLeaves[i + 1].uLeaf && uSubLeaf >= paLeaves[i + 1].uSubLeaf) i++; *pfExactSubLeafHit = uSubLeaf == paLeaves[i].uSubLeaf; } return &paLeaves[i]; } } } *pfExactSubLeafHit = false; return NULL; } /** * Gets a CPUID leaf. * * @param pVCpu The cross context virtual CPU structure. * @param uLeaf The CPUID leaf to get. * @param uSubLeaf The CPUID sub-leaf to get, if applicable. * @param pEax Where to store the EAX value. * @param pEbx Where to store the EBX value. * @param pEcx Where to store the ECX value. * @param pEdx Where to store the EDX value. */ VMMDECL(void) CPUMGetGuestCpuId(PVMCPUCC pVCpu, uint32_t uLeaf, uint32_t uSubLeaf, uint32_t *pEax, uint32_t *pEbx, uint32_t *pEcx, uint32_t *pEdx) { bool fExactSubLeafHit; PVM pVM = pVCpu->CTX_SUFF(pVM); PCCPUMCPUIDLEAF pLeaf = cpumCpuIdGetLeafEx(pVM, uLeaf, uSubLeaf, &fExactSubLeafHit); if (pLeaf) { AssertMsg(pLeaf->uLeaf == uLeaf, ("%#x %#x\n", pLeaf->uLeaf, uLeaf)); if (fExactSubLeafHit) { *pEax = pLeaf->uEax; *pEbx = pLeaf->uEbx; *pEcx = pLeaf->uEcx; *pEdx = pLeaf->uEdx; /* * Deal with CPU specific information. */ if (pLeaf->fFlags & ( CPUMCPUIDLEAF_F_CONTAINS_APIC_ID | CPUMCPUIDLEAF_F_CONTAINS_OSXSAVE | CPUMCPUIDLEAF_F_CONTAINS_APIC )) { if (uLeaf == 1) { /* EBX: Bits 31-24: Initial APIC ID. */ Assert(pVCpu->idCpu <= 255); AssertMsg((pLeaf->uEbx >> 24) == 0, ("%#x\n", pLeaf->uEbx)); /* raw-mode assumption */ *pEbx = (pLeaf->uEbx & UINT32_C(0x00ffffff)) | (pVCpu->idCpu << 24); /* EDX: Bit 9: AND with APICBASE.EN. */ if (!pVCpu->cpum.s.fCpuIdApicFeatureVisible && (pLeaf->fFlags & CPUMCPUIDLEAF_F_CONTAINS_APIC)) *pEdx &= ~X86_CPUID_FEATURE_EDX_APIC; /* ECX: Bit 27: CR4.OSXSAVE mirror. */ *pEcx = (pLeaf->uEcx & ~X86_CPUID_FEATURE_ECX_OSXSAVE) | (pVCpu->cpum.s.Guest.cr4 & X86_CR4_OSXSAVE ? X86_CPUID_FEATURE_ECX_OSXSAVE : 0); } else if (uLeaf == 0xb) { /* EDX: Initial extended APIC ID. */ AssertMsg(pLeaf->uEdx == 0, ("%#x\n", pLeaf->uEdx)); /* raw-mode assumption */ *pEdx = pVCpu->idCpu; Assert(!(pLeaf->fFlags & ~(CPUMCPUIDLEAF_F_CONTAINS_APIC_ID | CPUMCPUIDLEAF_F_INTEL_TOPOLOGY_SUBLEAVES))); } else if (uLeaf == UINT32_C(0x8000001e)) { /* EAX: Initial extended APIC ID. */ AssertMsg(pLeaf->uEax == 0, ("%#x\n", pLeaf->uEax)); /* raw-mode assumption */ *pEax = pVCpu->idCpu; Assert(!(pLeaf->fFlags & ~CPUMCPUIDLEAF_F_CONTAINS_APIC_ID)); } else if (uLeaf == UINT32_C(0x80000001)) { /* EDX: Bit 9: AND with APICBASE.EN. */ if (!pVCpu->cpum.s.fCpuIdApicFeatureVisible) *pEdx &= ~X86_CPUID_AMD_FEATURE_EDX_APIC; Assert(!(pLeaf->fFlags & ~CPUMCPUIDLEAF_F_CONTAINS_APIC)); } else AssertMsgFailed(("uLeaf=%#x\n", uLeaf)); } } /* * Out of range sub-leaves aren't quite as easy and pretty as we emulate * them here, but we do the best we can here... */ else { *pEax = *pEbx = *pEcx = *pEdx = 0; if (pLeaf->fFlags & CPUMCPUIDLEAF_F_INTEL_TOPOLOGY_SUBLEAVES) { *pEcx = uSubLeaf & 0xff; *pEdx = pVCpu->idCpu; } } } else { /* * Different CPUs have different ways of dealing with unknown CPUID leaves. */ switch (pVM->cpum.s.GuestInfo.enmUnknownCpuIdMethod) { default: AssertFailed(); RT_FALL_THRU(); case CPUMUNKNOWNCPUID_DEFAULTS: case CPUMUNKNOWNCPUID_LAST_STD_LEAF: /* ASSUME this is executed */ case CPUMUNKNOWNCPUID_LAST_STD_LEAF_WITH_ECX: /** @todo Implement CPUMUNKNOWNCPUID_LAST_STD_LEAF_WITH_ECX */ *pEax = pVM->cpum.s.GuestInfo.DefCpuId.uEax; *pEbx = pVM->cpum.s.GuestInfo.DefCpuId.uEbx; *pEcx = pVM->cpum.s.GuestInfo.DefCpuId.uEcx; *pEdx = pVM->cpum.s.GuestInfo.DefCpuId.uEdx; break; case CPUMUNKNOWNCPUID_PASSTHRU: *pEax = uLeaf; *pEbx = 0; *pEcx = uSubLeaf; *pEdx = 0; break; } } Log2(("CPUMGetGuestCpuId: uLeaf=%#010x/%#010x %RX32 %RX32 %RX32 %RX32\n", uLeaf, uSubLeaf, *pEax, *pEbx, *pEcx, *pEdx)); } /** * Sets the visibility of the X86_CPUID_FEATURE_EDX_APIC and * X86_CPUID_AMD_FEATURE_EDX_APIC CPUID bits. * * @returns Previous value. * @param pVCpu The cross context virtual CPU structure to make the * change on. Usually the calling EMT. * @param fVisible Whether to make it visible (true) or hide it (false). * * @remarks This is "VMMDECL" so that it still links with * the old APIC code which is in VBoxDD2 and not in * the VMM module. */ VMMDECL(bool) CPUMSetGuestCpuIdPerCpuApicFeature(PVMCPU pVCpu, bool fVisible) { bool fOld = pVCpu->cpum.s.fCpuIdApicFeatureVisible; pVCpu->cpum.s.fCpuIdApicFeatureVisible = fVisible; return fOld; } /** * Gets the host CPU vendor. * * @returns CPU vendor. * @param pVM The cross context VM structure. */ VMMDECL(CPUMCPUVENDOR) CPUMGetHostCpuVendor(PVM pVM) { return (CPUMCPUVENDOR)pVM->cpum.s.HostFeatures.enmCpuVendor; } /** * Gets the host CPU microarchitecture. * * @returns CPU microarchitecture. * @param pVM The cross context VM structure. */ VMMDECL(CPUMMICROARCH) CPUMGetHostMicroarch(PCVM pVM) { return pVM->cpum.s.HostFeatures.enmMicroarch; } /** * Gets the guest CPU vendor. * * @returns CPU vendor. * @param pVM The cross context VM structure. */ VMMDECL(CPUMCPUVENDOR) CPUMGetGuestCpuVendor(PVM pVM) { return (CPUMCPUVENDOR)pVM->cpum.s.GuestFeatures.enmCpuVendor; } /** * Gets the guest CPU microarchitecture. * * @returns CPU microarchitecture. * @param pVM The cross context VM structure. */ VMMDECL(CPUMMICROARCH) CPUMGetGuestMicroarch(PCVM pVM) { return pVM->cpum.s.GuestFeatures.enmMicroarch; } /** * Gets the maximum number of physical and linear address bits supported by the * guest. * * @param pVM The cross context VM structure. * @param pcPhysAddrWidth Where to store the physical address width. * @param pcLinearAddrWidth Where to store the linear address width. */ VMMDECL(void) CPUMGetGuestAddrWidths(PCVM pVM, uint8_t *pcPhysAddrWidth, uint8_t *pcLinearAddrWidth) { AssertPtr(pVM); AssertReturnVoid(pcPhysAddrWidth); AssertReturnVoid(pcLinearAddrWidth); *pcPhysAddrWidth = pVM->cpum.s.GuestFeatures.cMaxPhysAddrWidth; *pcLinearAddrWidth = pVM->cpum.s.GuestFeatures.cMaxLinearAddrWidth; } VMMDECL(int) CPUMSetGuestDR0(PVMCPUCC pVCpu, uint64_t uDr0) { pVCpu->cpum.s.Guest.dr[0] = uDr0; return CPUMRecalcHyperDRx(pVCpu, 0); } VMMDECL(int) CPUMSetGuestDR1(PVMCPUCC pVCpu, uint64_t uDr1) { pVCpu->cpum.s.Guest.dr[1] = uDr1; return CPUMRecalcHyperDRx(pVCpu, 1); } VMMDECL(int) CPUMSetGuestDR2(PVMCPUCC pVCpu, uint64_t uDr2) { pVCpu->cpum.s.Guest.dr[2] = uDr2; return CPUMRecalcHyperDRx(pVCpu, 2); } VMMDECL(int) CPUMSetGuestDR3(PVMCPUCC pVCpu, uint64_t uDr3) { pVCpu->cpum.s.Guest.dr[3] = uDr3; return CPUMRecalcHyperDRx(pVCpu, 3); } VMMDECL(int) CPUMSetGuestDR6(PVMCPU pVCpu, uint64_t uDr6) { pVCpu->cpum.s.Guest.dr[6] = uDr6; pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_DR6; return VINF_SUCCESS; /* No need to recalc. */ } VMMDECL(int) CPUMSetGuestDR7(PVMCPUCC pVCpu, uint64_t uDr7) { pVCpu->cpum.s.Guest.dr[7] = uDr7; pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_DR7; return CPUMRecalcHyperDRx(pVCpu, 7); } VMMDECL(int) CPUMSetGuestDRx(PVMCPUCC pVCpu, uint32_t iReg, uint64_t Value) { AssertReturn(iReg <= DISDREG_DR7, VERR_INVALID_PARAMETER); /* DR4 is an alias for DR6, and DR5 is an alias for DR7. */ if (iReg == 4 || iReg == 5) iReg += 2; pVCpu->cpum.s.Guest.dr[iReg] = Value; return CPUMRecalcHyperDRx(pVCpu, iReg); } /** * Recalculates the hypervisor DRx register values based on current guest * registers and DBGF breakpoints, updating changed registers depending on the * context. * * This is called whenever a guest DRx register is modified (any context) and * when DBGF sets a hardware breakpoint (ring-3 only, rendezvous). * * In raw-mode context this function will reload any (hyper) DRx registers which * comes out with a different value. It may also have to save the host debug * registers if that haven't been done already. In this context though, we'll * be intercepting and emulating all DRx accesses, so the hypervisor DRx values * are only important when breakpoints are actually enabled. * * In ring-0 (HM) context DR0-3 will be relocated by us, while DR7 will be * reloaded by the HM code if it changes. Further more, we will only use the * combined register set when the VBox debugger is actually using hardware BPs, * when it isn't we'll keep the guest DR0-3 + (maybe) DR6 loaded (DR6 doesn't * concern us here). * * In ring-3 we won't be loading anything, so well calculate hypervisor values * all the time. * * @returns VINF_SUCCESS. * @param pVCpu The cross context virtual CPU structure. * @param iGstReg The guest debug register number that was modified. * UINT8_MAX if not guest register. */ VMMDECL(int) CPUMRecalcHyperDRx(PVMCPUCC pVCpu, uint8_t iGstReg) { PVM pVM = pVCpu->CTX_SUFF(pVM); #ifndef IN_RING0 RT_NOREF_PV(iGstReg); #endif /* * Compare the DR7s first. * * We only care about the enabled flags. GD is virtualized when we * dispatch the #DB, we never enable it. The DBGF DR7 value is will * always have the LE and GE bits set, so no need to check and disable * stuff if they're cleared like we have to for the guest DR7. */ RTGCUINTREG uGstDr7 = CPUMGetGuestDR7(pVCpu); /** @todo This isn't correct. BPs work without setting LE and GE under AMD-V. They are also documented as unsupported by P6+. */ if (!(uGstDr7 & (X86_DR7_LE | X86_DR7_GE))) uGstDr7 = 0; else if (!(uGstDr7 & X86_DR7_LE)) uGstDr7 &= ~X86_DR7_LE_ALL; else if (!(uGstDr7 & X86_DR7_GE)) uGstDr7 &= ~X86_DR7_GE_ALL; const RTGCUINTREG uDbgfDr7 = DBGFBpGetDR7(pVM); if ((uGstDr7 | uDbgfDr7) & X86_DR7_ENABLED_MASK) { Assert(!CPUMIsGuestDebugStateActive(pVCpu)); /* * Ok, something is enabled. Recalc each of the breakpoints, taking * the VM debugger ones of the guest ones. In raw-mode context we will * not allow breakpoints with values inside the hypervisor area. */ RTGCUINTREG uNewDr7 = X86_DR7_GE | X86_DR7_LE | X86_DR7_RA1_MASK; /* bp 0 */ RTGCUINTREG uNewDr0; if (uDbgfDr7 & (X86_DR7_L0 | X86_DR7_G0)) { uNewDr7 |= uDbgfDr7 & (X86_DR7_L0 | X86_DR7_G0 | X86_DR7_RW0_MASK | X86_DR7_LEN0_MASK); uNewDr0 = DBGFBpGetDR0(pVM); } else if (uGstDr7 & (X86_DR7_L0 | X86_DR7_G0)) { uNewDr0 = CPUMGetGuestDR0(pVCpu); uNewDr7 |= uGstDr7 & (X86_DR7_L0 | X86_DR7_G0 | X86_DR7_RW0_MASK | X86_DR7_LEN0_MASK); } else uNewDr0 = 0; /* bp 1 */ RTGCUINTREG uNewDr1; if (uDbgfDr7 & (X86_DR7_L1 | X86_DR7_G1)) { uNewDr7 |= uDbgfDr7 & (X86_DR7_L1 | X86_DR7_G1 | X86_DR7_RW1_MASK | X86_DR7_LEN1_MASK); uNewDr1 = DBGFBpGetDR1(pVM); } else if (uGstDr7 & (X86_DR7_L1 | X86_DR7_G1)) { uNewDr1 = CPUMGetGuestDR1(pVCpu); uNewDr7 |= uGstDr7 & (X86_DR7_L1 | X86_DR7_G1 | X86_DR7_RW1_MASK | X86_DR7_LEN1_MASK); } else uNewDr1 = 0; /* bp 2 */ RTGCUINTREG uNewDr2; if (uDbgfDr7 & (X86_DR7_L2 | X86_DR7_G2)) { uNewDr7 |= uDbgfDr7 & (X86_DR7_L2 | X86_DR7_G2 | X86_DR7_RW2_MASK | X86_DR7_LEN2_MASK); uNewDr2 = DBGFBpGetDR2(pVM); } else if (uGstDr7 & (X86_DR7_L2 | X86_DR7_G2)) { uNewDr2 = CPUMGetGuestDR2(pVCpu); uNewDr7 |= uGstDr7 & (X86_DR7_L2 | X86_DR7_G2 | X86_DR7_RW2_MASK | X86_DR7_LEN2_MASK); } else uNewDr2 = 0; /* bp 3 */ RTGCUINTREG uNewDr3; if (uDbgfDr7 & (X86_DR7_L3 | X86_DR7_G3)) { uNewDr7 |= uDbgfDr7 & (X86_DR7_L3 | X86_DR7_G3 | X86_DR7_RW3_MASK | X86_DR7_LEN3_MASK); uNewDr3 = DBGFBpGetDR3(pVM); } else if (uGstDr7 & (X86_DR7_L3 | X86_DR7_G3)) { uNewDr3 = CPUMGetGuestDR3(pVCpu); uNewDr7 |= uGstDr7 & (X86_DR7_L3 | X86_DR7_G3 | X86_DR7_RW3_MASK | X86_DR7_LEN3_MASK); } else uNewDr3 = 0; /* * Apply the updates. */ pVCpu->cpum.s.fUseFlags |= CPUM_USE_DEBUG_REGS_HYPER; if (uNewDr3 != pVCpu->cpum.s.Hyper.dr[3]) CPUMSetHyperDR3(pVCpu, uNewDr3); if (uNewDr2 != pVCpu->cpum.s.Hyper.dr[2]) CPUMSetHyperDR2(pVCpu, uNewDr2); if (uNewDr1 != pVCpu->cpum.s.Hyper.dr[1]) CPUMSetHyperDR1(pVCpu, uNewDr1); if (uNewDr0 != pVCpu->cpum.s.Hyper.dr[0]) CPUMSetHyperDR0(pVCpu, uNewDr0); if (uNewDr7 != pVCpu->cpum.s.Hyper.dr[7]) CPUMSetHyperDR7(pVCpu, uNewDr7); } #ifdef IN_RING0 else if (CPUMIsGuestDebugStateActive(pVCpu)) { /* * Reload the register that was modified. Normally this won't happen * as we won't intercept DRx writes when not having the hyper debug * state loaded, but in case we do for some reason we'll simply deal * with it. */ switch (iGstReg) { case 0: ASMSetDR0(CPUMGetGuestDR0(pVCpu)); break; case 1: ASMSetDR1(CPUMGetGuestDR1(pVCpu)); break; case 2: ASMSetDR2(CPUMGetGuestDR2(pVCpu)); break; case 3: ASMSetDR3(CPUMGetGuestDR3(pVCpu)); break; default: AssertReturn(iGstReg != UINT8_MAX, VERR_INTERNAL_ERROR_3); } } #endif else { /* * No active debug state any more. In raw-mode this means we have to * make sure DR7 has everything disabled now, if we armed it already. * In ring-0 we might end up here when just single stepping. */ #ifdef IN_RING0 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HYPER) { if (pVCpu->cpum.s.Hyper.dr[0]) ASMSetDR0(0); if (pVCpu->cpum.s.Hyper.dr[1]) ASMSetDR1(0); if (pVCpu->cpum.s.Hyper.dr[2]) ASMSetDR2(0); if (pVCpu->cpum.s.Hyper.dr[3]) ASMSetDR3(0); pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_DEBUG_REGS_HYPER; } #endif pVCpu->cpum.s.fUseFlags &= ~CPUM_USE_DEBUG_REGS_HYPER; /* Clear all the registers. */ pVCpu->cpum.s.Hyper.dr[7] = X86_DR7_RA1_MASK; pVCpu->cpum.s.Hyper.dr[3] = 0; pVCpu->cpum.s.Hyper.dr[2] = 0; pVCpu->cpum.s.Hyper.dr[1] = 0; pVCpu->cpum.s.Hyper.dr[0] = 0; } Log2(("CPUMRecalcHyperDRx: fUseFlags=%#x %RGr %RGr %RGr %RGr %RGr %RGr\n", pVCpu->cpum.s.fUseFlags, pVCpu->cpum.s.Hyper.dr[0], pVCpu->cpum.s.Hyper.dr[1], pVCpu->cpum.s.Hyper.dr[2], pVCpu->cpum.s.Hyper.dr[3], pVCpu->cpum.s.Hyper.dr[6], pVCpu->cpum.s.Hyper.dr[7])); return VINF_SUCCESS; } /** * Set the guest XCR0 register. * * Will load additional state if the FPU state is already loaded (in ring-0 & * raw-mode context). * * @returns VINF_SUCCESS on success, VERR_CPUM_RAISE_GP_0 on invalid input * value. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param uNewValue The new value. * @thread EMT(pVCpu) */ VMM_INT_DECL(int) CPUMSetGuestXcr0(PVMCPUCC pVCpu, uint64_t uNewValue) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_XCRx); if ( (uNewValue & ~pVCpu->CTX_SUFF(pVM)->cpum.s.fXStateGuestMask) == 0 /* The X87 bit cannot be cleared. */ && (uNewValue & XSAVE_C_X87) /* AVX requires SSE. */ && (uNewValue & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM /* AVX-512 requires YMM, SSE and all of its three components to be enabled. */ && ( (uNewValue & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0 || (uNewValue & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI) ) ) { pVCpu->cpum.s.Guest.aXcr[0] = uNewValue; /* If more state components are enabled, we need to take care to load them if the FPU/SSE state is already loaded. May otherwise leak host state to the guest. */ uint64_t fNewComponents = ~pVCpu->cpum.s.Guest.fXStateMask & uNewValue; if (fNewComponents) { #ifdef IN_RING0 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST) { if (pVCpu->cpum.s.Guest.fXStateMask != 0) /* Adding more components. */ ASMXRstor(&pVCpu->cpum.s.Guest.XState, fNewComponents); else { /* We're switching from FXSAVE/FXRSTOR to XSAVE/XRSTOR. */ pVCpu->cpum.s.Guest.fXStateMask |= XSAVE_C_X87 | XSAVE_C_SSE; if (uNewValue & ~(XSAVE_C_X87 | XSAVE_C_SSE)) ASMXRstor(&pVCpu->cpum.s.Guest.XState, uNewValue & ~(XSAVE_C_X87 | XSAVE_C_SSE)); } } #endif pVCpu->cpum.s.Guest.fXStateMask |= uNewValue; } return VINF_SUCCESS; } return VERR_CPUM_RAISE_GP_0; } /** * Tests if the guest has No-Execute Page Protection Enabled (NXE). * * @returns true if in real mode, otherwise false. * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(bool) CPUMIsGuestNXEnabled(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_EFER); return !!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE); } /** * Tests if the guest has the Page Size Extension enabled (PSE). * * @returns true if in real mode, otherwise false. * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(bool) CPUMIsGuestPageSizeExtEnabled(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4); /* PAE or AMD64 implies support for big pages regardless of CR4.PSE */ return !!(pVCpu->cpum.s.Guest.cr4 & (X86_CR4_PSE | X86_CR4_PAE)); } /** * Tests if the guest has the paging enabled (PG). * * @returns true if in real mode, otherwise false. * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(bool) CPUMIsGuestPagingEnabled(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0); return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PG); } /** * Tests if the guest has the paging enabled (PG). * * @returns true if in real mode, otherwise false. * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(bool) CPUMIsGuestR0WriteProtEnabled(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0); return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_WP); } /** * Tests if the guest is running in real mode or not. * * @returns true if in real mode, otherwise false. * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(bool) CPUMIsGuestInRealMode(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0); return !(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE); } /** * Tests if the guest is running in real or virtual 8086 mode. * * @returns @c true if it is, @c false if not. * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(bool) CPUMIsGuestInRealOrV86Mode(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS); return !(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE) || pVCpu->cpum.s.Guest.eflags.Bits.u1VM; /** @todo verify that this cannot be set in long mode. */ } /** * Tests if the guest is running in protected or not. * * @returns true if in protected mode, otherwise false. * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(bool) CPUMIsGuestInProtectedMode(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0); return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE); } /** * Tests if the guest is running in paged protected or not. * * @returns true if in paged protected mode, otherwise false. * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(bool) CPUMIsGuestInPagedProtectedMode(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0); return (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG); } /** * Tests if the guest is running in long mode or not. * * @returns true if in long mode, otherwise false. * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(bool) CPUMIsGuestInLongMode(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_EFER); return (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA) == MSR_K6_EFER_LMA; } /** * Tests if the guest is running in PAE mode or not. * * @returns true if in PAE mode, otherwise false. * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(bool) CPUMIsGuestInPAEMode(PCVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER); /* Intel mentions EFER.LMA and EFER.LME in different parts of their spec. We shall use EFER.LMA rather than EFER.LME as it reflects if the CPU has entered paging with EFER.LME set. */ return (pVCpu->cpum.s.Guest.cr4 & X86_CR4_PAE) && (pVCpu->cpum.s.Guest.cr0 & X86_CR0_PG) && !(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA); } /** * Tests if the guest is running in 64 bits mode or not. * * @returns true if in 64 bits protected mode, otherwise false. * @param pVCpu The cross context virtual CPU structure of the calling EMT. */ VMMDECL(bool) CPUMIsGuestIn64BitCode(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER); if (!CPUMIsGuestInLongMode(pVCpu)) return false; CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs); return pVCpu->cpum.s.Guest.cs.Attr.n.u1Long; } /** * Helper for CPUMIsGuestIn64BitCodeEx that handles lazy resolving of hidden CS * registers. * * @returns true if in 64 bits protected mode, otherwise false. * @param pCtx Pointer to the current guest CPU context. */ VMM_INT_DECL(bool) CPUMIsGuestIn64BitCodeSlow(PCPUMCTX pCtx) { return CPUMIsGuestIn64BitCode(CPUM_GUEST_CTX_TO_VMCPU(pCtx)); } /** * Sets the specified changed flags (CPUM_CHANGED_*). * * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param fChangedAdd The changed flags to add. */ VMMDECL(void) CPUMSetChangedFlags(PVMCPU pVCpu, uint32_t fChangedAdd) { pVCpu->cpum.s.fChanged |= fChangedAdd; } /** * Checks if the CPU supports the XSAVE and XRSTOR instruction. * * @returns true if supported. * @returns false if not supported. * @param pVM The cross context VM structure. */ VMMDECL(bool) CPUMSupportsXSave(PVM pVM) { return pVM->cpum.s.HostFeatures.fXSaveRstor != 0; } /** * Checks if the host OS uses the SYSENTER / SYSEXIT instructions. * @returns true if used. * @returns false if not used. * @param pVM The cross context VM structure. */ VMMDECL(bool) CPUMIsHostUsingSysEnter(PVM pVM) { return RT_BOOL(pVM->cpum.s.fHostUseFlags & CPUM_USE_SYSENTER); } /** * Checks if the host OS uses the SYSCALL / SYSRET instructions. * @returns true if used. * @returns false if not used. * @param pVM The cross context VM structure. */ VMMDECL(bool) CPUMIsHostUsingSysCall(PVM pVM) { return RT_BOOL(pVM->cpum.s.fHostUseFlags & CPUM_USE_SYSCALL); } /** * Checks if we activated the FPU/XMM state of the guest OS. * * Obsolete: This differs from CPUMIsGuestFPUStateLoaded() in that it refers to * the next time we'll be executing guest code, so it may return true for * 64-on-32 when we still haven't actually loaded the FPU status, just scheduled * it to be loaded the next time we go thru the world switcher * (CPUM_SYNC_FPU_STATE). * * @returns true / false. * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(bool) CPUMIsGuestFPUStateActive(PVMCPU pVCpu) { bool fRet = RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST); AssertMsg(fRet == pVCpu->cpum.s.Guest.fUsedFpuGuest, ("fRet=%d\n", fRet)); return fRet; } /** * Checks if we've really loaded the FPU/XMM state of the guest OS. * * @returns true / false. * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(bool) CPUMIsGuestFPUStateLoaded(PVMCPU pVCpu) { bool fRet = RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST); AssertMsg(fRet == pVCpu->cpum.s.Guest.fUsedFpuGuest, ("fRet=%d\n", fRet)); return fRet; } /** * Checks if we saved the FPU/XMM state of the host OS. * * @returns true / false. * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(bool) CPUMIsHostFPUStateSaved(PVMCPU pVCpu) { return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_HOST); } /** * Checks if the guest debug state is active. * * @returns boolean * @param pVCpu The cross context virtual CPU structure of the calling EMT. */ VMMDECL(bool) CPUMIsGuestDebugStateActive(PVMCPU pVCpu) { return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_GUEST); } /** * Checks if the hyper debug state is active. * * @returns boolean * @param pVCpu The cross context virtual CPU structure of the calling EMT. */ VMMDECL(bool) CPUMIsHyperDebugStateActive(PVMCPU pVCpu) { return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HYPER); } /** * Mark the guest's debug state as inactive. * * @returns boolean * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @todo This API doesn't make sense any more. */ VMMDECL(void) CPUMDeactivateGuestDebugState(PVMCPU pVCpu) { Assert(!(pVCpu->cpum.s.fUseFlags & (CPUM_USED_DEBUG_REGS_GUEST | CPUM_USED_DEBUG_REGS_HYPER | CPUM_USED_DEBUG_REGS_HOST))); NOREF(pVCpu); } /** * Get the current privilege level of the guest. * * @returns CPL * @param pVCpu The cross context virtual CPU structure of the calling EMT. */ VMMDECL(uint32_t) CPUMGetGuestCPL(PVMCPU pVCpu) { /* * CPL can reliably be found in SS.DPL (hidden regs valid) or SS if not. * * Note! We used to check CS.DPL here, assuming it was always equal to * CPL even if a conforming segment was loaded. But this turned out to * only apply to older AMD-V. With VT-x we had an ACP2 regression * during install after a far call to ring 2 with VT-x. Then on newer * AMD-V CPUs we have to move the VMCB.guest.u8CPL into cs.Attr.n.u2Dpl * as well as ss.Attr.n.u2Dpl to make this (and other) code work right. * * So, forget CS.DPL, always use SS.DPL. * * Note! The SS RPL is always equal to the CPL, while the CS RPL * isn't necessarily equal if the segment is conforming. * See section 4.11.1 in the AMD manual. * * Update: Where the heck does it say CS.RPL can differ from CPL other than * right after real->prot mode switch and when in V8086 mode? That * section says the RPL specified in a direct transfere (call, jmp, * ret) is not the one loaded into CS. Besides, if CS.RPL != CPL * it would be impossible for an exception handle or the iret * instruction to figure out whether SS:ESP are part of the frame * or not. VBox or qemu bug must've lead to this misconception. * * Update2: On an AMD bulldozer system here, I've no trouble loading a null * selector into SS with an RPL other than the CPL when CPL != 3 and * we're in 64-bit mode. The intel dev box doesn't allow this, on * RPL = CPL. Weird. */ CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS); uint32_t uCpl; if (pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE) { if (!pVCpu->cpum.s.Guest.eflags.Bits.u1VM) { if (CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.s.Guest.ss)) uCpl = pVCpu->cpum.s.Guest.ss.Attr.n.u2Dpl; else uCpl = (pVCpu->cpum.s.Guest.ss.Sel & X86_SEL_RPL); } else uCpl = 3; /* V86 has CPL=3; REM doesn't set DPL=3 in V8086 mode. See @bugref{5130}. */ } else uCpl = 0; /* Real mode is zero; CPL set to 3 for VT-x real-mode emulation. */ return uCpl; } /** * Gets the current guest CPU mode. * * If paging mode is what you need, check out PGMGetGuestMode(). * * @returns The CPU mode. * @param pVCpu The cross context virtual CPU structure. */ VMMDECL(CPUMMODE) CPUMGetGuestMode(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER); CPUMMODE enmMode; if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE)) enmMode = CPUMMODE_REAL; else if (!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA)) enmMode = CPUMMODE_PROTECTED; else enmMode = CPUMMODE_LONG; return enmMode; } /** * Figure whether the CPU is currently executing 16, 32 or 64 bit code. * * @returns 16, 32 or 64. * @param pVCpu The cross context virtual CPU structure of the calling EMT. */ VMMDECL(uint32_t) CPUMGetGuestCodeBits(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS); if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE)) return 16; if (pVCpu->cpum.s.Guest.eflags.Bits.u1VM) { Assert(!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA)); return 16; } CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs); if ( pVCpu->cpum.s.Guest.cs.Attr.n.u1Long && (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA)) return 64; if (pVCpu->cpum.s.Guest.cs.Attr.n.u1DefBig) return 32; return 16; } VMMDECL(DISCPUMODE) CPUMGetGuestDisMode(PVMCPU pVCpu) { CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS); if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE)) return DISCPUMODE_16BIT; if (pVCpu->cpum.s.Guest.eflags.Bits.u1VM) { Assert(!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA)); return DISCPUMODE_16BIT; } CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs); if ( pVCpu->cpum.s.Guest.cs.Attr.n.u1Long && (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA)) return DISCPUMODE_64BIT; if (pVCpu->cpum.s.Guest.cs.Attr.n.u1DefBig) return DISCPUMODE_32BIT; return DISCPUMODE_16BIT; } /** * Gets the guest MXCSR_MASK value. * * This does not access the x87 state, but the value we determined at VM * initialization. * * @returns MXCSR mask. * @param pVM The cross context VM structure. */ VMMDECL(uint32_t) CPUMGetGuestMxCsrMask(PVM pVM) { return pVM->cpum.s.GuestInfo.fMxCsrMask; } /** * Returns whether the guest has physical interrupts enabled. * * @returns @c true if interrupts are enabled, @c false otherwise. * @param pVCpu The cross context virtual CPU structure. * * @remarks Warning! This function does -not- take into account the global-interrupt * flag (GIF). */ VMM_INT_DECL(bool) CPUMIsGuestPhysIntrEnabled(PVMCPU pVCpu) { if (!CPUMIsGuestInNestedHwvirtMode(&pVCpu->cpum.s.Guest)) { uint32_t const fEFlags = pVCpu->cpum.s.Guest.eflags.u; return RT_BOOL(fEFlags & X86_EFL_IF); } if (CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.s.Guest)) return CPUMIsGuestVmxPhysIntrEnabled(&pVCpu->cpum.s.Guest); Assert(CPUMIsGuestInSvmNestedHwVirtMode(&pVCpu->cpum.s.Guest)); return CPUMIsGuestSvmPhysIntrEnabled(pVCpu, &pVCpu->cpum.s.Guest); } /** * Returns whether the nested-guest has virtual interrupts enabled. * * @returns @c true if interrupts are enabled, @c false otherwise. * @param pVCpu The cross context virtual CPU structure. * * @remarks Warning! This function does -not- take into account the global-interrupt * flag (GIF). */ VMM_INT_DECL(bool) CPUMIsGuestVirtIntrEnabled(PVMCPU pVCpu) { PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest; Assert(CPUMIsGuestInNestedHwvirtMode(pCtx)); if (CPUMIsGuestInVmxNonRootMode(pCtx)) return CPUMIsGuestVmxVirtIntrEnabled(pCtx); Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx)); return CPUMIsGuestSvmVirtIntrEnabled(pVCpu, pCtx); } /** * Calculates the interruptiblity of the guest. * * @returns Interruptibility level. * @param pVCpu The cross context virtual CPU structure. */ VMM_INT_DECL(CPUMINTERRUPTIBILITY) CPUMGetGuestInterruptibility(PVMCPU pVCpu) { #if 1 /* Global-interrupt flag blocks pretty much everything we care about here. */ if (CPUMGetGuestGif(&pVCpu->cpum.s.Guest)) { /* * Physical interrupts are primarily blocked using EFLAGS. However, we cannot access * it directly here. If and how EFLAGS are used depends on the context (nested-guest * or raw-mode). Hence we use the function below which handles the details. */ if ( CPUMIsGuestPhysIntrEnabled(pVCpu) && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_BLOCK_NMIS | VMCPU_FF_INHIBIT_INTERRUPTS)) { if ( !CPUMIsGuestInNestedHwvirtMode(&pVCpu->cpum.s.Guest) || CPUMIsGuestVirtIntrEnabled(pVCpu)) return CPUMINTERRUPTIBILITY_UNRESTRAINED; /* Physical interrupts are enabled, but nested-guest virtual interrupts are disabled. */ return CPUMINTERRUPTIBILITY_VIRT_INT_DISABLED; } /* * Blocking the delivery of NMIs during an interrupt shadow is CPU implementation * specific. Therefore, in practice, we can't deliver an NMI in an interrupt shadow. * However, there is some uncertainity regarding the converse, i.e. whether * NMI-blocking until IRET blocks delivery of physical interrupts. * * See Intel spec. 25.4.1 "Event Blocking". */ if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS)) return CPUMINTERRUPTIBILITY_NMI_INHIBIT; if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)) return CPUMINTERRUPTIBILITY_INT_INHIBITED; return CPUMINTERRUPTIBILITY_INT_DISABLED; } return CPUMINTERRUPTIBILITY_GLOBAL_INHIBIT; #else if (pVCpu->cpum.s.Guest.rflags.Bits.u1IF) { if (pVCpu->cpum.s.Guest.hwvirt.fGif) { if (!VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_BLOCK_NMIS | VMCPU_FF_INHIBIT_INTERRUPTS)) return CPUMINTERRUPTIBILITY_UNRESTRAINED; /** @todo does blocking NMIs mean interrupts are also inhibited? */ if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS)) { if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS)) return CPUMINTERRUPTIBILITY_INT_INHIBITED; return CPUMINTERRUPTIBILITY_NMI_INHIBIT; } AssertFailed(); return CPUMINTERRUPTIBILITY_NMI_INHIBIT; } return CPUMINTERRUPTIBILITY_GLOBAL_INHIBIT; } else { if (pVCpu->cpum.s.Guest.hwvirt.fGif) { if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS)) return CPUMINTERRUPTIBILITY_NMI_INHIBIT; return CPUMINTERRUPTIBILITY_INT_DISABLED; } return CPUMINTERRUPTIBILITY_GLOBAL_INHIBIT; } #endif } /** * Gets whether the guest (or nested-guest) is currently blocking delivery of NMIs. * * @returns @c true if NMIs are blocked, @c false otherwise. * @param pVCpu The cross context virtual CPU structure. */ VMM_INT_DECL(bool) CPUMIsGuestNmiBlocking(PCVMCPU pVCpu) { /* * Return the state of guest-NMI blocking in any of the following cases: * - We're not executing a nested-guest. * - We're executing an SVM nested-guest[1]. * - We're executing a VMX nested-guest without virtual-NMIs enabled. * * [1] -- SVM does not support virtual-NMIs or virtual-NMI blocking. * SVM hypervisors must track NMI blocking themselves by intercepting * the IRET instruction after injection of an NMI. */ PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest; if ( !CPUMIsGuestInNestedHwvirtMode(pCtx) || CPUMIsGuestInSvmNestedHwVirtMode(pCtx) || !CPUMIsGuestVmxPinCtlsSet(pCtx, VMX_PIN_CTLS_VIRT_NMI)) return VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS); /* * Return the state of virtual-NMI blocking, if we are executing a * VMX nested-guest with virtual-NMIs enabled. */ return CPUMIsGuestVmxVirtNmiBlocking(pCtx); } /** * Sets blocking delivery of NMIs to the guest. * * @param pVCpu The cross context virtual CPU structure. * @param fBlock Whether NMIs are blocked or not. */ VMM_INT_DECL(void) CPUMSetGuestNmiBlocking(PVMCPU pVCpu, bool fBlock) { /* * Set the state of guest-NMI blocking in any of the following cases: * - We're not executing a nested-guest. * - We're executing an SVM nested-guest[1]. * - We're executing a VMX nested-guest without virtual-NMIs enabled. * * [1] -- SVM does not support virtual-NMIs or virtual-NMI blocking. * SVM hypervisors must track NMI blocking themselves by intercepting * the IRET instruction after injection of an NMI. */ PCPUMCTX pCtx = &pVCpu->cpum.s.Guest; if ( !CPUMIsGuestInNestedHwvirtMode(pCtx) || CPUMIsGuestInSvmNestedHwVirtMode(pCtx) || !CPUMIsGuestVmxPinCtlsSet(pCtx, VMX_PIN_CTLS_VIRT_NMI)) { if (fBlock) { if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS)) VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS); } else { if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS)) VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS); } return; } /* * Set the state of virtual-NMI blocking, if we are executing a * VMX nested-guest with virtual-NMIs enabled. */ return CPUMSetGuestVmxVirtNmiBlocking(pCtx, fBlock); } /** * Checks whether the SVM nested-guest has physical interrupts enabled. * * @returns true if interrupts are enabled, false otherwise. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param pCtx The guest-CPU context. * * @remarks This does -not- take into account the global-interrupt flag. */ VMM_INT_DECL(bool) CPUMIsGuestSvmPhysIntrEnabled(PCVMCPU pVCpu, PCCPUMCTX pCtx) { /** @todo Optimization: Avoid this function call and use a pointer to the * relevant eflags instead (setup during VMRUN instruction emulation). */ Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx)); X86EFLAGS fEFlags; if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, pCtx)) fEFlags.u = pCtx->hwvirt.svm.HostState.rflags.u; else fEFlags.u = pCtx->eflags.u; return fEFlags.Bits.u1IF; } /** * Checks whether the SVM nested-guest is in a state to receive virtual (setup * for injection by VMRUN instruction) interrupts. * * @returns VBox status code. * @retval true if it's ready, false otherwise. * * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param pCtx The guest-CPU context. */ VMM_INT_DECL(bool) CPUMIsGuestSvmVirtIntrEnabled(PCVMCPU pVCpu, PCCPUMCTX pCtx) { RT_NOREF(pVCpu); Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx)); PCSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.Vmcb.ctrl; PCSVMINTCTRL pVmcbIntCtrl = &pVmcbCtrl->IntCtrl; Assert(!pVmcbIntCtrl->n.u1VGifEnable); /* We don't support passing virtual-GIF feature to the guest yet. */ if ( !pVmcbIntCtrl->n.u1IgnoreTPR && pVmcbIntCtrl->n.u4VIntrPrio <= pVmcbIntCtrl->n.u8VTPR) return false; return RT_BOOL(pCtx->eflags.u & X86_EFL_IF); } /** * Gets the pending SVM nested-guest interruptvector. * * @returns The nested-guest interrupt to inject. * @param pCtx The guest-CPU context. */ VMM_INT_DECL(uint8_t) CPUMGetGuestSvmVirtIntrVector(PCCPUMCTX pCtx) { return pCtx->hwvirt.svm.Vmcb.ctrl.IntCtrl.n.u8VIntrVector; } /** * Restores the host-state from the host-state save area as part of a \#VMEXIT. * * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param pCtx The guest-CPU context. */ VMM_INT_DECL(void) CPUMSvmVmExitRestoreHostState(PVMCPUCC pVCpu, PCPUMCTX pCtx) { /* * Reload the guest's "host state". */ PSVMHOSTSTATE pHostState = &pCtx->hwvirt.svm.HostState; pCtx->es = pHostState->es; pCtx->cs = pHostState->cs; pCtx->ss = pHostState->ss; pCtx->ds = pHostState->ds; pCtx->gdtr = pHostState->gdtr; pCtx->idtr = pHostState->idtr; CPUMSetGuestEferMsrNoChecks(pVCpu, pCtx->msrEFER, pHostState->uEferMsr); CPUMSetGuestCR0(pVCpu, pHostState->uCr0 | X86_CR0_PE); pCtx->cr3 = pHostState->uCr3; CPUMSetGuestCR4(pVCpu, pHostState->uCr4); pCtx->rflags = pHostState->rflags; pCtx->rflags.Bits.u1VM = 0; pCtx->rip = pHostState->uRip; pCtx->rsp = pHostState->uRsp; pCtx->rax = pHostState->uRax; pCtx->dr[7] &= ~(X86_DR7_ENABLED_MASK | X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK); pCtx->dr[7] |= X86_DR7_RA1_MASK; Assert(pCtx->ss.Attr.n.u2Dpl == 0); /** @todo if RIP is not canonical or outside the CS segment limit, we need to * raise \#GP(0) in the guest. */ /** @todo check the loaded host-state for consistency. Figure out what * exactly this involves? */ } /** * Saves the host-state to the host-state save area as part of a VMRUN. * * @param pCtx The guest-CPU context. * @param cbInstr The length of the VMRUN instruction in bytes. */ VMM_INT_DECL(void) CPUMSvmVmRunSaveHostState(PCPUMCTX pCtx, uint8_t cbInstr) { PSVMHOSTSTATE pHostState = &pCtx->hwvirt.svm.HostState; pHostState->es = pCtx->es; pHostState->cs = pCtx->cs; pHostState->ss = pCtx->ss; pHostState->ds = pCtx->ds; pHostState->gdtr = pCtx->gdtr; pHostState->idtr = pCtx->idtr; pHostState->uEferMsr = pCtx->msrEFER; pHostState->uCr0 = pCtx->cr0; pHostState->uCr3 = pCtx->cr3; pHostState->uCr4 = pCtx->cr4; pHostState->rflags = pCtx->rflags; pHostState->uRip = pCtx->rip + cbInstr; pHostState->uRsp = pCtx->rsp; pHostState->uRax = pCtx->rax; } /** * Applies the TSC offset of a nested-guest if any and returns the TSC value for the * nested-guest. * * @returns The TSC offset after applying any nested-guest TSC offset. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param uTscValue The guest TSC. * * @sa CPUMRemoveNestedGuestTscOffset. */ VMM_INT_DECL(uint64_t) CPUMApplyNestedGuestTscOffset(PCVMCPU pVCpu, uint64_t uTscValue) { PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest; if (CPUMIsGuestInVmxNonRootMode(pCtx)) { if (CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_USE_TSC_OFFSETTING)) return uTscValue + pCtx->hwvirt.vmx.Vmcs.u64TscOffset.u; return uTscValue; } if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx)) { uint64_t offTsc; if (!HMGetGuestSvmTscOffset(pVCpu, &offTsc)) offTsc = pCtx->hwvirt.svm.Vmcb.ctrl.u64TSCOffset; return uTscValue + offTsc; } return uTscValue; } /** * Removes the TSC offset of a nested-guest if any and returns the TSC value for the * guest. * * @returns The TSC offset after removing any nested-guest TSC offset. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param uTscValue The nested-guest TSC. * * @sa CPUMApplyNestedGuestTscOffset. */ VMM_INT_DECL(uint64_t) CPUMRemoveNestedGuestTscOffset(PCVMCPU pVCpu, uint64_t uTscValue) { PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest; if (CPUMIsGuestInVmxNonRootMode(pCtx)) { if (CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_USE_TSC_OFFSETTING)) return uTscValue - pCtx->hwvirt.vmx.Vmcs.u64TscOffset.u; return uTscValue; } if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx)) { uint64_t offTsc; if (!HMGetGuestSvmTscOffset(pVCpu, &offTsc)) offTsc = pCtx->hwvirt.svm.Vmcb.ctrl.u64TSCOffset; return uTscValue - offTsc; } return uTscValue; } /** * Used to dynamically imports state residing in NEM or HM. * * This is a worker for the CPUM_IMPORT_EXTRN_RET() macro and various IEM ones. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure of the calling thread. * @param fExtrnImport The fields to import. * @thread EMT(pVCpu) */ VMM_INT_DECL(int) CPUMImportGuestStateOnDemand(PVMCPUCC pVCpu, uint64_t fExtrnImport) { VMCPU_ASSERT_EMT(pVCpu); if (pVCpu->cpum.s.Guest.fExtrn & fExtrnImport) { switch (pVCpu->cpum.s.Guest.fExtrn & CPUMCTX_EXTRN_KEEPER_MASK) { case CPUMCTX_EXTRN_KEEPER_NEM: { int rc = NEMImportStateOnDemand(pVCpu, fExtrnImport); Assert(rc == VINF_SUCCESS || RT_FAILURE_NP(rc)); return rc; } case CPUMCTX_EXTRN_KEEPER_HM: { #ifdef IN_RING0 int rc = HMR0ImportStateOnDemand(pVCpu, fExtrnImport); Assert(rc == VINF_SUCCESS || RT_FAILURE_NP(rc)); return rc; #else AssertLogRelMsgFailed(("TODO Fetch HM state: %#RX64 vs %#RX64\n", pVCpu->cpum.s.Guest.fExtrn, fExtrnImport)); return VINF_SUCCESS; #endif } default: AssertLogRelMsgFailedReturn(("%#RX64 vs %#RX64\n", pVCpu->cpum.s.Guest.fExtrn, fExtrnImport), VERR_CPUM_IPE_2); } } return VINF_SUCCESS; } /** * Gets valid CR4 bits for the guest. * * @returns Valid CR4 bits. * @param pVM The cross context VM structure. */ VMM_INT_DECL(uint64_t) CPUMGetGuestCR4ValidMask(PVM pVM) { PCCPUMFEATURES pGuestFeatures = &pVM->cpum.s.GuestFeatures; uint64_t fMask = X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE | X86_CR4_MCE | X86_CR4_PCE; if (pGuestFeatures->fPae) fMask |= X86_CR4_PAE; if (pGuestFeatures->fPge) fMask |= X86_CR4_PGE; if (pGuestFeatures->fPse) fMask |= X86_CR4_PSE; if (pGuestFeatures->fFxSaveRstor) fMask |= X86_CR4_OSFXSR; if (pGuestFeatures->fVmx) fMask |= X86_CR4_VMXE; if (pGuestFeatures->fXSaveRstor) fMask |= X86_CR4_OSXSAVE; if (pGuestFeatures->fPcid) fMask |= X86_CR4_PCIDE; if (pGuestFeatures->fFsGsBase) fMask |= X86_CR4_FSGSBASE; if (pGuestFeatures->fSse) fMask |= X86_CR4_OSXMMEEXCPT; return fMask; } /** * Sets the PAE PDPEs for the guest. * * @param pVCpu The cross context virtual CPU structure of the calling thread. * @param paPaePdpes The PAE PDPEs to set. */ VMM_INT_DECL(void) CPUMSetGuestPaePdpes(PVMCPU pVCpu, PCX86PDPE paPaePdpes) { Assert(paPaePdpes); for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->cpum.s.Guest.aPaePdpes); i++) pVCpu->cpum.s.Guest.aPaePdpes[i].u = paPaePdpes[i].u; pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR3; } /** * Gets the PAE PDPTEs for the guest. * * @param pVCpu The cross context virtual CPU structure of the calling thread. * @param paPaePdpes Where to store the PAE PDPEs. */ VMM_INT_DECL(void) CPUMGetGuestPaePdpes(PVMCPU pVCpu, PX86PDPE paPaePdpes) { Assert(paPaePdpes); CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR3); for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->cpum.s.Guest.aPaePdpes); i++) paPaePdpes[i].u = pVCpu->cpum.s.Guest.aPaePdpes[i].u; } /** * Starts a VMX-preemption timer to expire as specified by the nested hypervisor. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure of the calling thread. * @param uTimer The VMCS preemption timer value. * @param cShift The VMX-preemption timer shift (usually based on guest * VMX MSR rate). * @param pu64EntryTick Where to store the current tick when the timer is * programmed. * @thread EMT(pVCpu) */ VMM_INT_DECL(int) CPUMStartGuestVmxPremptTimer(PVMCPUCC pVCpu, uint32_t uTimer, uint8_t cShift, uint64_t *pu64EntryTick) { Assert(uTimer); Assert(cShift <= 31); Assert(pu64EntryTick); VMCPU_ASSERT_EMT(pVCpu); uint64_t const cTicksToNext = uTimer << cShift; return TMTimerSetRelative(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.s.hNestedVmxPreemptTimer, cTicksToNext, pu64EntryTick); } /** * Stops the VMX-preemption timer from firing. * * @returns VBox status code. * @param pVCpu The cross context virtual CPU structure of the calling thread. * @thread EMT. * * @remarks This can be called during VM reset, so we cannot assume it will be on * the EMT corresponding to @c pVCpu. */ VMM_INT_DECL(int) CPUMStopGuestVmxPremptTimer(PVMCPUCC pVCpu) { /* * CPUM gets initialized before TM, so we defer creation of timers till CPUMR3InitCompleted(). * However, we still get called during CPUMR3Init() and hence we need to check if we have * a valid timer object before trying to stop it. */ int rc; TMTIMERHANDLE hTimer = pVCpu->cpum.s.hNestedVmxPreemptTimer; if (hTimer != NIL_TMTIMERHANDLE) { PVMCC pVM = pVCpu->CTX_SUFF(pVM); rc = TMTimerLock(pVM, hTimer, VERR_IGNORED); if (rc == VINF_SUCCESS) { if (TMTimerIsActive(pVM, hTimer)) TMTimerStop(pVM, hTimer); TMTimerUnlock(pVM, hTimer); } } else rc = VERR_NOT_FOUND; return rc; } /** * Gets the read and write permission bits for an MSR in an MSR bitmap. * * @returns VMXMSRPM_XXX - the MSR permission. * @param pvMsrBitmap Pointer to the MSR bitmap. * @param idMsr The MSR to get permissions for. * * @sa hmR0VmxSetMsrPermission. */ VMM_INT_DECL(uint32_t) CPUMGetVmxMsrPermission(void const *pvMsrBitmap, uint32_t idMsr) { AssertPtrReturn(pvMsrBitmap, VMXMSRPM_EXIT_RD | VMXMSRPM_EXIT_WR); uint8_t const * const pbMsrBitmap = (uint8_t const * const)pvMsrBitmap; /* * MSR Layout: * Byte index MSR range Interpreted as * 0x000 - 0x3ff 0x00000000 - 0x00001fff Low MSR read bits. * 0x400 - 0x7ff 0xc0000000 - 0xc0001fff High MSR read bits. * 0x800 - 0xbff 0x00000000 - 0x00001fff Low MSR write bits. * 0xc00 - 0xfff 0xc0000000 - 0xc0001fff High MSR write bits. * * A bit corresponding to an MSR within the above range causes a VM-exit * if the bit is 1 on executions of RDMSR/WRMSR. If an MSR falls out of * the MSR range, it always cause a VM-exit. * * See Intel spec. 24.6.9 "MSR-Bitmap Address". */ uint32_t const offBitmapRead = 0; uint32_t const offBitmapWrite = 0x800; uint32_t offMsr; uint32_t iBit; if (idMsr <= UINT32_C(0x00001fff)) { offMsr = 0; iBit = idMsr; } else if (idMsr - UINT32_C(0xc0000000) <= UINT32_C(0x00001fff)) { offMsr = 0x400; iBit = idMsr - UINT32_C(0xc0000000); } else { LogFunc(("Warning! Out of range MSR %#RX32\n", idMsr)); return VMXMSRPM_EXIT_RD | VMXMSRPM_EXIT_WR; } /* * Get the MSR read permissions. */ uint32_t fRet; uint32_t const offMsrRead = offBitmapRead + offMsr; Assert(offMsrRead + (iBit >> 3) < offBitmapWrite); if (ASMBitTest(pbMsrBitmap + offMsrRead, iBit)) fRet = VMXMSRPM_EXIT_RD; else fRet = VMXMSRPM_ALLOW_RD; /* * Get the MSR write permissions. */ uint32_t const offMsrWrite = offBitmapWrite + offMsr; Assert(offMsrWrite + (iBit >> 3) < X86_PAGE_4K_SIZE); if (ASMBitTest(pbMsrBitmap + offMsrWrite, iBit)) fRet |= VMXMSRPM_EXIT_WR; else fRet |= VMXMSRPM_ALLOW_WR; Assert(VMXMSRPM_IS_FLAG_VALID(fRet)); return fRet; } /** * Checks the permission bits for the specified I/O port from the given I/O bitmap * to see if causes a VM-exit. * * @returns @c true if the I/O port access must cause a VM-exit, @c false otherwise. * @param pbIoBitmap Pointer to I/O bitmap. * @param uPort The I/O port being accessed. * @param cbAccess e size of the I/O access in bytes (1, 2 or 4 bytes). */ static bool cpumGetVmxIoBitmapPermission(uint8_t const *pbIoBitmap, uint16_t uPort, uint8_t cbAccess) { Assert(cbAccess == 1 || cbAccess == 2 || cbAccess == 4); /* * If the I/O port access wraps around the 16-bit port I/O space, we must cause a * VM-exit. * * Reading 1, 2, 4 bytes at ports 0xffff, 0xfffe and 0xfffc are valid and do not * constitute a wrap around. However, reading 2 bytes at port 0xffff or 4 bytes * from port 0xffff/0xfffe/0xfffd constitute a wrap around. In other words, any * access to -both- ports 0xffff and port 0 is a wrap around. * * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally". */ uint32_t const uPortLast = uPort + cbAccess; if (uPortLast > 0x10000) return true; /* * If any bit corresponding to the I/O access is set, we must cause a VM-exit. */ uint16_t const offPerm = uPort >> 3; /* Byte offset of the port. */ uint16_t const idxPermBit = uPort - (offPerm << 3); /* Bit offset within byte. */ Assert(idxPermBit < 8); static const uint8_t s_afMask[] = { 0x0, 0x1, 0x3, 0x7, 0xf }; /* Bit-mask for all access sizes. */ uint16_t const fMask = s_afMask[cbAccess] << idxPermBit; /* Bit-mask of the access. */ /* Fetch 8 or 16-bits depending on whether the access spans 8-bit boundary. */ RTUINT16U uPerm; uPerm.s.Lo = pbIoBitmap[offPerm]; if (idxPermBit + cbAccess > 8) uPerm.s.Hi = pbIoBitmap[offPerm + 1]; else uPerm.s.Hi = 0; /* If any bit for the access is 1, we must cause a VM-exit. */ if (uPerm.u & fMask) return true; return false; } /** * Returns whether the given VMCS field is valid and supported for the guest. * * @param pVM The cross context VM structure. * @param u64VmcsField The VMCS field. * * @remarks This takes into account the CPU features exposed to the guest. */ VMM_INT_DECL(bool) CPUMIsGuestVmxVmcsFieldValid(PVMCC pVM, uint64_t u64VmcsField) { uint32_t const uFieldEncHi = RT_HI_U32(u64VmcsField); uint32_t const uFieldEncLo = RT_LO_U32(u64VmcsField); if (!uFieldEncHi) { /* likely */ } else return false; PCCPUMFEATURES pFeat = &pVM->cpum.s.GuestFeatures; switch (uFieldEncLo) { /* * 16-bit fields. */ /* Control fields. */ case VMX_VMCS16_VPID: return pFeat->fVmxVpid; case VMX_VMCS16_POSTED_INT_NOTIFY_VECTOR: return pFeat->fVmxPostedInt; case VMX_VMCS16_EPTP_INDEX: return pFeat->fVmxEptXcptVe; /* Guest-state fields. */ case VMX_VMCS16_GUEST_ES_SEL: case VMX_VMCS16_GUEST_CS_SEL: case VMX_VMCS16_GUEST_SS_SEL: case VMX_VMCS16_GUEST_DS_SEL: case VMX_VMCS16_GUEST_FS_SEL: case VMX_VMCS16_GUEST_GS_SEL: case VMX_VMCS16_GUEST_LDTR_SEL: case VMX_VMCS16_GUEST_TR_SEL: return true; case VMX_VMCS16_GUEST_INTR_STATUS: return pFeat->fVmxVirtIntDelivery; case VMX_VMCS16_GUEST_PML_INDEX: return pFeat->fVmxPml; /* Host-state fields. */ case VMX_VMCS16_HOST_ES_SEL: case VMX_VMCS16_HOST_CS_SEL: case VMX_VMCS16_HOST_SS_SEL: case VMX_VMCS16_HOST_DS_SEL: case VMX_VMCS16_HOST_FS_SEL: case VMX_VMCS16_HOST_GS_SEL: case VMX_VMCS16_HOST_TR_SEL: return true; /* * 64-bit fields. */ /* Control fields. */ case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL: case VMX_VMCS64_CTRL_IO_BITMAP_A_HIGH: case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL: case VMX_VMCS64_CTRL_IO_BITMAP_B_HIGH: return pFeat->fVmxUseIoBitmaps; case VMX_VMCS64_CTRL_MSR_BITMAP_FULL: case VMX_VMCS64_CTRL_MSR_BITMAP_HIGH: return pFeat->fVmxUseMsrBitmaps; case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL: case VMX_VMCS64_CTRL_EXIT_MSR_STORE_HIGH: case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL: case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_HIGH: case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL: case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_HIGH: case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL: case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_HIGH: return true; case VMX_VMCS64_CTRL_EXEC_PML_ADDR_FULL: case VMX_VMCS64_CTRL_EXEC_PML_ADDR_HIGH: return pFeat->fVmxPml; case VMX_VMCS64_CTRL_TSC_OFFSET_FULL: case VMX_VMCS64_CTRL_TSC_OFFSET_HIGH: return true; case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL: case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_HIGH: return pFeat->fVmxUseTprShadow; case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL: case VMX_VMCS64_CTRL_APIC_ACCESSADDR_HIGH: return pFeat->fVmxVirtApicAccess; case VMX_VMCS64_CTRL_POSTED_INTR_DESC_FULL: case VMX_VMCS64_CTRL_POSTED_INTR_DESC_HIGH: return pFeat->fVmxPostedInt; case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL: case VMX_VMCS64_CTRL_VMFUNC_CTRLS_HIGH: return pFeat->fVmxVmFunc; case VMX_VMCS64_CTRL_EPTP_FULL: case VMX_VMCS64_CTRL_EPTP_HIGH: return pFeat->fVmxEpt; case VMX_VMCS64_CTRL_EOI_BITMAP_0_FULL: case VMX_VMCS64_CTRL_EOI_BITMAP_0_HIGH: case VMX_VMCS64_CTRL_EOI_BITMAP_1_FULL: case VMX_VMCS64_CTRL_EOI_BITMAP_1_HIGH: case VMX_VMCS64_CTRL_EOI_BITMAP_2_FULL: case VMX_VMCS64_CTRL_EOI_BITMAP_2_HIGH: case VMX_VMCS64_CTRL_EOI_BITMAP_3_FULL: case VMX_VMCS64_CTRL_EOI_BITMAP_3_HIGH: return pFeat->fVmxVirtIntDelivery; case VMX_VMCS64_CTRL_EPTP_LIST_FULL: case VMX_VMCS64_CTRL_EPTP_LIST_HIGH: { PCVMCPU pVCpu = pVM->CTX_SUFF(apCpus)[0]; uint64_t const uVmFuncMsr = pVCpu->cpum.s.Guest.hwvirt.vmx.Msrs.u64VmFunc; return RT_BOOL(RT_BF_GET(uVmFuncMsr, VMX_BF_VMFUNC_EPTP_SWITCHING)); } case VMX_VMCS64_CTRL_VMREAD_BITMAP_FULL: case VMX_VMCS64_CTRL_VMREAD_BITMAP_HIGH: case VMX_VMCS64_CTRL_VMWRITE_BITMAP_FULL: case VMX_VMCS64_CTRL_VMWRITE_BITMAP_HIGH: return pFeat->fVmxVmcsShadowing; case VMX_VMCS64_CTRL_VE_XCPT_INFO_ADDR_FULL: case VMX_VMCS64_CTRL_VE_XCPT_INFO_ADDR_HIGH: return pFeat->fVmxEptXcptVe; case VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_FULL: case VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_HIGH: return pFeat->fVmxXsavesXrstors; case VMX_VMCS64_CTRL_TSC_MULTIPLIER_FULL: case VMX_VMCS64_CTRL_TSC_MULTIPLIER_HIGH: return pFeat->fVmxUseTscScaling; case VMX_VMCS64_CTRL_PROC_EXEC3_FULL: case VMX_VMCS64_CTRL_PROC_EXEC3_HIGH: return pFeat->fVmxTertiaryExecCtls; /* Read-only data fields. */ case VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL: case VMX_VMCS64_RO_GUEST_PHYS_ADDR_HIGH: return pFeat->fVmxEpt; /* Guest-state fields. */ case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL: case VMX_VMCS64_GUEST_VMCS_LINK_PTR_HIGH: case VMX_VMCS64_GUEST_DEBUGCTL_FULL: case VMX_VMCS64_GUEST_DEBUGCTL_HIGH: return true; case VMX_VMCS64_GUEST_PAT_FULL: case VMX_VMCS64_GUEST_PAT_HIGH: return pFeat->fVmxEntryLoadPatMsr || pFeat->fVmxExitSavePatMsr; case VMX_VMCS64_GUEST_EFER_FULL: case VMX_VMCS64_GUEST_EFER_HIGH: return pFeat->fVmxEntryLoadEferMsr || pFeat->fVmxExitSaveEferMsr; case VMX_VMCS64_GUEST_PDPTE0_FULL: case VMX_VMCS64_GUEST_PDPTE0_HIGH: case VMX_VMCS64_GUEST_PDPTE1_FULL: case VMX_VMCS64_GUEST_PDPTE1_HIGH: case VMX_VMCS64_GUEST_PDPTE2_FULL: case VMX_VMCS64_GUEST_PDPTE2_HIGH: case VMX_VMCS64_GUEST_PDPTE3_FULL: case VMX_VMCS64_GUEST_PDPTE3_HIGH: return pFeat->fVmxEpt; /* Host-state fields. */ case VMX_VMCS64_HOST_PAT_FULL: case VMX_VMCS64_HOST_PAT_HIGH: return pFeat->fVmxExitLoadPatMsr; case VMX_VMCS64_HOST_EFER_FULL: case VMX_VMCS64_HOST_EFER_HIGH: return pFeat->fVmxExitLoadEferMsr; /* * 32-bit fields. */ /* Control fields. */ case VMX_VMCS32_CTRL_PIN_EXEC: case VMX_VMCS32_CTRL_PROC_EXEC: case VMX_VMCS32_CTRL_EXCEPTION_BITMAP: case VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK: case VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH: case VMX_VMCS32_CTRL_CR3_TARGET_COUNT: case VMX_VMCS32_CTRL_EXIT: case VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT: case VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT: case VMX_VMCS32_CTRL_ENTRY: case VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT: case VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO: case VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE: case VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH: return true; case VMX_VMCS32_CTRL_TPR_THRESHOLD: return pFeat->fVmxUseTprShadow; case VMX_VMCS32_CTRL_PROC_EXEC2: return pFeat->fVmxSecondaryExecCtls; case VMX_VMCS32_CTRL_PLE_GAP: case VMX_VMCS32_CTRL_PLE_WINDOW: return pFeat->fVmxPauseLoopExit; /* Read-only data fields. */ case VMX_VMCS32_RO_VM_INSTR_ERROR: case VMX_VMCS32_RO_EXIT_REASON: case VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO: case VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE: case VMX_VMCS32_RO_IDT_VECTORING_INFO: case VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE: case VMX_VMCS32_RO_EXIT_INSTR_LENGTH: case VMX_VMCS32_RO_EXIT_INSTR_INFO: return true; /* Guest-state fields. */ case VMX_VMCS32_GUEST_ES_LIMIT: case VMX_VMCS32_GUEST_CS_LIMIT: case VMX_VMCS32_GUEST_SS_LIMIT: case VMX_VMCS32_GUEST_DS_LIMIT: case VMX_VMCS32_GUEST_FS_LIMIT: case VMX_VMCS32_GUEST_GS_LIMIT: case VMX_VMCS32_GUEST_LDTR_LIMIT: case VMX_VMCS32_GUEST_TR_LIMIT: case VMX_VMCS32_GUEST_GDTR_LIMIT: case VMX_VMCS32_GUEST_IDTR_LIMIT: case VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS: case VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS: case VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS: case VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS: case VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS: case VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS: case VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS: case VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS: case VMX_VMCS32_GUEST_INT_STATE: case VMX_VMCS32_GUEST_ACTIVITY_STATE: case VMX_VMCS32_GUEST_SMBASE: case VMX_VMCS32_GUEST_SYSENTER_CS: return true; case VMX_VMCS32_PREEMPT_TIMER_VALUE: return pFeat->fVmxPreemptTimer; /* Host-state fields. */ case VMX_VMCS32_HOST_SYSENTER_CS: return true; /* * Natural-width fields. */ /* Control fields. */ case VMX_VMCS_CTRL_CR0_MASK: case VMX_VMCS_CTRL_CR4_MASK: case VMX_VMCS_CTRL_CR0_READ_SHADOW: case VMX_VMCS_CTRL_CR4_READ_SHADOW: case VMX_VMCS_CTRL_CR3_TARGET_VAL0: case VMX_VMCS_CTRL_CR3_TARGET_VAL1: case VMX_VMCS_CTRL_CR3_TARGET_VAL2: case VMX_VMCS_CTRL_CR3_TARGET_VAL3: return true; /* Read-only data fields. */ case VMX_VMCS_RO_EXIT_QUALIFICATION: case VMX_VMCS_RO_IO_RCX: case VMX_VMCS_RO_IO_RSI: case VMX_VMCS_RO_IO_RDI: case VMX_VMCS_RO_IO_RIP: case VMX_VMCS_RO_GUEST_LINEAR_ADDR: return true; /* Guest-state fields. */ case VMX_VMCS_GUEST_CR0: case VMX_VMCS_GUEST_CR3: case VMX_VMCS_GUEST_CR4: case VMX_VMCS_GUEST_ES_BASE: case VMX_VMCS_GUEST_CS_BASE: case VMX_VMCS_GUEST_SS_BASE: case VMX_VMCS_GUEST_DS_BASE: case VMX_VMCS_GUEST_FS_BASE: case VMX_VMCS_GUEST_GS_BASE: case VMX_VMCS_GUEST_LDTR_BASE: case VMX_VMCS_GUEST_TR_BASE: case VMX_VMCS_GUEST_GDTR_BASE: case VMX_VMCS_GUEST_IDTR_BASE: case VMX_VMCS_GUEST_DR7: case VMX_VMCS_GUEST_RSP: case VMX_VMCS_GUEST_RIP: case VMX_VMCS_GUEST_RFLAGS: case VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS: case VMX_VMCS_GUEST_SYSENTER_ESP: case VMX_VMCS_GUEST_SYSENTER_EIP: return true; /* Host-state fields. */ case VMX_VMCS_HOST_CR0: case VMX_VMCS_HOST_CR3: case VMX_VMCS_HOST_CR4: case VMX_VMCS_HOST_FS_BASE: case VMX_VMCS_HOST_GS_BASE: case VMX_VMCS_HOST_TR_BASE: case VMX_VMCS_HOST_GDTR_BASE: case VMX_VMCS_HOST_IDTR_BASE: case VMX_VMCS_HOST_SYSENTER_ESP: case VMX_VMCS_HOST_SYSENTER_EIP: case VMX_VMCS_HOST_RSP: case VMX_VMCS_HOST_RIP: return true; } return false; } /** * Checks whether the given I/O access should cause a nested-guest VM-exit. * * @returns @c true if it causes a VM-exit, @c false otherwise. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param u16Port The I/O port being accessed. * @param cbAccess The size of the I/O access in bytes (1, 2 or 4 bytes). */ VMM_INT_DECL(bool) CPUMIsGuestVmxIoInterceptSet(PCVMCPU pVCpu, uint16_t u16Port, uint8_t cbAccess) { PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest; if (CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_UNCOND_IO_EXIT)) return true; if (CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_USE_IO_BITMAPS)) return cpumGetVmxIoBitmapPermission(pCtx->hwvirt.vmx.abIoBitmap, u16Port, cbAccess); return false; } /** * Checks whether the Mov-to-CR3 instruction causes a nested-guest VM-exit. * * @returns @c true if it causes a VM-exit, @c false otherwise. * @param pVCpu The cross context virtual CPU structure of the calling EMT. * @param uNewCr3 The CR3 value being written. */ VMM_INT_DECL(bool) CPUMIsGuestVmxMovToCr3InterceptSet(PVMCPU pVCpu, uint64_t uNewCr3) { /* * If the CR3-load exiting control is set and the new CR3 value does not * match any of the CR3-target values in the VMCS, we must cause a VM-exit. * * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally". */ PCCPUMCTX const pCtx = &pVCpu->cpum.s.Guest; if (CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_CR3_LOAD_EXIT)) { uint32_t const uCr3TargetCount = pCtx->hwvirt.vmx.Vmcs.u32Cr3TargetCount; Assert(uCr3TargetCount <= VMX_V_CR3_TARGET_COUNT); /* If the CR3-target count is 0, cause a VM-exit. */ if (uCr3TargetCount == 0) return true; /* If the CR3 being written doesn't match any of the target values, cause a VM-exit. */ AssertCompile(VMX_V_CR3_TARGET_COUNT == 4); if ( uNewCr3 != pCtx->hwvirt.vmx.Vmcs.u64Cr3Target0.u && uNewCr3 != pCtx->hwvirt.vmx.Vmcs.u64Cr3Target1.u && uNewCr3 != pCtx->hwvirt.vmx.Vmcs.u64Cr3Target2.u && uNewCr3 != pCtx->hwvirt.vmx.Vmcs.u64Cr3Target3.u) return true; } return false; } /** * Checks whether a VMREAD or VMWRITE instruction for the given VMCS field causes a * VM-exit or not. * * @returns @c true if the VMREAD/VMWRITE is intercepted, @c false otherwise. * @param pVCpu The cross context virtual CPU structure. * @param uExitReason The VM-exit reason (VMX_EXIT_VMREAD or * VMX_EXIT_VMREAD). * @param u64VmcsField The VMCS field. */ VMM_INT_DECL(bool) CPUMIsGuestVmxVmreadVmwriteInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint64_t u64VmcsField) { Assert(CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.s.Guest)); Assert( uExitReason == VMX_EXIT_VMREAD || uExitReason == VMX_EXIT_VMWRITE); /* * Without VMCS shadowing, all VMREAD and VMWRITE instructions are intercepted. */ if (!CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.s.Guest, VMX_PROC_CTLS2_VMCS_SHADOWING)) return true; /* * If any reserved bit in the 64-bit VMCS field encoding is set, the VMREAD/VMWRITE * is intercepted. This excludes any reserved bits in the valid parts of the field * encoding (i.e. bit 12). */ if (u64VmcsField & VMX_VMCSFIELD_RSVD_MASK) return true; /* * Finally, consult the VMREAD/VMWRITE bitmap whether to intercept the instruction or not. */ uint32_t const u32VmcsField = RT_LO_U32(u64VmcsField); uint8_t const * const pbBitmap = uExitReason == VMX_EXIT_VMREAD ? &pVCpu->cpum.s.Guest.hwvirt.vmx.abVmreadBitmap[0] : &pVCpu->cpum.s.Guest.hwvirt.vmx.abVmwriteBitmap[0]; Assert(pbBitmap); Assert(u32VmcsField >> 3 < VMX_V_VMREAD_VMWRITE_BITMAP_SIZE); return ASMBitTest(&pbBitmap[u32VmcsField >> 3], u32VmcsField & 7); } /** * Determines whether the given I/O access should cause a nested-guest \#VMEXIT. * * @param pvIoBitmap Pointer to the nested-guest IO bitmap. * @param u16Port The IO port being accessed. * @param enmIoType The type of IO access. * @param cbReg The IO operand size in bytes. * @param cAddrSizeBits The address size bits (for 16, 32 or 64). * @param iEffSeg The effective segment number. * @param fRep Whether this is a repeating IO instruction (REP prefix). * @param fStrIo Whether this is a string IO instruction. * @param pIoExitInfo Pointer to the SVMIOIOEXITINFO struct to be filled. * Optional, can be NULL. */ VMM_INT_DECL(bool) CPUMIsSvmIoInterceptSet(void *pvIoBitmap, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg, uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, PSVMIOIOEXITINFO pIoExitInfo) { Assert(cAddrSizeBits == 16 || cAddrSizeBits == 32 || cAddrSizeBits == 64); Assert(cbReg == 1 || cbReg == 2 || cbReg == 4 || cbReg == 8); /* * The IOPM layout: * Each bit represents one 8-bit port. That makes a total of 0..65535 bits or * two 4K pages. * * For IO instructions that access more than a single byte, the permission bits * for all bytes are checked; if any bit is set to 1, the IO access is intercepted. * * Since it's possible to do a 32-bit IO access at port 65534 (accessing 4 bytes), * we need 3 extra bits beyond the second 4K page. */ static const uint16_t s_auSizeMasks[] = { 0, 1, 3, 0, 0xf, 0, 0, 0 }; uint16_t const offIopm = u16Port >> 3; uint16_t const fSizeMask = s_auSizeMasks[(cAddrSizeBits >> SVM_IOIO_OP_SIZE_SHIFT) & 7]; uint8_t const cShift = u16Port - (offIopm << 3); uint16_t const fIopmMask = (1 << cShift) | (fSizeMask << cShift); uint8_t const *pbIopm = (uint8_t *)pvIoBitmap; Assert(pbIopm); pbIopm += offIopm; uint16_t const u16Iopm = *(uint16_t *)pbIopm; if (u16Iopm & fIopmMask) { if (pIoExitInfo) { static const uint32_t s_auIoOpSize[] = { SVM_IOIO_32_BIT_OP, SVM_IOIO_8_BIT_OP, SVM_IOIO_16_BIT_OP, 0, SVM_IOIO_32_BIT_OP, 0, 0, 0 }; static const uint32_t s_auIoAddrSize[] = { 0, SVM_IOIO_16_BIT_ADDR, SVM_IOIO_32_BIT_ADDR, 0, SVM_IOIO_64_BIT_ADDR, 0, 0, 0 }; pIoExitInfo->u = s_auIoOpSize[cbReg & 7]; pIoExitInfo->u |= s_auIoAddrSize[(cAddrSizeBits >> 4) & 7]; pIoExitInfo->n.u1Str = fStrIo; pIoExitInfo->n.u1Rep = fRep; pIoExitInfo->n.u3Seg = iEffSeg & 7; pIoExitInfo->n.u1Type = enmIoType; pIoExitInfo->n.u16Port = u16Port; } return true; } /** @todo remove later (for debugging as VirtualBox always traps all IO * intercepts). */ AssertMsgFailed(("CPUMSvmIsIOInterceptActive: We expect an IO intercept here!\n")); return false; } /** * Gets the MSR permission bitmap byte and bit offset for the specified MSR. * * @returns VBox status code. * @param idMsr The MSR being requested. * @param pbOffMsrpm Where to store the byte offset in the MSR permission * bitmap for @a idMsr. * @param puMsrpmBit Where to store the bit offset starting at the byte * returned in @a pbOffMsrpm. */ VMM_INT_DECL(int) CPUMGetSvmMsrpmOffsetAndBit(uint32_t idMsr, uint16_t *pbOffMsrpm, uint8_t *puMsrpmBit) { Assert(pbOffMsrpm); Assert(puMsrpmBit); /* * MSRPM Layout: * Byte offset MSR range * 0x000 - 0x7ff 0x00000000 - 0x00001fff * 0x800 - 0xfff 0xc0000000 - 0xc0001fff * 0x1000 - 0x17ff 0xc0010000 - 0xc0011fff * 0x1800 - 0x1fff Reserved * * Each MSR is represented by 2 permission bits (read and write). */ if (idMsr <= 0x00001fff) { /* Pentium-compatible MSRs. */ uint32_t const bitoffMsr = idMsr << 1; *pbOffMsrpm = bitoffMsr >> 3; *puMsrpmBit = bitoffMsr & 7; return VINF_SUCCESS; } if ( idMsr >= 0xc0000000 && idMsr <= 0xc0001fff) { /* AMD Sixth Generation x86 Processor MSRs. */ uint32_t const bitoffMsr = (idMsr - 0xc0000000) << 1; *pbOffMsrpm = 0x800 + (bitoffMsr >> 3); *puMsrpmBit = bitoffMsr & 7; return VINF_SUCCESS; } if ( idMsr >= 0xc0010000 && idMsr <= 0xc0011fff) { /* AMD Seventh and Eighth Generation Processor MSRs. */ uint32_t const bitoffMsr = (idMsr - 0xc0010000) << 1; *pbOffMsrpm = 0x1000 + (bitoffMsr >> 3); *puMsrpmBit = bitoffMsr & 7; return VINF_SUCCESS; } *pbOffMsrpm = 0; *puMsrpmBit = 0; return VERR_OUT_OF_RANGE; } /** * Checks whether the guest is in VMX non-root mode and using EPT paging. * * @returns @c true if in VMX non-root operation with EPT, @c false otherwise. * @param pVCpu The cross context virtual CPU structure. */ VMM_INT_DECL(bool) CPUMIsGuestVmxEptPagingEnabled(PCVMCPUCC pVCpu) { return CPUMIsGuestVmxEptPagingEnabledEx(&pVCpu->cpum.s.Guest); } /** * Checks whether the guest is in VMX non-root mode and using EPT paging and the * nested-guest is in PAE mode. * * @returns @c true if in VMX non-root operation with EPT, @c false otherwise. * @param pVCpu The cross context virtual CPU structure. */ VMM_INT_DECL(bool) CPUMIsGuestVmxEptPaePagingEnabled(PCVMCPUCC pVCpu) { return CPUMIsGuestVmxEptPagingEnabledEx(&pVCpu->cpum.s.Guest) && CPUMIsGuestInPAEModeEx(&pVCpu->cpum.s.Guest); }