VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/CPUMAllRegs.cpp@ 41406

Last change on this file since 41406 was 40235, checked in by vboxsync, 13 years ago

build fixes.

  • Property svn:eol-style set to native
  • Property svn:keywords set to Id
File size: 69.8 KB
Line 
1/* $Id: CPUMAllRegs.cpp 40235 2012-02-23 15:13:39Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor(/Manager) - Getters and Setters.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Header Files *
21*******************************************************************************/
22#define LOG_GROUP LOG_GROUP_CPUM
23#include <VBox/vmm/cpum.h>
24#include <VBox/vmm/patm.h>
25#include <VBox/vmm/dbgf.h>
26#include <VBox/vmm/pdm.h>
27#include <VBox/vmm/pgm.h>
28#include <VBox/vmm/mm.h>
29#include "CPUMInternal.h"
30#include <VBox/vmm/vm.h>
31#include <VBox/err.h>
32#include <VBox/dis.h>
33#include <VBox/log.h>
34#include <VBox/vmm/hwaccm.h>
35#include <VBox/vmm/tm.h>
36#include <iprt/assert.h>
37#include <iprt/asm.h>
38#include <iprt/asm-amd64-x86.h>
39#ifdef IN_RING3
40#include <iprt/thread.h>
41#endif
42
43/** Disable stack frame pointer generation here. */
44#if defined(_MSC_VER) && !defined(DEBUG)
45# pragma optimize("y", off)
46#endif
47
48
49/**
50 * Sets or resets an alternative hypervisor context core.
51 *
52 * This is called when we get a hypervisor trap set switch the context
53 * core with the trap frame on the stack. It is called again to reset
54 * back to the default context core when resuming hypervisor execution.
55 *
56 * @param pVCpu The VMCPU handle.
57 * @param pCtxCore Pointer to the alternative context core or NULL
58 * to go back to the default context core.
59 */
60VMMDECL(void) CPUMHyperSetCtxCore(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore)
61{
62 PVM pVM = pVCpu->CTX_SUFF(pVM);
63
64 LogFlow(("CPUMHyperSetCtxCore: %p/%p/%p -> %p\n", pVCpu->cpum.s.CTX_SUFF(pHyperCore), pCtxCore));
65 if (!pCtxCore)
66 {
67 pCtxCore = CPUMCTX2CORE(&pVCpu->cpum.s.Hyper);
68 pVCpu->cpum.s.pHyperCoreR3 = (R3PTRTYPE(PCPUMCTXCORE))VM_R3_ADDR(pVM, pCtxCore);
69 pVCpu->cpum.s.pHyperCoreR0 = (R0PTRTYPE(PCPUMCTXCORE))VM_R0_ADDR(pVM, pCtxCore);
70 pVCpu->cpum.s.pHyperCoreRC = (RCPTRTYPE(PCPUMCTXCORE))VM_RC_ADDR(pVM, pCtxCore);
71 }
72 else
73 {
74 pVCpu->cpum.s.pHyperCoreR3 = (R3PTRTYPE(PCPUMCTXCORE))MMHyperCCToR3(pVM, pCtxCore);
75 pVCpu->cpum.s.pHyperCoreR0 = (R0PTRTYPE(PCPUMCTXCORE))MMHyperCCToR0(pVM, pCtxCore);
76 pVCpu->cpum.s.pHyperCoreRC = (RCPTRTYPE(PCPUMCTXCORE))MMHyperCCToRC(pVM, pCtxCore);
77 }
78}
79
80
81/**
82 * Gets the pointer to the internal CPUMCTXCORE structure for the hypervisor.
83 * This is only for reading in order to save a few calls.
84 *
85 * @param pVM Handle to the virtual machine.
86 */
87VMMDECL(PCCPUMCTXCORE) CPUMGetHyperCtxCore(PVMCPU pVCpu)
88{
89 return pVCpu->cpum.s.CTX_SUFF(pHyperCore);
90}
91
92
93/**
94 * Queries the pointer to the internal CPUMCTX structure for the hypervisor.
95 *
96 * @returns VBox status code.
97 * @param pVM Handle to the virtual machine.
98 * @param ppCtx Receives the hyper CPUMCTX pointer when successful.
99 *
100 * @deprecated This will *not* (and has never) given the right picture of the
101 * hypervisor register state. With CPUMHyperSetCtxCore() this is
102 * getting much worse. So, use the individual functions for getting
103 * and esp. setting the hypervisor registers.
104 */
105VMMDECL(int) CPUMQueryHyperCtxPtr(PVMCPU pVCpu, PCPUMCTX *ppCtx)
106{
107 *ppCtx = &pVCpu->cpum.s.Hyper;
108 return VINF_SUCCESS;
109}
110
111
112VMMDECL(void) CPUMSetHyperGDTR(PVMCPU pVCpu, uint32_t addr, uint16_t limit)
113{
114 pVCpu->cpum.s.Hyper.gdtr.cbGdt = limit;
115 pVCpu->cpum.s.Hyper.gdtr.pGdt = addr;
116 pVCpu->cpum.s.Hyper.gdtrPadding = 0;
117}
118
119
120VMMDECL(void) CPUMSetHyperIDTR(PVMCPU pVCpu, uint32_t addr, uint16_t limit)
121{
122 pVCpu->cpum.s.Hyper.idtr.cbIdt = limit;
123 pVCpu->cpum.s.Hyper.idtr.pIdt = addr;
124 pVCpu->cpum.s.Hyper.idtrPadding = 0;
125}
126
127
128VMMDECL(void) CPUMSetHyperCR3(PVMCPU pVCpu, uint32_t cr3)
129{
130 pVCpu->cpum.s.Hyper.cr3 = cr3;
131
132#ifdef IN_RC
133 /* Update the current CR3. */
134 ASMSetCR3(cr3);
135#endif
136}
137
138VMMDECL(uint32_t) CPUMGetHyperCR3(PVMCPU pVCpu)
139{
140 return pVCpu->cpum.s.Hyper.cr3;
141}
142
143
144VMMDECL(void) CPUMSetHyperCS(PVMCPU pVCpu, RTSEL SelCS)
145{
146 pVCpu->cpum.s.CTX_SUFF(pHyperCore)->cs = SelCS;
147}
148
149
150VMMDECL(void) CPUMSetHyperDS(PVMCPU pVCpu, RTSEL SelDS)
151{
152 pVCpu->cpum.s.CTX_SUFF(pHyperCore)->ds = SelDS;
153}
154
155
156VMMDECL(void) CPUMSetHyperES(PVMCPU pVCpu, RTSEL SelES)
157{
158 pVCpu->cpum.s.CTX_SUFF(pHyperCore)->es = SelES;
159}
160
161
162VMMDECL(void) CPUMSetHyperFS(PVMCPU pVCpu, RTSEL SelFS)
163{
164 pVCpu->cpum.s.CTX_SUFF(pHyperCore)->fs = SelFS;
165}
166
167
168VMMDECL(void) CPUMSetHyperGS(PVMCPU pVCpu, RTSEL SelGS)
169{
170 pVCpu->cpum.s.CTX_SUFF(pHyperCore)->gs = SelGS;
171}
172
173
174VMMDECL(void) CPUMSetHyperSS(PVMCPU pVCpu, RTSEL SelSS)
175{
176 pVCpu->cpum.s.CTX_SUFF(pHyperCore)->ss = SelSS;
177}
178
179
180VMMDECL(void) CPUMSetHyperESP(PVMCPU pVCpu, uint32_t u32ESP)
181{
182 pVCpu->cpum.s.CTX_SUFF(pHyperCore)->esp = u32ESP;
183}
184
185
186VMMDECL(int) CPUMSetHyperEFlags(PVMCPU pVCpu, uint32_t Efl)
187{
188 pVCpu->cpum.s.CTX_SUFF(pHyperCore)->eflags.u32 = Efl;
189 return VINF_SUCCESS;
190}
191
192
193VMMDECL(void) CPUMSetHyperEIP(PVMCPU pVCpu, uint32_t u32EIP)
194{
195 pVCpu->cpum.s.CTX_SUFF(pHyperCore)->eip = u32EIP;
196}
197
198
199VMMDECL(void) CPUMSetHyperTR(PVMCPU pVCpu, RTSEL SelTR)
200{
201 pVCpu->cpum.s.Hyper.tr = SelTR;
202}
203
204
205VMMDECL(void) CPUMSetHyperLDTR(PVMCPU pVCpu, RTSEL SelLDTR)
206{
207 pVCpu->cpum.s.Hyper.ldtr = SelLDTR;
208}
209
210
211VMMDECL(void) CPUMSetHyperDR0(PVMCPU pVCpu, RTGCUINTREG uDr0)
212{
213 pVCpu->cpum.s.Hyper.dr[0] = uDr0;
214 /** @todo in GC we must load it! */
215}
216
217
218VMMDECL(void) CPUMSetHyperDR1(PVMCPU pVCpu, RTGCUINTREG uDr1)
219{
220 pVCpu->cpum.s.Hyper.dr[1] = uDr1;
221 /** @todo in GC we must load it! */
222}
223
224
225VMMDECL(void) CPUMSetHyperDR2(PVMCPU pVCpu, RTGCUINTREG uDr2)
226{
227 pVCpu->cpum.s.Hyper.dr[2] = uDr2;
228 /** @todo in GC we must load it! */
229}
230
231
232VMMDECL(void) CPUMSetHyperDR3(PVMCPU pVCpu, RTGCUINTREG uDr3)
233{
234 pVCpu->cpum.s.Hyper.dr[3] = uDr3;
235 /** @todo in GC we must load it! */
236}
237
238
239VMMDECL(void) CPUMSetHyperDR6(PVMCPU pVCpu, RTGCUINTREG uDr6)
240{
241 pVCpu->cpum.s.Hyper.dr[6] = uDr6;
242 /** @todo in GC we must load it! */
243}
244
245
246VMMDECL(void) CPUMSetHyperDR7(PVMCPU pVCpu, RTGCUINTREG uDr7)
247{
248 pVCpu->cpum.s.Hyper.dr[7] = uDr7;
249 /** @todo in GC we must load it! */
250}
251
252
253VMMDECL(RTSEL) CPUMGetHyperCS(PVMCPU pVCpu)
254{
255 return pVCpu->cpum.s.CTX_SUFF(pHyperCore)->cs;
256}
257
258
259VMMDECL(RTSEL) CPUMGetHyperDS(PVMCPU pVCpu)
260{
261 return pVCpu->cpum.s.CTX_SUFF(pHyperCore)->ds;
262}
263
264
265VMMDECL(RTSEL) CPUMGetHyperES(PVMCPU pVCpu)
266{
267 return pVCpu->cpum.s.CTX_SUFF(pHyperCore)->es;
268}
269
270
271VMMDECL(RTSEL) CPUMGetHyperFS(PVMCPU pVCpu)
272{
273 return pVCpu->cpum.s.CTX_SUFF(pHyperCore)->fs;
274}
275
276
277VMMDECL(RTSEL) CPUMGetHyperGS(PVMCPU pVCpu)
278{
279 return pVCpu->cpum.s.CTX_SUFF(pHyperCore)->gs;
280}
281
282
283VMMDECL(RTSEL) CPUMGetHyperSS(PVMCPU pVCpu)
284{
285 return pVCpu->cpum.s.CTX_SUFF(pHyperCore)->ss;
286}
287
288
289VMMDECL(uint32_t) CPUMGetHyperEAX(PVMCPU pVCpu)
290{
291 return pVCpu->cpum.s.CTX_SUFF(pHyperCore)->eax;
292}
293
294
295VMMDECL(uint32_t) CPUMGetHyperEBX(PVMCPU pVCpu)
296{
297 return pVCpu->cpum.s.CTX_SUFF(pHyperCore)->ebx;
298}
299
300
301VMMDECL(uint32_t) CPUMGetHyperECX(PVMCPU pVCpu)
302{
303 return pVCpu->cpum.s.CTX_SUFF(pHyperCore)->ecx;
304}
305
306
307VMMDECL(uint32_t) CPUMGetHyperEDX(PVMCPU pVCpu)
308{
309 return pVCpu->cpum.s.CTX_SUFF(pHyperCore)->edx;
310}
311
312
313VMMDECL(uint32_t) CPUMGetHyperESI(PVMCPU pVCpu)
314{
315 return pVCpu->cpum.s.CTX_SUFF(pHyperCore)->esi;
316}
317
318
319VMMDECL(uint32_t) CPUMGetHyperEDI(PVMCPU pVCpu)
320{
321 return pVCpu->cpum.s.CTX_SUFF(pHyperCore)->edi;
322}
323
324
325VMMDECL(uint32_t) CPUMGetHyperEBP(PVMCPU pVCpu)
326{
327 return pVCpu->cpum.s.CTX_SUFF(pHyperCore)->ebp;
328}
329
330
331VMMDECL(uint32_t) CPUMGetHyperESP(PVMCPU pVCpu)
332{
333 return pVCpu->cpum.s.CTX_SUFF(pHyperCore)->esp;
334}
335
336
337VMMDECL(uint32_t) CPUMGetHyperEFlags(PVMCPU pVCpu)
338{
339 return pVCpu->cpum.s.CTX_SUFF(pHyperCore)->eflags.u32;
340}
341
342
343VMMDECL(uint32_t) CPUMGetHyperEIP(PVMCPU pVCpu)
344{
345 return pVCpu->cpum.s.CTX_SUFF(pHyperCore)->eip;
346}
347
348
349VMMDECL(uint64_t) CPUMGetHyperRIP(PVMCPU pVCpu)
350{
351 return pVCpu->cpum.s.CTX_SUFF(pHyperCore)->rip;
352}
353
354
355VMMDECL(uint32_t) CPUMGetHyperIDTR(PVMCPU pVCpu, uint16_t *pcbLimit)
356{
357 if (pcbLimit)
358 *pcbLimit = pVCpu->cpum.s.Hyper.idtr.cbIdt;
359 return pVCpu->cpum.s.Hyper.idtr.pIdt;
360}
361
362
363VMMDECL(uint32_t) CPUMGetHyperGDTR(PVMCPU pVCpu, uint16_t *pcbLimit)
364{
365 if (pcbLimit)
366 *pcbLimit = pVCpu->cpum.s.Hyper.gdtr.cbGdt;
367 return pVCpu->cpum.s.Hyper.gdtr.pGdt;
368}
369
370
371VMMDECL(RTSEL) CPUMGetHyperLDTR(PVMCPU pVCpu)
372{
373 return pVCpu->cpum.s.Hyper.ldtr;
374}
375
376
377VMMDECL(RTGCUINTREG) CPUMGetHyperDR0(PVMCPU pVCpu)
378{
379 return pVCpu->cpum.s.Hyper.dr[0];
380}
381
382
383VMMDECL(RTGCUINTREG) CPUMGetHyperDR1(PVMCPU pVCpu)
384{
385 return pVCpu->cpum.s.Hyper.dr[1];
386}
387
388
389VMMDECL(RTGCUINTREG) CPUMGetHyperDR2(PVMCPU pVCpu)
390{
391 return pVCpu->cpum.s.Hyper.dr[2];
392}
393
394
395VMMDECL(RTGCUINTREG) CPUMGetHyperDR3(PVMCPU pVCpu)
396{
397 return pVCpu->cpum.s.Hyper.dr[3];
398}
399
400
401VMMDECL(RTGCUINTREG) CPUMGetHyperDR6(PVMCPU pVCpu)
402{
403 return pVCpu->cpum.s.Hyper.dr[6];
404}
405
406
407VMMDECL(RTGCUINTREG) CPUMGetHyperDR7(PVMCPU pVCpu)
408{
409 return pVCpu->cpum.s.Hyper.dr[7];
410}
411
412
413/**
414 * Gets the pointer to the internal CPUMCTXCORE structure.
415 * This is only for reading in order to save a few calls.
416 *
417 * @param pVCpu Handle to the virtual cpu.
418 */
419VMMDECL(PCCPUMCTXCORE) CPUMGetGuestCtxCore(PVMCPU pVCpu)
420{
421 return CPUMCTX2CORE(&pVCpu->cpum.s.Guest);
422}
423
424
425/**
426 * Sets the guest context core registers.
427 *
428 * @param pVCpu Handle to the virtual cpu.
429 * @param pCtxCore The new context core values.
430 */
431VMMDECL(void) CPUMSetGuestCtxCore(PVMCPU pVCpu, PCCPUMCTXCORE pCtxCore)
432{
433 /** @todo #1410 requires selectors to be checked. (huh? 1410?) */
434
435 PCPUMCTXCORE pCtxCoreDst = CPUMCTX2CORE(&pVCpu->cpum.s.Guest);
436 *pCtxCoreDst = *pCtxCore;
437
438 /* Mask away invalid parts of the cpu context. */
439 if (!CPUMIsGuestInLongMode(pVCpu))
440 {
441 uint64_t u64Mask = UINT64_C(0xffffffff);
442
443 pCtxCoreDst->rip &= u64Mask;
444 pCtxCoreDst->rax &= u64Mask;
445 pCtxCoreDst->rbx &= u64Mask;
446 pCtxCoreDst->rcx &= u64Mask;
447 pCtxCoreDst->rdx &= u64Mask;
448 pCtxCoreDst->rsi &= u64Mask;
449 pCtxCoreDst->rdi &= u64Mask;
450 pCtxCoreDst->rbp &= u64Mask;
451 pCtxCoreDst->rsp &= u64Mask;
452 pCtxCoreDst->rflags.u &= u64Mask;
453
454 pCtxCoreDst->r8 = 0;
455 pCtxCoreDst->r9 = 0;
456 pCtxCoreDst->r10 = 0;
457 pCtxCoreDst->r11 = 0;
458 pCtxCoreDst->r12 = 0;
459 pCtxCoreDst->r13 = 0;
460 pCtxCoreDst->r14 = 0;
461 pCtxCoreDst->r15 = 0;
462 }
463}
464
465
466/**
467 * Queries the pointer to the internal CPUMCTX structure
468 *
469 * @returns The CPUMCTX pointer.
470 * @param pVCpu Handle to the virtual cpu.
471 */
472VMMDECL(PCPUMCTX) CPUMQueryGuestCtxPtr(PVMCPU pVCpu)
473{
474 return &pVCpu->cpum.s.Guest;
475}
476
477VMMDECL(int) CPUMSetGuestGDTR(PVMCPU pVCpu, uint64_t GCPtrBase, uint16_t cbLimit)
478{
479 pVCpu->cpum.s.Guest.gdtr.cbGdt = cbLimit;
480 pVCpu->cpum.s.Guest.gdtr.pGdt = GCPtrBase;
481 pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GDTR;
482 return VINF_SUCCESS;
483}
484
485VMMDECL(int) CPUMSetGuestIDTR(PVMCPU pVCpu, uint64_t GCPtrBase, uint16_t cbLimit)
486{
487 pVCpu->cpum.s.Guest.idtr.cbIdt = cbLimit;
488 pVCpu->cpum.s.Guest.idtr.pIdt = GCPtrBase;
489 pVCpu->cpum.s.fChanged |= CPUM_CHANGED_IDTR;
490 return VINF_SUCCESS;
491}
492
493VMMDECL(int) CPUMSetGuestTR(PVMCPU pVCpu, uint16_t tr)
494{
495 pVCpu->cpum.s.Guest.tr = tr;
496 pVCpu->cpum.s.fChanged |= CPUM_CHANGED_TR;
497 return VINF_SUCCESS;
498}
499
500VMMDECL(int) CPUMSetGuestLDTR(PVMCPU pVCpu, uint16_t ldtr)
501{
502 pVCpu->cpum.s.Guest.ldtr = ldtr;
503 pVCpu->cpum.s.fChanged |= CPUM_CHANGED_LDTR;
504 return VINF_SUCCESS;
505}
506
507
508/**
509 * Set the guest CR0.
510 *
511 * When called in GC, the hyper CR0 may be updated if that is
512 * required. The caller only has to take special action if AM,
513 * WP, PG or PE changes.
514 *
515 * @returns VINF_SUCCESS (consider it void).
516 * @param pVCpu Handle to the virtual cpu.
517 * @param cr0 The new CR0 value.
518 */
519VMMDECL(int) CPUMSetGuestCR0(PVMCPU pVCpu, uint64_t cr0)
520{
521#ifdef IN_RC
522 /*
523 * Check if we need to change hypervisor CR0 because
524 * of math stuff.
525 */
526 if ( (cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP))
527 != (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP)))
528 {
529 if (!(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU))
530 {
531 /*
532 * We haven't saved the host FPU state yet, so TS and MT are both set
533 * and EM should be reflecting the guest EM (it always does this).
534 */
535 if ((cr0 & X86_CR0_EM) != (pVCpu->cpum.s.Guest.cr0 & X86_CR0_EM))
536 {
537 uint32_t HyperCR0 = ASMGetCR0();
538 AssertMsg((HyperCR0 & (X86_CR0_TS | X86_CR0_MP)) == (X86_CR0_TS | X86_CR0_MP), ("%#x\n", HyperCR0));
539 AssertMsg((HyperCR0 & X86_CR0_EM) == (pVCpu->cpum.s.Guest.cr0 & X86_CR0_EM), ("%#x\n", HyperCR0));
540 HyperCR0 &= ~X86_CR0_EM;
541 HyperCR0 |= cr0 & X86_CR0_EM;
542 Log(("CPUM New HyperCR0=%#x\n", HyperCR0));
543 ASMSetCR0(HyperCR0);
544 }
545# ifdef VBOX_STRICT
546 else
547 {
548 uint32_t HyperCR0 = ASMGetCR0();
549 AssertMsg((HyperCR0 & (X86_CR0_TS | X86_CR0_MP)) == (X86_CR0_TS | X86_CR0_MP), ("%#x\n", HyperCR0));
550 AssertMsg((HyperCR0 & X86_CR0_EM) == (pVCpu->cpum.s.Guest.cr0 & X86_CR0_EM), ("%#x\n", HyperCR0));
551 }
552# endif
553 }
554 else
555 {
556 /*
557 * Already saved the state, so we're just mirroring
558 * the guest flags.
559 */
560 uint32_t HyperCR0 = ASMGetCR0();
561 AssertMsg( (HyperCR0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP))
562 == (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP)),
563 ("%#x %#x\n", HyperCR0, pVCpu->cpum.s.Guest.cr0));
564 HyperCR0 &= ~(X86_CR0_TS | X86_CR0_EM | X86_CR0_MP);
565 HyperCR0 |= cr0 & (X86_CR0_TS | X86_CR0_EM | X86_CR0_MP);
566 Log(("CPUM New HyperCR0=%#x\n", HyperCR0));
567 ASMSetCR0(HyperCR0);
568 }
569 }
570#endif /* IN_RC */
571
572 /*
573 * Check for changes causing TLB flushes (for REM).
574 * The caller is responsible for calling PGM when appropriate.
575 */
576 if ( (cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
577 != (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)))
578 pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GLOBAL_TLB_FLUSH;
579 pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR0;
580
581 pVCpu->cpum.s.Guest.cr0 = cr0 | X86_CR0_ET;
582 return VINF_SUCCESS;
583}
584
585
586VMMDECL(int) CPUMSetGuestCR2(PVMCPU pVCpu, uint64_t cr2)
587{
588 pVCpu->cpum.s.Guest.cr2 = cr2;
589 return VINF_SUCCESS;
590}
591
592
593VMMDECL(int) CPUMSetGuestCR3(PVMCPU pVCpu, uint64_t cr3)
594{
595 pVCpu->cpum.s.Guest.cr3 = cr3;
596 pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR3;
597 return VINF_SUCCESS;
598}
599
600
601VMMDECL(int) CPUMSetGuestCR4(PVMCPU pVCpu, uint64_t cr4)
602{
603 if ( (cr4 & (X86_CR4_PGE | X86_CR4_PAE | X86_CR4_PSE))
604 != (pVCpu->cpum.s.Guest.cr4 & (X86_CR4_PGE | X86_CR4_PAE | X86_CR4_PSE)))
605 pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GLOBAL_TLB_FLUSH;
606 pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR4;
607 if (!CPUMSupportsFXSR(pVCpu->CTX_SUFF(pVM)))
608 cr4 &= ~X86_CR4_OSFSXR;
609 pVCpu->cpum.s.Guest.cr4 = cr4;
610 return VINF_SUCCESS;
611}
612
613
614VMMDECL(int) CPUMSetGuestEFlags(PVMCPU pVCpu, uint32_t eflags)
615{
616 pVCpu->cpum.s.Guest.eflags.u32 = eflags;
617 return VINF_SUCCESS;
618}
619
620
621VMMDECL(int) CPUMSetGuestEIP(PVMCPU pVCpu, uint32_t eip)
622{
623 pVCpu->cpum.s.Guest.eip = eip;
624 return VINF_SUCCESS;
625}
626
627
628VMMDECL(int) CPUMSetGuestEAX(PVMCPU pVCpu, uint32_t eax)
629{
630 pVCpu->cpum.s.Guest.eax = eax;
631 return VINF_SUCCESS;
632}
633
634
635VMMDECL(int) CPUMSetGuestEBX(PVMCPU pVCpu, uint32_t ebx)
636{
637 pVCpu->cpum.s.Guest.ebx = ebx;
638 return VINF_SUCCESS;
639}
640
641
642VMMDECL(int) CPUMSetGuestECX(PVMCPU pVCpu, uint32_t ecx)
643{
644 pVCpu->cpum.s.Guest.ecx = ecx;
645 return VINF_SUCCESS;
646}
647
648
649VMMDECL(int) CPUMSetGuestEDX(PVMCPU pVCpu, uint32_t edx)
650{
651 pVCpu->cpum.s.Guest.edx = edx;
652 return VINF_SUCCESS;
653}
654
655
656VMMDECL(int) CPUMSetGuestESP(PVMCPU pVCpu, uint32_t esp)
657{
658 pVCpu->cpum.s.Guest.esp = esp;
659 return VINF_SUCCESS;
660}
661
662
663VMMDECL(int) CPUMSetGuestEBP(PVMCPU pVCpu, uint32_t ebp)
664{
665 pVCpu->cpum.s.Guest.ebp = ebp;
666 return VINF_SUCCESS;
667}
668
669
670VMMDECL(int) CPUMSetGuestESI(PVMCPU pVCpu, uint32_t esi)
671{
672 pVCpu->cpum.s.Guest.esi = esi;
673 return VINF_SUCCESS;
674}
675
676
677VMMDECL(int) CPUMSetGuestEDI(PVMCPU pVCpu, uint32_t edi)
678{
679 pVCpu->cpum.s.Guest.edi = edi;
680 return VINF_SUCCESS;
681}
682
683
684VMMDECL(int) CPUMSetGuestSS(PVMCPU pVCpu, uint16_t ss)
685{
686 pVCpu->cpum.s.Guest.ss = ss;
687 return VINF_SUCCESS;
688}
689
690
691VMMDECL(int) CPUMSetGuestCS(PVMCPU pVCpu, uint16_t cs)
692{
693 pVCpu->cpum.s.Guest.cs = cs;
694 return VINF_SUCCESS;
695}
696
697
698VMMDECL(int) CPUMSetGuestDS(PVMCPU pVCpu, uint16_t ds)
699{
700 pVCpu->cpum.s.Guest.ds = ds;
701 return VINF_SUCCESS;
702}
703
704
705VMMDECL(int) CPUMSetGuestES(PVMCPU pVCpu, uint16_t es)
706{
707 pVCpu->cpum.s.Guest.es = es;
708 return VINF_SUCCESS;
709}
710
711
712VMMDECL(int) CPUMSetGuestFS(PVMCPU pVCpu, uint16_t fs)
713{
714 pVCpu->cpum.s.Guest.fs = fs;
715 return VINF_SUCCESS;
716}
717
718
719VMMDECL(int) CPUMSetGuestGS(PVMCPU pVCpu, uint16_t gs)
720{
721 pVCpu->cpum.s.Guest.gs = gs;
722 return VINF_SUCCESS;
723}
724
725
726VMMDECL(void) CPUMSetGuestEFER(PVMCPU pVCpu, uint64_t val)
727{
728 pVCpu->cpum.s.Guest.msrEFER = val;
729}
730
731
732/**
733 * Query an MSR.
734 *
735 * The caller is responsible for checking privilege if the call is the result
736 * of a RDMSR instruction. We'll do the rest.
737 *
738 * @retval VINF_SUCCESS on success.
739 * @retval VERR_CPUM_RAISE_GP_0 on failure (invalid MSR), the caller is
740 * expected to take the appropriate actions. @a *puValue is set to 0.
741 * @param pVCpu The virtual CPU to operate on.
742 * @param idMsr The MSR.
743 * @param puValue Where to return the value..
744 *
745 * @remarks This will always return the right values, even when we're in the
746 * recompiler.
747 */
748VMMDECL(int) CPUMQueryGuestMsr(PVMCPU pVCpu, uint32_t idMsr, uint64_t *puValue)
749{
750 /*
751 * If we don't indicate MSR support in the CPUID feature bits, indicate
752 * that a #GP(0) should be raised.
753 */
754 if (!(pVCpu->CTX_SUFF(pVM)->cpum.s.aGuestCpuIdStd[1].edx & X86_CPUID_FEATURE_EDX_MSR))
755 {
756 *puValue = 0;
757 return VERR_CPUM_RAISE_GP_0; /** @todo isn't \#UD more correct if not supported? */
758 }
759
760 int rc = VINF_SUCCESS;
761 uint8_t const u8Multiplier = 4;
762 switch (idMsr)
763 {
764 case MSR_IA32_TSC:
765 *puValue = TMCpuTickGet(pVCpu);
766 break;
767
768 case MSR_IA32_APICBASE:
769 rc = PDMApicGetBase(pVCpu->CTX_SUFF(pVM), puValue);
770 if (RT_SUCCESS(rc))
771 rc = VINF_SUCCESS;
772 else
773 {
774 *puValue = 0;
775 rc = VERR_CPUM_RAISE_GP_0;
776 }
777 break;
778
779 case MSR_IA32_CR_PAT:
780 *puValue = pVCpu->cpum.s.Guest.msrPAT;
781 break;
782
783 case MSR_IA32_SYSENTER_CS:
784 *puValue = pVCpu->cpum.s.Guest.SysEnter.cs;
785 break;
786
787 case MSR_IA32_SYSENTER_EIP:
788 *puValue = pVCpu->cpum.s.Guest.SysEnter.eip;
789 break;
790
791 case MSR_IA32_SYSENTER_ESP:
792 *puValue = pVCpu->cpum.s.Guest.SysEnter.esp;
793 break;
794
795 case MSR_IA32_MTRR_CAP:
796 {
797 /* This is currently a bit weird. :-) */
798 uint8_t const cVariableRangeRegs = 0;
799 bool const fSystemManagementRangeRegisters = false;
800 bool const fFixedRangeRegisters = false;
801 bool const fWriteCombiningType = false;
802 *puValue = cVariableRangeRegs
803 | (fFixedRangeRegisters ? RT_BIT_64(8) : 0)
804 | (fWriteCombiningType ? RT_BIT_64(10) : 0)
805 | (fSystemManagementRangeRegisters ? RT_BIT_64(11) : 0);
806 break;
807 }
808
809 case MSR_IA32_MTRR_DEF_TYPE:
810 *puValue = pVCpu->cpum.s.GuestMsrs.msr.MtrrDefType;
811 break;
812
813 case IA32_MTRR_FIX64K_00000:
814 *puValue = pVCpu->cpum.s.GuestMsrs.msr.MtrrFix64K_00000;
815 break;
816 case IA32_MTRR_FIX16K_80000:
817 *puValue = pVCpu->cpum.s.GuestMsrs.msr.MtrrFix16K_80000;
818 break;
819 case IA32_MTRR_FIX16K_A0000:
820 *puValue = pVCpu->cpum.s.GuestMsrs.msr.MtrrFix16K_A0000;
821 break;
822 case IA32_MTRR_FIX4K_C0000:
823 *puValue = pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_C0000;
824 break;
825 case IA32_MTRR_FIX4K_C8000:
826 *puValue = pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_C8000;
827 break;
828 case IA32_MTRR_FIX4K_D0000:
829 *puValue = pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_D0000;
830 break;
831 case IA32_MTRR_FIX4K_D8000:
832 *puValue = pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_D8000;
833 break;
834 case IA32_MTRR_FIX4K_E0000:
835 *puValue = pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_E0000;
836 break;
837 case IA32_MTRR_FIX4K_E8000:
838 *puValue = pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_E8000;
839 break;
840 case IA32_MTRR_FIX4K_F0000:
841 *puValue = pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_F0000;
842 break;
843 case IA32_MTRR_FIX4K_F8000:
844 *puValue = pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_F8000;
845 break;
846
847 case MSR_K6_EFER:
848 *puValue = pVCpu->cpum.s.Guest.msrEFER;
849 break;
850
851 case MSR_K8_SF_MASK:
852 *puValue = pVCpu->cpum.s.Guest.msrSFMASK;
853 break;
854
855 case MSR_K6_STAR:
856 *puValue = pVCpu->cpum.s.Guest.msrSTAR;
857 break;
858
859 case MSR_K8_LSTAR:
860 *puValue = pVCpu->cpum.s.Guest.msrLSTAR;
861 break;
862
863 case MSR_K8_CSTAR:
864 *puValue = pVCpu->cpum.s.Guest.msrCSTAR;
865 break;
866
867 case MSR_K8_FS_BASE:
868 *puValue = pVCpu->cpum.s.Guest.fsHid.u64Base;
869 break;
870
871 case MSR_K8_GS_BASE:
872 *puValue = pVCpu->cpum.s.Guest.gsHid.u64Base;
873 break;
874
875 case MSR_K8_KERNEL_GS_BASE:
876 *puValue = pVCpu->cpum.s.Guest.msrKERNELGSBASE;
877 break;
878
879 case MSR_K8_TSC_AUX:
880 *puValue = pVCpu->cpum.s.GuestMsrs.msr.TscAux;
881 break;
882
883 case MSR_IA32_PERF_STATUS:
884 /** @todo could really be not exactly correct, maybe use host's values */
885 *puValue = UINT64_C(1000) /* TSC increment by tick */
886 | ((uint64_t)u8Multiplier << 24) /* CPU multiplier (aka bus ratio) min */
887 | ((uint64_t)u8Multiplier << 40) /* CPU multiplier (aka bus ratio) max */;
888 break;
889
890 case MSR_IA32_FSB_CLOCK_STS:
891 /*
892 * Encoded as:
893 * 0 - 266
894 * 1 - 133
895 * 2 - 200
896 * 3 - return 166
897 * 5 - return 100
898 */
899 *puValue = (2 << 4);
900 break;
901
902 case MSR_IA32_PLATFORM_INFO:
903 *puValue = (u8Multiplier << 8) /* Flex ratio max */
904 | ((uint64_t)u8Multiplier << 40) /* Flex ratio min */;
905 break;
906
907 case MSR_IA32_THERM_STATUS:
908 /* CPU temperature relative to TCC, to actually activate, CPUID leaf 6 EAX[0] must be set */
909 *puValue = RT_BIT(31) /* validity bit */
910 | (UINT64_C(20) << 16) /* degrees till TCC */;
911 break;
912
913 case MSR_IA32_MISC_ENABLE:
914#if 0
915 /* Needs to be tested more before enabling. */
916 *puValue = pVCpu->cpum.s.GuestMsr.msr.miscEnable;
917#else
918 /* Currenty we don't allow guests to modify enable MSRs. */
919 *puValue = MSR_IA32_MISC_ENABLE_FAST_STRINGS /* by default */;
920
921 if ((pVCpu->CTX_SUFF(pVM)->cpum.s.aGuestCpuIdStd[1].ecx & X86_CPUID_FEATURE_ECX_MONITOR) != 0)
922
923 *puValue |= MSR_IA32_MISC_ENABLE_MONITOR /* if mwait/monitor available */;
924 /** @todo: add more cpuid-controlled features this way. */
925#endif
926 break;
927
928#if 0 /*def IN_RING0 */
929 case MSR_IA32_PLATFORM_ID:
930 case MSR_IA32_BIOS_SIGN_ID:
931 if (CPUMGetCPUVendor(pVM) == CPUMCPUVENDOR_INTEL)
932 {
933 /* Available since the P6 family. VT-x implies that this feature is present. */
934 if (idMsr == MSR_IA32_PLATFORM_ID)
935 *puValue = ASMRdMsr(MSR_IA32_PLATFORM_ID);
936 else if (idMsr == MSR_IA32_BIOS_SIGN_ID)
937 *puValue = ASMRdMsr(MSR_IA32_BIOS_SIGN_ID);
938 break;
939 }
940 /* no break */
941#endif
942
943 default:
944 /* In X2APIC specification this range is reserved for APIC control. */
945 if ( idMsr >= MSR_IA32_APIC_START
946 && idMsr < MSR_IA32_APIC_END)
947 {
948 rc = PDMApicReadMSR(pVCpu->CTX_SUFF(pVM), pVCpu->idCpu, idMsr, puValue);
949 if (RT_SUCCESS(rc))
950 rc = VINF_SUCCESS;
951 else
952 {
953 *puValue = 0;
954 rc = VERR_CPUM_RAISE_GP_0;
955 }
956 }
957 else
958 {
959 *puValue = 0;
960 rc = VERR_CPUM_RAISE_GP_0;
961 }
962 break;
963 }
964
965 return rc;
966}
967
968
969/**
970 * Sets the MSR.
971 *
972 * The caller is responsible for checking privilege if the call is the result
973 * of a WRMSR instruction. We'll do the rest.
974 *
975 * @retval VINF_SUCCESS on success.
976 * @retval VERR_CPUM_RAISE_GP_0 on failure, the caller is expected to take the
977 * appropriate actions.
978 *
979 * @param pVCpu The virtual CPU to operate on.
980 * @param idMsr The MSR id.
981 * @param uValue The value to set.
982 *
983 * @remarks Everyone changing MSR values, including the recompiler, shall do it
984 * by calling this method. This makes sure we have current values and
985 * that we trigger all the right actions when something changes.
986 */
987VMMDECL(int) CPUMSetGuestMsr(PVMCPU pVCpu, uint32_t idMsr, uint64_t uValue)
988{
989 /*
990 * If we don't indicate MSR support in the CPUID feature bits, indicate
991 * that a #GP(0) should be raised.
992 */
993 if (!(pVCpu->CTX_SUFF(pVM)->cpum.s.aGuestCpuIdStd[1].edx & X86_CPUID_FEATURE_EDX_MSR))
994 return VERR_CPUM_RAISE_GP_0; /** @todo isn't \#UD more correct if not supported? */
995
996 int rc = VINF_SUCCESS;
997 switch (idMsr)
998 {
999 case MSR_IA32_MISC_ENABLE:
1000 pVCpu->cpum.s.GuestMsrs.msr.MiscEnable = uValue;
1001 break;
1002
1003 case MSR_IA32_TSC:
1004 TMCpuTickSet(pVCpu->CTX_SUFF(pVM), pVCpu, uValue);
1005 break;
1006
1007 case MSR_IA32_APICBASE:
1008 rc = PDMApicSetBase(pVCpu->CTX_SUFF(pVM), uValue);
1009 if (rc != VINF_SUCCESS)
1010 rc = VERR_CPUM_RAISE_GP_0;
1011 break;
1012
1013 case MSR_IA32_CR_PAT:
1014 pVCpu->cpum.s.Guest.msrPAT = uValue;
1015 break;
1016
1017 case MSR_IA32_SYSENTER_CS:
1018 pVCpu->cpum.s.Guest.SysEnter.cs = uValue & 0xffff; /* 16 bits selector */
1019 break;
1020
1021 case MSR_IA32_SYSENTER_EIP:
1022 pVCpu->cpum.s.Guest.SysEnter.eip = uValue;
1023 break;
1024
1025 case MSR_IA32_SYSENTER_ESP:
1026 pVCpu->cpum.s.Guest.SysEnter.esp = uValue;
1027 break;
1028
1029 case MSR_IA32_MTRR_CAP:
1030 return VERR_CPUM_RAISE_GP_0;
1031
1032 case MSR_IA32_MTRR_DEF_TYPE:
1033 if ( (uValue & UINT64_C(0xfffffffffffff300))
1034 || ( (uValue & 0xff) != 0
1035 && (uValue & 0xff) != 1
1036 && (uValue & 0xff) != 4
1037 && (uValue & 0xff) != 5
1038 && (uValue & 0xff) != 6) )
1039 {
1040 Log(("MSR_IA32_MTRR_DEF_TYPE: #GP(0) - writing reserved value (%#llx)\n", uValue));
1041 return VERR_CPUM_RAISE_GP_0;
1042 }
1043 pVCpu->cpum.s.GuestMsrs.msr.MtrrDefType = uValue;
1044 break;
1045
1046 case IA32_MTRR_FIX64K_00000:
1047 pVCpu->cpum.s.GuestMsrs.msr.MtrrFix64K_00000 = uValue;
1048 break;
1049 case IA32_MTRR_FIX16K_80000:
1050 pVCpu->cpum.s.GuestMsrs.msr.MtrrFix16K_80000 = uValue;
1051 break;
1052 case IA32_MTRR_FIX16K_A0000:
1053 pVCpu->cpum.s.GuestMsrs.msr.MtrrFix16K_A0000 = uValue;
1054 break;
1055 case IA32_MTRR_FIX4K_C0000:
1056 pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_C0000 = uValue;
1057 break;
1058 case IA32_MTRR_FIX4K_C8000:
1059 pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_C8000 = uValue;
1060 break;
1061 case IA32_MTRR_FIX4K_D0000:
1062 pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_D0000 = uValue;
1063 break;
1064 case IA32_MTRR_FIX4K_D8000:
1065 pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_D8000 = uValue;
1066 break;
1067 case IA32_MTRR_FIX4K_E0000:
1068 pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_E0000 = uValue;
1069 break;
1070 case IA32_MTRR_FIX4K_E8000:
1071 pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_E8000 = uValue;
1072 break;
1073 case IA32_MTRR_FIX4K_F0000:
1074 pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_F0000 = uValue;
1075 break;
1076 case IA32_MTRR_FIX4K_F8000:
1077 pVCpu->cpum.s.GuestMsrs.msr.MtrrFix4K_F8000 = uValue;
1078 break;
1079
1080 case MSR_K6_EFER:
1081 {
1082 PVM pVM = pVCpu->CTX_SUFF(pVM);
1083 uint64_t const uOldEFER = pVCpu->cpum.s.Guest.msrEFER;
1084 uint32_t const fExtFeatures = pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001
1085 ? pVM->cpum.s.aGuestCpuIdExt[1].edx
1086 : 0;
1087 uint64_t fMask = 0;
1088
1089 /* Filter out those bits the guest is allowed to change. (e.g. LMA is read-only) */
1090 if (fExtFeatures & X86_CPUID_AMD_FEATURE_EDX_NX)
1091 fMask |= MSR_K6_EFER_NXE;
1092 if (fExtFeatures & X86_CPUID_AMD_FEATURE_EDX_LONG_MODE)
1093 fMask |= MSR_K6_EFER_LME;
1094 if (fExtFeatures & X86_CPUID_AMD_FEATURE_EDX_SEP)
1095 fMask |= MSR_K6_EFER_SCE;
1096 if (fExtFeatures & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
1097 fMask |= MSR_K6_EFER_FFXSR;
1098
1099 /* Check for illegal MSR_K6_EFER_LME transitions: not allowed to change LME if
1100 paging is enabled. (AMD Arch. Programmer's Manual Volume 2: Table 14-5) */
1101 if ( (uOldEFER & MSR_K6_EFER_LME) != (uValue & fMask & MSR_K6_EFER_LME)
1102 && (pVCpu->cpum.s.Guest.cr0 & X86_CR0_PG))
1103 {
1104 Log(("Illegal MSR_K6_EFER_LME change: paging is enabled!!\n"));
1105 return VERR_CPUM_RAISE_GP_0;
1106 }
1107
1108 /* There are a few more: e.g. MSR_K6_EFER_LMSLE */
1109 AssertMsg(!(uValue & ~(MSR_K6_EFER_NXE | MSR_K6_EFER_LME | MSR_K6_EFER_LMA /* ignored anyway */ | MSR_K6_EFER_SCE | MSR_K6_EFER_FFXSR)),
1110 ("Unexpected value %RX64\n", uValue));
1111 pVCpu->cpum.s.Guest.msrEFER = (uOldEFER & ~fMask) | (uValue & fMask);
1112
1113 /* AMD64 Architecture Programmer's Manual: 15.15 TLB Control; flush the TLB
1114 if MSR_K6_EFER_NXE, MSR_K6_EFER_LME or MSR_K6_EFER_LMA are changed. */
1115 if ( (uOldEFER & (MSR_K6_EFER_NXE | MSR_K6_EFER_LME | MSR_K6_EFER_LMA))
1116 != (pVCpu->cpum.s.Guest.msrEFER & (MSR_K6_EFER_NXE | MSR_K6_EFER_LME | MSR_K6_EFER_LMA)))
1117 {
1118 /// @todo PGMFlushTLB(pVCpu, cr3, true /*fGlobal*/);
1119 HWACCMFlushTLB(pVCpu);
1120
1121 /* Notify PGM about NXE changes. */
1122 if ( (uOldEFER & MSR_K6_EFER_NXE)
1123 != (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE))
1124 PGMNotifyNxeChanged(pVCpu, !(uOldEFER & MSR_K6_EFER_NXE));
1125 }
1126 break;
1127 }
1128
1129 case MSR_K8_SF_MASK:
1130 pVCpu->cpum.s.Guest.msrSFMASK = uValue;
1131 break;
1132
1133 case MSR_K6_STAR:
1134 pVCpu->cpum.s.Guest.msrSTAR = uValue;
1135 break;
1136
1137 case MSR_K8_LSTAR:
1138 pVCpu->cpum.s.Guest.msrLSTAR = uValue;
1139 break;
1140
1141 case MSR_K8_CSTAR:
1142 pVCpu->cpum.s.Guest.msrCSTAR = uValue;
1143 break;
1144
1145 case MSR_K8_FS_BASE:
1146 pVCpu->cpum.s.Guest.fsHid.u64Base = uValue;
1147 break;
1148
1149 case MSR_K8_GS_BASE:
1150 pVCpu->cpum.s.Guest.gsHid.u64Base = uValue;
1151 break;
1152
1153 case MSR_K8_KERNEL_GS_BASE:
1154 pVCpu->cpum.s.Guest.msrKERNELGSBASE = uValue;
1155 break;
1156
1157 case MSR_K8_TSC_AUX:
1158 pVCpu->cpum.s.GuestMsrs.msr.TscAux = uValue;
1159 break;
1160
1161 default:
1162 /* In X2APIC specification this range is reserved for APIC control. */
1163 if ( idMsr >= MSR_IA32_APIC_START
1164 && idMsr < MSR_IA32_APIC_END)
1165 {
1166 rc = PDMApicWriteMSR(pVCpu->CTX_SUFF(pVM), pVCpu->idCpu, idMsr, uValue);
1167 if (rc != VINF_SUCCESS)
1168 rc = VERR_CPUM_RAISE_GP_0;
1169 }
1170 else
1171 {
1172 /* We should actually trigger a #GP here, but don't as that might cause more trouble. */
1173 /** @todo rc = VERR_CPUM_RAISE_GP_0 */
1174 Log(("CPUMSetGuestMsr: Unknown MSR %#x attempted set to %#llx\n", idMsr, uValue));
1175 }
1176 break;
1177 }
1178 return rc;
1179}
1180
1181
1182VMMDECL(RTGCPTR) CPUMGetGuestIDTR(PVMCPU pVCpu, uint16_t *pcbLimit)
1183{
1184 if (pcbLimit)
1185 *pcbLimit = pVCpu->cpum.s.Guest.idtr.cbIdt;
1186 return pVCpu->cpum.s.Guest.idtr.pIdt;
1187}
1188
1189
1190VMMDECL(RTSEL) CPUMGetGuestTR(PVMCPU pVCpu, PCPUMSELREGHID pHidden)
1191{
1192 if (pHidden)
1193 *pHidden = pVCpu->cpum.s.Guest.trHid;
1194 return pVCpu->cpum.s.Guest.tr;
1195}
1196
1197
1198VMMDECL(RTSEL) CPUMGetGuestCS(PVMCPU pVCpu)
1199{
1200 return pVCpu->cpum.s.Guest.cs;
1201}
1202
1203
1204VMMDECL(RTSEL) CPUMGetGuestDS(PVMCPU pVCpu)
1205{
1206 return pVCpu->cpum.s.Guest.ds;
1207}
1208
1209
1210VMMDECL(RTSEL) CPUMGetGuestES(PVMCPU pVCpu)
1211{
1212 return pVCpu->cpum.s.Guest.es;
1213}
1214
1215
1216VMMDECL(RTSEL) CPUMGetGuestFS(PVMCPU pVCpu)
1217{
1218 return pVCpu->cpum.s.Guest.fs;
1219}
1220
1221
1222VMMDECL(RTSEL) CPUMGetGuestGS(PVMCPU pVCpu)
1223{
1224 return pVCpu->cpum.s.Guest.gs;
1225}
1226
1227
1228VMMDECL(RTSEL) CPUMGetGuestSS(PVMCPU pVCpu)
1229{
1230 return pVCpu->cpum.s.Guest.ss;
1231}
1232
1233
1234VMMDECL(RTSEL) CPUMGetGuestLDTR(PVMCPU pVCpu)
1235{
1236 return pVCpu->cpum.s.Guest.ldtr;
1237}
1238
1239
1240VMMDECL(uint64_t) CPUMGetGuestCR0(PVMCPU pVCpu)
1241{
1242 return pVCpu->cpum.s.Guest.cr0;
1243}
1244
1245
1246VMMDECL(uint64_t) CPUMGetGuestCR2(PVMCPU pVCpu)
1247{
1248 return pVCpu->cpum.s.Guest.cr2;
1249}
1250
1251
1252VMMDECL(uint64_t) CPUMGetGuestCR3(PVMCPU pVCpu)
1253{
1254 return pVCpu->cpum.s.Guest.cr3;
1255}
1256
1257
1258VMMDECL(uint64_t) CPUMGetGuestCR4(PVMCPU pVCpu)
1259{
1260 return pVCpu->cpum.s.Guest.cr4;
1261}
1262
1263
1264VMMDECL(uint64_t) CPUMGetGuestCR8(PVMCPU pVCpu)
1265{
1266 uint64_t u64;
1267 int rc = CPUMGetGuestCRx(pVCpu, USE_REG_CR8, &u64);
1268 if (RT_FAILURE(rc))
1269 u64 = 0;
1270 return u64;
1271}
1272
1273
1274VMMDECL(void) CPUMGetGuestGDTR(PVMCPU pVCpu, PVBOXGDTR pGDTR)
1275{
1276 *pGDTR = pVCpu->cpum.s.Guest.gdtr;
1277}
1278
1279
1280VMMDECL(uint32_t) CPUMGetGuestEIP(PVMCPU pVCpu)
1281{
1282 return pVCpu->cpum.s.Guest.eip;
1283}
1284
1285
1286VMMDECL(uint64_t) CPUMGetGuestRIP(PVMCPU pVCpu)
1287{
1288 return pVCpu->cpum.s.Guest.rip;
1289}
1290
1291
1292VMMDECL(uint32_t) CPUMGetGuestEAX(PVMCPU pVCpu)
1293{
1294 return pVCpu->cpum.s.Guest.eax;
1295}
1296
1297
1298VMMDECL(uint32_t) CPUMGetGuestEBX(PVMCPU pVCpu)
1299{
1300 return pVCpu->cpum.s.Guest.ebx;
1301}
1302
1303
1304VMMDECL(uint32_t) CPUMGetGuestECX(PVMCPU pVCpu)
1305{
1306 return pVCpu->cpum.s.Guest.ecx;
1307}
1308
1309
1310VMMDECL(uint32_t) CPUMGetGuestEDX(PVMCPU pVCpu)
1311{
1312 return pVCpu->cpum.s.Guest.edx;
1313}
1314
1315
1316VMMDECL(uint32_t) CPUMGetGuestESI(PVMCPU pVCpu)
1317{
1318 return pVCpu->cpum.s.Guest.esi;
1319}
1320
1321
1322VMMDECL(uint32_t) CPUMGetGuestEDI(PVMCPU pVCpu)
1323{
1324 return pVCpu->cpum.s.Guest.edi;
1325}
1326
1327
1328VMMDECL(uint32_t) CPUMGetGuestESP(PVMCPU pVCpu)
1329{
1330 return pVCpu->cpum.s.Guest.esp;
1331}
1332
1333
1334VMMDECL(uint32_t) CPUMGetGuestEBP(PVMCPU pVCpu)
1335{
1336 return pVCpu->cpum.s.Guest.ebp;
1337}
1338
1339
1340VMMDECL(uint32_t) CPUMGetGuestEFlags(PVMCPU pVCpu)
1341{
1342 return pVCpu->cpum.s.Guest.eflags.u32;
1343}
1344
1345
1346VMMDECL(int) CPUMGetGuestCRx(PVMCPU pVCpu, unsigned iReg, uint64_t *pValue)
1347{
1348 switch (iReg)
1349 {
1350 case USE_REG_CR0:
1351 *pValue = pVCpu->cpum.s.Guest.cr0;
1352 break;
1353
1354 case USE_REG_CR2:
1355 *pValue = pVCpu->cpum.s.Guest.cr2;
1356 break;
1357
1358 case USE_REG_CR3:
1359 *pValue = pVCpu->cpum.s.Guest.cr3;
1360 break;
1361
1362 case USE_REG_CR4:
1363 *pValue = pVCpu->cpum.s.Guest.cr4;
1364 break;
1365
1366 case USE_REG_CR8:
1367 {
1368 uint8_t u8Tpr;
1369 int rc = PDMApicGetTPR(pVCpu, &u8Tpr, NULL /*pfPending*/);
1370 if (RT_FAILURE(rc))
1371 {
1372 AssertMsg(rc == VERR_PDM_NO_APIC_INSTANCE, ("%Rrc\n", rc));
1373 *pValue = 0;
1374 return rc;
1375 }
1376 *pValue = u8Tpr >> 4; /* bits 7-4 contain the task priority that go in cr8, bits 3-0*/
1377 break;
1378 }
1379
1380 default:
1381 return VERR_INVALID_PARAMETER;
1382 }
1383 return VINF_SUCCESS;
1384}
1385
1386
1387VMMDECL(uint64_t) CPUMGetGuestDR0(PVMCPU pVCpu)
1388{
1389 return pVCpu->cpum.s.Guest.dr[0];
1390}
1391
1392
1393VMMDECL(uint64_t) CPUMGetGuestDR1(PVMCPU pVCpu)
1394{
1395 return pVCpu->cpum.s.Guest.dr[1];
1396}
1397
1398
1399VMMDECL(uint64_t) CPUMGetGuestDR2(PVMCPU pVCpu)
1400{
1401 return pVCpu->cpum.s.Guest.dr[2];
1402}
1403
1404
1405VMMDECL(uint64_t) CPUMGetGuestDR3(PVMCPU pVCpu)
1406{
1407 return pVCpu->cpum.s.Guest.dr[3];
1408}
1409
1410
1411VMMDECL(uint64_t) CPUMGetGuestDR6(PVMCPU pVCpu)
1412{
1413 return pVCpu->cpum.s.Guest.dr[6];
1414}
1415
1416
1417VMMDECL(uint64_t) CPUMGetGuestDR7(PVMCPU pVCpu)
1418{
1419 return pVCpu->cpum.s.Guest.dr[7];
1420}
1421
1422
1423VMMDECL(int) CPUMGetGuestDRx(PVMCPU pVCpu, uint32_t iReg, uint64_t *pValue)
1424{
1425 AssertReturn(iReg <= USE_REG_DR7, VERR_INVALID_PARAMETER);
1426 /* DR4 is an alias for DR6, and DR5 is an alias for DR7. */
1427 if (iReg == 4 || iReg == 5)
1428 iReg += 2;
1429 *pValue = pVCpu->cpum.s.Guest.dr[iReg];
1430 return VINF_SUCCESS;
1431}
1432
1433
1434VMMDECL(uint64_t) CPUMGetGuestEFER(PVMCPU pVCpu)
1435{
1436 return pVCpu->cpum.s.Guest.msrEFER;
1437}
1438
1439
1440/**
1441 * Gets a CpuId leaf.
1442 *
1443 * @param pVCpu The VMCPU handle.
1444 * @param iLeaf The CPUID leaf to get.
1445 * @param pEax Where to store the EAX value.
1446 * @param pEbx Where to store the EBX value.
1447 * @param pEcx Where to store the ECX value.
1448 * @param pEdx Where to store the EDX value.
1449 */
1450VMMDECL(void) CPUMGetGuestCpuId(PVMCPU pVCpu, uint32_t iLeaf, uint32_t *pEax, uint32_t *pEbx, uint32_t *pEcx, uint32_t *pEdx)
1451{
1452 PVM pVM = pVCpu->CTX_SUFF(pVM);
1453
1454 PCCPUMCPUID pCpuId;
1455 if (iLeaf < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd))
1456 pCpuId = &pVM->cpum.s.aGuestCpuIdStd[iLeaf];
1457 else if (iLeaf - UINT32_C(0x80000000) < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt))
1458 pCpuId = &pVM->cpum.s.aGuestCpuIdExt[iLeaf - UINT32_C(0x80000000)];
1459 else if ( iLeaf - UINT32_C(0x40000000) < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdHyper)
1460 && (pVCpu->CTX_SUFF(pVM)->cpum.s.aGuestCpuIdStd[1].ecx & X86_CPUID_FEATURE_ECX_HVP))
1461 pCpuId = &pVM->cpum.s.aGuestCpuIdHyper[iLeaf - UINT32_C(0x40000000)]; /* Only report if HVP bit set. */
1462 else if (iLeaf - UINT32_C(0xc0000000) < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur))
1463 pCpuId = &pVM->cpum.s.aGuestCpuIdCentaur[iLeaf - UINT32_C(0xc0000000)];
1464 else
1465 pCpuId = &pVM->cpum.s.GuestCpuIdDef;
1466
1467 uint32_t cCurrentCacheIndex = *pEcx;
1468
1469 *pEax = pCpuId->eax;
1470 *pEbx = pCpuId->ebx;
1471 *pEcx = pCpuId->ecx;
1472 *pEdx = pCpuId->edx;
1473
1474 if ( iLeaf == 1)
1475 {
1476 /* Bits 31-24: Initial APIC ID */
1477 Assert(pVCpu->idCpu <= 255);
1478 *pEbx |= (pVCpu->idCpu << 24);
1479 }
1480
1481 if ( iLeaf == 4
1482 && cCurrentCacheIndex < 3
1483 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_INTEL)
1484 {
1485 uint32_t type, level, sharing, linesize,
1486 partitions, associativity, sets, cores;
1487
1488 /* For type: 1 - data cache, 2 - i-cache, 3 - unified */
1489 partitions = 1;
1490 /* Those are only to shut up compiler, as they will always
1491 get overwritten, and compiler should be able to figure that out */
1492 sets = associativity = sharing = level = 1;
1493 cores = pVM->cCpus > 32 ? 32 : pVM->cCpus;
1494 switch (cCurrentCacheIndex)
1495 {
1496 case 0:
1497 type = 1;
1498 level = 1;
1499 sharing = 1;
1500 linesize = 64;
1501 associativity = 8;
1502 sets = 64;
1503 break;
1504 case 1:
1505 level = 1;
1506 type = 2;
1507 sharing = 1;
1508 linesize = 64;
1509 associativity = 8;
1510 sets = 64;
1511 break;
1512 default: /* shut up gcc.*/
1513 AssertFailed();
1514 case 2:
1515 level = 2;
1516 type = 3;
1517 sharing = cores; /* our L2 cache is modelled as shared between all cores */
1518 linesize = 64;
1519 associativity = 24;
1520 sets = 4096;
1521 break;
1522 }
1523
1524 *pEax |= ((cores - 1) << 26) |
1525 ((sharing - 1) << 14) |
1526 (level << 5) |
1527 1;
1528 *pEbx = (linesize - 1) |
1529 ((partitions - 1) << 12) |
1530 ((associativity - 1) << 22); /* -1 encoding */
1531 *pEcx = sets - 1;
1532 }
1533
1534 Log2(("CPUMGetGuestCpuId: iLeaf=%#010x %RX32 %RX32 %RX32 %RX32\n", iLeaf, *pEax, *pEbx, *pEcx, *pEdx));
1535}
1536
1537/**
1538 * Gets a number of standard CPUID leafs.
1539 *
1540 * @returns Number of leafs.
1541 * @param pVM The VM handle.
1542 * @remark Intended for PATM.
1543 */
1544VMMDECL(uint32_t) CPUMGetGuestCpuIdStdMax(PVM pVM)
1545{
1546 return RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd);
1547}
1548
1549
1550/**
1551 * Gets a number of extended CPUID leafs.
1552 *
1553 * @returns Number of leafs.
1554 * @param pVM The VM handle.
1555 * @remark Intended for PATM.
1556 */
1557VMMDECL(uint32_t) CPUMGetGuestCpuIdExtMax(PVM pVM)
1558{
1559 return RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt);
1560}
1561
1562
1563/**
1564 * Gets a number of centaur CPUID leafs.
1565 *
1566 * @returns Number of leafs.
1567 * @param pVM The VM handle.
1568 * @remark Intended for PATM.
1569 */
1570VMMDECL(uint32_t) CPUMGetGuestCpuIdCentaurMax(PVM pVM)
1571{
1572 return RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur);
1573}
1574
1575
1576/**
1577 * Sets a CPUID feature bit.
1578 *
1579 * @param pVM The VM Handle.
1580 * @param enmFeature The feature to set.
1581 */
1582VMMDECL(void) CPUMSetGuestCpuIdFeature(PVM pVM, CPUMCPUIDFEATURE enmFeature)
1583{
1584 switch (enmFeature)
1585 {
1586 /*
1587 * Set the APIC bit in both feature masks.
1588 */
1589 case CPUMCPUIDFEATURE_APIC:
1590 if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1)
1591 pVM->cpum.s.aGuestCpuIdStd[1].edx |= X86_CPUID_FEATURE_EDX_APIC;
1592 if ( pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001
1593 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD)
1594 pVM->cpum.s.aGuestCpuIdExt[1].edx |= X86_CPUID_AMD_FEATURE_EDX_APIC;
1595 LogRel(("CPUMSetGuestCpuIdFeature: Enabled APIC\n"));
1596 break;
1597
1598 /*
1599 * Set the x2APIC bit in the standard feature mask.
1600 */
1601 case CPUMCPUIDFEATURE_X2APIC:
1602 if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1)
1603 pVM->cpum.s.aGuestCpuIdStd[1].ecx |= X86_CPUID_FEATURE_ECX_X2APIC;
1604 LogRel(("CPUMSetGuestCpuIdFeature: Enabled x2APIC\n"));
1605 break;
1606
1607 /*
1608 * Set the sysenter/sysexit bit in the standard feature mask.
1609 * Assumes the caller knows what it's doing! (host must support these)
1610 */
1611 case CPUMCPUIDFEATURE_SEP:
1612 {
1613 if (!(ASMCpuId_EDX(1) & X86_CPUID_FEATURE_EDX_SEP))
1614 {
1615 AssertMsgFailed(("ERROR: Can't turn on SEP when the host doesn't support it!!\n"));
1616 return;
1617 }
1618
1619 if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1)
1620 pVM->cpum.s.aGuestCpuIdStd[1].edx |= X86_CPUID_FEATURE_EDX_SEP;
1621 LogRel(("CPUMSetGuestCpuIdFeature: Enabled sysenter/exit\n"));
1622 break;
1623 }
1624
1625 /*
1626 * Set the syscall/sysret bit in the extended feature mask.
1627 * Assumes the caller knows what it's doing! (host must support these)
1628 */
1629 case CPUMCPUIDFEATURE_SYSCALL:
1630 {
1631 if ( pVM->cpum.s.aGuestCpuIdExt[0].eax < 0x80000001
1632 || !(ASMCpuId_EDX(0x80000001) & X86_CPUID_AMD_FEATURE_EDX_SEP))
1633 {
1634#if HC_ARCH_BITS == 32
1635 /* X86_CPUID_AMD_FEATURE_EDX_SEP not set it seems in 32 bits mode.
1636 * Even when the cpu is capable of doing so in 64 bits mode.
1637 */
1638 if ( pVM->cpum.s.aGuestCpuIdExt[0].eax < 0x80000001
1639 || !(ASMCpuId_EDX(0x80000001) & X86_CPUID_AMD_FEATURE_EDX_LONG_MODE)
1640 || !(ASMCpuId_EDX(1) & X86_CPUID_FEATURE_EDX_SEP))
1641#endif
1642 {
1643 LogRel(("WARNING: Can't turn on SYSCALL/SYSRET when the host doesn't support it!!\n"));
1644 return;
1645 }
1646 }
1647 /* Valid for both Intel and AMD CPUs, although only in 64 bits mode for Intel. */
1648 pVM->cpum.s.aGuestCpuIdExt[1].edx |= X86_CPUID_AMD_FEATURE_EDX_SEP;
1649 LogRel(("CPUMSetGuestCpuIdFeature: Enabled syscall/ret\n"));
1650 break;
1651 }
1652
1653 /*
1654 * Set the PAE bit in both feature masks.
1655 * Assumes the caller knows what it's doing! (host must support these)
1656 */
1657 case CPUMCPUIDFEATURE_PAE:
1658 {
1659 if (!(ASMCpuId_EDX(1) & X86_CPUID_FEATURE_EDX_PAE))
1660 {
1661 LogRel(("WARNING: Can't turn on PAE when the host doesn't support it!!\n"));
1662 return;
1663 }
1664
1665 if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1)
1666 pVM->cpum.s.aGuestCpuIdStd[1].edx |= X86_CPUID_FEATURE_EDX_PAE;
1667 if ( pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001
1668 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD)
1669 pVM->cpum.s.aGuestCpuIdExt[1].edx |= X86_CPUID_AMD_FEATURE_EDX_PAE;
1670 LogRel(("CPUMSetGuestCpuIdFeature: Enabled PAE\n"));
1671 break;
1672 }
1673
1674 /*
1675 * Set the LONG MODE bit in the extended feature mask.
1676 * Assumes the caller knows what it's doing! (host must support these)
1677 */
1678 case CPUMCPUIDFEATURE_LONG_MODE:
1679 {
1680 if ( pVM->cpum.s.aGuestCpuIdExt[0].eax < 0x80000001
1681 || !(ASMCpuId_EDX(0x80000001) & X86_CPUID_AMD_FEATURE_EDX_LONG_MODE))
1682 {
1683 LogRel(("WARNING: Can't turn on LONG MODE when the host doesn't support it!!\n"));
1684 return;
1685 }
1686
1687 /* Valid for both Intel and AMD. */
1688 pVM->cpum.s.aGuestCpuIdExt[1].edx |= X86_CPUID_AMD_FEATURE_EDX_LONG_MODE;
1689 LogRel(("CPUMSetGuestCpuIdFeature: Enabled LONG MODE\n"));
1690 break;
1691 }
1692
1693 /*
1694 * Set the NXE bit in the extended feature mask.
1695 * Assumes the caller knows what it's doing! (host must support these)
1696 */
1697 case CPUMCPUIDFEATURE_NXE:
1698 {
1699 if ( pVM->cpum.s.aGuestCpuIdExt[0].eax < 0x80000001
1700 || !(ASMCpuId_EDX(0x80000001) & X86_CPUID_AMD_FEATURE_EDX_NX))
1701 {
1702 LogRel(("WARNING: Can't turn on NXE when the host doesn't support it!!\n"));
1703 return;
1704 }
1705
1706 /* Valid for both Intel and AMD. */
1707 pVM->cpum.s.aGuestCpuIdExt[1].edx |= X86_CPUID_AMD_FEATURE_EDX_NX;
1708 LogRel(("CPUMSetGuestCpuIdFeature: Enabled NXE\n"));
1709 break;
1710 }
1711
1712 case CPUMCPUIDFEATURE_LAHF:
1713 {
1714 if ( pVM->cpum.s.aGuestCpuIdExt[0].eax < 0x80000001
1715 || !(ASMCpuId_ECX(0x80000001) & X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF))
1716 {
1717 LogRel(("WARNING: Can't turn on LAHF/SAHF when the host doesn't support it!!\n"));
1718 return;
1719 }
1720
1721 pVM->cpum.s.aGuestCpuIdExt[1].ecx |= X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF;
1722 LogRel(("CPUMSetGuestCpuIdFeature: Enabled LAHF/SAHF\n"));
1723 break;
1724 }
1725
1726 case CPUMCPUIDFEATURE_PAT:
1727 {
1728 if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1)
1729 pVM->cpum.s.aGuestCpuIdStd[1].edx |= X86_CPUID_FEATURE_EDX_PAT;
1730 if ( pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001
1731 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD)
1732 pVM->cpum.s.aGuestCpuIdExt[1].edx |= X86_CPUID_AMD_FEATURE_EDX_PAT;
1733 LogRel(("CPUMClearGuestCpuIdFeature: Enabled PAT\n"));
1734 break;
1735 }
1736
1737 case CPUMCPUIDFEATURE_RDTSCP:
1738 {
1739 if ( pVM->cpum.s.aGuestCpuIdExt[0].eax < 0x80000001
1740 || !(ASMCpuId_EDX(0x80000001) & X86_CPUID_AMD_FEATURE_EDX_RDTSCP)
1741 || pVM->cpum.s.u8PortableCpuIdLevel > 0)
1742 {
1743 if (!pVM->cpum.s.u8PortableCpuIdLevel)
1744 LogRel(("WARNING: Can't turn on RDTSCP when the host doesn't support it!!\n"));
1745 return;
1746 }
1747
1748 /* Valid for AMD only (for now). */
1749 pVM->cpum.s.aGuestCpuIdExt[1].edx |= X86_CPUID_AMD_FEATURE_EDX_RDTSCP;
1750 LogRel(("CPUMSetGuestCpuIdFeature: Enabled RDTSCP.\n"));
1751 break;
1752 }
1753
1754 /*
1755 * Set the Hypervisor Present bit in the standard feature mask.
1756 */
1757 case CPUMCPUIDFEATURE_HVP:
1758 if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1)
1759 pVM->cpum.s.aGuestCpuIdStd[1].ecx |= X86_CPUID_FEATURE_ECX_HVP;
1760 LogRel(("CPUMSetGuestCpuIdFeature: Enabled Hypervisor Present bit\n"));
1761 break;
1762
1763 default:
1764 AssertMsgFailed(("enmFeature=%d\n", enmFeature));
1765 break;
1766 }
1767 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1768 {
1769 PVMCPU pVCpu = &pVM->aCpus[i];
1770 pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CPUID;
1771 }
1772}
1773
1774
1775/**
1776 * Queries a CPUID feature bit.
1777 *
1778 * @returns boolean for feature presence
1779 * @param pVM The VM Handle.
1780 * @param enmFeature The feature to query.
1781 */
1782VMMDECL(bool) CPUMGetGuestCpuIdFeature(PVM pVM, CPUMCPUIDFEATURE enmFeature)
1783{
1784 switch (enmFeature)
1785 {
1786 case CPUMCPUIDFEATURE_PAE:
1787 {
1788 if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1)
1789 return !!(pVM->cpum.s.aGuestCpuIdStd[1].edx & X86_CPUID_FEATURE_EDX_PAE);
1790 break;
1791 }
1792
1793 case CPUMCPUIDFEATURE_NXE:
1794 {
1795 if (pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001)
1796 return !!(pVM->cpum.s.aGuestCpuIdExt[1].edx & X86_CPUID_AMD_FEATURE_EDX_NX);
1797 }
1798
1799 case CPUMCPUIDFEATURE_RDTSCP:
1800 {
1801 if (pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001)
1802 return !!(pVM->cpum.s.aGuestCpuIdExt[1].edx & X86_CPUID_AMD_FEATURE_EDX_RDTSCP);
1803 break;
1804 }
1805
1806 case CPUMCPUIDFEATURE_LONG_MODE:
1807 {
1808 if (pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001)
1809 return !!(pVM->cpum.s.aGuestCpuIdExt[1].edx & X86_CPUID_AMD_FEATURE_EDX_LONG_MODE);
1810 break;
1811 }
1812
1813 default:
1814 AssertMsgFailed(("enmFeature=%d\n", enmFeature));
1815 break;
1816 }
1817 return false;
1818}
1819
1820
1821/**
1822 * Clears a CPUID feature bit.
1823 *
1824 * @param pVM The VM Handle.
1825 * @param enmFeature The feature to clear.
1826 */
1827VMMDECL(void) CPUMClearGuestCpuIdFeature(PVM pVM, CPUMCPUIDFEATURE enmFeature)
1828{
1829 switch (enmFeature)
1830 {
1831 /*
1832 * Set the APIC bit in both feature masks.
1833 */
1834 case CPUMCPUIDFEATURE_APIC:
1835 if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1)
1836 pVM->cpum.s.aGuestCpuIdStd[1].edx &= ~X86_CPUID_FEATURE_EDX_APIC;
1837 if ( pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001
1838 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD)
1839 pVM->cpum.s.aGuestCpuIdExt[1].edx &= ~X86_CPUID_AMD_FEATURE_EDX_APIC;
1840 Log(("CPUMSetGuestCpuIdFeature: Disabled APIC\n"));
1841 break;
1842
1843 /*
1844 * Clear the x2APIC bit in the standard feature mask.
1845 */
1846 case CPUMCPUIDFEATURE_X2APIC:
1847 if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1)
1848 pVM->cpum.s.aGuestCpuIdStd[1].ecx &= ~X86_CPUID_FEATURE_ECX_X2APIC;
1849 LogRel(("CPUMSetGuestCpuIdFeature: Disabled x2APIC\n"));
1850 break;
1851
1852 case CPUMCPUIDFEATURE_PAE:
1853 {
1854 if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1)
1855 pVM->cpum.s.aGuestCpuIdStd[1].edx &= ~X86_CPUID_FEATURE_EDX_PAE;
1856 if ( pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001
1857 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD)
1858 pVM->cpum.s.aGuestCpuIdExt[1].edx &= ~X86_CPUID_AMD_FEATURE_EDX_PAE;
1859 LogRel(("CPUMClearGuestCpuIdFeature: Disabled PAE!\n"));
1860 break;
1861 }
1862
1863 case CPUMCPUIDFEATURE_PAT:
1864 {
1865 if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1)
1866 pVM->cpum.s.aGuestCpuIdStd[1].edx &= ~X86_CPUID_FEATURE_EDX_PAT;
1867 if ( pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001
1868 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD)
1869 pVM->cpum.s.aGuestCpuIdExt[1].edx &= ~X86_CPUID_AMD_FEATURE_EDX_PAT;
1870 LogRel(("CPUMClearGuestCpuIdFeature: Disabled PAT!\n"));
1871 break;
1872 }
1873
1874 case CPUMCPUIDFEATURE_LONG_MODE:
1875 {
1876 if (pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001)
1877 pVM->cpum.s.aGuestCpuIdExt[1].edx &= ~X86_CPUID_AMD_FEATURE_EDX_LONG_MODE;
1878 break;
1879 }
1880
1881 case CPUMCPUIDFEATURE_LAHF:
1882 {
1883 if (pVM->cpum.s.aGuestCpuIdExt[0].eax >= 0x80000001)
1884 pVM->cpum.s.aGuestCpuIdExt[1].ecx &= ~X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF;
1885 break;
1886 }
1887
1888 case CPUMCPUIDFEATURE_HVP:
1889 if (pVM->cpum.s.aGuestCpuIdStd[0].eax >= 1)
1890 pVM->cpum.s.aGuestCpuIdStd[1].ecx &= ~X86_CPUID_FEATURE_ECX_HVP;
1891 break;
1892
1893 default:
1894 AssertMsgFailed(("enmFeature=%d\n", enmFeature));
1895 break;
1896 }
1897 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1898 {
1899 PVMCPU pVCpu = &pVM->aCpus[i];
1900 pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CPUID;
1901 }
1902}
1903
1904
1905/**
1906 * Gets the host CPU vendor
1907 *
1908 * @returns CPU vendor
1909 * @param pVM The VM handle.
1910 */
1911VMMDECL(CPUMCPUVENDOR) CPUMGetHostCpuVendor(PVM pVM)
1912{
1913 return pVM->cpum.s.enmHostCpuVendor;
1914}
1915
1916/**
1917 * Gets the CPU vendor
1918 *
1919 * @returns CPU vendor
1920 * @param pVM The VM handle.
1921 */
1922VMMDECL(CPUMCPUVENDOR) CPUMGetGuestCpuVendor(PVM pVM)
1923{
1924 return pVM->cpum.s.enmGuestCpuVendor;
1925}
1926
1927
1928VMMDECL(int) CPUMSetGuestDR0(PVMCPU pVCpu, uint64_t uDr0)
1929{
1930 pVCpu->cpum.s.Guest.dr[0] = uDr0;
1931 return CPUMRecalcHyperDRx(pVCpu);
1932}
1933
1934
1935VMMDECL(int) CPUMSetGuestDR1(PVMCPU pVCpu, uint64_t uDr1)
1936{
1937 pVCpu->cpum.s.Guest.dr[1] = uDr1;
1938 return CPUMRecalcHyperDRx(pVCpu);
1939}
1940
1941
1942VMMDECL(int) CPUMSetGuestDR2(PVMCPU pVCpu, uint64_t uDr2)
1943{
1944 pVCpu->cpum.s.Guest.dr[2] = uDr2;
1945 return CPUMRecalcHyperDRx(pVCpu);
1946}
1947
1948
1949VMMDECL(int) CPUMSetGuestDR3(PVMCPU pVCpu, uint64_t uDr3)
1950{
1951 pVCpu->cpum.s.Guest.dr[3] = uDr3;
1952 return CPUMRecalcHyperDRx(pVCpu);
1953}
1954
1955
1956VMMDECL(int) CPUMSetGuestDR6(PVMCPU pVCpu, uint64_t uDr6)
1957{
1958 pVCpu->cpum.s.Guest.dr[6] = uDr6;
1959 return CPUMRecalcHyperDRx(pVCpu);
1960}
1961
1962
1963VMMDECL(int) CPUMSetGuestDR7(PVMCPU pVCpu, uint64_t uDr7)
1964{
1965 pVCpu->cpum.s.Guest.dr[7] = uDr7;
1966 return CPUMRecalcHyperDRx(pVCpu);
1967}
1968
1969
1970VMMDECL(int) CPUMSetGuestDRx(PVMCPU pVCpu, uint32_t iReg, uint64_t Value)
1971{
1972 AssertReturn(iReg <= USE_REG_DR7, VERR_INVALID_PARAMETER);
1973 /* DR4 is an alias for DR6, and DR5 is an alias for DR7. */
1974 if (iReg == 4 || iReg == 5)
1975 iReg += 2;
1976 pVCpu->cpum.s.Guest.dr[iReg] = Value;
1977 return CPUMRecalcHyperDRx(pVCpu);
1978}
1979
1980
1981/**
1982 * Recalculates the hypervisor DRx register values based on
1983 * current guest registers and DBGF breakpoints.
1984 *
1985 * This is called whenever a guest DRx register is modified and when DBGF
1986 * sets a hardware breakpoint. In guest context this function will reload
1987 * any (hyper) DRx registers which comes out with a different value.
1988 *
1989 * @returns VINF_SUCCESS.
1990 * @param pVCpu The VMCPU handle.
1991 */
1992VMMDECL(int) CPUMRecalcHyperDRx(PVMCPU pVCpu)
1993{
1994 PVM pVM = pVCpu->CTX_SUFF(pVM);
1995
1996 /*
1997 * Compare the DR7s first.
1998 *
1999 * We only care about the enabled flags. The GE and LE flags are always
2000 * set and we don't care if the guest doesn't set them. GD is virtualized
2001 * when we dispatch #DB, we never enable it.
2002 */
2003 const RTGCUINTREG uDbgfDr7 = DBGFBpGetDR7(pVM);
2004#ifdef CPUM_VIRTUALIZE_DRX
2005 const RTGCUINTREG uGstDr7 = CPUMGetGuestDR7(pVCpu);
2006#else
2007 const RTGCUINTREG uGstDr7 = 0;
2008#endif
2009 if ((uGstDr7 | uDbgfDr7) & X86_DR7_ENABLED_MASK)
2010 {
2011 /*
2012 * Ok, something is enabled. Recalc each of the breakpoints.
2013 * Straight forward code, not optimized/minimized in any way.
2014 */
2015 RTGCUINTREG uNewDr7 = X86_DR7_GE | X86_DR7_LE | X86_DR7_MB1_MASK;
2016
2017 /* bp 0 */
2018 RTGCUINTREG uNewDr0;
2019 if (uDbgfDr7 & (X86_DR7_L0 | X86_DR7_G0))
2020 {
2021 uNewDr7 |= uDbgfDr7 & (X86_DR7_L0 | X86_DR7_G0 | X86_DR7_RW0_MASK | X86_DR7_LEN0_MASK);
2022 uNewDr0 = DBGFBpGetDR0(pVM);
2023 }
2024 else if (uGstDr7 & (X86_DR7_L0 | X86_DR7_G0))
2025 {
2026 uNewDr7 |= uGstDr7 & (X86_DR7_L0 | X86_DR7_G0 | X86_DR7_RW0_MASK | X86_DR7_LEN0_MASK);
2027 uNewDr0 = CPUMGetGuestDR0(pVCpu);
2028 }
2029 else
2030 uNewDr0 = pVCpu->cpum.s.Hyper.dr[0];
2031
2032 /* bp 1 */
2033 RTGCUINTREG uNewDr1;
2034 if (uDbgfDr7 & (X86_DR7_L1 | X86_DR7_G1))
2035 {
2036 uNewDr7 |= uDbgfDr7 & (X86_DR7_L1 | X86_DR7_G1 | X86_DR7_RW1_MASK | X86_DR7_LEN1_MASK);
2037 uNewDr1 = DBGFBpGetDR1(pVM);
2038 }
2039 else if (uGstDr7 & (X86_DR7_L1 | X86_DR7_G1))
2040 {
2041 uNewDr7 |= uGstDr7 & (X86_DR7_L1 | X86_DR7_G1 | X86_DR7_RW1_MASK | X86_DR7_LEN1_MASK);
2042 uNewDr1 = CPUMGetGuestDR1(pVCpu);
2043 }
2044 else
2045 uNewDr1 = pVCpu->cpum.s.Hyper.dr[1];
2046
2047 /* bp 2 */
2048 RTGCUINTREG uNewDr2;
2049 if (uDbgfDr7 & (X86_DR7_L2 | X86_DR7_G2))
2050 {
2051 uNewDr7 |= uDbgfDr7 & (X86_DR7_L2 | X86_DR7_G2 | X86_DR7_RW2_MASK | X86_DR7_LEN2_MASK);
2052 uNewDr2 = DBGFBpGetDR2(pVM);
2053 }
2054 else if (uGstDr7 & (X86_DR7_L2 | X86_DR7_G2))
2055 {
2056 uNewDr7 |= uGstDr7 & (X86_DR7_L2 | X86_DR7_G2 | X86_DR7_RW2_MASK | X86_DR7_LEN2_MASK);
2057 uNewDr2 = CPUMGetGuestDR2(pVCpu);
2058 }
2059 else
2060 uNewDr2 = pVCpu->cpum.s.Hyper.dr[2];
2061
2062 /* bp 3 */
2063 RTGCUINTREG uNewDr3;
2064 if (uDbgfDr7 & (X86_DR7_L3 | X86_DR7_G3))
2065 {
2066 uNewDr7 |= uDbgfDr7 & (X86_DR7_L3 | X86_DR7_G3 | X86_DR7_RW3_MASK | X86_DR7_LEN3_MASK);
2067 uNewDr3 = DBGFBpGetDR3(pVM);
2068 }
2069 else if (uGstDr7 & (X86_DR7_L3 | X86_DR7_G3))
2070 {
2071 uNewDr7 |= uGstDr7 & (X86_DR7_L3 | X86_DR7_G3 | X86_DR7_RW3_MASK | X86_DR7_LEN3_MASK);
2072 uNewDr3 = CPUMGetGuestDR3(pVCpu);
2073 }
2074 else
2075 uNewDr3 = pVCpu->cpum.s.Hyper.dr[3];
2076
2077 /*
2078 * Apply the updates.
2079 */
2080#ifdef IN_RC
2081 if (!(pVCpu->cpum.s.fUseFlags & CPUM_USE_DEBUG_REGS))
2082 {
2083 /** @todo save host DBx registers. */
2084 }
2085#endif
2086 pVCpu->cpum.s.fUseFlags |= CPUM_USE_DEBUG_REGS;
2087 if (uNewDr3 != pVCpu->cpum.s.Hyper.dr[3])
2088 CPUMSetHyperDR3(pVCpu, uNewDr3);
2089 if (uNewDr2 != pVCpu->cpum.s.Hyper.dr[2])
2090 CPUMSetHyperDR2(pVCpu, uNewDr2);
2091 if (uNewDr1 != pVCpu->cpum.s.Hyper.dr[1])
2092 CPUMSetHyperDR1(pVCpu, uNewDr1);
2093 if (uNewDr0 != pVCpu->cpum.s.Hyper.dr[0])
2094 CPUMSetHyperDR0(pVCpu, uNewDr0);
2095 if (uNewDr7 != pVCpu->cpum.s.Hyper.dr[7])
2096 CPUMSetHyperDR7(pVCpu, uNewDr7);
2097 }
2098 else
2099 {
2100#ifdef IN_RC
2101 if (pVCpu->cpum.s.fUseFlags & CPUM_USE_DEBUG_REGS)
2102 {
2103 /** @todo restore host DBx registers. */
2104 }
2105#endif
2106 pVCpu->cpum.s.fUseFlags &= ~CPUM_USE_DEBUG_REGS;
2107 }
2108 Log2(("CPUMRecalcHyperDRx: fUseFlags=%#x %RGr %RGr %RGr %RGr %RGr %RGr\n",
2109 pVCpu->cpum.s.fUseFlags, pVCpu->cpum.s.Hyper.dr[0], pVCpu->cpum.s.Hyper.dr[1],
2110 pVCpu->cpum.s.Hyper.dr[2], pVCpu->cpum.s.Hyper.dr[3], pVCpu->cpum.s.Hyper.dr[6],
2111 pVCpu->cpum.s.Hyper.dr[7]));
2112
2113 return VINF_SUCCESS;
2114}
2115
2116
2117/**
2118 * Tests if the guest has No-Execute Page Protection Enabled (NXE).
2119 *
2120 * @returns true if in real mode, otherwise false.
2121 * @param pVCpu The virtual CPU handle.
2122 */
2123VMMDECL(bool) CPUMIsGuestNXEnabled(PVMCPU pVCpu)
2124{
2125 return !!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE);
2126}
2127
2128
2129/**
2130 * Tests if the guest has the Page Size Extension enabled (PSE).
2131 *
2132 * @returns true if in real mode, otherwise false.
2133 * @param pVCpu The virtual CPU handle.
2134 */
2135VMMDECL(bool) CPUMIsGuestPageSizeExtEnabled(PVMCPU pVCpu)
2136{
2137 /* PAE or AMD64 implies support for big pages regardless of CR4.PSE */
2138 return !!(pVCpu->cpum.s.Guest.cr4 & (X86_CR4_PSE | X86_CR4_PAE));
2139}
2140
2141
2142/**
2143 * Tests if the guest has the paging enabled (PG).
2144 *
2145 * @returns true if in real mode, otherwise false.
2146 * @param pVCpu The virtual CPU handle.
2147 */
2148VMMDECL(bool) CPUMIsGuestPagingEnabled(PVMCPU pVCpu)
2149{
2150 return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PG);
2151}
2152
2153
2154/**
2155 * Tests if the guest has the paging enabled (PG).
2156 *
2157 * @returns true if in real mode, otherwise false.
2158 * @param pVCpu The virtual CPU handle.
2159 */
2160VMMDECL(bool) CPUMIsGuestR0WriteProtEnabled(PVMCPU pVCpu)
2161{
2162 return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_WP);
2163}
2164
2165
2166/**
2167 * Tests if the guest is running in real mode or not.
2168 *
2169 * @returns true if in real mode, otherwise false.
2170 * @param pVCpu The virtual CPU handle.
2171 */
2172VMMDECL(bool) CPUMIsGuestInRealMode(PVMCPU pVCpu)
2173{
2174 return !(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE);
2175}
2176
2177
2178/**
2179 * Tests if the guest is running in real or virtual 8086 mode.
2180 *
2181 * @returns @c true if it is, @c false if not.
2182 * @param pVCpu The virtual CPU handle.
2183 */
2184VMMDECL(bool) CPUMIsGuestInRealOrV86Mode(PVMCPU pVCpu)
2185{
2186 return !(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE)
2187 || pVCpu->cpum.s.Guest.eflags.Bits.u1VM; /** @todo verify that this cannot be set in long mode. */
2188}
2189
2190
2191/**
2192 * Tests if the guest is running in protected or not.
2193 *
2194 * @returns true if in protected mode, otherwise false.
2195 * @param pVCpu The virtual CPU handle.
2196 */
2197VMMDECL(bool) CPUMIsGuestInProtectedMode(PVMCPU pVCpu)
2198{
2199 return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE);
2200}
2201
2202
2203/**
2204 * Tests if the guest is running in paged protected or not.
2205 *
2206 * @returns true if in paged protected mode, otherwise false.
2207 * @param pVCpu The virtual CPU handle.
2208 */
2209VMMDECL(bool) CPUMIsGuestInPagedProtectedMode(PVMCPU pVCpu)
2210{
2211 return (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG);
2212}
2213
2214
2215/**
2216 * Tests if the guest is running in long mode or not.
2217 *
2218 * @returns true if in long mode, otherwise false.
2219 * @param pVCpu The virtual CPU handle.
2220 */
2221VMMDECL(bool) CPUMIsGuestInLongMode(PVMCPU pVCpu)
2222{
2223 return (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA) == MSR_K6_EFER_LMA;
2224}
2225
2226
2227/**
2228 * Tests if the guest is running in PAE mode or not.
2229 *
2230 * @returns true if in PAE mode, otherwise false.
2231 * @param pVCpu The virtual CPU handle.
2232 */
2233VMMDECL(bool) CPUMIsGuestInPAEMode(PVMCPU pVCpu)
2234{
2235 return (pVCpu->cpum.s.Guest.cr4 & X86_CR4_PAE)
2236 && (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG)
2237 && !(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA);
2238}
2239
2240
2241#ifndef IN_RING0
2242/**
2243 * Updates the EFLAGS while we're in raw-mode.
2244 *
2245 * @param pVCpu The VMCPU handle.
2246 * @param pCtxCore The context core.
2247 * @param eflags The new EFLAGS value.
2248 */
2249VMMDECL(void) CPUMRawSetEFlags(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, uint32_t eflags)
2250{
2251 PVM pVM = pVCpu->CTX_SUFF(pVM);
2252
2253 if (!pVCpu->cpum.s.fRawEntered)
2254 {
2255 pCtxCore->eflags.u32 = eflags;
2256 return;
2257 }
2258 PATMRawSetEFlags(pVM, pCtxCore, eflags);
2259}
2260#endif /* !IN_RING0 */
2261
2262
2263/**
2264 * Gets the EFLAGS while we're in raw-mode.
2265 *
2266 * @returns The eflags.
2267 * @param pVCpu The VMCPU handle.
2268 * @param pCtxCore The context core.
2269 */
2270VMMDECL(uint32_t) CPUMRawGetEFlags(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore)
2271{
2272#ifdef IN_RING0
2273 NOREF(pVCpu);
2274 return pCtxCore->eflags.u32;
2275#else
2276 PVM pVM = pVCpu->CTX_SUFF(pVM);
2277
2278 if (!pVCpu->cpum.s.fRawEntered)
2279 return pCtxCore->eflags.u32;
2280 return PATMRawGetEFlags(pVM, pCtxCore);
2281#endif
2282}
2283
2284
2285/**
2286 * Sets the specified changed flags (CPUM_CHANGED_*).
2287 *
2288 * @param pVCpu The VMCPU handle.
2289 */
2290VMMDECL(void) CPUMSetChangedFlags(PVMCPU pVCpu, uint32_t fChangedFlags)
2291{
2292 pVCpu->cpum.s.fChanged |= fChangedFlags;
2293}
2294
2295
2296/**
2297 * Checks if the CPU supports the FXSAVE and FXRSTOR instruction.
2298 * @returns true if supported.
2299 * @returns false if not supported.
2300 * @param pVM The VM handle.
2301 */
2302VMMDECL(bool) CPUMSupportsFXSR(PVM pVM)
2303{
2304 return pVM->cpum.s.CPUFeatures.edx.u1FXSR != 0;
2305}
2306
2307
2308/**
2309 * Checks if the host OS uses the SYSENTER / SYSEXIT instructions.
2310 * @returns true if used.
2311 * @returns false if not used.
2312 * @param pVM The VM handle.
2313 */
2314VMMDECL(bool) CPUMIsHostUsingSysEnter(PVM pVM)
2315{
2316 return (pVM->cpum.s.fHostUseFlags & CPUM_USE_SYSENTER) != 0;
2317}
2318
2319
2320/**
2321 * Checks if the host OS uses the SYSCALL / SYSRET instructions.
2322 * @returns true if used.
2323 * @returns false if not used.
2324 * @param pVM The VM handle.
2325 */
2326VMMDECL(bool) CPUMIsHostUsingSysCall(PVM pVM)
2327{
2328 return (pVM->cpum.s.fHostUseFlags & CPUM_USE_SYSCALL) != 0;
2329}
2330
2331#ifndef IN_RING3
2332
2333/**
2334 * Lazily sync in the FPU/XMM state
2335 *
2336 * @returns VBox status code.
2337 * @param pVCpu VMCPU handle
2338 */
2339VMMDECL(int) CPUMHandleLazyFPU(PVMCPU pVCpu)
2340{
2341 return cpumHandleLazyFPUAsm(&pVCpu->cpum.s);
2342}
2343
2344#endif /* !IN_RING3 */
2345
2346/**
2347 * Checks if we activated the FPU/XMM state of the guest OS
2348 * @returns true if we did.
2349 * @returns false if not.
2350 * @param pVCpu The VMCPU handle.
2351 */
2352VMMDECL(bool) CPUMIsGuestFPUStateActive(PVMCPU pVCpu)
2353{
2354 return (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU) != 0;
2355}
2356
2357
2358/**
2359 * Deactivate the FPU/XMM state of the guest OS
2360 * @param pVCpu The VMCPU handle.
2361 */
2362VMMDECL(void) CPUMDeactivateGuestFPUState(PVMCPU pVCpu)
2363{
2364 pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_FPU;
2365}
2366
2367
2368/**
2369 * Checks if the guest debug state is active
2370 *
2371 * @returns boolean
2372 * @param pVM VM handle.
2373 */
2374VMMDECL(bool) CPUMIsGuestDebugStateActive(PVMCPU pVCpu)
2375{
2376 return (pVCpu->cpum.s.fUseFlags & CPUM_USE_DEBUG_REGS) != 0;
2377}
2378
2379/**
2380 * Checks if the hyper debug state is active
2381 *
2382 * @returns boolean
2383 * @param pVM VM handle.
2384 */
2385VMMDECL(bool) CPUMIsHyperDebugStateActive(PVMCPU pVCpu)
2386{
2387 return (pVCpu->cpum.s.fUseFlags & CPUM_USE_DEBUG_REGS_HYPER) != 0;
2388}
2389
2390
2391/**
2392 * Mark the guest's debug state as inactive.
2393 *
2394 * @returns boolean
2395 * @param pVM VM handle.
2396 */
2397VMMDECL(void) CPUMDeactivateGuestDebugState(PVMCPU pVCpu)
2398{
2399 pVCpu->cpum.s.fUseFlags &= ~CPUM_USE_DEBUG_REGS;
2400}
2401
2402
2403/**
2404 * Mark the hypervisor's debug state as inactive.
2405 *
2406 * @returns boolean
2407 * @param pVM VM handle.
2408 */
2409VMMDECL(void) CPUMDeactivateHyperDebugState(PVMCPU pVCpu)
2410{
2411 pVCpu->cpum.s.fUseFlags &= ~CPUM_USE_DEBUG_REGS_HYPER;
2412}
2413
2414/**
2415 * Checks if the hidden selector registers are valid for the specified CPU.
2416 *
2417 * @returns true if they are.
2418 * @returns false if not.
2419 * @param pVCpu The VM handle.
2420 */
2421VMMDECL(bool) CPUMAreHiddenSelRegsValid(PVMCPU pVCpu)
2422{
2423 bool const fRc = !(pVCpu->cpum.s.fChanged & CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID);
2424 Assert(fRc || !HWACCMIsEnabled(pVCpu->CTX_SUFF(pVM)));
2425 Assert(!pVCpu->cpum.s.fRemEntered);
2426 return fRc;
2427}
2428
2429
2430
2431/**
2432 * Get the current privilege level of the guest.
2433 *
2434 * @returns cpl
2435 * @param pVM VM Handle.
2436 * @param pRegFrame Trap register frame.
2437 */
2438VMMDECL(uint32_t) CPUMGetGuestCPL(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore)
2439{
2440 uint32_t cpl;
2441
2442 if (CPUMAreHiddenSelRegsValid(pVCpu))
2443 {
2444 /*
2445 * The hidden CS.DPL register is always equal to the CPL, it is
2446 * not affected by loading a conforming coding segment.
2447 *
2448 * This only seems to apply to AMD-V; in the VT-x case we *do* need to look
2449 * at SS. (ACP2 regression during install after a far call to ring 2)
2450 *
2451 * Seems it isn't necessiarly true for newer AMD-V CPUs even, we have
2452 * to move the VMCB.guest.u8CPL into Attr.n.u2Dpl to make this (and
2453 * other) code work right. So, forget CS.DPL, always use SS.DPL.
2454 */
2455 if (RT_LIKELY(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE))
2456 {
2457 if (!pCtxCore->eflags.Bits.u1VM)
2458 cpl = pCtxCore->ssHid.Attr.n.u2Dpl;
2459 else
2460 cpl = 3; /* REM doesn't set DPL=3 in V8086 mode. See #5130. */
2461 }
2462 else
2463 cpl = 0; /* CPL set to 3 for VT-x real-mode emulation. */
2464 }
2465 else if (RT_LIKELY(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE))
2466 {
2467 if (RT_LIKELY(!pCtxCore->eflags.Bits.u1VM))
2468 {
2469 /*
2470 * The SS RPL is always equal to the CPL, while the CS RPL
2471 * isn't necessarily equal if the segment is conforming.
2472 * See section 4.11.1 in the AMD manual.
2473 */
2474 cpl = (pCtxCore->ss & X86_SEL_RPL);
2475#ifndef IN_RING0
2476 if (cpl == 1)
2477 cpl = 0;
2478#endif
2479 }
2480 else
2481 cpl = 3;
2482 }
2483 else
2484 cpl = 0; /* real mode; cpl is zero */
2485
2486 return cpl;
2487}
2488
2489
2490/**
2491 * Gets the current guest CPU mode.
2492 *
2493 * If paging mode is what you need, check out PGMGetGuestMode().
2494 *
2495 * @returns The CPU mode.
2496 * @param pVCpu The VMCPU handle.
2497 */
2498VMMDECL(CPUMMODE) CPUMGetGuestMode(PVMCPU pVCpu)
2499{
2500 CPUMMODE enmMode;
2501 if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE))
2502 enmMode = CPUMMODE_REAL;
2503 else if (!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA))
2504 enmMode = CPUMMODE_PROTECTED;
2505 else
2506 enmMode = CPUMMODE_LONG;
2507
2508 return enmMode;
2509}
Note: See TracBrowser for help on using the repository browser.

© 2024 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette